Tag Archive 菌群发育

人生的镜像-菌群人生,从出生到死亡的菌群演替

谷禾健康

每个人的一生都会经历很多,从出生到长大健康到衰老疾病。你的出生、遗传、家庭环境、很大程度上决定的人生起点,日常的饮食、行为习惯决定你的身体成长,一些不同的选择或意外的事件又会让人生有很多起伏和不同。

每个人的菌群和我们的人生一样也是独一无二的,我们菌群的特点反映着不同人各自生活的烙印。从母亲的腹中开始影响和决定了我们最初的菌群,出生方式、喂养的食物、用药等都决定了我们的菌群基数。当我们开始从喝奶到开始摄入辅食,我们的菌群也同样迎来巨大的演变。当我们生病、感染、运动、饮食、社交、虚弱、衰老这些同样反映在我们菌群的变化和演替上。

相对的,当我们更多的了解我们的菌群,善待和改善它们,同样的变化也会出现在我们的身体和生活中。

越来越多的证据表明,年龄与人类微生物群之间的关联很大,肠道微生物群是许多年龄相关变化的核心,包括免疫系统失调疾病易感性。几个身体部位的微生物组成可以相对准确地预测人类的年龄。

谷禾健康肠道菌群检测数据库中,也有关于肠道年龄预测:

谷禾健康-肠道年龄预测模型图

<来源:谷禾健康肠道菌群数据库>

可以看到,肠道年龄和生理年龄基本是符合的。健康人的肠道菌群年龄恰恰是最符合真实年龄的,与真实年龄差异大意味着肠道菌群出现偏离

健康的人存在多样化且平衡的肠道菌群。微生物群中与年龄相关的变化归因于生理,生活方式和健康状况。这些因素中的每一个都与某些菌群的相对丰度变化有关。

例如,饮食、卫生、兄弟姐妹、宠物、过敏、儿童疾病和抗生素是影响儿童微生物组的一些突出因素。到了成年期微生物群相对稳定,而到了老年期,一些有益菌开始逐渐下降,菌群又向另一个阶段过渡。

在从出生到死亡和分解的每个生命阶段,微生物群落都是身体的动态组成部分。研究微生物群的自然和诱导变化有可能彻底改变我们对人类生物学的理解。

本文介绍了健康人的微生物群在一生中的变化,讨论了从出生时菌群构成,到疾病或抗生素使用时的变化,再到死亡时的微生物扩展的各个阶段,以及这些阶段在身体部位组成(细菌、真菌或病毒)上的差异。了解微生物群与年龄关系的未来研究方向,以此对人体微生物群及基于此的干预有更好的了解。

01
人体内的微生物群

微生物群落存在于人体的每个粘膜表面,人的每个身体部位都有一个独特的生态学。每个人的微生物群像指纹一样,都是独特的

在个体内,特定的身体部位地理位置和个体的年龄与健康微生物群具有强的关系。年龄驱动人类微生物群的α多样性β多样性

在了解各个阶段的微生物群变化之前,我们先了解一个概念:微生物演替。

微生物演替是指微生物群落中一种或多种生物的存在相对丰度绝对丰度变化

在正常或健康衰老期间,微生物演替的三个主要阶段自然发生在人类生活中。

三大不同阶段的微生物群变化

✦初级演替(出生时先锋菌群定植,快速变化直到童年晚期)

第一阶段,初级演替,从先锋物种首次建立群落时开始,随后微生物群落发生快速变化。从出生到童年,变化率降低,许多中间物种存在于出生到童年晚期之间。

初级演替结束于顶级群落的形成,在青春期实现,并在很大程度上持续到成年;该群落的特征是其相对稳定

虽然成年期的微生物群比儿童期更稳定,但仍然存在变异,这引发了关于人类微生物群中是否存在顶级群落的争论。成年微生物群的自然变异存在于小时(昼夜节律)到年(老化)的时间尺度上,但微生物群相对稳定,除非存在干扰,如饮食或药物的改变

✦次生演替(菌群的改变,重建)

下一个阶段,即次生演替,发生在一个先前存在的稳定群落一部分被改变或移除之后,然后群落再生相同的状态或不同的状态。这可以通过抗生素等医疗手段人为实现,也可以通过霍乱弧菌感染等疾病自发实现

人类的次生演替的特征是至少有一段时间的随机过程主导地位。在诱导条件下,如单疗程抗生素,群落遵循类似于初级演替的过程,其中现有微生物群落的一部分充当“微生物记忆”,帮助重建一个类似于以前存在的群落。

这一过程被认为是由核心微生物群驱动的,而不是驱动初级演替的先锋微生物。

✦末期演替(自然衰老和死亡阶段)

最终的末期演替是宿主自然衰老和死亡的一部分。在老年期间,微生物群落再次以更高的变化率,成功产生了一个由更少成员组成的群落,通常变形菌门(也称为假单胞菌)的相对丰度增加,有时占总优势。

研究演替的每个阶段使研究人员能够解决与人类相关的微生物群落是如何形成和维持的。通过了解这些过程,我们可以更好地了解微生物群随着年龄的增长的变化及其与人类健康的关系,了解如何管理微生物群

人类相关微生物群从受孕到死亡的变化

Martino C,et al.Nat Rev Microbiol.2022

常驻细菌、真菌和病毒的多样性在人类生命的各个阶段都会发生变化。模拟时钟代表每个微生物群落阶段发育的宿主年龄的相对时间。

免疫印记在出生前通过母亲的微生物群及其代谢物开始(第一栏)。先锋物种的初始定殖始于出生,身体部位特定的微生物群落出现(第二栏)。这些群落的复杂性不断增加,直到它们达到相对稳定的群落结构(第三列和第四列)。

这些微生物群落的次生演替可能来自内部外部扰动(第五栏)。中间微生物重新建立初始群落,并再次达到稳定状态(第六列和第七列)。

在晚年,随着寄主接近自然死亡,群落经历了最后的演替和变化(第八栏)。微生物演替的最后阶段发生在腐败和分解阶段。在此阶段,多样性进一步下降,在最初的24-48小时内,许多人类微生物群结构保持不变,但随后很快开始侵蚀分解(第九栏)。

绿线和蓝线分别显示了微生物演替不同阶段的适应性免疫先天免疫相对强度

不同年龄段的细菌多样性测量

Martino C,et al.Nat Rev Microbiol.2022

美国一个肠道项目集中测量了从儿童到老年的人类粪便(a部分)、口腔(b部分)和皮肤(c部分)微生物群的细菌多样性系统发育史,该项目包含21919个粪便、1920个口腔和998个皮肤微生物群样本,带有16S核糖体RNA基因扩增子序列。

α多样性,一种对样本中不同类型微生物数量的定量测量,通过Faith的系统发育多样性(PD)α多样性度量跨年龄测量

UniFrac β多样性主坐标分析,一种用于比较微生物群落相似性的方法,其中空间上接近的点表示相似的样本,空间上远离的点表示不同的样本,按年龄着色。

02
生命早期的“先锋菌群”

✦胎儿时期——菌群及代谢物影响免疫发育

塑造人类微生物群的第一个因素来自胎儿发育过程中的母亲。

胎儿通过胎盘接触到母亲微生物群落产生的代谢物,这些代谢物会影响其免疫系统,并会影响正常微生物群和后期病理学的各个方面。代谢物,如短链脂肪酸(乙酸盐)和其他微生物化合物,可以通过胎盘转移到胎儿体内,并影响免疫发育母亲的饮食和健康也会影响这些代谢物。

胎儿组织中的乙酸盐影响与成人调节性T细胞生成相关的表观遗传印记,其与防止生命后期哮喘的发展相关。

✦出生后——菌群受出生模式,饮食,环境等影响

出生后,微生物群落根据身体部位迅速分化

在最初的时候,先锋物种和未来4年的群落发展可能会受到出生模式妊娠时间的影响。中间群落由饮食影响,如母乳或配方奶粉的消费,以及环境。

最后,饮食和环境再次塑造了稳定的顶级群落。主要由真菌、细菌和病毒组成。

子宫内和生命早期的主要演替

微生物代谢物和配体调节宿主芳基烃受体,这有助于塑造新生儿微生物和免疫发育。母亲使用抗生素和胃肠道相关疾病,如炎症性肠病,也被认为会通过胎儿免疫系统的印记增加后代的病理风险

然而,这些联系仅在非人类实验中研究过。在一个案例中,由患有炎症性肠病的孕妇或其新生儿的微生物群所定殖的无菌小鼠继续发展出异常微生物群和指示炎症性肠病的免疫发育

✦怀孕期间母体的微生物群与免疫系统的变化

在怀孕期间,母亲的微生物群免疫系统也发生了改变。母亲的阴道微生物群变得更加多样化,通常由在其他身体部位发现的许多微生物群组成。

孕期母体免疫系统与胎儿形成协同作用,包括通过胎盘转移IgG抗体

新生儿先锋细菌的定植

关于出生时获得的微生物群是否通过混合来源于阴道和粪便,或者阴道微生物群本身在出生时是否具有多能性,是否是微生物先驱的主要来源,存在一些争议。

无论确切的母体来源如何,这一阶段的特征是先锋细菌种类。包括下列菌群:

  • Lactobacillus
  • Enterobacter
  • Escherichia
  • Bacteroides
  • Parabacteroides
  • Prevotella

然后这些细菌定居在常规身体部位:肠道、口腔和皮肤

许多先锋细菌是兼性厌氧菌,它们会消耗氧气,从而使专性厌氧菌能够在以后的每个环境中定居。起初,新生儿的每个身体部位都相对未分化,但先锋微生物很快开始启动身体部位依赖性微生物多样性的级联,至少在生命的第4到第6周,每个部位的细菌都可以很容易地区分

先锋细菌进驻后,生命早期的微生物群逐渐开始形成。接下来的章节我们来了解生命早期的肠道,口腔,皮肤等各部位的微生物群(包括细菌、真菌、病毒等)。

03
生命早期的各部位微生物群特征

肠道微生物群

✦肠道细菌群——双歧杆菌主导

人类肠道细菌群落的发展已经得到了很好的研究。

双歧杆菌属一直占主导地位,直到在生命的第一年结束时,它们被双歧杆菌、梭状芽孢杆菌和拟杆菌属的组合所取代。拟杆菌属的丰度增加,而双歧杆菌属等物种的丰度相对减少。

双歧杆菌分解母乳低聚糖,开始终生影响免疫系统

最近,一项研究发现,双歧杆菌等细菌含有母乳低聚糖分解代谢所需的基因,与婴儿免疫发育之间存在功能联系。特别是,接受Bifidobacterium infantis EVC001极化初始T细胞的婴儿的粪便水与来自对照组的粪便水平不同,其方式与减少肠道炎症有关。

其他菌属也可降解母乳低聚糖(如拟杆菌、阿克曼菌)

到3-6岁时,肠道细菌群落汇聚到整个成年期持续的顶级群落。这一微生物群是已知的密度最大多样性最强的生态群落之一。通常,在这段时间内,普通健康人中只有两个细菌门占优势:厚壁菌门和拟杆菌门

✦肠道其他微生物群——真菌、古细菌、病毒

在人类肠道发育过程中,对病毒组真菌组古菌组的研究远远少于细菌组。在整个生命周期中,真菌群落所占的总数远远少于细菌组或病毒组。

//真菌群落

真菌群落在生命的最初几天含有大量的RhodotorulaDebaryomyces,接下来的一个月则是CandidaCryptococcusSaccharomyces spp.。

到成年时,主要的真菌属AspergillusCandidaSaccharomyces

//古细菌群落

发育期间肠道的古细菌群落尚不清楚,但古细菌是一些最早移生菌落,但丰度较低

早期定植的古细菌包括MethanosphaeraMethanobrevibacter

// 病毒群落:噬菌体家族在出生后就开始流行

主要由噬菌体组成的病毒群落在出生后的第一周数量众多。噬菌体家族SiphoviridaePodoviridaeMyoviridae在出生后立即流行,主要以溶原形式整合到细菌基因组中。

到生命的第四个月,有尾噬菌体目大量生长,成员更常为裂解型(传染性噬菌体颗粒或主动复制的噬菌体)。

在成人中,CaudoviralesMicroviridae在肠道噬菌体群落中占主导地位,但噬菌体肠道病毒组对个体具有高度特异性,其演替仍有许多未知之处。

与噬菌体不同,感染真核病毒的肠道病毒组主要与儿童和成人的病理相关。最近,在健康儿童和健康成人中也观察到一些感染真核细胞的病毒丰度较低,但其发生时间和流行率尚不清楚

口腔微生物群

✦口腔细菌群:出生后几个月逐渐趋于稳定,牙齿形成后再次转变

出生时口腔细菌群在以下菌属中的流行率很高

  • Streptococcus
  • Gemella
  • Granulicatella
  • Veillonella

在接下来的几个月里,LactobacillusFusobacterium开始流行Staphylococcus的丰度在出生后3个月左右达到峰值,然后稳步下降,让位与更高丰度的GemellaGranulicatellaHaemophilusRothia spp.

牙齿形成后,口腔微生物群再次转变,在成年期具有更高丰度的梭杆菌门, Synergistetes, Tenericutes, Saccharibacteria (TM7), SR1 。

✦口腔其他微生物:成年口腔含产甲烷菌,最常见的噬菌体群是尾状病毒

口腔真菌群落被认为比皮肤和内脏的真菌多样性少Candida spp.是口腔的第一批真菌定植菌。对中级口腔真菌群落知之甚少,但成年人CandidaCladosporiumAureobasidium

AspergillusFusariumCryptococcus spp.的丰度较高

发育过程中的口腔古菌体尚不清楚,但成年口腔中含有许多古菌产甲烷菌,包括甲烷杆菌属。

目前对人类婴儿口腔中病毒的知之甚少。在成年人中,与肠道类似,最常见的噬菌体群是尾状病毒。

口腔病毒群在本质上通常被视为病理性的(例如柯萨奇A病毒、麻疹病毒、红疹病毒和人乳头瘤病毒),并且没有对病毒群落组成进行纵向研究。然而,在无症状和健康成人中也观察到许多真核病毒分类群。

皮肤微生物群

✦皮肤细菌群落:出生时母亲阴道乳杆菌属占据较多,4-5周与成人相似

皮肤细菌群落在出生时含有大量的母亲阴道乳杆菌属。到第4-5周,婴儿皮肤微生物群与成人皮肤微生物群相似,但在青春期继续变得更具位点特异性

StaphylococcusCorynebacterium不同位点PseudomonasEnterobacterEnterococcus,

ProteusKlebsiella特定位点(如腋窝与前臂)。

✦皮肤其他微生物:马拉色菌占比较高,古细菌占4%左右

在皮肤真菌群落中,MalasseziaCandida和 Saccharomyces在生命的前30天最为普遍。对于中间群落的确切组成知之甚少,但成年真菌群落中Malassezia丰度通常很高,估计约占真菌群落总组成的75%至90%

关于皮肤古细菌群落的发育情况了解较少,但古细菌约占成年人菌群的4%。大体上,成年人皮肤古细菌群由Thaumarchaeota门和Euryarchaeota代表。在成人皮肤上也发现了Halobacteriaceae和 Methanobrevibacter

与肠道和口腔不同,健康的皮肤微生物群拥有相对较少的已知病毒多样性,很少有对其进行研究,可能是由于与低生物量样本相关的技术限制。不过,皮肤上有一些自然存在病毒群

以上了解关于生命早期肠道、口腔、皮肤的微生物群,那么哪些因素会给生命早期的微生物群发展带来影响?

影响早期微生物群落发展的因素

在生命的最初几年中,有几个因素塑造并区分了微生物群落的发展。

✦出生方式和母体抗生素的使用

出生方式和母体抗生素的使用是影响人类微生物群落的研究最好最清楚的因素之一。然而,微生物的发育可能会导致独特的结果,即使是在同居的同卵双胞胎中,这可能是由于许多未知或随机的过程。

通过剖腹产和围产期和新生儿抗生素暴露,自然微生物群落的建立过程可能会在所有身体部位受到干扰。这一发现突出了阴道微生物群落重要性,阴道微生物群落自然含有大量Lactobacillus spp.,但在青春期发生改变,对女性健康至关重要

一些最佳样本的婴儿发育研究,通常缩写为DIABIMMUNE ECAM和TEDDY,在婴儿出生后的前2年3年进行了随访,重点关注抗生素使用出生方式影响

在上述所有研究中,阴道分娩的婴儿的拟杆菌属相对丰度高于剖腹产婴儿。

由于缺乏建立微生物群落的天然先锋微生物群导致可变的群落组成被认为是由随机过程而不是确定性过程驱动的,出生模式对微生物群落组成的影响直到生命的第四年仍然可见。

出生模式影响的一个例外是早产,可能是由于在出生后的头几天大量使用抗生素,其特点是无论出生模式如何,微生物发育都不稳定。婴儿微生物群自然发育的这种改变与感染、免疫疾病、肥胖和神经内分泌异常风险增加相关。

✦母乳喂养:母乳低聚糖给菌群带来稳定性

其次,与其他因素相比,母乳喂养对微生物群的发育有很大影响。与母乳喂养相比,配方奶粉的使用导致了更高的多样性更不确定的微生物群落。

例如,考虑到出生时肠道中双歧杆菌科自然优势缺乏某些母乳低聚糖作为主要营养源可能会导致初始定植的不稳定性。然而,微生物群、牛奶代谢组和免疫系统发育的多组学整合是一个活跃且快速发展的研究领域。

除了母乳低聚糖,母乳还含有其他免疫调节化合物,例如革兰氏阴性细菌的脂多糖、分泌性IgA、先天免疫因子、抗菌肽和益生元因子。

最后,所有这些因素都会影响人类免疫发育。微生物相关分子模式识别受体与微生物群衍生分子相互作用,代谢物如短链脂肪酸(与GPR43、GPR41和GPR109相互作用)和次级胆汁酸(与FXR相互作用)直接影响免疫发育

//

这些因素加在一起,有助于形成一个独特的、相对稳定的细菌、真菌和病毒微生物群落,这种微生物群落在人类生命的大部分时间都持续存在

04
成人微生物群的变化

前面章节了解了婴儿期初级演替期间发生的巨大变化,与之相比,成年期微生物群基本上是稳定的(15-65岁),但该群落可能会受到干扰,因此本章节从以下三方面展开讨论:

  • 菌群的自然稳定波动(昼夜节律,饮食,清洁等)
  • 菌群受到某些因素的干扰(药物、疾病等)
  • 微生物群受干扰后的恢复

成年微生物群的自然稳定波动

健康成年人中某些细菌的基因组随着时间推移而进化,表明在次生演替中,功能组成进化以稳定状态发生。

• 昼夜节律影响菌群变化

成人微生物群也会发生自然的短期变化,时间尺度为一天到数月或数年。

短期变化的一个典型例子是微生物群落组成的昼夜节律。与昼夜节律相关的人类基因表免疫激活,以及肠道微生物群中细菌的丰度组成也遵循这种模式。

在小鼠中表现出昼夜循环的细菌家族包括瘤胃球菌科毛螺菌科Muribaculaceae疣微菌科,但对人体的等效周期知之甚少。

青春期和成年生活中的二次演替

Martino C,et al.Nat Rev Microbiol.2022

• 口腔和皮肤的微生物群随清洗而变化

在口腔中,整组真菌和细菌的每日振幅刷牙频率一致。在皮肤上,真菌和细菌每天的变化也与洗涤频率一致,并依赖于个人护理产品。

• 饮食会影响肠道微生物群

一个经过充分研究的发生在几周到几年范围内的变化的例子是饮食驱动的肠道微生物群的改变。饮食对微生物群落有很大影响,可以包括群落中的自然可逆变化

例如,坦桑尼亚哈扎部落在旱季食用富含肉类和块茎的饮食,但在雨季食用富含蜂蜜和浆果的饮食,在杆菌等属中表现出较大季节波动

饮食对微生物群形成的巨大影响也可能在人类健康中发挥作用,许多工作致力于了解特定的饮食成分总体饮食模式如何影响微生物群及其对健康的影响

肠道细菌喜欢大量的水果、蔬菜、全谷物、橄榄油等健康食物。研究表明,饮食主要由富含纤维的食物(如地中海饮食)组成的人具有更大的微生物组多样性,并且通常更健康

此外例如,西方饮食中红肉含量高,这与全因死亡率有关。肠道微生物群可能以有害的方式将红肉中富含的左旋肉碱转化为三甲胺,而肝脏则将三甲胺转化为三甲胺氮氧化物,据推测这会促进动脉粥样硬化

肠道微生物群也可以起到保护作用,例如,在红肉被肠道吸收之前将其分解,以防止炎症。除了饮食,还有许多其他因素有助于形成成年微生物群,包括遗传学、地理、宿主因素,如代谢病和药物。

扩展阅读:深度解析 | 炎症,肠道菌群以及抗炎饮食

微生物群受到干扰

• 抗生素对微生物群的影响巨大

由于微生物群的破坏而发生的次生演替已被广泛研究和审查。在破坏微生物群的众多因素中,抗生素最强的,治疗后的恢复率往往各不相同

抗生素治疗后肠道微生物群反弹的能力被认为取决于特定的群落成员,如拟杆菌和青春双歧杆菌。

扩展阅读:抗生素对微生物组及对人体健康的影响

细菌的天敌抗生素,如何用好这把救命的双刃剑?

疾病本身也会破坏微生物群,无论这种变化是由微生物群落内部、宿主还是多种因素共同引起的。

• 疾病破坏菌群

——肠道:炎症破坏菌群

肠道中的许多其他疾病,如炎症性肠病,破坏了微生物群落,但没有达到新的稳定群落组成,而是在没有干预的情况下继续长期不稳定

——皮肤:炎症引起金黄色葡萄球菌大量增殖

在皮肤上,特应性皮炎的特征是免疫介导炎症引起的金黄色葡萄球菌大量繁殖细菌多样性减少。在金黄色葡萄球菌大量繁殖期间观察到马拉色菌属的数量减少,反之亦然,真菌数量增加导致金黄色葡萄菌数量减少,这部分可能是由于真菌产生蛋白酶的能力,蛋白酶消化金黄色葡萄球菌生物膜并降低细菌逃避免疫系统的能力。

——口腔:细菌和真菌间的竞争和协同

口腔中也存在类似的跨界相互作用;例如,真菌白色念珠菌的定殖依赖于细菌生物膜,但同时,PseudomonasStaphylococcus等细菌属分别形成竞争协同关系

这些例子强调了微生物群落的相互作用和演替是如何跨域和与宿主作用的,但由于其高阶相互作用的复杂性质,仍然没有完全理解。

微生物群落的恢复

干扰后微生物群落恢复的障碍导致许多研究人员探索有针对性地恢复微生物群落的干预措施的可能性。微生物群落恢复包括定向重新播种或某些物种的富集耗竭旨在促使微生物群落恢复到接近扰动前的水平。

这可以通过益生菌益生元抗生素或其他药物、从健康个体移植完整的微生物联合体或这些的组合来尝试。

尽管这些疗法在某些特征明确的环境中可以非常有效恢复健康的微生物群落,但它们往往因缺乏与现有群落相互作用的机理知识,或因其仅短暂移植的能力而受到限制

为了解决这些,研究集中在两个领域:

第一个领域涉及更好地了解群落是如何组合的。例如,对人类发育的研究有助于确定微生物群落在发育过程中如何聚集,以及这种聚集在生命后期影响

其次,正在开发新方法,通过探索微生物群落相互作用确定机制,包括计算和实验,包括高通量共培养和微生物群落的基因组编辑。

为了解决瞬时性问题,采用了两种主要方法:

首先,微生物群疗法的短暂和个性化影响是由每个人的微生物群的个体性质决定的。因此,精准医学群落改变的目标定位于每个人独特的微生物群,前景广阔。例如,基于微生物群落组成的个性化营养在盲法随机对照干预中有效地改善了餐后血糖。

另外,超越细菌组,探索病毒组真菌群落及其之间的相互作用,具有巨大的前景。例如,噬菌体疗法已经用于严重的耐药细菌感染,并且对目标细菌菌株具有高度特异性。但大多数此类干预措施仍处于初步研究阶段,且规模成本高昂。

05
老年微生物群的特征

前面章节我们了解了成年微生物群的变化,以及变化后的恢复情况等,成年稳定微生物群在老年时转变为最终群落,本章节来详细了解老年微生物群。

“老年”的确切时间尺度取决于其他几个与宿主相关的因素,如疾病,但迄今为止大多数文献将“老年人”定义为65岁及以上的人。

接近寿命终点的晚期演替

由于生物编程和生命中损伤的累积而导致衰老影响细胞功能的各个方面,微生物群也不例外。随着年龄的增长,肠道微生物群α多样性减少β多样性增加

关于老年微生物群,仍有许多未知之处,而文献也有些矛盾(一项报告称65岁及以上成年人拟杆菌数量增加,与其他研究相矛盾),大多数研究都集中在肠道细菌上。

老年微生物群:年轻优势菌丰度减少

一般而言,肠道中观察到的群落演替是年轻成年人中占优势和普遍的细菌属丰度减少,如BifidobacteriaBacteroidesLactobacillus抵御机会细菌爆发的能力降低

• 皮肤

在65岁及以上的人群中,genera CutibacteriumStaphylococcus的皮肤细菌数量减少,同时观察到的Corynebacterium

• 口腔

在口腔部位,RothiaStreptococcus spp.是核心口腔细菌群落PorphyromonasTreponemaFaecalibacterium spp.的数量持续减少

• 肠道

老年期肠道真菌群落的特征是PenicilliumCandidaAspergillusSaccharomyces spp.的优势度增加

在皮肤和口腔部位的研究很少,但老年期皮肤上的Malasseziaspp.和口腔内的Candidaspp.丰度减少

在肠道噬菌体中,成年期的Siphoviridae主导地位,而老年期的MicroviridaePodoviridae则占主导地位。与肠道细菌、真菌和噬菌体群体相比,真核病毒的多样性在童年后和整个余生中保持不变

研究重点

由于个体之间的高度变异性,老年微生物演替的研究重点主要是比较健康不健康的衰老。

目前尚不清楚微生物群是否在健康衰老中起着机械作用,还是仅仅是其他变量的一个有力指标,如饮食、运动和药物。然而,在那些长寿健康的人中,可以观察到在健康成年人中高度流行的菌群的持续保留方面的共同点。

然而,百岁老人表现出更独特的微生物群,α多样性增加,群落组成的个体间差异更大,使“健康”和“不健康”年龄之间的比较复杂化次生胆汁酸在百岁老人中含量丰富,也可能在健康老龄化中发挥作用。尽管前景看好,但这一研究领域仍处于起步阶段。

扩展阅读:肠道菌群与健康长寿

06
死亡后的微生物群落

• 微生物的演替不会随着个体的死亡而结束

宿主的死亡可以视为微生物群的生态干扰。心脏停止后,组织立即因缺氧而开始分解。细胞功能持续,直到所有剩余的氧气耗尽,二氧化碳不再能够从组织中运输为止。细胞内二氧化碳的积累创造了一个缺氧的酸性环境导致细胞破裂。

细胞成分,例如酶会泄漏到周围环境中,在被称为“自溶”的过程中进一步促进组织分解。自溶通过消除免疫系统松开细胞连接并为微生物群提供营养触发了一系列负责组织分解的微生物过程。

死亡后的微生物群

Martino C,et al.Nat Rev Microbiol.2022

• 死亡后微生物群分解

人类微生物群在死亡后的前24-48小时内相对稳定,具有不同的身体部位微生物生态、年龄的α多样性模式和可识别的个性化皮肤微生物群特征。

在分解的最初几天到几周内,腐败主要由细菌进行,但随着分解的进行,真菌作用增加。然而,在这个过程中,对病毒组的演替功能作用了解甚少。

随后,环境变化促进了微生物的演替,改变了人体和微生物群,不再像活着的个体(除非身体被冷冻)。

由于缺乏宿主生活中先前遇到的环境限制,使得微生物的相对丰度发生了快速变化以及在身体各部位的移动。迁移的细菌群成为从肠道转移到肠外部位的先锋物种,根据身体部位参与初级演替或次级演替。

• 死亡微生物群——生物指示器

死亡微生物群因其对法医调查的影响而引起了越来越多的关注。与多个个体和身体部位相关的一致的时间序列模式证明,死后微生物群可以作为死后间隔的生物指示器

每个尸体的死后微生物群都是独一无二的,并且根据死亡时间、死因、环境、死亡地点和年龄以及开始时身体部位之间的差异,尸体之间的微生物群是不同的

当微生物演替包括群落成员的快速更替时,在分解的早期阶段(即死亡后的前2-3周),死后时间间隔估计更为准确,但在分解的后期阶段(例如骨骼)仍然有用,因为几乎没有证据可以估计死后时间间期。

• 死亡原因与微生物群存在联系

还证明了与死亡原因和微生物群存在的联系。例如,在死于心脏病的个人的口腔微生物群中发现了的Rothia spp.

此外,皮肤微生物群脱落可能通过将个人与他们接触过的物品联系起来,从而有助于追踪证据;然而,这一独特特征能够准确匹配到个体的时间取决于对象的材料和用途。

07
关于微生物群研究中的取样和实验设计

研究设计和样本收集

人类微生物群是动态的。考虑到这一点,设计一种能够捕捉微生物群的时间空间变异性的采样策略非常重要,特别是当这些波动与所提出的科学问题相关时。

✦测量时间不同:多个时间点的样本采集

横断面研究从每个个体收集一个样本,而重复测量研究在多个时间点身体部位收集样本。随着时间的推移,采样频率应该调整到研究人员试图观察的现象。

例如,小鼠昼夜节律研究通常每2-4小时收集一次粪便样本;而在炎症性肠病中,在一周内对患者进行三到五次采样可以改善疾病分类。

在其他应用中,例如研究特定治疗对个体微生物群的影响,这可能与进行“一对一”研究有关,在该研究中,同一参与者被反复检测其微生物群的结果变化;治疗前采集的样本被视为个体水平的对照。

✦测量空间不同:城市化/农村环境不同

同样重要的是要考虑到人口的微生物群高度依赖地理种族

例如,在一个大型中国群体中,一种与年龄高度相关的微生物在一个美国大型群体中根本没有检测到。

另一个具体的例子涉及城市化社会的“建筑环境”;城市化人群通常较少接触环境微生物,更多地使用家用抗菌剂,与来自农村社会的人类微生物群相比,这导致了重大变化

这些考虑因素与微生物群领域尤其相关,因为大多数公共微生物群数据来自城市化的北美和欧洲人。因此,现有数据集的结论可能无法很好地推广到全球人口。

数据生成

从人类微生物群和微生物群研究中生成的测序数据的主要类别是扩增子测序数据和鸟枪测序数据。

✦扩增子测序

在扩增子测序中,对已建立的高变区的PCR产物(扩增子)进行深度测序,从而能够通过与个体“条形码”匹配来识别测量群体成员。

这里有两种选择:要扩增的基因和该基因的哪一部分要扩增。微生物基因组的常见扩增区域包括:细菌的16S核糖体RNA基因、真核微生物的18S核糖体DNA基因和真菌的内部转录间隔区。

每个特定基因中高变区的选择取决于要捕获的特定微生物,但广泛使用的高变区包括来自地球微生物组项目的V4区。

✦肠道微生物群参与人体的调节

在鸟枪测序中,所有微生物DNA都被测序,而不仅仅是PCR产物,从而能够对微生物进行更具体的分类。由于鸟枪测序不依赖于任何标记基因,因此与扩增子测序相比,它对某些微生物的偏向性较小

然而,鸟枪测序的成本要高得多,并且需要更大的计算能力,这使得在不需要提高鸟枪序列分辨率的情况下,扩增子测序具有吸引力。

将测序数据与其他分析配对

结合其他技术进行扩增子或宏基因组测序可以丰富对微生物群和宿主的理解。定量PCR荧光激活细胞分选等技术通过将相对丰度锚定到可靠的绝对丰度测量值,为相对丰度提供了更多的背景。

酶联免疫吸附试验单细胞测序可以通过提供宿主细胞类型或宿主免疫信息与宏基因组测序很好地配对

培养组学使研究人员能够通过实验验证功能或活性的基因组预测,并将微生物转化为益生菌。微生物产生的代谢物或蛋白质,即微生物群的下游效应物,可以分别通过代谢组学蛋白质组学进行探测。

最后,宿主基因组学转录组学越来越多地与扩增子或宏基因组学数据配对,以深入了解宿主基因表达微生物群之间的联系。

元数据收集

最后,从被调查的参与者那里收集数据至关重要。一般微生物群研究的一些重要元数据类别包括口统计、临床信息和饮食信息;然而,使用的确切元数据因研究而异。应采用产生标准化元数据的实践,以便结果可重复使用和再现

结论与展望

本文描述了目前对不同年龄不同身体部位的人类常驻微生物群落组成的研究现状。

人类健康微生物群组成之间存在许多联系,对肠道菌群的干预可能改善健康。侧重于整个微生物群而不是单一物种的富集或消除的干预措施,需要了解这些群落是如何形成维持的。

不同人群年龄,不同部位的微生物群需要依托于大样本数据库的构建,这为微生物群研究的准确性提供了保障。

通过研究人类整个生命周期中的微生物群,我们可以更好地了解这些微生物群复杂的相互作用,以及如何有效地将微生物群推向宿主所需的组成。此外也正应用于除人类健康外的其他领域,如法医学。随着微生物群的相关研究不断突破,将给人类生命健康和生产生活带来巨大的影响。

主要参考文献:

Martino C, Dilmore AH, Burcham ZM, Metcalf JL, Jeste D, Knight R. Microbiota succession throughout life from the cradle to the grave. Nat Rev Microbiol. 2022 Jul 29. doi: 10.1038/s41579-022-00768-z. Epub ahead of print. PMID: 35906422.

Lim, A. I. et al. Prenatal maternal infection promotes tissue-specific immunity and inflammation in offspring. Science 373, eabf3002.

Al Nabhani, Z. & Eberl, G. Imprinting of the immune system by the microbiota early in life. Mucosal Immunol. 13, 183–189.

Helve, O. et al. 2843. Maternal fecal transplantation to infants born by cesarean section: safety and feasibility. Open. Forum Infect. Dis. 6, S68.

Seppo, A. E. et al. Infant gut microbiome is enriched with Bifidobacterium longum ssp. infantis in old order mennonites with traditional farming lifestyle. Allergy 76, 3489–3503.

菌群多样性是如何形成的,与健康的关系,如何改善?

谷禾健康

菌群多样性

关于菌群多样性,小伙伴们常会问到:

菌群多样性是如何形成的?

菌群多样性越高越好吗?

它与健康的关系如何?

该怎么去改善呢?

……

本期推文就为大家统一解答这类问题。

本文要点

  1. 多样性很重要,维持菌群稳定和有效抵御致病菌入侵。
  2. 过多过少都不好,过低不稳定,过高通常有病原菌或非共生菌。
  3. 除了遗传、地理位置外,饮食和运动、生活方式还有药物影响多样性。
  4. 如何提高?吃足量的多种纤维,富含多酚的果蔬,适量的坚果和发酵食物。益生菌和益生元补充也有利于多样性提高。还有就是多接触大自然,尤其是婴幼儿时期有助于儿童菌群多样性的建立。

在了解前面问题之前。我们首先要明确,菌群多样性是什么?

01
快速了解菌群多样性

首先,我们知道肠道微生物群代表了一个不断变化的生态系统。

为了便于理解,我们可以把肠道菌群比作一块草地,健康的肠道菌群包含多种菌群,它们之间相对平衡,就好比一块生长完好的草地,生长各种类型的草,整体和谐 ↓↓

一旦遇到疾病,药物等干扰之后,一些菌群被杀死,也就是说少了很多种类型的草,这块“草地”会逐渐变秃,甚至部分沦为荒漠 ↓↓

之后如果不加任何看管,没有很好得到恢复的话,部分菌群可能会野蛮生长,破坏了原有的平衡 ↓↓

以上,我们可以看到关于多样性的几个特点。

一个是种类:

成年人群中肠道菌群的种类参考范围在100~2000种,种类数量越多样性越。类比图1那样。

一个是均匀性:

即各个菌种的含量丰度较为均一,如果出现单一菌种占据绝大部分的情况,类比以上图3,那么多样性也不理想。

多样性的评估一般通过一个叫做香农-维纳多样性指数的指标来进行评估,计算公式为:

H=-∑(Pi)(log2Pi)

其中Pi为每个菌的占比例,值越大代表物种种类越多,均匀性也更好相应的多样性也越高正常人群中香浓指数在2~9之间,一般大于3以上表明具有一定多样性。

肠道菌群多样性表现在:

微生态系统的稳定性,以及面对外界致病菌等入侵的抵御能力

02
菌群多样性是怎么形成的?

这要追溯到生命早期。

胎儿发育和婴儿期,菌群多样性通常很低

由于在生命的早期阶段,肠道含有氧气,此时肠道内的微生物大多是耐氧的。

随着不断发育,这些菌群开始逐渐被厌氧菌取代。肠道菌群的这种进化是迅速的。

  • 出生后第一周

研究表明,婴儿在出生后第一周,肠道内发现的病毒序列有56%,在第二周后就不存在了。

  • 三个月

这种多样性在生命的前3个月继续迅速扩大,其中约95%的微生物随着时间的推移而保存下来。

  • 一岁

婴儿的微生物群组成具有特征丰富的Akkermansia muciniphila、拟杆菌属、韦荣氏菌属、球状梭菌属和肉毒梭菌属等。肠道微生物多样性延迟与过敏、哮喘和营养不良有关。

  • 2.5岁

肠道菌群变得稳定,微生物群落多样性随着年龄的增长而增加,直到它成为一个稳定的成年微生物群,主要由三个细菌门组成:

厚壁菌门

(Lachnospiraceae和ruminococaceae)

拟杆菌门

(拟杆菌科、Prevotellaceae和Rikenellaceae)

放线菌门

(双歧杆菌科和Coriobacteriaceae)

出生到2.5岁的微生物群发育期可能非常关键,婴儿早期肠道微生物群的破坏可能会严重影响人类健康。

  • 三岁

大约三岁时,儿童肠道微生物群的组成和多样性与成人最为相似。

在个体的整个生命过程中,它继续以更稳定更慢的速度进化。

  • 7-12岁

研究还发现,青春期之前儿童,肠道微生物群富含可能参与持续发育功能的菌群,如叶酸和维生素B12的合成方面也很丰富。

  • 11-18岁

青少年微生物群,梭状芽胞杆菌属、双歧杆菌属的丰度显著高于成人。

  • 成年人

健康成人肠道菌群以厚壁菌门和拟杆菌门为主,也包括较小比例的Verrucomicrobia、放线菌门(Actinobacteria)、变形菌门(Proteobacteria)。

  • 老年人(> 65岁)

一般来说,老年微生物群的特点是微生物多样性下降机会性病原体增多,双歧杆菌和拟杆菌显著减少,兼性厌氧菌、梭杆菌门、梭状芽胞杆菌和真细菌Eubacteria增加,产生短链脂肪酸菌群减少。衰老显著影响老年人微生物群的组成和功能。

是不是所有老人的肠道菌群多样性都会降低?

不是,长寿老人的肠道菌群多样性水平高。

研究人员检测了一群健康的长寿老人的肠道微生物组,来自中国四川都江堰市的长寿老人,包括“90-99岁”和“≥100岁”两个年龄段。

他们发现长寿人群的肠道菌群比年轻成年人的肠道菌群更多样化,这与传统观点相矛盾。

Kong F, et al., Gut Microbes, 2018

他们还发现了产短链脂肪酸菌在长寿老人中开始增加,例如梭状芽胞杆菌XIVa。

国内外研究结果一致

为了验证他们的发现,他们分析了来自一个意大利小组的独立数据集。

Kong F, et al., Gut Microbes, 2018

出现一致的结果:长寿的意大利人也比年轻的人群的肠道菌群多样化水平更高 。

庆幸的是,谷禾肠道菌群数据库中也有比较长寿的老人肠道菌群数据。

我们抽取其中一例相对较为健康的长寿老人的数据:

编号:083*****97 ,98岁(谷禾肠道菌群数据库)

可以看到肠道菌群多样性水平也是明显增高,与文献报道相符。大部分指标都处于正常水平。

那么,菌群多样性是不是仅随年龄的变化而变化呢?

不是的,我们会发现同一年龄层人群的多样性还是有差别的。也就是说除了年龄这个因素之外,肠道菌群变化与某些其他因素也存在关联。

下一章节我们逐一展开了解一下其他相关因素。

03
菌群多样性由哪些因素决定?

前一章节,我们发现年龄会影响菌群多样性变化,其他也可能是由遗传、饮食习惯生活方式生理变化、地理位置、药物等因素共同决定的。

▼ 遗传(双胞胎菌群特征相似)

研究发现,分开生活多年的同卵双胞胎在微生物特征上表现出高度的相似性,而生活在相同环境和饮食习惯相似的配偶则没有

厚壁菌门、放线菌门、Tenericutes、Euryarchaeota遗传性更强,而拟杆菌门的遗传性很低

以上这些发现有力地证明,遗传因素在塑造肠道微生物群方面提供了强大的力量。

其他也有研究证实了猪、人和小鼠之间的遗传分类群和候选基因的功能类别的高度相似性,这表明宿主基因对哺乳动物肠道微生物群的影响机制相似

▼ 地理位置(一方水土养一方人)

肠道菌群中每一个门的比例随着地理位置的变化而变化。这些可能是受到各种不同生活方式有关的大气、基因、饮食或其他因素影响。

在非洲农村布吉纳法索村的儿童(高纤维饮食,脂肪和动物蛋白含量低),马拉维和委内瑞拉的儿童和成人中富含普雷沃特菌,他们吃的主要是玉米、木薯和其他植物源性多糖。

研究表明,普氏杆菌与碳水化合物和单糖有关(在农业社会普遍存在)。

在西方国家,拟杆菌门与厚壁菌门的比例更高。

拟杆菌与长期饮食中,富含动物蛋白、几种氨基酸和饱和脂肪有关(在美国和欧洲普遍存在);

西方国家,肠道菌群多样性的普遍减少,引发了人们的思考,更广泛人群中重要共生菌该如何维持?全球饮食趋势是否会导致有益菌群永久消失

在发展中国家保持个体菌群(特别是在农业文化中),可能有助于保存人类微生物群中潜在的重要组成部分。

此外,特殊环境,如医院的ICU病房、更衣室等消毒严格的地方,也可能导致环境菌群多样性下降。

▼ 饮食 (调节菌群怎么离得开吃?)

都知道饮食对肠道微生物群的调节起着至关重要的作用,这其中可能起到有益的作用,也可能是有害的。

  • 婴儿

为什么要把婴儿单独拎出来讲呢?因为对他们来说,人生重要事儿就是吃吃睡睡,那么吃就占了很重要的一块。饮食可以说是塑造肠道菌群的关键驱动力。

婴儿早期,肠道微生物群富含与母乳中低聚糖消化有关的基因,后来,随着其他辅食的引入,富含与多糖和维生素代谢相关的基因。

母乳喂养的婴儿表现出放线菌的过度生长以及厚壁菌和变形菌的抑制。母乳中含有可被这些细菌有效代谢的低聚糖,导致短链脂肪酸增加,从而使免疫系统增加免疫球蛋白G的表达。

配方奶粉喂养的婴儿表现出梭菌、链球菌、拟杆菌和肠杆菌的增加。婴儿期后,肠道微生物群继续发展,饮食成为组织肠道微生物群结构、形状和多样性的主要关键

  • 成年人

日常强调的水果和蔬菜,在决定α多样性方面发挥了最重要的作用。研究发现α多样性或微生物丰富度与长期水果和蔬菜摄入呈正相关(p<0.05)。

膳食纤维的摄入对于保持肠道粘膜屏障功能的完整性至关重要。高纤维饮食可以改善2型糖尿病患者的血糖控制和促进更健康的代谢状况。

素食与健康、肠道菌群多样性的变化以及厚壁菌和拟杆菌的优势有关。

高蛋白质和高脂肪的饮与大量耐胆汁的菌群有关,如拟杆菌、嗜胆汁菌和厚壁菌,以及对厚壁菌的抑制。不过需要注意的是,这种饮食习惯,可能会导致免疫力降低、感染易感性增加和代谢性疾病的发展。因此,减肥人士也需谨慎。

具体如何选择可见后面章节。

▼ 季节 (果蔬也有属于它们的生长季节)

食物供应的季节性变化的影响菌群多样性。

首先,初步研究将坦桑尼亚的哈扎狩猎采集人与城市化人进行了比较,结果与意大利城市居民相比,哈扎人的饮食富含复杂的多糖,并表现出更高水平的微生物多样性,表现为拟杆菌的比例较高。

后续宏基因组分析显示碳水化合物活性酶的富集,这与觅食、富含多糖的饮食一致。肠道微生物组保留的代谢复杂碳水化合物和蛋白质的功能潜力,可能是由于食物供应的季节性变化

哈扎人肠道菌群在组成上,经历了与湿季和旱季同时发生的季节性循环,其中 Prevotellaceae 、 Spirochaetaceae 是 2 个最具季节性变化的菌群。Prevotellaceae 比例在雨季下降,这与宏基因组中存在的碳水化合物活性酶显着减少有关,特别是植物碳水化合物。

另一项研究针对北达科他州的社区哈特派人群,他们的夏季饮食富含高纤维的新鲜水果和蔬菜。与冬季相比,北达科他州的夏季肠道微生物群与拟杆菌门的丰度显着增加相关,而放线菌和厚壁菌门的丰度相应减少。

当然,在城市化人群中并没有这种现象。

总的来说,研究城市化程度、地理位置和特定食物供应的全球饮食模式,有助于在宏观层面上形成全球肠道微生物群的巨大异质性

▼ 生活方式 (除了吃还有什么能改变菌群?动!)

——运动锻炼

在人类研究中,运动增加了肠道菌群的多样性,与蛋白质摄入量和肌酸激酶水平呈正相关

与非运动员相比,运动员的拟杆菌水平较低厚壁菌数量较多

对运动产生反应的细菌种类包括乳酸杆菌、双歧杆菌和阿克曼菌,而其他种类则有所减少,如变形杆菌、Turicibacter、Rikenellaceae.

此外,在运动的反应中,产短链脂肪酸菌(尤其产丁酸菌),如梭菌Clostridiales、罗斯氏菌Roseburia、毛螺菌科Lachnospiraceae、Erysipelotrichaceae增加,并在调节运动对宿主肠道菌群的影响中发挥重要作用。

运动增强丰富菌群的机制是什么?

涉及内部和外部因素。

【内】对耐力训练的内在适应,如血流量减少、组织缺氧和转运增加,会导致胃肠道的变化。

【外】运动型个体暴露于他们的环境生物圈中,遵循整体健康的生活方式,促进更丰富的微生物群

与对照组相比,运动员表现出较低的炎症改善的代谢标志物,并且运动与较低的慢性炎症导致的发病率降低有关。

有研究人员提出,运动可以作为一种治疗支持,可用于治疗与失调相关的疾病,如肥胖和其他一些胃肠道疾病。

关于运动详见:《运动如何影响肠道微生物群,如何正确运动》

《肠道微生物组如何影响运动能力,所谓的“精英肠道微生物组”真的存在吗?》

——吸烟

戒烟的健康个体的粪便微生物群中也观察到显著的变化,包括厚壁菌门和放线菌门相对丰度的增加拟杆菌门变形菌门的减少

研究证实,吸烟者和非吸烟者的口腔菌群存在显著差异。特别是在吸烟者的口腔中,卟啉单胞菌和奈瑟菌的繁殖增加Gemella减少

▼ 药物

抗生素的使用是一把双刃剑:它摧毁致病菌的同时,可能也伤害了有益菌,导致肠道微生物群失调,多样性大幅下降,并且需要一段时间才能恢复。

广谱抗生素导致厚壁菌门和拟杆菌门之间的不平衡。在治疗过程中,菌群整体多样性降低,这些细菌的丰度也降低。

微生物组组成的改变取决于抗生素类别、剂量、暴露时间、药理作用和目标细菌等。例如,连续两年服用克林霉素会导致肠道微生物群发生变化,而拟杆菌种类不会恢复。

在幽门螺杆菌治疗中使用克拉霉素会导致放线菌数量减少,而环丙沙星会导致治疗半年后仍未恢复的瘤胃球菌数量减少

研究表明,氨苄青霉素、万古霉素、甲硝唑和新霉素具有长期的负面影响,可引起肠道菌群多样性的不可逆变化,从而增加宿主疾病的风险

关于抗生素对菌群的影响详见:

《抗生素对微生物组及对人体健康的影响》

《细菌感染和抗生素使用》

《细菌的天敌抗生素,如何用好这把救命的双刃剑?》

其他药物也会降低菌群多样性,如治疗胃溃疡和反酸的质子泵类药物也会导致菌群多样性降低。

以上是常见的菌群多样性的决定因素,那么菌群多样性是如何对身体产生影响的?下一章节我们探讨这部分内容。

04
菌群多样性与健康的关系?

微生物组的多样性和平衡在人类健康中发挥着重要作用。

▼ 消化系统疾病

以IBD为例。

在 IBD 患者中,肠道菌群的多样性减,这主要是由于厚壁菌门的多样性减少。在厚壁菌中,梭菌减少,尤其是普拉梭菌,普拉梭菌是产丁酸盐的菌群之一。这些菌群少了,产出来的丁酸盐就少,丁酸有什么用呢?

它能对肠道防御机制具有多阶段调节作用,包括通过促进肠上皮中的紧密连接蛋白保护肠粘膜屏障,支持先天性和适应性免疫反应,刺激成熟的结肠细胞,抑制未分化的恶性细胞和干细胞,通过降低环氧合酶-2(COX-2)水平抑制氧化应激,并通过诱导过氧化氢酶,改善过氧化氢(H2O2)的解毒作用。

丁酸也能刺激芳香烃受体(AhR)、GPR41和GPR109A受体,并抑制不同细胞类型的HDAC,从而稳定肠道屏障功能并减少炎症过程。

丁酸少了,肠道屏障可能受损,炎症反应增加,就会出现IBD等肠道疾病。

在克罗恩病(CD)、肠易激综合征(IBS)等消化系统疾病中,无论是否伴有腹泻和结直肠癌,都会持续观察到多样性降低

乳糜泻患者的十二指肠相关微生物群多样性也不太理想。

艰难梭菌结肠炎复发的危险因素之一就是多样性降低。

扩展阅读:

《深度解析 | 炎症,肠道菌群以及抗炎饮食》

《炎症性肠病中宿主与微生物群的相互作用》

▼ 神经系统疾病

目前越来越多的研究表明,在抑郁症、帕金森病 、阿尔茨海默病等神经系统疾病中,肠道菌群多样性减少。

抑郁症、帕金森病和AD患者肠道菌群的变化

MU Xin et al., Chinese Pharmacological Bulletin 2019

扩展阅读:《肠道微生物组在人类神经系统疾病中的作用》

《最新研究速递 | 柳叶刀:肠道微生物群在神经系统疾病中的作用》

《深度解读 | 肠道菌群和中枢神经系统的关系》

▼ 癌症

以乳腺癌为例。

乳腺癌患者多样性减少。一项基于人群的病例对照试验研究中,调查了绝经后妇女的粪便微生物群与乳腺癌之间的关系。发现与对照组患者相比,病例患者的微生物群组成显着改变(β-多样性,P = 0.006)和较低的α-多样性(P = 0.004)。

肠道菌群失调可诱发慢性炎症,因此有可能影响乳腺癌的发展。

扩展阅读:《肠道微生物群与五种癌症的相互作用:致癌 -> 治疗 -> 预后》

《结直肠癌防治新策略——微生物群》

《“隐藏高手” 胰腺癌的新出路——微生物》

《肺癌最新研究进展,与肠肺微生物息息相关》

《深度解析 | 肠道菌群与慢性肝病,肝癌》

▼ 代谢类疾病

肥胖

一般来说,肥胖个体的微生物多样性低于瘦的个体。饮食干预可以改善微生物的丰富度和相关的临床表型,例如改善代谢和炎症状态。

扩展阅读:《体重增长:目前为止我们所知道的一切(更新你的减肥工具箱)》

糖尿病

1 型糖尿病患者的肠道微生物群,高水平的拟杆菌,大量产生乳酸和丁酸的细菌以及细菌功能多样性降低

2型糖尿病前期,菌群多样性就已经存在下降趋势。

扩展阅读:《2型糖尿病如何做到可防可控?肠道菌群发挥重要作用》

▼ 儿童发育

对来自孟加拉国的营养不良儿童和营养良好的健康儿童的肠道微生物群进行了横向比较研究,结果发现,营养不良儿童微生物群的多样性显著降低

扩展阅读:《生命早期营养不良和微生物群影响大脑发育和行为》

《真实案例 | 儿童发育迟缓肠道菌群检测的应用》

《发育迟缓/营养不良不容忽视,问题很有可能在肠道》

▼ 心脑血管疾病

高血压个体的肠道微生物多样性减少,厚壁菌门/拟杆菌门比率增加。

扩展阅读:《认识肠道微生物及其与高血压的关系》

《饮食-肠道微生物群对心血管疾病的相互作用》

▼ 免疫系统疾病

以过敏为例。

在出生第一年甚至更早的时候,饮食多样性可能对预防过敏产生积极影响。早期接触多种食物抗原可能会促进免疫耐受的发展。

扩展阅读:《婴幼儿过敏有望改善,与肠道菌群密切相关》

《生命早期微生物接触和过敏风险:如何预防》

《微生物群对三大过敏性疾病发展的影响》

▼ 睡眠

人类肠道微生物群可以通过脑-肠道微生物群轴影响健康。

一项研究使用活动描记术量化睡眠测量,并结合肠道菌群采样,以确定肠道菌群与各种睡眠生理测量之间的相关性。测量了免疫系统生物标记物,并进行了神经行为评估,因为这些变量可能会改变睡眠和肠道菌群组成之间的关系。

总微生物组多样性睡眠效率、总睡眠时间的增正相关,睡眠越好,肠道菌群多样性越丰富,与睡眠开始后的觉醒负相关

总微生物组多样性IL-6之间存在正相关。微生物组分分析显示,拟杆菌和厚壁菌门内的丰富性睡眠效率、IL-6浓度和抽象思维正相关。研究人员也发现了几个分类群(Lachnospiraceae, Corynebacterium, Blautia)与睡眠指标呈负相关

肠道菌群多样性高有助于减轻压力,改善睡眠。

扩展阅读:

《肠道菌群与睡眠:双向调节》

《深度解析|睡眠健康与肠道健康之间的双向联系》

以上是菌群多样性与疾病的关联,了解这些我们可以有针对性地去改善菌群多样性。

05
菌群多样性越高越健康吗?

我们在实际检测中会发现有这样一种情况:

多样性指标虽然很高,但是整体看起来健康总分并不理想。甚至还有很多慢性疾病风险,这是为什么呢?

这种情况可能是核心菌群丰度不够,核心菌群在代谢、免疫等方面都发挥重要作用,一旦核心菌群丰度下降,则可能造成外源物质侵入。感染、旅行等可能会出现这种情况。

如果发现肠道菌群检测报告中多样性很低,该如何判别具体情况,这要看以下几种情况:

  • 近期是否在使用抗生素? 使用抗生素可能会造成菌群多样性大幅下降。
  • 是否存在致病菌较多的情况? 部分致病菌大量增殖的情况下,占据了其他有益菌共生菌的生存空间,菌群结构趋向单一,多样性下降。
  • 近期饮食结构是否单一? 如果大量吃面(几乎没什么配菜),或者存在挑食、偏食情况,只吃喜欢的食物等情况,可能会造成部分菌群因得不到营养饿死,菌群多样性下降。

总的来说,在一定范围内,更高的多样性通常代表饮食更加丰富多样,同时也意味着更健康的身体状况。

一个健康、有弹性的肠道微生物群依赖于高丰富性和生物多样性,也就是说,当你的肠道菌群多样性相对较高时,会更强大、更稳定

就好比你拥有一支队伍,有很多不同类型的、不同专长的人可供你使用时,整体的能力就会很强大。

前面我们已经知道,菌群多样性的各种决定因素,例如,饮食、年龄、遗传、环境等。

多样性低不代表一定有疾病,但是更容易到饮食,环境或疾病的影响,包括更易发生水土不服或更容易因饮食不洁导致腹泻等。菌群多样性低可能是肠道菌群不健康不稳定的一种表现形式。

当然,也不能过度追求菌群多样性高。

06
如何实现最佳的菌群多样性?

随着对饮食-微生物组-健康轴的理解逐渐加深,最近创造了个词叫“食品药学”,即“食品作为药物”的概念逐渐得到推广,基于个体微生物组特征的“食物疗法”的个性化得到越来越多的关注。

饮食干预引起的改变可能在几周甚至几天就会发生。对调节肠道菌群而言,饮食调节是一个非常重要且纯天然的方式。那到底该吃什么?如何吃?

我们可以从食物种类,饮食结构,饮食质量等多个角度去优化日常饮食,从而调节菌群。

✔ 食物种类:

吃足量的不同类型的纤维

膳食纤维是饮食中的重要组成部分,分为不溶性(抗发酵)或可溶性(可被肠道微生物群代谢),例如益生元纤维菊粉,在结肠中它被肠道微生物群发酵成短链脂肪酸:乙酸盐、丁酸盐、和丙酸盐。

食用膳食纤维时,各种菌群可以利用这些膳食纤维作为基质,扩大其种群,从而增加微生物组的总体多样性。

许多住在结肠和盲肠内的厌氧细菌,依赖于复杂碳水化合物的代谢来产生短链脂肪酸,短链脂肪酸是肠粘膜的重要能量来源,在宿主代谢、免疫功能和细胞增殖中发挥关键作用。

丁酸盐是肠道中一种丰富的短链脂肪酸,在结肠癌中起着复杂的作用,如最近的两项临床前研究所示,丁酸盐似乎是浓度和环境依赖性的。丁酸盐可以抑制肿瘤的发生,因为丁酸盐受体Grp109a缺乏的小鼠增加了炎症刺激或APC突变促进的肿瘤发生,并且通过Grp109a的信号传导抑制了这些刺激诱导的肿瘤发生。

▸ 富含膳食纤维的食物在哪里?

膳食纤维可以在各种水果、蔬菜、坚果、种子、豆类和谷类中找到。

吃洗过的生水果和蔬菜,这些水果和蔬菜含有环境微生物(如果难以消化生蔬菜,可以榨汁),包括益生元,以促进多样化的微生物群,不要只吃某一种蔬菜或水果。

▸ 足量的膳食纤维该吃多少?

推荐的纤维摄入量(充足摄入 克/天)

▸ 具体哪些水果蔬菜中的富含膳食纤维?

各类水果蔬菜中每标准份量膳食纤维的含量及热量

数据来源:U.S. Department of Agriculture, Agricultural Research Service. FoodData Central

吃富含多酚的果蔬

同时,水果蔬菜里面一般富含多酚,多酚可以塑造肠道细菌的组成。

Vemana Gowd, et al.,Trends in Food Science & Technology, 2019

白藜芦醇

食用白藜芦醇可减轻结肠炎小鼠模型中的炎症状态并恢复微生物群多样性

新的证据表明,红酒中的白藜芦醇能通过支持短链脂肪酸的产生来预防阿尔茨海默病 (AD),短链脂肪酸会干扰有毒的 β-淀粉样蛋白聚集体形成。在AD背景下,白藜芦醇的消耗与较高比例的有益菌有关,例如 F. prausnitziiAkkermansia 物种和具有脑抗炎特性的产丁酸盐细菌。

姜黄素

姜黄素能够部分逆转多样性的变化 肠道微生物群,增加 F/B 比并降低 Anaerotruncus 和 Helicobacter 属的丰度。

已证明,姜黄素治疗降低了在癌症患者中发现的与癌症相关的菌群丰度(例如普氏菌属、冠状杆菌属和瘤胃球菌属)。

富含多酚的食物包括:

此外,饮食中添加全麦大麦、糙米或这两种的混合物增加菌群多样性

适量吃发酵食品(含有活的菌)

发酵食品是益生菌的另一个重要来源。

2021 年 7 月的《细胞》杂志上,健康成年人被分为两组,21人食用水果、全谷物、豆类、蔬菜、坚果和种子等高纤维食品,18人食用发酵食品。

在试验前的三周、指定饮食后的10周内,以及研究结束后的四周内,当参与者想吃什么就吃什么时,从受试者身上收集粪便样本。还采集了血液样本以测量炎症和免疫功能。

结果发现食用发酵食品的人,除了增加肠道微生物群的多样性外,同时对四种免疫细胞的激活程度较低,包括IL-6在内的几种炎症蛋白水平也降低

然而,在大多数情况下,发酵食品对我们肠道微生物群的改变是暂时的,因此,持续摄入发酵食品更有利于对于维持高水平的有益菌。

▸ 发酵食物有哪些?

  • 酒精饮料,如黄酒、果酒、啤酒等;
  • 乳制品,如酸奶、干酪等;
  • 豆制品,如豆腐乳、豆豉、纳豆等;
  • 发酵蔬菜,如泡菜、酸菜等;
  • 调味品,如醋、黄酱、酱油

适量吃坚果类

坚果(尤其是核桃)对健康有益,食用坚果可以降低血脂水平。核桃如何改变菌群?

在一项随机对照试验(交叉设计)中,96名健康参与者接受了为期8周的富含核桃的饮食,然后改用无坚果饮食。第二组98名参与者按相反顺序遵循饮食模式,收集粪便样本做16S rRNA测序分析。

在α多样性方面没有发现差异,但在β多样性方面,观察到核桃和对照组的明显聚集,也就是说,他们的菌群发生明显变化

与对照饮食相比,核桃饮食仅解释了观察到的差异的5%左右。在核桃组,与对照组相比,瘤胃球菌Ruminococcaceae双歧杆菌的丰度显著增加,同时梭状芽孢杆菌属簇XIVa物种的数量减少

因此,摄入核桃可能会促进肠道微生物群向潜在的益生菌和产短链脂肪酸菌群的组成转变。核桃含有丰富的多酚和n-3 脂肪酸,这两种脂肪酸都具有益生元特性。

以上是各类食物对菌群多样性的影响。那么这些食物如何搭配在一起可以对菌群产生更好的影响?

这就涉及到日常饮食结构。

地中海饮食—— 相对健康的饮食结构

以现代地中海饮食金字塔为代表的高品质饮食,包括大量食用水果和蔬菜、豆类、坚果和全麦适量橄榄油、鱼、家禽和酒,尽可能少吃红肉、糖果和加工肉类等食品。

坚持地中海饮食与降低疾病风险改变微生物多样性有关。

地中海饮食评分与拟杆菌、普氏杆菌丰度较高正相关,与双歧杆菌/大肠杆菌的比例、粪便丙酸盐和丁酸盐浓度较高正相关

地中海饮食中存在的典型食物成分与肠道微生物群中特定菌株的存在相关。

例如,全谷物双歧杆菌、粪杆菌、 Tenericutes、Dorea的存在有关。橄榄油和红酒的食用量与Faecalibacterium的存在有关,蔬菜的食用量与Rikenellaceae, Dorea, Alistipes Ruminococcus存在有关,豆类与Coprococcus的存在有关。同一作者还观察到饮食中的多酚含量(通常在地中海饮食中较高)与特定梭菌(XIVa)和粪杆菌簇的存在之间存在相关性,这些梭菌簇能够合成丁酸,可能具有抗炎作用(如Akkermansia,也更多地与地中海饮食相关)。

doi: 10.3390/nu13010007

地中海饮食它没有指定份量大小或具体数量。由每个人根据自身情况设定每餐吃多少,大致比例参考以上金字塔。

目前认为的健康的饮食结构越来越偏向于,强调植物性食物和少吃红肉的饮食

在地中海饮食结构中,我们可以看到,这类饮食结构的特点是:水果、蔬菜、高纤维食物类占比较多

大多数研究表明,以植物为基础的饮食可以促进微生物的多样性。与杂食动物相比,纯素食者和素食者菌群具有显着更高的 α 多样性,也就是丰富度。

健康的植物性食物会影响肠道微生物的多样性和组成,包括产丁酸菌的富集,例如:

Roseburia hominis

Agathobaculum butyriciproducens

普氏粪杆菌Faecalibacterium prausnitzii

厌氧菌Anaerostipes hadrus

一些研究表明,高纤维饮食可以降低体重增加的风险。高纤维饮食随后有助于形成高度多样的微生物群。

高纤维饮食的摄入会降低饮食的能量密度,从而导致体内的短链脂肪酸促进体内更高水平的糖异生。这会导致肠促胰岛素的形成,从而使人更快、更长时间地拥有饱腹感

地中海饮食与肠道菌群生长之间的相关性

doi: 10.3390/nu13010007

此外,我们看到,地中海饮食结构中红肉类,加工肉类等是需要少吃,那么脂肪是否足够?能不能满足人体需求?

不必担心,地中海饮食中含有大量植物脂肪,这些脂肪来自橄榄油(主要是特级初榨橄榄油)和坚果,它们属于高脂肪能量密集型。

★ 地中海饮食中含有优质脂肪

榛子、 杏仁、夏威夷果、开心果、腰果等,都是单不饱和脂肪酸的重要来源。此外,核桃、碧根果和夏威夷果还富含植物性ω-3脂肪酸。核桃中的ω-3脂肪酸与ω-6脂肪酸的比例极好。

研究表明这些脂肪源健康代谢状况直接相关,对改善大脑健康、消减炎症、降低各种原因的死亡风险和预防心脏病等有明显的作用,主要归因于它们的特定脂肪成分和生物活性分子含量。

ω-3脂肪酸,在肠道微生物群中的作用,可以调节炎症反应,改善结肠炎时的上皮屏障

注:炎症反应是几种慢性非传染性退行性疾病的基础,如动脉粥样硬化、癌症、神经退行性疾病、慢性肾功能衰竭、糖尿病、男性肥胖、继发性性腺功能减退等。

地中海饮食中,除了坚果之外,鱼类、海鲜等食物都富含ω-3脂肪酸。显然优质的脂肪更有利于健康。

除了以上脂肪之外,地中海饮食中强调,“鱼和海鲜、鸡蛋、家禽类和高脂奶制品的摄入量每周几次;红肉每月只吃几次”,那么,蛋白质的量是否足够满足人体需求?

我们来看看地中海饮食中,蛋白质对菌群的影响。需要考虑多方面,比如蛋白质的数量、质量、加工方式和来源

★ 高蛋白饮食可能不利于健康,地中海饮食中蛋白比例更合适

研究表明,与正常蛋白质饮食(20% 蛋白质,56% 碳水化合物)相比,喂给 Wistar 大鼠的高蛋白饮食(45% 蛋白质,30% 碳水化合物)对结肠微生物群有不利影响

在高蛋白饮食中,链球菌、大肠杆菌/志贺菌和肠球菌分别增加了5.36倍、54.9倍和31.3倍,其丰度与与疾病发病相关的基因和代谢物(包括代谢物尸体)呈正相关,它来源于赖氨酸的脱羧作用,大量使用已被证明会引起氧化应激和DNA损伤。

有益菌在高蛋白饮食中大量减少,包括丁酸生产菌F.prausnitzii(减少3.5倍)、瘤胃球菌(减少8.04倍)和Akkermansia(在高蛋白饮食组中未检测到)。

慢性肾病下,长期低蛋白饮食更有利于改善健康。

研究表明,六个月的低蛋白饮食(0.6 g/kg/天)可以降低非透析慢性肾病患者的血清尿毒症毒素水平,包括对甲酚硫酸盐。低蛋白饮食也与肾功能改善、总胆固醇和低密度脂蛋白胆固醇降低有关。

★ 植物来源的蛋白比动物来源蛋白可能更有利于菌群和健康

在喂食大豆、猪肉、牛肉、鸡肉、鱼类和酪蛋白(后者作为对照)的大鼠中进行了为期14天的喂食试验,结果显示,到第2天,尤其是红肉(猪肉和牛肉)和白肉(鱼和鸡肉)之间的变化。主成分分析显示,在第7天和第14天有不同的微生物群,因此大豆蛋白组与肉类和对照组分开,也就说菌群特征显著变化

在另一项类似的研究中,与喂食白肉、红肉或酪蛋白的大鼠相比,大豆蛋白与大鼠粪便短链脂肪酸增加有关。大豆组拟杆菌和普氏杆菌的相对丰度也较高,它们是丙酸盐和其他短链脂肪酸的主要生产者。

另外研究发现,与接受牛奶分离蛋白的仓鼠相比,大豆喂养的仓鼠的血脂显著降低,至少部分原因是大豆蛋白引起的肠道微生物群变化。在高脂饮食制度下,大豆分离蛋白减少了高脂饮食诱导的小鼠体重增加和脂肪组织质量积累,并减轻了肝脏脂肪变性,而乳蛋白没有观察到这种情况。

荞麦蛋白抑制大肠杆菌的生长,促进乳酸杆菌、肠球菌和双歧杆菌的生长,后者与血脂密切相关。荞麦喂养的小鼠粪便中总胆汁酸和短链脂肪酸的排泄量显著增加。

绿豆蛋白在降低高脂饮食诱导的小鼠体重增加方面也优于酪蛋白。绿豆蛋白导致GLP-1分泌增加,盲肠和粪便胆汁酸池增加,次级和初级胆汁酸比率显著升高;在无菌小鼠中被消除的效应。就肠道微生物群而言,食用绿豆作为高脂肪饮食的一部分,导致了瘤胃菌科的扩张,并导致拟杆菌门分类群的增加和厚壁菌门丰度的减少

乳清蛋白提取物豌豆蛋白已被证明可以增加多样性、双歧杆菌和乳酸杆菌,其中,乳清蛋白提取物减少拟杆菌和梭菌。

以上这些研究清楚地表明,植物源性蛋白质在促进有益微生物群方面优于动物源性蛋白质,对宿主代谢具有积极影响。

蛋白质的加工(包括热加工)及其对蛋白质功能的影响(包括微生物组的调节)尚不完全清楚,需要进一步研究。

因此,在我们的饮食干预中,不能认为高蛋白饮食一定是健康的,还取决于其来源、加工方式等方面,对待“高蛋白饮食”需谨慎,尤其是在长期或反复饮食实践中。

我们可以看到,地中海饮食结构中,来源于动物蛋白只占金字塔上部(比例较小),无论是对慢病患者或者普通人群,都是一种更为安全、稳妥、健康的选择。

以上是地中海饮食结构对菌群多样性及健康的影响。那么知道吃什么,如何搭配之后,还需要注重什么?

✔ 饮食质量

同样是植物性饮食,有些高温下高油高盐等烹饪方式也会影响其营养。

多吃轻加工的植物性饮食

为了防止破坏大量维生素、矿物质和纤维,加工烹饪的时候应尽量简化。天然食物的本味,对味蕾和身体是一种滋养。

尽可能选择新鲜食材

有条件的情况下,可以尽可能选用本地的、应季的新鲜蔬果作为食材。

尽可能避免各种添加剂、加工食物

高度加工的食物,富含脂肪、精制糖、盐等,与肠道微生物多样性降低有关,对宿主健康产生负面影响。

此外,各类添加剂比如,羧甲基纤维素 (CMC) 和聚山梨醇酯 80 (P80) 这两种乳化剂会降低肠道的微生物多样性并显着改变微生物群组成。

关于食品添加剂对菌群影响详见:《你的焦虑可能与食品添加剂有关,警惕食品添加剂引起的微生物群变化》

特殊人群需注意的饮食

  • 乳糖不耐受人群

服用含有益生元的食物,乳糖不耐症的症状减轻

低聚半乳糖是益生元,通过刺激肠道中的有益细菌对人体有益。对于乳糖不耐症患者,当低聚半乳糖诱导的微生物群变化增加双歧杆菌、粪杆菌、乳酸杆菌、Roseburia等乳糖发酵物种的丰度时,它们会起到有益作用。

一项研究观察到,通过向参与者喂食高纯度低聚半乳糖(>95%),乳糖不耐受相关症状得到改善。在有反应的受试者中,观察到微生物组的组成发生了显著变化,但是,双歧杆菌、乳酸杆菌和粪杆菌,所有乳糖发酵菌均出现增加,50%的原本腹痛的受试者报告在使用低聚半乳糖治疗结束时没有腹痛。在将乳制品重新引入饮食后,喂低聚半乳糖的受试者在治疗后,乳糖耐受性的可能性也增加了六倍。

总的来说,以上这些研究强调了饮食对肠道菌群及其对人体的深远影响,具体取决于摄入的食物种类、饮食结构、饮食质量等。除了饮食之外,其他方式也能对菌群产生影响,具体如下:

选择益生菌、益生元等干预措施

益生菌

益生菌通过多种机制发挥作用,对肠道菌群的多样性产生积极影响,并改变人体的免疫反应,与改善多种慢性疾病密切相关。

研究发现,益生菌会抑制肠杆菌科(志贺氏菌和埃希氏菌)的生长,同时促进厚壁菌门的大量增殖,尤其是厌氧菌属。益生菌具有帮助从抗生素治疗中恢复个体菌群的显著能力。

益生菌可以直接作用于肠黏膜层和下层上皮,影响肠屏障功能和黏膜免疫;也可以通过调节常驻微生物种群结构或酶活性对宿主产生间接影响

益生元

益生元本质上是一种肠道菌群的肥料,可以滋养有益菌群。例如,菊粉等益生元支持双歧杆菌的平衡。

益生元通过多种方式与潜在病原体、免疫系统的直接相互作用,调节肠道环境,从而有利于人体健康。

关于益生菌、益生元这部分内容由于在前面的文章中多次提到,此处就不详述了,详见:

《如何调节肠道菌群?常见天然物质、益生菌、益生元的介绍》

《益生菌的靶向递送:研究和商业化前景》

《益生菌的简单入门指南》

补充维生素、微量元素

补充维生素D可显着增加肠道微生物多样性。具体而言,拟杆菌/厚壁菌的比例增加,益生菌类Akkermansia和双歧杆菌的丰度增加。拟杆菌属和普氏杆菌属显著变化,表明补充后肠型发生了变化。

详见:《维生素D与肠道菌群的互作》

缺铁可能导致微生物群组成的显著重组,微生物多样性降低。

详见:《人与菌对铁的竞争吸收 | 塑造并控制肠道潜在病原菌的生长》

多接触大自然

如果从婴儿时期开始,住在农村或者养宠物,可能对儿童菌群多样性的建立比较有益。

另外,多去户外活动,亲近大自然

一项研究对城市环境生物多样性进行人为干预试验,以检测其对儿童共生菌群和免疫调节的影响。在为期28天的生物多样性干预期间,对标准城市托儿所和自然托儿所的儿童进行对比分析,研究儿童皮肤和肠道微生物群以及血液免疫标记物的变化。

干预使环境和皮肤Gammaproteobacteria群落多样化,这反过来又与血浆TGF-β1水平和调节性T细胞比例的增加有关。

该研究发现,生物多样性干预增强了免疫调节途径降低城市社会中免疫介导疾病的风险

这可能为未来的预防方法提供了很大的参考价值。

写在最后
跟任何生态系统一样,我们的肠道菌群处于一种微妙的平衡。在不断变化的环境中,我们永远不知道自己会遇到什么新的威胁。
肠道菌群多样性高,能使整体菌群更有能力去抵抗外界的干扰,例如压力,抗生素药物等。
当然,对于“菌群多样性”这个指标,我们也应该理性看待,多样性出现异常高,如果是各类致病菌大量定植,核心菌群难以生存,那么也不利于健康…
肠道菌群检测报告可以帮助我们从更多角度去看待肠道菌群的整体状况,利用机器学习等最新技术,发现潜在的疾病风险,反映不同营养物质摄入比例,应该多吃什么、尽量少吃什么…
每个人对于要达到健康这个目的,可能有不同的路径,饮食需求不能一概而论,“个性化饮食建议”可以成为我们的健康指向标。我们可以利用好它,结合自身健康状态,有针对性地做出饮食或其他干预措施,从而达到更接近理想的健康状态。

主要参考文献:

Fatima Enam, Thomas J Mansell, Prebiotics: tools to manipulate the gut microbiome and metabolome, Journal of Industrial Microbiology and Biotechnology, Volume 46, Issue 9-10, 1 October 2019, Pages 1445–1459

Rinninella, Emanuele et al. “What is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases.” Microorganisms vol. 7,1 14. 10 Jan. 2019, doi:10.3390/microorganisms7010014

Wu Y, Wan J, Choe U, Pham Q, Schoene NW, He Q, Li B, Yu L, Wang TTY. Interactions Between Food and Gut Microbiota: Impact on Human Health. Annu Rev Food Sci Technol. 2019 Mar 25;10:389-408. doi: 10.1146/annurev-food-032818-121303. PMID: 30908952.

Muralidharan J, Galiè S, Hernández-Alonso P, Bulló M, Salas-Salvadó J. Plant-Based Fat, Dietary Patterns Rich in Vegetable Fat and Gut Microbiota Modulation. Front Nutr. 2019;6:157. Published 2019 Oct 11. doi:10.3389/fnut.2019.00157

Fitzgerald E, Lambert K, Stanford J, Neale EP. The effect of nut consumption (tree nuts and peanuts) on the gut microbiota of humans: a systematic review. Br J Nutr. 2021 Mar 14;125(5):508-520. doi: 10.1017/S0007114520002925. Epub 2020 Jul 27. PMID: 32713355.

Azcarate-Peril MA, Ritter AJ, Savaiano D, Monteagudo-Mera A, Anderson C, Magness ST, Klaenhammer TR. Impact of short-chain galactooligosaccharides on the gut microbiome of lactose-intolerant individuals. Proc Natl Acad Sci U S A. 2017 Jan 17;114(3):E367-E375. doi: 10.1073/pnas.1606722113. Epub 2017 Jan 3. PMID: 28049818; PMCID: PMC5255593.

Smith RP, Easson C, Lyle SM, et al. Gut microbiome diversity is associated with sleep physiology in humans. PLoS One. 2019;14(10):e0222394. Published 2019 Oct 7. doi:10.1371/journal.pone.0222394

Spolidoro GCI, Azzolino D, Cesari M, Agostoni C. Diet Diversity Through the Life-Course as an Opportunity Toward Food Allergy Prevention. Front Allergy. 2021;2:711945. Published 2021 Sep 24. doi:10.3389/falgy.2021.711945

Ecklu-Mensah G, Gilbert J, Devkota S. Dietary Selection Pressures and Their Impact on the Gut Microbiome. Cell Mol Gastroenterol Hepatol. 2022;13(1):7-18. doi:10.1016/j.jcmgh.2021.07.009

Merra G, Noce A, Marrone G, et al. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients. 2020;13(1):7. Published 2020 Dec 22. doi:10.3390/nu13010007

Elena Mengheri, Diet Quality Is Associated with Microbial Diversity and Host Health, The Journal of Nutrition, Volume 149, Issue 9, September 2019, Pages 1489–1490

Wilson, Annette S et al. “Diet and the Human Gut Microbiome: An International Review.” Digestive diseases and sciences vol. 65,3 (2020): 723-740. doi:10.1007/s10620-020-06112-w

Huang C, Feng S, Huo F, Liu H. Effects of Four Antibiotics on the Diversity of the Intestinal Microbiota. Microbiol Spectr. 2022 Mar 21:e0190421. doi: 10.1128/spectrum.01904-21. Epub ahead of print. PMID: 35311555.

Shreiner AB, Kao JY, Young VB. The gut microbiome in health and in disease. Curr Opin Gastroenterol. 2015;31(1):69-75. doi:10.1097/MOG.0000000000000139

Sakkas H, Bozidis P, Touzios C, Kolios D, Athanasiou G, Athanasopoulou E, Gerou I, Gartzonika C. Nutritional Status and the Influence of the Vegan Diet on the Gut Microbiota and Human Health. Medicina (Kaunas). 2020 Feb 22;56(2):88. doi: 10.3390/medicina56020088. PMID: 32098430; PMCID: PMC7073751.

微生物群在婴儿健康中的作用:从早期到成年

谷禾健康

生命早期到成年微生物群对婴儿的健康起着至关重要的作用。生命早期的微生物群不仅是婴儿健康的键调节剂,而且与长期健康有关怀孕到生命早期是婴儿微生物群建立的黄金时期,受环境和遗传因素的影响。

最近,关于微生物群在人类疾病中作用的 研究呈爆炸式增长,但在疾病或健康方面的应用相对有限,因为人类微生物群的许多方面仍然存在争议,尤其是婴儿微生物群

在怀孕期间,母体微生物群会影响胎儿的发育,尤其是大脑发育,如子宫微生物群、阴道微生物群、胃肠道微生物群、胎盘微生物群(有争议的)和口腔微生物群。值得注意的是,母体微生物群的紊乱会导致不良妊娠结局,严重威胁后代的健康。出生后,受环境和遗传因素影响的婴儿微生物群迅速建立,以确保健康成长

01 孕期母体微生物群和后代

孕期母体微生物群

以前,胎儿宫内感染的罪魁祸首被认为是来自阴道的微生物,如细菌、病毒和真菌。然而,随着科学技术的发展,人们发现口腔和肠道微生物群也与胎儿的健康有关,因为这些部位的微生物群可以通过血液传播

在怀孕期间,母亲的肠道、口腔和阴道微生物群都会发生变化。这些变化相关的各种因素,包括饮食,抗生素的使用,感染,应激和宿主基因(下图)。

影响母婴微生物群的因素以及微生物群调节的机会窗口

Yao Y, et al. Front Immunol. 2021

研究已经揭示健康孕妇阴道微生物群的稳定性高于健康非孕妇,乳酸菌是健康孕妇阴道微生物群的主要成分。传统上,子宫被认为是无菌的,但这个概念直到最近几年才被打破。子宫内膜有自己的微生物群,尽管这些微生物群的生物量比较低。遗憾的是,目前对子宫内膜微生物群的了解有限,其在胎儿发育和妊娠结局中的作用仍有待充分阐明。

新出现的证据表明,孕妇肠道菌群的丰富度和均一性与正常女性没有显着差异,但分布和组成发生了明显变化。此外,患有妊娠并发症的孕妇肠道微生物群的多样性降低,这对母亲和胎儿的健康都是不利的。例如,妊娠期慢性高血压大鼠的肠道微生物重塑受损。先兆子痫孕妇肠道微生物群中产生短链脂肪酸的粪球菌的丰度降低

1
客服