Tag Archive 炎症

食品添加剂:健康还是危险?——从肠道微生物角度分析

谷禾健康

就在前不久,世界卫生组织将阿斯巴甜列为可能致癌物,引发了人们不小的热议。阿斯巴甜作为人工甜味剂的一种,不提供任何卡路里,就可以提供蔗糖几百倍的甜度。

人工甜味剂几乎不提供热量,或只提供极少的热量,所以深受健身人士减肥人群的喜爱。人工甜味剂相关产业发展迅速,许多无糖饮料、无糖冰淇淋、巧克力等食品中都有其身影。

除了人工甜味剂外,乳化剂着色剂、防腐剂等食品添加剂也是现代食品产业的重要组成部分,用于维持或提高食品的口味、安全性、新鲜度外观

但随着食品中的添加剂越来越多,其对健康的影响正引起人们的担忧。在此背景下,食品添加剂对微生物群的影响受到广泛研究。

事实上许多国家允许的食品添加剂并不会直接对人产生有害影响,但是会改变肠道微生物及其代谢。近年来出现的证据表明食品添加剂微生物群之间存在相互作用,这可能会间接影响宿主健康

例如盐是用于食品保鲜的最常见天然添加剂之一。高盐摄入会改变肠道微生物群组成和粪便短链脂肪酸的产生,通过调节辅助T细胞17影响肠道免疫轴并促进局部和全身组织炎,可能导致高血压肥胖

此外,人工甜味剂有可能引起糖代谢障碍。随着人工甜味剂摄入量的增加,患心血管疾病的风险上升,尤其是阿斯巴甜与脑血管疾病,安赛蜜和三氯蔗糖与冠动脉性心脏病的风险有关。

本文主要总结了食品添加剂中的人工甜味剂、多元醇、乳化剂色素防腐剂人体肠道微生物的影响,并间接导致了一些宿主代谢的变化,已有研究发现过量摄入食品添加剂与肠道炎症之间存在关联。在最后,我们提出了一些有助于减轻食品添加剂对身体的损害的小建议。

Rinninella E,et al.Int J Environ Res Public Health.2020

01
人工甜味剂

甜味剂与食品风味人体健康密切相关,由于现在许多人们重视对身材的管理,无热量人工甜味剂逐渐兴起,其是蔗糖的替代品,特点是能够在不增加热量摄入的情况下具有更高的甜味强度不会增加热量或引发血糖反应

其中包括阿斯巴甜、安赛蜜、三氯蔗糖、糖精、纽甜和相应的化合物,主要存在于无糖饮料、无糖糖果和乳制品中。目前的研究已观察到人工甜味剂引起的肠道微生物群代谢物的改变


阿斯巴甜

阿斯巴甜是一种低热量、强效的人造甜味剂。

•阿斯巴甜会改变人体肠道微生物的多样性

在人类中,阿斯巴甜可能不会改变粪便微生物群的丰度,但会改变其多样性。产生短链脂肪酸的细菌(例如双歧杆菌和另一项研究中检测到Blautia coccoides和拟杆菌/普雷沃氏菌比例下降

•阿斯巴甜会影响短链脂肪酸浓度

在动物实验中,经阿斯巴甜处理后,厚壁菌门和柔嫩梭菌属(Clostridiumleptum)的丰度较高肠球菌和副萨特氏菌 (Parasutterella)的丰度较低

注:厚壁菌门和柔嫩梭菌都是重要的产丁酸菌属。

而在另一项人体研究中,随着阿斯巴甜的摄入,血清、粪便和盲肠内容物中的短链脂肪酸(包括丙酸和丁酸)浓度有所增加

鉴于阿斯巴甜在不同动物和体外研究中存在一定的差异,阿斯巴甜对人体短链脂肪酸的影响还需要更多的实验研究,但目前可以确定的是,阿斯巴甜的摄入对人体短链脂肪酸的含量有影响。

阿斯巴甜存在一定的安全隐患!

需要注意的是,苯丙酮尿症患者苯丙氨酸代谢困难,应控制阿斯巴甜的摄入量。并且在此之前,美国一项研究发现,阿斯巴甜还会导致小鼠产生焦虑行为,这种影响还会跨代遗传

阿斯巴甜对革兰氏阴性菌N-酰基高丝氨酸内酯(AHL)具有显著的抑制作用,通过群体感应抑制影响肠道微生物群落的平衡,从而促进消化系统疾病的进展。

此外,法国一项大规模前瞻性队列研究的结果表明,较高的人工甜味剂消耗量(尤其是阿斯巴甜)与心血管疾病风险增加之间存在潜在的直接关联。


安赛蜜

安赛蜜,又称AK糖,是一种常用的人造甜味剂,也适合1-3岁儿童用于特殊医疗项目

安赛蜜的可接受每日摄入量为9毫克/公斤体重

•安赛蜜在改变肠道微生物时具有性别特异性

在一项研究中,安赛蜜的摄入量在改变肠道微生物及其代谢物方面表现出高度的性别特异性

在女性中,观察到乳杆菌属Lactobacillus)和梭菌属Clostridium)的丰度较低Mucispirillum丰度较高;而在男性中,拟杆菌属、萨特氏菌(Sutterella)、Anaerostipes有所增加

•过量的安赛蜜会引起肠道炎症

在怀孕和哺乳期间将小鼠暴露于三氯蔗糖和安赛蜜会改变其后代肠道微生物群α和β多样性,厚壁菌门增加和潜在抗炎细菌Akkermansia muciniphila极度减少

抗生素治疗后施用安赛蜜还会诱导硫酸盐还原菌脱硫弧菌的扩增以及结肠中促炎细胞因子较高表达

炎症性肠病患者的粪便样本中,安赛蜜治疗后抗炎细菌减少,并伴有一些细菌功能改变,如脂多糖和胆汁酸合成。这表明安赛蜜诱导的肠道微生物组和代谢物扰动可能是破坏肠道稳态的因素,这可能会增加炎症性肠病的风险

此外,安赛蜜可能会通过菌群失调引起吲哚美辛诱导的肠道损伤


三氯蔗糖

三氯蔗糖又名三氯半乳蔗糖,其甜度是蔗糖的600-650倍

•长期摄入三氯蔗糖会改变肠道菌群并影响胰岛素水平

在人类研究中,摄入三氯蔗糖并不会在短期中影响肠道微生物,而年轻人摄入十周可能会导致Blautia coccoides增加嗜酸乳杆菌减少,并改变肠道菌群和血清中的胰岛素和葡萄糖水平

注:B. coccoides是一种参与促炎途径的细菌。

•三氯蔗糖的摄入导致体内多种代谢物改变

三氯蔗糖的摄入导致了多种代谢物的改变酪氨酸水平升高,而对羟基苯乙酸和肉桂酸水平降低。这些化合物可以抑制参与色氨酸代谢的活性氧的产生。

此外,胆汁酸含量受损,盲肠内容物中胆酸浓度较高,胆酸/鹅去氧胆酸比率较高。研究人员认为这些代谢物的变化将导致引发和维持肝脏炎症

▷大胆推测:三氯蔗糖会增加结肠炎的易感性

根据现有证据,我们认为三氯蔗糖对结肠炎有害,会增加促炎细菌的丰度

三氯蔗糖会增加2,4,6,三硝基苯磺酸诱发的结肠炎易感性,并导致拟杆菌门变形菌门水平升高,厚壁菌门和放线菌门的数量减少

最近的一项调查还发现,三氯蔗糖可能会增加患结肠炎相关结直肠癌的风险。


糖精

邻苯甲酰磺酰亚胺,俗称糖精。是一种热量为0的甜味剂,其甜度为蔗糖的300~500倍,但吃起来会有轻微的苦味金属味。大部分糖精会被吸收并最终通过尿液排出,而未被吸收的糖精则通过粪便排出体外。

•糖精的消耗导致黏膜炎症细胞富集并改变肠道通透性

最近的一项研究发现,糖精的消耗会导致粘膜炎症细胞的富集并改变小鼠的肠道通透性

此外,用抗生素预处理的糖精暴露小鼠可诱导较低水平的粘膜炎症肠道屏障功能障碍。这些发现表明肠道菌群失调被认为是介导这些异常的原因。

•大量食用糖精会导致菌群失调

盲肠内容物中糖精的高含量需氧菌群的增加有关。糖精暴露会导致严重的菌群失调,从而导致葡萄糖不耐受。许多增加的类群属于拟杆菌门梭菌目,但厚壁菌门和蓝藻门减少了。

在无菌小鼠中无法诱导代谢变化,但在移植肠道微生物群后却发生了代谢变化。糖精还会导致肝脏炎症,导致阿克曼氏菌、棒状杆菌(Corynebacterium)和Turicibacter增加,并减少Anaerostipes瘤胃球菌Ruminococcus)和Dorea


纽甜

纽甜的味道比蔗糖甜7000-13000倍。纽甜的摄入降低了粪便微生物组的α多样性改变了β多样性

观察到厚壁菌门数量急剧下降。拟杆菌门,尤其是拟杆菌属丰度增加。值得注意的是,毛螺菌科和瘤胃球菌科的多种成分显著减少,包括BlautiaDoreaOscillospira和瘤胃球菌属。

•纽甜的摄入改变了丁酸等物质的代谢

纽甜的摄入还改变了肠道微生物组的两种丁酸发酵途径。其中一条途径包括编码t4-羟基丁酰辅酶A脱水酶、丁酰辅酶A脱氢酶和乙酸辅酶A转移酶的三个基因的减少。这些基因参与了琥珀酸发酵为丁酸的过程。

另一方面,有关丙酮酸发酵丁酸的上游基因也被下调。此外,氨基酸代谢脂多糖生物合成和抗生素生物合成增强,而脂肪酸和碳水化合物代谢途径减少

为了方便大家观看,谷禾将一些食品添加剂与肠道微生物群之间的相互作用整理在了下表:

Liu C,et al.Nutrients.2022

人工甜味剂对肠道功能和代谢的影响

多项研究探讨了人工甜味剂肠道微生物群宿主生理功能的影响。他们证明人工甜味剂消耗与胰岛素抵抗葡萄糖耐受不良增加之间的关联。

•富含人工甜味剂的饮食可能导致病态肥胖

研究表明,与对照小鼠相比,食用糖精的小鼠的聚糖降解显著增加。鉴于肠道细菌将聚糖发酵成短链脂肪酸,接触糖精可能会减少短链脂肪酸的产生。

丁酸盐通过肠-脑神经回路降低食欲和激活棕色脂肪组织而具有关键的抗肥胖作用。因此富含人工甜味剂的饮食可能与成年人的病态肥有关。

这些结果强调了一些人工甜味剂对聚糖发酵短链脂肪酸产生的潜在不利影响,从而导致代谢紊乱

•长期食用人工甜味剂会诱导炎症反应

此外,分析了给予糖精6个月后的小鼠肝脏,报告显示,与对照组相比,糖精处理的小鼠肝脏出现明显的肝脏炎症,且TNF-α基因表达升高

注:TNF-α是炎症中的关键细胞因子,TNF-α的表达可以激活NFκB通路并诱导细胞损伤炎症反应

如前所述,在动物模型中,人工甜味剂的摄入可能会增加拟杆菌肠杆菌科。肠杆菌科,如大肠杆菌、克雷伯菌属和变形杆菌属,位于粘膜上皮附近。

病原体感染、化学诱导的结肠炎或宿主免疫力不足可能导致肠道炎症,并刺激肠杆菌科的生长。因此,人工甜味剂似乎与肠道微生态失调肠道炎症以及肠易激综合征相关的症状有关。

谷禾在下图中汇总了各种食品添加剂对肠道代谢产物的影响:

Liu C,et al.Nutrients.2022

02
多元醇

多元醇,也叫糖醇,是一种有机物。主要种类有赤藓糖醇、异麦芽酮糖醇、山梨糖醇和木糖醇。它们天然存在于一些水果蔬菜和蘑菇中。

热量约为白糖的一半,并且只会导致血糖轻微变化。它们中的大多数在宿主中不能被很好地吸收或代谢,并且一部分会被结肠中的微生物群发酵

糖醇对肠道微生物和代谢物的影响

Liu C,et al.Nutrients.2022


赤藓糖醇

赤藓糖醇在自然界中广泛存在,葡萄、梨、蘑菇、地衣中都有赤藓糖醇。摄入赤藓糖醇后,约90%可被小肠吸收,但代谢率很低,并主要以原形通过尿液排出体外。

•摄入赤藓糖醇增加了体内短链脂肪酸含量

在结肠中,肠道菌群可以代谢未吸收的部分。研究证明,摄入赤藓糖醇会导致丁酸戊酸增加。考虑到到达大肠的赤藓糖醇数量有限,该化合物仅对肠道微生物群的组成产生轻微影响

然而,赤藓糖醇会增强肠道微生物群以产生短链脂肪酸,从而减轻肠道炎症。赤藓糖醇被发现可以改善高脂肪饮食中的小肠炎症,并诱导粪球菌属丰度降低

注:研究发现摄入赤藓糖醇后血清、粪便和白色脂肪组织中短链脂肪酸的浓度明显升高

▷目前认为赤藓糖醇是一种对肠道稳定有利的物质

尽管缺乏赤藓糖醇对炎症性肠病的直接证据,但它被认为是一种对细菌友好的多元醇,可以稳定肠道微环境,并且可以降解为对炎症性肠病友好的代谢物。


异麦芽酮糖醇

异麦芽酮糖醇长期以来一直在食品制药工业中用作甜味剂。微生物可以很容易地降解结肠中未吸收的异麦芽酮糖醇。

•异麦芽酮糖醇提高双歧杆菌的丰度

最近的研究认为它是一种益生元。在人类肠道中发酵的异麦芽酮糖醇可提高双歧杆菌的丰度并抑制致病菌,此外还降低了细菌β-葡萄糖苷酶的活性。

粪便中的短链脂肪酸、乳酸、胆汁酸、中性甾醇、苯酚和对甲酚也发生了变化。一些双歧杆菌菌株可以在体外发酵异麦芽,产生更高含量丁酸盐。然而,暴露于异麦芽后没有发现不同的基因表达。

尽管很少有临床试验探讨异麦芽酮糖醇对肠道炎症的影响,但异麦芽酮糖醇可能被认为是一种双歧多元醇,是肠道稳态和微环境的“亲密朋友”。


木糖醇

木糖醇是是从白桦树、橡树、玉米芯、甘蔗渣等植物原料中提取出来的一种天然甜味剂。木糖醇被认为是一种非致龋性甜味剂,常被应用于口香糖中。

•木糖醇有一定的抗炎作用并能抑制变型链球菌

据报道,木糖醇会影响肠道菌群,并对脂多糖诱导的炎症细胞因子表达具有抑制作用。在一项人体研究中,摄入包括木糖醇在内的低消化性碳水化合物会导致Anaerostipes spp和粪便中的丁酸盐显著升高

木糖醇降低了粪便拟杆菌Bacteroidetes)和Barnesiella属的水平,而厚壁菌门和普雷沃氏菌(Prevotella)的丰度增加较低的木糖醇浓度还可以抑制有害的变形链球菌

注:变型链球菌是口腔天然菌群中占比例最大的链球菌属中的一种,是龋病的主要致病菌

因此,我们认为木糖醇可能有利于肠道菌群的生长和代谢,而不会对肠道产生低有害刺激。

其他食品添加剂对肠道菌群及其功能的影响

编辑​

Zhou X,et al.Molecules.2023

多元醇引起的菌群变化对肠道健康有益

多元醇属于所谓的“FODMAP”(可发酵低聚糖、二糖和单糖以及多元醇)饮食类别。近年来,FODMAP饮食已成为肠易激综合征患者的宝贵治疗选择,对其限制将改善肠易激综合征治疗的结果。

“FODMAP”一词于2004年创建,用于定义高度可发酵的碳水化合物多元醇

03
乳化剂

乳化剂在日常生活中被广泛应用,因为它们能够稳定乳液并通过防止储存期间分离来延长保质期。它们还可以通过食品中的脂肪分子充当胶凝剂表面活性剂

常见的乳化剂包括羧甲基纤维素、聚山梨酯、卡拉胶等。它们存在于各种加工食品中,如酱汁、布丁、人造黄油和冰淇淋,在西方饮食中非常普遍。研究发现乳化剂会通过肠道微生物影响人体健康

乳化剂通过肠道微生物诱发结肠炎的机制

编辑​

Liu C,et al.Nutrients.2022


羧甲基纤维素和聚山梨酯80

羧甲基纤维素(CMC)和聚山梨酯80(P80)常见于食用油、冰淇淋蛋糕粉、糖霜和巧克力糖浆中。然而,接触乳化剂CMC和P80会对肠道微生物群产生负面影响

•可能通过微生物群驱动肠道炎症

有益菌如短链脂肪酸的生产菌减少

聚山梨酯80的施用引起了与炎症性肠病类似的人类肠道微生物群的改变,导致有益的双歧杆菌属、重要的短链脂肪酸生产者如粪杆菌属和罕见小球菌属 (Subdoligranulum)以及Clostridium leptum减少

炎症性肠病相关病原菌增长显著

在小鼠中,摄入P80会加剧吲哚美辛诱发的回肠炎,从而降低肠道微生物群的α多样性。包括肠杆菌科在内的硫化物生产者的生长和炎症性肠病相关物种奇异变形杆菌的群集行为得到显著促进

群集是一种鞭毛介导的运动,需要营养细胞分化成一种称为群集细胞的特殊细胞类型。奇异变形杆菌的群集能力与其在炎症性肠病中的发病机制高度相关。

增加病原菌的入侵

研究发现长期摄入羧甲基纤维素或聚山梨酯80会诱发低度肠道炎症,并促进易患这种疾病的小鼠出现严重结肠炎,最终导致细菌入侵增加


卡拉胶

卡拉胶,又名角叉菜胶,是从麒麟菜、石花菜、鹿角菜等红藻类海草中提炼出来的亲水性胶体。它们常见于调味牛奶、冰咖啡、乳制品冰淇淋冷冻甜点中。

卡拉胶的代谢主要由宿主肠道微生物群进行。因此,肠道微生物直接与卡拉胶相互作用,影响肠道稳态。有趣的是,不同种类分子量的卡拉胶对宿主有不同的影响

卡拉胶可分为低分子量或高分子量、降解或未降解卡拉胶。

•低分子量的卡拉胶会增加肠道通透性并与结肠炎相关

低分子量卡拉胶已被证明可以增加肠道通透性并与结肠炎的发生有关。据报道,角叉菜胶会诱发加重肠道炎症改变肠道微生物群组成

卡拉胶的摄入导致变形菌门和脱铁杆菌门(Deferribacteres)的增加,以及厚壁菌门、放线菌门拟杆菌门减少

卡拉胶的不同异构体均被认为会对肠道生态产生有害影响。对于人类肠道微生物群,每种异构体都会诱导α-多样性的变化并增加微生物群的促炎潜力

κ-卡拉胶和λ-卡拉胶显著富集了拟杆菌,而ι-卡拉胶减少Faecaliberium,处理后鞭毛蛋白含量更高。κ-卡拉胶在高脂饮食模型中诱导结肠炎显著增加了志贺菌并减少了双歧杆菌。两种炎症相关细菌Alistipes finegoldiiBacteroides acidifaciens的丰度也显著增加

然而,高分子量卡拉胶可能具有良好的抗肿瘤抗氧化活性。此外,之前的研究认为,肠道微生物组的改变仅在饮用水中添加卡拉胶时观察到,而在补充卡拉胶的饮食中则未观察到,这表明与蛋白质等其他食物成分的结合可能改变其构象并消除其对某些细菌的生物利用度。

▷推测:食用卡拉胶不利于肠道炎症患者恢复

在一项研究中,两种协同菌株:Bacteroides xylanisolvens 38F6A4和E. coli 38F6C1是从健康人的粪便中获得的,并给予无菌小鼠,与卡拉胶一起食用时会加剧肠道炎症

对于缓解期的溃疡性结肠炎患,在含卡拉胶的饮食治疗后复发率较高。鉴于卡拉胶对炎症性肠病患者和肠道菌群的直接有害作用,我们推测卡拉胶可能由于肠道菌群和肠道稳态紊乱而对炎症性肠病患者产生有害影响

!

乳化剂可能通过肠道微生物影响宿主心理

研究结果表明,膳食乳化剂也可能对肠脑轴产生影响,并通过微生物群依赖机制诱导暴露者的心理/行为障碍

肠道微生物群中聚山梨酯80和羧甲基纤维素依赖性的变化也是小鼠性别特异性行为神经改变的原因。特别是,雌性获得了反社会行为,而雄性表现出更高的焦虑水平

这两种变化都与微生物群特征α-黑素细胞刺激素水平的明显变化相关,这两个神经肽参与调节焦虑相关行为、食欲能量

小结

乳化剂中羧甲基纤维素聚山梨酯80过量食用会导致生态失调粘液降解细菌过度生长,以及白细胞介素10Toll样受体5进一步缺乏

乳化剂可能还会增加肠上皮屏障中病原微生物的易位,引起肠道炎症,从而导致炎症性肠病发病率增加

除此之外,乳化剂等胶体还会通过肠脑轴、肠肝轴、肠道与骨骼心血管之间的联系进一步影响人体代谢和健康

其他乳化剂在体内的生理影响

Tan H,Nie S.FEMS Microbiol Rev.2021

乳化剂和相关微生物代谢对人体的影响

编辑​

Tan H,Nie S.FEMS Microbiol Rev.2021

04
食品着色剂

食品着色剂又称食品色素,是以食品着色为主要目的,赋予食品色泽改善食品色泽的物质。

食品着色剂主要添加到奶酪酱汁、冰淇淋、糕点糖果、巧克力和口香糖中。


二氧化钛

二氧化钛(TiO2)是我国常用的食品着色剂,通常用作食品中的增白剂增亮剂

•二氧化钛影响肠道保护细菌的丰度

近年来,各种研究试图确定口服二氧化钛对小鼠和人类肠道微生物群组成的影响。在用二氧化钛处理的小鼠中,与对照组相比,观察到厚壁菌门显著增加拟杆菌门减少。特别是,巴恩斯氏菌(Barnesiella),一种关键的保护性肠道细菌,其丰度受到二氧化钛暴露(160mg/kg/天,持续28天)的显著影响

巴恩斯氏菌(Barnesiella)可以清除肠道中的有害细菌消除对万古霉素耐药的肠球菌的定植,并抑制抗生素耐药细菌的传播。它还可以改善环磷酰胺等抗癌化合物的性能。

巴恩斯氏菌(Barnesiella)的减少可能与炎症性肠病的发病机制有关。此外,它们导致结肠中的炎症浸润线粒体异常,粪便中Turicibacter属和格氏乳杆菌(Lactobacillus gasseri)和Lactobacillus NK4A136_group的增加

•高剂量的二氧化钛会诱导肠道炎症加剧

在人类中,添加二氧化钛会导致肠道微生物群多样性适度下降,并导致卵形拟杆菌(Bacteroides ovatus)和Clostridium cocleatum减少

卵形拟杆菌(Bacteroides ovatus)被誉为新一代益生菌,在肠道免疫肿瘤治疗、膳食纤维代谢方面发挥重要作用。

剂量反应实验表明,单独使用微量二氧化钛对两组巨噬细胞的吞噬作用没有影响。然而,高剂量的二氧化钛与细菌抗原协同作用,可促进巨噬细胞产生 IL-8肿瘤坏死因子-α和IL-10,并损害其转化生长因子-β分泌/吞噬细胞活性。

据报道,喂食富含二氧化钛饮食的小鼠肠道炎症加剧。特别是,微生物群组成发生了显著变化,活性氧释放增强,NLRP3炎症小体激活

!

食品着色剂会影响肠道稳态

二氧化钛等食品着色剂可能会影响肠道稳态。事实上,各种研究已经证明了二氧化钛暴露与对肠道微生物群功能性不利影响之间的潜在关联。

炎症反应加剧

在口服二氧化钛一周(10mg/kg体重/天)的大鼠中,在派尔贴片的免疫细胞和参与炎症反应的调节性T细胞中检测到二氧化钛。具体而言,在二氧化钛暴露后,从Peyer贴片中分离的免疫细胞的刺激显示辅助性T细胞减少,IFN-γ分泌增加,Th1/Th17炎症反应增加

注:更进一步研究表明二氧化钛暴露啮齿动物肠道疾病结直肠癌的发展之间可能存在关联。

短链脂肪酸水平降低

研究了小鼠体内不同剂量的二氧化钛(2、10、50 mg/kg体重/天),并报告了高剂量暴露短链脂肪酸水平的降低、粘液相关基因表达的降低、炎症反应的增加结肠隐窝长度的改变。

不同食品着色剂对粘膜屏障和肠道微生态的影响

Liu C,et al.Nutrients.2022

所有这些发现表明,由于暴露于二氧化钛等食品着色剂而导致的菌群失调可能导致微生物群失调,其中特定科和属细菌的变异可能参与炎症性肠病的发病机制。

05
防腐剂

食品防腐剂可以延缓食品的降解,延长食品的保质期,限制微生物的生长抑制食品的氧化

防腐剂的益处和安全性存在争议,许多常见的防腐剂,如苯甲酸、山梨酸钾、亚硝酸钠和亚硫酸钠以及银纳米颗粒被报道可以诱导肠道微生物群的改变

美国儿科学会警告说,防腐剂可能与恶化的多动行为致癌风险有关。


苯甲酸和苯甲酸钠

苯甲酸和苯甲酸钠均可作为食品防腐剂,因为它们能够限制病原微生物的生长。所有吸收的苯甲酸均可完全降解为马尿酸。

•适量的苯甲酸会提高有益微生物的水平

最近的研究发现苯甲酸和苯甲酸钠通过调节氧化状态免疫状态肠道屏障功能肠道微生物群有益影响

苯甲酸处理增强了回肠微生物群的生物多样性,以剂量依赖性方式降低总需氧细菌的丰度。它还会减少十二指肠中革兰氏阴性菌的丰富度。在小猪中,苯甲酸处理增加肠绒毛的高度,提高有益微生物(例如双歧杆菌和乳杆菌)的水平,并减少有害微生物的数量。

•过量摄入可能会破坏肠道屏障

然而,过量摄入苯甲酸可能会通过氧化还原状态破坏肠道屏障

最近的研究报告称,苯甲酸增加了小鼠中诱导变形菌失调的易感性。值得注意的是,变形菌的增殖被认为是生态失调潜在诊断标志物,并且与炎症性肠病等疾病的风险相关

虽然现有的研究对苯甲酸表现出相互矛盾的观点,仍需要更多的研究来阐明其对肠道菌群肠道炎症的影响。


山梨酸钾

山梨酸钾是一种低毒防腐剂,能强烈抑制腐败细菌霉菌,其对感官特性影响轻微

•山梨酸钾会降低肠道微生物多样性

先前的研究报道,山梨酸钾通过改变宿主免疫抑制肠道微生物群的生存能力。暴露于山梨酸钾显著降低了斑马鱼肠道中IgG、IL-1β和TNF-α的含量,并激活了免疫系统。

在属水平上,有益菌粪杆菌(Faecalibacterium)以及病原菌气单胞菌(Aeromonas)和甲基杆菌(Methylobacterium)的含量呈现显著下降趋势。在体外,施用山梨酸钾后,普氏粪杆菌的生长也显著下降

•革兰氏阳性菌可能阻碍山梨酸钾的传递

值得注意的是,山梨酸钾的亲脂性调节不同类型的肠道微生物群中发挥着重要作用。革兰氏阴性细菌细胞壁中含有大量脂质,从而抑制转录和碳水化合物代谢途径。然而,革兰氏阳性菌含有较高的肽聚糖含量,可能会阻碍山梨酸钾的传递。大肠杆菌已被证明通过其外排泵机制对山梨酸钾具有抗性


亚硫酸钠

亚硫酸钠是常见的食品防腐剂之一。

•亚硫酸钠对人体有一定的危害

强烈抑制普拉梭菌(Faecalibacterium prausnitzii)的生长。干酪乳杆菌、鼠李糖乳杆菌和植物乳杆菌因具有产生乳酸的能力而被认为是有益的肠道细菌,但它们也减少了。

在另一项研究中,亚硫酸钠持续降低奇异变形杆菌、Escherichia fergusonii、摩氏摩根菌(Morganellamorganii)的活力。亚硫酸钠对肠道有益菌较强的抗菌能力,可能诱发肠道疾病

•具有抗炎特性的细菌可能对防腐剂更敏感

在一项体外研究中,发现人类肠道微生物对亚硝酸钠、苯甲酸钠和山梨酸钾高度敏感,尤其是酪丁酸梭菌Clostridium tyrobutyricum)或副干酪乳杆菌(Lactobacillus paracasei),具有已知的抗炎特性,与具有促炎或致大肠杆菌特性的粪肠球菌或多形拟杆菌相比,对这三种防腐剂更敏感

减轻食品添加剂对身体损害的一些建议

•选择天然食物尽量选择天然食物,例如新鲜水果、蔬菜、全谷物和未经加工的肉类。这些食物通常不含添加剂。

•阅读食品标签:在购买加工食品时,仔细阅读食品标签。避免购买添加剂含量较高的食品,特别是那些含有大量人工色素和防腐剂的食品。

•自制食物:尽量选择自制食物,这样可以控制所使用的成分和添加剂的量。自制食物可以使用新鲜的食材,并尝试使用天然的调味料来增添风味。

•限制加工食品摄入量:减少加工食品的摄入量,特别是那些高度加工和包装的食品。这些食品通常含有更多的添加剂。

•多样化饮食:保持饮食的多样性,摄入各种不同类型的食物。这样可以减少对某一种食品及其潜在添加剂的过度依赖。

需要注意的是,并非所有的食品添加剂都对每个人都会产生负面影响。食品添加剂经过严格的监管安全评估,以确保在合理摄入量下的安全性。

然而,对于敏感人群来说,或在过量摄入的情况下,某些食品添加剂可能会引起问题。因此,适度和平衡地摄入食品添加剂是很重要的。

06
总结

越来越多的研究调查肠道微生物群食品添加剂之间的相互作用,在总结当前研究中收集的信息后,我们得出结论:食品添加剂肠道微生物群肠道稳态产生多种影响,这可能与肠道炎症的发病和进展有关。

食品添加剂显著介导细菌功能的改变。总而言之,安赛蜜、三氯蔗糖和糖精等甜味剂可能通过提高细菌炎症潜力诱发或加剧结肠炎

羧甲基纤维素和聚山梨酯80等乳化剂被认为会改变肠道微生物群的多样性并增加细菌的侵入,从而对肠道健康有害

食品着色剂的安全性应重新评估,因为其会引发肠道紊乱菌群失调;然而,多元醇似乎通过改善肠道微生物的结构和功能而对肠道微生物群有益

根据目前的证据和法规,必须谨慎考虑对炎症性肠病患者不利的食品添加剂,例如食品着色剂乳化剂,包括羧甲基纤维素和聚山梨酯80。

尽管研究显示食品添加剂肠道微生物组肠道炎症有不同的影响,但将体外或动物模型中获得的相同结果归因于人类是不可行的。因此,未来的研究应该基于生物相关模型来复制人类的生理条件

总之,需要更多的研究来阐明食品添加剂肠道微生物群人体健康之间的关系,并了解后代由于当代人的消费习惯而可能面临的炎症性肠病风险

相关阅读:

你的焦虑可能与食品添加剂有关,警惕食品添加剂引起的微生物群变化

深度解析 | 炎症,肠道菌群以及抗炎饮食

肠道作为内分泌器官在代谢调节中的作用

肠道微生物群与健康:探究发酵食品、饮食方式、益生菌和后生元的影响

如何解读肠道菌群检测报告中的维生素指标?

肠道菌群健康检测报告——常见问题解析

主要参考文献

Zhou X, Qiao K, Wu H, Zhang Y. The Impact of Food Additives on the Abundance and Composition of Gut Microbiota. Molecules. 2023 Jan 7;28(2):631.

Rinninella E, Cintoni M, Raoul P, Gasbarrini A, Mele MC. Food Additives, Gut Microbiota, and Irritable Bowel Syndrome: A Hidden Track. Int J Environ Res Public Health. 2020 Nov 27;17(23):8816.

Tan H, Nie S. Functional hydrocolloids, gut microbiota and health: picking food additives for personalized nutrition. FEMS Microbiol Rev. 2021 Aug 17;45(4):fuaa065.

Liu C, Zhan S, Tian Z, Li N, Li T, Wu D, Zeng Z, Zhuang X. Food Additives Associated with Gut Microbiota Alterations in Inflammatory Bowel Disease: Friends or Enemies? Nutrients. 2022 Jul 25;14(15):3049.

Del Pozo S, Gómez-Martínez S, Díaz LE, Nova E, Urrialde R, Marcos A. Potential Effects of Sucralose and Saccharin on Gut Microbiota: A Review. Nutrients. 2022 Apr 18;14(8):1682.

Ravash N, Peighambardoust SH, Soltanzadeh M, Pateiro M, Lorenzo JM. Impact of high-pressure treatment on casein micelles, whey proteins, fat globules and enzymes activity in dairy products: a review. Crit Rev Food Sci Nutr. 2022;62(11):2888-2908.

Laudisi F, Stolfi C, Monteleone G. Impact of Food Additives on Gut Homeostasis. Nutrients. 2019 Oct 1;11(10):2334.

Abiega-Franyutti P, Freyre-Fonseca V. Chronic consumption of food-additives lead to changes via microbiota gut-brain axis. Toxicology. 2021 Dec;464:153001.

维生素C的功能、吸收代谢、与肠道菌群的关联

谷禾健康

维生素C是一种广泛存在于自然界中的水溶性维生素。维生素C在人体新陈代谢中具有多种重要功能,包括抗氧化、参与胶原蛋白合成、增强铁的吸收等。由于其众多生理益处,维生素C被广泛地应用于修复伤口、治疗感冒、癌症等多种疾病。

人体无法自行合成维生素C,需要从膳食来源(如水果、蔬菜)中获取。维生素C的代谢过程涉及多个酶和转运蛋白肠道微生物群可能通过影响这些酶和蛋白的活性或表达,来影响维生素C的代谢吸收过程。

维生素C也可以直接调节肠道微生物群,或通过修复肠道屏障、改变氧化还原电位等方式间接对肠道微生物群的平衡起到调节作用。

个体之间的差异、饮食习惯和生活方式等因素各不相同,这些都可能对维生素C与肠道菌群的相互作用产生影响。

本文将从维生素C的结构、功能、吸收和代谢、与肠道菌群的关联等多角度,全面探讨维生素C的作用及其对人体健康的影响,同时介绍了一些维生素C的食物来源、人体需要的剂量、如何补充、注意事项等。

本文主要内容

编辑​

01
关于维生素C

维生素C,也称为抗坏血酸,是一种水溶性维生素,对人体健康非常重要。它在许多身体功能中起着关键作用,包括增强免疫力、抗氧化、胶原蛋白的合成等。

结 构

维生素C的化学名称是L-抗坏血酸,它是一种有机化合物。无臭,味酸,易溶于水,微溶于乙醇,不溶于乙醚。

维生素C结构简单,化学式为C6H8O6

这种结构使维生素C具有抗氧化性质,能够捕捉自由基,并保护细胞免受氧化损伤。

注:体内的分子暴露于环境污染物、吸烟和慢性炎症等情况时,它们会变成自由基。自由基是不稳定的分子,会破坏细胞并导致疾病,维生素C可以通过中和自由基减缓或预防某些健康问题。

由于其与葡萄糖的结构相似,维生素C可以在许多化学反应中取代葡萄糖,并且可以防止蛋白质的非酶糖基化。

功 能

维生素C参与胶原蛋白激素肉碱的合成,促进铁离子的吸收,此外,它在免疫系统的功能和调节中发挥着重要作用,对维持内部环境的平衡和中枢神经系统的正常功能极为重要。

维生素C的大部分功能是由于其作为抗氧化剂和辅助因子的能力。由于人类缺乏L-gulono-1, 4-lactone氧化酶,无法自行合成维生素C,因此完全依赖于维生素C的饮食摄入

食 物 来 源

从食物中获取营养总是最好的。大约90%的日常需求来自蔬菜和水果,它们是这种维生素的极好来源,例如奇异果、橙子、芒果、草莓、红椒、青椒等。

一些维生素C含量较高的食物

注:单位“杯”是一个常见的非正式计量单位,美规和英规略有区别,大约是237毫升-250毫升左右,涉及到果蔬的份量时,一杯通常是指将果蔬切碎后填满一杯容器的量。

02
维生素C在人体健康中的重要作用

大脑健康

维生素 C 对大脑健康非常重要。大脑在长期缺乏维生素 C 的情况下以牺牲其他组织为代价来保留维生素 C,并且可以维持比其他器官(例如肝脏和肾脏)高很多倍的浓度,如下图。

维生素C的分布在身体各器官之间差异很大

doi.org/10.1016/j.redox.2020.101532

维生素C供应不足时,首先保证大脑里的浓度,那么维生素C对于大脑而言有什么作用?

  • 清除大脑中的活性氧、神经调节和血管生成方面发挥作用。
  • 调节大脑中的神经递质系统,包括胆碱能、儿茶酚胺能和谷氨酸能系统
  • 有助于神经元的发育、成熟、分化和髓鞘形成
  • 有助于维持血管系统的完整性和功能,这对大脑功能很重要
  • 参与通过神经递质在神经系统中传输信号
  • 防止神经元损伤并诱导脑源性神经营养因子 (BDNF) 的表达,从而有助于大脑防御机制

生产胶原蛋白

维生素 C 对胶原蛋白的稳定作用对于形成整个身体的结缔组织框架至关重要;包括皮肤、骨骼、软骨、肌腱、韧带、血管等。

胶原蛋白生产的最后步骤取决于维生素 C,维生素 C 在前胶原脯氨酰和赖氨酰残基的羟基化中充当电子供体。

增强其他营养素吸收

维生素 C 可增强其他营养素的生物利用度,例如维生素 E 和非血红素铁,这可能会增强含维生素 C 的食物的健康效果。

维生素C经常添加到含铁的口服制剂中,以增加铁的吸收。

增强免疫与预防感冒

维生素 C 是否可以预防或减轻包括普通感冒在内的感染的严重程度是一个有争议的话题。大多数证据都支持其好处。

  • 能增强各种白细胞功能,减少病毒的复制
  • 缩短了普通感冒的持续时间,减轻严重程度
  • 在身体极度紧张的时候,降低感冒的发生率
  • 降低了肺炎的发病率
  • 降低了男性游泳运动员呼吸道感染的持续时间和严重程度,但女性没有
  • 在接受常规治疗的30%患者中,补充维生素C促进了幽门螺杆菌的根除
  • 维生素 C 对免疫系统的作用可能有助于某些感染,例如:COVID-19或其他呼吸道感染

骨 骼 健 康

维生素C对正常骨骼发育至关重要。维生素C水平与骨骼健康之间存在正相关关系,如骨密度、骨折概率、骨转换标志物等。

  • 维生素C缺乏的动物表现出骨骼健康受损和骨骼形成减少。
  • 维生素C缺乏症通过抑制小鼠骨细胞分化和促进骨细胞向脂肪细胞的转化,在自发性骨折中发挥重要作用
  • 每天使用维生素C补充剂,以及雌激素替代疗法和钙补充剂,可以帮助绝经后妇女增加骨量
  • 在50岁以上、体力活动水平较低的韩国成年人中,维生素C摄入量越高,患骨质疏松症的风险越低
  • 除了稳定骨基质中的胶原蛋白,维生素C还能清除对骨骼健康有害的自由基

皮肤健康

维生素 C 有助于维持健康的皮肤。

  • 应用于皮肤,外用维生素 C 作为一种恢复活力的疗法非常有效,可显著诱导胶原蛋白合成,且副作用最小
  • 维生素C摄入量越高,出现皱纹、皮肤干燥的可能性越低
  • 外用维生素 C 可以部分纠正与衰老过程相关的结构变化
  • 维生素 C 是一种有效的短期治疗黄褐斑和炎症后色素沉着
  • 减轻牛皮癣和特应性皮炎(口服或局部)等情况下的皮肤炎症

肺部健康

肺部的维生素C水平是血液中的30倍。

维生素C在抵御氧化剂的同时也会被消耗,这表明即使是单剂量的维生素C,也能有效抵御肺部氧化应激的急性增加。

积极情绪

根据现有证据,摄入足够的维生素 C 可能有助于保持健康的情绪。

  • 长期缺乏维生素 C 与紧张和情绪不稳定有关
  • 维生素 C 会增加催产素的释放
  • 接受维生素 C 治疗后,住院患者的情绪障碍减少了 35%
  • 补充维生素 C 对年轻男性(17-29 岁)的心理表现、性格或当前精神状态没有太大影响,除非补充剂可以纠正现有的缺陷

焦虑

  • 维生素 C 减少了高中生的焦虑
  • 短期补充维生素 C ,对降低糖尿病患者的焦虑水平是安全且有益的

抑郁

  • 许多研究发现,维生素 C 可以减轻儿童和成人抑郁症的严重程度,并改善健康人的情绪
  • 在一项包括抑郁轮班工人的试验中,维生素 C 显着降低了抑郁症的严重程度
  • 维生素 C 状态差与老年人急性疾病后抑郁症状增加有关
  • 足够的维生素 C 水平是将神经递质多巴胺转化为去甲肾上腺素所必需的,去甲肾上腺素是抑郁症和情绪波动中的一种重要激素
  • 维生素 C 还可以提高抗抑郁药的功效。与氟西汀加安慰剂组相比,接受氟西汀和维生素 C 治疗六个月的患者抑郁症状明显减轻

与年龄相关的认知衰退

人类慢性低维生素 C 状态与神经退行性疾病有关。但是,尚未确定因果关系。

  • 较高摄入维生素C与老年人认知功能良好相关
  • 不同类型痴呆症的老年人维生素C水平显著降低
  • 维生素C补充与阿尔茨海默病发病率降低相关,在阿尔茨海默病动物模型中,维生素 C 改善了认知功能

炎 症

维生素 C 可以通过抑制炎性细胞因子来减轻炎症。

  • 维生素C可以缓解肥胖、糖尿病或高血压患者的炎症
  • 高剂量静脉注射维生素C可以减轻癌症患者的炎症(hs-CRP和炎症细胞因子:IL-1α、IL-2、IL-8、TNF)
  • 减少人工诱导的炎症性肠病中的氧化应激和炎症反应(减少炎症细胞因子、MPO和丙二醛(MDA)活性)

其他健康作用

除上述主要的功能之外,在部分小型研究中提到的关于维生素C的功能如下:

助孕育:

  • 改善男性的精子活力和结构
  • 婴儿和母亲血液中维生素C水平较高时,他们的体重会更高

助减肥:

  • 维生素C水平充足的人在中度运动中燃烧的脂肪多30%
  • 维生素C抑制脂肪细胞的脂肪堆积
  • 维生素C与降低肥胖患病率和预防体重增加有关

降血压、防中风:

  • 显著降低轻中度高血压患者的收缩压和舒张压
  • 血液中维生素 C 浓度高的人,中风风险比浓度低的人低 42%

降血糖:

  • 维生素C给药改善了全身葡萄糖处理和非氧化葡萄糖代谢
  • 维生素C给药改善了全身葡萄糖处理和非氧化葡萄糖代谢

助排毒:

  • 15例成年女性中,维生素C可减少持久性有机污染物(POPs)含量

助抗癌:

  • 在动物模型和组织培养研究中,大剂量维生素C抑制肿瘤生长
  • 高膳食维生素C与降低胃癌发病率有关
  • 在乳腺癌诊断之前,较高的膳食维生素C摄入量与提高生存率有关。这种关联在65岁以上的女性中最为强烈
  • 维生素C可减轻骨癌放疗患者的疼痛55%

牙周健康:

  • 维生素C缺乏可导致牙周连结组织的损伤
  • 维生素C补充剂可以改善牙周炎手术后的结果,减少龈炎患者的龈沟出血

03
维生素C的过量、缺乏、正确补充

水溶性维生素在人体内储存较少,从肠道吸收后进入人体的多余的水溶性维生素大多从尿中排出。因此,摄入较多的水溶性维生素一般不会引起中毒现象,但是若摄入量过少,则会很快出现缺乏症状。

缺乏

刚缺乏的时候症状不明显,饮食中缺乏VC需要大约一个月的时间才会出现症状。

体内维生素C总含量低于300-400mg会出现明显症状。

维生素C的缺乏会出现什么症状?

  • 疲劳(血浆水平约低于20μM时)
  • 牙龈炎(牙龈疾病)
  • 瘀点(皮肤上的小红点)
  • 伤口愈合不良
  • 慢性疼痛
  • 肿胀
  • 骨骼变弱
  • 免疫功能差
  • 体重增加
  • 皮肤粗糙干燥
  • 气短
  • 血管变弱
  • 沮丧
  • 缺铁
  • 虚弱、易怒
  • 牙龈出血
  • 流鼻血
  • 牙齿脱落
  • 贫血
  • 容易瘀伤
  • 红色斑块
  • 匙状指甲
  • 关节痛

由于维生素C功能的复杂性及其被不同还原剂的部分替代性,维生素C与坏血病症状的直接联系不容易确定。

如果发展为坏血病,典型症状是:

肌肉无力、牙龈肿胀和出血、牙齿脱落、瘀点出血、自发性瘀斑、贫血、愈合障碍、角化过度、虚弱、肌痛、关节痛和体重减轻(也可能因肿胀而出现矛盾的体重增加),而早期表现包括嗜睡、倦怠、易激惹,甚至呼吸困难等。

在生化上,维生素C血浆水平低于11μM被认为与坏血病的临床症状一致。

在专业医疗人员的指导下,补充维生素C可以轻松有效地逆转坏血病。许多症状可以在几周内轻松解决。富含维生素C的饮食将防止坏血病的发展

什么人群更容易发生维生素C缺乏?

  • 吸烟者吸烟可使血浆中维生素C水平平均降低25%-50%。部分归因于烟雾引起的氧化应激增加。
  • 酗酒者
  • 老年人
  • 孕妇和哺乳期女性
  • 患有某些疾病患者或服用某些药物的人
  • 手术、创伤、脓毒症和烧伤人群

过量

NIH 认为,成人可耐受的上限是每天 2000 毫克,仅仅靠含有维生素 C 的食物几乎不可能达到这一上限,所以食物可以放心吃。服用补充剂则需注意剂量,可能存在过量的风险。

更高的剂量更有可能导致副作用

维生素C过量可能会出现什么症状?

  • 胃灼热
  • 恶心
  • 呕吐
  • 头痛
  • 胃痉挛
  • 腹泻
  • 肾结石

单次口服5-10克维生素C会产生短暂的渗透性腹泻和/或腹胀伴疼痛,不建议这样做。

随食物一起摄入可减少这些不良反应。

每天超过 2000 毫克的剂量可能会增加腹泻和肾结石的风险。如果有肾结石病史,每天摄入超过 1000 毫克可能会增加患结石的几率。

那么到底应该怎么补充?每日摄取多少维生素C 合适呢?

最佳剂量

科学界对维生素C的最佳剂量方案(摄入量和频率)最健康存在持续争论

对于大多数健康人来说,通过食物可以获得足量的维生素 C

维生素C摄入量标准在不同地区有所不同:

注:RDA – 推荐膳食摄入量,

PI – 建议摄入量,SDT – 建议膳食目标

在中国营养学会编著的《中国居民膳食指南》2022版中对维生素C的推荐摄入量:

  • 成人(18岁以上):100mg/天
  • 儿童(1-18岁):40-100mg/天

中国居民膳食指南2022版

为什么不同地区的标准不一样呢?

这主要是由于RDA标准的基本前提从预防坏血病(~45 mg/d)至健康优化(~200 mg/d)。许多权威机构建议使用最低量的维生素C,但这可能无法满足不同亚群的健康需求。

例如,吸烟者和肥胖者比普通人群有更高的要求。一些国家的吸烟率继续上升,有证据表明,吸烟者每天至少摄入200 mg的维生素C。

随着全球肥胖率的增加,以及与肥胖相关的合并症,如代谢综合征、糖尿病和心血管疾病,需要更多地考虑适当的建议,以优化快速增加的亚健康人群中的维生素C状态。

以上是维生素C的摄入量标准,具体该如何补充,应该注意什么?详见下一章节。

04
合理补充维生素C的小知识:
最大化吸收、与其他药物互作、不同补充形式

▼ 

如何尽最大可能吸收维生素C?

食物:如何才能最大程度地保留其维生素C?

——烹饪方式

长时间烹饪,特别是用大量水煮沸会导致维生素C浸出到水中,显著降低食物中的维生素C含量。

少量水中蒸或煮,且持续时间较短,是保存维生素C的更温和的方法。

即使将所有外部因素消除到最低限度,也会发生损失,因为由于抗坏血酸氧化酶的存在,材料内部会发生氧化反应。因此,理想的加工方法是用最少量的水快速热灭活酶,然后快速冷却。

——长期保存条件

温度对储存稳定性也有很大影响。随着温度的升高,会出现更显著的损失。然而,在长期储存期间,即使维持短期储存期间仅发生少量损失的条件,维生素C的量也会显著减少。

损失主要是由于酶催化的氧化反应,其程度尤其取决于pH、材料完整性和温度

总之,为了使水果和蔬菜的维生素C含量保持更长时间,最温和的方法是深度冷冻。

补充剂:一天中分几次服用

食物和许多补充剂中的维生素 C 是一种抗坏血酸的形式。

当肠道面临较低水平的抗坏血酸(即低于约 400 毫克)时,主动运输系统会吸收维生素 C(即,将营养物质通过肠道并进入血液,到身体需要的地方)。

一旦这些主动运输变得不堪重负被动扩散就会接管吸收其余的维生素 C(这是一个相当低效的过程)。吸收并不像听起来那么容易,事实上抗坏血酸有吸收上限。

身体一次可以处理大约 300 – 400 毫克的纯抗坏血酸形式的维生素 C,更多量一下子难吸收。

所以如果能记得的话,一天中分几次服用比较合适。

不适宜维生素C补充剂的人群

维生素C补充剂并非适合所有人。如果遇到以下任何情况,请首先与医生联系:

  • 癌症治疗患者:维生素C补充剂可以与一些癌症治疗相互作用。
  • 慢性肾脏疾病患者:维生素C会增加草酸的形成,导致肾衰竭。
  • G6PD紊乱:大量维生素C(静脉注射)导致患有葡萄糖-6-磷酸脱氢酶(或G6PD)代谢紊乱的人溶血(红细胞分解)。然而,这并不常见。
  • 铁过载的人:补充维生素C会加剧症状,因为它对铁的吸收有作用

不要认为维生素C服用越多越好,每天服用 1000 毫克或更多,实际上会使吸收率降低约 50%

与其他药物互作

维生素C可以增加某些药物的吸收,例如:

服用维生素C可以增加含铝药物(如磷酸盐粘合剂)对铝的吸收。这可能对有肾脏问题的人有害。抗酸剂中含铝:不要同时服用维生素C和抗酸剂。服用维生素C后至少等待两个小时,然后再服用抗酸剂。服用抗酸剂后等待四个小时服用维生素C。

  • 左旋甲状腺素

维生素C可能会增加左旋甲状腺素的吸收。

补充维生素C会降低一些药物的疗效:

  • 蛋白酶抑制剂

口服维生素C可能会降低这些抗病毒药物的作用。

  • 他汀类药物和烟酸

当与维生素C一起服用时,烟酸和他汀类药物的影响可能会降低,这可能有益于高胆固醇的人。

  • 华法林(詹托芬)

高剂量的维生素C可能会降低人体对这种抗凝剂的反应。

其他还包括:

  • 抗精神病药物氟奋乃嗪
  • 某些艾滋病药物,如英迪那韦
  • 某些化疗药物

维生素C增加或减少药物副作用的风险

如果服用雌激素或基于雌激素的避孕药,维生素C可能会增加激素副作用的风险。这是因为维生素C可能会减缓雌激素离开身体的速度。

一些早期的研究认为, 维生素C可能有助于预防阿司匹林和非甾体抗炎药引起的胃部不适。

VC和益生菌可以一起服用吗

维生素 C 和益生菌对肠道健康和免疫力有不同的好处,它们可以很好地互补,这意味着它们可以安全地一起服用。

一项针对学龄前儿童的双盲、随机、安慰剂对照初步研究中,发现益生菌与维生素 C 联合预防呼吸道感染的功效(URTI;33%,P =0.002)。

Lab4 益生菌和维生素 C 组合补充 6 个月的儿童显示,上呼吸道感染症状的发生率持续时间有所减少,降低感染的严重程度。

注:Lab4 益生菌包含:嗜酸乳杆菌CUL21(NCIMB 30156)和CUL60(NCIMM 30157),双歧杆菌CUL20(NCIMB 30153)和动物双歧杆菌乳亚种CUL34(NCIMM 30172)。

注意:根据说明书剂量服用或遵医嘱。

以上并不是维生素C可能发生的相互作用的完整列表。在开始补充维生素C或调整摄入量之前,请与医生或药剂师沟通,让医生知道你正在服用的所有药物,包括处方药和非处方药、其他维生素或微量营养素、草药补充剂等。

静脉注射和口服给药有什么区别?

静脉注射口服给药,这两者可能具有不同的药代动力学特征。

药理学模型显示,口服维生素C,即使是在非常大和频繁的剂量下,也只能适度地增加血浆浓度,从0.07 mM增加到最大0.22 mM。

静脉注射剂量预计会导致血浆维生素C峰值水平比口服剂量高60倍以上尿液浓度比口服剂量低140倍

分子的实际生物利用度由许多因素控制,包括肠道和其他组织的吸收、肾脏的吸收和排泄以及其他患者特异性因素。

除了通过静脉给药和口服给药的浓度差异外,口服给药将维生素C直接输送到肠道微生物组,而不是通过血液;因此,它对肠道微生物的影响可能与动力学和浓度有关,这与影响血浆水平的动力学和浓度完全不同。

静脉注射维生素C常用于临床医疗环境中,用于治疗某些疾病或特殊情况下的高剂量补充,如感染、外伤、手术恢复等。专业医生会给予相应的建议。

口服给药适用于一般的日常维生素C补充,维持正常的维生素C水平。

05
体内维生素C水平的评估

有几种方法可以评估人体中的维生素C状态。这些包括测量血浆、尿液、组织、粪便中维生素 C 的浓度。

抽血

检测血浆维生素C,血浆样品中维生素C的定量测定常见的有两种方法:酶法和色谱法。

酶促维生素C测定

有几种基于维生素C的酶促转化的商业试剂盒,产生可以用光光谱法检测的信号。通常,抗坏血酸氧化酶用于这种类型的测定。这些测定的常见方法是酶联免疫吸附测定(ELISA),它非常适合分批处理样品,但不太方便立即测定少数样品中的值。

根据欧洲外部质量评估计划(Instand EQAS)中报告的方法,基于酶的分析方法在医院中并不常规使用。如果临床对立即测定维生素C的需求增加,由于其直接的技术性质,这些基于酶的测定可用于护理点或集中平台。

色谱法测定维生素C

抗坏血酸和DHA的定量测量目前是通过高效液相色谱(HPLC)方法进行的。如果必须分析具有相似性质的多种化合物,或者如果存在许多可能干扰感兴趣化合物定量的物质,则HPLC方法是优越的。

将酸化样品注射到HPLC仪器中后,通过通过基于化合物的物理性质不同地保留化合物的柱来分离化合物。结果,在分离柱的末端,可以选择性地检测抗坏血酸和DHA,而不受其他化合物的干扰。

目前有两种方法可以检测分离后的抗坏血酸和DHA,一种是电化学检测,另一种是紫外线检测。这两种检测方法给出的结果相同,但由于相对技术简单,紫外线检测更广泛地用于日常检测。

其他检测技术,如荧光检测,需要在柱前对抗坏血酸和DHA进行化学改性,但使用较少。比色/荧光法可能会产生更高的DHA浓度,因为该方法缺乏特异性。

肠道菌群健康检测

可以查看近期体内维生素状况。

肠道菌群可以影响食物中的营养物质的吸收和利用。肠道菌群的失调可能会影响维生素C吸收,从而出现维生素C缺乏,引发一系列健康问题。因此,检测肠道菌群的状况,可以帮助我们更好地了解维生素C的吸收和利用情况。

与抽血检测不同,肠道菌群的评估更加反映一段时间 ( 一般2周左右 ) 的长期状态,如部分维生素无法在体内留存,需要每日补充,血液检测波动较大

肠道菌群与维生素C的水平之间存在怎样的关联?

为什么肠道菌群检测报告可以了解维生素情况?

我们来看下一章节。

06
肠道微生物群与维生素C的互作及其对人体健康的影响

我们在日常生活会看到,同样吃食物,有些人的维生素吸收状况比较好,有些人就容易缺乏,这是为什么呢?

为什么大剂量补充对一些人的身体有益,而少数人因为过量出现了肾结石呢?

这其实都与肠道微生物群相关

这里我们分为两个方面来讨论:

一个是肠道微生物群对维生素C的影响,

一个是维生素C的补充对肠道微生物群的影响。

一、

肠道微生物群对维生素C的影响

维生素C在人体代谢过程中的吸收和利用,与肠道微生物群相关。了解肠道微生物群对维生素C的吸收和利用的影响,可以帮助我们更好地理解其与人体健康之间的关系。

维生素C的吸收

微量营养素使用各种特定的吸收途径和机制,既可以是被动的,也可以是主动的。

膳食维生素 C 很容易通过钠依赖性维生素 C 转运蛋白(SVCT1 和 SVCT2)在肠道中吸收,其他比如维生素A 、维生素D 的吸收通过小肠中的被动扩散发生。

肠道微生物群是人体肠道中的有效生物反应器,可将各种化合物转化为有益或有害的代谢物,因此对其生物利用度起着至关重要的作用。

doi: 10.1016/j.coemr.2021.100285

胃肠道各部分理化特性的差异,以及位点特异性受体的存在,使得不同的维生素和矿物质能够沿胃肠道吸收。不同微生物在每个不同部分定殖影响当地环境,从而对微量营养素的生物利用度产生积极或消极的影响。

微生物可以干扰维生素C的吸收

微生物可以通过干预生物合成过程和调节吸收,来调节微量营养素的水平,包括维生素C。

来自革兰氏阴性脂多糖降低SVCT-1的表达,进而降低SVCT-1-介导的维生素C的摄取

Chmiel JA, et al.,Nat Rev Urol. 2023

大肠杆菌可以通过释放脂多糖来减少宿主对抗坏血酸的摄取,从而增加NF-κB依赖性TNF的产生,其进而通过抑制SLC23A1和SLC23A2启动子(分别编码SVCT1和SVCT2),来降低钠依赖性维生素C转运蛋白SVCT1与SVCT2的表达。从而对维生素C的吸收率产生负面影响

细菌可以与宿主竞争维生素C

大肠杆菌抗坏血酸转运蛋白对抗坏血酸的亲和力高于哺乳动物SVCT1,这表明细菌可以与宿主竞争维生素C。

因此,肠道菌群中大肠杆菌等革兰氏阴性菌占比较多的情况,可能不利于维生素C的吸收,这在谷禾肠道菌群检测报告中也是可以反映的。

肠道菌群代谢维生素C

肠道细菌如大肠杆菌和乳酸杆菌代谢维生素C。

利用ula基因簇大肠杆菌等细菌可以将抗坏血酸代谢为D-木酮糖,宿主细胞可以进一步加工木酮糖以产生草酸盐

肺炎链球菌、沙门氏菌、福氏志贺菌、粪肠球菌、肺炎克雷伯菌等病原菌中,也发现了相同的ula基因簇。

带ula的致病菌与草酸盐:携手制造结石

结石形成者(比如肾结石患者)微生物群更常见地富含携带ula基因簇的致病菌,并且这些患者在接受口服维生素C时,草酸盐增加的水平比非结石者增加得更多。高草酸盐水平增加了结石的风险。

因此,如果在肠道菌群检测报告中发现以上提到的致病菌占比较多,则有可能在代谢维生素C的时候产生的草酸盐过多,增加了结石的风险。

Chmiel JA, et al.,Nat Rev Urol. 2023


以上通过微生物群代谢维生素的机制,有助于我们更好地理解结石形成的机制。

既然有促进结石的细菌,自然也有降解的细菌:

一些乳酸杆菌可以将维生素C转化为乙酸盐和乳酸盐,这是一种无毒的代谢产物,通过生物能量途径增加微生物组的功能,并可能促进这些草酸降解细菌的定植

Oxalobacter formigenes是一种革兰氏阴性厌氧细菌,可降解肠道草酸盐并促进原发性高草酸条件下肠道草酸盐的分泌。该菌在肠道定植可降低尿液或血浆中的草酸盐浓度。

Barone M, et al., Biofactors. 2022

我们看到生活中有人认为不能吃生菠菜,会得肾结石,但有些人每天吃生菠菜也没事…其实可能是因为人家的肠道菌群中致病菌较少,而降解草酸的菌群又在拼命干活…

因此,健康的肠道菌群结构非常重要,菌群在该干活的时候各司其职,井井有条,那么你的身体抵抗疾病的能力也随之提升。

以上是肠道菌群对维生素代谢吸收的影响,反过来,维生素C的补充也可以影响肠道菌群的组成。

二、

维生素C对肠道微生物群的影响

补充维生素C可以直接调节肠道微生物群,也可以通过改变氧化还原电位、修复肠道屏障,改善肠道条件,支持部分有益菌生长,防止有害菌泄漏到身体其他部位。

维生素C直接调节肠道菌群

与安慰剂组相比,补充维生素C已被证明可以显着增加微生物生态系统的多样性,以及Collinsella的相对丰度和粪便水平的短链脂肪酸,特别是丁酸盐和丙酸盐

健康受试者中,每日高剂量维生素C补充(1000 mg/天):

下列菌群的相对丰度升高

  • 毛螺菌科(p<0.05)↑↑

下列菌群的相对丰度下降

  • 拟杆菌门(p<0.01)↓↓
  • 肠球菌属(p<0.01)↓↓
  • Gemmiger formicilis(p<0.05)↓↓

一项观察性研究探讨了微量营养素维生素C对肠道微生物组组成和多样性的影响。结果表明,维生素C增加了肠道中双歧杆菌属的丰度,在科水平上,毛螺菌科双歧杆菌科显著增加。

双歧杆菌属的成员是有益菌,例如增加ATP生成、调节免疫系统、黏膜屏障完整性、短链脂肪酸的产生,对健康有益,维生素C通过增加肠道有益菌促进健康。

研究发现,囊性纤维化患者维生素C摄入量的增加厚壁菌门的丰度呈正相关,与拟杆菌门的丰度呈负相关

改变氧化还原电位

调节微生物组的机制类似于维生素B2:通过改变氧化还原电位改善消化道中的厌氧/耐氧平衡,从而选择性地支持微生物生长,改善肠道条件。

与安慰剂相比,维生素C组粪便样本中的粪便pH值和氧化还原平衡降低。

修复肠道屏障

我们知道,肠道屏障受损细菌和有害物质有可能会穿过屏障进入血液循环,对人体产生各种负面影响,导致诸如过敏、炎症、自身免疫疾病等多种反应。

关于肠漏可以详见我们之前的文章:

什么是肠漏综合征,它如何影响健康?

而维生素 C 具有维持肠粘膜屏障完整性和修复粘膜屏障的作用。

这里介绍两种修复肠屏障机制。

——通过激活Notch 信号

Notch 信号影响细胞正常形态发生的多个过程,与许多人类疾病有关,包括IBD,因此被认为是癌症治疗的潜在靶点。Notch 信号通路的激活会改变紧密连接蛋白的表达并影响其分布的连续性,从而降低细胞屏障通透性

豚鼠结肠组织相关基因检测表明,低剂量的维生素C可强烈激活Notch/Hes-1信号通路,对DSS诱导的结肠炎豚鼠的肠粘膜具有一定的保护作用。肠上皮受损时,Notch-1表达增加可促进上皮细胞增殖,有利于损伤部位的修复和重建。

——通过增加肠道胶原蛋白合成

增加维生素 C 摄入量的另一个潜在好处是肠道胶原蛋白合成增加,从而改善屏障功能。这一提出的机制与抗坏血酸的辅酶功能一致,即羟基化脯氨酸赖氨酸以交联胶原蛋白。

例如,对具有吲哚美辛诱导的屏障功能障碍的 T84 人隐窝样上皮细胞系的研究表明,细菌通过跨细胞途径穿过上皮细胞,维生素 C 治疗可消除该途径。因此,肠道中抗坏血酸状态不佳可能会加剧屏障功能障碍,从而增加 LPS 衍生的革兰氏阴性菌的易位,从而加剧炎症。

维生素C修复肠道屏障后,肠道屏障可以正常发挥吸收、分解和转换营养物质等功能,同时可以帮助促进健康微生物群栖息和生长,从而促进整体健康。

以上我们了解到,维生素C可以通过多种方式影响肠道菌群,从而促进整体健康。那么当我们看到肠道菌群报告中菌群多样性较低,部分菌群失调,尤其是上面提到的毛螺菌科、肠球菌属、Collinsella、Gemmiger formicilis等,可以考虑通过补充维生素C来调节。

我们首先可以考虑通过食物补充,如卡姆果、针叶樱桃等维生素C含量很高的食物,或者一些常见的蔬菜水果例如:猕猴桃、番石榴(芭乐)、青椒、羽衣甘蓝等。也可以考虑通过维生素C补充剂调节。

结 语

人体维生素研究面临着许多挑战,维生素通常是通过食物摄入的,而食物中同时存在多种营养素,这使得难以研究单一维生素的作用;某些高剂量维生素的使用可能存在潜在的风险,进行研究时涉及到人体试验和干预,需要遵循伦理准则,并确保研究的安全性;不同人对维生素的需求和代谢能力存在个体差异,基因、环境和生活方式等因素都可能影响维生素的吸收、利用和代谢。

肠道菌群研究可以揭示不同个体之间菌群组成的差异,这有助于理解个体差异对维生素代谢和利用的影响。可以通过检测肠道菌群的组成和丰度,了解维生素的代谢情况,从而辅助评估维生素水平。

综合运用多种研究方法和技术,结合肠道菌群检测,可以考虑多个因素对维生素代谢和利用的综合影响,进一步理解维生素的作用机制,对人体健康具有重要意义。

注:本账号内容仅作交流参考,不作为诊断及医疗依据。

主要参考文献

Barone M, D’Amico F, Brigidi P, Turroni S. Gut microbiome-micronutrient interaction: The key to controlling the bioavailability of minerals and vitamins? Biofactors. 2022 Mar;48(2):307-314.

Chmiel JA, Stuivenberg GA, Al KF, Akouris PP, Razvi H, Burton JP, Bjazevic J. Vitamins as regulators of calcium-containing kidney stones – new perspectives on the role of the gut microbiome. Nat Rev Urol. 2023 May 9:1–23.

Pham VT, Dold S, Rehman A, Bird JK, Steinert RE. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr Res. 2021 Nov;95:35-53.

Li XY, Meng L, Shen L, Ji HF. Regulation of gut microbiota by vitamin C, vitamin E and β-carotene. Food Res Int. 2023 Jul;169:112749.

Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng QJ, Zhang W. Role of Dietary Nutrients in the Modulation of Gut Microbiota: A Narrative Review. Nutrients. 2020 Jan 31;12(2):381.

Steinert RE, Lee YK, Sybesma W. Vitamins for the Gut Microbiome. Trends Mol Med. 2020 Feb;26(2):137-140.

Gomes-Neto JC, Round JL. Gut microbiota: a new way to take your vitamins. Nat Rev Gastroenterol Hepatol. 2018 Sep;15(9):521-522.

Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I, Tuohy K. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018 Feb;57(1):1-24. doi: 10.1007/s00394-017-1445-8. Epub 2017 Apr 9. PMID: 28393285; PMCID: PMC5847071.

Traber MG, Buettner GR, Bruno RS. The relationship between vitamin C status, the gut-liver axis, and metabolic syndrome. Redox Biol. 2019 Feb;21:101091.

Rozemeijer S, Spoelstra-de Man AME, Coenen S, Smit B, Elbers PWG, de Grooth HJ, Girbes ARJ, Oudemans-van Straaten HM. Estimating Vitamin C Status in Critically Ill Patients with a Novel Point-of-Care Oxidation-Reduction Potential Measurement. Nutrients. 2019 May 8;11(5):1031.

Otten AT, Bourgonje AR, Peters V, Alizadeh BZ, Dijkstra G, Harmsen HJM. Vitamin C Supplementation in Healthy Individuals Leads to Shifts of Bacterial Populations in the Gut-A Pilot Study. Antioxidants (Basel). 2021 Aug 12;10(8):1278.

酒精和肠内外健康:有帮助还是有害?

谷禾健康

酒精与健康

饮酒作为一种特殊的文化形式,在我们国家有其独特的地位,在几千年的发展中,酒几乎渗透到日常生活、社会经济、文化活动之中。

据2018年发表的《中国饮酒人群适量饮酒状况》白皮书数据显示,中国饮酒人群高达6亿。酒精暴露是一种环境刺激,可显著改变许多生理、心理以及周围和中枢神经系统过程。从心脏和肝功能,到对肠道微生物组和内分泌途径的影响,酒精对全身和大脑都有广泛的影响。

众多的研究表明酒精本身可以产生双重效果,当然,这取决于饮酒量和酒的生产方式

▸ 低-中剂量

低度至中度酒精对肠道微生物组、肠道代谢物和免疫相关疾病甚至一些癌症似乎起保护和有益作用

▸ 高剂量

高剂量酒精或长期酗酒对胃肠道、肠道微生物组、免疫细胞和营养物质起破坏和损害作用。

目前的证据还表明,不同剂量的酒精在体内不同组织部位发挥不同的作用。

总体来说,过度饮酒,尤其在青少年和部分职业人群中占比越来越高,带来的伤害和健康风险不容忽视。过度饮酒会导致许多不良的病理健康影响和沉重的医疗保健负担。

根据世界卫生组织最新的通报指出,全球每年大约有超过300万人过量饮酒而被夺去生命,其死亡人数已经超过爱滋病、暴力和交通事故死亡人数的总和。在饮酒所造成的直接或间接的死亡事件中,男性饮酒带来的风险尤为突出。

酒精引起的胃肠道功能以及微生物群组成和代谢的变化,内毒素血症的肠道通透性与全身性炎症和组织损伤/器官病变相关。

在过去的十年中,肠道,特别是肠道微生物群与酒精性肝病之间的关联引起了研究人员的关注。酒精与消化系统密不可分。它通过肠道吸收,并在肝脏内被肝细胞代谢。过量饮酒会导致肠道微生物组和肠道上皮完整性发生改变。它会导致重要的微量营养素缺乏症,包括短链脂肪酸和微量元素,这些元素会影响免疫功能并导致肝和其它器官损伤。

而且,酒精引起的微生物组改变和肠道屏障完整性下降会对中枢神经系统产生深远影响,导致抑郁、焦虑和对酒精的渴望增加,从而增加酗酒行为,造成恶心循环

目前,酒精的治疗干预措施主要包括药物治疗、心理治疗、社会支持等方面。然而,这些干预措施都存在着一定的局限性,例如药物治疗可能会产生副作用,心理治疗需要长时间的治疗过程,社会支持需要家庭、朋友等的积极配合。

因此,寻找一种更加有效、安全、方便的治疗方法成为了当前治疗酒精成瘾和酒精使用障碍的研究重点。近年来,越来越多的研究表明,肠道菌群可能成为新的治疗酒精成瘾和酒精使用障碍的途径。新兴研究表明,通过调节肠道菌群可以减轻酒精成瘾的症状,例如减少饮酒量、降低戒断症状等。

本文将介绍酒精摄入或饮酒与肠道菌群及其代谢,肠内外健康的关系。

本文目录

01 饮酒如何影响健康

酒精进入人体过程

酒精和肠道

酒精带来的有害影响

适量酒精带来的益处

02 轻中剂量酒精对自身免疫性疾病的保护作用

短链脂肪酸

多不饱和脂肪酸

自身免疫性糖尿病

自身免疫性甲状腺疾病

系统性红斑狼疮

类风湿关节炎

多发性硬化症

03 高剂量酒精对肠道菌群及其代谢物和营养物质的促炎作用

高剂量酒精对肠道菌群组成的影响

高剂量酒精对肠道屏障功能的影响

高剂量酒精对肠道微生物代谢物的影响

长期饮酒对营养状况的影响

高剂量酒精对肠道炎症和黏膜免疫的影响

04 酒精对相关疾病的影响

酒精与肠-肝轴和肝病

-酒精代谢

-酒精相关性脂肪变性

-酒精性脂肪性肝炎

-酒精引起的纤维化和肝硬化

-肝癌

酒精与胃肠道疾病

酒精和营养不良&肥胖

-营养不良

-肥胖

酒精和心血管疾病

-血脂概括

-高血压

05 酒精与肠脑轴和酒精成瘾

06 干预措施

01
饮酒如何影响健康(有害 / 有益)

► 酒精进入人体过程

酒精(乙醇)是一种水溶性小分子,通过胃和近端小肠进入血流,然后分布到全身。它首先进入门静脉,门静脉直接排入肝脏,这是接触酒精最多的地方。肝脏消除了大部分酒精 (90%),而 2–5% 以原形通过尿液、汗液和呼吸排出。

身体第一个直接接触酒精的器官系统是消化系统;因此,从口腔到直肠,几乎消化系统的每个部分都会受到酒精的影响。

► 酒精和肠道

酒精对消化系统的病理影响部分取决于肠-肝轴。这种由肠肝循环促进的双向关系涉及消化和细菌产物肠道到肝脏的运输,以及胆汁、抗体和细胞因子返回肠道。

过量酒精摄入已被证明会通过破坏肠道微生物组成、代谢组和肠道上皮屏障来改变这一轴。这些干扰最终会对营养吸收产生连锁反应。

酒精对肠道的影响

Pohl K et al. Nutrients. 2021,13(9):3170.

CTP:连接蛋白跨膜蛋白;JAM:连接粘附分子;EtOH:酒精。

( a ) 酒精对肠粘膜的组织学影响(细胞死亡、粘膜侵蚀和绒毛尖端上皮细胞丢失)。

( b ) 酒精引起的紧密连接破坏,因管腔短链脂肪酸浓度降低而加剧。

( c ) 酒精引起的生态失调导致短链脂肪酸和氨基酸浓度降低。

( d ) 次级胆汁酸浓度增加,与甘氨酸结合的比例增加。

( e ) ( a – d ) 导致的营养缺乏。

酒精对人体的影响是双重的,既有正面的作用,也有负面的作用。

酒精带来的有害影响

过量饮酒对人体各部位可能引起的有害影响

– 嘴

饮酒会刺激口腔和喉咙,这会增加患口腔癌的风险。

– 食管

酒精从口腔进入胃部时会引起刺激,从而增加患食道癌的风险。

– 胃

酒精会引起胃壁刺激和随后的炎症,这种情况也称为胃炎。胃壁过度刺激或发炎会导致受影响区域出血和溃疡

此外,饮酒会导致营养吸收不良,从而使个人患上一系列其他疾病的风险更高。

– 大/小肠

饮酒会抑制大肠和小肠内的营养吸收。肠道蠕动也会受到影响并导致腹泻

– 胰腺

酒精会导致胰腺发炎,也称为胰腺炎。酒精还会影响胰腺产生胰岛素的方式,如果不停止饮酒,最终会导致个体患上糖尿病

– 肝脏

酒精是通过 ADH 和 CYP2E1 代谢的,这两种酶都是肝脏的重要功能酶。

通过干扰这些酶的正常功能并产生有害的副产物,对肝脏的影响可能包括肝脏炎症或肝炎、肝硬化、黄疸。

饮酒过多的人可能的直接有害影响

  • 言语不清,混乱
  • 难以集中注意力
  • 呼吸困难
  • 恶心或呕吐
  • 不协调,保持平衡困难
  • 易怒,人际冲突
  • 体重增加
  • 记忆力减退
  • 行为改变(危险或暴力行为)
  • 宿醉
  • 酒精中毒
  • 流产或胎儿酒精综合征(FASD)

长期酗酒的危害

长期饮酒是全世界最常见的死亡原因之一。根据世界卫生组织的数据,全世界有 23 亿人饮酒,其中约 7500 万人被归类为患有酒精障碍。

酒精滥用会对多个终末器官造成损害,主要是肝脏、肠道和大脑,从而引发多系统损伤

酒精中毒对全球发病率和死亡率有显著影响,每年约有 5.3% 的死亡是由有害饮酒造成的(世卫组织,2018 年)。一项针对印度南部农村 167,343 名成年受试者的研究发现,每天饮酒 30 年或更长时间会增加癌症相关死亡率的总体水平。

大量饮酒通常与患癌症的风险增加有关;然而,具体的剂量反应关系因癌症部位而异

——饮酒量越多,肝癌风险越高

最近对涉及 19 组肝癌(即肝细胞癌)受试者的 16 篇文章进行的荟萃分析发现,与不饮酒者相比,饮酒量与肝癌风险之间存在线性关系

因此,每天饮用 3 杯酒精饮料与风险增加相关,而每天饮用约 7 杯酒精饮料则风险增加高达 66%。

——不同种类乳腺癌,饮酒风险不同

乳腺癌风险也存在类似的线性关系。虽然饮酒总体上与女性患乳腺癌的风险较高有关,但这种关联并不适用于所有类型的乳腺癌

在参加妇女健康倡议的女性中,饮酒者患雌激素阳性乳腺癌的风险增加

而与从未饮酒的女性相比,饮酒者患三阴性乳腺癌的风险降低

注:三阴性乳腺癌,孕激素、雌激素受体以及Her-2即表皮上皮生长因子,都是阴性,叫三阴性乳腺癌。

总之,饮酒和滥用酒精与多种癌症有关,并且这些关联的数量还在不断增加。与此同时,现在越来越清楚的是,酒精对某些慢病和癌症具有预防作用。此外,尽管酒精在预防某些癌症方面具有潜在的有益作用,但重要的是要记住,不能忽视长期酗酒的有害影响。

可能会增加以下疾病的易感性:

  • 胃肠道炎症
  • 口腔癌
  • 咽喉癌
  • 乳腺癌
  • 结直肠癌
  • 食道癌
  • 胰腺癌
  • 前列腺癌
  • 心脑血管疾病
  • 心脏病
  • 肝病
  • 大脑或神经系统疾病
  • 肥胖

酒精引起的肠道菌群和代谢功能的变化可能导致

  • 酒精引起的氧化应激
  • 肠道高通透性
  • 内毒素血症
  • 发展为酒精性肝病
  • 胃肠道炎症增加
  • 全身性炎症
  • 软组织挫伤
  • 其他疾病

虽然酒精的新陈代谢看起来相当简单,但酒精的有害影响最常与新陈代谢过程相关,而新陈代谢过程通常会导致烟酰胺腺嘌呤二核苷酸加氢 (NADH) 的过量产生

大量的 NADH 会导致乳酸,从而导致体内酸中毒,以及葡萄糖合成不足,从而导致低血糖

适量酒精带来的益处

虽然大多时候我们都认为饮酒会带来许多有害影响,但过去几年进行的几项临床研究表明,适度饮酒实际上可以促进许多健康益处,例如:可能有助于降低患心脏病和死亡缺血性中风糖尿病的风险。这些益处的前提是要适度饮酒,那么什么是适度饮酒?

根据疾病预防控制中心的说法:

轻度饮酒:每周喝三杯或更少的酒精饮料。

适度饮酒:女性每天喝一杯酒精饮料,男性每天喝两杯。

大量饮酒:女性每天喝四杯或更多酒,男性每天喝五杯或更多酒。

注:这个定义在不同的研究中存在差异。由于参与者的主观记忆和准确的报告,准确的人类消费量很难量化。

适度饮酒具体是如何带来益处的?

适量的酒精已被证明可以提高高密度脂蛋白 (HDL) 的水平,这是一种“好”胆固醇,实际上这已经从你的身体中去除了有害的胆固醇。

当一个人的 HDL 水平较高时,它们就能更好地保护自己免受心脏病的侵害。

适度摄入不含酒精的啤酒,可以通过补充生物活性多酚和酚酸,以及通过有益菌丰富肠道微生物群多样性,对人体健康产生积极影响。

——适量饮酒与血癌发病率较低相关

有趣的是,饮酒还与几种血癌发病率较低有关,包括非霍奇金淋巴瘤 (NHL) 和多发性骨髓瘤。对与瑞典癌症登记处相关的 420489 名被诊断患有酒精使用障碍 (AUD) 的人进行的分析还发现,他们患白血病、多发性骨髓瘤和霍奇金病的风险较低

最近的另一项研究还表明,饮酒与白血病风险增加无关,事实上,少量饮酒(每天少于或等于一杯)与白血病发病率降低 10% 有关。

——适量饮酒与甲状腺癌和肾细胞癌风险降低有关

肾细胞癌的案例中,男性和女性的饮酒量低至每天 1 杯,风险也会降低而更高的酒精摄入量没有带来进一步的好处

——适度饮酒与直肠腺癌呈负相关

一项针对结肠和直肠腺癌的回顾性观察性研究表明,适度饮酒(每天少于 14 克)与直肠癌的发病率呈负相关。研究人员还发现,适度摄入啤酒,尤其是葡萄酒与远端结直肠癌相关。

酒精在体内具有多效性

10.1080/19490976.2021.1916278

高剂量下,酒精会破坏肠道屏障的稳定性,并可能导致肠道微生态失调、细菌壁产物、脂多糖 (LPS) 增加,后者会刺激免疫细胞上的 Toll 样受体 (TLR),并导致单核细胞、T 细胞、细胞因子和免疫球蛋白 (IgG) 水平以及 B 细胞减少。反过来,循环的炎性细胞因子、IgG 和免疫细胞会导致终末器官损伤。

在中低剂量下,酒精已被证明可以改善自身免疫性疾病的风险和进展。

低剂量酒精可能通过增加Akkermansia muciniphila对炎症产生积极影响和其他保护性肠道微生物,并有助于增加乙酸盐、多不饱和脂肪酸 (PUFA)、高密度脂蛋白 (HDL) 和一氧化氮 (NO)。

接下来展开讨论低-中剂量酒精对自身免疫性疾病的保护作用,以及高剂量酒精带来的健康危害,包括免疫系统、肠道菌群及其代谢产物、营养物质等多方面。

02
低-中剂量酒精对自身免疫性疾病的保护作用

酒精可能对自身免疫性炎症产生有益影响的一个重要方式是通过其对肠道中脂肪酸代谢的影响

众所周知,高剂量酒精会导致脂肪酸失调和发展为脂肪肝疾病,而在低剂量时,酒精可能有助于产生肠道衍生的抗炎脂肪酸,例如短链脂肪酸(SCFAs) 和多不饱和脂肪酸 (PUFAs)。

适量酒精-抗炎脂肪酸

短链脂肪酸

低度至中度饮酒可以通过两种方式调节短链脂肪酸的产生:

1、通过改变肠道中产短链脂肪酸菌

低度至中度酒精会改变肠道中产生短链脂肪酸的微生物群,例如Akkermansia muciniphila

短期饮酒(5 天 0.8 g/kg 胃内)会升高小鼠的Akkermansia muciniphila水平,而在消耗同等酒精强度的发酵米酒 (FRL) 的组中未观察到升高。

2、通过乙酸盐产生

酒精本身会代谢成短链脂肪酸、乙酸盐,并且喂食 Lieber-DeCarli 饮食 8 周的动物与对照组相比显示乙酸水平升高。

Lieber-DeCarli 饮食

Lieber-DeCarli 饮食是一种常用于动物实验中的饮食方案。它是由两位科学家 Lieber 和 DeCarli 在 1980 年代开发的,旨在为动物提供一种高度可控的饮食,也就是说可以根据实验需要增加或减少某种营养素的含量,以便研究不同营养素对健康和疾病的影响。

Lieber-DeCarli 饮食的特点是含有高浓度的葡萄糖和脂肪,而蛋白质含量相对较低。这种饮食的能量密度非常高,因此可以使动物快速增重

Lieber-DeCarli 饮食在动物实验中应用广泛,特别是在研究肝脏疾病、肿瘤、代谢疾病等方面。由于该饮食的成分非常可控,可以帮助研究人员更准确地评估不同营养素对健康的影响,因此被广泛应用于基础医学和临床研究中。

需要注意的是,Lieber-DeCarli 饮食虽然在动物实验中应用广泛,但并不适合人类长期食用。这是因为该饮食的成分并不符合人类的膳食建议,长期食用可能会导致营养不良和健康问题。

多不饱和脂肪酸

低度至中度酒精保护自身免疫性疾病的另一个潜在机制,可能依赖于酒精在必需多不饱和脂肪酸代谢中的重要作用,如二十二碳六烯酸 (DHA) 和二十碳五烯酸 (EPA)。这些多不饱和脂肪酸(PUFA)可以减少活性氧的形成并充当抗炎分子。

低至中等剂量的酒精已被证明会增加多不饱和脂肪酸的产生,而在高剂量酒精下,由于脂肪酸分解代谢增加,多不饱和脂肪酸浓度会降低

值得注意的是,多不饱和脂肪酸和多不饱和脂肪酸衍生物,如分解素、脂氧素和与自身免疫性疾病的缓解有关。

此外,多项研究还表明,多不饱和脂肪酸的增加具有心脏保作用。由于心血管健康正在成为自身免疫性疾病结果的一个重要因素,这可能是另一种由低度至中度酒精介导的保护机制

► 适量饮酒-自身免疫性疾病

鉴于促炎特性,饮酒可能会导致自身免疫性疾病风险增加或恶化。事实上,在某些炎症性疾病中,例如肠易激综合征 (IBS) 和常年性过敏,大量饮酒与疾病发作之间存在直接相关性。然而,适度饮酒似乎可以降低疾病风险、严重程度和进展。

这里介绍几种酒精相关的自身免疫性疾病,包括自身免疫性糖尿病、自身免疫性甲状腺疾病、系统性红斑狼疮、类风湿关节炎、多发性硬化症等,适度饮酒可降低其风险。

自身免疫性糖尿病

适度饮酒的有益作用已在成人非自身免疫性2 型糖尿病自身免疫性 1 型糖尿病 (LADA) 中得到证实。

每天摄入 2–7 g 的患者风险降低了 60%

在一项自身免疫性 1 型糖尿病研究中,与每天摄入 0.01–2 g 的患者相比,每天摄入 2–7 g 的患者风险降低了 60%。这项研究还指出,与饮酒者相比,戒酒者的抗谷氨酸脱羧酶抗体 (GAD Ab) 水平更高,C 肽水平更低,对男性的影响更为明显

注:抗谷氨酸脱羧酶抗体 (GAD-Ab) 在1型糖尿病发病前期和发病时多为阳性,而在正常人群及2型糖尿病患者中多为阴性。

葡萄酒的效果显著,可能与葡萄酒中的多酚类抗氧化物质相关

在另一项自身免疫性 1 型糖尿病研究中,发现摄入量超过 25 克/天的男性和女性的风险降低了 46%。这种效果似乎在抗 GAD 抗体水平低的患者中最强,并且与啤酒或白酒消费者相比仅限于葡萄酒饮用者。作者推测,抗 GAD 抗体水平较低的患者可能与 2 型糖尿病患者最相似,可能是葡萄酒中的多酚和羟基二苯乙烯类物质促进了酒精在自身免疫中的抗氧化或抗炎作用。

自身免疫性甲状腺疾病

与糖尿病类似,适度饮酒已被证明对自身免疫性甲状腺功能减退症甲状腺功能亢进症均有保护作用

例如,与对照组相比,适度饮酒与甲状腺功能减退症和格雷夫氏病的风险降低呈剂量依赖关系,无论性别或饮酒类型如何

几项研究还发现,适度饮酒 >10 单位/周或每天至少饮酒 35 克,与自身免疫性甲状腺疾病和甲状腺过氧化物酶抗体阳性的发生概率较低有关。

系统性红斑狼疮(SLE)

多个病例对照、队列和横断面研究已经确定适度饮酒系统性红斑狼疮风险之间存在显著的剂量依赖性关联

在一项荟萃分析中,适度饮酒的保护作用与系统性红斑狼疮的持续时间有关,与治疗少于 5 年的患者相比,治疗少于 10 年的患者具有显著性

另一项研究得出结论,适度饮酒可能会降低 ANA 阳性患者进展为系统性红斑狼疮的概率

注:系统性红斑狼疮(SLE)是临床上最为常见的自身免疫性疾病之一。SLE的实验室检查包括多种项目,抗核抗体(ANA)是其中较为经常检测的项目之一。ANA阳性尤其是ANA核型为核均质性的结果往往与SLE具有较高的相关性,故临床上往往以此结果联合其他检查并结合患者症状作为诊断SLE的依据。

类风湿关节炎

与甲状腺疾病、糖尿病和系统性红斑狼疮类似,多项流行病学研究和几项机制研究支持轻度至中度酒精以 J 型或 U型剂量依赖方式在类风湿关节炎中发挥保护作用。

适度饮酒女性:较低的风险,较高的生活质量

在一项荟萃分析研究中,男性和女性的类风湿关节炎风险在10年内均有所降低,其中女性的风险降低幅度最大

在其他研究中,与男性相比,适度饮酒的女性报告了较低的疾病活动和较高的生活质量。

然而,也有文献记载:酒精可能会阻止男性的放射学进展,并增加女性的放射学进展。与不饮酒的患者相比,中度饮酒的类风湿关节炎患者的改良健康评估问卷得分(提示功能状态改善)也显著降低。这种影响在HLA-DRB1共享表位阳性的患者中更强

因此,类风湿关节炎患者的酒精、性别和基因构成之间可能存在有益但复杂的关系。

在类风湿关节炎中,适度饮酒与CRP 水平、IL-6水平的关联

在类风湿关节炎(RA)中,已注意到 CRP 水平呈 J 型关联:每周饮用 1-7 杯酒的患者 CRP 水平最低。

51 名适度饮酒的类风湿关节炎患者在症状出现前与 IL-6 水平呈 U 型关联,饮酒与可溶性肿瘤坏死因子受体 2 (TNFR2) 水平呈负相关

适度饮酒:ACPA阳性患者类风湿关节炎风险降低

由于酒精会导致肝损伤,一项评估饮酒与肝脏炎症之间关系的研究报告称,每周饮酒量大于 21 单位转氨酶相关,而每周饮酒量小于 14 单位则没有。适度饮酒还与抗瓜氨酸化蛋白抗体 (ACPA) 阳性患者的类风湿关节炎风险降低 50% 相关,并且与 ACPA 阴性类风湿关节炎患者的疾病风险降低 30% 呈反比剂量反应关系。

在类风湿关节炎小鼠模型中也注意到酒精对免疫系统的剂量依赖性影响

适度饮酒:胶原性关节炎发病率下降

在胶原性关节炎 (CIA) 模型中,与非酒精对照组相比,适度饮酒的小鼠的 CIA 发病率降低了 40%,放射疾病严重程度降低了 50% 以上。

饮酒小鼠的 IL-21 和 IL-17A、中性粒细胞、单核细胞、浆 B 细胞和 IgG 水平也较低。酒精和乙酸盐都会影响体外和体内T 滤泡辅助 (TFH ) 细胞的功能状态,从而抑制 IL-21 的分泌

这些发现很有趣,因为 TFH细胞通常存在于类风湿关节炎患者的滑膜关节中,也是肠道免疫的重要介质,表明肠道免疫过程与类风湿关节炎之间可能存在联系。

在另一项 CIA 研究中,适度饮酒(10% 乙醇水溶液)通过增加内源性睾酮、抑制核因子 B 活化和下调白细胞迁移来延缓 CIA 的发作并改善其进展

多发性硬化症(MS)

同样,在多发性硬化症中,也有证据表明,适度饮酒在降低疾病风险和/或疾病进展方面具有保护作用。几项大型人口研究表明:

酒精与男女多发性硬化症风险之间存在剂量依赖性负相关

适度饮用红酒似乎与较低的扩展残疾状态量表评分相关,这表明功能有所改善,尽管适度饮酒的患者在脑部 MRI 上表现出 T2 病变体积增加。

相反,大量饮酒可能会增加患多发性硬化症的风险,尤其是男性

也有研究认为剂量和多发性硬化症风险之间没有关联,性别可能是一个变量

一些研究指出,不同剂量的酒精与患多发性硬化症的风险之间没有关联。在这些研究中,性别可能是一个变量,可以解释酒精对多发性硬化症的影响。

例如,在一项女性护士健康研究(NHS)I和II中,不同类型的酒精与多发性麻痹症的风险没有关联。尽管这是一项针对英国国家医疗服务体系两项研究中超过90000名女性的大型研究,但258例多发性硬化症患者的队列相对较小,与男性相比,女性可能没有经历到酒精的保护作用。

例如,在多发性硬化症的动物模型,即实验性自身免疫性脑脊髓炎(EAE)中,最近的研究表明,主要是雄性小鼠适度饮酒后疾病评分有所改善

以上是低-中剂量酒精带来的健康益处,“凡事皆有度,过犹不及”。接下来章节来看过量饮酒可能带来哪些不利影响。

03
高剂量酒精对肠道菌群及其代谢物、营养物质的促炎作用

酒精与消化系统密不可分。它通过肠道吸收,并在肝脏内被肝细胞代谢。过量饮酒会导致肠道微生物组和肠道上皮完整性发生改变。它会导致重要的微量营养素缺乏症,包括短链脂肪酸和微量元素,这些元素会影响免疫功能并导致肝损伤。在某些人中,长期酗酒会导致肝病从脂肪肝发展为肝硬化和肝细胞癌

持续酗酒会改变肠腔pH 值,促进病原体过度生长,并且还与肠道微生物群功能的改变有关,因为它会改变与肠屏障功能障碍有关的特定代谢物分泌物。酒精使用障碍患者通常表现出血浆细胞因子水平升高,例如 TNF-α、IL-10 和 CRP,这表明慢性、低度、全身性炎症。

➤ 高剂量酒精对肠道菌群组成的影响

几项研究调查了饮酒对动物和人体模型的影响,并一致表明过量饮酒与肠道微生态失调的发展有关。

简而言之,酒精已被证明可以增加变形杆菌、肠杆菌和链球菌的相对丰度,并降低拟杆菌、阿克曼氏菌和粪杆菌的丰度。其他还包括抗炎细菌(如Faecalibacterium prausnitzii和双歧杆菌等)水平下降。

在人类酒精使用障碍 (AUD) 研究中,生态失调的特征是:

  • 拟杆菌门较低
  • Akkermansia muciniphila较低
  • 变形杆菌较高

扩展阅读:

肠道细菌四大“门派”——拟杆菌门,厚壁菌门,变形菌门,放线菌门

肠道重要基石菌属——拟杆菌属

AKK菌——下一代有益菌

认识变形菌门,变形菌门扩张的原因和健康风险

然而,并非所有研究都注意到厚壁菌门对高剂量酒精的反应有所减少。例如,在猕猴中自愿自我给予慢性高剂量酒精会导致拟杆菌减少、厚壁菌门升高,并且在饮酒期间完全没有Akkermansia muciniphila,而戒酒则恢复了基线细菌种类。

肠道微生物群稳态的破坏与这些疾病有关

Engen PA et al., Alcohol Res. 2015;37(2):223-36.

此外,生态失调可能是由西方社会常见的环境因素引起的,包括饮食、遗传、昼夜节律紊乱和酒精饮料消费。

➤ 高剂量酒精对肠道屏障功能的影响

在酒精成瘾者中,饮酒会破坏肠道屏障功能,也称为肠漏症。肠道屏障由肠细胞、杯状细胞和影响粘液层内肠道微生物组的抗菌物质以及固有层中的众多免疫细胞组成。

酒精引起的生态失调通过其对肠道完整性的病理影响促进急性(例如,酒精性肝炎)和慢性(例如,酒精相关性肝硬化)肝病的发展。

肠粘液屏障在肠道的免疫功能中起着至关重要的作用,它的破坏会导致这些疾病状态。在这个屏障中,相邻的肠细胞被顶端“紧密连接”蛋白 claudins、occludin 和 zona occludens 结合在一起,防止病原体相关分子颗粒 (PAMP) 和细菌内毒素等管腔内容物意外转移到门脉循环中。

饮酒引起的生态失调与这些紧密连接的破坏有关。因此,随后的免疫功能障碍和循环促炎细胞因子(如肿瘤坏死因子 (TNF)-α 和IL-1β)的增加进一步破坏了肠道屏障。

扩展阅读:什么是肠漏综合征,它如何影响健康?

➤ 高剂量酒精对肠道菌群代谢产物的影响

酒精相关的微生态失调不可避免地会影响肠道代谢,包括短链脂肪酸 (SCFA)、氨基酸和胆汁酸的显著变化。

短链脂肪酸

短链脂肪酸在维持紧密连接方面的作用越来越明显。短链脂肪酸是肠道菌群对难消化膳食纤维进行厌氧发酵的产物

对酒精使用障碍患者的粪便代谢组分析显示,短链脂肪酸减少,这可能部分是由于生态失调对粪杆菌等产短链脂肪酸菌产生负面影响。一些小鼠模型表明,以高纤维饮食、益生菌或饮食调整形式补充短链脂肪酸,可增强肠道上皮完整性,并减少酒精模型中的肝损伤

氨基酸

从饮食中获得的必需氨基酸(例如赖氨酸)和非必需氨基酸(例如谷氨酸)都会受到酒精影响。据推测,这是由于生态失调导致微生物-宿主共同代谢紊乱的结果。

虽然管腔氨基酸浓度会随着饮酒而下降,但一些氨基酸(如酪氨酸和苯丙氨酸)的血清水平会升高,这表明失调微生物组的代谢和吸收特征发生了改变。这种代谢失衡可能在活性氧 (ROS) 和有毒中间体水平升高的过程中发挥作用。

胆汁酸

胆汁酸已被证明在人类和大鼠饮酒后的血清和管腔内容物中都会发生变化。初级(由肝脏合成)和次级(来自细菌代谢)胆汁酸主要在小肠中发挥多种功能,并通过其类固醇结构在脂质吸收、胆固醇稳态以及激素作用中发挥关键作用。

在健康的肠肝循环中,初级胆汁酸与牛磺酸或甘氨酸结合形成分泌到肠腔中的胆汁盐。然后肠道微生物群将这些代谢为次级胆汁酸,在将它们循环回肝脏之前去除牛磺酸/甘氨酸基团。饮酒通过增加次级胆汁酸的比例和胆汁酸的总浓度,以及增加与甘氨酸而非牛磺酸结合的比例来破坏这一点

这是由于生态失调降低了牛磺酸的生物利用度和肠肝循环率增加所致。这种破坏的后果尚不完全清楚;然而,在饮酒过程中更普遍的甘氨酸结合酸可能毒性相对更大,尽管管腔浓度高但胆汁酸的合成增加导致肝脂肪变性。

扩展阅读:什么是胆汁酸,其与肠道微生物互作如何影响人体健康

长期饮酒对营养状况的影响

长期饮酒会减少营养吸收导致营养不良。肠道通透性、胆汁酸概况和微生物组的改变都促成了这一点,此外,酒精代谢过程中释放的有毒代谢物和 ROS 会对肠道造成结构损伤。

特别是,长期饮酒已被证明会导致细胞死亡、粘膜侵蚀和绒毛尖端上皮细胞丢失其后果是维生素 A、B1(硫胺素)、B2(核黄素)、B6(吡哆醇)、C、D、E 和 K 以及叶酸、钙、镁、磷酸盐、铁和微量元素锌和硒的不同程度的缺乏

扩展阅读:如何解读肠道菌群检测报告中的维生素指标?

所有患有慢性酒精使用障碍的患者都要接受全面的营养评估,因为这些缺乏症因人而异,例如铁可能缺乏或过量。

除了上述机制外,重度饮酒者每天从营养不良的酒精饮料中获取高达 50% 的热量摄入 。此外,应该注意的是,除了慢性酒精滥用的症状影响(例如,呕吐、厌食和腹痛)之外,该群体中的社会因素(例如贫困和获得营养“完整”的饮食)也可能导致营养不良。

高剂量酒精对免疫系统的影响

微生物组从高剂量酒精喂养的小鼠,转移到未接触酒精的无菌小鼠,已被证明会在受体小鼠中诱发肠道炎症

酒精通过影响肠粘膜免疫诱发炎症

肠道炎症是由免疫系统对酒精及其代谢物产生的炎症反应引起的。酒精通过多种机制影响肠粘膜免疫。特别是,它可能首先降低粘膜中的先天免疫反应,导致对肠道病原体的易感性增加

随后,正如在细胞培养研究中发现的那样,酒精可能会触发免疫系统反应促进炎症反应的分子上调,包括释放炎症免疫细胞,例如白细胞和肥大细胞

研究还表明,酒精可以直接调节先天免疫和适应性免疫,进一步促进肠道和肠道源性炎症。例如,一项针对小鼠的研究发现酒精会抑制肠道清除有害细菌的免疫反应,而其他研究发现酒精会抑制肠道粘膜免疫细胞的活性

酒精通过引起肠道菌群失调诱发炎症

酒精相关的细菌过度生长和生态失调可能导致肠道内毒素产生增加,内毒素可与肠粘膜上的细胞结合,引起局部炎症,并易位至肠外部位,引起全身炎症

微生物群失调可导致肠道通透性受损,并通过肠道细菌内毒素、LPS 的系统易位、免疫细胞上 TLR 和NF-kB 的激活以及炎症 iNOS 的诱导促进炎症。

酒精通过肝毒性诱发炎症

肝毒性会干扰肝脏解毒物质的能力,从而导致酒精的有毒代谢物乙醛在全身蓄积。此外,LPS 介导的肝脏驻留巨噬细胞 Kupffer 细胞的激活进一步促进了促炎细胞因子的释放和全身炎症的传播。

其他研究发现酒精影响粘膜免疫的多种方式,包括:

  • 通过减少肠道细胞分泌的抗微生物分子的数量,导致细菌过度生长;
  • 通过抑制信号分子 interleukin-22,它会对抗菌肽(例如 Reg3β 和 Reg3γ)和肠粘膜完整性产生负面影响;
  • 通过抑制信号分子和免疫 T 细胞,从而抑制肠粘膜免疫反应和细菌清除。

酒精先天免疫系统适应性免疫系统的影响具有剂量依赖性

酒精对小胶质细胞(中枢神经系统的先天免疫细胞)具有显著的剂量依赖性影响

急性酒精滥用的小鼠模型中:

  • 小脑小胶质细胞在 3 g/kg 的单次中等剂量酒精暴露后,没有显示炎症细胞因子的产生;
  • 在 5 g/kg 的高剂量酒精暴露后,仅显示短暂的IL-1β/TNF-α 增加;
  • 在高达10 g/kg/天的高酒精剂量下,小胶质细胞表现出与不同炎症细胞因子产生相关的激活增加,包括IL-1β、IL-18、IL-10、IFN-γ、转化生长因子β (TGF-β)和趋化因子CXCL2、CX3CL1。反过来,这些细胞因子和趋化因子可导致外周淋巴细胞易位,穿过血脑屏障 (BBB) ,进一步加剧中枢神经系统炎症。

酒精还以剂量依赖的方式调节适应性免疫系统

长期适度饮酒会导致 T 细胞和 B 细胞活化和增殖,而长期大量饮酒则与 T 细胞和 B 细胞耗竭和凋亡以及免疫球蛋白增加有关。

此外,长期酗酒会改变 T 细胞表型,导致幼稚 T 淋巴细胞百分比下降和记忆 T 细胞百分比升高。相反,适度饮酒与滤泡辅助性 T (T FH )细胞的调节有关。

细胞因子炎症标志物也以剂量依赖的方式受到酒精的影响。例如,C 反应蛋白 (CRP) 和白细胞介素 6 (IL-6) 在人类重度饮酒者中升高,但与不饮酒者相比,在适度饮酒者中相对降低

CRP 效应也可能是性别二态的,一些研究表明酒精引起的 CRP 降低女性特有的,也有其他研究表明适度饮酒会以 U 形模式降低 CRP,而与性别无关。

以上是高剂量酒精对肠道屏障、肠道菌群及其代谢产物、营养状况、免疫系统等方面的影响。接下来章节我们具体来了解一下酒精相关疾病,包括肝病、胃肠道疾病、营养不良、肥胖、心血管疾病等。

04
酒精对相关疾病的影响

►►►

酒精与肠-肝轴和肝病

酒精代谢

肝肠微生物轴营养吸收和肝毒性中起着重要作用,其中肝脏是营养物质、毒素和肠道血液供应的细菌代谢产物的第一道过滤器

酒精性肝病 (ALD) 是一种由过量饮酒引起的疾病,是全球医疗保健的负担。酒精性肝病涵盖范围广泛的肝损伤,包括无症状脂肪变性、酒精性脂肪性肝炎 (ASH)、纤维化、肝硬化和肝细胞癌 (HCC)。

酗酒患者发展为酒精性肝病的易感性是高度可变的,并且其向更晚期的进展受若干因素(即酒精滥用的持续时间)的强烈影响。

其中,肠道微生物群及其代谢物最近被确定为酒精性肝病病理生理学中最重要的

酒精滥用会引发肠道菌群分类组成、粘膜炎症和肠道屏障紊乱的定性和定量改变。肠道通透性过高导致活致病菌、革兰氏阴性微生物产物和促炎性内腔代谢物转移到血液中,进一步证实了酒精引起的肝损伤。

酒精在肝脏中的代谢

酒精在肝脏中的代谢是了解其在酒精相关肝病发病机制中的作用的关键。酒精在肝细胞中主要通过乙醇脱氢酶代谢为乙醛,然后通过乙醛脱氢酶代谢为乙酸

  • 乙酸盐主要在周围组织中转化为水和二氧化碳,很容易排出体外。
  • 少数酒精通过细胞色素 P450 (CYP) 酶 CYP2E1 的作用,被线粒体酶氧化系统 (MEOS) 代谢为乙醛,同时产生 ROS。
  • 酒精代谢为乙醛的第三条次要途径是通过过氧化氢酶的作用和将 H2O2转化为H2O。

乙醛是一种高反应性蛋白质,会导致肝损伤。它与脂质、蛋白质和 DNA 结合形成潜在的免疫原性加合物。这些加合物可产生适应性免疫反应,导致肝细胞损伤和炎症。

线粒体结构改变可导致功能障碍,包括 ATP 生成减少、ROS 生成和乙醛脱氢酶活性降低。乙醛也是肝纤维化进程中的关键代谢物。它可以促进肝星状细胞 (hepatic stellate cells, HSCs) 中胶原 I 的合成,乙醛加合物刺激炎性细胞因子和趋化因子的释放。

乙醇脱氢酶途径可有效代谢少量酒精,但在长期接触酒精时,该途径会变得饱和,并且会显著诱导 CYP2E1。向 CYP 途径的转变导致 ROS 的产生,从而导致氧化应激

ROS 与蛋白质结合,改变它们的结构和功能特性,并可能充当新抗原。ROS 还可以直接与 DNA 结合,造成损伤,或导致脂质过氧化产物,如 4-羟基壬烯醛 (4-HNE) 和丙二醛 (MDA),从而产生高度致癌的 DNA 加合物

此外,在慢性重度酒精摄入中,由于乙醛介导的谷胱甘肽减少,肝脏的抗氧化清除系统受损。氧化应激的结果是诱导肝细胞凋亡和坏死

酒精性肝损伤

编辑​

图源:biorender

乙醛 (AA) 是造成酒精对肝脏的大部分毒性作用的原因。乙醛极度亲脂,导致形成乙醛加合物——丙二醛 (MDA) 和 4-羟基壬烯醛 (4-HNE)。这与活性氧 (ROS) 一起导致 DNA 损伤和遗传毒性。

乙醛还会诱导各种细胞器(例如线粒体和内质网)的功能和结构改变。

MEOS:线粒体酶氧化系统;ADH:乙醇脱氢酶。

酒精相关性脂肪变性

脂肪变性的特征是肝细胞中脂肪甘油三酯、磷脂和胆固醇酯)的积累,是肝脏对长期饮酒的最早反应,几乎普遍存在于慢性重度饮酒者中。

虽然它在减少饮酒后是完全可逆的,但它的存在与酒精相关肝病的进展有关,最近的一项荟萃分析发现肝硬化的年进展率为 3%。 肝脂肪变性可能通过更大的脂质过氧化和氧化应激增加肝脏炎症(脂肪性肝炎)、纤维化和肝硬化的风险。

然而,进展不仅受饮酒量的影响,还受其他因素的影响,包括性别、共存的肝病、吸烟和遗传

慢性酒精摄入通过增加肝脂肪生成和减少肝脂肪分解导致肝脂肪变性

酒精通过多种机制诱导肝脂肪变性

图源:biorender

  • 酒精改变细胞内的氧化还原比 (NADH/NAD+),从而抑制脂肪酸氧化并促进其积累。
  • 酒精增加转录因子 SREBP1c,从而导致脂肪酸合成和沉积增加。
  • 酒精会使 PPARα 失活,PPARα 是一种核激素受体,可调节许多参与脂肪酸转运和氧化的基因。酒精对脂肪酸的清除和动员有直接的抑制作用。

↑:增加;↓:减少;HSC:肝星状细胞。

酒精性脂肪性肝炎

肝脏炎症强烈影响纤维化、肝硬化和最终肝细胞癌的发展

酒精引起的肠漏症导致病原体相关分子模式(PAMP) 输送到肝脏。PAMP 与受损细胞释放的损伤相关分子模式一起激活单核细胞、巨噬细胞、枯否细胞和肝实质细胞上的先天受体【Toll 样受体 (TLR) 和 NOD 样受体 (NLR)】。

通过这些受体发出的信号导致包括 NF-κB 在内的促炎转录因子的转录增加以及促炎趋化因子和细胞因子的产生

净效应是单核细胞、中性粒细胞和 T 细胞的流入,导致细胞死亡和肝星状细胞 (HSC) 激活的可溶性介质的释放。

除了对酒精激活的促炎性免疫反应外,酒精性肝炎患者还有免疫功能障碍的证据。肠道来源的 PAMP 对单核细胞的激活导致 T 细胞耗竭,同时产生抗炎 IL-10 的 T 细胞数量减少,单核细胞和中性粒细胞功能受损 。

酒精引起的炎症

酒精对先天免疫和适应性免疫均有影响。酒精不仅会诱发肠道菌群失调,还会增加肠道通透性。病原体相关分子模式 (PAMP) 如脂多糖与 Kupffer 细胞上的 TLR4 受体相互作用,并通过 NF-κB 途径产生促炎细胞因子和趋化因子,导致肝脏炎症。

乙醛诱导各种蛋白质的结构变化并产生新抗原从而引发适应性免疫反应并导致肝脏炎症。

CCL2:CC基序趋化因子配体2;DAMPs:损伤相关分子模式;4-HNE:4-羟基壬烯醛;IL:白细胞介素;MDA:丙二醛;NF-κB:核因子 kappa B;ROS:活性氧;TLR4:toll 样受体 4;TNFα:肿瘤坏死因子α;↑: 增加; ↓:减少。

肝细胞死亡通过多种机制发生

包括细胞凋亡、细胞焦亡、坏死和坏死性凋亡。

细胞凋亡是由直接酒精介导的肝毒性、氧化应激的诱导、存活基因 ( C-met ) 的抑制和促细胞凋亡信号分子(TNF-α 和 Fas 配体)的诱导引起的。

坏死、细胞肿胀和膜破裂也可以通过称为坏死性凋亡的程序化途径发生

而细胞焦亡是一种依赖于 caspase-1 的程序性细胞死亡。

细胞死亡的模式可能受疾病状态的影响,早期酒精相关肝病中细胞凋亡占主导地位,但酒精性肝炎中炎性体激活驱动细胞焦亡和肝损伤扩散。

长期饮酒通过多种机制影响肝脏

doi.org/10.1111/jgh.16199

长期饮酒会导致肠道生态失调,从而导致肠道通透性增加、肠道细菌易位和病原体相关分子模式 (PAMP),并通过 Toll 样受体 (TLR) 信号通路增加肝脏炎症和纤维化。

为什么有些人不喝酒也有可能得脂肪肝?

脂肪肝的发生与多种因素有关,包括肥胖、高血压、高血脂、糖尿病等,也与外源性酒精和内源性酒精相关。这些因素会影响肝脏的代谢功能,导致脂肪在肝脏内积累,从而引起脂肪肝。

我们一般认为的酒精摄入是指外源性酒精,是通过饮酒等途径摄入的酒精。而内源性酒精则是由人体自身产生的一种酒精,主要产生于肠道中的细菌代谢过程中。这两种酒精对人体的影响有所不同。

内源性酒精对人体的影响相对较小,因为它的产生量较少。但是,如果肠道细菌失衡,导致内源性酒精产生过多,就可能会对人体健康产生负面影响,如肝脏疾病、代谢紊乱等。

酒精引起的纤维化和肝硬化

纤维化肝脏对破坏性刺激的伤口愈合反应,在去除刺激后可逆。在长期大量饮酒的情况下,会发生慢性炎症和纤维化,导致宽频带纤维组织沉积,扭曲肝脏结构并改变肝脏血流,导致门脉高压及其相关并发症。

当肝纤维化发展到扭曲肝脏结构并形成结节时,患者会发展为肝硬化

活化的星形细胞 (HSC) 引起的细胞外基质沉积是肝纤维化发生和发展的关键事件。其他细胞(门静脉成纤维细胞和肌成纤维细胞)的贡献较小。HSC 被炎性细胞因子和直接被酒精及其代谢物和 ROS 激活。活化的 HSC 通过分泌趋化因子和表达粘附分子来吸引和刺激循环免疫细胞,从而使炎症反应持续存在,进而激活静止的 HSC。

肝癌

肝硬化是一种癌前状态,会增加原发性肝癌的风险,最常见的是肝细胞癌(HCC)。在全球范围内,大约 30% 的肝细胞癌是由酒精引起的

酒精本身是一种致癌物,在肝细胞癌的背景下,通过 ROS 诱导的损伤、炎症机制及其反应性代谢物乙醛,酒精在其发展中起着特定的作用。

在大量饮酒者中,CYP 通路活性增加会产生 ROS,导致 DNA 损伤,导致细胞周期停滞和细胞凋亡并破坏基因功能,从而增加发生。

酒精相关性肝病患者炎症通路的激活与癌症风险增加相关

尽管机制尚未完全阐明,但可能涉及促炎细胞因子促进 ROS 积累(关于ROS平衡与健康我们准备专门搞一个主题讲下)。细胞因子的产生也与血管生成和转移发展的上调有关。此外,酒精会抑制 CD8+ T 细胞的抗肿瘤反应

乙醛具有高反应性,并与 DNA 和蛋白质形成加合物,导致线粒体损伤和 DNA 修复机制的破坏。在具有遗传变异的人群中发现的乙醛水平升高会导致酒精脱氢酶和乙醛脱氢酶的活性改变,这与重度饮酒者患肝细胞癌的风险较高有关

扩展阅读:深度解析 | 肠道菌群与慢性肝病,肝癌

►►►

酒精与胃肠道疾病

胃肠道 (GI) 是与摄入体内任何物质的第一道接触线,特别容易受到毒素的损害。越来越多的研究表明,胃肠道健康状况不佳对身体的整体健康起着重要作用。任何可能导致胃肠道损伤的事情,其后果可能远远超出肠道。事实上,研究人员已经开始发现酒精,特别是如果长期大量饮酒,会引发肠道内启动的过程,从而促进全身炎症。

酒精使用障碍患者肠道通透性增加

对人类的研究表明,一部分酒精使用障碍 (AUD) 患者的肠道通透性实际上有所增加,这是使用称为 Cr-EDTA 的方法测量的,该方法检查口服铬的排泄。此外,那些患有酒精使用障碍且通透性增加的人更容易患肝病,表明肠道通透性可能是某些酒精使用障碍患者器官损伤的介质。

另一项研究表明,患有酒精使用障碍的人不仅肠道通透性增加,而且增加到足以让大分子通过肠道屏障。内毒素 – 也称为脂多糖 (LPS),是大分子,同一项研究发现血浆内毒素水平随着肠道通透性的增加而增加

酒精是如何诱导肠道通透性的呢?

简短的回答是通过破坏上皮细胞本身(跨上皮通透性)和破坏上皮细胞之间的空间(细胞旁通透性),它由紧密连接、细胞骨架和一些相关蛋白组成。

跨上皮渗透性是由直接细胞损伤引起的。例如:

肠道屏障调节肠道内部(食物和饮料流经的地方)和肠道内部上皮细胞层另一侧的细胞和血管之间的物质通道,包括微生物产物。

破坏肠道屏障有两种方式:

  • 跨上皮机制(左侧的细胞),允许物质直接通过上皮细胞
  • 旁细胞机制(右侧的细胞),允许物质通过通过上皮细胞之间的连接。

肠道屏障通透性增加,使细菌及其产生的毒素离开肠道,并通过血液渗入其他器官。

酒精及代谢物如何通过触发以上两种机制?

— 酒精及其代谢物通过直接破坏细胞和通过活性氧 (ROS) 引起的氧化应激等多种机制削弱细胞膜来触发跨上皮机制。

酒精会导致细胞死亡,从而导致肠道发生变化,包括粘膜溃疡、糜烂和主要位于绒毛尖端的上皮细胞丢失;乙醛形成导致直接细胞损伤的 DNA 加合物;和酒精代谢过程中释放的活性氧 (ROS) 通过氧化应激导致直接细胞损伤。

— 酒精的代谢物通过破坏产生连接细胞和稳定细胞骨架的蛋白质的紧密连接的蛋白质,来触发细胞旁路机制。

酒精及其代谢物通过作用于将两个相邻细胞融合在一起的紧密连接复合物而引起细胞旁通透性。例如,乙醛通过重新分配蛋白质来破坏紧密连接的稳定性;酒精及其代谢物改变紧密连接蛋白的表达;和酒精的非氧化代谢物导致紧密连接再分布,破坏其屏障功能。

此外,研究表明酒精会破坏细胞的细胞骨架,即赋予它们结构的细胞边界。还有越来越多的证据表明,酒精会导致 microRNA (miRNA) 的过度表达,这些小片段的非编码 RNA 会沉默基因表达。具体而言,酒精会导致 miRNA 过度表达,从而影响与肠道屏障完整性相关的基因

酒精和胃肠道癌症

长期饮酒会增加患主要胃肠道癌症的风险,包括食道癌、胃癌和结肠癌(结直肠癌)。这种风险通常随着饮酒量的增加以及与其他生活方式相关因素(如吸烟或代谢综合征)的增加而增加。虽然酒精最初被认为是一种直接致癌物,但研究表明酒精引起的肠道炎症可能是罪魁祸首

代谢综合征和肥胖中出现的全身性炎症增加多种上皮癌的风险,包括胃肠道癌,这表明酒精引起的肠道炎症造成的全身性炎症状态,也可能导致酒精引起的胃肠道和其他器官癌症发生。这个过程像滚雪球,因为随着细胞转变为癌变状态,ADH 活性会增加,而 ALDH 活性可能会降低 。

这导致氧化速率增加清除酒精代谢物的能力降低,这反过来又可以通过对 DNA、氧化应激和肠道炎症的直接影响进一步促进癌变

►►►

酒精和营养不良&肥胖

营养不良

酒精的能量价值及其对营养状况的影响

酒精是唯一提供能量 (7.1 kcal/g) 的精神药物。然而,它的卡路里被认为是“空的”,因为酒精摄入不能提供维生素和矿物质,并且它的过量摄入会导致营养状况的改变。

由于酒精的高能量值,人们普遍认为,过量饮酒会增加体重和肥胖的风险。尽管酒精密度高,但与不饮酒者相比,饮酒者的体重似乎并未增加。

当酒精摄入热量占总热量摄入的 50% 或更多时,由于微粒体乙醇氧化系统 (MEOS) 的激活,身体系统可能无法有效利用乙醇摄入提供的能量。以能量浪费为代价,MEOS 是乙醇氧化的主要肝脏途径。其诱导在戒酒后是可逆的。

饮酒与体重的关系及戒酒对营养状况的改善

在对 181 名每天消耗超过 80 克乙醇的住院男性进行观察性研究期间观察到,63.1% 的人患有厌食症,58.7% 的人体重减轻,17.8% 的人的 BMI 低于 20 kg/m2。经过三个月的戒酒期后,酗酒者的热量使用正常化,体重指数 (BMI) 和腰臀比 (WHP) 也有所增加

作者认为,戒酒期间营养状况的改善可能是由于 MEOS 活性较低,从而减少了热量的浪费。

少量或中等程度饮酒的女性肥胖风险较低

酗酒患者因饮酒而出现代谢和营养障碍,并表现出在静息状态下大量使用能量,优先使用脂质作为能量来源,并且与对照组相比,脂肪组织比健康对照减少了 19%

队列研究表明,与戒酒的女性相比,少量或中等程度饮酒(最多 30 克/天)的女性体重增加和肥胖的风险较低,而其他研究已经达到无论受试者的性别如何,都得出相同的结论。

研究评估了酗酒者脂肪和肌肉组织长期变化的预后价值以及戒酒对这些变化的影响。结果表明,在第一次评估后的头六个月内,原来体重较轻较差的预后相关,无论患者是否在同一时期戒酒。然而,不禁欲与瘦体重的减少相关性更大。

低剂量饮酒是热量的重要来源

身体对酒精热量的利用可能与酒精的用量有关。酒精消耗量低于每日卡路里的 25-35% 可用作能量来源;然而,在更高的消耗量下,利用可能不完整。

在人类中,热量营养不良是世界各地数以百万计死于饥饿的人所面临的现实,并且由于价格低廉且可用性高,乙醇被摄入以代替食物。一些研究创建动物模型是为了阐明当营养不良的生物体暴露于乙醇时会发生什么。然而,结果并不是人们所期望的。

事实上,低剂量饮酒是热量的重要来源,可减轻营养不良的影响。动物研究表明,摄入低至中等剂量的酒精(最多占总热量摄入的 20%)会导致营养不良的大鼠体重增加,这表明有效利用了酒精的能量含量。然而,当酒精中的能量含量占总卡路里摄入量的 10% 或更多时,富营养化大鼠的体重就会减轻

肥胖

个人的营养状况可能会影响酒精饮料中能量的利用。在人类中,瘦个体对酒精卡路里的利用效率可能较低,而在肥胖个体中,卡路里有助于增加体重

酒精对体重的影响仍然是一个有争议的话题

一项长达10年的前瞻性研究表明饮酒者的体重比不饮酒者更稳定,这表明饮酒不是肥胖的危险因素每月长期适度饮用啤酒不会改变成年人的体重或身体成分。

一些研究表明,身体和腹部脂肪的增加适度和频繁饮酒有关。还有证据表明,不同的饮酒方式会导致体重增加。每天摄入 ≥ 30 克酒精可能会改变能量稳态的平衡,促使食欲增加,从而导致体重增加和肥胖,无论摄入哪种类型的酒精。

为什么有可能增加肥胖的风险?

在短期内,饮酒被认为是一种食欲兴奋剂,影响用于控制食欲的神经化学和外周系统,如瘦素抑制、胰高血糖素样肽-1 和血清素,并增强γ-氨基丁酸的作用,内源性阿片类药物和神经肽 Y。因此,在没有依赖性的情况下大量饮酒以及酗酒可能会增加肥胖的风险

饮酒与体重变化及发展为肥胖的关联因性别而异

男性将酒精添加到日常摄入的卡路里中,而女性则倾向于使用酒精替代其他能源,例如减少碳水化合物的消耗而不会增加总卡路里摄取。在考虑能量平衡时必须包括这些差异,因为它们可能会产生关于体重的不同结果。

多种肥胖风险因素与饮酒有关

例如腹部脂肪增加 、脂质氧化能力下降、高热量饮食消耗和皮质醇分泌增加。有人可能会说,与酗酒者和饮食富含脂肪的人相比,超重或肥胖的人和非日常适度饮酒者更多地利用酒精中的卡路里。

女性、饮酒者、大学生的身体、腹部和外周脂肪值也较高,表明 AUDIT 问卷中较高的分数与 BMI、体脂百分比、腰围、三头肌皮褶,手臂周长呈正相关

喝得量少,频率高 ⇒ BMI 较低

喝得量多,频率低 ⇒ BMI 较高

一项基于 1997 – 2001 年全国健康采访调查数据的研究表明,与 BMI 相关的饮酒量和频率之间存在强烈的相反影响喝得频率更高但喝得少(即每天喝一杯)的人 BMI 较低。另一方面,饮酒频率较低饮酒量较大(暴饮暴食)的个体 BMI 较高。那些每天摄入 ≥ 50 g 的人的腹部肥胖风险因素增加。

与这一发现一致的是,在对英国人进行的一项研究中,有人指出,摄入 30 克或更多的酒精会高 BMI 和体重增加的风险。

肥胖风险:当前适度饮酒者<戒酒者<酗酒者

同样,在对第三次全国健康和营养检查数据进行研究后提供的结果显示,与戒酒者相比,当前饮酒者肥胖的可能性较低,而酗酒者(一天四剂或更多剂饮酒者)肥胖的可能性更大。在报告经常饮酒但每周饮酒量少于 5 剂的人群中,肥胖风险因素显著降低

扩展阅读:体重增长:目前为止我们所知道的一切(更新你的减肥工具箱)

►►►

酒精和心血管疾病

血脂概况

每周饮酒三到四天与患心肌梗塞的风险较低有关

据估计,酒精的心脏保护作用可能归因于 50% 的 HDL 升高适量饮酒(30 克乙醇/天)可使 HDL-c 浓度增加约 4 mg/dL,apoA-I 浓度增加 8.82 mg/dL,心脏病风险估计降低 24.7%。

不管饮用的饮料(葡萄酒、烈酒或啤酒)的数量或类型如何,这种改变都可能发生。此外,酒精促进 HDL (好胆固醇)的较少降解和 LDL(坏胆固醇)的更大肝脏代谢

重度饮酒者中风风险较高

尽管饮酒会改变血脂水平并减少心血管事件,但已证明重度饮酒者中脑出血和蛛网膜下腔出血等中风的发生率高于不饮酒者 。此外,由于大量饮酒,如糖尿病、高血压性心脏病、缺血性心脏病、缺血性和出血性中风等疾病逐渐增加

酒精的风险和益处之间的差异因人而异,科学家呼吁不应将其用作保护心血管的工具作为一项公共卫生措施加以鼓励。

在一项荟萃分析研究中描述了酒精对预防冠心病的益处的减少,其中节制和轻度和中度饮酒者显示出相同的冠心病死亡风险。

发现每天饮酒 10 克的人甘油三酯水平较高。摄入量大于 50 克/天可显著降低发生低水平 HDL-c 的风险,但会增加发生高水平胆固醇的风险

餐后时期,酒精会导致甘油三酯升高,并抑制游离脂肪酸 (FFA) 的氧化 。重要的是要强调,对于患有冠心病的个体,餐后高甘油三酯血症更大、持续时间更长。高甘油三酯血症或 FFA 增加与正常个体和胰岛素抵抗者的内皮血管舒张减少有关。

扩展阅读:

肠道菌群 —— 中风的关键参与者

缺血性中风和肠道菌群之间的桥梁:短链脂肪酸

与心血管疾病相关的肠道菌群代谢产物或毒素

高血压

酒精摄入会以剂量依赖性反应升高动脉压

每天摄入超过两次的剂量是最常见的可逆性高血压原因之一 。肾素-血管紧张素系统可能参与了酒精诱发高血压的机制。

一项研究表明,急性酒精中毒改变了肾素-醛固酮系统,使人体具有正常的氢和钠平衡。血浆肾素的增加可能是由于乙醇利尿或乙醇对醛固酮分泌的抑制作用引起的脱水。渗透压、动脉压和心脏频率没有发现显著变化。后来,证实适度饮酒时肾素活性会急剧增加,从而引起液体和电解质平衡以及动脉血压的变化。

少量和适度饮酒的影响可能因性别而异

文献对这个问题的描述并不一致。在一项由女性健康研究对 28,848 名女性开展的前瞻性研究和由医生健康研究开展的另一项对 13,455 名女性开展的前瞻性研究中,少量和适度饮酒降低了女性患高血压的风险并增加了男性患高血压的风险

酒精成为高血压危险因素的阈值在女性中等于或大于每天 4 剂,而男性的中等水平等于或大于每天 1 剂。 然而,一些研究在考虑男性和女性的动脉血压对酒精的敏感性是否不同时存在争议

饮酒推荐量因体重而异

由于习惯性饮酒不同,动脉血压升高在低体重个体中比在高体重个体中更为显著因此,低体重女性预防高血压的推荐饮酒限度必须低于高体重女性

对于重度饮酒者而言,少喝可以预防治疗高血压

在没有其他心血管疾病的健康男性和女性中调查了饮酒和当前饮酒标准与高血压风险之间的关联。与节制的人相比,那些饮酒且饮酒量很大的人患高血压的风险更高。

重度饮酒者酒精摄入量的减少显著降低了动脉收缩压和舒张压。因此,必须推荐减少饮酒作为生活方式调整措施,以预防和治疗重度饮酒者的高血压

扩展阅读:认识肠道微生物及其与高血压的关系

以上是酒精对相关疾病的影响。长期大量饮酒后,人体对酒精容易产生依赖性,出现无法自主控制饮酒行为,也就是戒不掉、戒断症状等现象,我们通常说酒精成瘾。他们需要往往更多的酒精来获得同样的愉悦感。接下来章节,我们来看一下酒精成瘾的相关因素。

05
酒精与肠脑轴和酒精成瘾

肠道和大脑是两个器官,它们在解剖学上相距甚远,但在其他方面却如此接近。我们过去的文章写过,肠道微生物组和大脑之间的代谢和神经串扰对大脑功能、情绪和行为具有重要意义。

详见:

肠道微生物组在人类神经系统疾病中的作用

在过去十年中,多项研究表明,全身性炎症与精神疾病(包括抑郁症和自闭症)之间存在关联。然而,全身炎症与酒精成瘾、抑郁症和自闭症等精神疾病之间相互作用的机制尚不完全清楚,肠道菌群可能是一个很好的研究目标。

全身性炎症和酒精成瘾的一个可能机制是肠道细菌产物激活外周血单核细胞,诱导细胞因子进入血流,在酒精依赖者中引起低度全身性炎症 。

肠道炎症还可以将内毒素和细胞因子传播到血液中,在那里它们可以进入中枢神经系统 (CNS),引起神经炎症

➤ 酒 精 成 瘾

酒精成瘾与十二指肠的吸收障碍有关,导致营养不良和硫胺素的肝脏储存受损。

酒精成瘾与其他精神疾病高度相关,包括重度抑郁症、双相情感障碍以及焦虑症。重度抑郁症等情绪障碍通常先于酒瘾发作;例如,有人使用酒精来应对情绪低落。

酒精成瘾的严重程度与其渴望、认知功能障碍、焦虑和抑郁症状的强度相关

正如我们上面提到的,全身炎症可能在酒精成瘾的发展中起重要作用;肠道和肝脏的肠屏障功能障碍和炎症可能导致外周炎症并引起脑部炎症,从而诱发小胶质细胞或星形胶质细胞等脑细胞的炎症。

疾病行为理论可能将全身性炎症与酒精成瘾和情绪障碍联系起来。该理论支持外周炎症,如肠漏症,激活免疫系统并产生可到达大脑的细胞因子,导致发烧、疲劳、疲倦、无法集中注意力和退出社交;当上述行为持续存在时,可能会出现抑郁症状

扩展阅读:抑郁症,恐惧,压力和肠道微生物群脱不开的关系

➤ 药 物 成 瘾

越来越多的研究将肠道微生物组的组成和功能与物质使用障碍 (SUD) 联系起来

肠脑轴和物质使用障碍(SUD)

SUD 的特征是:尽管知道会对精神、身体和社会造成负面影响,但仍对某种物质(例如,酒精、阿片类药物和/或其他药物)长期依赖

它们具有社会经济、生物化学、遗传以及越来越多的微生物学基础。众所周知,大脑是调节成瘾参数的重要器官,然而,通过微生物角度研究成瘾提供了一种思考:与身体相关的其他因素如何与大脑携手合作,以调解获得滥用药物的动机的新方法。

肠道和大脑通过双向、生化和神经高速公路(肠-脑轴)进行交流。肠上皮细胞下方的神经末梢接收来自肠道微生物群的代谢信号,这可能会影响行为,例如压力或焦虑

除了与中枢神经系统发育和大脑功能有关的其他代谢物,如短链脂肪酸,肠道微生物还有助于产生一系列与情绪、认知和奖赏相关的神经递质(例如血清素和多巴胺)

肠脑轴

图源:BioRender

这些神经递质在 SUD 的情况下特别相关;许多滥用物质通过触发大量多巴胺进入奖励途径来劫持大脑的奖励系统。这种多巴胺泛滥带来的愉悦感最终会减弱,个人可能会反复服用该物质以再次体验这些感觉。研究表明,肠道微生物参与自然(例如食物)和人工奖励(包括药物)的奖励感知,这表明 SUD 的发展/进展与肠道微生物组组成之间存在联系

事实上,滥用酒精或药物与微生物组组成的变化有关。尽管这些改变的具体情况因物质而异,但与“健康”相关的微生物通常会减少,而具有促炎作用的微生物会增加,例如变形杆菌。这些变化伴随着关键微生物代谢物(如短链脂肪酸)的减少,具有各种全身和局部效应(例如,肠道屏障完整性的破坏)。

通常,SUD 的特征是肠道炎症增加,部分原因是这种渗漏的肠道屏障允许微生物及其产物与底层免疫细胞相互作用。激活后,这些免疫细胞会产生细胞因子,这些细胞因子不仅会引发局部炎症,还会进入循环并穿过血脑屏障。由此产生的神经炎症会改变神经元活动,包括在大脑的奖励通路内,并可能影响对物质本身的反应和耐受性。

管理物质使用障碍——肠道微生物

治疗 SUD 的策略因人和物质而异,但可能涉及药物(如阿片类拮抗剂)、咨询和行为护理。然而,这些策略可能并不总是奏效,并且可能会复发。目前药物成瘾治疗干预的成功率很低,大约40-60% 接受治疗的人最终会复发并重新使用滥用药物。

  • 益生菌

鉴于肠道微生物群和 SUD 之间出现的交叉点,发现用某些细菌补充肠道微生物群,它们的发酵产物(如短链脂肪酸)可能会减少滥用物质的影响。

例如,一项研究发现富含双歧杆菌的益生菌和Lactobacillaeae 可逆转小鼠对吗啡的耐受性

  • 粪菌移植

粪便微生物群移植 (FMT) 也可能是一种选择,或许未来可以用于干预酒精成瘾或使用障碍。一项 1 期临床试验表明,与安慰剂组相比,接受富含毛螺菌科和瘤胃球菌科 FMT 的酒精使用障碍患者在 15 天后 对酒精的渴望有所减少(分别减少 90% 和 30%)。在吗啡依赖小鼠中,FMT减轻了戒断症状由阿片拮抗剂触发。由于阿片类药物耐受性容易导致剂量增加和用药过量,这些发现表明微生物可以延长药物的疗效

以上表明肠道微生物组的未来及其对健康和福祉的影响有很大的应用,尤其是与 SUD 相关的情况。这是一个有前景的领域。

06
干 预 措 施

目前,酒精摄入过量的治疗干预措施主要包括药物治疗、心理治疗、社会支持等方面。以下是一些应对过度饮酒的可行性计划:

  1. 寻求专业帮助如果你无法控制自己的饮酒量,或者饮酒已经对生活造成了负面影响,最好寻求专业帮助,如心理咨询或帮助戒酒的专家。
  2. 设定目标设定自己的饮酒目标,如每周只饮用一定量的酒精。并且要坚持自己的目标。
  3. 寻找替代品寻找其他的放松方式,如运动、阅读、听音乐等,以替代饮酒。
  4. 避免诱惑避免与饮酒有关的场合和人群,如酒吧、夜店等。
  5. 改变生活方式改变自己的生活方式,如改变饮食习惯、增加运动量等,以减少饮酒的诱因。

这里再介绍一些关于过量饮酒的饮食干预。

➤ 醒酒的食物

1. 豆腐

豆腐中所含的半脱氨酸是一种氨基酸,其重要性在于能解除乙醇的毒性,食用后能促进酒中乙醇的排出,从而达到解酒的目的。

2. 香蕉

香蕉还有解酒作用,因为香蕉中含有丰富的果糖,进入人体后可以稀释酒精,所以可以解酒。

3. 糖水

适量白糖和开水混合,甜度视醉度而定,稍凉片刻即可饮用。糖分进入人体后,会增加体内血糖浓度,降低血液中酒精浓度,加速体内酒精的排出,从而达到醒酒的目的。

4. 蜂蜜水

其实酒后喝点蜂蜜水可以有效减轻酒后头痛的症状,蜂蜜可以促进人体对酒精的吸收从而减轻酒后头痛的症状,此外,蜂蜜还有镇静催眠的作用. 多吃蜂蜜对皮肤和胃都有好处。

5.葛根水

葛根泡水喝,不管是喝前还是喝后,都有很好的效果。饮酒前先喝葛根水,可预防酒精对肝脏的损害。酒后饮用可起到醒酒作用。

6.番茄

番茄中的果糖、葡萄糖和维生素对肝脏和心脏都有保健作用,而且果糖还是解酒醒酒的好味道。酒后吃几个西红柿,可使头晕逐渐消失。

7.红薯

将生红薯磨碎,加入适量白糖,搅拌均匀后服用。

8.绿豆

绿豆适量,用温水冲净,捣烂,用沸水冲净或熬汤食用。

9.甘蔗

1 根甘蔗,去皮并榨汁。

10.盐水

在开水中加少许盐,喝下醒酒。

11.柑橘皮(陈皮)

将陈皮烘熟,研末,加食盐1.5克煮汤。

12.白萝卜

白萝卜1公斤,捣成泥取汁,分次服用。也可以在白萝卜汁中加入适量的红糖饮用,也可以生吃萝卜。

编辑​

这些用食物解酒的方法虽然看似简单,但是却能够起到解酒作用。如果你也喜欢喝酒,经常喝醉,那么学习一些有效的解酒方法就显得非常重要了。对于喜欢喝酒的朋友而言,为了整体健康,请根据自身情况适度饮酒,尽可能避免过量饮酒。

结 语

总的来说,适量酒精可能给人体带来好处,尤其对自身免疫性疾病具有保护作用。低剂量酒精可能通过增加Akk菌等保护性肠道微生物,并有助于增加乙酸盐、多不饱和脂肪酸等,间接产生积极影响。

而高剂量酒精则可能带来不利影响,破坏肠道屏障的稳定性,增加肠道通透性,导致微生物成分进入循环系统,引发肝脏和其他器官的炎症反应;并可能导致肠道微生态失调、肠道菌群产物、脂多糖增加;导致单核细胞、T 细胞、细胞因子、IgG 水平以及 B 细胞减少;进而影响酒精性肝病、肥胖、胃肠道疾病、心血管疾病等发生和发展。

此外,饮酒还会影响肠道微生物组影响社交行为和精神障碍。因此,保持健康的肠道微生物组对于预防和治疗与饮酒相关的疾病具有重要意义。

未来的研究应该进一步探讨肠道菌群与酒精代谢和酒精成瘾之间的因果关系,肠道菌群的调节可能成为预防和治疗酒精成瘾的新靶点。

主要参考文献:

Jew MH, Hsu CL. Alcohol, the gut microbiome, and liver disease. J Gastroenterol Hepatol. 2023 Apr 25. doi: 10.1111/jgh.16199. Epub ahead of print. PMID: 37096652.

Meroni M, Longo M, Dongiovanni P. Alcohol or Gut Microbiota: Who Is the Guilty? Int J Mol Sci. 2019 Sep 14;20(18):4568.

Caslin B, Mohler K, Thiagarajan S, Melamed E. Alcohol as friend or foe in autoimmune diseases: a role for gut microbiome? Gut Microbes. 2021 Jan-Dec;13(1):1916278.

Zugravu CA, Medar C, Manolescu LSC, Constantin C. Beer and Microbiota: Pathways for a Positive and Healthy Interaction. Nutrients. 2023 Feb 7;15(4):844.

Engen PA, Green SJ, Voigt RM, Forsyth CB, Keshavarzian A. The Gastrointestinal Microbiome: Alcohol Effects on the Composition of Intestinal Microbiota. Alcohol Res. 2015;37(2):223-36.

González-Zancada N, Redondo-Useros N, Díaz LE, Gómez-Martínez S, Marcos A, Nova E. Association of Moderate Beer Consumption with the Gut Microbiota and SCFA of Healthy Adults. Molecules. 2020 Oct 17;25(20):4772

Crews FT, Sarkar DK, Qin L, Zou J, Boyadjieva N, Vetreno RP. Neuroimmune Function and the Consequences of Alcohol Exposure. Alcohol Res. 2015;37(2):331-41, 344-51.

González-Zancada N, Redondo-Useros N, Díaz LE, Gómez-Martínez S, Marcos A, Nova E. Association of Moderate Beer Consumption with the Gut Microbiota and SCFA of Healthy Adults. Molecules. 2020 Oct 17;25(20):4772.

Hernández-Quiroz F, Nirmalkar K, Villalobos-Flores LE, Murugesan S, Cruz-Narváez Y, Rico-Arzate E, Hoyo-Vadillo C, Chavez-Carbajal A, Pizano-Zárate ML, García-Mena J. Influence of moderate beer consumption on human gut microbiota and its impact on fasting glucose and β-cell function. Alcohol. 2020 Jun;85:77-94.

Doremus-Fitzwater TL, Deak T. Adolescent neuroimmune function and its interaction with alcohol. Int Rev Neurobiol. 2022;161:167-208.

Tirado-Kulieva VA, Hernández-Martínez E, Minchán-Velayarce HH, Pasapera-Campos SE, Luque-Vilca OM. A comprehensive review of the benefits of drinking craft beer: Role of phenolic content in health and possible potential of the alcoholic fraction. Curr Res Food Sci. 2023 Mar 4;6:100477.

Caslin B, Mohler K, Thiagarajan S, Melamed E. Alcohol as friend or foe in autoimmune diseases: a role for gut microbiome? Gut Microbes. 2021 Jan-Dec;13(1):1916278.

肠道微生物群:心力衰竭的新治疗靶点

谷禾健康

心力衰竭 Heart Failure(HF)

心力衰竭是一种严重的心血管疾病,其特点是较高的发病率和死亡率,同时也会带来高昂的医疗成本。

一般都认为心力衰竭是老年人的疾病,但其实心力衰竭已经呈现年轻化趋势。

以上症状都有可能与早期心力衰竭相关。发生心力衰竭时,血液通常会回流并导致液体在肺部积聚,从而引发气短

长期熬夜睡眠不足,不健康饮食,吸烟酗酒,压力大,过度劳累等各种因素日积月累都有可能导致心律失常,诱发突发性心衰。

越来越多的证据表明,心力衰竭与肠道微生物群变化相关

肠道微生物群失调会导致肠道屏障功能受损,从而使肠道中的有害物质和细菌进入血液循环系统,引发炎症反应。这些炎症因子会进一步损害心脏功能,导致心力衰竭的发生和发展。

肠道微生物群还可以通过产生代谢产物,如短链脂肪酸、TMAO等,影响心血管系统的功能。

本文主要介绍有关肠道微生物群及其代谢物对心力衰竭的影响,以便更好地理解这种多层次的复杂关系。

更深入地了解人体肠道微生物组、心力衰竭和相关风险因素之间的相互作用,对于优化基于微生物群调节的治疗策略提供个体化治疗非常重要。

本文主要内容:

01 了解心力衰竭

心力衰竭的类型

心力衰竭的症状

心力衰竭的形成

心力衰竭的发病率

心力衰竭的风险因素

02心力衰竭&肠道屏障功能受损和炎症

03心力衰竭的肠道菌群变化

04心力衰竭的风险因素和肠道菌群

西方饮食

肥胖

2型糖尿病

高血压

05与心力衰竭相关的肠道菌群代谢产物

苯丙氨酸

TMAO

短链脂肪酸

胆汁酸

06 肠道菌群与心血管药物的相互作用

强心甙类药物

血液稀释剂

β-阻断剂、ACEi和ARBs

他汀类药物

07 基于肠道菌群的干预措施

饮食方式

特定食物

益生菌

益生元

抗生素

粪菌移植

生活方式

08 结语

01
什么是心力衰竭?

心力衰竭是一种心脏疾病,指心脏无法泵出足够的血液来满足身体需要,导致身体器官缺氧水肿等症状。

图源:American Heart Association / watchlearnlive.heart

▼ 

心力衰竭的类型

根据急缓程度区分:

  • 慢性心力衰竭(持续性)
  • 急性心力衰竭(突发性)

两者可以互相转变。

根据部位区分:

  • 左侧心力衰竭
  • 右侧心力衰竭

左侧和右侧心力衰竭不同,左侧心力衰竭比右侧心力衰竭更常见

左侧心力衰竭可能出现的症状有:

呼吸困难;咳嗽;疲劳(即使休息后也极度疲倦);手指和嘴唇呈蓝色;嗜睡;注意力不集中;平躺无法入睡。

右侧心力衰竭可能出现的症状有:

恶心(胃部不适)和食欲不振、腹部疼痛(胃周围区域);脚踝、脚、腿、腹部和颈部静脉肿胀;需要经常小便;体重增加。

根据射血分数区分:

  • 收缩性心力衰竭(射血分数降低,HFrEF)
  • 舒张性心力衰竭(射血分数保留,HFpEF)

注:射血分数是心脏强度的指标。在临床常用于判断心功能的基本情况以及心力衰竭的诊断,射血分数越低,心脏的泵血功能就越弱

  • 射血分数正常在 50%~70%之间;
  • 40% ~ 49% 是中等射血分数,可能没感觉到症状;
  • 低于40% 是射血分数降低的心力衰竭。

收缩性心力衰竭:心脏无法将足够的血液泵出,导致心脏收缩功能下降。

舒张性心力衰竭:心脏在舒张时无法完全放松和扩张,导致心脏无法充分填充血液,从而降低了心脏泵血的效率。

▼ 

心力衰竭症状

  • 活动时或躺下时气短
  • 疲劳和虚弱
  • 腿部、踝部和足部肿胀
  • 快速或不规则心跳
  • 晚上醒来呼吸急促
  • 运动能力下降
  • 持续咳嗽或哮鸣伴有白色或粉红色带血黏液
  • 肚子区域(腹部)肿胀
  • 体液积聚导致体重急速增长
  • 恶心和食欲不振
  • 难以集中注意力或警觉性降低
  • 如果心力衰竭由心脏病发作引起,则会出现胸部疼痛

▼ 

心力衰竭的形成

大多数情况下,心力衰竭是由另一种损害心脏的疾病引起的,比如冠心病、心脏炎症、高血压、心肌病、心律不齐等。

我们知道,心力衰竭是心肌无法泵出足够的血液来满足身体的需求,那么在心力衰竭的初始阶段,心脏会通过一些方式来弥补:

  • 心脏变大。心脏伸展从而更强烈地收缩并跟上身体泵送更多血液的需求。随着时间的推移,这会导致心脏扩大。
  • 心肌质量增加。肌肉质量的增加是因为心脏的收缩细胞变大了。这让心脏跳动更强劲。
  • 心跳更快。这有助于增加心脏输出量。

身体还会通过其他方式进行补偿:

  • 血管变窄以保持血压升高,试图弥补心脏失去的力量。
  • 肾脏保留了更多的盐和水,而不是通过尿液排泄。这会增加血液量,有助于维持血压,并使心脏泵送得更强。但随着时间的推移,这会使心脏负担过重,使心力衰竭恶化。

以上是身体的补偿机制,这就可以解释为什么有些人在心脏开始衰退多年后才意识到自己的病情。

▼ 

发病率

根据 Framingham 心脏研究的数据,心力衰竭的患病率随着年龄的增长而增加,该研究估计:

50 – 59 岁:

心力衰竭患病率为 8 / 1000;

80 – 89岁:

男性为66/1000,女性患病率为79/1000。

发病率随着年龄的增长而急剧增加

在 65 岁后,心力衰竭的发病率每增加10岁就会翻一倍,而在同年龄段的女性中,发病率会翻三倍

所有年龄段的血压和BMI越高,终身风险越高

▼ 

风险因素

以下人群更容易患心力衰竭:

  • 冠状动脉疾病
  • 糖尿病
  • 高血压
  • 心律不齐
  • 先天性心脏病
  • 睡眠呼吸暂停
  • 甲状腺疾病
  • 心脏瓣膜病
  • 肥胖
  • 病毒感染
  • 久坐不动
  • 吸烟
  • 过量饮酒
  • 吃高脂肪、高胆固醇、高钠的食物

02
心力衰竭 & 肠道屏障功能受损和炎症

心力衰竭中的“肠道假说”表明,肠道微生物群、其代谢物与心力衰竭发病机制之间存在密切关系。

这种细菌易位出现在心力衰竭中,是导致胃肠道结构和功能改变的各种机制的结果,从内脏充血到宿主的免疫防御系统。

心力衰竭的肠-心轴

doi.org/10.3390/cells12081158

心力衰竭患者 ⇒ 肠道屏障功能受损

肠道结构和功能的改变是心力衰竭患者微循环紊乱的结果。在这些患者中,尤其是在疾病失代偿的形式中,肠道微生物群落的正常组成被打破,这是由于肠道灌注不足导致的,从而导致局部pH肠腔缺氧

肠壁水肿

有证据表明,与心力衰竭相关的肠道上皮功能受损:这种改变似乎是肠道灌注减少缺血的结果。心输出量降低导致全身循环向多个终末器官的适应性再分配。因此,肠壁水肿增加肠壁增厚与肠道通透性标志物、血液白细胞和循环C-反应蛋白水平的增加正相关

肠道吸收能力降低,上皮通透性增加

除了肠壁水肿外,心力衰竭还表现为肠道吸收能力降低和上皮通透性增加,促进了多种肠道细菌和/或内毒素(如脂多糖)的通过,从肠道进入全身循环

脂多糖黏膜屏障功能恶化

脂多糖是革兰氏阴性菌壁的生物活性成分,具有潜在的免疫刺激活性,通过使用Toll样受体4(TLR4)模式识别受体。

在心力衰竭患者中,在肝静脉中发现高浓度的脂多糖,支持肠道菌群的肠道易位过程的假设。此外,据推测,脂多糖本身可以加剧黏膜屏障功能恶化,导致心力衰竭进展。

心力衰竭患者 ⇒ 炎症

内毒素易位导致炎症因子水平升高

内毒素肠吸收刺激系统炎症因子水平的增加。根据目前的数据,心力衰竭与慢性炎症状态相关,这种微生物易位可以诱导或加速炎症,间接影响心肌细胞的正常功能。

循环细胞因子水平升高,心力衰竭患者预后不良,与脂多糖相关

循环细胞因子水平的升高对应于心力衰竭患者生存中更严重的临床症状和更差的预后。心力衰竭患者的血清TNF-α、IL-1和IL-6水平直接受到现有脂多糖数量的影响,目前认为脂多糖是高炎症性疾病的主要因素

而在失代偿的心力衰竭患者中,脂多糖水平似乎与全身炎症标志物直接相关,并且在心力衰竭代偿后降低。治疗后血浆细胞因子水平并不一定会下降,这表明随着疾病的进展,其影响是持续的。根据两项大型随机安慰剂对照试验,使用TNF- α拮抗剂均不能降低心力衰竭患者的住院或死亡风险。

所有的心力衰竭患者炎症水平上升

另一项针对心力衰竭伴射血分数降低(HFrEF)患者的研究,该患者具有不同的疾病严重程度,或采用了先进的干预措施,如心脏移植(HT)或左心室辅助装置(LVAD),评估了他们的血液和粪便标本。从纽约心脏协会(NYHA)的I级到IV级的所有受试者,炎症标志物水平都有所增加

治疗后水平下降,但未到正常,脂多糖仍处高位

在左心室辅助装置和心脏移植治疗后,他们的水平下降,但未能达到正常值。然而,所有NYHA级别的脂多糖水平均有所增加,并且在心脏移植和左心室辅助装置干预的患者中仍保持升高。

与脂多糖类似,血清中IL-6、IL-1β和TNF-α水平的升高也诱导肠通透性,促进炎症细胞因子增加和内毒素易位的恶性前馈循环。

03
心力衰竭的肠道菌群

肠道微生物群已被证明对心力衰竭有很大影响。心力衰竭患者有更多的致病菌和更少的有益菌。

心力衰竭肠道菌群变化

在心力衰竭中,由于射血分数降低,肠道血流量减少,氧气输送减少。这使肠道容易滋生致病性厌氧菌

综合目前的研究来看,与对照相比,心力衰竭患者肠道菌群主要变化如下:

下列菌群丰度增加

↑↑ Ruminococcus gnavus 瘤胃球菌属

↑↑ Escherichia Shigella

↑↑ Streptococcus 链球菌

↑↑ Veillonella 韦荣氏球菌属

↑↑ Actinobacteria 放线菌门

↑↑ Pseudomonadota 假单胞菌门

↑↑ Klebsiella 克雷伯菌

↑↑ Salmonella 沙门氏菌

↑↑ Campylobacter 弯曲杆菌

↑↑ Candida 念珠菌

↑↑ Enterococcus 肠球菌属

下列菌群丰度减少

↓↓Eubacterium 真细菌

↓↓Prevotella 普雷沃氏菌属

↓↓ Faecalibacterium 粪杆菌属

↓↓ Faecalibacterium prausnitzii 普拉梭菌

↓↓ SMB53

↓↓ Megamonas 巨单胞菌属

↓↓ Dorea longicatena

↓↓ Roseburia intestinalis

↓↓Dialister 戴阿利斯特杆菌属

↓↓ Blautia 经黏液真杆菌属

↓↓ Collinsella 柯林斯氏菌

α多样性随着疾病严重程度的增加而降低

尽管接受了LVAD或HT等治疗,但仍保持较低水平,这可能是由于持续的炎症。随着心力衰竭发展到晚期内毒素血症和全身炎症水平增加,细菌群落的肠道多样性降低

几项关于急性失代偿或稳定型HFrEF患者肠道细菌谱的研究报告称,与健康个体相比,心力衰竭患者的α和β多样性显著降低

心力衰竭相关的肠道菌群失调因患者年龄而异

与已知患有心力衰竭的年轻患者相比,老年患者表现出拟杆菌门水平下降变形菌门、假单胞菌门数量

在所有已知的心力衰竭患者中,毛螺菌科Dorea longicatenaEubacterium rectale的数量都有所减少,而与年轻患者相比,Clostridium clostridioforme普拉梭菌Faecalibacterium prausnitzii)在老年心力衰竭患者中的数量更少

下表中总结了关于心力衰竭患者肠道微生物群的研究。

doi.org/10.3390/cells12081158

04
心力衰竭的风险因素和肠道菌群

患有心力衰竭的人有各种危险因素,但他们中的大多数人患有高血压、肥胖、血脂异常、糖尿病、遗传易患心力衰竭、吸烟、久坐不动的生活方式或不健康的饮食。新证据表明,肠道微生物群及其代谢物也可能对心力衰竭危险因素产生影响。

西方饮食

西方饮食的特点是摄入高糖精制碳水化合物,血糖指数高;抑制一氧化氮合酶的含量,导致心肌氧化功能障碍、心肌肥大和心肌细胞重塑,所有这些都是心力衰竭的诱发因素

西方饮食:通过菌群代谢增加TMAO,胆固醇积累,动脉粥样硬化,心力衰竭风险增加

这种饮食富含快餐食品会导致微生态失调,其菌群特征是假单胞菌Pseudomonadota)和Bacillota水平升高,从而增加TMAO和神经酰胺的水平,促进巨噬细胞中的胆固醇积累,并加剧动脉粥样硬化的发展。

西方饮食诱发心力衰竭

doi.org/10.3389/fmicb.2022.956516

西方饮食通过肠道微生物群代谢为 TMA,然后 TMA 在肝组织中转化为 TMAO。TMAO 积累在许多病理过程中触发胆固醇,包括运输和泡沫细胞形成,从而诱发心力衰竭。

西方饮食还会导致心肌中的脂质积聚、慢性炎症和肥胖。快餐食品加工中使用的食品添加剂(包括亚硝酸盐和磷酸盐)水平的增加心力衰竭风险的增加有关。它们改变了厚壁菌与拟杆菌的比例。

西方饮食:构建肠道屏障菌群减少,屏障破坏

西方饮食还改变了肠道屏障的通透性,其特征是拟杆菌属、双歧杆菌属、梭状芽孢杆菌属、乳酸杆菌属和Akkermansia muciniphila以及所有促进肠道屏障细菌的水平降低。此外,肠壁完整性似乎被脱硫弧菌属和Oscillibacter的增加破坏

扩展阅读:AKK菌——下一代有益菌

肥胖

研究表明,肥胖及其相关的代谢障碍,包括高脂血症、高血糖和胰岛素抵抗,与心力衰竭密切相关。

肥胖 ⇒ 促炎

肥胖及其相关的心脏代谢因子(胰岛素抵抗、血脂异常和腹部肥胖)加剧促炎环境,也就是促炎细胞因子水平升高。

肥胖 ⇒ 血容量改变

内皮功能障碍一氧化氮不可用,可能导致HFpEF的左心室肥大以及收缩和舒张功能障碍。此外,肥胖会导致血管系统和血容量的改变,这与氧气消耗的增加有关,导致心室肥大、平均肺动脉压增加和左心室舒张压升高

肥胖 ⇌ 肠道菌群变化

在动物和人类研究中,在大多数研究中,肥胖似乎与厚壁菌门和拟杆菌门之间的比例改变有关,拟杆菌门减少厚壁菌增加。肠道拟杆菌数量与肥胖有关。

限制热量饮食并减肥的肥胖者肠道微生物群中拟杆菌类的比例似乎较高。具体而言,所有产短链脂肪酸菌Clostridium bartlettiiAkkermansia muciniphila和双歧杆菌都高脂肪饮食诱导的肥胖及其代谢并发症呈负相关

扩展阅读:肠道菌群与肥胖


2 型糖尿病

2型糖尿病是心力衰竭和其他心血管疾病的强相关危险因素

已知2型糖尿病患者粪杆菌、双歧杆菌、Akkermansia、拟杆菌和Roseburia降低Roseburia、拟杆菌和Akkermansia具有抗炎作用。拟杆菌和Akkermansia水平下降导致紧密连接基因表达不足,“肠漏”加剧,从而导致内毒素血症。

扩展阅读:肠道重要基石菌属——罗氏菌属(Roseburia)

此外,产丁酸菌普拉梭菌和Roseburia nestiinalis的丰度降低,会导致脂肪酸代谢失调,导致氧化应激及其相关的心脏代谢不良表现。

另一方面,2型糖尿病与梭杆菌属、瘤胃球菌属厚壁菌门的细菌呈正相关,这些细菌都具有促炎活性。

扩展阅读:2型糖尿病如何做到可防可控?肠道菌群发挥重要作用


高血压

与血压正常的对照组相比,持续升高的血压患者的厚壁菌与拟杆菌比例更高(高达5倍)。此外,高血压时,肠道菌群以产乳酸菌属(如TuricibacterStreptococcus为主,而产短链脂肪酸菌属(如Clostridiaceae、Bacteroides、Akkermansia)似乎减少。其中一些相关的肠道菌群稳态扰动部分与心力衰竭发病有关,并增加心衰进展的风险。

扩展阅读:认识肠道微生物及其与高血压的关系

05
与心力衰竭相关的肠道菌群代谢产物

经典的心力衰竭的生物标志物:利钠肽(NP)、脑型钠尿肽(BNP)、BNP的N-末端原激素肌钙蛋白测量,已被欧洲心脏病学会和美国心脏协会纳入心力衰竭的诊断和治疗指南。

肠道微生物衍生的代谢物也可以在心力衰竭的发病机制中发挥重要作用。通过产生包括短链脂肪酸三甲胺(TMA) / 三甲胺 N-氧化物 (TMAO) 和胆汁酸在内的活性生物代谢物,肠道微生物群会影响宿主生理。

影响心力衰竭的微生物代谢产物及相关治疗策略

doi.org/10.3389/fmicb.2022.956516


苯丙氨酸

苯丙氨酸:与炎症细胞因子呈正相关,是心力衰竭的独立预测因子

这些代谢物可被视为肠道微生态失调的生物标志物,并且可以预测已知患有心力衰竭的患者的炎症。血浆苯丙氨酸水平升高的患者表现出炎症细胞因子(IL-8、IL-10)、C反应蛋白 (CRP) 水平升高,并伴有更高的死亡率。而甘氨酸表现出抗炎作用,似乎提供保护细胞和心脏。对从 FINRISK 和 PROSPER 队列收集的数据进行的分析中,苯丙氨酸是心力衰竭的独立预测因子。


TMAO

升高的TMAO水平与心力衰竭的风险相关

TMAO 是一种由包括厚壁菌和假单胞菌属在内的肠道细菌产生的代谢产物,从胆碱、磷脂酰胆碱和左旋肉碱发酵中获得。

高饱和脂肪和高糖饮食导致的 TMAO 水平升高,可导致纤维化、心肌炎症和舒张功能受损。瘤胃球菌、普雷沃氏菌和梭状芽孢杆菌属和毛螺菌科丰度增加,以及拟杆菌门水平降低,表明其血浆中的 TMAO 水平较高

心力衰竭相关生态失调的特点是循环中高水平的TMAO,能够通过促进心肌纤维化和促炎作用来刺激心脏重塑。现有证据表明,TMAO 水平升高会刺激具有促炎作用的细胞因子(包括 IL-1β 和 TNF-α)的过度表达,以及 IL-10 和其他具有抗炎特性的细胞因子的减弱。

TMAO水平升高可作为急性和慢性心力衰竭的预后生物标志物

与健康人相比,心力衰竭患者的血浆TMAO水平升高。TMAO水平升高可作为急性和慢性心力衰竭的预后生物标志物,独立于B型钠尿肽(BNP)和传统风险因素,因为TMAO水平可预测这些患者的死亡率。

TMAO血浆值升高对应于左心室舒张功能障碍的晚期。TMAO也可被视为HFeEF的预后预测因子和这一特定类别患者的风险分层标志物

对于住院的心力衰竭急性失代偿患者,TMAO水平升高与肾功能下降相关,可作为心力衰竭恶化死亡或再次入院风险升高的预测指标

TMAO水平还与血红蛋白、肌酐、BUN和NT-proBNP相关。

肉碱相关代谢产物与不良预后有关

特别是L-肉碱和乙酰-L-肉碱与短期预后(急性事件后30天)有关,而TMAO与长期预后(急性事件后1年)有关。


短链脂肪酸

短链脂肪酸属于胃肠道中肠道微生物产生的代谢产物。短链脂肪酸对心力衰竭具有保护作用,并在维持肠道屏障的完整性方面发挥主要作用:在粘液产生中,它们在抗炎保护中具有活性。

肠道菌群产生的短链脂肪酸对心血管系统的下游影响

doi: 10.1038/s41569-018-0108-7.

肠道微生物群产生的短链脂肪酸通过以下方式发挥其心血管作用:

  • 通过促进粘液产生间接改善肠道屏障功能;
  • 激活肾小球旁器官 (JGA) 和外周血管系统中的嗅觉受体 51E2(OR51E2),导致肾素释放增加和血压升高,从而抵消游离脂肪酸受体 3(FFAR3);
  • 激活组蛋白乙酰转移酶 (HAT) 和抑制组蛋白脱乙酰酶 (HDAC),从而抑制炎症、平衡基因调控和调节免疫细胞活化。

扩展阅读:缺血性中风和肠道菌群之间的桥梁:短链脂肪酸


胆汁酸

胆汁酸(BA)是由肠道微生物合成的胆汁代谢物,在脂质代谢中起着关键作用。饮食习惯、禁食昼夜节律对胆汁酸的产生和重吸收有影响。

胆汁酸信号传导的受体,如法尼醇-X受体(FXR),在几乎所有的心血管细胞中表达,与心脏组织中的电传导和细胞力学密切相关。因此,胆汁酸信号在调节宿主的生理过程和许多心脏疾病方面非常重要。

一项前瞻性队列研究评估了慢性心力衰竭患者的原发性和继发性胆汁酸水平,然后显示原发性胆汁酸水平显着降低继发性胆汁酸水平增加。研究人员这些发现归因于微生物群的功能,因为微生物代谢对胆汁酸合成的影响很大,尤其是次级胆汁酸。

这项工作揭示了胆汁酸和肠道菌群在调节心肌功能方面的密切相关性,但潜在的机制仍然未知。法尼类 X 受体(FXR)和 G 蛋白偶联受体 5 (TGR5)是 胆汁酸信号通路中的两个重要分子。

FXR是心力衰竭患者的潜在治疗靶点,因为FXR可以通过增加脂联素改善心功能障碍并促进心肌重塑。此外,FXR的敲除通过抑制心脏病细胞的凋亡和纤维化促进了衰竭心脏的恢复。

06
肠道菌群与心血管药物的相互作用

年龄、性别、营养状况、疾病状态以及遗传和环境暴露是可以解释个体对药物治疗反应的因素。我们知道,微生物群参与药物代谢和药理作用,同时也存在双向交流,药物也会影响微生物群的组成。

药物吸收是一个复杂的过程,取决于许多因素,如它们在胃肠液中的解度和稳定性、pH值、胃肠道转运期、通过上皮膜的渗透性以及药物与宿主和微生物酶的相互作用

人类肠道微生物群能够产生参与口服药物代谢的酶促进其在肠道和血液中的吸收。肠道细菌群落的失调可以进一步改变药物的药代动力学;前药的激活可能加剧产生不需要的毒性代谢产物和药物的失活

由于肠道细菌种类的个体间差异,“健康”肠道中也可能存在药物反应的变化。

心力衰竭患者粪便样本的宏基因组测序显示,他汀类药物、β受体阻滞剂、血管紧张素转换酶抑制剂、血小板聚集抑制剂等几种药物的使用对肠道微生物组成有重要影响。下表列出了微生物生物转化的例子。

肠道菌群可能影响心血管药物疗效的已知和提出的机制

doi.org/10.3390/cells12081158

➤ 强心甙类药物

地高辛,一种经常被推荐用于心力衰竭的药物,是微生物群影响药物生物利用度的一个很好的例子。

一些迟缓埃格特菌Eggerthella lenta菌株负责将地高辛转化为一种无活性的微生物代谢产物,限制了10%的患者吸收到系统血流中的活性药物的数量。

最近的研究证明,地高辛抗生素富含精氨酸的饮食共同给药,都会导致全身地高辛水平升高和药物水平的临床相关波动。

➤ 血液稀释剂

阿司匹林是一种非甾体抗炎药,通常用于降低脑血管和心血管疾病的风险

阿司匹林破坏肠道微生物群的组成

与未使用或未使用其他类型非甾体抗炎药的患者相比,使用阿司匹林的患者的瘤胃球菌科、普雷沃氏菌、Barnesiella和拟杆菌的细菌水平存在差异。

肠道菌群的组成对阿司匹林的代谢产生影响

口服抗生素可以通过减缓肠道微生物群的降解、提高其生物利用度和延长其抗血栓作用来降低其代谢活性

含有短双歧杆菌Bif195的益生菌可以预防阿司匹林摄入的不良反应,如肠壁损伤和阿司匹林诱导的胃溃疡。

抗生素通过改变肠道菌群影响华法林的药效

华法林是一种常用的抗凝剂,通过抑制维生素K依赖性的凝血因子II、VII、IX和X的激活来表达其作用。当与抗生素一起服用时,与华法林使用相关的出血事件增加

两种机制:抗生素可以通过抑制或诱导CYP酶来干扰华法林的使用;还可以改变肠道细菌组成,消除产生维生素K的细菌,如拟杆菌属。

➤ β-阻断剂、ACEi和ARBs

抗高血压药物的作用已经在动物和人类研究中进行了多次研究。

β受体阻滞剂、血管紧张素受体阻滞剂(ARBs)和血管紧张素转换酶抑制剂(ACE抑制剂)的使用之间的关联可以改变肠道微生物群的组成。

一项大型宏基因组学研究报告了,钙通道阻滞ACE抑制剂和肠道细菌组成之间的正相关。对高血压大鼠研究发现,包括卡托普利在内的血管紧张素转换酶抑制剂带来的有益作用,是通过减轻肠道微生态失调改善肠壁通透性和增加绒毛长度来实现。

➤ 他汀类药物

他汀类药物是用于降低低密度脂蛋白-C(LDL-C)和胆固醇水平的药物。

他汀类药物治疗反应的存在个体间差异,与特定的他汀类药物或剂量无关。

他汀类药物在调节肠道菌群方面的作用

接受阿托伐他汀治疗的个体表现出抗炎肠道细菌水平的增加,如普拉梭菌(Faecalibacterium prausnitzii)AKK菌(Akkermansia muciniphila)

已知患有高胆固醇血症的未经治疗的患者表现出具有促炎作用的细菌种类的增加,例如柯林斯氏菌(collinsella)和链球菌。

与LDL-C水平相关的菌群

LDL-C水平似乎与厚壁菌门和梭杆菌门呈负相关,而黏胶球形菌(Lentisphaerae)和蓝细菌门与LDL-C呈正相关。现有证据表明,LDL-C对他汀类药物治疗的反应可能受到含有胆汁盐水解酶(bsh)的细菌影响。路氏乳杆菌是一种bsh活性升高的肠道细菌,给药后LDL-C水平显著降低

同一项研究报告称,低密度脂蛋白胆固醇水平的个体变化与循环胆汁酸呈负相关。以前与LDL-C水平呈负相关的厚壁菌门也与bsh活性有关。几种动物模型维持了他汀类药物治疗对肠道微生物群落的有益作用。

使用瑞舒伐他汀有一种罕见的副作用

由于瑞舒伐他汀中含有一种叔胺,在肝脏水平上与TMA竞争代谢,血清TMA水平及其在尿液中的排泄量增加,导致鱼腥味综合征。

07
调节肠道菌群失调作为心力衰竭的潜在干预措施

考虑到微生态失调是心力衰竭发病机制和疾病进展的关键因素,靶向破坏的肠道微生物群是一个有效的治疗目标。

表征每个患者的肠道微生物群及其与疾病相关的肠道微生态失调的可能性,需要个性化的、有针对性的治疗计划。

有各种方法可以管理和调节失调的肠道微生物群,如饮食干预(也包括使用益生元、后生元)和粪便移植,但现有文献中的几份研究将饮食调节使用益生菌作为调节微生物群的主要干预措施

饮食方式

饮食一直被认为是塑造肠道相关微生物群结构和功能的关键因素

地中海饮食

医学文献中经常引用的地中海饮食包括高水平的多不饱和脂肪酸、膳食纤维、多酚和少量红肉

在其对人类健康的益处中,地中海饮食提供了更丰富的益生菌、更大的生物多样性、增加的短链脂肪酸减少的TMAO。坚持地中海饮食与心力衰竭发病率下降相关,最高可达74%

此外,地中海饮食的高依从性似乎与心力衰竭呈负相关,并改善了HFpEF患者的长期预后,因为这是10年随访的结果。地中海饮食可能具有抗炎作用,因为有益作用与CRP水平相关。

扩展阅读:深度解析 | 炎症,肠道菌群以及抗炎饮食

得舒饮食(DASH饮食)

控制高血压的饮食方法(DASH饮食)饮食计划代表了一种摄入多不饱和脂肪、富含全谷物营养、蔬菜、水果和低脂乳制品的饮食,在降低心力衰竭发病率方面具有重要潜力。

饱和脂肪和胆固醇会导致其他心血管问题,请避免使用黄油、起酥油和人造黄油,避免奶酪、熏肉等,并食用有限量的橄榄油、亚麻籽油、山茶油等

高纤维饮食

最近,在高血压诱导的心力衰竭实验模型中,高纤维饮食被证明可以改善肠道微生态失调(厚壁菌和拟杆菌的比例)、降低血压、改善心脏功能和使心脏肥大正常化。此外,纤维的发酵会增加短链脂肪酸的产量,对人类健康具有有益作用。

避免高钠饮食

通常建议心力衰竭患者限制饮食中的钠含量。美国心脏协会建议个人将钠摄入量限制在每天 2300 毫克以下

  • 可以阅读包装上的营养标签,并选择钠含量低的食物;
  • 自己准备饭菜,可以控制在烹饪食物时使用的钠量;
  • 如果觉得淡而无味,可以尝试使用天然香料、柠檬、酸橙汁、苹果醋或香草混合物来为食物增添更多风味。

管理液体量

心脏无法将血液泵送到身体其他部位时,体液就会积聚,喝太多液体可能会导致肿胀、体重增加和呼吸急促。

因此要控制饮水量,其他液体也要限制一定的量,比如说咖啡、果汁、牛奶、茶、苏打水等,还有酸奶、布丁、冰淇淋、果汁,少喝汤。

总体而言,饮食中尽可能将各种新鲜水果和蔬菜比例调大适量食用全谷物、去皮家禽、鱼、坚果和豆类以及非热带植物油。

尽量少吃饱和脂肪、反式脂肪、胆固醇、钠、红肉、糖果、油腻甜点、含糖饮料等。

特定食物

山楂

山楂有助于将心率和血压水平提高到正常水平。它还含有抗氧化剂,可以保护心脏免受自由基的侵害,山楂是心脏营养的绝佳来源,因为它含有生物类黄酮、单宁、维生素A、B族维生素、维生素C,以及铁、钙和钾等必需矿物质。

大蒜

大蒜可以降低心脏病的风险因素,包括高血压和胆固醇。它还降低了冠心病(CAD)心力衰竭患者的心率和心脏收缩力(心脏泵血的强度),冠心病是心力衰竭最常见的原因。

银杏叶

与安慰剂相比,银杏叶通过增加摄氧量、产生能量以及改善局部左心室功能,对心力衰竭有帮助。它还可以预防肾损伤。

人参

人参长期以来一直被用于中医治疗心脏病和心血管疾病。可以帮助降低血压,并降低因压力而导致的体内皮质醇水平。人参可以通过改善动脉和静脉的血液流动、增加心肌的氧合和防止动脉硬化来改善心脏功能

生姜

生姜含有有益心脏健康的营养物质,如抗氧化剂和抗炎剂。它可以通过预防心脏病发作或心肌损伤、降低胆固醇水平和调节血压来帮助治疗心力衰竭。

水飞蓟补充剂

水飞蓟补充剂已被用于心力衰竭患者,水飞蓟含有一组黄酮类抗氧化剂水飞蓟素,可减少心力衰竭时的氧化应激。

辣椒

辣椒能增加血液循环,这意味着心力衰竭患者可以从中受益匪浅。此外,辣椒中含有辣椒素,辣椒素可以使心脏动脉放松和扩张,从而减少心脏病发作。它还可以防止血栓形成或扩大


益生菌

大多数关于益生菌治疗心力衰竭疗效的研究都是在动物模型中进行的。

大鼠模型中:益生菌促进产短链脂肪酸

口服植物乳杆菌299v鼠李糖乳杆菌GR-1可产生有益的心脏作用。补充乳杆菌属似乎可以促进产短链脂肪酸菌,如真细菌、罗氏菌属(Roseburia)和瘤胃球菌,以促进膳食纤维发酵的副产物短链脂肪酸,在维持健康的心血管活动中发挥关键作用。

临床改善:益生菌改善心脏收缩功能

在一项针对心力衰竭患者(NYHA II级或III级,LVEF<50%)的小型双盲、安慰剂对照试点研究中,随机接受益生菌治疗,接受布拉酵母菌Saccharomyces boulardii)(每天1000mg,持续3个月)或安慰剂。与安慰剂组相比,接受益生菌治疗的心力衰竭患者总胆固醇水平和尿酸水平降低心脏收缩功能改善

在人类中,一项初步研究报告称,在慢性心力衰竭患者中使用益生菌布拉酵母菌进行干预后,不仅减少了全身炎症,而且改善了左心室射血分数。不过参与者人数较少(n = 20),应谨慎解释结果。

扩展阅读:如果你要补充益生菌 ——益生菌补充、个体化、定植指南


益生元

最近的一项研究报告称,益生元低聚果糖减少大鼠炎症细胞的浸润。益生元可以促进有益细菌的发生长,包括双歧杆菌和乳杆菌减轻体重和炎症改善葡萄糖和胰岛素耐受,所有这些都与更好的心力衰竭结果有关。

关于肠道微生物群对有害代谢产物产生的调节,临床前研究报告了DMB给药饮食中TMAO的去除,胆碱TMA裂解酶抑制剂碘甲基胆碱的给药在降低血清TMAO水平、改善心脏重塑和减少促炎细胞因子表达方面的有益作用。

白藜芦醇还可以通过重建肠道菌群来刺激肠道中有益细菌的生长,从而减少TMAO的产生

扩展阅读:如何调节肠道菌群?常见天然物质、益生菌、益生元的介绍


抗生素

与抗生素在心力衰竭患者肠道微生物群调节中的应用有关,研究结果存在争议

万古霉素

在动物模型中,与未经治疗的大鼠相比,口服万古霉素可诱导较小的左心室梗死面积,并改善缺血/再灌注实验后的心功能恢复

利福昔明

利福昔明除了具有杀菌和抑菌作用外,还具有减少细菌移位和毒性的能力,具有抗炎作用,可以积极调节肠道微生物群的组成,促进乳酸杆菌双歧杆菌的生长。至于人体临床试验,结果是矛盾的。

妥布霉素和多粘菌素B

在心力衰竭患者中使用妥布[拉]霉素多粘菌素B的混合物,使肠道革兰氏阴性杆菌水平正常化显著降低促炎细胞因子,血流介导的舒张改善:内皮功能障碍的证据。然而,结果仅限于给药治疗期间

此外,在开具抗生素治疗处方时,必须考虑副作用,如多粘菌素B毒性大环内酯类药物增加心肌梗死风险。

最近一项评估共生给药对慢性心衰患者左心室肥大的影响及其对血压和hsCRP作为炎症生物标志物的影响的研究报告称,与安慰剂组相比,共生给药10周后,作为左心室肥大标志物的NT-proBNP水平显著下降。hsCRP水平或血压值没有显著差异。


粪菌移植(FMT)

最近的一项研究报告称,在饮食诱导的HFpEF前啮齿动物模型中,FMT和三丁酸治疗改善了早期心脏功能障碍,并增加了支链氨基酸的分解代谢。

在人类受试者中,FMT使患有代谢综合征的肥胖个体的胰岛素敏感性正常化,但其影响是短期的。目前,还没有可用的临床研究来评估心力衰竭患者的FMT结果,但FMT具有巨大的治疗潜力,并代表了未来研究的一个有希望的方向。


生活方式

戒烟

烟草烟雾中的尼古丁会暂时增加心率和血压,吸烟还会导致血管结块或粘稠。戒烟的人更有可能改善心力衰竭症状。

适当运动,维持体重稳定

体重突然增加或减少可能是正在发展为心力衰竭的迹象。适当运动,维持体重,高强度间歇训练 (HIIT)、低强度有氧运动阻力训练等运动训练方法均能有效改善心肌功能。研究表明,高强度间歇训练在提高患者的活动水平和心脏性能方面最为有效

注意:具体合适的运动量请根据个人情况咨询医生。

限制饮酒

如果需要饮酒,请适度。男性每天不要超过一到两杯女性每天不超过一杯

管理压力


每天花 15 到 20 分钟静静地坐着,深呼吸,想象一个宁静的场景,或者尝试瑜伽或冥想等方式。

涉及深横膈膜呼吸的呼吸练习,可以帮助心力衰竭患者缓解焦虑、增加血液中的氧气水平和降低压力水平,从而改善心脏功能。

充分休息

为了改善晚上的睡眠,请使用枕头支撑头部避免睡前小睡和大餐。试着在午饭后打个盹,或者每隔几个小时把脚抬起来几分钟。

选择合适的衣服

避免穿紧身袜或袜子,例如大腿或膝盖高的袜子,它们会减慢腿部的血液流动并导致血栓。也尽可能避免极端温度。分层穿着,以便根据需要添加或脱掉衣服。

08
结 语

肠道相关微生物群的组成和功能及其在人类健康中的病理生理作用一直是活跃的研究领域。现代技术的不断进步进一步推动了心力衰竭研究的前沿,探索了心力衰竭的新方面。

本文总结了有关肠道菌群及其代谢产物对心力衰竭及其相关风险因素的影响。心力衰竭与肠道微生态失调、细菌多样性低、肠道潜在致病菌过度生长和产短链脂肪酸菌减少有关。肠道通透性增加,允许微生物移位和细菌衍生的代谢产物进入血液,这与心力衰竭的进展有关。

靶向被破坏的肠道微生物群可以被认为是一个有效的治疗目标。有许多方法可以用来调节失调的肠道微生物群,如饮食干预(包括益生元、益生菌)、生活方式调整、补充剂、粪菌移植等。

然而这些方式带来的效果可能各不相同,因为这在很大程度上取决于每个个体的肠道菌群特征,也包括遗传背景、肠道屏障功能等。因此,通过肠道菌群健康检测,以及基于菌群特征开发个性化的微生物组疗法,或为心力衰竭临床治疗带来新的途径。

注:本账号内容仅作交流参考,不作为诊断及医疗依据。

主要参考文献:

Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol. 2019 Mar;16(3):137-154. doi: 10.1038/s41569-018-0108-7. PMID: 30410105; PMCID: PMC6377322.

Lu X, Liu J, Zhou B, Wang S, Liu Z, Mei F, Luo J, Cui Y. Microbial metabolites and heart failure: Friends or enemies? Front Microbiol. 2022 Aug 15;13:956516. doi: 10.3389/fmicb.2022.956516. PMID: 36046023; PMCID: PMC9420987.

Desai D, Desai A, Jamil A, Csendes D, Gutlapalli SD, Prakash K, Swarnakari KM, Bai M, Manoharan MP, Raja R, Khan S. Re-defining the Gut Heart Axis: A Systematic Review of the Literature on the Role of Gut Microbial Dysbiosis in Patients With Heart Failure. Cureus. 2023 Feb 12;15(2):e34902. doi: 10.7759/cureus.34902. PMID: 36938237; PMCID: PMC10014482.

Malik A, Brito D, Vaqar S, Chhabra L. Congestive Heart Failure. 2022 Nov 7. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 28613623.

Lupu, V.V.; Adam Raileanu, A.; Mihai, C.M.; Morariu, I.D.; Lupu, A.; Starcea, I.M.; Frasinariu, O.E.; Mocanu, A.; Dragan, F.; Fotea, S. The Implication of the Gut Microbiome in Heart Failure. Cells 2023, 12, 1158.

Gallo A, Macerola N, Favuzzi AM, Nicolazzi MA, Gasbarrini A, Montalto M. The Gut in Heart Failure: Current Knowledge and Novel Frontiers. Med Princ Pract. 2022;31(3):203-214. doi: 10.1159/000522284. Epub 2022 Jan 28. PMID: 35093952; PMCID: PMC9275003.

Branchereau M, Burcelin R, Heymes C. The gut microbiome and heart failure: A better gut for a better heart. Rev Endocr Metab Disord. 2019 Dec;20(4):407-414. doi: 10.1007/s11154-019-09519-7. PMID: 31705258.

Chen X, Li HY, Hu XM, Zhang Y, Zhang SY. Current understanding of gut microbiota alterations and related therapeutic intervention strategies in heart failure. Chin Med J (Engl). 2019 Aug 5;132(15):1843-1855. doi: 10.1097/CM9.0000000000000330. PMID: 31306229; PMCID: PMC6759126.

Trøseid M, Andersen GØ, Broch K, Hov JR. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine. 2020 Feb;52:102649. doi: 10.1016/j.ebiom.2020.102649. Epub 2020 Feb 12. PMID: 32062353; PMCID: PMC7016372.

肠道微生物群影响眼部健康

谷禾健康

人类肠道微生物组是一个多样化的生态系统,我们已经知道,它在多个器官系统健康中发挥着重要作用,肠道微生态失调可能导致各种常见疾病,如糖尿病、神经精神疾病、癌症等。

新的研究表明,肠道微生物组的改变与眼部疾病相关。

  • 两项研究发现,在抗生素和无菌模型中,实验性自身免疫性葡萄膜炎评分降低,这表明肠道微生物群促进葡萄膜炎模型的发病。
  • 研究年龄相关黄斑变性(AMD)的小鼠模型,发现AMD表型与梭菌门增加和拟杆菌门减少有关。
  • 糖尿病视网膜病变的小鼠模型也显示,与对照小鼠相比,肠道微生物组成发生了变化。

基于小鼠实验,已经开始对人类微生物组及其与眼部病理学的关系进行临床研究。

葡萄膜炎、年龄相关性黄斑变性、青光眼、干眼综合征和霰粒肿等病理学正在探索中,对微生物组的深入研究可能扩展这些疾病的治疗方案。

本文总结目前检查肠-眼轴的临床研究,尤其是改变微生物组来缓解眼部疾病的潜在治疗方法。

01
为什么眼部健康可能与肠道相关?

研究发现,10% 的炎症性肠病患者会出现眼部疾病(巩膜外层炎、葡萄膜炎、结膜炎等)。和与之相对较远的眼睛之间有什么关联?我们从以下几个方面来看:

▼ 

免疫系统

视网膜是眼睛后部的一层,里面装满了神经细胞,可以捕获图像并将其发送到大脑。

在所有的眼组织中,从免疫的角度来看,视网膜被认为是一种特权组织。它有三层保护(内部的血液-视网膜屏障;外层血视网膜屏障;以及血水屏障),以及通过“抵抗”和“容忍”策略,来保护它免受来自内部和外部环境的伤害。

这些血液视网膜屏障的变化可能通过募集炎症细胞和随后的眼内炎症导致视网膜疾病的发展,例如葡萄膜炎。

此外,它还受到自身防御系统的保护,如小胶质细胞和补体系统,以维持视网膜稳态。

视网膜由于更新和修复能力差而非常脆弱,因此即使是轻微的损伤也会产生毁灭性的后果。

年龄相关性黄斑变性是一种全身免疫性疾病,局部表现为眼部免疫环境下调所致。免疫反应改变的迹象表现为先在视网膜色素上皮中逐渐积累,后在玻璃膜疣中逐渐积累的沉积物,构成有利于免疫系统显著激活的抗原刺激。

在衰老过程中,所有防御系统的效率都会降低,与年龄相关的形态功能和免疫变化伴随着慢性低水平炎症。“炎症”过程也会导致与年龄相关的视网膜疾病。

肠道通透性

眼睛的物理变化被认为是由于肠道内壁的炎症肠道通透性增加有关。肠道通透性/肠漏综合征的变化允许细菌、毒素或免疫化合物穿过粘膜肠道屏障并传播到不同位置,包括眼睛表面。这些化合物直接影响眼睛可能通过分子模拟引发眼睛的免疫反应。分子模拟是一种可能引发自身免疫性炎症的机制,因为保护屏障受损以及细菌或毒素的长期存在。

扩展阅读:

什么是肠漏综合征,它如何影响健康?

肠道微生物群及其代谢产物

在许多层面上,肠道微生物群免疫化合物与眼睛的视网膜相互作用。不健康、失调的肠道微生物群和活化的免疫细胞会在眼睛中引发炎症,并影响视网膜、眼睛微生物组和眼睛润滑,从而导致眼部相关疾病。

肠道微生物组及其代谢物,尤其是短链脂肪酸,都可以通过直接或间接修改不同细胞类型的表观基因组来调节免疫细胞的关键功能。

损害眼睛的危及视力的免疫反应眼内炎症性疾病的典型特征。葡萄膜炎、年龄相关性黄斑变性、与干眼症相关的干燥综合征、糖尿病视网膜病变、青光眼和感染性角膜炎与肠道微生物组异常有关

doi.org/10.1016/j.preteyeres.2022.101117

接下来,我们来看一下具体哪些肠道菌群与眼部相关疾病有关。

02
与眼部疾病状态相关的菌群变化

▼ 

糖尿病视网膜病变

在糖尿病视网膜病变中,与健康对照组相比,主要的分类门,包括拟杆菌门、放线菌门、粪杆菌门和梭菌门被耗尽。

在两项评估糖尿病视网膜病变队列中微生物组多样性的研究中,发现多样性下降,这与临床前小鼠模型一致。

色素性视网膜炎

与对照小鼠相比,Bacteroides caecimuris在患病小鼠中显着增高。受影响的小鼠缺少健康肠道微生物组典型的菌群,如Rikenella,Muribaculaceae, Prevotellaceae UCG-001, Bacilli 等。

肠道微生物组变化与眼部疾病之间的联系可以通过多种机制来解释。肠道生态失调可以有利于增加肠道通透性,允许微生物及其代谢物诱导眼细胞炎症。微生物失衡也可能是血液视网膜屏障破裂和中枢神经系统氧化应激增加的原因。所有这些假设也可以解释视网膜色素变性小鼠模型中的神经炎症,氧化应激和细胞死亡。

年龄相关性黄斑变性

年龄相关性黄斑变性( ARMD )是一种多因素疾病,由遗传和环境因素的复杂组合引起。

与改变的肠道微生物群相关的肠道通透性增加,允许肠道代谢物和产物的更高易位,可能调节视网膜特异性免疫细胞。有趣的是,LPS 引起的慢性炎症加速营养不良 P23H 大鼠的神经变性,导致营养不良视网膜的形态和生理紊乱恶化

宏基因组测序评估了 ARMD 患者和对照组,研究人员发现 ARMD 患者中以下菌群含量较高 :

  • Anaerotruncus
  • Oscillibacter
  • Ruminococcus torques
  • Eubacterium ventriosum

而以下菌群在对照组中含量较高:

  • Bacteroides eggerthii

研究人员推测可能与谷氨酸降解精氨酸生物合成途径增加有关。谷氨酸是一种众所周知的视网膜兴奋性神经递质,因此其减少可能导致视网膜神经传递不足

关于谷氨酸代谢详见:兴奋神经递质——谷氨酸与大脑健康

此外,患者也缺乏负责脂肪酸延伸途径的细菌。在这方面,长链多不饱和脂肪酸可能对视网膜生理学产生关键影响,并可能促进ARMD发展。

相比之下,对照组中Bacteroides eggerthii 的丰度可能对该疾病具有保护作用,因为它能够产生短链脂肪酸。这些代谢产物可能通过改变淋巴细胞从肠道向眼睛的迁移来调节眼内炎症

新生血管性年龄相关性黄斑变性

一项针对12名新生血管性年龄相关性黄斑变性(nAMD)患者的试验发现,与对照组相比,nAMD患者存在“微生态失调”。值得注意的是,研究人员发现了Anaerotruncus增加,这也与小鼠模型中炎症信号的增加有关,这表明肠道微生物变化和nAMD进展相关的可能作用机制。

青光眼

在青光眼患者中,研究人员发现肠易激综合征是一种与微生物群失调相关的疾病,会显著增加患青光眼的几率(OR=5.84)。

除了发现青光眼患者与对照组的细菌谱存在差异外,还注意到视觉效果巨单胞菌Blautia的丰度呈负相关

扩展阅读:

肠道核心菌属——巨单胞菌属(Megamonas),不同人群差异大

肠道核心菌属——经黏液真杆菌属(Blautia),炎症肥胖相关的潜力菌

特发性颅内高压

一项视网膜研究了一组特发性颅内高压患者,再次发现与对照组相比微生物群存在差异

有趣的是,使用乙酰唑胺治疗的患者发现乳酸杆菌增加,这被认为对肠道微生物健康有益。

总的来说,在眼部病理中,菌群可能发生改变或破坏,见下表:

Russell MW, et al., Eye (Lond). 2023

03
影响眼部健康的肠道微生物群及其代谢产物

肠道微生物组可以调节炎症信号的变化。因此,如果肠道组织受到影响,导致全身促炎状态,那么眼部后果可能是继发于或平行于肠道炎症轴的,或者可能在主要过程中有所不同。

真菌也可能参与角膜炎等眼部疾病

葡萄膜炎的情况下检查了肠道失调,发现各种抗炎微生物群减少。但也有研究人员注意到葡萄膜炎的肠道失调,病例和对照组之间的没有显著差异,研究人员认为细菌可能与这种病理状态无关。

进一步探讨这种可能性,有研究人员发现,与对照患者相比,致病性念珠菌属和曲霉菌属增加了。另一项研究发现与对照患者相比,角膜炎患者的肠道失调,这两项研究都发现了标记的细菌群落变化。这些研究也检测了真菌的变化,注意到致病性曲霉、念珠菌和马拉色菌增加的趋势,这些真菌已被证明表现出抗真菌耐药性并参与其他疾病过程。

两项试验检测了白塞病葡萄膜炎患者的微生物群差异,发现病例和对照组之间存在显著差异。白塞病患者的微生物群多样性也显著降低。上述数据表明肠道健康和眼部病理之间可能存在联系。

然而,目前尚不清楚真菌和细菌是否直接介导眼部病理,是否与免疫系统有关,或者是否有其他未发现的途径在起作用。

扩展阅读:膳食真菌在癌症免疫治疗中的作用: 从肠道微生物群的角度

菌群代谢产物TMAO可能也在眼病中发挥作用

研究人员发现,视网膜动脉阻塞(RAO)患者与健康对照相比,不同分类属的细菌有所增加。这项研究还发现RAO患者的三甲胺-N-氧化物(TMAO)显著增加,TMAO是一种微生物群衍生的代谢产物,已被发现是心血管不良事件、死亡率和血栓形成的独立风险因素

在这项研究中,TMAO和阿克曼菌Akkermansia丰度呈正相关,表明微生物群和RAO之间存在潜在的机制联系。然而,必须注意的是,在其他研究中,Akkermansia被发现与TMAO浓度呈负相关,这表明TMAO可能不是病因,或者,TMAO本身可以在眼部病理学中发挥中介或主要作用。如上所述,这项研究并不是为了证明一种联系,也不是为了简单地假设一种联系的存在。

肠道微生态失调的眼部临床研究

Russell MW, et al., Eye (Lond). 2023

04
基于微生物群改善眼部疾病的方法(临床研究)

有四项临床研究(≤23名患者)通过粪菌移植(FMT)或益生菌补充靶向肠道微生物群,来治疗眼部疾病。

粪菌移植

Watane等人于2021年对10例干燥综合征并发干眼症的患者进行了粪菌移植。粪菌移植后三个月,没有副作用报告,患者自我报告的干眼症症状一半的队列中减轻了

益生菌补充剂

Filippelli等人于2021和2022年对10名成人和13名儿童患者的益生菌补充剂及其治疗霰粒肿的疗效进行了研究。在这两项研究中,均使用了含有嗜热链球菌、乳酸乳球菌德氏乳杆菌的益生菌。所有接受益生菌制剂治疗的成年患者霰粒肿消退时间显著缩短,而这种影响对于只有小于2.0mm的小霰粒肿的儿童来说也是如此。

Napolitano等人于2021报道了一例有三年前葡萄膜炎病史的患者的病例。患者服用了含有乳酸双歧杆菌、两歧双歧杆菌和短双歧杆菌的益生菌补充剂。两个月后,该患者的视觉功能增加,葡萄膜炎的临床症状减少。益生菌配方并不包括患者微生物组中不存在的物种。

扩展阅读:如果你要补充益生菌 ——益生菌补充、个体化、定植指南

除了以上的临床研究外,其他可能的干预措施:

高纤维饮食

高纤维饮食会促进某些细菌在肠道中占据优势地位,这些细菌会产生短链脂肪酸促进调节性 T 细胞分化,并降低发生眼部炎症的倾向。一些实验正在直接使用短链脂肪酸来测试它作为肠外自身免疫性疾病的治疗干预,已有研究人员发现,在小鼠身上,它对自身免疫性葡萄膜炎有保护作用。

避免高血糖饮食

一项涉及衰老小鼠的研究中,高血糖饮食导致光感受器退化和视网膜色素上皮细胞萎缩,这在喂食正常饮食的小鼠中是看不到的。恢复到低血糖饮食可以逆转疾病的特征,并改变肠道中 AMD 保护因子(包括血清素)的水平。

避免高脂饮食

高脂饮食会导致肠道渗透性增加,从而使细菌产物如脂多糖和其他病原体相关分子模式的分子易位增加,它们通过先天免疫系统的模式识别受体 ( 特别是Toll样受体和Nod样受体)影响促炎信号转导,引起低度全身性炎症,加剧脉络膜新生血管形成,最终加重病理性血管生成。

在一项研究中,在4周龄的C57BL/6小鼠中研究了高脂肪饮食对泪腺功能的影响。结果显示,高脂饮食的小鼠表现出病理变化,包括眼泪分泌水平降低、炎症性CD4+T细胞增加 ,细胞浸润、TNF-α和IL-1β等促炎因子增加以及腺泡和肌上皮细胞凋亡增加。将标准饮食引入之前高脂肪饮食的小鼠后,泪腺的病理变化部分逆转,包括炎症细胞和促炎因子的减少以及抗炎胞质分裂素的上调。

间歇性禁食

在啮齿动物模型中,在开始隔日禁食方案后的 1 周内,间歇性禁食已被证明可以降低血压和心率,这两者都是 糖尿病性视网膜病变等眼部血管疾病的已知危险因素。

另一项早期限时喂养(从早上 8 点到下午 2 点随意喂养,剩下的 18 小时禁食)被证明可以降低餐后胰岛素、血压、氧化应激和夜间食欲同时增加人类受试者的胰岛素敏感性和 β 细胞功能。这项研究和其他研究进一步支持间歇性禁食的有益作用,并表明它可能通过降低血压胰岛素敏感性治疗眼部血管疾病

连续 7 个月的隔日禁食,增加了产生肠粘液的杯状细胞的数量,并降低了血浆 PGN 的浓度,表明肠血管屏障完整性得到改善。

  • 间歇性禁食显示通过增加 F/B 比来改善肠道微生物群。
  • 间歇性禁食通过增加有益次级代谢物(例如牛磺熊去氧胆酸盐 TUDCA)的产生来改变胆汁酸代谢。
  • 间歇性禁食通过减少小鼠中视网膜脱细胞毛细血管的数量来改善糖尿病性视网膜病变病理学。

扩展阅读:间歇性禁食 & 肠道菌群 & 心血管代谢疾病

补充剂——锌

动物研究表明,锌通过减少氧化应激来改善视网膜的抗氧化过程。特别是,肠道菌群竞争锌的供应,锌对共生代谢途径细菌毒力因子都很有用。然而,锌缺乏及其过量的存在都会改变微生物组的组成。

扩展阅读:膳食锌缺乏或过量对人体肠道菌群及健康的影响

类胡萝卜素、叶黄素

膳食补充类胡萝卜素和锌可以预防或延缓眼部疾病的进展,可能是通过它们的抗氧化抗炎特性。叶黄素玉米黄质两种叶黄素,它们天然集中在人眼的黄斑中。它们充当蓝光的光学滤光片,并作为常驻抗氧化剂和自由基清除剂,以减少氧化应激引起的损伤

由于人类无法合成类胡萝卜素,因此供应取决于含类胡萝卜素的食物,例如绿叶蔬菜、西兰花、豌豆、玉米和蛋黄

omega-3 长链多不饱和脂肪酸 (LCPUFA)

大量摄入 omega-3 长链多不饱和脂肪酸 (LCPUFA) 与年龄相关黄斑变性风险降低有关。而大量摄入 omega-6 LCPUFA 与风险增加有关。LCPUFAs高度集中在眼睛中,对视网膜的视觉功能至关重要。此外,它们是对氧化应激的促炎和抗炎免疫反应的重要调节剂。ω-3和ω-6 LCPUF之间的比例似乎对预防慢性低度炎症很重要。可以通过某些富含脂肪的鱼,亚麻籽和藻类等补充。

膳食多酚

膳食多酚可减少氧化应激,在视网膜色素上皮细胞中具有抗炎作用,并与各种白细胞介素和信号通路的调节有关。在丁香、浆果、红酒或绿茶中富含。

扩展阅读:肠道微生物群与膳食多酚互作对人体健康的影响

其他对眼部健康至关重要的营养物质包括:

维生素 A、番茄红素、硫辛酸、维生素 C、姜黄素、白藜芦醇、槲皮素、葡萄籽提取物、绿茶提取物等。

05
微生物群与眼部疾病研究方向和挑战

微生物组的复杂性对研究微生物变化有挑战,因为微生态失调可能归因于多种菌群的同时过度生长损失。目前的文献并没有直接分析出因果关系。

除了目前的试验涉及的非特异性干预之外,其他干预措施也可能有效果。一项对36名患者进行的17周的随机前瞻性研究表明,通过逐步引入发酵食品等相对不那么激烈的措施,可以对免疫功能产生类似的影响

关于发酵食品详见:肠道微生物群与健康:探究发酵食品、饮食方式、益生菌和后生元的影响

也有研究人员认为,应该谨慎采用通过改变微生物组来改善系统健康的干预措施。30名患者使用益生菌增加微生物多样性,然而却因这种补充而患上了小肠细菌过度生长和D-乳酸酸中毒。开始抗生素治疗后,患者症状减轻(P=0.005)。

由于许多原因,选择与疾病相关的正确益生菌并不容易。同一属和种的不同菌株可能对宿主产生完全不同的影响。应充分了解特定细菌菌株的特定特性和特征以及对宿主健康的影响。

因此,需要更大规模前瞻性临床试验研究益生菌补充剂对各种眼部疾病的影响,对于进一步阐明这些干预措施的疗效至关重要。有必要研究在剂量和配方方面选择更合适的益生菌方案。

为了建立肠道菌群与眼部病变缓解之间的因果治疗关系,未来的研究可能考虑微生物组-免疫-眼部效应纯粹的微生物组-眼部效应分离开来

结 语

临床试验检查了肠道微生物群和眼部病理之间的联系,显示了这两个系统之间的联系。

通过饮食、益生元和益生菌以及粪菌移植等方式调节肠道微生物群,可能都会成为预防和/或治疗眼部疾病的有效方案。

充分结合肠道菌群检测全面评估患者的菌群健康状况,可以考虑采用更有针对性的干预措施,而不仅仅是粪菌移植和益生菌补充剂。

大规模的随机对照临床试验可能会进一步证明这种联系,并阐明新的靶点治疗机制。

主要参考文献:

Zysset-Burri DC, Morandi S, Herzog EL, Berger LE, Zinkernagel MS. The role of the gut microbiome in eye diseases. Prog Retin Eye Res. 2023 Jan;92:101117. doi: 10.1016/j.preteyeres.2022.101117. Epub 2022 Sep 6. PMID: 36075807.

Napolitano P, Filippelli M, Davinelli S, Bartollino S, dell’Omo R, Costagliola C. Influence of gut microbiota on eye diseases: an overview. Ann Med. 2021 Dec;53(1):750-761. doi: 10.1080/07853890.2021.1925150. PMID: 34042554; PMCID: PMC8168766.

Russell MW, Muste JC, Kuo BL, Wu AK, Singh RP. Clinical trials targeting the gut-microbiome to effect ocular health: a systematic review. Eye (Lond). 2023 Mar 14. doi: 10.1038/s41433-023-02462-7. Epub ahead of print. PMID: 36918627.

Shivaji S. A systematic review of gut microbiome and ocular inflammatory diseases: Are they associated? Indian J Ophthalmol. 2021 Mar;69(3):535-542. doi: 10.4103/ijo.IJO_1362_20. PMID: 33595467; PMCID: PMC7942081.

Bai X, Xu Q, Zhang W, Wang C. The Gut-Eye Axis: Correlation Between the Gut Microbiota and Autoimmune Dry Eye in Individuals With Sjögren Syndrome. Eye Contact Lens. 2023 Jan 1;49(1):1-7. doi: 10.1097/ICL.0000000000000953. Epub 2022 Nov 11. PMID: 36544282.

Scuderi G, Troiani E, Minnella AM. Gut Microbiome in Retina Health: The Crucial Role of the Gut-Retina Axis. Front Microbiol. 2022 Jan 14;12:726792. doi: 10.3389/fmicb.2021.726792. PMID: 35095780; PMCID: PMC8795667.

炎症回路和肠道微生物

谷禾健康

✦ ✦ ✦

炎症:就是平时人们所说的“发炎”,是机体对于刺激的一种防御反应。炎症,可以是感染引起的感染性炎症,也可以不是由于感染引起的非感染性炎症

炎症在在各种症状中起重要作用,如脑雾、焦虑和抑郁、腹胀、各种身体疼痛低血糖水平。为了更好地理解这是如何工作的,需要了解身体的炎症回路

谷禾在本文中介绍了炎症的一些症状与原因,炎症回路如何影响人体的健康,并有研究发现肠道微生物在炎症回路中起重要作用,这有助于人们更好地认识炎症以及在炎症时做出正确的应对。

✦ ✦ ✦

01 炎症

本质上讲,炎症是身体对任何类型的压力做出反应的结果。这意味着这可能是由于身体或心理性质的压力。

举例来说,身体压力的一个例子可能是你跌倒摔断了腿,或者你患上了流感。另一方面,心理压力是你情绪的结果,如你在上班路上与路人发生激烈的争吵。

★ 炎症的症状

炎症是身体一系列变化的结果。这些是在分子和细胞水平上产生的信号,可以改变你的正常生理反应。炎症一般有四个症状

Dolor – pain (疼痛、悲伤)

引起炎症局部疼痛的因素与多种因素有关。局部炎症病灶内钾离子氢离子的积聚,尤其是炎症介质诸如前列腺素、5-羟色胺、缓激肽等的刺激是引起疼痛的主要原因。

炎症病灶内渗出物造成组织肿胀,张力增高,压迫神经末梢可引起疼痛,故疏松组织发炎时疼痛相对较轻,而牙髓和骨膜的炎症往往引起剧痛;此外,发炎的器官肿大,使富含感觉神经末梢的被膜张力增加,神经末梢受牵拉而引起疼痛。

Rubor – redness (发红)

由于炎症病灶内充血所致,炎症初期由于动脉性充血,局部氧合血红蛋白增多,故呈鲜红色。随着炎症的发展,血流缓慢、淤血和停滞,局部组织含还原血红蛋白增多,故呈暗红色。

Calor – heat (灼热、发热)

热是由于动脉性充血及代谢增强所致,白细胞产生的白细胞介素Ⅰ(IL-1)、肿瘤坏死因子(TNF)及前列腺素E(PGE)等均可引起发热。

Tumor (肿胀、肿瘤)

主要是由于渗出物,特别是炎性水肿所致。慢性炎症时,组织和细胞的增生也可引起局部肿胀。

发炎的具体过程

•身体对抗病原体产生炎症

当涉及到身体自我修复时,炎症是极其重要的,因为炎症过程允许身体对抗和摆脱任何造成伤害的东西。我们感觉到的症状——发红、肿胀、疼痛和发热——是这个过程的副作用

当我们的身体开始保护自己免受侵入我们身体的毒素和病原体或身体开始愈合时,炎症就开始了。

•炎症影响内分泌

在这个过程中,毛细血管扩张,而血管壁变得更加多孔。这允许白细胞穿过血管壁,从而到达因感染而造成损害的区域。


这些区域的肿胀和相关疼痛是由于液体积聚,进而对这些区域的神经施加压力,从而导致我们感到疼痛和不适

分子介质(即抗炎分子)也会引发疼痛,增加您的不适感。在炎症过程中感受到的热量是由于流向身体特定区域的血流量增加所致。

// 小结

一般来说,炎症回路会对您体内的任何情况做出反应,以保持自身健康并以最佳状态工作。这是一种自然的生物反应。然而,当炎症不受控制时,就会出现问题。如果您身体的自然炎症反应没有得到抑制和控制,可能是慢性炎症

•炎症具有防御作用

在炎症过程中,以血管系统为中心的一系列局部反应限制并消除损伤因子,同时也促进受损组织的愈合。液体的渗出可稀释毒素,吞噬搬运坏死组织以利于再生和修复,使致病因子局限在炎症部位而不蔓延全身。

因此,炎症是以防御为主的天然的局部反应,一般而论,是对机体有利的。可以设想,如果没有炎症反应,细菌感染就无法控制,损伤永远也不能愈合,对机体可以造成严重的危害。

•一些情况下炎症是有害的

但是在有些情况下,炎症又是潜在有害的。炎症反应是一些疾病的发病基础,如严重的超敏反应炎症过于剧烈时可以威胁病人的生命。

此外,特殊部位或器官所发生的炎症可造成严重后果,如脑或脑的炎症可压迫生命中枢,声带炎症阻塞喉部导致窒息,严重的心肌炎可以影响心脏功能,此时,应使用抗炎症药物抑制炎症反应。

02 炎症的类型与原因

如上所述,炎症身体或心理压力的结果。然而,由心理压力引起的炎症通常比由身体(生理)压力引发的炎症影响要小。炎症是对身体所经历的任何威胁的自动反应

急性炎症与慢性炎症

炎症通常可依病程经过分为两大类:急性炎症慢性炎症。急性炎症起病急骤,持续时间短,仅几天到一个月,以渗出病变为其特征,炎症细胞浸润以粒细胞为主。

慢性炎症持续时间较长,常数月到数年,常以增生病变为主,其炎症细胞浸润则以巨噬细胞和淋巴细胞为主。  

✦急性炎症较容易控制

健康人的急性炎症很容易控制。健康身体在感知到威胁时被激活,然后它与感染作斗争并开始修复任何损坏。然而,一旦威胁过去,身体也会恢复正常,让身体再次正常运作。肾上腺分泌的皮质醇激素控制炎症“关闭”过程

注:皮质醇也是身体的减压激素。

✦慢性炎症易反复发作,治疗较困难

虽然炎症的典型迹象很容易识别(发热、发红、疼痛和肿胀),但慢性炎症的迹象并不那么容易看到。其中包括腹胀、食物敏感、焦虑、抑郁、肠漏(肠易激)、头晕等等。

多数可以由急性炎症治疗不及时、不彻底,或治疗效果不佳,造成疾病逐渐发展导致,一般持续时间比较长,多数在6周以上,甚至长达数月或数年。并且慢性炎症的治疗比较困难,而且容易反复发作。

✦持续炎症具有负面影响

通常身体对急性炎症的反应相关的短期疼痛是具有长期益处的。然而,当涉及到低度、持续的炎症时,情况并非如此,这种炎症通常是对心理压力慢性感染的反应,就像莱姆病或EB病毒一样。

这种情况,身体会经历持续的压力状态,导致炎症回路超时工作,结果是一种不平衡的状态,使你的身体更容易感染不同的疾病,并对与衰老过程相关的影响产生负面影响。

莱姆病是一种以蜱为媒介的螺旋体感染性疾病,是由伯氏疏螺旋体所致的自然疫源性疾病。

EB病毒(Epstein-Barr virus,EBV)是疱疹病毒科嗜淋巴细胞病毒属的成员,基因组为DNA。EB病毒具有在体内外专一性地感染人类及某些灵长类B细胞的生物学特性。人是EB病毒感染的宿主,主要通过唾液传播。无症状感染多发生在幼儿,3~5岁幼儿90%以上曾感染EB病毒,90%以上的成人都有病毒抗体。

这种炎症虽然不明显,但在实际表现出来之前已经存在多年。这种炎症状态存在的时间长度不仅直接影响诊断疾病的严重程度,还直接影响预后。在许多情况下,你身体的炎症回路对某些疾病的反应是某些慢性疾病的原因。

注意

尽管炎症不舒服,但也是必要的,身体的设计方式既可以让我们既可以忍受它又可以控制它。研究表明,即使没有身体迹象慢性低水平压力也会在体内停留一段时间,并对生理和心理健康产生负面影响

局部炎症

✦许多疾病都伴有炎症

与特定慢性病相关的炎症是局部的。例如:心脏病患者的动脉有局部炎症,糖尿病患者的胰腺有炎症,阿尔茨海默氏症患者的大脑有炎症。

炎症也可能是环境或我们吃的食物中存在或身体代谢出来某些毒素的结果。在这种情况下,这些毒素会影响身体的不同部位,包括局部和全身。

★ 与炎症相关的疾病

有许多疾病和健康问题都包括炎症的一个方面。其中包括:纤维肌痛、狼疮、哮喘、中风、乳糜泻、自闭症、酸回流、对某些感染(病毒、细菌、真菌)的易感性、癌症关节炎、皮肤问题,以及糖尿病、慢性疼痛、支气管炎、骨质疏松症

炎症的原因

任何能够引起组织损伤的因素都可成为炎症的原因,即致炎因子。可归纳为以下几类:

生物性因子

细菌、病毒、立克次体、支原体、真菌、螺旋体和寄生虫等为炎症最常见的原因。由生物病原体引起的炎症又称感染

物理性因子

高温、低温、放射性物质及紫外线等和机械损伤

化学性因子

外源性化学物质如强酸、强碱及松节油、芥子气等。内源性毒性物质如坏死组织的分解产物及在某些病理条件下堆积于体内的代谢产物如尿素等。

坏死组织

缺血缺氧等原因引起的组织坏死是潜在的致炎因子。

免疫反应

免疫反应所造成的组织损伤最常见于各种类型的超敏反应:I型变态反应如过敏性鼻炎、荨麻疹,II型变态反应如抗基底膜性肾小球肾炎,III型变态反应如免疫复合物沉着所致的肾小球肾炎,IV型变态反应如结核、伤寒等;另外,还有许多自身免疫性疾病如淋巴细胞性甲状腺炎、溃疡性结肠炎等。

✦慢性炎症的原因

慢性炎症的原因相较于急性炎症有所不同,主要是炎症回路变得不平衡。其中包括:

•肠道菌群失调

•环境毒素

•生活方式和饮食不健康

•某些药物,例如导致肠道菌群失调的抗生素

✦慢性压力对炎症有重要影响

慢性压力,无论是心理上的还是生理上的,都会导致肾上腺皮质醇的过量产生,从而导致炎症

注:肾上腺疲劳通常被忽视为炎症回路不平衡的原因。

炎症调节

✦炎症回路会及时对压力做出反应

当身体受到任何类型的“压力”时,炎症回路是关键的反应器之一。当对压力做出反应时,炎症反应与其他身体系统和器官协同工作。最直接影响炎症回路的身体系统包括:免疫系统、肠道(胃肠道)以及微生物组

Medzhitov R.Science.2021

所有炎症反应都包括四个部分。这些信号包括触发反应的炎性刺激、检测它们的传感器、传感器产生的炎症信号以及炎症信号的各种目标。

•负反馈回路直接消除病原体

炎症信号有两种类型的靶点:第一种是效应靶点,它们直接参与了炎症病原体的消除。炎症信号诱导效应细胞的激活、招募和分化。炎症回路的这一部分以负反馈的方式运作。

•正反馈回路调节信号

第二种靶点是不直接参与病原体消除的组织和器官。根据问题是什么(调节、功能或结构的缺失),炎症信号会以与稳态信号相同的“方向”改变这些功能,或者对抗稳态信号

✦面对病原体激活炎性小体

2023 © Cell Signaling Technology

先天性免疫系统是防止病原微生物和宿主源性细胞窘迫信号的第一道防线。这些“危险”信号诱发炎症的一种方式是通过激活炎性体,炎性体是在暴露在病原体相关分子模式 (PAMP) 或危险相关分子模式 (DAMP) 下之后在胞质中组装的多蛋白复合体,并且会激活caspase-1以及后续裂解活化促炎性细胞因子白细胞介素1β和白细胞介素18。

炎性复合体

炎性复合体通常含有胞质模式识别受体(PRR;一种核苷酸结合结构域和亮氨酸富集重复序列 [NLR] 或 AIM2 样受体 [ALR] 家族成员)、接头蛋白 (ASC) 和 pro-caspase-1。

现已检测到许多不同的炎性体复合体,每个复合体有独特的PRR和激活触发物。特征最明显的是NLRP3复合体,它含有 NLRP3、ASC、pro-caspase-1和丝氨酸-苏氨酸激酶NEK7。NLRP3炎性体在2个步骤的过程中被激活。

激活过程

首先,PAMP或DAMP介导的TLR4或TNFR 激活会诱导 NF-kB 信号转导,导致NLRP3、pro-IL-1β和pro-IL-18表达升高(引导步骤,信号1)。

接下来,大量信号(全病原体、PAMP/DAMP、钾外流、溶酶体损坏的环境因子 [尿酸、硅和明矾]、内源性因子 [淀粉样蛋白 β、胆固醇结晶] 和线粒体损害)会间接激活NLRP3,导致复合体组装和 caspase-1激活(信号2)。

蛋白组分之间的结构域相互作用会形成复合体炎性体结构。其他炎性体通过更直接的方式被激活:双链DNA激活AIM2复合体,炭疽霉素激活NLRP1,细菌flagelllin激活NLRC4。激活的caspase-1会诱导促炎性细胞因子IL-1β和-18的分泌,而且调控代谢酶表达、吞噬体成熟、血管舒张和细胞焦亡(一种炎性程序性细胞死亡)。

炎性体信号转导会导致许多疾病的发作,包括动脉粥样硬化、II型糖尿病、阿尔茨海默病和自身免疫性疾病

✦抗炎信号调节炎症器官

Medzhitov R.Science.2021

消除病原体本身并不足以控制炎症,在没有负调节因子的情况下,炎症反应总是极端过渡到病理状态

控制炎症程度的抗炎信号(Anti-inflammatory signals)包括IL-10、TGF-β和糖皮质激素等。如何抑制由炎症反应引起的附带损伤也很重要,一种机制有可能是通过靶组织对炎症信号的反应性不同,使最容易受到炎症损伤的重要组织和器官对炎症信号的反应性较低

另一种可能机制是通过“反炎信号(counter-inflammatory signals)”将组织的炎症状态恢复到原来的“稳态”状态。控制靶组织的反应程度,将炎症反应成本降到最低

这些稳态信号很可能纠正机体偏离正常时的炎症状态,例如肾上腺素对支气管平滑肌的影响:组胺和白三烯在炎症反应中诱导支气管收缩,而肾上腺素通过诱导支气管松弛恢复到稳态来抵消这种作用。

目前发现的“反炎信号”(counter-inflammatory signals)有调节性T细胞(Tregs,不仅控制炎症的大小,而且还控制组织稳态)和参与分解的信号分子(脂质素和分解素)。

需要注意的是,抗炎和反炎作用可能由相同的信号来实现。例如,腺苷和TGF-β可能同时具有抗炎(即作用于传感器细胞和效应细胞)和反炎(即作用于所有其他靶组织)来调节炎症的模式。

不足之处

虽然现有的抗炎药物提供了一定的治疗效果,但它们增加了对感染的易感性。激活抗炎途径应该在不损害防御功能的同时,有助于恢复组织和器官的稳态

抗炎途径的研究未来将是新型治疗方法开发的重要方向,更多抗炎信号的研究可能有助产生炎症领域的有效新药。

03 肠道和炎症

✦大部分炎症性疾病始于胃肠道

大多数不同的炎症性疾病始于身体的肠道(或胃肠道)。从那里扩散到身体的不同部位。肠道内壁是可渗透的,这意味着它允许某些物质通过并进入血液。

•炎性物质可能会扩散到其他器官

然而,当这种渗透性增加时,不需要的物质也会通过,从而触发身体的免疫系统来对抗它。这可能不仅会导致炎症,还会导致过敏和疾病。在某些情况下,这些毒素会进入您的大脑,不仅会导致抑郁症,还会导致某些神经系统问题。

一旦问题成为系统性问题,换句话说,可能会影响整个系统,身体将不再能够正常消化,这使得你的身体很难获得身体所需的不同营养素维生素和矿物质以有效地工作,无论饮食多么健康。

✦炎症小体与肠道稳态相关

Rathinam VAK,et al.Trends Mol Med.2018

宿主和微生物来源的各种信号被不同的炎性体受体感知,导致ASC-CASPASE-1复合物的组装和 CASPASE-1的成熟。在酶促作用下,活性 CASPASE-1通过蛋白水解加工激活pro-IL-1β、pro-IL-18和gasdermin D (GSDMD)。GSDMD通过质膜穿孔执行裂解性细胞死亡,还促进IL-1β、IL-18和警报素释放。

•炎性体影响肠道上皮细胞

炎性体激活的所有这些结果都会在不同程度上影响肠上皮细胞和固有层免疫细胞的功能,从而以依赖于环境的方式协调肠道稳态

此外,细胞凋亡半胱天冬酶CASPASE-3可以裂解GSDME以响应化疗,从而引发癌细胞焦亡。然而,尚不清楚GSDME诱导的细胞焦亡是否参与肠道稳态。

一旦问题成为系统性问题,换句话说,可能会影响整个系统,身体将不再能够正常消化,这使得你的身体很难获得身体所需的不同营养素维生素和矿物质以有效地工作,无论饮食多么健康。

发炎与胃肠道症状

下面让我们来看看可能由发炎胃肠系统引起的一些症状。

食物敏感性和炎症回路

目前面临比较突出的问题越来越多的人正在增加对某些食物的敏感性,尤其是麸质。食物敏感性经常长时间未被诊断的原因是因为这些症状与其他肠道疾病和病症的症状非常相似。他们通常被误认为是另一种疾病。

为什么对麸质敏感的人数增加了这么多?

小麦经过各种加工使其变得更易溶于水,以便与其他成分混合。这意味着我们实际上消耗的小麦数量比我们的祖先曾经做过的要多得多

食用后,由于酶的作用,麸质会分解成麦醇溶蛋白和麦谷蛋白。一旦它们到达您的肠道相关淋巴组织 (GALT),系统就会对其进行评估,以确定它们是否对您的身体有害。

•酶的攻击使肠道受损

如果您碰巧对麸质敏感,GALT会通过抗体攻击蛋白质。在患有乳糜泻的人中,分解麸质的蛋白质和酶都会受到GALT产生的抗体的攻击。

这种酶的另一个功能是帮助吸收营养。这是通过将肠道的微绒毛保持在一起来实现的。微绒毛是在肠壁中发现的毛发状结构。对这种酶的任何攻击都会导致绒毛受损——进而对肠壁产生负面影响,使其更容易毒素渗透,并导致称为漏肠的状况。抗体还可能攻击你自身的器官和组织,例如皮肤和大脑,结果就是发生自身免疫性疾病。

然而,引起炎症的不仅仅是麸质其他来源是乳制品、含有亚油酸的油,例如花生油、向日葵油、红花油和玉米油,以及海鲜和特定调味品。

可以通过识别和消除敏感的食物来治愈肠道并平息您的炎症回路。慢性炎症与肾上腺疲劳综合征 (AFS) 和神经内代谢 (NEM) 应激反应密切相关。通过调整饮食,您可以帮助自己从肾上腺疲劳中恢复过来,同时降低患胃肠道疾病的风险。

便秘与炎症回路

什么是便秘?

便秘是一种排便不规律的情况,导致排便困难,过程伴随痛苦的。偶尔便秘被认为是正常的,经常便秘可能会导致肠道疾病,从而影响炎症回路

你可能会问“正常到什么程度才正常?” 它因人而异,但在大多数情况下,每天排便一次或两次在被认为是正常的范围内。超过三天没有排便会导致便秘,因为随着时间的推移大便会变干,使排便变得更加困难和痛苦

✦便秘会引起其他问题

便秘时上厕所不仅不舒服,而且用力也会引起一系列问题,例如痔疮或憩室病

✦便秘的原因

便秘的原因有很多。其中包括:纤维含量低的饮食、喝水过少、乳制品含量高的饮食、结肠癌、肠易激综合征、长时间不活动、结肠肌肉或神经问题引起的问题、压力、某些类型的药物、甲状腺功能减退和怀孕。

便秘通常是肾上腺疲劳后期出现的并发症,因为您的身体能量水平降低,难以排便以保存能量。你的消化速度减慢,导致废物留在结肠中。这会增加毒性并导致炎症

✦便秘的危害

如果不理会,随着肾上腺疲劳的加剧,随着时间的推移,情况可能会变得更糟。体内积聚的毒素压倒了炎症回路,可能导致炎症,进而导致肌肉骨骼系统的崩溃。这还包括内部器官的胶原蛋白结构。随着时间的推移,胃肠道会受到损害,从而导致便秘和消化问题恶化的循环效应。

•便秘容易加重一系列疾病

由于胃不能产生足够的酸来分解食物以吸收营养,这会耗尽细胞,结果是一个循环导致整个系统减速以节省能量。然而,它可能导致以体重大幅减轻为特征的分解代谢状态。

在大多数情况下,甲状腺会受到损害,会减慢速度以降低新陈代谢率以节省能量。这进一步加剧了疲劳并增加了便秘问题。由于废物堆积,毒素开始影响肝脏肾脏功能。

•改善肠道菌群有助于调节便秘

如果便秘严重或持续存在,则可能需要干预。这其中包括改善肠道菌群组成,帮助调节肠道运动,有助于改善便秘及相关症状。

腹泻和炎症回路

腹泻会导致脱水并失去电解质。如果持续存在,可能表明存在更严重的问题。

注:如果发现大便中有血或粘液,并且发烧、疼痛或体重减轻,您可能需要尽快咨询医生或就医,因为这些是潜在的、更深层次的问题的迹象。

✦腹泻的病因

腹泻有多种常见原因。这些包括细菌,吃你过敏或敏感的食物,或病毒。其他原因可能包括克罗恩氏病、肠易激综合征 (IBS)、糖尿病、某些癌症、甲状腺机能亢进和吸收不良等。

然而,在大多数情况下,腹泻与这些疾病中的任何一种都无关,而且问题通常可以通过药店买治疗腹泻的药就可以缓解。在大多数情况下,清淡的食物、充足的休息和保持水分会很有帮助。

注意

患有肾上腺疲劳综合症 (AFS) 的人通常更容易患便秘而不是腹泻。另一方面,肾上腺衰竭晚期的人往往会出现非常严重的腹泻。

肠易激综合征和炎症回路

肠道最重要的目的之一是防止毒素、微生物、未消化的食物和外来物质进入血液健康时,肠道黏膜细胞的连接很紧密,只允许身体所需的营养物质通过。当你的肠道渗漏时,这些连接处就不那么紧密了,毒素和其他颗粒会被允许通过。这些被免疫系统视为外来入侵者。然后你的炎症回路会攻击它们,导致炎症

✦症状

肠易激综合征 (IBS) 的症状包括:恶心、背疼、尿频、焦虑、疲劳、腹胀、肚子痛、便秘/腹泻、口臭、关节痛、头痛。

当实验室测试排除具有类似症状的其他情况时,通常通过排除过程来诊断肠易激综合征。它本质上是对胃肠道的刺激。

✦病因

许多因素会导致肠易激综合征,例如使用某些药物,抗生素,焦虑,抑郁,荷尔蒙失衡和各种其他因素。压力起着重要作用。

患有肠易激综合征的后期阶段新陈代谢减慢以节省能量。在这个过程中,肠道运动也会减慢。因此,食物以慢得多的速度穿过身体。结果通常是便秘,尽管有时也会出现腹泻。当然,这会增加肠道刺激恶化与肠易激综合征相关的症状。

建议

某些补充剂,如omega-3脂肪酸、谷氨酰胺、植物甾醇、槲皮素和益生菌益生元改善饮食等都可能有助于预防肠易激综合征的发生。某些类型的纤维甚至有助于帮助微生物组加强炎症回路

04 微生物组和炎症回路

微生物组(microbiome )可以描述为体内特定环境中所有不同微生物的所有遗传物质。这是炎症回路的第二部分。

注:不应将术语微生物群与仅指特定环境中的微生物(microbiota),即仅指胃肠道中的微生物这一术语混淆。

据估计,人体中大约90%的细胞都不是人类的。在大多数情况下,它们本质上是原核生物。原核生物是单细胞的,没有线粒体,细胞核没有膜。这些原核细胞是来自1,800多个不同属的 4 万多种不同菌株的结果。而肠道中拥有最丰富的微生物群。

微生物群与免疫系统和炎症回路

当我们年轻的时候,肠道的微生物组在我们免疫系统的形成中起着极其重要的作用。在免疫系统仍在发育的儿童早期尤其如此。

✦免疫系统影响炎症的产生

小时候,我们的身体免疫系统接触并习惯于抗原,并对它们产生耐受性。一旦达到稳态(平衡)状态,外来微生物和抗原将无法在体内引起炎症反应。

只有当我们的免疫系统较弱发育不全时,接触外来过敏原才会触发炎症回路中的反应,导致自身免疫性疾病、过敏以及对化学品和某些食物的敏感性问题。

一个很好的例子是老鼠一生都被关在无菌环境中。虽然他们很健康,但他们的免疫系统还没有完全发育。一旦接触到外来微生物,它们往往会发展为自身免疫性疾病和其他健康问题。

✦微生物群对健康有重要影响

研究表明,婴儿的第一个肠道微生物组对他们的健康有着深远的影响。

身体某些部位的不同微生物具有相同的功能。一个例子是,两个人的舌头上有不同的微生物,但在分解糖分时,他们的工作完全相同。就我们所吃的食物而言,微生物需要一个稳定的栖息地。反过来,当它们分解某些被肠道消化的成分时,我们会从释放的热能中受益。

这意味着我们的身体和我们的微生物宿主之间存在明确的、有益的相互作用,并且身体中的某些功能依赖于这些微生物才能保持健康。当由于某种原因,我们的微生物群落失衡时,我们就处于生态失调状态。

•肠道菌群影响炎症回路

Zhou B,et al.Front Immunol.2020

肠道菌和代谢物与肠道中的区域免疫系统相互作用。PRRs如NOD1、表达于肠粘膜上皮细胞的Toll样受体,识别肠道菌群的PAMPs和短链脂肪酸,从而激活炎症通路和炎症细胞因子的产生。

这会诱导骨髓细胞的分化、巨噬细胞和中性粒细胞的募集等,引发炎症反应,并激活局部免疫系统。这种相互作用还促进炎症因子的表达。

生态失调和炎症回路

炎症通常是生态失调的结果。它在许多健康问题中发挥作用,包括糖尿病、肥胖症哮喘、自闭症和心脏问题等。它还与某些与肠道有关的问题有关,例如克罗恩病。它也可能在大脑中发挥作用,被认为是肠易激综合征 (IBS) 的触发因素之一。这些情况都与肠道生态失调有关。

生态失调的一个常见原因是抗生素。它们会破坏保持系统平衡所需的“好”细菌。当“好”微生物组受到负面影响时,免疫系统也会受到负面影响

✦肠道菌群失调引起炎症

肠道菌群失调可能引起炎症,进而导致粘膜损伤。当不同黏膜细胞之间的连接受损时,免疫系统会做出相应的反应。

蛋白质、细菌和毒素很容易通过受损的肠壁进入血液,导致所谓的肠漏。与这种情况相关的症状包括:脑雾、抑郁、失眠和疲劳,以及许多其他症状。

健康的肠道细菌与多样化的微生物组相结合,可以形成健康的肠道来支持炎症回路。肠道健康的人通常更健康,感染或复发性疾病的可能性更低,因为他们的身体防御系统更强

微生物组和神经系统疾病

肠道菌群失调与许多神经系统疾病有关。其中包括自闭症谱系、多发性硬化症 (MS) 和帕金森氏症。帕金森病患者的最初症状通常是便秘,随后是嗅觉和味觉丧失。其他症状,如震颤和摇晃,仅在胃肠道紊乱出现后很久才会出现。

有许多环境因素会影响神经系统状况和炎症回路。其中之一是大脑中没有正确使用蛋白质,导致许多神经退行性疾病。这可能是肠道炎症触发大脑中某些炎症反应的结果,导致蛋白质使用不足大脑神经细胞退化

炎症和肠道失衡也可能与某些自身免疫性疾病有关。西方国家的人群有相似的饮食和相应的更高的多发性硬化症发病率。随后的饮食可能会导致炎症,从而破坏肠道中存在的微生物的正常功能。

•压力与饮食通过肠道进而影响炎症回路

帕金森氏症和多发性硬化症患者的肠壁通透性增加,导致针对多种抗原的抗体增加。有证据表明,持续的压力以及其他各种原因是炎症回路失的原因。

阿尔茨海默氏症和认知功能下降的特点是氧化应激、免疫问题和大脑本身的变化。实验表明,这些都是由于饮食及其对肠道生物群落的影响。神经营养因子是一种保护和促进健康神经元的蛋白质,它依赖于健康的肠道生物群落。阿尔茨海默病患者在这方面表现出明显下降

微生物组对精神疾病的影响

有证据表明肠道大脑健康之间存在很强的相关性。这意味着某些心理问题,例如抑郁症,可能是炎症的结果,肠道是最初的煽动者。对动物的研究表明,当某些微生物从抑郁的小鼠身上移植时,健康小鼠的心理会显著下降

•肠道微生物有助于神经与身体恢复

与肾上腺疲劳综合症相关的两个最常见的症状是焦虑和抑郁。因此,有证据表明,有问题的人必须确保健康的肠道微生物组。它不仅有助于恢复他们的神经处理,还有助于身体恢复

▸ 小肠细菌过度生长造成危害

当小肠中细菌的生长超出健康限度时,这种情况被称为小肠细菌过度生长 (SIBO)。这些细菌通常存在于结肠中。患有小肠细菌过度生长的人与患有肠易激综合征的人有非常相似的症状,许多人同时患有这两种情况。与该病症相关的症状包括腹痛、便秘、腹胀、胀气和腹泻。

•原因

这种情况发展的原因有很多。最常见的原因包括:

高糖饮食、富含精制碳水化合物的饮食、酒精过多;

•克罗恩病导致的疤痕会聚集细菌

•憩室病,其中小肠壁形成袋并收集细菌;

•某些药物,例如对肠道菌群具有破坏性影响的抗生素

•由于念珠菌、莱姆病和人类疱疹病毒等感染导致炎症回路减弱

•危害

如果小肠细菌过度生长未经治疗,它会对健康产生不利影响,导致慢性腹泻,导致身体所需营养物质吸收不足,最终导致营养不良

05 免疫系统与炎症回路

免疫系统和炎症回路

•抵抗外界病原体会触发炎症

炎症是免疫系统的重要组成部分。慢性炎症通常是感染、对自身身体物质的自身免疫反应或来自环境的抗原等的结果。

在慢性炎症的情况下,介质是单核细胞和巨噬细胞,它们是免疫系统的组成部分。也称为白细胞,白细胞在遇到问题时会释放化学试剂,靶向导致炎症回路反应的化学试剂。

•修复自身组织也会触发炎症

然而,问题是这些细胞不仅针对入侵者,还针对您自己的组织,从而造成损害。这些受损组织需要不断修复。慢性感染也是导致您的身体不断发展新血管的原因。

完成的修复工作通常会引起刺激,从而导致炎症过程被重新触发。如果由于某种原因,这变成了一个循环,你的身体就会一直处于炎症状态,从长远来看,它会产生衰弱的影响。

注:现代医学并没有为问题提供长期的解决方案。有时,会开具某些抑制免疫力的类固醇。然而,这些药物通常只能提供短期的症状缓解,并不能解决问题的根本原因。

免疫系统强弱影响疾病

当处于压力之下时,免疫系统会发现并保护我们免受病原体的侵害,从而引发炎症反应来解决问题。免疫系统因此攻击并清除任何潜在的危险病原体。一个按预期发挥作用的免疫系统可以迅速摆脱某些慢性病原体和感染带来的危险。

✦免疫系统过强和减弱都会导致疾病

尽管免疫系统减弱通常是导致反复感染,甚至是那些难以摆脱的感染的原因,但这不一定是疾病的原因——免疫系统过度活跃也可能是原因

在“正常”条件下,免疫系统会识别并瞄准敌人的病原体,而将那些被认为是有益的病原体留在一边。然而,有时情况并非如此,炎症回路变得过激,甚至对正常细胞和条件产生免疫反应。

由于强大的免疫系统,炎症回路不一定能正常工作,免疫系统会在过度活跃时导致自身免疫问题。

当这种情况发生时,某些抗体会混淆它们所看到的正常细胞和被认为是病原体的细胞。然后它不分青红皂白地攻击。结果,当这种情况发生时,炎症回路随后会出现与某些自身免疫状况一致的突然发作。

✦导致免疫过度的原因

考虑以下情况,身体可能会将自己的细胞识别为外来细胞并产生自身免疫类型的反应:

•食物敏感性

吃我们敏感的食物会引起炎症,并导致我们的免疫细胞将我们的组织视为异物。免疫反应被激活以摆脱这些不受欢迎的客人。

•微生物组失衡

我们的肠道本身就是一个完整的生态系统。当这个系统失去平衡时,如患有小肠细菌过度生长、胃反流、幽门螺杆菌、肠易激、炎症性肠病、分解代谢状态或肾上腺疲劳晚期胃部减慢的人,可能意味着好的有益细菌被外来的非有益细菌所取代。

外来机会性细菌和隐形病毒从休眠状态转变为活跃状态。这会导致免疫系统超速运转,从而导致慢性炎症。

在这个过程中,免疫系统,特别是在过度活跃的状态下,很容易混淆谁是真正的敌人。外来机会性细菌及其自身同时受到攻击,导致各种自身免疫性疾病。

•HPA轴不平衡

HPA轴又叫下丘脑-垂体-肾上腺轴,是身体的主要压力调节激素轴皮质醇是主要的抗应激激素。在肾上腺疲劳的晚期阶段,产生的皮质醇不足会导致猖獗的全身炎症,进而导致或引发自身免疫症状。

•肠漏或肠道通透性增加

当食物颗粒穿过胃肠黏膜时,就会引发炎症。未消化的食物应该在胃肠道内。当它进入肝循环和身体其他部位时,免疫系统将其识别为异物,并尽一切努力尝试攻击和中和这些异物。

免疫系统的持续激活会导致免疫细胞与正常细胞发生交叉反应,从而引发自身免疫性疾病

•重金属毒性和化学敏感性

环境毒素无处不在。如果一个人生活在城市世界中,就不可能逃脱。我们体内积累的过多毒素会触发我们的免疫系统在过度活跃的状态下工作,以清除我们身体中这些不需要的物质。那些不能自然而适当地发挥这种功能的人可能会出现自身免疫性疾病的症状。

•慢性和隐形感染

生活中,让我们接触到不断涌现的病毒、真菌、细菌原生动物等。一些病原体往往会长期伴随我们,处于休眠状态。当我们的免疫系统较弱时,它们会被激活并爆发。这些生物包括伯氏疏螺旋体、小巴贝虫、白色念珠菌、孢疹病毒等。这些病原体引起的疾病会导致免疫系统过度活跃。

与体内正常组织的交叉反应并不少见。这些传染病中的许多都具有自身免疫性疾病的症状,例如肿胀关节痛、牛皮癣、疲劳和食物过敏。自身免疫实验室标志物可能在血液测试中会升高。

•身体或情绪压力过大

情绪压力持续可能会降低病原体入侵的障碍,触发我们的免疫系统进入超速状态。换句话说,压力会使任何先前存在的临床或亚临床自身免疫性疾病恶化

注意

由于现有的微生物群失衡、胃肠道刺激或反应性代谢物超负荷而导致身体发炎,很难完全确定是否存在真正的自身免疫性疾病(如原发性桥本氏甲状腺炎或狼疮),或者只是出现类似于自身免疫性疾病的症状。

抗体等测试也可能会混淆。但是注意在这些情况下,它们可能是正常的或临界高,而不是像真正的原发性自身免疫状态那样高。

不幸的是,目前临床医生较少对这种依赖于详细病史进行正确评估的区分保持警惕。当正常或临界高实验室检查伴有疲劳、关节痛、牛皮癣、胃部不适、体重增加、血管炎和肌肉酸痛时,医生的下意识反应是跳到自身免疫性疾病的临床诊断。没有对身体进行全面的整体观察,很难对过度活跃的免疫状态找寻到其根本原因。

因为临床表现相似,所以很少努力将症状追溯到根本原因——无论是主要由病原体驱动、过度活跃的免疫状态驱动,还是两者兼而有之。患者经常服用类固醇和自身免疫药物。短期益处很常见,因为过度活跃的免疫状态会因皮质类固醇的抗炎特性而平静下来。

然而长期服用类固醇可能是有问题的,因为它会降低我们的整体免疫反应,并掩盖在过度活跃的免疫状态是真正原因的情况下代谢产物过多的潜在问题。随着时间的推移,炎症回路会随着时间的推移而缓慢但逐渐恶化,因为它变得功能失调。一个典型的例子是桥本甲状腺炎。

自身免疫性甲状腺炎

✦炎症回路过度运转导致甲状腺出现问题

当身体的炎症回路超速运转时,甲状腺系统通常是最容易因过度活跃的免疫状态而导致功能障碍的器官之一。

甲状腺控制着整体的新陈代谢率,并负责我们的体温调节。甲状腺功能的轻微变化会导致疲劳、体重增加和甲状腺功能减退侧感觉寒冷以及焦虑和心悸。

在过度活跃的免疫状态下,靶向一种或多种甲状腺成分的抗甲状腺自身抗体(也称为抗甲状腺抗体)可能会被激活。最重要的一种是抗TPO抗体。它存在于大约90%的桥本甲状腺炎、10%至20%的结节性甲状腺肿或甲状腺癌以及75%的格雷夫斯病中。

注:TPO抗体是人体针对甲状腺的自身抗体,如果甲状腺相关抗体增高,容易导致甲状腺素分泌增高,引起甲亢或甲状腺炎等疾病。tpo抗体全称是甲状腺过氧化物酶抗体,它是甲状腺自身免疫抗体之一,正常人一般为阴性,如果该抗体升高一般提示可能存在桥本氏甲状腺炎。

甲状腺炎的诊断

临床医生通常根据在疲劳和低能量的临床环境中显示抗TPO抗体的实验室测试来诊断桥本氏甲状腺炎。

此外,应该注意的是,10%到15%的正常个体可以具有更高水平的抗TPO抗体滴度。他们没有像上面提到的那些原发性自身免疫性疾病。当我们的炎症回路处于超速状态时,高滴度可能继发于过度活跃的免疫系统。这些患者可能被错误地诊断为患有临床或亚临床原发性桥本甲状腺炎。通常开始甲状腺替代治疗。很少考虑其他原因,例如炎症回路过载。

根据实验室测试和症状,甲状腺减慢症状被视为自身免疫问题,而实际上,有些时候它代表了处于炎症回路问题的身体。在这种情况下,甲状腺替代疗法只是掩盖了症状。应采用整体方法,以充分理解根本原因并影响全面的长期恢复计划。

结语

炎症回路是人体为克服压力而部署的神经内代谢应激反应的一部分。过度和失调的炎症反应会破坏人类的身体,导致一系列疾病和不良症状。

传统医学解决这个问题的方法是抑制症状。随着时间的推移,这可能会使情况恶化。自身免疫性疾病和过度活跃的免疫状态是常见的后果。由于当身体过度发炎时系统范围内的统一,因此需要从整体的角度了解身体以更好控制炎症肠道菌群在其中扮演着重要作用,有更多值得被研究和发现的价值。

主要参考资料:

Michael Lam, MPH; Justin Lam, Carrie Lam,

Inflammation Circuit Dysfunction.Drlamcoaching.

Zhou B, Yuan Y, Zhang S, Guo C, Li X, Li G, Xiong W, Zeng Z. Intestinal Flora and Disease Mutually Shape the Regional Immune System in the Intestinal Tract. Front Immunol. 2020 Apr 3;11:575. doi: 10.3389/fimmu.2020.00575. PMID: 32318067; PMCID: PMC7147503.

Ruiz F, Vigne S, Pot C. Resolution of inflammation during multiple sclerosis. Semin Immunopathol. 2019 Nov;41(6):711-726. doi: 10.1007/s00281-019-00765-0. Epub 2019 Nov 15. PMID: 31732775; PMCID: PMC6881249.

Rathinam VAK, Chan FK. Inflammasome, Inflammation, and Tissue Homeostasis. Trends Mol Med. 2018 Mar;24(3):304-318. doi: 10.1016/j.molmed.2018.01.004. Epub 2018 Feb 9. PMID: 29433944; PMCID: PMC6456255.

Amoroso C, Perillo F, Strati F, Fantini MC, Caprioli F, Facciotti F. The Role of Gut Microbiota Biomodulators on Mucosal Immunity and Intestinal Inflammation. Cells. 2020 May 16;9(5):1234. doi: 10.3390/cells9051234. PMID: 32429359; PMCID: PMC7291275.

Hess JM, Stephensen CB, Kratz M, Bolling BW. Exploring the Links between Diet and Inflammation: Dairy Foods as Case Studies. Adv Nutr. 2021 Oct 11;12(Suppl 1):1S-13S. doi: 10.1093/advances/nmab108. PMID: 34632478; PMCID: PMC8502778.

Brennan CA, Garrett WS. Gut Microbiota, Inflammation, and Colorectal Cancer. Annu Rev Microbiol. 2016 Sep 8;70:395-411. doi: 10.1146/annurev-micro-102215-095513. PMID: 27607555; PMCID: PMC5541233.

全面解析各类营养物质在炎症中的作用

谷禾健康

日常感觉疲劳,精力不好,稍微不注意就容易腹泻便秘,一不小心就感冒,更可怕的是,无论使尽各种方法依然减不下去的体重……

有以上状况的小伙伴注意,可能是慢性炎症在体内作怪。炎症是我们免疫系统的自然反应,也就是说身体和病原体斗争,试图自愈的过程。

根据时间和病理特征,炎症可以是急性和慢性的。

急性炎症中的主要免疫反应

急性炎症来势汹汹,通常持续时间很短(几分钟到几天),包括淋巴细胞/嗜中性粒细胞和巨噬细胞迁移到炎症部位,刺激促炎细胞因子的释放【如:肿瘤坏死因子-α(TNF-α)、白细胞介素6 (IL-6)、高运动性蛋白B1(HMGB-1)】,以及细胞聚集,酶分解等。

NOD样受体(NLRs)(如NLRP3、NLRP1和NLRC4)的激活导致高度调节的蛋白复合物(称为炎症小体)的募集,其激活启动下游炎症细胞因子的产生,主要是白细胞介素1β(IL-1β)和白细胞介素18 (IL-18)对细胞应激的反应。

其他中介包括趋化因子、脂质介质、急性期蛋白如C-反应蛋白(CRP)、转录因子包括核因子κB(NF-κB)和主要免疫细胞类型。

然而,急性炎症如果不受控制,则可能发展为永久性疾病,导致组织损伤、血流动力学改变和器官衰竭。

慢性炎症与疾病的关联

慢性炎症就像温水煮青蛙,带来的损害缓慢,但是持久。事实上,慢性炎症肥胖等非传染性疾病和相关的共病的发生有关。在这方面,肥胖导致脂肪细胞中的异常脂肪积累、免疫细胞浸润和促炎环境,从而破坏胰岛素信号级联诱导胰岛素抵抗

炎症氧化应激相互作用对于理解肥胖症的生理病理学至关重要,包括内质网功能受损、脂肪组织缺氧、线粒体改变和活性氧过度产生。

肠道微生物群肥胖相关的低度炎症的发展有关,包括脂多糖易位和toll样受体4(TLR-4)结合,从而引发血液内毒素血症。

由此产生的未解决的免疫激活不仅影响局部组织,还影响全身生理学,即所谓的代谢性炎症。

本文讨论了不同营养因素对炎症的影响和最终调节,包括特定营养素(碳水化合物类型、蛋白质来源、结构脂肪酸、矿物质、微量元素)和生物活性化合物(多酚);饮食模式(即西方、地中海和北欧饮食);治疗性饮食(DASH饮食);常见烹饪原料(调味品和草药)等。

与人类炎症结果相关的营养因素

了解日常饮食中的营养物质对炎症的影响和调节,可以帮助我们在日常饮食中有意识地进行相应调整,从而更好地改善健康状况。

01
微量营养素

维生素

纵向和观察性研究表明,膳食维生素摄入量炎症特征之间存在一些关联。

例如,维生素C和E胡萝卜素的摄入与血清CRP浓度的概率成反比 > 美国成年人服用3 mg/L。

在横断面KORA研究中,剂量-反应分析显示,经常摄入超过78毫克维生素E/天的参与者的血清CRP水平比未接触任何额外维生素E来源的受试者低22%

摄入含有维生素E和C以及B族复合维生素(B1、B2、B3、B5、B6、B9和B12)的膳食补充剂女性CRP水平降低相关。

饮食维生素K1(叶喹酮)摄入量变化的上三分位受试者(随访1年后)的IL-6TNF-α血浆浓度比最低三分位组的受试者下降更大

健康韩国成年人的膳食维生素B5摄入量与血清CRP浓度呈负相关

消费 > 健康成人每天摄入310毫克的膳食胆碱(通常归入复合维生素B组),血液中CRP、IL-6和TNF-α浓度较低

系统总结了探索维生素对炎症状态影响的临床试验结果(下表)。一些研究发现,补充维生素后有助于降低炎症

表 临床试验:维生素和生物活性化合物抗炎作用

doi: 10.1007/s13679-022-00490-0

矿物质和微量元素

矿物质和微量元素对人体的结构、免疫和代谢功能至关重要。

摄入绝经后妇女体内潜在炎症标志物(CRP、sTNF-R2和IL-6)的血浆浓度降低有关。

在护士健康研究队列中,发现饮食来源的摄入量血浆IL-6负相关

一项嵌套病例对照研究报告,绝经后妇女的饮食与血清促炎细胞因子循环水平存在相反的关联

据报道,淋巴细胞增殖和IL-2R表达的变化是健康男性轻度缺的早期标志。

膳食摄入量与成人血液CRP浓度直接相关。

反过来,肥胖相关炎症对肠道铁吸收的影响可能会加剧缺乏

还显示了补充某些矿物质对人体抗炎作用的主要结果(下表)。

表 分析某些矿物质抗炎作用的临床试验

doi: 10.1007/s13679-022-00490-0

02
大量营养素

总碳水化合物

膳食碳水化合物对健康的影响取决于数量质量特征。有趣的是,低碳水化合物饮食(总能量的20%显著改善了糖尿病患者的亚临床炎症状态(血清IL-1Ra和IL-6水平较低)。

值得注意的是,坚持低碳水化合物饮食(占总能量的35%)可以降低肥胖女性炎症标记物水平。

此外,低碳水化合物饮食的总体效果良好(≤ 30克/天)。此外,如其他地方报道的那样,与低脂饮食(总能量的24%)相比,极低碳水化合物饮食(占总能量的12%)可减少炎症反应。

血糖生成指数

血糖指数(GI)旨在根据对餐后血糖浓度的影响,从生理学上评估不同食物的碳水化合物质量。

有趣的是,高GI饮食(基于煮熟的意大利面,GI = 35)显著增加了瘦健康受试者单核细胞中NF-κB的激活率

事实上,在糖尿病患者中,高GI饮食(GI > 70)诱导的负面代谢和炎症反应被低GI饮食(GI < 55)抵消

此外,DIOGenes试验的结果表明,超重或肥胖受试者在减肥后,低GI碳水化合物(高GI碳水化合物的差异为15分)可以减少通过减肥饮食维持的低度炎症

纤维

膳食纤维可能对健康有益,涉及一些免疫机制。因此,在糖尿病患者中,纤维摄入量等于或大于15 g/1000 kcal与血液CRP水平降低相关。

一项随机干预试验表明,从天然富含纤维的饮食或从补充剂中摄取纤维(30 g/天)可以显著降低瘦削正常血压参与者的循环CRP水平

此外,中年成人膳食纤维摄入量(平均16.8克/天)和CRP血清浓度之间存在显著的负线性关系

扩展阅读:肠道菌群与蛋白质代谢

总脂肪

膳食脂肪在生物体内引发许多基本功能;然而,过度消耗脂肪可能导致肥胖和相关的低度炎症过程。

事实上,临床证据表明,高脂饮食(即接近总能量的75%)会导致循环游离脂肪酸的过度生产全身炎症

一直以来,低脂饮食(占能量需求的25%)与糖尿病患者血浆IL-6水平降低相关。

饱和脂肪酸

越来越多的证据表明,膳食饱和脂肪酸(SFA)在肥胖和炎症之间起着重要的联系。

有趣的是,与摄入正常饱和脂肪的受试者相比,摄入超过10%能量作为饱和膳食脂肪的受试验者血清CRP水平升高(< 7%的热量摄入)。

同样,摄入膳食饱和脂肪酸(100毫升饱和脂肪含量为70%的乳脂)导致女性血浆CRP的脂质诱导升高,与肥胖状况无关。

单不饱和脂肪酸

单不饱和脂肪酸(MUFAs)被认为是一种健康的脂肪,油酸(OA)是日常营养中最常见的MUFA。

在这种情况下,一项针对日本人群的横断面流行病学研究报告,油酸摄入量(平均占总能量的6.94%)与血清CRP浓度之间存在显著的负相关

对于不同剂量的MUFA治疗炎症特征的进一步对照试验是有保证的。

多不饱和脂肪酸

在过去的几年里,大量证据支持多不饱和脂肪酸(PUFAs)在预防心血管疾病和其他炎症性慢性疾病方面的有益作用。

在这种情况下,健康人n-3 PUFA二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)的摄入量与血浆中可溶性TNF受体1和2的水平呈负相关

此外,总膳食n-3 PUFA与女性CRPIL-6的血水平呈负相关

此外,一些临床试验评估了高PUFA饮食处方或通过补充PUFA对炎症结果的影响。例如,鱼油补充(38.2克/天EPA + 90天内的DHA)降低高血压患者血液中促炎症标记物的水平。

健康的年轻人服用n-3 PUFA(2.5 g/天,2085 mg EPA和348 mg DHA)12周后,血清IL-6水平下降了14%。

超重成人中,低(1.25 g/天)或高(2.5 g/天)剂量的n-3 PUFA补充4个月可以减少炎症反应(特别是血清IL-6TNF-α浓度)。

反式脂肪酸

反式脂肪酸(TFA)主要由植物油氢化或反刍动物衍生食品(包括乳制品和肉类)在工业上形成。

反式脂肪酸摄入量与女性血浆炎症生物标志物(包括CRP、VCAM-1、E-selectin)呈正相关

在同一人群中,反式脂肪酸的摄入与可溶性TNF受体1和2的血浆水平呈正相关,主要是在体重指数较高的女性中。

男性服用TFA(占总脂肪的8%)后血清CRP浓度升高

膳食胆固醇

胆固醇过高可能会对健康产生有害影响,包括一些影响炎症状态的过程。

例如,在伊朗成年人中,血清CRP浓度的最高四分位数(5.9 mg/L)与饮食胆固醇的摄入量较高(189 mg/天)有关。

在大量具有代表性的中东人群中,发现饮食胆固醇血浆CRP水平之间存在正相关。

蛋白质数量和质量

膳食蛋白质的数量质量是营养价值和身体/内分泌稳态的主要决定因素。

在Framingham心脏研究后代队列的参与者中,膳食蛋白质摄入量(尤其是植物来源的蛋白质)与血清炎症标记物(如IL-6和CRP)呈负相关

此外,摄入高(总能量的30%)或(总能量10%)蛋白质饮食会导致病态肥胖个体的血液CRP浓度降低

关于蛋白质来源,以较高动物蛋白质摄入量(高脂肪和加工肉类水平)为特征的饮食与某些血液促炎标记物(如CRP、IL-6、TNF-a、IL-8、血清淀粉样蛋白a和糖蛋白乙酰化)呈正相关

此外,RESMENA膳食研究的结果(30%的能量来自蛋白质)表明,动物和肉类蛋白质摄入量炎症之间存在正相关,而蔬菜或鱼类来源的蛋白质对炎症状态没有显著影响。

扩展阅读:肠道菌群与蛋白质代谢

03
生物活性化合物

多 酚

多酚是一大类生物活性分子,广泛存在于植物性食品中,具有强大的抗氧化和抗炎特性。在这种情况下,据报道,美国成年人的总黄酮摄入量与血清CRP浓度负相关

在多种族队列中,黄烷酮消耗量与血液IL-6浓度呈负相关。同样,异黄酮摄入量较(最高四分位数 = 1.61–78.8 mg/天)与健康绝经前妇女血浆CRP降低有关。

此外,在黄酮、黄烷酮和总黄酮摄入量较高的女性中,发现血清IL-8水平较低(五分位数最高 = 分别为264 ng/L、273 ng/L和276 ng/L)。

此外,台湾人群总黄酮摄入量茶叶摄入量的增加CRP水平呈负相关

值得注意的是,许多随机临床试验已经测试了几种多酚的抗炎潜力,其结果总结如下:

表 分析某些多酚抗炎作用的临床试验

doi: 10.1007/s13679-022-00490-0

扩展阅读:

肠道微生物群与膳食多酚互作对人体健康的影响

04
特定食品

牛羊肉

关于对炎症的影响,总摄入(中位数54 g/天)、未加工(中位数47 g/天)。

在多民族队列研究中,红肉加工肉消费与血清CRP水平呈正相关

在英国成年人中,食用加工肉与血清CRP水平增加有关(每天摄入50克以上,差异为38%)。

在调整后的模型中,在大量美国样本中,红肉消耗量与血液CRP显著相关

乳制品

在一项针对巴西人的横断面研究中,增加酸奶摄入量(中位数为10克/天)似乎会产生抗炎作用,而奶摄入量的增加(中位数10.7克/日)可能会加剧促炎状态。

在体重正常的青少年中,总乳制品和牛奶摄入量与血清IL-6浓度呈负相关

ATTICA研究的结果显示,每周食用11-14份乳制品的人的CRP、IL-6和TNF-α血水平低于每周食用8份以下的人。

ATTICA研究结果显示,习惯性鱼类消费之间存在独立关联(> 每周食用300克鱼),并降低健康成年人的炎症标记物水平,包括CRP、IL-6、TNF-a、血清淀粉样蛋白a和白细胞计数降低

在6年的随访中,食用鱼(约100克/周)可降低健康成人的内皮功能障碍和轻度炎症

在表面上健康的日本人群中,高频率摄入鱼类较低的外周血白细胞计数(慢性炎症标志物)相关。


事实上,随着每周摄入鱼的频率(0天、1-2天、3-4天或5-7天)的增加全身炎症的标志显著降低(全身炎症的标志:中性粒细胞/淋巴细胞比率)。

食用昆虫

近年来,食用昆虫被公认为具有抗炎和抗氧化特性的高价值食品。

例如,在健康成年人中,蟋蟀摄入量(25克/天)与通过微生物群调节减少全身炎症相关。

然而,需要对人类进行更多的研究来证实这些发现,以便推荐习惯性食用食用昆虫作为消炎疗法。

水果蔬菜

伊朗女性的水果和蔬菜摄入量与血清CRP水平呈负相关

中国女性食用大量十字花科蔬菜(最高五分之一 > 140.6 g/天)显示循环中TNF-α、IL-1β和IL-6水平降低

在一项随机交叉试验中,14天内食用十字花科蔬菜(14 g/kg体重)持续降低健康年轻人的循环IL-6.

详见:常见水果对肠道菌群、肠道蠕动和便秘的影响

油籽和特级初榨橄榄油

在动脉粥样硬化的多种族研究中,经常食用坚果和种子(尤其是每周五次或五次以上)与较低水平的炎症标记物相关,包括IL-6和CRP

在两个大的美国人队列中,与从未或几乎从未的频率类别的个体相比,每周坚果摄入五次或更多次的受试者的CRPIL-6血浓度显著降低

对随机对照试验的系统回顾和荟萃分析显示,摄入亚麻籽和相关营养衍生物系统地降低了肥胖受试者的循环CRP水平。使用同样的方法,急性高油酸花生摄入系统性地导致超重/肥胖男性餐后TNF-α浓度的下调。

研究表明,在健康饮食中添加杏仁(4周内每天56克)可以改善中国糖尿病患者的炎症和氧化应激。

一项随机试验还发现,在健康成年人中,食用杏仁(用杏仁替代对照饮食10–20%等量摄入4周)可以降低血清CRP水平

事实上,在青少年和青年人中,杏仁喂养(每天56克,持续90天)后,血浆TNF-αIL-6水平下降

据报道,每天服用50毫升特级初榨橄榄油(EVOO),为期两周,可降低稳定型冠心病患者的血浆IL-6CRP水平。

EVOO(50 mL)对正常血压的健康受试者具有急性餐后抗炎抗氧化作用。

谷物和全谷物

有趣的是,在糖尿病妇女中,谷类纤维的摄入与低的CRPTNF-R2血液水平呈负相关

超重和肥胖受试者食用全麦小麦(8周内每天70克)后,血清TNF-α水平下降,血浆IL-10水平升高

GRANDIOOS研究的结果表明,食用全麦小麦(每天98克,持续12周)可能会促进超重/肥胖和轻度高胆固醇血症患者的肝脏和炎症恢复力

豆类

在中国中年女性中,食用大豆食品与炎症标志物(如IL-6、TNFα和可溶性TNF受体1和2)的循环水平呈负相关

与习惯性饮食相比,一项为期6周的富含豆类的饮食营养试验(在所有干预阶段共摄入24包65克)显著降低了糖尿病患者的CRP浓度。

基于豆类的低热量饮食(每天160–235克,持续8周)持续降低超重/肥胖受试者的促炎状态改善代谢特征。

绿茶和咖啡

在肥胖女性中,8周内补充绿茶提取物(450 mg/天)改善了氧化应激生物标记物,降低IL-6循环水平。

3个月内饮用绿茶(379 mg/天)可降低肥胖、高血压患者的血清CRP和TNF-α浓度。

高咖啡消耗量(每天8杯)对习惯性咖啡饮用者的亚临床炎症产生了有益影响

一直以来,在健康和糖尿病女性中,饮用咖啡与炎症标记物和内皮功能障碍呈负相关

在年龄较大的非西班牙裔白人中,大量饮用咖啡(等于或超过2.5杯/天)的人全身炎症较低

另一方面,来自ATTICA研究的分析报告称,中度至重度咖啡摄入后,炎症标记物(包括IL-6、TNF-α和CRP)增加(> 200毫升咖啡/天),强调剂量对结果的重要性。

蜂胶

补充蜂胶限制热量饮食8周可以显著改善非酒精性脂肪性肝病患者的血糖稳态、肝纤维化评分和肝功能。

一项双盲安慰剂对照随机临床试验,44名非酒精性脂肪性肝病患者,用蜂胶和热量限制饮食(500千卡/天)干预,发现炎症因子降低,包括肿瘤坏死因子-α (TNF-α)、toll样受体-4 (TLR-4)和单核细胞趋化蛋白-1 (MCP-1)的血清水平以及肝酶和脂肪肝的严重程度显著降低

黑巧克力

现有证据表明,定期食用黑巧克力可能会减少炎症,尤其是对于每3天食用一份(20克)黑巧克力的消费者而言。

在一项随机平行临床试验中,与仅遵循一般生活方式指南的受试者相比,服用黑巧克力(8周内服用30克84%的黑巧克力)并保持健康生活方式的糖尿病患者的炎症标记物(CRP、TNF-α和IL-6)水平较低

事实上,急性黑巧克力摄入(50克)通过增加IL-10的表达和减弱细胞内促炎性应激反应而引发抗炎症结果。

健康女性在摄入黑巧克力(一周内每天100克)后,CRP的血液水平较低,这在男性中没有发现。

香料和烹饪材料

在过去几十年里,几项调查已经确定了香料和草药在预防和治疗各种慢性病方面的有效作用。这些烹饪成分的多种健康特性归因于具有潜在抗炎特性的生物活性成分,如含硫分子、单宁、生物碱和酚类二萜。下表总结了探索香料对炎症状态影响的临床试验结果。

表 分析某些香料和烹饪成分抗炎作用的临床试验

doi: 10.1007/s13679-022-00490-0

05
益生菌、益生元、合生元和后生元

益生菌、益生元和合生元是有益的微生物、底物(多糖和寡糖)或最终也可能缓解炎症症状的组合。

对于糖尿病患者,建议补充益生菌和合生元,通过持续降低循环中CRPTNF-α的水平来减少炎症表现。

关于肠道疾病,最近有报道称,使用益生菌(基于乳酸杆菌和双歧杆菌)和合生元可以促进抗炎反应并平衡肠道内稳态

短链脂肪酸(称为后生元的非活性细菌产物)的抗炎作用是通过抑制肠上皮细胞中的NF-κB通路、Treg细胞分化和促炎细胞因子阻断来介导的。例如,干酪乳杆菌DG和衍生后生物抑制肠易激综合征患者结肠粘膜中IL-8、IL-1α、IL-6和TLR-4的表达水平。

关于益生菌,益生元在此就不详述了,在前面的文章已有介绍,详见:

如果你要补充益生菌 ——益生菌补充、个体化、定植指南

如何调节肠道菌群?常见天然物质、益生菌、益生元的介绍

06
饮食模式

传统健康饮食

总的来说,植物性饮食已经证明可以改善肥胖相关的炎症状态。

值得注意的是,在北美,素食对血液CRP和IL-6水平的有益影响是由BMI介导的。此外,一项系统回顾和荟萃分析显示,素食饮食模式也降低免疫生物标志物,如纤维蛋白原和白细胞总浓度。

对观察性和干预性试验的系统审查表明,北欧饮食(以北欧国家的主食为基础)对低度炎症缓解积极影响。潜在机制包括代谢综合征患者的促炎症基因下调,尤其是TNFRSF1A和RELA

南欧大西洋饮食(SEAD)是葡萄牙北部和西班牙加利西亚的传统饮食,其特点是摄入更多的鱼、牛奶、土豆、水果、蔬菜和橄榄油以及红酒。总体而言,SEAD依从性与炎症标记物(主要是CRP)的血浆浓度降低和心脏代谢风险降低相关。

就亚洲地区而言,健康的日本饮食模式(富含蘑菇、海藻、大豆制品和土豆、蔬菜、鱼类/贝类和水果)似乎可以发挥抗炎作用,改善当地消费者的心理健康。

一些中药已经显示出抑制促炎途径和控制炎症相关疾病。

墨西哥传统饮食(TMexD)已证明可以降低墨西哥裔女性的全身炎症胰岛素抵抗风险。TMexD的特定食物包括玉米、豆类、辣椒、南瓜、番茄、仙人掌和洋葱,它们富含纤维、维生素、矿物质和辣椒素,具有潜在的抗炎抗氧化特性。

在一项综合横断面研究中,旧石器时代饮食(基于蔬菜和水果、瘦肉、鱼类、坚果和钙来源的多样性消费)与人类较低水平的全身炎症氧化应激相关。

在6周内,DASH饮食模式(以水果和蔬菜、低脂乳制品和复合碳水化合物的大量摄入为特征)降低了代谢综合征青少年的CRP循环水平。在女性成年人中,DASH饮食与伊朗人血清CRP水平较低有关,但与IL-17A浓度无关。定量评估显示,随访4周后,DASH饮食使CRP降低了13%。

PREDIMED试验的结果表明,地中海饮食(富含蔬菜和水果、纤维和维生素C和E)具有抗炎作用,因为它下调了动脉粥样硬化形成过程中涉及的细胞和循环炎症生物标记物。

在这个队列中,地中海饮食降低了血清CRP和IL-6水平,以及内皮和单核细胞粘附分子和促炎性趋化因子。此外,在随访1年后,Med饮食(包括EVOO和蔬菜)降低了心血管高危患者的血浆TNFR60浓度。长期(3年),PREDIMED试验通过与对照低脂饮食相比降低IL-1β、IL-6、IL-8和TNF-α水平,证实了Med饮食的抗炎作用。

西化饮食和超加工/随意食品

总的来说,西式饮食(WTD)含有大量不健康的脂肪、精制谷物、糖和盐,会引发慢性代谢性炎症。在这方面,在护士健康研究I队列中,西式饮食与炎症和内皮功能障碍标志物呈正相关。此外,伊朗女性的西式饮食评分与CRP和IL-6促炎标记物呈正相关

有趣的是,巴西妇女食用含有大量游离糖、总脂肪、膳食饱和脂肪酸、反式脂肪酸和钠的超加工食品(UPF)与血清CRP水平之间存在正相关。同样,超加工食品中上三分之一的巴西青少年(≥ 总能量的30%)与第1三分位青少年相比,循环IL-8浓度增加(≤ 15.9%的总能量)。

此外,瑞典类风湿关节炎患者的不良饮食质量(考虑到习惯性随意饮食,如糖果、蛋糕、软饮料和油炸土豆)与炎症增加有关,如血浆CRP和红细胞沉降率。

时间营养模式

生物节律和营养分析(称为“时间营养”)的最新进展表明,一天中进食的时间可能会影响代谢稳态和免疫功能。

在这种情况下,在饮食质量较差的成年人中,不吃早餐与血清CRP浓度升高之间存在显著关联。在一项随机对照交叉试验中,不吃早餐会导致人类外周血单核细胞和单核细胞中NLRP3炎性体的更高活化

间歇性禁食(IF),即个体连续或隔天禁食,改善了肥胖男性的全身炎症。然而,在超重或肥胖的女性中发现了间歇性禁食后,脂肪组织中巨噬细胞浸润(CD40+)和骨骼肌(CD163 +)的生物标志物短暂升高

现有证据表明,限时饮食(TRE)是一种基于一天活动期总热量摄入巩固的替代时间营养方法,可能会调节多种代谢疾病风险因素,包括炎症。事实上,已经假设TRE作为定期营养计划的一部分,可能有助于减少炎症,并对免疫系统的某些组成部分产生保护作用。

有趣的是,代谢综合征患者在隔日禁食(ADF)后,血液CRP水平显著下降,ADF包括“禁食日”,热量摄入有限,而“喂食日”则是随意进食。此外,隔日禁食降低了健康非肥胖受试者血浆中sICAM-1(年龄相关炎症标记物)的水平

此外,据报道,晚吃是指推迟用餐时间(通常是一天的主食或晚餐),可能会增加心脏代谢疾病风险。事实上,晚吃与腹部肥胖、炎症生物标志物(如IL-6和CRP)以及儿童的昼夜节律紊乱有关。

07
个性化抗炎营养策略

精确变量(年龄、性别、身体表型、习惯性饮食摄入、体力活动水平和生活方式)以及个性化问题(遗传背景、表观遗传特征、微生物群组成、基因表达谱和代谢指纹)的综合分析可能有助于制定更个性化的治疗方案,以改善炎症的营养和药物管理。

例如,有证据表明,遗传变异可能通过与环境因素(如饮食)的相互作用,调节个体对与炎症相关的慢性和急性疾病的易感性,从而易诱发炎症状态。

表观遗传标记(包括DNA甲基化、miRNA表达和组蛋白修饰)在炎症基因转录中起着基础作用。

值得注意的是,基于微生物群的回归模型已经能够预测人类肥胖相关炎症状态,这可能是精确管理炎症性的有用工具。

具有促炎和抗炎作用的基因表达最终决定炎症的结果。

代谢组学是一种综合方法,可用于剖析炎症的局部和全身代谢后果,为炎症疾病的调节提供新的见解。

这些应用有助于阐明独特和特异的炎症代谢类型,扩大了我们对人类代谢复杂性和多样性的理解。

总的来说,这些新颖的科学见解正带来精确药物/营养战略,以预防和控制具有炎症背景的流行性慢性病。

08
结 语

营养物质对生命和健康至关重要,不仅有助于疾病预防、健康维护和疾病管理,而且可以抵御内源性和外源性有害因素,包括炎症/氧化应激或免疫系统功能障碍。

促炎

促炎营养因素包括大量食用富含简单碳水化合物、膳食饱和脂肪酸、TFA、胆固醇和动物蛋白的食物,以及习惯性不吃早餐和晚吃暴食。

抗炎

潜在的抗炎化合物包括MUFA、PUFA、抗氧化维生素和矿物质、生物活性分子(多酚)、特定食品(乳制品、全谷物、鱼类、油籽、水果和蔬菜、食用昆虫、豆类、绿茶和咖啡),烹饪香料(肉桂、姜、小茴香、大蒜和姜黄)和一些饮食习惯,包括间歇性禁食和限时进食。

由于研究之间存在不一致和差异,考虑到异质性的关键方面,包括人群类型(祖先)、最低和最高水平以及不利影响、烹饪方法、生理病理状态和干预时间,仍需在该领域进行进一步研究。

目前的证据有助于理解营养与代谢性炎症之间的关系,为慢病的控制和管理提供了新的见解和潜在目标。

主要参考文献:

Ramos-Lopez O, Martinez-Urbistondo D, Vargas-Nuñez JA, Martinez JA. The Role of Nutrition on Meta-inflammation: Insights and Potential Targets in Communicable and Chronic Disease Management. Curr Obes Rep. 2022 Oct 18. doi: 10.1007/s13679-022-00490-0. Epub ahead of print. PMID: 36258149.

Li C, Xu MM, Wang K, Adler AJ, Vella AT, Zhou B. Macrophage polarization and meta-inflammation. Transl Res. 2018 Jan;191:29-44. doi: 10.1016/j.trsl.2017.10.004. Epub 2017 Nov 3. PMID: 29154757; PMCID: PMC5776711.

Nikbaf-Shandiz M, Tutunchi H, Khoshbaten M, Nazari Bonab H, Ebrahimi-Mameghani M. Propolis supplementation in obese patients with non-alcoholic fatty liver disease: effects on glucose homeostasis, lipid profile, liver function, anthropometric indices and meta-inflammation. Food Funct. 2022 Oct 20. doi: 10.1039/d2fo01280d. Epub ahead of print. PMID: 36263703.

Rossi JF, Lu ZY, Massart C, Levon K. Dynamic Immune/Inflammation Precision Medicine: The Good and the Bad Inflammation in Infection and Cancer. Front Immunol. 2021 Feb 23;12:595722. doi: 10.3389/fimmu.2021.595722. PMID: 33708198; PMCID: PMC7940508.

肠道重要菌属——嗜胆菌属 (Bilophila)喜欢脂肪、耐胆汁的促炎菌

谷禾健康

嗜胆菌属

嗜胆菌属 (Bilophila)变形菌门,脱硫弧菌科的一种厌氧、革兰氏阴性、耐胆汁、过氧化氢酶阳性杆菌。目前通过数据库发现在越来越多的人群,尤其男性,甚至低龄儿童中检出了高丰度的该菌

该菌被认为是“喜欢动物脂肪喜欢胆汁”的微生物——在以动物为基础的饮食,尤其富含肉类和乳制品脂肪时,其肠道中Bilophila丰度会增加和积累

目前为止,该属下研究最多和证据充分的菌种是沃氏嗜胆菌(Bilophila wadsworthii, B.wadsworthii),它是从穿孔和坏疽性阑尾炎患者的临床材料中回收的第三大最常见的厌氧菌。

Bilophila是机会致病菌,其丰度的增加的负面影响对肠道炎症的影响已经得到证实,B. wadsworthia与高脂肪饮食协同促进更高炎症反应、肠屏障功能障碍胆汁酸代谢异常,导致更高的葡萄糖代谢异常肝脂肪发生

2021年《Cell》子刊最新研究发现生酮饮食加剧间歇性缺氧引起的认知障碍,并认为这是由肠道菌群介导的。在生酮饮食和间歇性缺氧的双重条件下,Bilophila大量繁殖富集,进而对海马体功能造成损伤,增加认知障碍风险

此外,证据显示Bilophila 在便秘,白赛病,重症感染脑脓肿,帕金森,结直肠癌卵巢癌患者中增加

但是Bilophila属中的一些物种是有用的共生细菌,促进宿主新陈代谢并有利地塑造免疫反应。来自mSystems上发表的一项最新研究,发现Bilophila的基因组中存在遗传密码扩张现象,使三甲胺(TMA)甲基转移酶中的一个终止密码子可编码吡咯赖氨酸,从而导致嗜胆菌属可代谢TMA且不产生氧化三甲胺(TMAO)。该研究提示,嗜胆菌属可能通过“绕行”TMAO的生成,以降低动物性饮食诱导的心血管疾病风险,但是这一结论需要更多的样本支持和验证。

Bilophila 作为正常菌群存在于人类粪便中,偶尔也存在于唾液和阴道中。来自人类的分离物通常是β-内酰胺酶阳性,因此该菌对某些β-内酰胺抗生素具有抗药性。部分的菌株也对克林霉素有抗药性。

本文基于文献调查和谷禾数据库讨论和介绍肠道重要菌属——嗜胆菌属 (Bilophila)。

01

简介

嗜胆菌属 (Bilophila)是变形菌门,脱硫弧菌科除了脱硫弧菌属(Desulfovibrio) 的第二类重要菌属。一种革兰氏阴性厌氧菌,包括 B. wadsworthia,可引起腹腔内和其他感染。

Bilophila 属下代表物种是:Bilophila wadsworthia。该菌最初从坏疽和穿孔性阑尾炎患者的感染中分离出来。后来在包括来自阴囊脓肿、下颌骨髓炎和腋窝化脓性汗腺炎的胸水、关节液、血液和脓液的临床组织样本中也逐渐发现。

Bilophila wadsworthia 是一种革兰氏阴性专性厌氧、过氧化氢酶阳性、耐胆汁和解酶杆菌。单独或成对出现;偶尔观察到长丝。没有观察到孢子形成。菌落宽度约为 0.7 μm,长 1.0-10.0 μm,细胞呈多形性,细胞壁不规则,约 75% 的菌株为脲酶阳性。DNA G + C 含量约为59.2。

已鉴定菌种:

Bilophila wadsworthia

Bilophila sp. 4_1_30

基于核糖体 RNA 的系统发育研究表明 Bilophila与 脱硫弧菌科另外一个成员 脱硫弧菌属(Desulfovibrio)物种关系最密切

基于数据库和文献Bilophila和其他肠道菌属的关系如下图:

编辑​

02

代谢特征

▸ 代谢牛磺酸,嗜好胆汁

该菌具有呼吸型新陈代谢,化学有机异养和非发酵代谢蛋白底物,但不代谢碳水化合物。蛋白底物的主要产物是乙酸,含有少量至痕量的琥珀酸。能将硝酸盐还原为亚硝酸盐

硫化物由含硫氨基酸和亚硫酸盐产生,有时由硫代硫酸盐产生,但Bilophila不会还原硫。过氧化氢酶强阳性。在甲酸盐存在的情况下,B. wadsworthia利用牛磺酸作为电子受体产生乙酸盐并将磺酸盐硫还原为硫化物

Bilophila是机会致病菌,培养实验等得出硫,蛋白胨,L-牛磺酸,丙酮酸以及胆汁酸是B. wadsworthia扩张的基础。其代谢产物主要为硫化物,硫化氢,乙酸盐,琥珀酸等。

胆汁酸胆固醇肝脏分解以及肠肝循环中的一组代谢产物。在肝脏中,牛磺酸与甘氨酸一起用于结合胆汁酸以产生初级胆汁酸。胆汁酸经历肠肝循环,并被微生物群转化为次级胆汁酸饱和动物源性脂肪先前已被证明可促进牛磺酸结合胆汁酸的产生。至少在高脂环境中,已经提出增加牛磺酸结合胆汁酸的产量是B. wadsworthia扩张的基础。

所有高脂肪喂养小鼠脂多糖(LPS)生物合成和牛磺酸代谢途径的活化显着提高,而涉及氨基酸、糖、淀粉和氮代谢的许多途径显着减少

B. wadsworthia进一步加剧了高脂饮食情况下的胆汁酸失调,也表明该菌可能加强高脂饮食诱导的代谢障碍和宿主功能障碍,特别是炎症和屏障功能障碍的一种机制。

▸ 喜欢动物脂肪和乳脂

小鼠和人类实验表明以动物脂肪和乳源性饱和脂肪为基础的饮食可以增加耐胆汁菌Bilophila wadsworthia.

研究人员称并没有刻意去衡量Bilophila的丰度,但当比较哪种细菌含量增加最快时,Bilophila排在首位

不同的饮食可以快速且可重复地改变肠道微生物群的组成和功能。

《Nature》杂志的一项研究发现,当人们从素食转变为以肉类和奶酪为主的饮食结构上时,他们肠道里的细菌Bilophila几乎立即增加,但植物性为主的饮食结构可以降低该菌群的数量。一项人群研究实验,在清肠后 5 至 7 天收集素食者和杂食者的粪便样本。发现Bilophila和Lachnoclostridium与膳食动物蛋白相关,与膳食植物蛋白来源呈负相关

《Cell Metabolism》发表了一项研究,发现经常伴随红肉的饱和脂肪,还可能让人变肥胖,脂肪还会出现炎症。与之相反,以鱼肉为代表的白肉所包含的不饱和脂肪则健康很多。线性判别分析(LDA)表明,拟杆菌, Turicibacter和嗜胆菌(Bilophila)属细菌在猪油组小鼠肠道中显著增多,而在鱼油组小鼠中,主要是双歧杆菌和另一种菌 (Bifidobacterium,Adlercreutzia),乳酸菌(lactic acid)等增加

当前西方化饮食(低纤维、高糖、高脂肪和高动物蛋白)饮食持续增加粪便中Bilophila丰度,所以在越来越多的人群水平中发现Bilophila的富集。研究表明Bilophila可以将亚硫酸盐还原为硫化氢(H2S气体),诱发炎症以及免疫和代谢障碍。这对那些尝试许多流行的“品牌”饮食(例如生酮、旧石器时代、食肉动物等)的个体具有临床意义。

▸ 产生硫化氢

硫代喹诺酮糖葡萄糖的磺酸衍生物,在菠菜和生菜等所有绿色蔬菜中都能找到。专门的细菌配合利用磺基糖产生硫化氢(H2S)

这种气体以臭鸡蛋味著称,也对人类健康有不同的影响:在低量的情况下,硫化氢可以对肠黏膜产生抗炎消炎作用。另一方面,肠道微生物产生的硫化氢增多,与慢性炎症性疾病和甚至癌症有关。

研究表明,与葡萄糖等喂养肠道内大量微生物不同,硫代喹诺酮糖刺激肠道微生物组中非常特定的关键微生物的生长。这些关键生物包括Eubacterium rectale物种的细菌,它是健康人常见的肠道微生物之一。E.rectale细菌通过发酵硫代喹诺酮糖,产生一种硫化合物,即二羟基丙烷磺酸盐,而这种硫化合物又是其他肠道细菌如Bilophila wadsworthia能量来源。

Bilophila wadsworthia最终会通过一种新陈代谢途径从二羟基丙烷磺酸盐中产生硫化氢,这种途径也是最近才发现的。

以往认为主要是由于富含肉类或脂肪的饮食导致肠道中的硫酸盐和牛磺酸含量增加,已知它们是微生物的硫化氢来源。目前发现来自菠菜和藻类等绿色食物的硫代奎诺糖也有助于肠道内气体的产生,这让人感到意外。

03

健康特性

病原菌,与肠道炎症有关

B. wadsworthia具有固有的促炎特性。然而,尚不清楚这种B. wadsworthia特征在多大程度上在宿主代谢障碍的发展中发挥作用。炎症是代谢综合征的一个重要特征;因此,尚不清楚与B. wadsworthia相关的代谢障碍是否仅继发于B. wadsworthia-驱动炎症。

为了解决这些问题,研究用广泛使用的免疫抑制剂环孢素抑制了喂食高脂饮食(HFD)的小鼠的炎症。

发现环孢素 (Ci) 有效地消除了高脂饮食喂养小鼠的炎症反应,无论它们是否含有低密度或高密度的B. wadsworthia,因此,可以清楚地推断出B. wadsworthia 的直接代谢作用。

高脂饮食 —— B. wadsworthia过度积累

为了更好地确定更高密度的B. wadsworthia是否会影响代谢功能,特意通过灌胃将B. wadsworthia给予小鼠。

结果强调高脂饮食不是B. wadsworthia在宿主肠道中茁壮成长所必需,但却是B. wadsworthia 的持续增长必不可少的。这个结果比较有意义,表明B. wadsworthia的过度积累离不开高脂饮食的喂养。

B. wadsworthia 诱发的全身炎症相关疾病

B. wadsworthia增加了高脂饮食诱导的代谢综合征,这是一种通常与低程度全身炎症相关的疾病。同时,B. wadsworthia已被证明会加剧遗传易感小鼠的肠道炎症并在野生型动物中诱发全身炎症。较高的炎症状态的特征是消瘦和体重减轻,而代谢综合征的特征低度炎症和较高的体重指数

因此,一个关键问题是:

B. wadworthia 如何影响两种相反的病理?

通过药理学抑制炎症,揭示了B. wadsworthia直接诱导对宿主代谢功能的负面影响的能力。

具体来说,不同的代谢障碍,即葡萄糖清除率降低和脂肪肝表型,受B. wadworthia的影响,它们并不完全依赖于其促炎特性。

尽管如此,B. wadworthia驱动的炎症仍然是一个重要因素,它进一步使平衡向更强的代谢功能障碍倾斜。因此,这可以解释为什么B. wadworthia能够在两种截然不同的环境中发挥病态作用。

B. wadsworthia通过恶化高脂饮食诱导的肠道炎症、抑制参与代谢稳态的途径、有利于增加 LPS 的产生和易位,以及减少微生物群的丁酸盐产生来作用于宿主和微生物群。这些与B. wadsworthia相关的改变中的大多数被鼠李糖乳杆菌CNCM I-3690 给药完全或部分逆转。

导致认知障碍

2021年cell最新研究,喂食生酮饮食间歇性缺氧的小鼠的肠道微生物群中,嗜胆菌属(Bilophila)的细菌浓度急剧增加。他们还发现,沃氏嗜胆菌(Bilophila wadsworthia)沃氏嗜胆菌损害海马体,导致小鼠的认知能力下降

减轻心血管疾病

目前导致心血管疾病(CVD)发生的心血管风险因素并没有减少,反而在增加。因此,想要防止这种疾病发生,仅靠控制传统风险因素是不够的。虽然许多二级预防患者的传统风险因素控制较好,但仍会出现新的心血管事件。

已证实肠道菌群导致胆汁酸功能性改变,决定了其与法尼酯X受体或G蛋白偶联胆汁酸受体(TGR5)等潜在受体的结合。

动物性饮食是三甲胺(TMA)的主要来源,肠道菌群代谢TMA产生的氧化三甲胺(TMAO)与心血管疾病风险的增加密切相关。

来自mSystems上发表的一项最新研究,发现嗜胆菌属(Bilophila)的基因组中存在遗传密码扩张现象,使TMA甲基转移酶中的一个终止密码子可编码吡咯赖氨酸,从而导致嗜胆菌属可代谢TMA且不产生TMAO。

该研究提示,嗜胆菌属可能通过“绕行”TMAO的生成,以降低动物性饮食诱导的心血管疾病风险。这个结果让临床看到了机会,后续这一机制希望能尽快完成临床实验验证。

扩展阅读:

饮食-肠道微生物群对心血管疾病的相互作用

结直肠癌

结直肠癌是最常见的恶性肿瘤之一,与年龄和生活习惯密切相关,饮食风险因素包括红肉、加工肉类以及酒精,另一个风险因素是炎症性肠病,包括克罗恩病和溃疡性结肠炎。

根据已有报道发现结直肠癌患者中生成硫化物的细菌增加:

  • Desulfovibrio vietnamensis
  • D.longreachensis
  • Bilophila wadsworthia

美国黑人的结肠直肠癌发病率显著高于非西裔白人,研究假设:硫酸盐还原菌在结肠粘膜中的丰度可能是导致美国黑人结肠直肠癌发病风险较高的环境因素。

无论是结肠直肠癌患者还是健康人,美国黑人的结肠硫酸盐还原菌丰度均高于非西裔白人;沃氏嗜胆菌(Bilophila wadsworthia)特异性dsrA在美国黑人结肠直肠癌患者高于健康美国黑人;美国黑人日常摄入的脂肪及蛋白质显著高于非西裔白人,多种饮食组分与硫酸盐还原菌的丰度较相关。

扩展阅读:

结直肠癌防治新策略——微生物群

白塞病(BD)

贝塞特氏病(Behctet,白塞病,BD)是一是一种顽固的多系统性炎症性疾病,可导致不可逆转的失明。

微生物因子被认为是造成这种疾病的原因,但其潜在机制仍不清楚。来自活动性BD患者的粪便样品富含Bilophila spp,一种硫酸盐还原细菌(SRB)和一些机会病原体。活跃的BD患者的荚膜多糖转运系统,氧化还原过程,III型和IV型分泌系统也有所增加

网络分析表明,富含BD的硫酸盐还原细菌和机会性病原体彼此呈正相关。动物实验表明,粪便微生物群与BD患者粪便的移植增加了包括IL-17和IFN-γ在内的炎性细胞因子的产生。

帕金森病进展

对比分析了帕金森患者与对照的菌群组成及代谢功能差异,发现帕金森相关的特定菌群组成变化与疾病严重程度相关,特定的菌群代谢功能也与疾病表型相关,例如:Hoehn-Yahr分级与Paraprevotella菌属呈负相关,与嗜胆菌属(Bilophila)正相关

帕金森相关菌群变化与甲硫氨酸等9种菌群代谢产物的变化相关,菌群产生泛酸的能力与帕金森患者的特定非运动症状相关。

扩展阅读:

肠道微生物与帕金森以及相关影响因素

重症病人

许多重症医学科室住院患者有严重感染。这部分是由于危重患者经常接受各种各样的药物治疗,这些药物影响肠道菌群多样性,部分是由于患者病情不稳定,可导致缺氧病变、炎症、上皮完整性破坏、运动障碍、腔内pH值变化或肠道免疫功能受损。在一项多中心研究中,ICU患者的菌群显示与炎症密切相关的微生物丰度增加,如拟杆菌属、梭菌属和嗜Bilophila菌属。

脑脓肿:病例报告

研究报道了一例20 年慢性中耳炎病史的患者并发胆脂瘤和脑脓肿的病例。使用对比材料的 CT 扫描显示右小脑半球有三个脓肿腔。

胆脂瘤标本的培养物和脑脓肿的脓液中分离出了大量的 Bilophila wadsworthia、Bacteroides fragilis 和 Prevotella oris。不存在需氧菌。患者接受了开颅手术,最大的脓肿与胶囊一起被切除。抗菌治疗包括青霉素加甲硝唑和后来的增效素。治疗的结果是患者完全治愈并完全康复。这是在慢性中耳炎和脑脓肿中分离出 B. wadsworthia 的一个典型案例。

衰老相关

Cell 子刊一项研究分析了251位18-80岁个体十二指肠菌群多样性,发现多样性受年龄、伴随疾病和用药情况多因素影响,与衰老过程呈负相关

十二指肠核心菌群随衰老进程变化,变形菌门相对丰度增加,大肠杆菌和克雷伯菌增加,拟杆菌进行性降低;该研究显示克雷伯氏菌属增加仅与药物服用相关,梭菌属和嗜胆菌属增加则与伴随疾病相关

症状性手骨关节炎

我国湘雅医院2021年纳入1388名平均年龄为61.3岁的受试者分析研究症状性手骨关节炎患者的肠道菌群变化,发现粪便菌群的β-多样性(而非α-多样性)与手骨关节炎显著相关;手骨关节粪便菌群中有更高的嗜胆菌属(Bilophila)与脱硫弧菌属、更低的罗斯氏菌属。

功能分析显示,手骨关节炎患者的粪便菌群中,与氨基酸、碳水化合物及脂质代谢相关的通路发生显著变化

04

干预调节

降 低

鼠李糖乳杆菌CNCM I-3690 (Lr) 的每日口服管饲导致粪便 B. wadsworthia 丰度显着降低。同样,鼠李糖乳杆菌CNCM I-3690 能够进一步减少盲肠和小肠中的 B. wadsworthia 扩张。表明除了通过阻止其在体内扩张来抑制与 B. wadsworthia 相关的代谢功能障碍外,它还通过其调节胰岛素水平的固有能力来改善代谢功能。

菊苣根纤维(低聚果糖和菊粉)是益生元营养素,可滋养有益的肠道微生物,尤其是双歧杆菌。众多人体临床研究表明,这些益生元增加了肠道内的有益双歧杆菌,同时可以减少Bilophila菌

大枣与巴豆霜合用可减缓巴豆霜的快速利尿作用。研究发现大枣合用高剂量巴豆霜后Bilophila水平降低。巴豆霜为大戟科植物巴豆Croton tiglium L.(CT)的干燥成熟果实经去皮制霜后制得的炮制品,具有峻下冷积、逐水退肿、豁痰利咽、蚀疮的功效。因其有大毒,临床应用受到一定限制

酵母 β-葡聚糖 (Y-BG) 是一种以其免疫调节作用而闻名的膳食补充剂,在健康小鼠中进行了为期 4 周的膳食补充剂,发现 2% 的 Y-BG 颗粒物诱导强大的肠道微生物群落变化,包括粪便Bilophila丰度的显着减少

水果和蔬菜富含纤维、维生素 B、维生素 C、β-胡萝卜素、钾和生物活性化合物,如番茄红素和白藜芦醇。食用水果可以在维持肠道菌群平衡和改善肠道生态方面发挥作用。健康成年人食用十字花科蔬菜(西兰花、花椰菜)显示出拟杆菌门与厚壁菌门的比例呈正变化,硫酸盐还原菌(SRB) ,包括嗜胆菌和脱硫弧菌丰度下降。

扩展阅读:

常见水果对肠道菌群、肠道蠕动和便秘的影响

在患有轻度便秘的健康成年人中,食用菊粉可能会导致厌氧菌、嗜胆菌和双歧杆菌的相对丰度发生变化。特别是,食用菊粉后Bilophila丰度的下降与较软的粪便和便秘特异性生活质量指标的有利变化有关。

扩展阅读:

排便困难?便秘反复?不要忽视肠道菌群

增 强

  • 高动物蛋白饮食
  • 丙酮酸
  • 源自牛奶的饱和脂肪
  • 牛磺酸

主要参考文献

Natividad JM, Lamas B, Pham HP, Michel ML, Rainteau D, Bridonneau C, da Costa G, van Hylckama Vlieg J, Sovran B, Chamignon C, Planchais J, Richard ML, Langella P, Veiga P, Sokol H. Bilophila wadsworthia aggravates high fat diet induced metabolic dysfunctions in mice. Nat Commun. 2018 Jul 18;9(1):2802. doi: 10.1038/s41467-018-05249-7. PMID: 30022049; PMCID: PMC6052103.

Kivenson V, Giovannoni SJ. An Expanded Genetic Code Enables Trimethylamine Metabolism in Human Gut Bacteria. mSystems. 2020 Oct 27;5(5):e00413-20. doi: 10.1128/mSystems.00413-20. PMID: 33109749; PMCID: PMC7593587.

Yazici C, Wolf PG, Kim H, Cross TL, Vermillion K, Carroll T, Augustus GJ, Mutlu E, Tussing-Humphreys L, Braunschweig C, Xicola RM, Jung B, Llor X, Ellis NA, Gaskins HR. Race-dependent association of sulfidogenic bacteria with colorectal cancer. Gut. 2017 Nov;66(11):1983-1994. doi: 10.1136/gutjnl-2016-313321. Epub 2017 Feb 2. PMID: 28153960; PMCID: PMC5575988.

Sun Y, Ma Y, Lin P, Tang YW, Yang L, Shen Y, Zhang R, Liu L, Cheng J, Shao J, Qi T, Tang Y, Cai R, Guan L, Luo B, Sun M, Li B, Pei Z, Lu H. Fecal bacterial microbiome diversity in chronic HIV-infected patients in China. Emerg Microbes Infect. 2016 Apr 6;5(4):e31. doi: 10.1038/emi.2016.25. PMID: 27048741; PMCID: PMC4855070.

Baron EJ. Bilophila wadsworthia: a unique Gram-negative anaerobic rod. Anaerobe. 1997 Apr-Jun;3(2-3):83-6. doi: 10.1006/anae.1997.0075. PMID: 16887567.

Baldini F, Hertel J, Sandt E, Thinnes CC, Neuberger-Castillo L, Pavelka L, Betsou F, Krüger R, Thiele I; NCER-PD Consortium. Parkinson’s disease-associated alterations of the gut microbiome predict disease-relevant changes in metabolic functions. BMC Biol. 2020 Jun 9;18(1):62. doi: 10.1186/s12915-020-00775-7. PMID: 32517799; PMCID: PMC7285525.

Wei J, Zhang C, Zhang Y, Zhang W, Doherty M, Yang T, Zhai G, Obotiba AD, Lyu H, Zeng C, Lei G. Association Between Gut Microbiota and Symptomatic Hand Osteoarthritis: Data From the Xiangya Osteoarthritis Study. Arthritis Rheumatol. 2021 Sep;73(9):1656-1662. doi: 10.1002/art.41729. Epub 2021 Aug 6. PMID: 33760399; PMCID: PMC8457181.

Leite G, Pimentel M, Barlow GM, Chang C, Hosseini A, Wang J, Parodi G, Sedighi R, Rezaie A, Mathur R. Age and the aging process significantly alter the small bowel microbiome. Cell Rep. 2021 Sep 28;36(13):109765. doi: 10.1016/j.celrep.2021.109765. PMID: 34592155.

Marina M, Ivanova K, Ficheva M, Fichev G. Bilophila wadsworthiain brain abscess: case report. Anaerobe. 1997 Apr-Jun;3(2-3):107-9. doi: 10.1006/anae.1997.0084. PMID: 16887572.

Chen Y, Zhang S, Zeng B, Zhao J, Yang M, Zhang M, Li Y, Ni Q, Wu D, Li Y. Transplant of microbiota from long-living people to mice reduces aging-related indices and transfers beneficial bacteria. Aging (Albany NY). 2020 Mar 16;12(6):4778-4793. doi: 10.18632/aging.102872. Epub 2020 Mar 16. PMID: 32176868; PMCID: PMC7138539.

Wu YT, Shen SJ, Liao KF, Huang CY. Dietary Plant and Animal Protein Sources Oppositely Modulate Fecal Bilophila and Lachnoclostridium in Vegetarians and Omnivores. Microbiol Spectr. 2022 Apr 27;10(2):e0204721. doi: 10.1128/spectrum.02047-21. Epub 2022 Mar 14. PMID: 35285706; PMCID: PMC9045121.

So SY, Wu Q, Leung KS, Kundi ZM, Savidge TC, El-Nezami H. Yeast β-glucan reduces obesity-associated Bilophila abundance and modulates bile acid metabolism in healthy and high-fat diet mouse models. Am J Physiol Gastrointest Liver Physiol. 2021 Dec 1;321(6):G639-G655. doi: 10.1152/ajpgi.00226.2021. Epub 2021 Oct 13. PMID: 34643089.

Wu YT, Shen SJ, Liao KF, Huang CY. Dietary Plant and Animal Protein Sources Oppositely Modulate Fecal Bilophila and Lachnoclostridium in Vegetarians and Omnivores. Microbiol Spectr. 2022 Apr 27;10(2):e0204721. doi: 10.1128/spectrum.02047-21. Epub 2022 Mar 14. PMID: 35285706; PMCID: PMC9045121.

肠道核心菌属——经黏液真杆菌属(Blautia),炎症肥胖相关的潜力菌

谷禾健康

Blautia (经黏液真杆菌属)

Blautia 是一种最近发现的细菌属,是将几种丰富的胃肠道细菌归类,这些细菌以前属于 Ruminococcus 属。基于表型和系统发育分析,梭菌属和瘤胃球菌属中的一些物种也已被重新归类为Blautia.

Blautia 作为毛螺菌科的一个属,自成立以来,因其对缓解炎症性疾病代谢疾病的贡献以及对特定微生物的抗菌活性而备受关注。最近的几份报告表明,肠道中Blautia菌的组成和变化与宿主年龄、地理、饮食、基因型、健康状况、疾病状态和其他生理状态等因素有关。

研究人员发现:该属中的物种水平在老年患者中经常减少,在结直肠癌患者的黏膜样本中水平降低,在肠易激综合征 (IBS) 患者中水平升高

此外,Blautia与内脏脂肪面积负相关,内脏脂肪面积被认为是心血管和代谢疾病风险的肥胖生物标志物。研究还确定了Blautia luti Blautia wexlerae 的减少与肥胖个体的胰岛素抵抗有关。Blautia菌通过产生细菌素防止病原体的定植,并通过上调调节性 T 细胞和 SCFA 的产生而表现出抗炎特性和维持葡萄糖稳态作用。

Blautia. 图片来源:microbiomology

01
Blautia菌的基本属性和特征

Blautia 属严格厌氧,不能运动,是哺乳动物肠道内重要的核心菌属。Blautia 能够使用氢气和二氧化碳来制造乙酸盐。乙酸是肠上皮细胞的次要能力来源,也是肌肉和脑组织的能量来源,可以抑制病原菌,有抗炎作用。

Blautia菌通常为球形或椭圆形,成对或成股出现,大多数菌株无孢子。Blautia广泛分布于哺乳动物的粪便和肠道中。大多数Blautia菌株的最适温度和 pH 值分别为 37°C 和 7.0。DNA的GC含量约为 37-47 mol%。

培养实验表明,所有Blautia菌株都可以利用葡萄糖,但不同菌株对蔗糖、果糖、乳糖、麦芽糖、鼠李糖和棉子糖的利用能力不同。Blautia发酵葡萄糖的最终产物是乙酸、琥珀酸、乳酸和乙醇,主要生化试验显示卵磷脂、脂肪酶、过氧化氢酶和吲哚的阴性结果。

Blautia菌株的碳水化合物利用特性

Liu X, et al., Gut Microbes. 2021

02
Blautia的物种分类

Blautia属目前根据公布的有效名称物种共计20个,包括:

  • B. Hydrogenotrophica
  • B. coccoides
  • B. wexlerae
  • B. hansenii
  • B. producta

它们最初被错误分类为Ruminococcus、梭菌属或瘤胃球菌属。

文献中报道的Blautia的所有种

Liu X, et al., Gut Microbes. 2021

该属的组成通过增加新的种和品系而不断更新,但总的来说,Blautia中的种仍形成一个相对稳定和连贯的单系分支。

不同物种首次发现的来源不同,但是主要物种都是从人粪便分离出来的。

例如:Blautia hydrotrophica (B.hydrotrophica)Blautia stercoris (B. stercoris) 首先是从人类粪便中分离出来的。

B.hydrotrophica 的代谢途径

Blautia hydrotrophica 是革兰氏阳性、无芽孢、球杆菌状细菌,平均大小为 0.7-0.6 毫米。Hydrogenotrophica,意为以氢为食,是指生物体利用 H2 和 CO2 作为生长能源的能力。它将 H2 和 CO2 代谢形成乙酸盐作为唯一代谢物自养生长。该生物体还能够使用几种不同的有机化合物作为底物异养生长。通过葡萄糖和果糖的发酵,乙酸是主要产物,但也可以形成乙醇、乳酸以及较小程度的异丁酸和异戊酸。

B.hydrotrophica的生存环境

B.hydrotrophica的最佳栖息地pH范围为6.0-7.0,温度为35-37˚CB.hydrotrophica也可能是一种重要的微生物,可替代反刍家畜体内的产甲烷菌,以限制释放的甲烷量。

B.hydrotrophica栖息在哺乳动物的内脏中,有助于分解宿主饮食中原本难以消化的部分,主要是植物材料。膳食多糖和蛋白质的分解是通过微生物群在厌氧肠道环境中发酵完成的。这些微生物群是共生的,这意味着它们的相互作用创造了一个相互关联的食物网。这种代谢食物网的产物是短链脂肪酸,例如乙酸盐、其他有机酸以及 H2 和 CO2 气体。H2 气体的积累实际上可以抑制 NADH 的再氧化,从而减少 ATP 和短链脂肪酸的产生量。据估计,这些短链脂肪酸的代谢产生了人类所需能量的 5%-10% Blautia hydrotrophica在宿主新陈代谢中发挥重要作用,因此更好地了解这些微生物可能会导致能够操纵人体能量平衡。

B. wexleraeB. luti Blautia中最丰富的物种,是人类肠道的主要物种之一。

B. wexlerae 治疗代谢疾病

Blautia wexlerae B. wexlerae ) 是主要的丁酸盐生产者。动物实验表明,丁酸盐可以改善胰岛素抵抗,减少脂肪堆积。因此,这可能是B. wexlerae抗肥胖的机制之一。B. wexlerae治疗代谢疾病方面具有发展潜力。

B. faecis DSM33383 菌株预防管理呼吸道疾病

Blautia faecis也是从人粪便分离出来的,细胞染色呈革兰氏阳性严格厌氧。研究人员已经确定了B. faecis DSM33383 菌株,该菌株降低了 TNF 诱导的肠上皮细胞系 HT-29 产生的 IL-8。在流感后的两个临床前模型中进一步研究了该菌株的作用表明该菌株胃内给药可保护感染了肺炎链球菌的小鼠,并在较小程度上保护鼠伤寒沙门氏菌继发感染。该研究表明,粪杆菌DSM33383 可能是预防和管理呼吸道传染病的有希望的候选者。

B. coccoides参与促炎途径

B. coccoides最初是从喂食高乳糖饮食的小鼠的粪便中分离出来的;Blautia coccoides已通过免疫调节和促炎途径参与多发性硬化,包括与抗原呈递、B 和 T 细胞活化以及补体活化相关的基因的上调

B. hydrogenotrophica,以前称为 Ruminococcus hydrogenotrophicus,是一种在哺乳动物(人类和反刍动物)的肠道内发现的物种。

B. glucerasei从狗的粪便中分离出来。

另外的物种如B. productaB. schinkii甚至从痰液、污水和瘤胃中分离出来。

这些发现表明Blautia在肠道和其他微环境中的生存和进化的重要性。

03
Blautia 与其他微生物的交叉喂养

当细菌从膳食成分中产生的代谢物作为底物支持其他物种的生长时,称为交叉喂养。交叉喂养是肠道微生物群中厌氧菌之间的重要相互作用,可影响其代谢途径并有助于其稳定性和生产力

作为厌氧菌的一个属,Blautia与其他细菌的交叉喂养也在一定程度上有助于代谢调节

Blautia & R. bromii

一项研究发现,通过使用 0.2% 的抗性淀粉作为能量来源,布氏瘤胃球菌(R. bromii)在 RUM-RS 培养基上可以产生大致相等摩尔比的甲酸、乙醇和乙酸。

注:布氏瘤胃球菌(R. bromii)是存在于人类肠道中的降解抗性淀粉的细菌,富含抗性淀粉的饮食可以增加它的丰度。

然而,在淀粉上与产乙酸细菌B. hydrotrophica进行批量共培养导致甲酸消失,乙酸水平增加。产生甲酸的物种和产生乙酸的物种之间的交叉喂养可能在结肠中短链脂肪酸的形成中起重要作用,并有助于大量产生乙酸

Blautia & Dorea

肠易激综合征 (IBS) 患者中观察到 Blautia 菌种水平升高,研究人员推测可能由于由高丰度的Dorea菌产生的较高气体水平Dorea 是一种可以被 Blautia 使用的细菌。

Blautia & B. bifidum

Blautia hydrotrophica消耗 H2和 CO2通过 Wood-Ljungdahl 途径产生乙酸——当与双歧双歧杆菌共存时,该途径显着激活B. bifidum (双歧双歧杆菌)作为一种特殊的碳水化合物发酵物种并产生 CO2,它是 Wood-Ljungdahl 途径中的固定底物。因此,在 Blautia hydrotrophica 中观察到的 Wood-Ljungdahl 途径的变化可能是B. bifidum交叉喂养的结果。

备注:Wood-Ljungdahl 途径又称为厌氧乙酰辅酶 A 途径,存在于产甲烷菌、硫酸盐还原菌和产乙酸菌等化能自养的厌氧细菌和古生菌中。

04
饮食、年龄和地理对Blautia丰度的影响

饮食

饮食是驱动肠道菌群组成和代谢活动的主要因素,不同种类和数量的饮食以及主要营养素之间的平衡对肠道微生物有显着影响。

酒曲通过糖基神经酰胺作为 Blautia coccoides 的益生元

传统的日本烹饪方法和食,其中包含用非致病性真菌酒曲制备的发酵食品,与日本人的长寿密切相关。一项研究报道,酒曲中含有大量的糖基神经酰胺,并表明在小鼠饮食中添加 1% 纯化的糖基神经酰胺作为益生元1周可以提高小鼠肠道中球状芽孢杆菌的丰度,减少液糖水平,并上调其肾腺激素水平。同时发现Blautia coccoides可以将糖基神经酰胺降解为神经酰胺,然后将神经酰胺代谢为脂肪酸鞘氨醇碱,它们被肠道吸收并产生有益作用。

玉米中提取的膳食纤维F-FOP增加Blautia

将从玉米中提取的膳食纤维 (F-FOP) 添加到喂食高脂肪 (HF) 饮食的小鼠的饮食中,显着增加了小鼠粪便中Blautia的丰度。与 HF 饮食的小鼠相比,F-FOPs + HF 饮食的小鼠表现出体重和组织重量的损失,结果显示Blautia的丰度肥胖相关代谢紊乱的标志物呈负相关

低聚果糖、冻干豆浆增加Blautia

在喂食高脂饮食的大鼠中添加 20% 的冻干豆浆会导致大鼠粪便中的Blautia含量增加

在一项研究中,将 30 只雌性大鼠分为六组,分别喂食酪蛋白大豆分离蛋白,每组都含有纤维素、棉子糖或低聚果糖 (FOS)。结果表明,两种来源的日粮蛋白质都可以改变大鼠粪便中乙酸浓度乳酸杆菌的丰度,但无论膳食蛋白质来源如何, FOS都会增加Blautia的丰度

研究还表明,大鼠肠道酸化可能会抑制次级胆汁酸的形成。

omega-3增加Blautia

在另一项研究中,一名 45 岁的男性志愿者每天摄入 600 毫克 omega-3,持续 14 天,该志愿者的整体肠道微生物多样性下降,尤其伴随着粪杆菌丰度的降低Blautia丰度的显着增加

交替饮食和自助饮食增加Blautia

除了食物,人们的饮食方式也会塑造肠道菌群。与普通饮食相比,交替饮食自助饮食可以提高肠道菌群中Blautia菌属和瘤胃球菌的丰度,此外还会引起一些宿主代谢相关参数的变化。随着全基因组测序的发展,未来的研究可以检验各种饮食如何调节Blautia的代谢活动并改善宿主健康。

年龄:老年人Blautia丰度降低

在生命的不同阶段(即从童年到成年再到老年)的过渡期间,肠道微生物群会发生显着变化。使用高通量测序对 367 名 0-104 岁健康日本受试者的粪便样本进行的横断面研究报告称,日本成年人(21-69 岁)的肠道微生物群含有高丰度BlautiaBifidobacterium低丰度Bacteroides。此外,与成年人相比,老年人的微生物组多样性和个体微生物丰度降低,包括Blautia丰度降低。这种现象可能与年龄相关的免疫功能下降(称为免疫衰老)有关,并伴有许多与年龄相关的疾病,包括慢性低水平炎症。

Blautia wexleraeBifidobacterium pseudocatenulatum的丰度在成人型肠道微生物群中显着更高,而在老年肠道微生物群中观察到兼性厌氧菌(如大肠杆菌)的丰度更高。这些发现表明,通过增加会随着年龄增长而减少的菌群,将肠道微生物群从老年人型转变为成人型,可以预防与年龄相关的疾病的风险。

地理位置

最近的一项研究分析了来自亚洲温带和热带地区五个国家的城市或农村地区的 303 名学龄儿童粪便样本中的微生物群落特征。儿童肠道菌群分为普氏菌属(P型)和双歧杆菌/拟杆菌属(BB型)两组。中国(包括台湾地区)、日本等温带地区儿童肠道菌群多为BB型,泰国、印度尼西亚等热带地区儿童肠道菌群多为P型。值得注意的是,Blautia 在 BB 型肠道菌群中显着富集,占总 BB 型细菌组成的 10%,但仅占总P的 5%。

一项研究指出,日本人的主要肠道菌属是双歧杆菌梭状芽孢杆菌。在美国人、中国人、法国人和西班牙人中存在拟杆菌属;在澳大利亚人中是Blautia。据报道,地理位置之间人类肠道微生物多样性的差异在很大程度上与遗传、生活方式和饮食有关。

有趣的是,据报道Blautia在双胞胎遗传中具有很强的分类关联。一项研究收集了七种宿主的粪便样本,包括人类、猪、牛、鹿、狗、猫和鸡,并对 16S rRNA 基因的 V6 区域进行了测序。发现Blautiaoligotypes可以准确识别不同的宿主来源,表明该属具有宿主特异性宿主偏好

05
Blautia 的生理功能

Blautia 对生物活性物质的生物转化

近年来,Blautia对草本植物和功能性食品的生物转化和代谢的研究引起了研究关注。

多甲氧基黄酮 (PMF) 是从山奈柑橘类水果中分离出来的黄酮类化合物,具有抗癌、抗炎、抗病毒和抗凝血等生物学功能。

研究表明,Blautia菌属通过将 5,7-二甲氧基黄酮 (5,7-DMF) 和 5,7,4-三甲氧基黄酮 (5,7,4-TMF)分别转化为具有生物活性的白杨素芹菜素,对芳基甲基醚官能团具有水解作用。该菌还具有去糖基化能力,它可以将异黄酮、黄酮和类黄酮代谢成相应的苷元。

作为黄酮类化合物的另一个例子,姜黄素在治疗某些疾病,包括癌症、心血管疾病、糖尿病、肝病和神经退行性疾病方面表现出抗氧化、抗炎、抗病毒、抗菌的有益作用,受到了广泛的关注。

由于姜黄素结构中含有β-二酮,该化合物具有高的疏水性、低的溶解性和“生物利用度”,因此,每天大量摄入姜黄素,可以观察到对健康的促进作用。不幸的是,大量摄入姜黄素可能会产生有害影响并降低疗效,这会导致限制了姜黄素在疾病预防中的应用。

由肠道细菌产生的姜黄素代谢物具有生物效应,而不是姜黄素的原始形式。

据报道,姜黄素是由人肠道细菌Blautia 菌株MRG-PMF1通过甲基芳醚裂解,转化为去甲基姜黄素双去甲基姜黄素的。有证据表明,未被吸收的姜黄素可以间接调节结肠微生物群,通过产生额外的生物可利用和生物活性分子(如二氧去甲基姜黄素和二甲氧基姜黄素)对多种疾病产生有益的影响。

此外,Blautia sp AUH-JLD56 菌株已被证明可特异性且有效地将牛蒡子苷或牛蒡子苷元生物转化为具有良好自由基清除活性的 (-)-3′-去甲基牛蒡子苷元。 B. glucerasei sp. 产生一种特定的细胞外葡萄糖神经酰胺酶,将葡萄糖神经酰胺水解成功能性物质,对结肠癌具有特定的预防作用。

但是值得提醒的是,Blautia的某些生物转化可能无益,甚至可能有害。某些Blautia物种可以对初级胆汁酸进行 7-α-脱羟基化,并将其转化为次级胆汁酸,如石胆酸脱氧胆酸。这些物质是诱发结肠癌的致癌物,在溃疡性结肠炎、发育不良或癌症患者的粪便中发现这些物质浓度

一般来说,肠道中的细菌代谢不涉及氧气,而是还原和水解,导致形成非极性低分子量产物。在类黄酮转化过程中,Blautia菌种催化的反应包括去甲基化、脱羟基化、O-和 C-去糖基化和 C-环裂解,这可能是由于其相应的酶,如 β-葡萄糖苷酶和 O-糖苷酶。因此,深入开发Blautia对生物转化的探索对于开发用于食品补充剂的新酶和生物活性代谢物至关重要,并为人体肠道微生物组的代谢组学研究提供有价值的视角。

Blautia 和 次生代谢物

次级代谢产物是微生物在生长代谢过程中产生的具有生物活性的化合物,广泛用于抗菌抗癌药物、除草剂、杀虫剂等,也是微生物药物开发的重要来源。如双歧杆菌产生的细菌素对单核细胞增生李斯特菌、产气荚膜梭菌和大肠杆菌等病原微生物具有抗菌活性。

Blautia通常具有生产细菌素的能力。通过antiSMASH数据库对次生代谢物的注释,将74株Blautia菌株注释为7类共261个次生代谢生物合成基因簇(BGCs),包括NRPS、sactipeptide、lanthipeptide、bacteriocin、lassopeptide、betalactone、transat-pks

NRP、sactipeptide、lanthipeptide 通常分布在所有菌株中。NRP 和 PK 是具有多种功能的最丰富的次级代谢产物家族之一,包括参与铁清除的铁载体、提供针对一系列压力因素的保护的色素,以及营养获取、化学通讯和防御反应

备注:antiSMASH数据库可实现基因组与基因组之间的相关天然产物合成基因簇的查询和预测。临床上使用的大部分抗生素和药物均来自植物或微生物的天然产物。近二十年来,基因组数据的不断增加,使通过基因组挖掘来获取化合物的生物合成簇成为可能。antiSMASH是该领域最流行的工具之一。自2011年首次发布以来,antiSMASH已成为次级代谢产物基因组挖掘的标准工具,antiSMASH数据库为许多公开可用的微生物基因组提供预先计算的antiSMASH结果,并允许进行高级跨基因组搜索。

Blautia产生的细菌群具有抑制肠道内病原菌定植的潜力,并且它还可以影响肠道微生物群的组成。研究显示B. obeumB. producta可以抑制产气荚膜梭菌耐万古霉素肠球菌的增殖,使其成为潜在的益生菌,发挥益生菌功能。

06
Blautia的健康特性

肠道微生物群是一个复杂的生态系统,与宿主疾病的发展、药物代谢、免疫系统调节和其他过程有关。Blautia 作为肠道微生物群中的优势菌属,与宿主生理功能障碍具有显着相关性,例如肥胖、糖尿病、癌症和各种炎症性疾病。

肥胖相关疾病

一项研究观察到连续 3 周食用低热量高蛋白饮食的超重/肥胖非酒精性脂肪肝患者的肠道微生物群组成发生变化和Blautia丰度增加。在另一项研究中,无论是否存在非酒精性脂肪性肝炎,肥胖儿童的肠道拟杆菌属丰度较,同时Blautia粪杆菌丰度较

在一项基于人群的横断面研究中,研究人员调查了 20-76 岁日本男性和女性的内脏脂肪积累体重指数与按性别分层的肠道微生物群的关系。发现Blautia是唯一一个其丰度与日本人的内脏脂肪积累呈显着负相关的属,无论性别如何。

Blautia是肠道中常见的乙酸生产者,可通过激活 G 蛋白偶联受体 GPR41 和 GPR43 来抑制脂肪细胞中的胰岛素信号传导和脂肪积累,进而促进其他组织中未结合的脂质和葡萄糖的代谢,从而减轻肥胖相关疾病

Blautia有效减肥组女性肠道菌群中的优势菌属,但在减肥无效组中则不然。在另一项研究中,与健康儿童相比,糖尿病儿童Blautia丰度显着下降。一项横断面研究表明,Blautia,特别是B. lutiB. wexlerae,可能有助于减少与肥胖相关并发症相关的炎症

肥胖组的Prevotella、巨型单胞菌(Megamonas)、梭杆菌属和Blautia显著增加

炎症性疾病

Blautia作为共生的专性厌氧菌属,通过上调肠道调节性T细胞和产生短链脂肪酸,在维持肠道生态平衡和预防炎症方面发挥着重要作用。

IBD患者和健康人的粪便和黏膜菌群分析表明,CD患者盲肠黏膜菌群中Blautia的丰度显着降低。在结直肠癌患者的黏膜粘连菌群中,同样报道了Blautia的丰度降低

霍乱弧菌通常会导致人类腹泻,但人们对病原体的易感性不同,这可能是由人际微生物组变异驱动的。

发现霍乱患者的肠道菌群与健康个体存在显着差异,其中Blautia obeum霍乱弧菌的定植呈显着负相关。进一步研究表明,B. obeum基因组中编码胆汁盐水解酶(BSH)的基因可以降低霍乱弧菌tcpA基因的表达,抑制其定植,缓解腹泻

一项生物标志物分析研究表明,接受异体 BMT 的患者肠道微生物群多样性增加,特别是Blautia共生细菌的丰度增加,与致死性移植抗宿主病的减少总生存期的增加有关。

少数研究也报道了Blautia丰度降低回肠袋-肛门吻合肝硬化的关系。Blautia作为共生的专性厌氧菌属,通过上调肠道调节性 T 细胞和产生短链脂肪酸,在维持肠道环境平衡预防炎症方面发挥重要作用。

上述研究表明,Blautia的丰度与某些疾病呈负相关。然而,与健康个体相比,在肠易激综合征溃疡性结肠炎患者的粪便微生物群中发现了更高丰度Blautia.

尽管Blautia在各种疾病中的潜在机制尚不明确,但 Blautia丰度仍可作为相关疾病早期诊断或治疗的潜在工具。

食欲不振和营养不良

老年人特别容易出现食欲不振和营养不良。这可能部分是由于肠道微生物群老化Blautia属的较丰度可能与营养不良有关,而来自毛螺菌科、瘤胃球菌科 UCG-002、Parabacteroides merdaeDorea formicigenerans 的分类群丰度较与食欲不振相关。食欲不振或营养不良的参与者的粪便乙酸水平降低

Blautia丰度减少可能会增加慢性低度炎症,并降低通过发酵从饮食中摄取的能量。该结论需要进一步的研究支持。

与对照组相比,来自虚弱组的粪便样本下列菌群具有较高的水平:

Akkermansia, Parabacteroides, Klebsiella

而共生属较低水平菌群如下:

Blautia, Megamonas, Faecalibacterium, Prevotella, Roseburia

神经类疾病

自闭症谱系障碍患有功能性肠胃疾病的儿童中观察到几种与粘膜相关的梭菌显着增加,而 Dorea 和Blautia以及 Sutterella的显着减少

此外,帕金森病患者子中发现在属的分类水平上,来自 Blautia、Coprococcus 和 Roseburia 属的推定“抗炎” 丁酸盐产生菌在对照组的粪便中明显多于帕金森病患者。

其他

肌肉减少症是一种症状性病症,其特征是由于骨骼肌质量随着年龄的增长而过度损失,导致肌肉力量和身体机能下降。

肌肉减少症伴随着身体平衡差、步态障碍、使用拐杖和跌倒。研究发现与附肢骨骼肌质量/体重 (ASM/BW)与 ASM/BW 呈正相关BlautiaBifidobacterium可能有助于增加骨骼肌质量

Blautia coccoides可能会通过免疫调节促炎途径参与多发性硬化,包括与抗原呈递、B 和 T 细胞活化以及补体活化相关的基因的上调。与其他疾病一样,在多发性硬化中,肠道菌群失调会增加肠道通透性,从而促进 LPS 的进入

07
Blautia如何调节

如何增加(来自文献,证据不是很充分)

食物:

富含 Omega-3 的食物

糙米

大麦

迷迭香

黄酮类

高谷物饮食

益生元或药物:

二甲双胍

黄连素

小檗碱

红花油

丁酸钠

抗性淀粉(II、IV型)

橙子(果胶/黄烷酮)

葡萄籽多酚/酒

亚麻籽

维生素 D3

益生菌:

枯草芽孢杆菌

布拉酵母菌

德氏乳杆菌

鼠李糖乳杆菌GG

长双歧杆菌 BB

例如:一项研究指出富含阿拉伯木聚糖的麦麸提取物提高Blautia物种的比例 ,这表明有可能设计基于饮食的干预措施,以增加肥胖儿童体内耗尽的这些细菌物种的肠道生态系统。需要对B. lutiB. wexlerae菌株进行临床前和临床干预试验,以明确证明它们对肥胖和糖尿病前期状态的潜在保护作用。

减少Blautia

  • 抗生素:氟喹诺酮和克林霉素
  • 高胆汁酸
  • 饮酒
  • 缺乏乳酸菌

08
小结

人类肠道微生物研究的不能忽略的关注之一是研究核心微生物群。拟杆菌、普雷沃氏菌、瘤胃球菌、经黏液真杆菌属(Blautia)、考拉杆菌、罗伊氏菌、吉米菌、粪杆菌、毛螺菌以及梭菌等是世界代表性人群的核心肠道菌群。在目前谷禾健康超过60万的肠道菌群数据库中,肠道微生物群的几个核心肠道细菌普遍存在于超过90%人群粪便中。

Blautia作为一个重要的核心菌属,在肠道中占比丰度,是短链脂肪酸尤其乙酸主要生产者,对于减肥抗炎均有重要的积极作用。此外,其属下某些菌株分泌的细菌素可以抑制特定病原菌,这对于当下耐药性问题无疑看到了新方向。

但是经黏液真杆菌属(Blautia)作为一种严格厌氧的细菌,需要苛刻的培养条件和严格的操作程序。因此,将属于该属的细菌用作商业益生菌并不容易。相反,Blautia的益生元底物可以用于健康维护。一些食物成分,例如低聚果糖、乳果糖和日本酒曲糖基神经酰胺,均表明可以增加小鼠体内的Blautia丰度。然而,需要注意的是粪便微生物群的益生元作用也会因人而异。

主要参考文献:

Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, Zhao J, Zhang H, Chen W. Blautia-a new functional genus with potential probiotic properties? Gut Microbes. 2021 Jan-Dec;13(1):1-21.

Benítez-Páez A, Gómez Del Pugar EM, López-Almela I, Moya-Pérez Á, Codoñer-Franch P, Sanz Y. Depletion of Blautia Species in the Microbiota of Obese Children Relates to Intestinal Inflammation and Metabolic Phenotype Worsening. mSystems. 2020 Mar 24;5(2):e00857-19.

Stanley D, MS G, SE D, VR H, TM C, RJ H, RJ M. Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Vet Microbiol. 2013;164(1–2):85–21.

Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by lachnospiraceae and ruminococcaceae in diverse gut communities. Diversity. 2013;5(3):627–640.

Chakravarthy SK, Jayasudha R, Prashanthi GS, Ali MH, Sharma S, Tyagi M, Shivaji S. Dysbiosis in the gut bacterial microbiome of patients with uveitis, an inflammatory disease of the eye. Indian J Microbiol. 2018;58(4):457–469.

Milani, C.; et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiology and molecular biology reviews. 2017, 81(4): e00036-17.

Luu TH, Michel C, Bard JM, Dravet F, Nazih H, Bobin-Dubigeon C. Intestinal Proportion of Blautia sp. is Associated with Clinical Stage and Histoprognostic Grade in Patients with Early-Stage Breast Cancer. Nutr Cancer. 2017 Feb-Mar;69(2):267-275

Chen, W., Liu, F., Ling, Z. et al. “Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer.” PloS ONE. 7(6): e39743; doi: 10.1371/journal.pone.0039743

Grisham, J. “Bacteria May Hold the Key to Preventing Dangerous Side Effect of Transplants.” Memorial Sloan Kettering Cancer Center. (2014). Memorial Sloan Kettering Cancer Center

Jenq, R.R., Taur, T., Devlin, S.M. et al. “Intestinal Blautia is Associated with Reduced Death from Graft-versus-Host Disease.” Biology of Blood and Marrow Transplantation. (2015). 21(8) 1373-83; doi: http://dx.doi.org/10.1016/j.bbmt.2015.04.016,/p>

Murat Eren, A., Sogin, M.L., Morrison, H.G. et al. “A single genus in the gut microbiome reflects host preference and specificity.” The ISME Journal. (2015). 9: 90-100; doi: 10.1038/ismej.2014.97

Rajilić-Stojanović, M., de Vos W.M. “The first 1000 cultured species of the human gastrointestinal microbiota.” FEMS Microbiology Reviews. (2014). 38(5) 996-1047; doi: 10.1111/1574-6976.12075

Horigome A, Hashikura N, Yoshida K, Xiao JZ, Odamaki T. 2′-Fucosyllactose Increases the Abundance of Blautia in the Presence of Extracellular Fucosidase-Possessing Bacteria. Front Microbiol. 2022 Jun 2;13:913624.

膀胱癌、炎症和微生物组

谷禾健康

膀胱癌主要是老年人的疾病,约75%的新诊断发生在65岁以上的患者,约45%发生在75岁以上的患者。膀胱癌对男性和女性的影响比例为3:1,但随着年龄的增长,男性和女性的发病率显著增加

年龄增长与膀胱癌的发病率和死亡率升高有关。高龄还与慢性炎症标志物升高以及肠道和尿液微生物群紊乱有关

老年人膀胱癌发病率和死亡率增加的一个原因可能是,微生物组中与年龄相关各种变化,引起全身代谢变化,导致免疫失调,具有潜在的致癌作用

膀胱癌患者的肠道尿道微生物群可能失调,尽管这些变化的影响尚不清楚。

提高对免疫系统、肠道和尿液微生物群的年龄相关改变的理解,可能有助于深入了解老年人膀胱癌发生发展的风险。在膀胱癌患者中,提高对微生物群的认识也可能为治疗干预提供潜在的靶点。

目前的数据支持炎症免疫微生物失调可能是已知的与衰老相关的膀胱癌发病率增加的原因,但需要在这一领域开展工作,以直接检验这一假设,以及更好地了解肠道中微生物成分的组成,膀胱癌期间膀胱和膀胱肿瘤微生物组及其对免疫系统的影响

从这个角度出发,本文讨论了炎症免疫衰老癌症之间的杂联系。研究了表明老龄化和炎症可促进膀胱癌发展的数据,老龄化如何导致或促进多个区域的菌群失调,以及菌群失调如何影响对膀胱癌治疗的反应。

本文主要从以下几个方面讲述

  • 年龄增长是膀胱癌的风险因素
  • 膀胱癌与衰老和免疫
  • 衰老、炎症、肠道菌群和膀胱癌
  • 短链脂肪酸、衰老与微生物群
  • 环境、衰老和肠道菌群
  • 尿液和膀胱微生物群
  • 与微生物和年龄相关的治疗及反应

本文出现的专业名词缩写

非肌肉浸润性膀胱癌——NMIBC

肌肉浸润性膀胱癌——MIBC

肿瘤坏死因子——TNF

损伤相关的分子模式——DAMPs

病原相关的分子模式——MAMPs

血清中性粒细胞:淋巴细胞比值——NLR

免疫组织化学——IHC

肠血管屏障——GVB

01
年龄增长是膀胱癌的主要风险因素

高龄不仅与患膀胱癌的风险增加有关,还与发生侵袭性肿瘤有关,这些肿瘤复发和发展为侵袭性疾病的可能性增加

这些数据很复杂,因为“年轻”和“老年”的定义在研究中高度可变,可以作为连续或分类报告变量。此外,癌症特异性生存率增加背后的原因可能是多因素的,但仍然包括这样的事实:年轻患者通常比老年患者的肿瘤侵袭性更小级别更低

 非肌肉浸润性膀胱癌:年轻患者肿瘤侵袭性更小,级别低,不易复发

年轻患者,如年龄小于30岁的患者,其乳头状、低级别Ta、非肌肉浸润性膀胱癌(NMIBC)的发病率高于年龄大于30岁的患者,其肿瘤通常较小、单发且不太可能复发。

尽管数据表明年轻患者和老年患者的肿瘤分期相似,即使按年龄<30岁或>30岁分组。膀胱癌基因表达数据的荟萃分析结果表明,在多个肿瘤亚型中,年轻化与激活成纤维细胞生长因子受体(FGFR)突变率增加相关,这一发现与Ta肿瘤相关,Ta肿瘤比高级别肿瘤具有更有利的预后。

在晚期膀胱癌中,与FGFR激活突变相关的有利结果丢失,因为FGFR3在化疗背景下可能与较差的结果相关。

在对肿瘤亚型的同一荟萃分析中,与老年患者相比,年轻患者的肿瘤中claudin的表达水平比老年患者,claudin是一种肿瘤转移的反向标记物。

 肌肉浸润性膀胱癌:发病率随年龄增长而增加

相比之下,在普通人群中,肌肉浸润性膀胱癌(MIBC)的发病率随着年龄的增长而增加。85岁以上的患者中有30%以上发生MIBC,而10岁以下的患者中有23%发生MIBC。

随着年龄的增长,肿瘤抑制因子TP53、APC和PTEN12突变的可能性增加,这在MIBC中很常见,并与不良预后相关。

最后,随着人类年龄的增长,他们通常会累积共病虚弱指数增加,这导致了与年轻患者的总体预后差异,特别是与使用根治性膀胱切除术的手术干预有关。

有证据表明,当仔细选择时,许多老年患者是手术治疗的合适人选,但老年患者较不积极的治疗也会影响预后。

所有这些数据都广泛支持这样一种观点,即年轻患者的膀胱癌出现在疾病的较低阶段,临床上侵袭性较低,最终,年轻患者比他们的老年对手更有可能存活

膀胱癌中与年龄和微生物组相关的变化

衰老过程中,炎症系统肠道和尿道中的微生物都发生了大量的变化。

 膀胱癌

•老年患者的膀胱癌预后比年轻患者,年轻患者通常表现为低级肿瘤。

•在膀胱癌亚型中,年轻患者比老年患者表达FGFR3突变的比例更高,连接蛋白水平也更高

•在膀胱癌亚型中,老年患者更有可能发生肿瘤,肿瘤抑制蛋白p53, APC和PTEN突变

•在24个月的随访点,老年患者(80岁以上)的非肌肉浸润性膀胱癌患者对卡介苗的反应低于年轻患者(61-70岁) (39%对61%的绝对反应率)

 肠道微生物组

• 老年个体(90岁以上)β-多样性较年轻个体减少,α-多样性没有变化

• 老年个体(90岁以上)与年轻个体相比肠道中以下菌群丰度增加:

Akkermansia ↑↑↑

Escherichia ↑↑↑

Bifidobacterium ↑↑↑

Christensenellaceae ↑↑↑

• 老年个体(90岁以上)与年轻个体相比肠道中以下菌群丰度降低:

Faecalibacterium ↓↓↓

Bacteroides ↓↓↓

Lachnospiracae ↓↓↓

• 百岁老人(100岁)比非百岁老人群体有的Akkermansia,通常与改善健康状况有关

关于AKK菌详见:AKK菌——下一代有益菌

 尿液微生物群

• 70岁及以上的个体与年轻个体相比尿道中:

saccharofermentans ↑↑↑

Proteiniphilum ↑↑↑

Jonquetella ↑↑↑

Parvimonas ↑↑↑

• 70岁及以上的男性比年轻男性有的细菌属

• 70岁及以上的男性比年轻男性体内的细菌总数要少

• 与年轻女性相比,70岁以上的女性在细菌种类或数量上没有差异

 肠道上皮屏障

• 与4或12月龄小鼠相比,21月龄小鼠血清脂多糖增加肠道通透性增加相关

• 在老年小鼠模型中,IL-6和肿瘤坏死因子随肠道通透性线性增加

• 与10岁及以下的狒狒相比,18岁及以上的狒狒IL-6、IL-1β和IFNγ水平显著升高

• 18岁及以上的狒狒与10岁及以下的狒狒相比,occludin、claudin和紧密连接分子减少

• 与年轻人相比,老年人的短链脂肪酸(如丁酸、丙酸、乙酸)水平较低,这些脂肪酸被认为可以保持粪便中的肠道-上皮完整性

02
膀胱癌与衰老和免疫

先天适应性免疫系统衰老过程中都出现失调

衰老主要通过两种途径导致免疫系统失调事件:

  • 先天免疫系统的慢性低水平刺激
  • 适应性免疫减弱

在膀胱癌患者中,先天免疫活性的血清和组织标志物升高预后较差,可能与肿瘤生长有关

适应性免疫系统在膀胱癌中的作用尚不清楚,基于所研究免疫细胞的差异、其相对丰度和抗原肿瘤标记物的存在,结果相互矛盾。

先天免疫系统和适应性免疫系统都可能影响膀胱癌的进展,与衰老相关的免疫系统变化会对肿瘤清除产生有害影响

先天免疫、膀胱癌和衰老

衰老:免疫系统逐渐破坏、炎症增加

随着年龄的增长,细胞分解的无菌产物的积累,包括代谢废物,如细胞游离DNA或错误折叠或氧化的蛋白质,以及异常分布的病原相关的分子模式(MAMPs),如脂多糖(LPS),长期激活先天免疫系统

当衰老伴随着其他对人类健康有害的问题,如营养过剩、慢性惰性感染、癌症或肠道失调时损伤相关的分子模式(DAMPs)和错误折叠蛋白的积累会加速,并导致免疫系统中与衰老相关的破坏。

这种破坏至少部分是由巨噬细胞和中性粒细胞中的细胞信号传导介导的:巨噬细胞上进化保守的toll样受体(TLRs)识别升高的内源性MAMPs和DAMPs。

在衰老过程中,MAMPs和DAMPs在组织中积累,检测它们诱导IL-6、IL-8和tnf等细胞因子的表达,导致先天免疫活性升高,并从常驻免疫细胞向组织释放活性氧(ROS)。

临床前癌症模型支持这一观点,即局部炎症的增加导致细胞因子的产生和导致DNA损伤的局部活性氧水平的增加,并可能会在某些肿瘤中刺激肿瘤生长和进展

异常的DNA修复和增强的炎症也与老年小鼠中与肿瘤形成增加相关的DNA损伤有关。

先天免疫信号升高——膀胱癌不良预后

临床上,先天免疫信号升高似乎与NMIBC和MIBC患者的不良预后相关。这种作用不仅限于膀胱癌,因为肿瘤相关的巨噬细胞(TAMs)和肿瘤浸润性中性粒细胞(TINs)可能促进结直肠癌和肺癌的发生。

在膀胱癌中,使用免疫组织化学(IHC)对296个肿瘤的泛巨噬细胞标志物CD68和泛T细胞标志物CD3的组织芯片分析表明,巨噬细胞与T细胞的比例是不良生存的最大预测因子

CD163+TAMs的存在:复发率增加

一项对13项来自人类膀胱组织的meta分析结果显示,CD163+TAMs的存在与复发率增加相关,而CD68+TAMs的存在与复发率无关

值得注意的是,这一发现可能与这些巨噬细胞的炎症状态有关,因为CD163是抗炎巨噬细胞的标志,与肿瘤免疫逃逸相关。相比之下,CD68并不能描述巨噬细胞的炎症状态,并由大多数巨噬细胞亚型表达。

TINs水平升高:预后不良,生存率较差

对102个人膀胱癌肿瘤的免疫组化分析表明,TINs水平的升高NMIBC复发率的升高和较差的总生存率呈正相关

此外,在MIBC患者中,TIN水平升高与总生存期降低化疗反应不良相关。然而,所有这些研究都使用了免疫组化相关分析,限制了推断因果关系的程度。

由于肿瘤浸润免疫细胞的测量需要在组织中进行评估,因此确定系统性炎症标志物是否可以作为组织相关炎症蛋白或细胞的替代物是有用的

NLR高分与无复发和无进展生存期相关

系统性炎症的一个指标,血清中性粒细胞:淋巴细胞比率(NLR),可以预测NMIBC和MIBC的疾病复发和进展

在MIBC中,两项回顾性研究结果显示,NLR评分大于3.0和2.5的患者5年无复发较差(HR 1.49;95% CI 1.12-2.0),总体(危险比1.67;95% CI 1.17-2.39)和无病生存期(危险比1.946;95% CI 1.03-3.66)高于NLR评分较低的患者。

在NMIBC中,对6项回顾性研究的荟萃分析结果显示,NLR高分与无复发和无进展生存期相关

在一项对899例NLR分界点为2.7的MIBC患者的大型回顾性研究中,年龄的增加与NLR评分的增加相关,年龄的增加免疫功能障碍的增加有关

免疫变化在 NMIBC 中任何年龄都可能很重要

NMIBC的研究结果大部分显示膀胱癌患者的年龄NLR评分之间没有显著的相关性,但仍显示NLR可以预测结果,这表明在NMIBC中,无论年龄如何,免疫改变可能都是重要的,年龄、NLR和预后之间的联系在MIBC中比在NMIBC中更强

一项针对NMIBC患者的单一前瞻性研究发现,校正年龄后,NLR与无复发和无进展生存期之间的差异消失,这表明年龄主要决定因素,应与NLR状态一起测量和校正,这进一步复杂化了高龄、NLR和膀胱癌预后之间的潜在关系。

当考虑到先天免疫系统在肿瘤微环境中的潜在致瘤作用时,显然,需要进一步的研究来确定膀胱局部先天免疫信号是否与系统性免疫失调相关,这可以很容易地测量和潜在地用于预后。

年龄、NLR和预后在MIBC中的相关性似乎比NMIBC更强,这并不奇怪,因为MIBC由于侵袭组织而被认为是更具有炎症性的疾病。

先天免疫调节膀胱癌:活性氧产生,增强致癌性

来自小鼠模型的数据支持先天免疫调节膀胱癌的观点。在膀胱癌模型中,与仅用亚硝胺(BBN)治疗的小鼠相比,致癌物n-丁基-n(4-羟基丁基)亚硝胺(BBN)和膀胱内脂多糖治疗的小鼠体内活性氧浓度肿瘤发生增加正相关

脂多糖注射促进了大鼠模型膀胱癌的形成,支持了先天免疫激活增加有助于肿瘤发展的观点。

脂多糖激活的中性粒细胞增强大鼠尿路上皮细胞系的恶性转化,这与脂多糖在其他肿瘤中的致瘤作用的数据一致,表明先天免疫系统产生的活性氧可以通过氧化应激和基因突变促进肿瘤的形成

在缺乏铜/锌超氧化物歧化酶的老年小鼠中进行的研究结果表明,与年龄匹配的对照组相比,这些小鼠在肝癌模型中活性氧水平致癌性增加,这支持了先天免疫系统不受控制的活性氧产生可增强致癌性的观点。

先天免疫系统与免疫疗法的复杂作用

在治疗上,炎症抑制剂,如塞来昔布,可以阻断促炎前列腺素的形成,减少大鼠膀胱癌模型中的肿瘤数量体积,并减少体外细胞系中的细胞增殖

在膀胱癌小鼠模型中,先天免疫系统似乎也调节了卡介苗的反应;在膀胱癌小鼠原位模型中,中性粒细胞减少消除了卡介苗介导的免疫治疗的反应。

这些数据表明,先天免疫系统的作用可能是复杂的,因为它可能需要通过启动免疫反应对卡介苗免疫疗法作出适当反应,但如果不加以检查,也会促进癌症的进展,这取决于肿瘤微环境肿瘤的状态

值得注意的是,这种效应在本研究中归因于中性粒细胞,但这一结论是在发现用于消耗中性粒细胞的抗体也会消耗单核细胞之前得出的,因为该抗体识别单核细胞上的LY6C和中性粒细胞上的LY6C和LY6G。

因此,单核细胞也可能影响模型中免疫治疗的疗效,突出了改善治疗结果的另一个潜在调控靶点。事实上,区分中性粒细胞和单核细胞在膀胱癌中的作用可能是增强患者免疫治疗了解疾病进展的一种手段。

总之,这些数据支持这样一种观点:

在多种实体肿瘤类型中,与衰老相关的异常先天免疫导致了致瘤前表型

然而,目前还缺乏利用解决潜在机制的转化模型来理解浸润肿瘤的先天免疫细胞在膀胱癌中的作用。这些模型是有根据的,因为阻断中性粒细胞募集也可以减少肿瘤的生长其他肿瘤的转移进展,如乳腺、结肠和肝脏。

通过使先天免疫系统的慢性激活正常化,减少老年先天免疫过度刺激的新方法可能是减缓膀胱肿瘤发病率和复发的潜在手段,特别是在炎症指数自然增加的老年患者中。

适应性免疫、膀胱癌和衰老

先天免疫反应可以在老年时被长期激活,但适应性免疫的组成部分,如初始CD4和CD8 T细胞,由于免疫衰老而数量下降,这是由细胞衰老引起的免疫细胞随时间的变化,整体多样性下降

随着年龄增长,老年人适应性免疫反应受损,肿瘤的感知和清除能力下降

随着个体年龄的增长,他们的初始T细胞逐渐减少,T细胞受体多样性减少,T细胞上的共刺激效应分子CD28的水平也比年轻的T细胞上的CD28低。这些变化损害了老年人的适应性免疫反应

随着适应性免疫反应的下降,肿瘤的感知和清除能力也在下降。这些改变在很大程度上导致了观察到的免疫差异。

将适应性免疫细胞蛋白(如CD3和CD8)和肿瘤浸润淋巴细胞(TILs)浓度与临床结果相关联的尝试产生了相互矛盾的结果。

免疫组化分析显示,肿瘤突变负担增加的膀胱肿瘤CD8效应因子评分相应增加,T细胞浸润增强。对膀胱切除术后MIBC肿瘤的研究结果,支持CD3+或CD8+ TILs的增加与生存率的提高相关的观点。

MIBC中TILs的存在是否受年龄的影响尚不清楚。在一项对>50岁患者的MIBC膀胱切除术样本的研究中,没有发现患者的年龄、性别或T细胞标记CD4、CD8或CD56存在相关性。

然而,从更广泛的免疫衰老和衰老意义上来说,所使用队列中的患者的年龄范围相当有限,并没有在特定年龄组之间进行比较。

在更有针对性的比较队列(<40岁和>80岁)中,需要了解免疫衰老的变化如何影响免疫治疗,以提高对膀胱癌中衰老对适应性免疫的影响的理解。

衰老与基础先天免疫活动增加有关,数据表明,在人类组织和小鼠模型中,先天免疫细(如中性粒细胞)的增加肿瘤形成促进剂

然而,尽管T细胞在肿瘤免疫中的非常重要,但是适应性免疫反应在衰老和肿瘤发生中的作用仍不清楚。还需要确定炎症如何促进膀胱癌的决定性实验。

03
衰老、炎症、肠道菌群和膀胱癌

肠道微生物群

人体的肠道微生物组估计有超过1000种不同的细菌和100万亿个单独的细菌细胞。

这些不同菌群的代谢产物通过一层肠细胞、肠道粘液和微折叠免疫细胞与全身循环分离。肠道微生物的产物被腔细胞摄取后,运输到全身,对全身免疫系统产生广泛影响

由肠道菌群组成的变化引起的宿主和肠道菌群间稳态的破坏,是菌群失调,会导致炎症、肿瘤进展和肿瘤对乳腺癌、肺癌和结直肠癌治疗的反应。

菌群失调如何影响免疫

菌群失调破坏肠道屏障,导致释放促炎症的MAMPs,如脂多糖和未甲基化的CpG DNA,加速年龄相关的免疫系统失调

肠道物质的泄漏也发生在肠道血管屏障(GVB)。对肝脏疾病的研究表明,酒精性和非酒精性脂肪性肝炎等情况可破坏肠血管屏障,导致微生物物种的全身传播

我们知道,衰老会导致上皮完整性屏障的破坏,因此,除了肠道-上皮完整性的丧失外,肠血管屏障的完整性的丧失可能是肠道功能障碍中微生物或微生物组分系统性传播的一个尚未被充分研究的方面。据推测,这些物质的泄漏会以对人体健康有害的方式广泛影响免疫力

膀胱癌中的微生物群及其的潜在联系

Martin A,et al.Nat Rev Urol.2022

多种微生物群可能会影响或被膀胱癌的形成所改变,包括肠道微生物群的改变、尿液微生物群的改变和上皮基质界面的改变。

与健康人相比,膀胱癌肠道微生物群的变化包括PrevotellaClostridium丰度降低

膀胱癌患者尿微生物组中以下菌群的丰度高于健康人群:

  • Acinetobacter ↑↑↑
  • Anaerococcus ↑↑↑
  • Sphingobacterium ↑↑↑
  • Fusobacterium ↑↑↑
  • Facklamia ↑↑↑
  • Campylobacter ↑↑↑

同时以下三个菌群的丰度较健康人群偏低:

  • Serratia ↓↓↓
  • Proteus ↓↓↓
  • Roseomonas ↓↓↓

肠道微生物群失调与癌症

肠道失衡与结直肠癌之间的正相关已经得到了很好的证实,但是肠道失衡在多大程度上影响其他肿瘤的进展,包括膀胱癌,还不清楚。

此外,肠上皮完整性的破坏在多大程度上是由肠道菌群的非共生变化驱动的,反之亦然,这一点也存在争论。

膀胱癌患者:普雷沃氏菌、梭菌属减少,丁酸水平降低

一项研究包括26名膀胱癌患者和16名年龄匹配的健康参与者通过定量PCR分析证明,普雷沃氏菌梭状菌群显著减少 。

在同一研究中,膀胱癌患者粪便中的丁酸盐(一种短链脂肪酸)水平降低,而血清中的脂多糖水平升高。鉴于丁盐酸的抗肿瘤作用以及脂多糖和其他与肠道功能障碍相关的MAMPs的促肿瘤作用,这些数据表明微生物群的变化可能是疾病发生的相关因素

迄今为止只进行了这种单一的、小规模的试验。这些发现是否代表肠道失衡、炎症和膀胱癌发生之间的潜在因果联系,或仅是相关的,还需要进一步的研究来确定。

需要在临床前模型中采用直接介入方法来了解短链脂肪酸在肠道失衡和膀胱癌的作用,更重要的是,需要进行更大规模的试验,在膀胱癌患者的分子水平上调查肠道功能障碍,以验证任何发现。

需要进一步调查来确定,这些发现是否代表肠道菌群失调、炎症和膀胱癌肿瘤发生之间的潜在因果关系。

年龄相关的失调机制和对系统性炎症标志物的影响

Martin A,et al.Nat Rev Urol.2022

衰老饮食都可以影响肠道微生物群,导致微生物失调肠道上皮细胞的破坏

这种分解导致微生物相关分子模式(MAMPs)的释放增加和短链脂肪酸(SCFAs)的产生减少,并可导致体循环中MAMP和细胞因子的炎症增加。

大多数研究的结果都认为,当肠道菌群失调发生时,肠上皮细胞的分解通常与之相关,尽管特定细菌亚群的变化及其与肠上皮细胞的相互作用并不完全清楚。了解这些变化对于确定哪些菌群可能对免疫系统产生负面的全身影响非常重要。

首先出现的问题是菌群失调上皮破裂,这一点很复杂,因为它们之间可能有着不可分割的联系,因此,一个或另一个的刺激可能会促成这两个事件。

长寿老人:促炎菌和抗炎菌平衡

对健康百岁老人肠道菌群的研究,为通过恢复肠道健康进行治疗干预提供了潜在的途径。这一观点得到了一项研究的支持,该研究显示,健康状况良好的30-100岁人群的微生物含量具有很强的相似性,这表明存在健康的微生物组,并可能对不符合这一类别的患者进行调节。

到目前为止,结果还没有表明任何特定细菌种类的丰度与长寿是绝对相关的。

相反,尽管老年人有效对抗感染的能力明显下降,但长寿的人会形成促炎和抗炎细菌的平衡

对27项研究的系统综述结果表明,长寿个体在β-多样性(微生物环境间的多样性程度)方面与年轻个体存在差异;然而,通常不会观察到 α 多样性的差异,即每个微生物系统的多样性程度。

总的来说,8项研究涉及百岁老人,4项研究比较了高龄人群和59-85岁人群,4项研究中有2项报告了高龄人群和低龄人群微生物环境多样性程度的差异,而没有研究发现α-多样性的差异。

▸ 老年人的菌群丰度

与年轻个体相比,老年人至少有两个菌群的丰度更高:

  • Akkermansia
  • Chistensenellaceae

与此同时下列菌群的丰度更低:

  • Prevotella
  • Faecalibacterium
  • Bacteroides

然而,研究设计存在相当大的差异,关于哪些菌群构成良好的健康,以及老年人存在哪些变化仍未确定的一致意见。

▸ 长寿老人:AKK菌丰度高

值得注意的是,在系统综述中,Akkermansia在高龄人群(99岁以上)中最常见,这可能与此相关,因为该菌在适当水平时与肠道通透性降低内毒素血症减少对癌症治疗的免疫反应改善有关。

阿克曼菌(Akkermansia,简称AKK菌)还促进Treg分化,限制肠道功能障碍高脂饮食模型中细胞因子的产生,并通过类似机制预防衰老相关炎症。没有保留阿克曼菌的患者可能会增加疾病发展的风险,包括膀胱癌,或者可能对化疗反应不好。

▸可能存在:AKK菌促进健康的“正确”水平或必要的平衡

抗生素的使用与免疫治疗的不良结果相关,矛盾的是,与不使用抗生素的患者相比,许多服用抗生素的患者AKK增加,而且,AKK高水平的存在与总生存率呈负相关(使用抗生素的患者P  = 0.011,不使用抗生素的患者P  = 0.018)。

然而,AKK只是可能对微生物功能至关重要的许多不同实体之一,单一实体治疗不太可能像基于平衡微生物组的更强大的改变(如粪菌移植)那样有效。

肠道菌群随年龄并发疾病的变化可能是膀胱癌的危险因素,可通过直接给予益生元和益生菌或通过粪菌移植减轻

04
短链脂肪酸、衰老与微生物群

▸ 短链脂肪酸

短链脂肪酸(SFCAs)由肠道细菌产生,是肠细胞的主要能量来源,是G蛋白偶联的游离脂肪酸受体配体。作为组蛋白去乙酰化酶抑制剂,可通过预防致瘤前表观遗传变化直接限制肿瘤生长

短链脂肪酸主要存在于肠道中,但它们也可能对治疗膀胱癌有用。在体外,短链脂肪酸在很大程度抑制先天免疫系统。

抗肿瘤作用

由于它们的多种作用和潜在的抗肿瘤活性,产生有益的短链脂肪酸可能是肠道维持健康环境的一种手段,也可能有助于预防结肠癌

丁酸盐减少癌细胞生长,帮助维持健康的上皮屏障

由于癌细胞与非恶性细胞之间代谢的Warburg效应型变化(有氧糖酵解),丁酸盐通过氧化代谢和能量产生促进非恶性细胞的生长,但减少癌细胞的生长,因为癌细胞不能有效代谢丁酸盐,丁酸盐在细胞核中积累,在细胞核中发挥组蛋白去乙酰化酶抑制剂的作用。因此,丁酸盐可以帮助维持健康的上皮屏障

百岁老人肠道菌群中的短链脂肪酸水平上调

在一项研究中,80-99岁的老年人群中健康的老人总短链脂肪酸浓度升高;另一项研究结果显示,与老年患者相比,百岁老人的肠道菌群中产生短链脂肪酸的代谢途径(如乙酸和丙酸)表达水平上调

除了存在一些与短链脂肪酸产生相关的细菌外,与小于80岁的人群相比,老年人粪便中的细菌数量通常减少。短链脂肪酸水平随着年龄的增长逐渐下降,而百岁老人开始恢复Akkermansia水平。

粪菌移植期间补充Akk菌可能有助于短链脂肪酸的保留

另一项研究的结果表明,在粪菌移植期间用巴氏消毒Akkermansia治疗小鼠,会导致肠道中短链脂肪酸的形成短暂增加,因此,如果这项技术能够完善,在粪菌移植期间补充Akkermansia或其他产生短链脂肪酸的细菌可能有助于改善短链脂肪酸的保留,并预防或治疗癌症

在脂多糖处理的骨髓源性巨噬细胞中,丁酸、丙酸和乙酸均以剂量依赖的方式降低IL-6和IL-12的产生。丁酸和丙酸也会降低脂多糖处理单核细胞中单核细胞趋化蛋白-1的表达

通过这些作用,短链脂肪酸可能缓和过度的免疫激活,促进免疫调节。

抗炎作用

短链脂肪酸体外作用似乎具有抗炎作用,但其对膀胱癌适应性免疫系统的作用尚不清楚。

特别是丁酸盐,通过诱导调节性T细胞产生IL-10和激活 FAS 介导的T细胞凋亡,下调适应性免疫反应

短链脂肪酸高可能影响免疫治疗效果

丁酸盐和丙酸盐均通过抑制抗原呈递细胞产生IL-12抑制CD8+T细胞活化,全身水平的短链脂肪酸高与转移性黑色素瘤细胞毒性T淋巴细胞抗原4(CTLA4)免疫治疗的不良结果有关。

直接通过短链脂肪酸或间接通过前列腺素E2下调T细胞对免疫治疗和顺铂化疗均有不利影响,因为传统的肌肉浸润性膀胱癌新辅助顺铂化疗会刺激效应T细胞。因此,降低T细胞的疗效也可能改变化疗

这些观察结果可以部分解释在肿瘤床上升高的前列腺素E2表达与不适当抑制免疫反应化学耐药性有关

总之,这些发现表明短链脂肪酸在宿主免疫功能中参与发挥抗炎作用,尽管这一假设可能过于简单化,短链脂肪酸还可以刺激中性粒细胞趋化,因此可能有其他重要的调节作用。

然而,文献强烈支持短链脂肪酸的抗肿瘤作用,尤其在结直肠癌中,可能是因为短链脂肪酸在结肠中的浓度增加,以及介导丁酸差异效应的代谢变化,对癌细胞具有直接作用

衰老过程中,维持体内稳态需要抗炎促炎信号,而短链脂肪酸除了自身具有抗肿瘤作用外,还可能是调节这一系统的一种手段。这些发现已经在体外和体内观察到,但迄今为止没有研究将人类短链脂肪酸水平与膀胱癌结果直接相关。

鉴于与肠道和全身短链脂肪酸水平相关的多种影响,短链脂肪酸可能充当免疫调节剂,因此,塑造使短链脂肪酸产生正常化的微生物含量,是增强或促进免疫治疗的潜在手段。

肠道微生物群的变化可能成为膀胱癌和其他癌症的治疗靶点。应该在这些群体和其他群体之间进行更广泛的比较,以了解哪些类型的微生物生态系统对人类的健康和寿命最有益。

05
环境、衰老和肠道菌群

当前的数据支持这样一种观点,即与年龄相关的微生物群变化可能最终影响疾病进展结果治疗反应等因素。

衰老在肠道微生物变化中的作用尚不清楚;此外,一些证据表明,环境因素对肠道微生物群有实质性的影响

环境是微生物组的主要影响因素

一项包括来自中国同一小区域的1000多名极健康个体的研究结果表明,当研究人员试图控制总体健康时,30至100岁的个体粪便微生物群组成几乎没有变化,虽然在30岁以下的个体和30岁以上的个体中发现了相当大的差异。

通过主成分分析评估,30-100岁非常健康的个体的粪便微生物群高度一致,支持了其他研究的结果,这些研究表明环境,而不是年龄或遗传,是微生物组的主要影响者

值得注意的是,该研究的入选标准具有极高的选择性,通过严格的生活方式分析,几乎99%的患者被拒绝入选;选择标准包括吸烟状况、饮酒、饮和其他与肠道功能障碍相关的因素。

因此,尽管这些数据表明年龄是肠道微生物群变化的促成因素,但这一观察结果可能仅与这些高选择性标准所代表的一小部分人有关。然而,本文提出了一个假设,即衰老本身可能不如与衰老相关的饮食变化或生活方式变化重要。

动物模型:年龄、肠道健康和全身炎症之间的联系

在小鼠、狒狒和果蝇模型中,肠道菌群的变化与年龄有关,并与肠道屏障完整性的破坏有关

在小鼠中,用荧光素异硫氰酸酯(FITC)标记的葡聚糖测量肠道通透性,其血清水平IL-6肿瘤坏死因子(TNF)水平一起随年龄线性增加

肠道菌群组成——肠道屏障功能障碍

在果蝇中,观察到老年果蝇肠道中细菌组成的改变和细菌总负荷增加,与年轻果蝇相比,肠道中不可吸收蓝色染料(肠道屏障功能障碍的替代品)浓度也相应增加。

结肠完整性的破坏——年龄

在狒狒中,结肠完整性的破坏与年龄有关,与10岁以下的狒狒相比,年长的狒狒(年龄≥18岁)结肠组织的免疫组化分析显示封闭蛋白(occludin)、连接蛋白(claudin)和紧密连接粘附分子减少,同时大分子辣根过氧化物酶(肠通透性的另一标志)在结肠上皮的通量增加

此外,18岁狒狒的结肠活检中IL-6、IL-1βIFNγ水平高于10岁灵长类动物。

肠道功能障碍——细菌成分的全身释放

另一项比较21月龄小鼠与4或12月龄小鼠肠道通透性的研究结果显示,老年小鼠血清FITC-右旋糖酐水平的增加与体循环中脂多糖水平的增加相关,将肠道功能障碍细菌成分的全身释放联系起来。

LPS 和其他 MAMP 与 IL-1β、IL-6 和 TNF 等细胞因子的增加密切相关,提供了肠道菌群失调、慢性炎症和肿瘤发生之间可能的机制联系。

所有这些数据都支持这样的观点,即肠道功能障碍随着年龄的增长而增加,与其他哺乳动物的饮食或生活方式的变化无关,但由于适当控制人类饮食的复杂性,尚未在人类中进行评估。

免疫功能障碍——衰老——微生物群

衰老过程中,循环细胞因子的增加在具有14个月或以上老年动物的微生物群的小鼠模型中加剧,将免疫功能障碍与衰老和微生物群联系起来。

相比之下,无菌小鼠在衰老过程中通常不会表现出,老年特异性无病原体小鼠所表现出的循环细胞因子的增加,并且在很大程度上可以防止衰老相关炎症和巨噬细胞功能障碍,除非它们再次暴露于微生物群。

衰老——肠道通透性——炎症——菌群

将无菌小鼠暴露于14月龄动物的菌群中,比无菌小鼠暴露于幼龄小鼠的菌群中更能促进肠道通透细胞因子释放

这一机制依赖于肿瘤坏死因子,使用抗肿瘤坏死因子拮抗剂治疗可以改善衰老引起的微生物群的变化。因此,由肠道功能障碍介导的MAMP或DAMP释放与老年炎症表型之间发生了实质性的相互作用,从而导致炎症系统的慢性全身激活

为了将这些发现转化为膀胱癌,除了了解局部微生物群(包括尿液微生物群和肿瘤本身)之间的联系外,还需要进一步了解膀胱癌背景下的肠道微生物群。

06
尿液和膀胱微生物群

到目前为止,对尿液微生物群的研究还缺乏一个关于什么是正常尿液微生物群的明确共识:由于收集方法的差异和相对较小的样本量,目前关于健康尿液微生物群的定义存在很大差异。

目前对尿液和膀胱微生物群及其改变的了解有限。局部微生物环境的失衡与多种上皮性癌症的肿瘤进展有关,包括乳腺癌、宫颈癌和子宫内膜癌。

健康膀胱的微生物群

健康的尿液微生物群

目前的初步研究一致认为,健康成年志愿者的尿液微生物中至少包含四种细菌种群:乳酸菌链球菌是尿液微生物中最稳定存在的属,与年龄和采样方法有关,而厚壁菌门不动杆菌门是两性尿液微生物中最丰富的门。表明这些是该人群中最有可能构成健康尿液微生物组的成分。

女性尿液中乳酸杆菌种类的含量高于男性

根据对健康志愿者进行的两项独立研究的结果,尿液微生物群性别差异很明显。研究表明,女性尿液中乳酸杆菌种类的含量高于男性尿液中的含量。

我们还不清楚这一观察结果与癌症的关系,但这一发现的一个潜在的重要方面是,男性与女性泌尿系统微生物群的差异或女性泌尿系统微生物群的个体间差异可能与女性泌尿系统感染的流行有关,或她们膀胱癌发病率降低,因此可能会影响膀胱的整体微环境。

菌群在不同年龄的差异

在同一项包括23名健康成年人的研究中,下列四种菌群仅在>70岁的个体中发现:

  • Jonquetella
  • Proteiniphilum
  • Parvimonas
  • Saccharofermentans

此外,在男性中,属的数量会随着年龄的增长增加,而细菌总数减少性别年龄差异影响尿液微生物群

尿液微生物:个体间差异极高

研究结果还表明,个体间差异极高,限制了更深入的分析。由于这种高变异性,对泌尿系统微生物的调查缺乏类似的大型多种族和多种族肠道微生物群研究的力量,因此饮食基因、男性和女性短期或长期激素变化的重要性,以及泌尿系统微生物的卫生还没有确定。

需要大型的多中心的多种族的、具有共识方法论和清晰统一的分析管道的研究来完善该领域的假设并产生共识。

疾病下的尿液微生物群

多项研究报道尿失禁、间质性膀胱炎和泌尿生殖系统癌患者尿液微生物群落的物种多样性相对丰度存在差异

健康人群与膀胱癌人群的微生物组差异

在膀胱癌方面,一项包括12例膀胱癌患者和11名年龄匹配的志愿者的研究结果显示,与健康成年人相比,膀胱癌患者富集了以下四种菌群:

  • Fusobacterium
  • Actinobaculum
  • Facklamia
  • Campylobacter

与间质性膀胱炎和慢性前列腺炎等疾病相比,使用Simpson指数测量的健康成人和膀胱癌患者之间的物种多样性(α-多样性)在种或科水平上没有总体差异,这表明膀胱癌的尿液微生物群可能不像其他炎症性疾病状态那样受影响,尽管这一观察结果可能是因为该研究力量不足。

然而,在特异性操作分类单元(OTUs)水平上进行差异分析,可以减少测量参数的数量,从而识别差异,表明相互关联的物种可能在肿瘤发生中发挥作用。

一项针对31名膀胱癌男性的研究结果显示,与18岁匹配的健康个体相比,下列三种菌群的丰度增加:

  • Acinetobacter ↑↑↑
  • Anaerococcus ↑↑↑
  • Sphingobacterium ↑↑↑

同时下列几种菌群降低

  • Serratia ↓↓↓
  • Proteus ↓↓↓
  • Roseomonas ↓↓↓

由于个体数量少,这些研究不足以完全确定特定细菌种群的变化。对于尿液微生物菌群研究在多大程度上反映了膀胱内的微生物群也知之甚少。

Andolfi C, et al., Bladder Cancer. 2020

关于膀胱肿瘤微生物组的研究仅限于两项研究。两者的结果都表明,肿瘤与非恶性组织中的 α 多样性导致物种丰富度相对降低。一项研究发现,膀胱微生物组的门(如厚壁菌门和放线菌门)的相对丰度与之前在其他研究中报道的尿液微生物组值相似。

联合测量来自同一患者尿液和膀胱肿瘤样本的微生物群目前在文献中还没有。这些因素支持了对肿瘤分级或分期与泌尿系统微生物组之间差异的调查,以及使用更大的患者队列进行明确的、多机构的、控制良好的研究的必要性。

肠道菌群和尿液菌群是否存在联系?

尿液微生物群的影响尚不完全清楚,衰老和肠道生态失调导致的免疫失调的直接影响可能会增加膀胱癌的发病风险。

然而,没有研究直接比较同一患者的尿液微生物群肠道微生物群的变化。需要进行研究来评估与衰老和炎症相关的肠道生态失调是否也发生在泌尿系统的微生物群水平上,或任何其他含有微生物的解剖部位。

如果存在潜在的机制,尿液微生物的失调可能是衰老、炎症、失调膀胱癌风险之间的联系。

系统性炎症、尿路上皮增生与膀胱癌之间的假设联系

Martin A,et al.Nat Rev Urol.2022

衰老引起的炎症变化以及肠道上皮完整性的降低可导致循环促炎介质水平的增加,例如细胞因子和微生物激活分子模式 (MAMP).

LPS介导的toll样受体4 (TLR4)激活可导致骨形态发生蛋白4 (BMP4)、音猬因子 (SHH)、WNT -β-catenin和STAT3通路的激活,促进尿路上皮的增殖。BMP4、SHH、WNT -β-catenin和STAT3通路在膀胱癌中调控异常,但还没有研究直接将LPS或MAMP介导的BMP4、SHH、WNT -β-catenin和STAT-3的激活与膀胱癌的发生联系起来。当转化发生时,带有肿瘤相关巨噬细胞(TAMs)和肿瘤浸润性中性粒细胞(TINs)的尿路上皮的慢性炎症阻止了适当的免疫反应和肿瘤清除,并可能通过释放细胞因子、生成活性氧(ROS)和促进免疫抑制环境进一步加剧肿瘤的形成。PGE2,前列腺素E2.

尿道上皮-基质界面对炎症和癌症的反应

由尿路上皮细胞和局部感染性细菌引起病原相关分子模式(MAMPs)驱动和损伤相关分子模式驱动炎症可能是年龄肠道上皮破坏和在许多膀胱肿瘤中发现的先天免疫信号之间的一种机制联系。

脂多糖增加炎症因子的释放

在体外人类和小鼠模型中,来自尿路致病性大肠杆菌的脂多糖通过TLR4信号通路增加尿路上皮细胞中IL-6、IL-8和PGE2细胞因子的释放。

此外,脂多糖激活尿路上皮细胞上的电压门控钾通道,介导IL-6释放。脂多糖通过磷酸化途径激活巨噬细胞和泌尿黏膜中的TLR4,这与膀胱癌的发展和化疗耐药有关

STAT3促肿瘤

免疫组织化学(IHC)分析发现,与非侵袭性发光型肿瘤相比,局部侵袭性肿瘤中STAT3磷酸化水平升高,抑制STAT3可降低膀胱癌细胞系的增殖。在小鼠中,阻断尿路上皮细胞中的 STAT3 可降低膀胱癌的发生和侵袭性。

IL-8和PGE2促肿瘤

脂多糖介导的尿路上皮IL-8和PGE2增加在膀胱癌中也具有促肿瘤作用。在经尿道膀胱肿瘤标本切除的新鲜冷冻组织中,与非侵入性肿瘤相比,浸润性肿瘤中IL-8和基质金属蛋白酶9水平升高

前列腺素E2促肿瘤

此外,前列腺素E2增加高级别膀胱癌细胞系的增殖,在接受吉西他滨和顺铂标准化疗方案治疗的小鼠中使用塞来昔布抑制前列腺素E2,产生了持续的治疗反应,并通过消除患者来源的肿瘤异种移植模型中CK14+细胞的形成克服了化疗耐药性

这些研究表明尿路感染期间脂多糖相关炎症膀胱癌进展之间存在多种趋同途径。

尿路感染后信号通路的改变

重要的是,对尿路感染的生理尿路上皮反应受到音猬因子重组蛋白(SHH)、骨形态发生蛋白4 (BMP4)和WNT -β-catenin信号通路的高度调控,这些信号通路在恶性转化过程中经常发生改变

尿路感染后的尿路上皮再生是由尿路上皮基底层分泌SHH的干细胞增殖驱动的。感染后,下游SHH信号通路通过BMP4和WNT-β-catenin信号通路诱导尿路上皮和基质细胞增殖终末分化

这种作用在前列腺素合成抑制剂治疗后被逆转。

这些再生途径中的每一个的丧失或改变都与膀胱癌发生有关。在 BBN 小鼠模型中,SHH 阳性基底细胞是膀胱癌的主要祖细胞。SHH 的丧失和进展为膀胱癌可能是通过 BMP 基质信号传导的丧失而发生的。

免疫组化分析显示,与非恶性尿路上皮黏膜相比,在人膀胱癌肿瘤中观察到WNT糖蛋白活性升高。这一发现在小鼠模型中得到了进一步的支持,在功能获得突变体中β-连环蛋白的构成性激活导致了12周后30%的小鼠发生低级别膀胱肿瘤。

有趣的是,在具有构成型活性β-连环蛋白的小鼠中,肿瘤的发生是性别依赖的,45%的雄性小鼠发生肿瘤,而雌性小鼠只有3%,这最终与雄激素受体(AR)信号有关。

在人类和普通小鼠模型中都发现了膀胱癌的性别二态,但其原因是多因素的,也与表观遗传机制中的染色体差异有关

这些发现呈现了尿路上皮在响应急性脂多糖介导的炎症反应和尿路上皮癌的发展之间呈现出许多重叠特征。

年龄相关的肠屏障破坏,诱发炎症;免疫系统变化,增加肿瘤风险

然而,尿路感染与膀胱癌风险的增加并没有特别的关联。当与衰老和肠上皮完整性丧失相结合时,由于与年龄相关的肠屏障破坏,长期暴露于基底尿路上皮层的脂多糖或其他损伤相关分子可能会诱发慢性膀胱炎症,并增加细胞周转,以及与年龄相关的免疫系统变化增加肿瘤转化的可能性。

慢性膀胱炎症诱导的肿瘤转化可能是女性特有的一种机制,因为尿路感染在女性中更为突出,而膀胱癌在男性中更为常见

关于衰老相关炎症、微生物群和膀胱癌发生的研究仍然不完整,需要更多的假设检验来确定这些不同实体(衰老、微生物功能障碍、炎症改变)在这一过程中导致的具体变化和肿瘤相关结果。

研究肠道和尿液微生物群对浅表性癌症治疗反应的影响,可能为微生物群和膀胱癌进展提供额外的见解。

07
与微生物和年龄相关的治疗及反应

新的证据表明,浅表膀胱癌治疗受到肠道尿道微生物群的影响。

目前,高级别非肌肉浸润性膀胱癌的一线治疗是细菌疫苗株卡介苗。卡介苗的疗效随着年龄的增长而降低,早期数据表明,疗效还受尿微生物中变形菌群丰度的影响

一项包括1106例患者的卡介苗干扰素膀胱内治疗的II期多中心试验的数据表明,年龄在61-70岁的患者在卡介苗干扰素治疗后的无癌生存期优于80岁或以上的患者(3 年无癌生存率为 65%对 47% ,P  = 0.036)或卡介苗单药治疗(3 年无癌生存率 55% 对 32%,P  < 0.003)。

令人惊讶的是,在这项研究中,小于50岁的患者的预后较差;然而,在多变量分析中,年龄仍然是反应的独立危险因素。

在一项包括805名Ta、T1或CIS高分级患者的独立研究中,年龄为>70岁的患者的无癌生存期低于年龄<70岁患者(37% 对 27%,P  = 0.005)。

在接受益生元或益生菌治疗的个体中,非肌肉浸润性膀胱癌复发减少。最后,肠道菌群介导了实体肿瘤(如黑色素瘤)中对PD1治疗的反应,这可能与晚期膀胱癌中免疫治疗具有共同机制。

卡介苗

关于卡介苗抑制肿瘤复发的机制尚不清楚,一种假设是卡介苗诱导膀胱内的局部促炎性先天免疫反应,进而刺激对卡介苗和肿瘤抗原的适应性免疫反应

在治疗后的前3年,由于未知的原因,卡介苗未能阻止肿瘤复发的患者占30%,年龄可能是无反应的原因之一。

年龄越大,卡介苗疗效越差

接受卡介苗治疗后,61-70岁的患者中有61%在24个月时无复发,而>80岁的患者中有39%无复发。

这些结果得到了另一项研究的支持,该研究表明70岁以下(27%)和70岁以上(37%)患者5年后无病生存率的绝对差异为10%;然而,这两个年龄组中与年龄相关死亡风险没有报道。

因此,年龄可能是非肌肉浸润性膀胱癌复发的独立危险因素,但与年龄相关的免疫系统衰退是否相关尚不清楚

卡介苗应答取决于多种因素,不止年龄

在一项小型研究中,31名卡介苗应答者与32名卡介苗无应答者进行了比较,结果表明,肿瘤PDL1状态而不是T细胞PD1状态是卡介苗应答的决定因素,这表明卡介苗的总体应答可能取决于许多不同的因素,而不仅仅是年龄。

尿液微生物群也可能在卡介苗反应中起作用

在一项包括31例接受卡介苗治疗的高危非肌肉浸润性膀胱癌患者的研究中,观察到卡介苗应答者和无应答者在OTU水平上的尿液微生物群差异

卡介苗治疗6个月后无病的患者比复发患者尿厚壁菌门(如乳杆菌和变形杆菌)丰度更高

鉴于非肌肉浸润性膀胱癌中益生菌和饮食的潜在保护作用,对卡介苗有反应的人群中乳酸杆菌丰度的增加尤其引人注目。

年龄、免疫状态和尿液微生物组与卡介苗反应之间的确切联系尚未确定

考虑到有相当多的非肌肉浸润性膀胱癌患者最终会进行膀胱切除术,对年龄相关卡介苗反应降低的机制进行更好的了解,将对评估复发风险改善对现有治疗的反应非常有益。

饮食和益生菌

在日本,肠道微生物组长期以来一直是浸润性膀胱癌治疗的目标,部分原因是发酵乳制品中广泛使用的乳酸菌,以及报道的小鼠口服乳酸菌制剂的抗肿瘤特性

 乳酸杆菌

乳酸杆菌与膀胱癌复发减少或低发病率相关

一项包括138名患者的双盲随机对照试验结果显示,口服干酪乳杆菌制剂与安慰剂相比,男性和女性浸润性膀胱癌复发减少

这些结果得到了一项病例对照研究的支持,该研究包括180名膀胱癌患者和445名年龄和性别匹配的健康志愿者,他们有10-15年的发酵牛奶的习惯摄入史(发酵奶是高脂肪的天然来源),每周1-2次乳酸杆菌(OR 0.46,95 % CI 0.27–0.79)或3-4次乳酸杆菌(OR 0.61,95% CI 0.38–0.99)与膀胱癌发病风险的降低有关

这些发现得到了一项前瞻性试验结果的进一步支持,该试验包括202例经尿道膀胱肿瘤切除术后的浸润性膀胱癌患者,他们被随机分为两组,一组接受六次膀胱内表阿霉素治疗,另一组接受六次膀胱内表阿霉素治疗,外加每日3克干酪乳杆菌口服制剂,为期1年。

接受表阿霉素加每日制剂乳酸杆菌的患者3年无复发生存率为74.6%,而单独表阿霉素组仅为59.9% 。

这些研究没有调查粪便微生物组是否发生了变化,因此可以推断因果关系的程度有限。需要通过研究确定益生菌相关的变化,以及这些变化如何影响膀胱癌相关结果,来验证这些发现。

乳酸杆菌与肠道黏膜炎症减少有关

然而,在葡聚糖硫酸钠诱导的小鼠结肠炎症模型中,乳酸杆菌种类肠道黏膜炎症减少有关。

在体外实验中,唾液乳杆菌降低肠上皮细胞系中TLR受体的激活,导致上皮细胞之间紧密连接的组装增加,可能减少系统性脂多糖和慢性炎症

还需要在膀胱癌动物模型中进行更多的研究,以直接确定全身的病原相关分子模式水平是否也与全身炎症相关。

扩展阅读:如何调节肠道菌群?常见天然物质、益生菌、益生元的介绍

 萝卜硫素

除了乳酸菌,萝卜硫素也可能在恢复肠道屏障健康降低膀胱癌发展风险方面发挥保护作用。

萝卜硫素饮食的小鼠丁酸水平增加

用亚硝基胺(BBN)治疗的小鼠和喂食高萝卜硫素饮食的小鼠丁酸水平增加,但与单独用亚硝基胺治疗的小鼠相比没有表现出增加的存活率。

肿瘤发生时间延长,发病率降低

然而,有趣的是,饲喂西兰花提取物(萝卜硫素的主要来源)的大鼠在暴露于亚硝基胺8周后,与未接受西兰花提取物的大鼠相比,肿瘤的发生时间延长了24周,其膀胱肿瘤发病率降低了58%.

重要的是,口服西兰花提取物导致小鼠在喂食12小时后尿液中生物活性异硫氰酸盐(包括萝卜硫素)的浓度比血清中70% 。

这些化合物也会干扰亚硝基胺的代谢,由于它们在尿液中积累,其功能主要是通过改善肠道健康还是直接作用于尿路上皮细胞的其他机制尚不清楚。需要新的研究来调查它们对肠道健康、随后的炎症和微生物差异的影响,以改进对确切机制的定义。

总之,这些研究的结果表明,改变饮食,无论是口服乳酸杆菌萝卜硫素,都可以降低膀胱癌的风险。这两种方法都与血清中细菌脂多糖浓度的降低相关,脂多糖是小鼠模型中肠道炎症的系统性标记物。

然而,关于乳酸杆菌或萝卜硫素在多大程度上诱导与治疗反应相关的肠道或尿液微生物组的积极改变,目前还缺乏数据

粪菌移植和PD1免疫疗法

菌群失调对PDL1-PD1轴的影响是一个有趣的话题。2016年首次批准PD1抑制剂用于顺铂难治性晚期膀胱癌。

总的来说,阿克曼菌Akkermansia、肠球菌、梭状芽孢杆菌、瘤胃球菌、粪杆菌和双歧杆菌的丰度增加与肺癌、肾癌和黑色素瘤等癌症对PDL1治疗的反应改善有关。

在转移性黑色素瘤患者中,研究中定义的患者粪便中“有益”与“无益”OTU数量的增加与抗PD1治疗反应的改善呈正相关

PD1响应者粪菌移植的小鼠有更强的抗肿瘤反应

在对肠道微生物组和免疫治疗反应的三项独立研究中,从PD1治疗反应者到无菌小鼠的粪便移植产生了比无菌小鼠更强抗肿瘤反应

在一项研究中,研究了转移性黑色素瘤患者肠道微生物组和肿瘤微环境之间的相关性,以评估肿瘤微环境的发现是否可以预测对PD1免疫疗法的治疗反应。

对肿瘤活检的免疫组化分析显示,对PD1免疫治疗反应良好的患者,其肿瘤床上的CD8+ T细胞密度更大,调节性T细胞更少

此外,响应者的物种多样性瘤胃球菌科细菌的相对丰度高于无响应者。考虑到准确定义和匹配供体材料的重要性,必须了解粪菌移植如何改善抗免疫抑制分子或抗PDL1治疗的反应。

鉴于这些变化,作者得出结论,为 FMT 和其他微生物疗法准确匹配和定义微生物群可能需要额外的匹配,如年龄性别,并准确定义理想的供体-宿主关系。

总之,这些发现强烈表明,在PD1免疫治疗的情况下,肠道微生物群可能会影响对癌症的全身免疫反应

所有关于肠道微生物组和对PD1抑制剂的反应的初步研究都比较了相对物种丰度和处理反应。这种方法不能解释细菌总负荷的变化以及体循环中代谢物浓度的潜在差异。

微生物组是否通过直接的抗原相互作用对免疫系统产生影响,或者微生物组的代谢产物,包括潜在的有益成分和潜在的有害成分,是否间接地影响免疫系统,目前尚不清楚

这种区别很重要,因为如果微生物组的主导作用是通过体循环中的代谢物间接发生的,那么微生物组可以被广泛地认为是一个更大的代谢产物网络的代表。

在这个模型中,许多不同的细菌组合有可能创造一个治疗性代谢网络,这与结果一致,表明促炎和抗炎成分健康的老龄化都是必要的。

如果微生物组主要通过直接的免疫原性相互作用发挥作用,使免疫细胞对抗特定抗原,那么某些细菌种群的丰度至关重要的。

结 语

膀胱癌的发病率衰老密切相关。在老年患者中常见的炎症导致先天免疫系统失调持续激活与活性氧表达和细胞因子释放相关的细胞。

年龄相关的肠道微生物组变化可能有助于防止老年患者肿瘤的发生和肿瘤的治疗,但这些变化是否在功能上与老年患者的致瘤性炎症特征有关还有待确定

许多膀胱癌患者以及其他尿道疾病患者与健康人群相比,尿液微生物群出现紊乱。需要更多大样本的基础研究,来确定膀胱癌或尿道疾病相关的菌群变化机制,从而更好地帮助治疗疾病。

附录:可能预防膀胱癌的措施

没有确定的方法可以预防膀胱癌。但可以做一些有助于降低风险的措施。

饮食

虽然说没有一种食物本身可以绝对防止患癌症。但研究表明 ,富含各种水果、蔬菜、豆类、全谷物和其他植物性食物的饮食可以降低患多种癌症的风险,包括膀胱癌。

绿叶蔬菜

根据BCAN的数据,研究人员将每份蔬菜与膀胱癌风险减少10%联系起来。绿叶蔬菜含有抗氧化剂,抗氧化剂修复细胞损伤,同时还具有抗炎特性,甚至可以帮助预防癌症。例如:西兰花、卷心菜、南瓜、小麦胚芽、菠菜、羽衣甘蓝等

水果

研究人员还认为水果可以降低10%的膀胱癌风险。柠檬、橙子、葡萄柚和酸橙等柑橘类水果具有抗氧化特性,可以起到保护作用。其他还包括浆果,梨,苹果等。

BCAN 表示,每天喝一杯茶,患膀胱癌的风险降低 6%,对动物的研究表明,多酚化合物会阻碍膀胱肿瘤的生长。绿茶中含有表没食子儿茶素-3-没食子酸酯,具有抗癌特性。

注意:红肉等加工食品中的化学物质会加剧膀胱癌的病情,此外还应避免酒精,零食等。尽可能均衡、健康地饮食。

天然补充剂

西兰花芽丸、绿茶或姜黄素补充剂已经成为接受膀胱癌治疗的流行天然补充剂。然而,研究未能提供它们对人类有益的结论性证据。

在膀胱癌治疗期间服用姜黄素补充剂似乎可以使小鼠的肿瘤减小。

西兰花芽提取物对膀胱癌细胞的体外生长有抑制作用。

维生素E

据MayoClinic称,大量摄入富含维生素E的食物可以降低膀胱癌恶化的风险。

硒是指一种具有抗氧化特性以防止细胞损伤的矿物质。因此,专家认为通过食用富含硒的食物可能帮助控制膀胱癌。如巴西坚果、核桃和燕麦片等。

生活方式

限制场所

化工场所包括橡胶、皮革、印刷材料、纺织,油漆,铝,芳香胺、砷,染料,地毯,美发,打印等行业,接触时间过长可能患膀胱癌的风险更高,如在这些行业工作,尽可能遵守安全规则,做好防护措施。

尽可能减少吸烟

吸烟的人患膀胱癌的可能性至少是不吸烟的人的 3 倍。

多喝水

多喝水可能降低患膀胱癌的风险。如果喝白开水有困难,可以在水中加入新鲜柠檬片等来保持水分。

注:本账号内容仅作交流参考,不作为诊断及医疗依据。

主要参考文献:

Martin A, Woolbright BL, Umar S, Ingersoll MA, Taylor JA 3rd. Bladder cancer, inflammageing and microbiomes. Nat Rev Urol. 2022 Jul 7. doi: 10.1038/s41585-022-00611-3. Epub ahead of print. PMID: 35798831.

Babjuk M. Bladder Cancer in the Elderly. Eur Urol. 2018 Jan;73(1):51-52. doi: 10.1016/j.eururo.2017.04.018. Epub 2017 May 4. PMID: 28478044.

Andolfi C, Bloodworth JC, Papachristos A, Sweis RF. The Urinary Microbiome and Bladder Cancer: Susceptibility and Immune Responsiveness. Bladder Cancer. 2020 Sep 21;6(3):225-235. doi: 10.3233/BLC-200277. PMID: 33195783; PMCID: PMC7605348.

Kacew A, Sweis RF. FGFR3 Alterations in the Era of Immunotherapy for Urothelial Bladder Cancer. Front Immunol. 2020 Nov 5;11:575258. doi: 10.3389/fimmu.2020.575258. PMID: 33224141; PMCID: PMC7674585.

Palumbo C, Knipper S, Pecoraro A, Rosiello G, Luzzago S, Deuker M, Tian Z, Shariat SF, Simeone C, Briganti A, Saad F, Berruti A, Antonelli A, Karakiewicz PI. Patient frailty predicts worse perioperative outcomes and higher cost after radical cystectomy. Surg Oncol. 2020 Mar;32:8-13. doi: 10.1016/j.suronc.2019.10.014. Epub 2019 Oct 25. PMID: 31683158.

Zhang Y, Hou Q, Ma C, Zhao J, Xu H, Li W, Wang Y, Ma H, Zhang H, Sun Z. Lactobacillus casei protects dextran sodium sulfate- or rapamycin-induced colonic inflammation in the mouse. Eur J Nutr. 2020 Jun;59(4):1443-1451. doi: 10.1007/s00394-019-02001-9. Epub 2019 May 23. PMID: 31123864.

客服