Tag Archive 皮肤微生物

什么皮肤微生物群:它是皮肤健康的关键吗?

谷禾健康

在我们日常的护肤和美容过程中,我们经常听到关于皮肤的各种话题,从保湿到抗衰老,从痘痘到过敏…

随着科学的不断进步和技术的发展,人们开始逐渐发现,皮肤上隐藏着一个神秘的世界——皮肤微生物群。它在维护我们的皮肤健康方面扮演着举足轻重的角色。

皮肤微生物群由各种细菌、真菌等微生物组成,它们聚集在毛囊、汗腺、皮脂腺等地方,形成一个庞大的生态系统。它们在皮肤表面形成了一道坚固的屏障,阻止了有害菌的入侵。除了提供保护作用外,皮肤微生物群还参与调节角质层的代谢,协助皮肤的水分平衡,并对免疫系统起到了重要的调节作用。

皮肤微生物群的平衡易受到许多因素的干扰。个人的生活方式(过度清洁)、饮食习惯(高糖高脂的饮食)等可能直接影响皮肤微生物的结构和组成,进而引发皮肤问题。外界环境中的污染物、紫外线辐射、气候变化等也会对皮肤微生物群产生影响,从而引发皮肤干燥、过敏、炎症等问题。肠道微生物群的失衡可能导致身体免疫系统的异常反应,进而影响皮肤的健康。

了解皮肤微生物群的特征及其与其他因素的相互关系,对于制定精确的治疗和护肤策略具有重要意义。

图源:Getty Images

本文我们来了解一下整个生命中皮肤微生物组,探讨皮肤微生物群的功能,包括保护屏障、免疫调节等,阐述了皮肤微生物与宿主的相互关系,微生物群在皮肤病中的影响,同时也介绍一些基于微生物群的保持皮肤健康的方法,以及皮肤微生物群在不同领域的应用前景和潜力

-本文主要内容如下-

编辑​

-正文-

01
关于皮肤微生物组

皮肤是暴露于外界环境的重要器官,它可以调节体温、防止感染、保护内脏器官等。

皮肤表面是一个酸性、富含盐分、干燥、有氧的环境,而形成毛囊皮脂腺单位的内陷相对厌氧,甚至富含脂质。

什么是皮肤微生物组?

皮肤是身体最大的器官。一个成年人的皮肤平均面积约为1.5-2.0平方米。皮肤除了作为外界与生物体之间的物理和化学屏障的功能外,还作为许多微生物的栖息地。通常,一个人的皮肤上有大约 1000 种细菌。

皮肤微生物组由多种微生物组成,包括细菌、真菌、病毒、螨虫等。

皮肤微生物群通过参与皮肤中发生的基本生理过程,对于维持皮肤屏障抵御病原体入侵增强免疫系统分解天然产物等方面发挥着重要作用。

皮肤和微生物群的结构

编辑​

上图可以看到,皮肤由两层组成,即真皮表皮,具有不同的、专门的生态位微环境

不同部位的皮肤微生物群

皮肤微生物成员和功能可能因皮肤的各种特殊生态位或微环境而异:

  • 油 性 皮 肤 部 位

具有高密度的毛囊和皮脂腺,例如面部(额头、鼻翼、耳后)、胸部和背部。通常呈高酸性,其特点是细菌可以消耗脂质,需要或可以在厌氧条件下生存,例如:

Corynebacterium minutissimum(微小棒状杆菌)

Cutibacterium

  • 潮 湿 皮 肤 部 位

肘部,膝盖,生殖器,肚脐,腹股沟等部位。温和的酸性环境,温度和湿度较高,导致体味的细菌喜欢在这样的环境生活,例如:

Corynebacterium (棒状杆菌)

Staphylococcus (葡萄球菌)

  • 干 燥 皮 肤 部 位

例如手掌等部位。生物量最低,但细菌多样性却最高。

  • 特 殊 部 位

最不稳定的是足部微生物群。足部皮肤上细菌的平均数量从足背表面的103CFU/cm2到第四趾裂处的107CFU/cm2不等。

脚跟底部的真菌居多, 例如:

Malassezia(马拉色菌属)

Aspergillus (曲霉属)

Cryptococcus (隐球菌属)

Rhodotorula (红酵母属)

Epicoccum (附球菌属)

整个生命过程中的皮肤微生物群

在一生中,随着个人皮肤免疫系统的成熟激素驱动汗液皮脂腺的发育,皮肤的生理机能会发生变化。这些变化与突出的皮肤微生物群的相对丰度的变化和整体微生物群落多样性的变化有关

作为与环境的直接接触面,皮肤也不断地与我们周围的地方和人分享微生物。下图总结了人类一生中皮肤微生物组的变化,并强调了在与年龄相关的关键阶段皮肤微生物组的破坏会影响疾病发展的风险。

皮肤及其微生物组在整个生命周期中的动态平衡

doi.org/10.1042/BST20220216

内圈代表相对微生物多样性、皮脂生成、汗液生成、表面pH值、皮肤完整性和终身免疫功能。微生物组16s测序数据显示了每组前 10 个微生物类群的平均相对丰度。

出生

皮肤微生物组在出生时就已开始定植,并受到多种因素的影响,如:分娩方式、母亲微生物群、抗生素治疗、卫生条件、营养缺乏、住房、动物/宠物接触和环境暴露等。

阴道分娩新生儿的皮肤微生物组以阴道相关菌群为主,主要是乳杆菌,普雷沃氏菌,白色念珠菌

剖宫产新生儿的微生物群中含有母体皮肤相关微生物,包括葡萄球菌、链球菌、棒状杆菌,Cutibacterium等。

这些初始群落是短暂的,不过物种定殖的顺序和时间会影响菌株后面的相互作用。这些优先效应可以塑造未来的菌群结构,并对皮肤、微生物组和整体健康产生长期影响。

doi: 10.3390/microorganisms9030543

皮肤微生物组的年龄依赖性特异性;CSR剖宫产,VGL阴道分娩。

婴儿期和儿童期

婴儿期,最初接触微生物会促进免疫发育,并通过促进角质形成细胞的适当分化和表皮修复来加强皮肤屏障。

新生儿和婴儿皮肤含水量更高pH值更高,皮脂生成受到抑制,表皮更新更快,抗菌性能更强。在3-6个月内,微生物分类群与皮肤代谢功能(如脂质生成和pH)之间的联系建立起来。

早期皮脂生成减少棒状杆菌、Cutibacterium、马拉色菌丰度降低葡萄球菌、链球菌增加以及以念珠菌为主的真菌生物群落有关。

随着儿童年龄的增长,皮肤进一步酸化并产生更多的皮脂脂质,这促使了酸敏感链球菌(acid-sensitive streptococci)的逐渐减少和整体群落多样性的增加

在整个儿童时期,皮肤会继续携带来自照顾者的不同微生物群。然而随着年龄的增长,年龄较大的孩子具有更高的皮肤微生物多样性,以及更多来自农村城市环境的微生物,母婴微生物组之间的相似性逐渐下降

一旦这种平衡破坏,则可能与更大的炎症有关,并可能增加儿童患特应性皮炎过敏的风险。

青春发育期

青春期标志着皮肤微生物群的下一个重大转变。驱动身体和性发育的激素也直接促进皮肤的结构和功能变化,如皮脂顶泌汗液产生,导致了随后微生物组成的变化。

横断面和纵向研究都表明,Tanner阶段的皮肤微生物组组成发生了明显变化。与V期的年轻人相比,I期的儿童链球菌、拟杆菌和假单胞菌的相对丰度更高,细菌和真菌的多样性也更高

在年轻成人的皮肤微生物组中主要存在亲脂菌群,如棒状杆菌、痤疮角质杆菌和马拉色菌。与皮脂生成和痤疮相关。

青春期早期和晚期皮肤、微生物组和体味产生的差异

doi.org/10.1042/BST20220216

儿童期和青春期早期(Tanner阶段I至II),皮肤微生物组高度多样化,体味与凝固酶阴性葡萄球菌属(如表皮葡萄球菌和人型葡萄球菌)产生挥发性脂肪酸(如丙酸、乙酸和异戊酸;酸味)和(臭鸡蛋味)有关。随着青春期的发展,类固醇激素促进皮脂腺和顶泌汗腺的发育,改变皮脂中的脂质类型,增强皮肤屏障

青春期后期(Tanner IV至V期),脂质生成增加和脂质含量改变与亲脂性类群主导的皮肤微生物组有关。虽然汗液和皮脂成分仍会分解为挥发性脂肪酸,但年轻人的体味棒状杆菌属更为相关。皮脂和汗液成分代谢为硫烷基烷醇(如3-硫烷基己醇和3-甲基-3-磺基己醇;洋葱味)和挥发性有机化合物(如3-羟基-3-甲基己酸;类孜然味)。

成年期

成年皮肤微生物组在几年内是稳定的。微生物-微生物相互作用网络、持久的成人皮肤生理学和有弹性的皮肤免疫力维持了平衡的成人皮肤微生物群。

成年皮肤微生物群以角质杆菌、棒状杆菌、葡萄球菌、马拉色菌为主。

一旦成年后,成熟和持久的皮肤生理机能,会促进皮脂的产生、汗液成分和表面pH值的一致性,这些共同提供了稳定身体部位微环境和营养库。免疫系统那时候也成熟了,这些内在特征使皮肤上的大部分微生物群能够在日常环境变化的情况下持续存在

年龄增长

随着年龄的增长,皮肤会发生明显的变化,包括胶原蛋白合成下降、细胞外基质断裂和皮肤细胞再生减少,皮肤皱纹也就出现了。

随着皮肤屏障的变化,它可能会失去保持水分的能力,导致天然保湿因子(NFM)产生的补偿性增加。NMFs既能吸收水分,又能促进细菌增殖和粘附在皮肤上。随后,NMFs的增加与许多分类群的更丰富有关,如棒状杆菌、微球菌、链球菌、厌氧球菌,同时角质杆菌的减少。皮肤微生物多样性也广泛增加。

女性更年期后皮脂细胞面积和皮脂生成的减少,与角质杆菌减少以及棒状杆菌、链球菌、不动杆菌和棒状杆菌丰度的增加有关。

在男性中,皮脂分泌下降的速度明显较慢,因此随着年龄的增长,它们保持着更丰富的角质杆菌。

随着年龄增长,免疫系统功能也会慢慢下降老年人维持低度炎症状态,免疫防御受损和潜在致病菌(如β-溶血性链球菌)增加,皮肤感染的风险大幅增加,难以清除感染。

衰老会改变皮肤结构、功能和微生物定植

doi.org/10.3390/ijms24043950

内在衰老和光老化会导致皮肤结构和生理的不同变化,导致微生物组成的显著变化。这种改变的皮肤微生物组可能是由脂质成分的特定修饰形成的,这可能进一步导致与年龄相关的皮肤异常。

以上是皮肤微生物组在整个生命周期中的变化情况,那么皮肤微生物组是稳定的吗?它有可能受到哪些因素的影响?我们来看下一章节。

02
哪些因素会影响皮肤微生物群?

持续暴露于各种外在和内在因素会影响这个皮肤生态系统的平衡。

皮肤结构决定了皮肤微生物组的组成,个体特征取决于宿主的年龄、性别和健康状况等。个人生活方式和所处环境也会影响皮肤上微生物的数量和组成。微生物组的组成可能会随着宿主健康状况的恶化衰老、甚至居住或职业的改变而改变。皮肤的物理和化学特性影响特定微生物群的优势、它们的比例以及它们之间的相互关系。

Skowron K, et al., Microorganisms. 2021

我们分为外在因素和内在因素两大块。

外 在 因 素

紫外线

紫外线辐射,对皮肤细胞有破坏和抗菌作用。大多数与年龄相关的皮肤病是由光老化引起的。皮肤光老化表现为:皱纹、局部色素沉着、毛细血管扩张干燥和粗糙。这些与表皮和真皮中各种细胞和组织的病理生理变化有关。

皱纹作为光老化最明显的临床特征,主要是由于真皮成纤维细胞减少,以及胶原蛋白和弹性蛋白合成速度减慢但分解速度加快所致。皮肤光老化不仅影响美观,还会损害正常的皮肤屏障功能,增加皮肤炎症性疾病甚至恶性肿瘤的风险。

紫外线:破坏作用

皮肤强烈暴露于紫外线辐射可能会增加其感染的易感性,并加剧相关症状,例如单纯疱疹病毒。

紫外线辐射也可能影响皮肤微生物群的遗传变异,扰乱健康的微生物组结构

皮肤暴露在紫外线下导致蓝藻菌数量总体增加乳酸杆菌科和假单胞菌科数量减少

紫外线:抗菌作用

阳光和紫外线也有效抑制金黄色葡萄球菌痤疮丙酸杆菌的生长。痤疮丙酸杆菌数量的减少卟啉的产生减少有关。

微生物也可以抗紫外线辐射

皮肤微生物组对太阳辐射和紫外线辐射的抵抗力各不相同。一些细菌可以保护皮肤免受紫外线辐射的破坏。皮肤表面的蓝细菌和乳酸杆菌降低了色素沉着的强度和光老化相关损伤的发生。

共生马拉色菌对紫外线辐射表现出高度敏感性,尽管它们有能力合成类似紫外线过滤器的物质——pityriacitrin。

关于紫外线辐射对皮肤微生物群的影响详见谷禾之前的文章:

你可能忽略的“微生物防晒”

空气污染物

化学空气污染物,包括 O3、颗粒物(PM 2.5:≤2.5 μm;PM 10:≤10 μm)、挥发性有机化合物和二氧化氮(NO2)等温室气体,是已知的外部暴露组的组成部分,增加过敏性疾病发生和恶化的风险。

空气污染物N2O干扰共生微生物,在对头葡萄球菌结核棒状杆菌的负面影响大于对金黄色葡萄球菌的负面影响的情况下,有可能发生微生态失调。

烧烤烟雾中较多的成分——多环芳烃,在推动皮肤微生物群分化成不同类型中的作用

多环芳烃来源可以分为自然源人为源自然源指火山爆发、森林火灾等自然现象释放到环境介质中的;人为源则是由于人类生产生活活动中化石燃料(煤、油等)不充分燃烧造成的。

我们生活中例如室内外烧烤烟雾中存在较多,在烧烤的过程中,燃料的不完全燃烧或肉类食品脂肪的高温热解均可以产生大量多环芳烃类化合物。

一项研究揭示了多环芳烃暴露与皮肤微生物组分化成不同皮肤类型之间的关联。

皮肤微生物组分化为两种细胞类型(cutotype 1 和 cutotype2)。Cutotype 2与45岁以下受试者的皮肤干燥色素沉着过度有关。多环芳烃暴露量高与皮肤干燥cutotype 2有关,cutotype 2富含具有潜在生物降解功能的物种,相关网络结构完整性降低。

cutotype 1中精氨酸生物合成途径中的优势类群、关键功能基因和代谢产物之间的正相关性表明,来自细菌的精氨酸有助于合成聚丝蛋白衍生的天然保湿因子(NMFs),为皮肤提供水合作用,并可解释正常皮肤表型。

这项研究揭示了多环芳烃在推动皮肤微生物群分化成不同类型中的作用,这些类型在分类学和代谢功能上存在广泛的差异,并可能随后导致皮肤与微生物之间的相互作用变化,从而影响人体皮肤的健康。

也就是说:暴露于空气污染后皮肤微生物组组成的变化,可能导致皮肤干燥和炎症的恶化

气候变化

全球变暖极端天气事件等气候变化相关因素,会影响皮肤维持体内平衡的能力,在许多皮肤疾病的发病机制中发挥作用。

全球变暖可能破坏皮肤微生物组

温度和湿度的升高与皮肤上细菌的总体生长有关。

较高的气温金黄色葡萄球菌的生长之间可能存在关联:

在一项以人群为基础的每月皮肤和软组织感染(SSTI)发病率研究中,SSTI 的时间变化与平均温度和比湿度显着相关。在美国 SSTI 的回顾性分析中(n = 616,375),在气温较高的南部地区,社区获得性耐甲氧西林金黄色葡萄球菌的感染率较高。

温度每升高1˚C,皮脂的产生就会增加10%,这反过来可能会增加微生物的生长,包括角质杆菌马拉色菌

极端天气可能引发皮肤病

气候变化导致极端天气事件发生的频率不断增加,包括热浪、干旱、野火、暴雨、洪水和飓风。

例如,洪水的最初影响阶段,经常有创伤与继发性伤口感染的相关风险,包括:嗜水气单胞菌( Aeromonas hydrophila)、创伤弧菌、副溶血性弧菌、Burkholderia pseudomallei等感染。

除了对皮肤病的直接影响外,极端天气事件的额外影响还包括冲突加剧、被迫迁移、心理健康恶化以及传染病的更大传播,所有这些都进一步增加了皮肤病的风险

生活、工作环境

农村和城市居民皮肤微生物组的差异,可能与不同程度地接触农业或畜牧业中的土壤、水和生物质中的微生物有关。即使皮肤与土壤和植物材料的短期接触,也会导致手部微生物组的变化以及酸杆菌Acidobacteria拟杆菌的丰度增加

在芬兰进行的一项研究结果表明,城市乡村环境对 1-4 岁儿童的皮肤微生物群有显著影响。这种效应在青少年(14岁)中消失,这直接归因于该年龄段的户外活动时间有限。然而,在其他国家获得的研究结果并未证实这种趋势,表明其他因素(文化差异)也影响皮肤微生物组。

角质杆菌属农村成年人的背部皮肤上更常见,而Trabulsiella细菌在城市居民的手和前臂上更丰富。

农村环境的特点是微生物多样性很高

棒状杆菌角质杆菌属数量的减少,以及假单胞菌和不动杆菌数量的增加,主要发生在与各种农场动物接触的农场工人身上。

封闭空间环境中的微生物有城市和工业区的特点

随着室内城市化的发展,与人类皮肤相关的真菌和细菌的相对丰度也在增加。此外,潜在致病真菌的数量也在增加,包括曲霉菌、马拉色菌、念珠菌等。

由于卫生习惯和西方生活方式,皮肤的细菌多样性降低。许多皮肤共生菌(如表皮葡萄球菌、乳酸杆菌、伯克霍尔德菌Burkholderis、痤疮梭菌)消失取而代之的是葡萄球菌、棒状杆菌、角质杆菌(Cutibacterium)和微球菌Micrococcus

养的宠物

不同的动物物种含有独特的微生物群,与动物的持续接触会影响健康人皮肤细菌群落的组成和多样性。例如家养狗家庭主人共享微生物群。菌群结构受季节的影响,但不受狗的性别、年龄、品种或皮毛类型的影响。

宠物肠道菌群与主人的肠道菌群也会产生关联,详见:

揭秘猫狗的微生物世界:肠道微生物群的意义和影响

穿的衣服生物活性纺织品

皮肤与衣服的长时间接触也很重要,这会导致微生物的传播,并形成所谓的纺织品和挥发性微生物组。反过来,织物微生物组的组成会受到洗涤和干燥的影响。附着在纤维上的微生物可以利用污垢或皮脂化合物作为基质,并产生挥发性物质作为副产品,从而产生难闻的气味

doi.org/10.1016/j.ejpb.2023.05.004

纺织纤维的性质可以直接影响微生物的附着、生长和定植

葡萄球菌属在几乎所有纺织纤维中显示出显着的固定性Staphylococcus hominis棉花的亲和力较高,在粘胶纤维羊毛中不生长。

羊毛促进了许多菌群生长,包括表皮葡萄球菌、Enhydrobacter、角质杆菌、微球菌属。

聚酯为角质杆菌、Enhydrbecter、微球菌属提供了最大的生长环境。

棒状杆菌属无法在棉花、丙烯酸、羊毛、粘胶、尼龙、羊毛和聚酯上进行竞争,这解释了只有少量棒状杆菌属才能从破旧的衣服中分离出来。

合成纤维由于其疏水性和较差的吸附能力,通常抵抗微生物定植

天然纤维更容易受到微生物定植的影响,因为它们具有高保湿性能,并且它们的聚合物键更容易被微生物酶获取。天然纤维可以以碳水化合物或蛋白质的形式为微生物提供营养和能量来源,支持微生物生长和定植

与棉花相比,亚麻纺织品对金黄色葡萄球菌和表皮葡萄球菌表现出强烈的抑制作用,同时对角质形成细胞产生细胞毒性。

用的化妆品

化妆品旨在改善皮肤,减缓衰老过程。这些产品可能有助于皮肤微生物组的多样化,尤其是当定期或长期使用时

化妆品中含有的活性成分可能有利于或抑制某些微生物的生长

N-乙酰氨基葡萄糖是刺激皮肤微生物群的化合物之一,它是透明质酸的前体,常见于护肤品中。

保湿产品可以降低皮肤水分流失的强度,并可以增加皮肤微生物群多样性α多样性是健康皮肤微生物群的标志),同时减少皮肤细胞剥落。它们的脂质化合物促进亲脂性细菌的生长,如葡萄球菌和角质杆菌。另一方面,皮肤水合水平的提高会降低皮脂含量,并可能减少角质杆菌数量。

化妆品成分的作用持续数周个体的反应可能差异很大。不合适的化妆品或不合适的应用会减少皮肤微生物组的多样性,从而对其产生负面影响,导致生态失调。洗发水或面霜等化妆品也可能会导致感染,有时会导致严重的健康后果,尤其是在儿童或免疫力下降的人群中使用。

内 在 因 素

皮肤本身作为微生物的生存环境

皮肤表面呈微酸性(pH值5.6左右)且干燥,但温度比体内

表皮细胞自身脱落机制影响菌群组成

表皮外层不断释放角质化皮肤细胞,导致皮肤每四个星期自我更新一次。每小时有 500-3000 个细胞从1cm2的皮肤脱落,这意味着一个成年人每小时释放 600,000-100 万个或更多细胞。由于约 10% 的脱落细胞含有细菌,这种机制可能会显着影响微生物组的组成。

皮肤的厚度、表面褶皱的深度和位置,毛囊和腺体的密度都是影响宿主微生物群的关键因素。腺体释放的分泌物以不同的方式影响微生物,创造刺激或抑制微生物发育的条件。

皮脂腺确保专性和兼性厌氧菌的最佳环境。这些腺体分泌的皮脂在皮肤上形成保湿、疏水的保护层,并且是微生物使用的脂质的来源。这些脂质水解产生的游离脂肪酸有利于细菌粘附到腺体表面并降低皮肤pH值抑制金黄色葡萄球菌和化脓性链球菌等病原体的生长。

水分含量潮湿的区域为许多微生物创造了有利的条件,如棒状杆菌属、葡萄球菌属等。相对干燥且温度波动较大的皮肤部位主要含有变形菌、拟杆菌、放线菌等。微生物的数量随着深层皮肤层中营养物质和水分含量的增加而增加。

性 别、 年 龄

男性和女性微生物群之间物种组成的差异是由皮肤的性别特异性特性造成的,即皮肤厚度、毛发、汗液和皮脂腺的数量。女性多样性高于男性。更薄的皮肤更低的 pH 值更少的出汗量会导致更多的多样性。

对手部表面的微生物进行的一项研究表明,女性的物种多样性高于男性。在女性手上,肠杆菌和乳杆菌科的数量显著较高(300-400%),而在男性中,观察到更高浓度的角质杆菌和棒状杆菌

关于不同年龄皮肤菌群构成不同,在前面第一章节已经详细阐述。

种 族

在形成皮肤微生物组的遗传因素中,种族是次要的,但也有一定影响。最主要的是不同生活方式的差异。非洲和拉丁美洲男性头皮和腋下的Cutibacterium数量低于其他种族(高加索、非洲裔、东亚和南亚)。中国人皮肤微生物组与其他人群存在差异,比如Enhydrobacter在中国人的皮肤上较为常见。

抗生素

抑制细菌和减少炎症病变

口服米诺环素(用于治疗痤疮)降低Cutibacterium、棒状杆菌、普雷沃氏菌、乳酸杆菌和卟啉单胞菌的丰度。

多西环素显著减少痤疮梭菌的数量(治疗6周后为1.96倍)。Snodgrassella alvi的数量也减少了(3.85倍)。另一方面,观察到Cutibacterium granulosum的数量显著增加(4.46倍)。

大环内酯类、四环素类和克林霉素用于治疗痤疮。用利美环素进行的脸颊皮肤治疗减少了角质杆菌的存在,并增加了链球菌、葡萄球菌、微球菌和棒状杆菌的数量。反过来,二甲胺四环素导致微生物组紊乱。

虽然氟喹诺酮类药物(培氟沙星)和大环内酯类药物(红霉素)显著减少了痤疮梭菌的数量,但只有纳氟沙星对凝固酶阴性葡萄球菌表现出抑制活性

导致出现抗生素耐药性物种

例如痤疮梭菌和表皮葡萄球菌。大环内酯药物的长期治疗痤疮,增加了痤疮梭菌分离株的数量,但对大环内酯的影响的敏感性降低

据估计,红霉素阿奇霉素耐药菌株的比例可能分别达到50%,甚至100%。从感染皮肤分离的G+细菌中,77.5%对青霉素耐药,28%对甲氧西林耐药。在所有测试的菌株中,31.9%对三种以上的抗生素不敏感。

儿童皮肤分析结果显示,36.4%的从皮肤表面分离的金黄色葡萄球菌菌株对甲氧西林有耐药性。此外,耐甲氧西林葡萄球菌(MRSA)是医院感染最常见的原因之一。

肠-皮肤轴

肠道内表面和皮肤表面有一些有趣的相似之处:两者都被上皮细胞覆盖,上皮细胞维持着体内与外部环境之间的重要联系,充当第一道防线,在抵御外部病原体调节免疫反应和抑制分解代谢物方面发挥着重要作用。

肠道和皮肤组织是宿主原核和真核共生微生物的两个主要生态位,因为它们的高细胞周转率决定了定植微生物组的低粘附和感染

皮肤健康与肠道屏障的完整性有关。一些食代谢物可以直接吸收到皮肤中,其他通过肠道微生物代谢来做到这一点,这两者都可能有助于皮肤健康。

由于肠道通透性增加,肠道菌群或其代谢产物可能从肠道迁移到循环系统中并在皮肤中积聚,这可能会损害皮肤屏障并使其容易发炎。

肠道微生物群的变化还可能引发系统性炎症异常免疫反应,从而破坏皮肤健康。

皮肤或肠道微生物群失调与免疫应答改变密切相关,与多种皮肤病相关,包括特应性皮炎、牛皮癣、寻常痤疮、甚至皮肤癌等,这在下一章节会详细讲述。

饮食强烈影响肠道微生物组的组成,影响代谢和免疫功能,间接影响皮肤健康。关于如何通过饮食调整在最后章节会讲到。

以上是影响皮肤微生物群的外在和内在因素,那么皮肤微生物群会如何影响人体健康呢?我们来看下一章节。

03
皮肤微生物群如何影响健康/疾病

这里我们分为两个部分来阐述:

  • 皮肤微生物群直接影响皮肤健康
  • 皮肤微生物群通过影响其他器官(如肠道等)间接影响健康

皮肤微生物群直接影响皮肤健康

我们知道,皮肤是由角质形成细胞的分层角质化上皮组成,这些上皮经历终末分化。这些物理结构通过增强屏障的化学和免疫学特征得到进一步强化。

皮肤微生物群影响皮肤屏障的各个方面,同时也直接与表面遇到的共生微生物和病原微生物相互作用

皮肤微生物群介导多种屏障功能

DOI: 10.1126/science.abo0693

微生物群强化皮肤屏障的多个方面:

皮肤微生物通过各种定殖抗性机制,包括资源排斥、直接抑制和/或干扰,形成对抗环境的第一道屏障。

皮肤微生物群也有助于物理皮肤屏障的分化和上皮化。微生物通过产生脂肪酶来增强皮肤的化学屏障,脂肪酶将皮脂甘油三酯消化为游离脂肪酸,从而增强皮肤的酸性,并限制瞬时和致病物种的定植。

最后,微生物刺激先天和适应性免疫防御,如抗菌肽的释放、新生儿耐受性的诱导和保护性免疫的发展。

接下来我们讨论微生物群到底如何与皮肤屏障的微生物、化学以及先天和适应性免疫成分相互作用。

微生物群之间的相互作用——拮抗/协同

皮肤微生物群本身是抵御外来微生物和病原微生物入侵、定植和感染的屏障

——直接竞争关系

皮肤微生物争夺资源,并进化出直接对抗对手的机制。

多种CoNS物种(凝固酶阴性葡萄球菌),如人葡萄球菌产生具有独特化学性质的抗生素,并抑制皮肤病原体金黄色葡萄球菌。

其他物种,如头葡萄球菌,通过干扰金黄色葡萄球菌毒力所需的辅助基因调节因子(agr)群体感应途径来拮抗金黄色葡萄菌

——拮抗机制与宿主抗菌反应协同作用

人型葡萄球菌和表皮葡萄球菌,可以产生共生衍生的AMPs,其发挥选择性抗菌活性,并与宿主衍生的AMPs协同作用,以抑制皮肤病原体的存活。

痤疮角质杆菌产生硫肽抗生素角质霉素的特定菌株竞争,以维持其在人类毛皮脂腺单元中的生态位,从而限制金黄色葡萄球菌的定植。

皮肤微生物组内微生物之间的相互作用,可以驱动整体微生物群结构

主要皮肤菌群产生的抑制其他微生物群,和/或潜在病原体的突出和最近鉴定的抗菌分子汇总在下表,分子作用机制也包括在内。

皮肤上关键的微生物与微生物相互作用

doi.org/10.1042/BST20220216

微生物群影响物理结构

角质细胞经历严格调控的终末分化程序,形成角质层,该过程由微生物群介导。微生物群通过角质形成细胞芳香烃受体(AHR)的信号传导促进分化和上皮完整性;还分泌鞘磷脂酶,将层状脂质加工成神经酰胺,神经酰胺是角质层的关键成分。

微生物群增强皮肤的化学屏障

酸性皮肤表面还产生了限制细菌定植的化学环境。痤疮角质杆菌和棒状杆菌都分泌脂肪酶水解皮脂中甘油三酯中的游离脂肪酸。游离脂肪酸通过直接抑制细菌和刺激人β-防御素2(hBD-2)的表达,进一步增强皮肤免疫力。痤疮角质杆菌也直接与游离脂肪酸结合,这表明游离脂肪酸的存在促进了痤疮角质杆菌的定植

微生物群刺激先天免疫防御

微生物可以刺激多种与先天免疫反应有关的反应,通常取决于代谢和炎症环境。例如,念珠菌的菌丝和酵母形式在皮肤中刺激不同的免疫反应S. epidermidis在皮肤中引起的T细胞反应,需要菌体表面特定糖蛋白与宿主先天免疫细胞上的C型凝集素相互作用

氧气的可用性也会影响皮肤表面宿主与微生物的相互作用。微氧耐性细菌痤疮角质杆菌生成短链脂肪酸抑制组蛋白去乙酰化酶,后者可作为免疫系统的表观遗传调节因子,从而刺激炎症。

注:在皮肤中,短链脂肪酸具有促炎作用,这点和肠道中不同。SCFAs通过抑制HDAC8和HDAC9以及通过TLR信号通路刺激炎症。

皮肤微生物还通过激宿主产生抗菌肽蛋白增强皮肤免疫力,这些抗菌肽和蛋白起到天然抗生素的作用。

皮肤微生物群落还在创伤修复过程中协调先天免疫反应。在皮肤中的共生微生物群落会引发I型干扰素(IFN)反应。作为对微生物信号的反应,中性粒细胞会表达CXCL10,吸引活化浆细胞样树突状细胞(pDC)到损伤部位。pDC会产生I型干扰素,通过刺激成纤维细胞和巨噬细胞增长因子反应来加速创伤修复

实际上,抗原呈递细胞向皮肤的募集是微生物群依赖性的。微生物通过需要IL-1R-MYD88信号传导的过程,在伤口修复和毛囊新生中增强皮肤再生

微生物群刺激适应性免疫防御

皮肤是各种适应性免疫细胞的家园,其中包括大量的常驻记忆T细胞,随时准备对各种环境刺激做出反应,包括致病微生物和共生微生物。

婴儿早期,暴露于皮肤共生表皮葡萄球菌介导调节性T细胞(Tregs)流入皮肤。这种Treg迁移波与毛囊发育同时发生,需要毛囊角质形成细胞产生趋化因子。Tregs,以及皮肤中的许多其他免疫细胞亚群,最终位于毛囊附近,对在这个发育窗口期间检测到的微生物抗原具有特异性

在一个平行的过程中,粘膜相关不变T细胞(MAIT)是在婴儿期在类似的时间限制的发育窗口中获得的。MAIT细胞在无菌小鼠中是不存在的,它们的发育需要维生素B2代谢产物,而这些代谢产物仅由细菌和真菌产生,而不是哺乳动物细胞。

在胸腺中,暴露于5-(2-oxopropylideneamino)-6-d-ribitylaminouracil(一种维生素B2的细菌代谢产物,从粘膜部位运输到胸腺),介导MAIT细胞扩增并靶向皮肤和粘膜部位

微生物细胞表面分子也可以作为宿主的信号。大多数棒状杆菌的细胞膜中含有霉菌酸。棒状杆菌属霉菌酸在稳定状态下可以以IL-23依赖的方式促进γδT细胞的积累。然而,这种相互作用取决于环境,因为高脂肪饮食反而会促进皮肤炎症。因此,微生物暴露时存在的炎症环境影响皮肤内的免疫反应。

这些发现突出了微生物在皮肤免疫细胞的募集和刺激中发挥的关键作用。

以上是皮肤微生物群从物理、化学、免疫等多角度与皮肤之间的关联,如果说上述对局部组织微环境的相互作用,那么接下来我们从更系统的角度来看,皮肤微生物群通过与其他器官的交流,对全身健康产生的影响。

皮肤微生物群通过影响其他器官间接影响

越来越多的证据表明,皮肤损伤和致敏会影响其他屏障部位,如肠道肺部等。

皮肤—肠道

皮肤和肠道之间存在双向沟通

  • 皮肤微生物群可能引起肠道炎症;
  • 胃肠道疾病和饮食都会影响皮肤的病理生理学,肠道菌群通过产生短链脂肪酸、免疫系统修饰等影响皮肤健康。

为什么浅表皮肤损伤会引起肠道炎症?

浅表皮肤损伤会导致角质形成细胞全身释放 IL-33IL-33 与 IL-25 协同作用,触发肠道内 ILC2 的激活,产生 IL-4。这反过来又刺激肠道中肥大细胞的扩张,在那里它们准备对食物过敏原做出反应并介导过敏反应。

在模拟炎症性肠病的小鼠模型中,皮肤受伤还会加剧肠道炎症。

皮肤和肠道之间的相互作用取决于损伤期间真皮中产生的透明质酸片段的产生,这些片段刺激肠道成纤维细胞,通过反应性脂肪生成的过程分化为促炎脂肪细胞。这些反应性脂肪细胞通过产生 AMP 和其他炎症介质来传播肠道炎症

肠道微生物群变化也会影响皮肤炎症

在这两种情况下,肠道免疫网络的激活都会影响皮肤中炎症信号的振幅。

  • 小鼠银屑病模型中的3型炎症在无菌小鼠中被抑制。
  • 通过口服对肠道中过敏原敏感的小鼠在用相同抗原经皮激发后,在皮肤中产生抗原特异性T细胞。

因此,肠道微生物组的改变可能会影响皮肤免疫力。

研究表明,饮食对肠道微生物组的影响,尤其是膳食纤维,对系统免疫有重要影响。皮肤先天免疫反应也与肠道有关,肠道中保护细菌性皮肤感染的AMPs的充分表达,取决于饮食中的维生素A。这些发现加强了我们对饮食在宿主免疫发展中重要性的分子理解。

皮肤—肠道—肺部

流行病学证据表明,许多患者经历了“特应性进军”,首先出现特异性皮炎随后发展为过敏性鼻炎、食物过敏、哮喘。它们的先后出现意味着存在什么样的关联?

皮肤微生物群失调金黄色葡萄球菌定植增加,特应性皮炎的发作有关。

表皮暴露于金黄色葡萄球菌刺激角质形成细胞产生IL-36,从而提高血清IgE水平。

而缺乏IL-36受体的小鼠对金黄色葡萄球菌的反应不会产生升高的IgE,并且也可以免受过敏原特异性肺部炎症的影响。这些发现支持了皮肤暴露于微生物病原体作为全身炎症的起始

微生物组的变化与哮喘、过敏性鼻炎、特应性皮炎和食物过敏的风险有关

doi: 10.18176/jiaci.0852

气道中,卡他莫拉克菌(Moraxella catarrhalis)、流感嗜血杆菌(Haemophilus influenzae)和肺炎链球菌水平较高与婴儿哮喘有关。

肠道艰难梭菌的比例于双歧杆菌,这与更高的食物过敏率有关。

皮肤—神经免疫

神经免疫相互作用中的皮肤病原体

细菌可以直接激活皮肤中的感觉神经元,并通过产生造孔毒素引起疼痛菌株水平的变化驱动着可变的反应,这取决于特定毒素群体感应系统的存在。

关于群体感应,详见:

细菌如何交流和占地盘——细菌的群体感应和生物膜

真菌(白色念珠菌)也可以直接激活皮肤中的感觉神经元。γδT细胞免疫需要刺激才能通过释放神经肽CGRP来控制皮肤念珠菌感染

相反,引起坏死性筋膜炎的病原体化脓性链球菌,通过分泌链球菌溶血素S直接激活伤害感受器神经元,进而促进神经肽CGRP的释放并抑制化脓性链球菌的杀伤。在这种情况下,CGRP拮抗作用可防止坏死性感染

皮肤与其他器官系统的交互作用是由微生物群介导的

DOI: 10.1126/science.abo0693

微生物与宿主相互作用和皮肤疾病

doi.org/10.1002/mlf2.12064

痤 疮

痤疮患者,特别是那些症状严重的患者,表现出α多样性增加,四种革兰氏阴性细菌(即粪杆菌属、克雷伯氏菌属、臭杆菌属和拟杆菌属)的比例更高。

痤疮角质杆菌C. acnes)的过度生长与痤疮发病机制有着长期的关联。宏基因组分析表明,痤疮患者中痤疮丙酸杆菌的菌株结构与健康个体不同,IV 型和 V 型菌株在受痤疮影响的皮肤中特别普遍。

痤疮丙酸杆菌通过多种不同方式参与痤疮发病机制的调节,它参与:

  • 生物膜形成的调节
  • 表皮角质形成细胞的异常调节
  • 调节皮脂腺细胞的异常炎症和脂肪生成
  • 免疫反应失调

doi: 10.1186/s13578-023-01072-w

痤疮丙酸杆菌表皮葡萄球菌在痤疮以及炎症后色素沉着过度中具有病理生理作用。

肠道微生物群在皮肤炎症和情绪之间起着中介作用

痤疮和胃肠道功能障碍之间的联系可能起源于大脑。支持这一假设的是压力引起的痤疮加重。实验动物和人类研究表明,压力会损害正常的肠道菌群,尤其是乳酸杆菌双歧杆菌。心理应激源导致肠道微生物群产生神经递质(即乙酰胆碱、血清素、去甲肾上腺素),这些神经递质穿过肠粘膜进入血流,导致全身炎症。

痤疮中肠-脑-皮肤轴的拟议模型

doi.org/10.3390/jcm8070987

西方饮食包括乳制品、精制碳水化合物、巧克力、饱和脂肪等,这些物质可能通过激活营养来源的代谢信号来加重痤疮高脂肪饮食会降低肠道菌群水平,增加脂多糖的浓度,通过损害结肠上皮完整性和屏障功能降低粘液层厚度和增加促炎细胞因子的分泌来引起全身炎症。

扩展阅读:

痘痘?粉刺?皮肤问题很可能是肠道问题

这7种类型的食物可能引起 “痘痘”

特异性皮炎

皮肤干燥、斑块发痒和反复出现的湿疹是特异性皮炎的标志。

特异性皮炎引起的皮肤耀斑通常与更多的金黄色葡萄球菌丰度有关,金黄色葡萄球菌定殖的增加与CoNS数量的减少相关,CoNS本来会产生抗菌蛋白,它在特异性皮炎患者中数量少。

金黄色葡萄球菌在病变的真皮中更为普遍,这表明在剥皮过程中更容易接触到更深的皮肤层

是什么引起金黄色葡萄球菌定植增加呢?

表皮葡萄球菌、痤疮杆菌和棒状杆菌属的丰度降低,它们通常对金黄色葡萄菌的入侵起作用。

特异性皮炎的菌群多样性低。共生细菌数量减少而导致的共生产生的AMPs的缺失抵御病原体如金黄色葡萄球菌的能力下降,金黄色葡萄球菌定植增加。

与特异性皮炎相关的皮肤屏障缺陷损害层状膜的完整性,改变皮肤的微生物群,并可能使金黄色葡萄球菌等有害细菌滋生。厌氧微生物的缺乏可能会降低关键的皮肤屏障活性,并促进潜在的感

金黄色葡萄球菌分泌毒力因子

金黄色葡萄球菌分泌几种毒力因子,包括纤连蛋白结合蛋白1(FBP1),α-和δ-溶血素,酚溶性调节素(psm)的蛋白家族等,所有这些毒素都会导致更高的炎症反应更严重的症状

皮肤稳态取决于复杂的宿主-微生物相互作用,包括金黄色葡萄球菌和特异性皮炎宿主细胞之间的相互作用,微生态失调会导致疾病的发展

特异性皮炎的其他微生物群变化包括痤疮角质杆菌、棒状杆菌Dermacoccus、微球菌、CoNS减少,链球菌和一些马拉色菌属增加。这些微生物变化似乎是暂时的,在特异性皮炎发作之前和期间,群落多样性丧失,金黄色葡萄球菌优势更大,在炎症消退后逐渐恢复到基线。

潜在益生菌治疗和预防AD的临床试验

doi.org/10.1016/j.phymed.2023.154824

糖尿病皮肤和慢性伤口感染

一般来说,皮肤破裂会导致炎症级联活动;然而,这种免疫反应在糖尿病皮肤中被破坏,也就是无法有效引起免疫反应。微生物组的改变可能会加剧疾病的严重程度

糖尿病皮肤的菌群特征

糖尿病早期患者的皮肤细菌微生物群与健康人的非常相似。随着疾病的恶化,物种多样性和丰度发生动态变化。总的来说,糖尿病足的皮肤细菌微生物群的多样性低于健康足。因此,不太常见的微生物种类的变化,其中大多数只在健康的足部皮肤中发现,可以用来预测是否患有糖尿病。

糖尿病足皮肤中葡萄球菌的含量通常较低金黄色葡萄球菌的比例较。金黄色葡萄球菌的大量存在破坏皮肤微生物群平衡,可能会导致炎症变化,并增加皮肤感染的风险

慢性溃疡相关菌群

铜绿假单胞菌和厌氧菌通常与深部慢性溃疡有关,但金黄色葡萄球菌通常与急性浅部溃疡有关。比较有慢性感染和没有慢性感染的糖尿病患者的微生物组的研究可以提供有关诊断标志物的信息,这些标志物可以用作发展为慢性损伤的可能性的指标

牛皮癣

牛皮癣患者由于慢性炎症性皮肤病而出现中度至持续性皮肤斑块。许多遗传和环境变量之间的复杂组合导致皮肤过度活跃的炎症反应是病因。

牛皮癣皮肤菌群特征

牛皮癣患者皮肤样本在α、β多样性明显低于正常皮肤。下列菌群相对丰度和分类性能显著下降:

  • 贪铜菌属(Cupriavidus) ↓↓
  • Flavisolibacter属↓↓
  • 甲基杆菌属 (Methylobacterium)↓↓
  • Schlegelella属↓↓

棒状杆菌在牛皮癣的发病机制中发挥重要作用

大量的研究表明,棒状杆菌属丰度上升,棒状杆菌有可能干扰干扰素信号系统,这可能导致皮肤微生物组的微生态失调。

乳制品和糖类的摄入是牛皮癣最常见的诱因之一,而肉类和鸡蛋则被列为次要的常见诱因之一。

关于牛皮癣与肠道菌群之间也存在很多相关性,此处不展开阐述,详见:

牛皮癣看似皮肤病,实则关系到肠道

皮肤癌

皮肤黑色素瘤

黑色素瘤和正常皮肤样本之间的微生物组成和多样性存在显著差异。黑色素瘤样本中的梭杆菌和Trueperella水平较高。

棒状杆菌属与疾病严重程度相关,棒状杆菌水平与IL-17之间存在关系,IL-17可以通过增加IL-6和信号转导器和STAT-3来促进黑色素瘤细胞增殖。

相反,痤疮角质杆菌的细菌上清液增加了黑色素细胞的凋亡。

角质细胞皮肤癌

以皮肤微生物群为代表的生物屏障通过分泌抗微生物肽(AMP)(如组织蛋白酶LL-37和人β-防御素)来抑制病理生物和病原体入侵,从而与角质形成细胞免疫细胞产生串扰。

研究人员认为金黄色葡萄球菌鳞状细胞癌之间的联系不是偶然的,皮肤溃疡是有利于外源性搪塞/感染的致病过程的结果。金黄色葡萄球菌也可能参与鳞状细胞癌的发病机制,引起慢性局部炎症,涉及不同的致瘤阶段,包括促进生存、增殖、细胞转化、侵袭、血管生成、转移

葡萄球菌毒素-α决定了参与炎症过程的局部细胞的分泌,进而导致活化B细胞的NF-Kβ的激活,从而增加不同细胞因子和趋化因子的表达,包括IL-1β、IL-6和IL-12。

其他因素如紫外线辐射(尤其是UVB)也是皮肤癌发生的主要危险因素之一。紫外线照射会改变皮肤微生物群,导致大量形成活性氧、细胞凋亡和炎症,与皮肤癌相关。

总的来说,许多常见的皮肤病,如痤疮、特异性皮炎、牛皮癣、皮肤癌等,都与皮肤微生物群的变化有关。

皮肤病中的关键微生物发现如下:

编辑​

doi.org/10.1002/mlf2.12064

04
如何保持皮肤微生物组健康?

饮 食

饮食对肠道微生物群的影响较大,皮肤和肠道微生物群是内在相关的,由宿主免疫系统介导。因此,肠道和皮肤可以通过饮食、微生物代谢产物、神经内分泌途径和中枢神经系统等途径相互作用,也就是说,饮食对皮肤也会产生较大影响。

饮食结构

西方饮食已被证明会破坏微生物组并导致皮肤病,从而对皮肤健康产生负面影响。相反,植物性饮食更健康的皮肤有关。

以植物为基础的饮食是一种由多种蔬菜、水果、豆类、扁豆、豆类、坚果、种子、真菌和全谷物组成的饮食模式,并且限制或不摄入动物产品、加工食品或糖果。

这种饮食的饱和脂肪、反式脂肪和花生四烯酸含量较低,而抗氧化剂 omega-3 脂肪酸含量较高,再加上其直接治疗作用,可减少炎症和皮肤症状。

植物性饮食与皮肤健康/疾病之间的关联

doi.org/10.3390/nu15132842

多项研究发现,植物性饮食对缓解牛皮癣、特异性皮炎、痤疮等皮肤问题有益。

doi.org/10.3390/nu15132842

食 物

植物性功能性食品增强皮肤健康,减少皮肤老化迹象,并改善整体外观。下图是芒果、杏仁、牛油果及其对皮肤健康的积极影响。

编辑​

doi.org/10.3390/nu15132842

芒果能够减少皱纹、表皮变薄和肥厚,防止 UVB 损伤。无论是果肉还是果汁,芒果酚酸的抗氧化特性和生物利用度都会得到保留,而果汁的呈现可能会增强其特性。从芒果干中提取的芒果提取物也可以减少UVB辐射引起的皱纹的形成。

杏仁富含α-生育酚(或维生素E)、脂肪酸、多酚,因此是一种具有抗氧化特性的食物,可以减少皱纹、色素沉着和胶原蛋白降解。

牛油果含有类胡萝卜素、单不饱和脂肪酸、酚类化合物,某些基因的表达,如胶原蛋白和弹性蛋白基因,在进行饮食调整后被诱导,因此可以促进皮肤弹性和紧致度的增加。

限制饮酒和甜食

酒精会使你的身体和皮肤脱水,这可能会使皮肤看起来更加干燥或有皱纹,许多含有酒精的混合饮料也富含糖,这都不利于皮肤健康。糖可能使胶原蛋白变硬,从而使皮肤老化,也可能带来炎症。

喝 水

对于每日饮水量较低的人(即那些本来就脱水的人)来说,增加饮水量对皮肤外观有积极影响,有助于维持皮肤水合水平。同时,尝试在食物中多加入黄瓜、芹菜、西葫芦、西瓜、草莓和花椰菜等,也可以适当补水。

清 洁

适当的清洁和保湿可用于维持皮肤的生理pH值。据报道,早在1995年,与使用 pH8 的普通肥皂相比,使用酸性合成皂(pH 5.5-5.6)可显著减少非炎症和炎症病变。

从那时起,pH 值的变化通过皮肤屏障的完整性与痤疮的发病机制联系起来,建议使用 pH 值约为 5.5 的皮肤清洁剂。

为什么洗脸很重要?

脸每天面对风吹、紫外线、化妆/护肤品、屏幕等刺激,会积聚污垢、油脂和其他碎屑,如果不及时清除,可能会导致刺激和其他皮肤问题。

合适的洗脸方式

  • 用温水弄湿脸,用指尖以打圈方式涂抹温和的洁面乳,特别注意 T 区和下巴轮廓。
  • 冲洗干净,用干净的毛巾拍干。

注意:

  • 不要用力擦洗,过多的摩擦会使皮肤失去健康的微生物,同时在皮肤中产生微撕裂
  • 建议洗脸 30 秒,在某些情况下,甚至更长可能更合适
  • 需要使用脸部专用清洁剂。调查发现部分人在脸上使用沐浴露或洗手液,这些会剥夺皮肤的水分并引起刺激或发痒

应该多久洗一次脸?

没有既定的指导方针,一般来说,最好每天洗两次脸

如果皮肤干燥或敏感,可以在晚上用清洁去除污垢,然后在早上用温水冲洗脸。

即使当天不化妆或者不出门,污垢、油脂和其他不需要的碎屑仍然会在一天中积聚在皮肤上,因此最好在睡觉之前洗脸

如果刚在健身房、参加高温瑜伽课或在户外徒步旅行,并且出汗较多,最好马上洗脸

如果存在敏感问题或其他特殊的皮肤状况,请与医生沟通。

护 肤 品

痤疮是一种慢性炎症性皮肤病,对于痤疮,护肤品有多种作用机制,包括:

1) 保护和改善皮肤屏障

2) 保护皮肤微生物组

3) 维持健康的皮肤 pH 值

4) 抵御紫外线伤害

保护皮肤屏障是皮肤化妆品改善痤疮管理的重要机制,临床上,屏障功能障碍表现为皮肤干燥、刺痛/烧灼/刺痛、紧绷、疼痛或刺激性皮炎等形式。这些被认为与经表皮失水 (TEWL) 有关,并且可以通过使用保湿剂至少部分缓解。

特别适用于痤疮的成分包括烟酰胺、视黄醇衍生物、水杨酸、神经酰胺、甘油、温泉水、泛醇等。

护肤品中可能存在的活性成分及其针对性作用

Kurokawa I, et al., Dermatol Ther (Heidelb). 2023

皮肤微生物组的核心作用表皮屏障功能一起,为优化护肤提供了强有力的支持。可以通过尝试恢复微生物组的多样性并通过下调先天免疫来抑制炎症

总的来说,现有文献结果的总体趋势表明,护肤品可以改善整体皮肤健康,减少痤疮皮损,在处方治疗后维持痤疮清除,并且可能对减少表面皮肤油腻具有有益作用。

然而需要进一步研究才能更好地理解这一作用。在此情况下可能有益的成分包括但不限于:乙醇酸、LHA、亚油酸、烟酰胺、锌、吡罗克酮乙醇胺、procerad、Vitroscella filiformis.

注意:

痤疮的治疗管理需谨慎,一些基于类维生素A的治疗方案,可能会加剧皮肤干燥和刺激,这不仅可能导致屏障功能改变,而且还会增加深色皮肤患者继发性妊娠高血压综合征的可能性。

天然产品

温泉水已被证明对膜流动性、皮肤屏障修复、抗自由基、抗氧化、抗炎和免疫调节特性以及增殖活性和衰老和保湿过程的调节有影响。

温泉水的水微生物群中的生物活性化合物可以改善特应性皮炎或红斑痤疮等皮肤病,并改善瘙痒和干燥症;还能增加对紫外线的防护,强化屏障功能,维持皮肤防御良好的稳态,修复受损皮肤,促进伤口愈合,改善皮肤状况,减少皮肤色素不均匀防止皮肤老化。

未来,护肤品研发人员、水文学家、温泉中心之间的合作,将推动该行业更好地了解温泉水的水生生物群落对皮肤病的作用,并考虑将这种水生生物群落的衍生物纳入皮肤病配方(以发酵罐、裂解物、提取物等形式)。

益生菌

某些益生菌菌株及其代谢物可能带来许多益处,如:改善皮肤屏障功能、减少炎症、改善易长粉刺或易湿疹的皮肤、抗皮肤光老化等。因此,近年来益生菌已成为护肤品中的流行成分。

益生菌分为口服和外涂。

口服益生菌

肠道微生物群的变化可能会引发全身炎症和异常免疫反应,从而破坏皮肤健康。口服益生菌直接作用于肠道微生物群,帮助恢复肠道微生物群的稳态,这在皮肤稳态中发挥着至关重要的作用。

益生菌在皮肤光老化中的作用

含有约氏乳杆菌和营养类胡萝卜素膳食补充剂的摄入对紫外线暴露的长期和反复影响有益处,并且对光老化更有针对性。

含有长双歧杆菌低聚半乳糖的膳食补充剂由于其抗炎和抗氧化特性,保护皮肤免受UVB诱导的光老化。它们也提高了血清中短链脂肪酸和乙酸盐的水平,可以增加和激活依赖于组蛋白乙酰化的皮肤固有Treg。

口服植物乳杆菌HY7714通过抑制JNK/AP-1信号通路的激活,降低了UVB损伤细胞中过量的MMP-13转录水平和MMP-2和MMP-9的活性。

口服清酒乳杆菌可以通过阻断MAPK信号通路来抑制AP-1的表达,以增加真皮成纤维细胞中的胶原蛋白延缓皮肤光老化

益生菌通过多种途径对抗皮肤光老化的作用

编辑​

doi: 10.2147/CCID.S388954

局部益生菌(外涂)

局部益生菌于1912年首次被提出作为皮肤疾病的治疗方法。

在特定条件下,益生菌可以持续存在并成功定殖皮肤

  • 诱导角质形成细胞和皮脂细胞产生AMP或其他代谢产物
  • 直接抑制或杀死病原微生物,减少一些病原体与皮肤的粘附,对于特应性皮炎,含有益生菌的软膏可抑制金黄色葡萄球菌的生长并减轻症状。
  • 形成微生物群落,并建立协同效应,益生菌产生的抗菌肽具有潜在的抗菌作用,共同改善皮肤微生物群。
  • 一些益生菌如植物乳杆菌和嗜酸乳杆菌可以抑制几种细胞因子、炎症介质和相关信号通路的活性。
  • 植物乳杆菌还被证明可以通过显著增加皮肤密度和更好的屏障功能发挥抗衰老作用。
  • 一些益生菌如嗜热链球菌在体外和体内都能增强神经酰胺的产生。神经酰胺通过限制皮肤水分和对痤疮角质杆菌的抗菌活性来改善痤疮,有助于增强皮肤屏障和舒缓受刺激的皮肤,这对受痤疮影响的皮肤有益。
  • 局部益生菌还可以预防和治疗皮肤光老化,这与MMP合成和胶原产生的减少、ROS诱导的损伤的增加以及MAPK和NF-kB信号通路的激活密切相关。例如:嗜酸乳杆菌IDCC 3302、嗜酸乳杆菌KCCM12625、罗伊氏乳杆菌DSM 17938等

虽然益生菌对皮肤健康有一定益处,但益生菌使用的安全性可能存在一些限制,主要针对免疫系统较弱的人群,如婴儿、孕妇、老年人等。需要进一步的研究来证明益生菌作为皮肤病治疗和护肤品的功效,作用机制以及主要是局部使用益生菌的安全性。

药 物

过氧化苯甲酰 (BPO) 治疗可以调节痤疮患者的皮肤微生物群,治疗后细菌种类的数量和多样性均减少,接近健康组。也有研究人员认为,BPO治疗虽然降低了GAGS评分并降低了微生物多样性,但它也损害了痤疮的表皮屏障,这可以被认为是一种副作用。

抗生素

针对痤疮丙酸杆菌的抗生素一直是痤疮治疗的支柱。其中,大环内酯类、克林霉素和四环素类药物的处方最为广泛。

红霉素、罗红霉素、克拉霉素和阿奇霉素是大环内酯类药物。常用于痤疮的四环素类药物是多西环素、四环素和米诺环素

异维甲酸是一种全反式维甲酸原药,是严重顽固性痤疮患者的最终选择,它抑制皮脂生成,它可以使痤疮患者的C.acnes/TLR-2介导的先天免疫反应正常化,也就是说,异维甲酸会间接影响皮肤微生物

其他,比如抗生素治疗会降低皮肤伤口中的细菌密度并改变细菌组成,其次是RegIIIγ表达的降低,这可能有助于延迟伤口修复

皮肤微生物群移植

几项研究表明,互惠共生对维持微生物物种之间的新陈代谢很重要。我们不仅需要关注微生物组的转移,还需要关注潜在的交叉喂养和共同居住。

有研究表明,整个原始皮肤微生物组从一个皮肤部位移植到另一个部位。研究人员将能够在腋下产生气味的细菌转移到受试者的前臂,前臂上培养的双菌群样本产生强烈的气味,这表明引起气味的细菌可以从腋下传播到前臂

这项研究表明,通过皮肤微生物组移植重塑人类气味,降低对传染病媒介的吸引力,从而阻断病毒传播,为传染病预防和控制提供了一条新的途径。

衣 物

尽可能选择天然纤维材料,如棉、亚麻或丝绸等,这些材料通常具有良好的透气性和吸湿性,可以帮助皮肤保持干爽。同时,天然纤维材料也更加温和,减少与皮肤的摩擦和刺激。

避免合成纤维材料:尽量减少使用合成纤维材料,如尼龙或涤纶等。

保持衣物的清洁和卫生非常重要。定期清洗和消毒衣物,避免细菌、真菌和其他有害微生物的滋生。

其 他

  • 避免吸烟

吸烟会使皮肤最外层的微小血管变窄,从而减少血液流动并使皮肤更苍白。这也耗尽了皮肤对皮肤健康很重要的氧气和营养物质。吸烟还会损害胶原蛋白,也可能会增加患鳞状细胞皮肤癌的风险。

  • 管理压力

压力会通过肠-脑-皮肤轴影响皮肤健康,皮肤细胞的代谢和分泌作用可能发生变化,导致皮肤微生物群失去原本的平衡状态,皮肤更加敏感,并引发痤疮爆发和其他皮肤问题。

长期的压力会导致免疫系统的紊乱,使皮肤更容易受到各种外界因素的侵害,从而引发炎症、过敏等症状。

  • 睡眠

睡眠可以促进皮肤细胞的修复和再生,有助于提升肤色的均匀度。同时,在深度睡眠状态下,身体会产生更多的生长激素,促进皮肤中胶原蛋白和弹力纤维的生成,有助于减少皱纹的产生。因此,保证充足的睡眠对皮肤健康也相当重要。

  • 运动

适度的身体运动可以促进血液循环和新陈代谢,有助于清除毒素和废物,使皮肤更加健康。选择适合自己的运动方式,如散步、跑步、瑜伽等,坚持每周进行几次。

结 语

随着年龄的增长,我们的皮肤微生物群组成发生了很大变化且可预测。未来的研究将继续阐明动态皮肤微生物组在整个生命周期中的积极作用。

皮肤微生物群扮演着重要角色,它不仅是阻止致病菌进入皮肤的屏障,还可以通过调节免疫系统减少炎症等方式对皮肤疾病起到积极作用。肠道微生物组的研究为我们探索皮肤微生物群在其他生理系统中的作用提供了途径。确定哪些微生物及其代谢产物对维持人类健康和疾病至关重要。

了解皮肤微生物群和肠道微生物群之间的相互关系可以帮助我们更好地理解肠-皮肤轴的作用机制。

未来的研究需要更深入地了解皮肤微生物组的分子基础,包括微生物-微生物相互作用、微生物-宿主-微生物相互作用、环境因素-微生物相互作用以及不同细菌菌株之间的互动对宿主健康的影响,为调控皮肤微生物群的紊乱提供更专业的治疗方法。

微生物群研究的相关应用领域

护肤领域:

护肤品可以改变皮肤上的分子和菌群多样性及微生物在皮肤上的动力学和结构。微生物群在护肤中的应用是一种先进、前沿的方法。

  • 通过分析皮肤微生物群组成,识别出皮肤中存在的有益菌以及潜在的致病菌,利用大数据模型预测,我们可以深入了解个体的皮肤状况,为提供个性化的护肤方案和治疗策略奠定基础。
  • 监测外界环境(如空气污染,紫外线辐射等)对皮肤微生物组的影响,可以帮助我们预防和应对这些因素带来的皮肤问题。
  • 基于微生物群检测结果,我们可以进一步研究和开发针对特定微生物的护肤产品,如抗痤疮、抗衰老等。

服装领域:

服装和皮肤之间的关系已成为探索纺织品如何通过调节皮肤微生物群,来治疗或缓解皮肤疾病的新领域。

考虑到生物活性纺织品的广泛应用,需要寻找创新技术和产品。对于抗菌纺织品,根据其对纺织材料和人体皮肤微生物群的主要影响,可以在下述生物医学研究方向中找到有价值的用途:

  • 微生物群检测可以帮助鉴定和筛选具有抗菌特性的微生物,从而开发出抗菌服装。这些服装可以有效地防止纺织材料和人体中的微生物侵袭和定植、生物降解、变色、减少异味等。
  • 抗菌纺织品可以设计用于预防、控制和治疗一些皮肤微生物群失调的病例,包括细菌失调和浅表真菌感染,例如使用抗菌服装、睡衣、手套、袜子。充当屏障,作为抗菌伤口敷料。
  • 佩戴口罩所产生的微环境,特别是口罩-皮肤微生物组,也应该受到关注,需要开发出不同防护等级、舒适度和抗病毒活性的各种类型的防护口罩来满足市场需求。
  • 抗菌纺织品还可以设计用于针对浅表皮肤癌微环境,充当皮肤微生物群的调节剂,同时对抗皮肤癌细胞。

这些应用使得生物活性纺织品更加绿色环保、安全、高性能,能够提供更多的功能性和舒适性,满足人们对健康和舒适的需求。

医学领域:

通过利用皮肤微生物穿透皮肤屏障的能力,或许可以开发微生物活化免疫细胞来传递细胞因子、小分子化学物质或疫苗

微生物在皮肤上引发免疫反应,并与皮肤免疫细胞进行相互作用,调节免疫应答和免疫耐受。这为开发新的免疫调节治疗策略提供了新的思路。

通过调节肠道微生物组来靶向皮肤健康是一种很有前景的替代疗法。对于一些慢性皮肤病患者来说,肠道微生物群的紊乱可能是病情加重或难以治愈的原因之一,而通过调整饮食、生活习惯、环境等因素,同时加入益生菌或其他补充剂等,调节肠道微生物群的平衡,增强皮肤对各种病原体的抵抗力;同时通过肠道菌群调节影响自身免疫反应,改善皮肤疾病的症状。

通过皮肤、肠道微生物群联合检测可以探索和评估微生物之间的相互关系,并在皮肤问题的中提供更全面有效、个性化的治疗方案

主要参考文献:

Townsend EC, Kalan LR. The dynamic balance of the skin microbiome across the lifespan. Biochem Soc Trans. 2023 Feb 27;51(1):71-86.

Kurokawa I, Kobayashi M, Nomura Y, Abe M, Kerob D, Dreno B. The Role and Benefits of Dermocosmetics in Acne Management in Japan. Dermatol Ther (Heidelb). 2023 Jul;13(7):1423-1433.

Harris-Tryon TA, Grice EA. Microbiota and maintenance of skin barrier function. Science. 2022 May 27;376(6596):940-945. 

Belzer A, Parker ER. Climate Change, Skin Health, and Dermatologic Disease: A Guide for the Dermatologist. Am J Clin Dermatol. 2023 Jul;24(4):577-593. 

Patra V, Bordag N, Clement Y, Köfeler H, Nicolas JF, Vocanson M, Ayciriex S, Wolf P. Ultraviolet exposure regulates skin metabolome based on the microbiome. Sci Rep. 2023 May 3;13(1):7207.

Skowron K, Bauza-Kaszewska J, Kraszewska Z, Wiktorczyk-Kapischke N, Grudlewska-Buda K, Kwiecińska-Piróg J, Wałecka-Zacharska E, Radtke L, Gospodarek-Komkowska E. Human Skin Microbiome: Impact of Intrinsic and Extrinsic Factors on Skin Microbiota. Microorganisms. 2021 Mar 5;9(3):543.

Trompette A, Ubags ND. Skin barrier immunology from early life to adulthood. Mucosal Immunol. 2023 Apr;16(2):194-207. 

Alashkar Alhamwe B, López JF, Zhernov Y, von Strandmann EP, Karaulov A, Kolahian S, Geßner R, Renz H. Impact of local human microbiota on the allergic diseases: Organ-organ interaction. Pediatr Allergy Immunol. 2023 Jun;34(6):e13976. 

Xu H, Li H. Acne, the Skin Microbiome, and Antibiotic Treatment. Am J Clin Dermatol. 2019 Jun;20(3):335-344. 

Zubeldia-Varela E, Barker-Tejeda TC, Obeso D, Villaseñor A, Barber D, Pérez-Gordo M. Microbiome and Allergy: New Insights and Perspectives. J Investig Allergol Clin Immunol. 2022 Oct;32(5):327-344. 

De Almeida, C.V.; Antiga, E.; Lulli, M. Oral and Topical Probiotics and Postbiotics in Skincare and Dermatological Therapy: A Concise Review. Microorganisms 2023, 11, 1420.

Flores-Balderas, X.; Peña-Peña, M.; Rada, K.M.; Alvarez-Alvarez, Y.Q.; Guzmán-Martín, C.A.; Sánchez-Gloria, J.L.; Huang, F.; Ruiz-Ojeda, D.; Morán-Ramos, S.; Springall, R.; et al. Beneficial Effects of Plant-Based Diets on Skin Health and Inflammatory Skin Diseases. Nutrients 2023, 15, 2842.

Suellen Ferro de Oliveira C, Kekhasharú Tavaria F. The impact of bioactive textiles on human skin microbiota. Eur J Pharm Biopharm. 2023 Jul;188:66-77.

Santiago-Rodriguez, T.M.; Le François, B.; Macklaim, J.M.; Doukhanine, E.; Hollister, E.B. The Skin Microbiome: Current Techniques, Challenges, and Future Directions. Microorganisms 2023, 11, 1222.

Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. Phytomedicine. 2023 Jul;115:154824.

Lee, H.-J.; Kim, M. Skin Barrier Function and the Microbiome. Int. J. Mol. Sci. 2022, 23, 13071.

Ito Y, Amagai M. Dissecting skin microbiota and microenvironment for the development of therapeutic strategies. Curr Opin Microbiol. 2023 Apr 3;74:102311.

Mourelle, M.L.; Gómez, C.P.; Legido, J.L. Hydrobiome of Thermal Waters: Potential Use in Dermocosmetics. Cosmetics 2023, 10, 94

Azzimonti, B.; Ballacchino, C.; Zanetta, P.; Cucci, M.A.; Monge, C.; Grattarola, M.; Dianzani, C.; Barrera, G.; Pizzimenti, S. Microbiota, Oxidative Stress, and Skin Cancer: An Unexpected Triangle. Antioxidants 2023, 12, 546

Leung MHY, Tong X, Shen Z, Du S, Bastien P, Appenzeller BMR, Betts RJ, Mezzache S, Bourokba N, Cavusoglu N, Aguilar L, Misra N, Clavaud C, Lee PKH. Skin microbiome differentiates into distinct cutotypes with unique metabolic functions upon exposure to polycyclic aromatic hydrocarbons. Microbiome. 2023 Jun 1;11(1):124.

Kengmo Tchoupa A, Kretschmer D, Schittek B, Peschel A. The epidermal lipid barrier in microbiome-skin interaction. Trends Microbiol. 2023 Jul;31(7):723-734. 

人体微生物分布及其与人体的共生

谷禾健康

我们知道,人体的皮肤、口腔、肺部、肠道、阴道等都是微生物的栖息地,每个部位都有独特的微生物群组成。微生物群受到基因、饮食、环境和生活方式等多种因素的影响。

当然,人体微生物群的组成也会随着年龄的增长而发生变化。从婴儿期到老年阶段,微生物群的种类和数量都会发生变化,这些微生物与人体形成了错综复杂的共生关系,这对我们的健康和免疫系统功能产生重要影响。

人体微生物群与发育、免疫、营养、神经、代谢稳态等方面有密切关联。反过来,宿主也会提供营养并促进健康和有弹性的微生物群的发展。

了解以上这些可以帮助我们更好地理解微生物与人类的共生关系,拓展对微生物多样性和生态系统的认知,为预防和治疗相关疾病提供新的思路。

本文讲述了不同年龄不同部位的人体微生物群、影响微生物组成的各种因素、微生物与宿主的相互作用(包括对生理、疾病的影响及相关治疗中的作用)、及其对于健康管理和疾病治疗的价值

目录

•人体不同部位的微生物群

•不同年龄下的微生物群

•影响微生物组成的因素

•微生物群对宿主生理的作用

•微生物群与疾病的关联

•微生物群与医学治疗

•结语

01
人体不同部位的微生物群

不同环境提供了不同的营养资源温度湿度、pH值等生态因素,这些因素会影响各种微生物的生存和繁殖

多样化的全球微生物数据集

Hogeweg P,et al.Nat Ecol Evol.2023

a:样本来自截然不同的带注释的生物群落和研究设计;

b:样本的地理分布;

c:每个样本的分类注释读数总数(n  = 22,518 个样本);

d:来自相似注释生物群落的样本根据 t-SNE 可视化中的分类概况(困惑度 = 500)聚集在一起;

e:类群丰富度因注释的生物群落和分类等级而异

人体微生物群是指在人体内外生活的微生物群落,包括细菌真菌、病毒等。这些微生物群落分布在人体的不同部位,如口腔、皮肤、肠道、生殖道、大脑等。人体的不同部位提供了不同的环境条件,适合不同类型的微生物生长和繁殖。

每个部位的微生物群落都有其独特的组成和功能,它们与人体之间存在着相互作用影响

注:肠道微生物是人体内最丰富最多样化功能最大的微生物群落

Ayariga JA,et al.Arch Microbiol.2022

Zaidi S,et al.Arch Microbiol.2023

在人体内,微生物群主要包括以下几个方面:

肠道微生物群

肠道提供了温暖、潮湿、酸性和富含营养物质的环境,适合多种菌群的繁殖。此外,肠道还有大量的食物残渣和纤维素,为益生菌提供了生长的基质。

肠道中居住着高度多样化的微生物群落,其肠道内容物密度达到10^12个微生物/毫升,包含超过1000万个基因。

一般来说,肠道首先由兼性厌氧菌如肠球菌(Enterococci)和肠杆菌(Enterobacteria)定植,然后由专性厌氧菌定植。

肠道微生物群所拥有的基因编码了数千种微生物酶和代谢物。它们在消化降解、消除有毒化合物、将难消化的复合糖聚合物转化为短链脂肪酸维生素等多种功能中发挥着关键作用

肠道菌群的分布

Ayariga JA,et al.Arch Microbiol.2022

▸ 空肠和回肠中主要的微生物群

通过分析空肠和回肠内容物,发现最丰富的群落是链球菌Streptococci)、乳杆菌Lactobacilli)、γ-变形杆菌、肠球菌(Enterococcus)和拟杆菌Bacteroides)。

随着小肠远端向回肠推进,微生物群落变得更加复杂。回肠末端以梭菌科毛螺菌科、消化链球菌科、瘤胃球菌科、肠杆菌科和拟杆菌科较丰富。

此外,十二指肠还含有与胃相似的菌属,包括肠杆菌科、链球菌科、韦荣氏球菌科和假单胞菌科。

▸ 结肠中主要的微生物群

结肠中栖息的微生物群丰富多样,主要包括放线菌门拟杆菌门、厚壁菌门、变形菌门和疣微菌门。

与小肠相比,结肠黏液有更明确的层状组成。结肠黏液层具有物理清除细菌的内黏液层,并含有针对微生物群的免疫效应细胞。外层是松散的,为许多微生物提供了一个定植点。

嗜黏蛋白阿克曼菌Akkermansia)、瘤胃球菌Ruminococcus)和一些拟杆菌属是肠道黏液外层的居民。

★ 肠道核心微生物群

此外,从肠腔到粘膜存在氧梯度,并通过结肠向下移动,对结肠微生物组成产生影响。大部分细菌种类总是存在并形成稳定的核心微生物群

这些核心微生物包括另枝菌属Alistipes)、拟杆菌Bacteroides)、经黏液真杆菌属(Blautia)、粪杆菌(Faecalibacterium)、瘤胃球菌属Ruminococcus)、罗氏菌属(Roseburia) 、 普拉梭菌(Faecalibacterium prausnitzii)和颤螺菌属 (Oscillospira)。

口腔微生物群

口腔是微生物群落多样性排名第二的地方,大约有700种不同亚群的细菌。

人体口腔包含牙龈、面颊、扁桃体、舌头、牙齿、软硬腭等多种微生物环境。口腔提供了温暖潮湿和富含碳水化合物的环境,适合细菌的繁殖。此外,口腔还含有唾液,其中的可以帮助控制微生物的生长。

由于口腔内含有众多菌群,因此有自己的数据库——人类口腔微生物组数据库。健康人的唾液中含有Gemella韦荣氏球菌属Veillonella)、奈瑟菌属Neisseria)、梭杆菌属(Fusobacterium)、链球菌属(Streptococcus)、普氏菌属(Prevotella)、Pseudomonas、放线菌属(Actinomyces) 等多个属,占总分类群的96%

胃部微生物群

早期的理论认为胃是一个无菌器官,不适合细菌生存,然而胃腔内幽门螺杆菌的发现打破了这一观点。

采用16S rRNA测序技术的研究进一步表明,胃内存在着链球菌Streptococcus)、假单胞菌(Pseudomonas)、肠球菌、葡萄球菌(Staphylococcus)、以及变形菌门、放线菌门、厚壁菌门、拟杆菌门和梭杆菌门。

呼吸道微生物群

呼吸道包括鼻腔咽喉肺部等部位。这些部位通常比较干燥,但仍然存在微生物的定居。

▸ 鼻腔中的微生物群

鼻腔是人体呼吸道的入口,也是微生物的第一个定居地。鼻腔内存在多种细菌,如葡萄球菌链球菌等。这些细菌可以与宿主共生,帮助抵御潜在的病原体侵袭。

鼻腔内还有纤毛黏液,可以帮助清除微生物

▸ 咽喉处的微生物群

咽喉是连接鼻腔和气管的部位,也是呼吸道的一部分。咽喉内存在多种细菌,包括厌氧菌和革兰氏阴性菌等。这些细菌参与了呼吸道的免疫调节防御功能

▸ 肺部的微生物群

正常情况下,肺部是相对无菌的环境。然而,在某些情况下,如免疫系统受损或存在呼吸道感染时,肺部可能会受到微生物的感染。常见的肺部微生物包括肺炎链球菌流感病毒等。

皮肤微生物群

皮肤被认为是人体最大的器官。皮肤是一个动态的、复杂的生态系统,其中含有许多共生细菌。皮肤是人体最外层的保护屏障,同时也是微生物的栖息地。皮肤表面有油脂汗液分泌物,提供了微生物生长所需的水分营养物质

注:研究表明,皮肤的生理特征,如温度、湿度、pH值、皮脂含量等,会影响和塑造微生物群。皮肤微生物群落的变异性和多样性还受到人口统计学、遗传学区域环境波动等因素的影响,从而导致微生物群落结构的改变。因此,皮肤微生物群应该是独一无二的,因此可以作为“微生物指纹”。

最近的研究,在毛囊深处发现了大量细菌。棒状杆菌Corynebacterium)和葡萄球菌Staphylococcus)在特定的身体部位如脚底和腘窝繁殖良好。

✦湿润和干燥皮肤下的微生物群不同

大多数不同种类,以及不同相对丰度的厚壁菌门变形菌门、拟杆菌门和放线菌门都被发现存在于干燥的皮肤中。

注:变形杆菌定植于深层的皮肤区域,可能参与控制宿主和环境之间的皮肤稳态

棒状杆菌Corynebacterium)是一种普遍存在于湿润和干燥皮肤的菌属,在表皮区比真皮区数量更丰富

此外,Pelomonas spp是皮肤群落的核心共生生物之一。对金黄色葡萄球菌、表皮葡萄球菌、痤疮丙酸杆菌、马拉色菌等皮肤相关微生物进行分析,有助于阐明其复杂的分子机制及与皮肤的关联。

注:后三种被发现在湿润的皮肤占主导地位。

阴道和尿道微生物群

阴道酸性较高,含有乳酸菌等益生菌。阴道微生物群被认为是预防许多泌尿生殖系统疾病的关键,可以防止病原体在阴道内定植。如艾滋病毒、细菌性阴道病酵母菌感染

然而,与月经周期相关的激素变化可以显著改变微生物群的组成,并在阴道微生物群的动态中发挥主导作用

✦女性生殖道微生物群

测序表明,主要的乳杆菌属,如卷曲乳杆菌(L.crispatus)和惰性乳酸杆菌(L.iners)构成了一个“健康”的阴道微生物群。

这些物种产生乳酸、抑菌和杀菌分子,创造一个低pH的生态位,并通过竞争排斥提供保护。阴道微生物群的一部分在分娩时传递给婴儿,这反过来又推动了新生儿消化道中微生物群的初始定植

✦男性生殖道微生物群

与女性生殖道和其他身体部位相比,男性生殖道微生物群的鉴定和研究一直较少

男性下生殖道(即尿道和冠状沟)的微生物群主要由放线菌门、梭菌门、厚壁菌门拟杆菌门和变形菌门组成,尽管受试者之间存在很大的差异

注:与未行包皮环切术的个体相比,人工干预包皮环切术导致革兰氏阴性菌和厌氧菌的丰度减少

大脑微生物群

一系列突破性研究表明神经神经胶质细胞内存在微生物。然而,生活在大脑中的共生细菌比肠道中的要少的多

大脑常驻微生物的RNA测序显示,这些微生物属于肠道中常见的门,即厚壁菌门变形菌门拟杆菌门,它们可能影响情绪行为或使个体易患神经系统疾病

注:先前的研究表明,弓形虫可以侵入大脑,但不会引起明显的疾病。

大脑微生物群主要在黑质、海马体和前额叶皮层的星形胶质细胞内,这些发现有助于未来研究与神经精神疾病的关联。

血液微生物群

人类的血液通常被认为是无菌的,然而最近的研究表明,健康的人有一个血液微生物群

✦血液中的微生物主要是其他部位转移而来

来自不同队列的测序数据描述了9770名健康人血液中的微生物。过滤污染物后,血液中有117种微生物,它们主要是来自(n=40)、口腔(n=32)和泌尿生殖系统(n=18)的共生菌,而不是医院血液培养中发现的病原体。

这些发现不支持人类血液固有稳定核心微生物群的观点。相反,它支持共生微生物从其他身体部位暂时和偶尔转移到循环中

02
不同年龄下的微生物群

越来越多的证据表明,年龄人类微生物群之间的关联很大,随着年龄的增长,人体内的微生物群落会发生变化

人类相关微生物群从出生到死亡的变化

Martino C,et al.Nat Rev Microbiol.2022

美国一项研究集中测量了从儿童到老年人的粪便(a部分)、口腔(b部分)和皮肤(c部分)微生物群的细菌多样性,该项目包含21919个粪便、1920个口腔和998个皮肤微生物群样本。

α多样性,一种对样本中不同类型微生物数量的定量测量,通过Faith的系统发育多样性(PD)α多样性度量跨年龄测量。

UniFrac β多样性主坐标分析,一种用于比较微生物群落相似性的方法,其中空间上接近的点表示相似的样本,空间上远离的点表示不同的样本,按年龄着色。

Martino C,et al.Nat Rev Microbiol.2022

生命早期的“先锋菌群”

关于出生时获得的微生物群是否通过混合来源于阴道和粪便,或者阴道微生物群本身在出生时是否具有多能性,是否是微生物先驱的主要来源,存在一些争议。

无论确切的母体来源如何,这一阶段的特征是先锋细菌种类。包括下列菌群:

•Lactobacillus

•Enterobacter

•Escherichia

•Bacteroides

•Parabacteroides

•Prevotella

这些细菌定居在常规身体部位:肠道口腔皮肤

许多先锋细菌是兼性厌氧菌,它们会消耗氧气,从而使专性厌氧菌能够在以后的环境中定居。先锋细菌进驻后,生命早期的微生物群逐渐开始形成。

双歧杆菌属Bifidobacterium)在婴儿刚出生时占主导地位,直到在生命的第一年结束时,它们被双歧杆菌梭状芽孢杆菌拟杆菌的组合所取代。拟杆菌属的丰度增加,而双歧杆菌属等物种的丰度相对减少。

成年人的微生物群自然稳定波动

健康成年人中的微生物群也会随着时间的推移而进化,不过功能和组成的进化以稳定状态发生。饮食或是疾病会在一定时间内改变成年人的微生物群构成。

•不同季节饮食对微生物的影响

一个经过充分研究发生在几周到几年范围内变化的例子是饮食驱动的肠道微生物群的改变

例如,坦桑尼亚哈扎部落在旱季食用富含肉类和块茎的饮食,但在雨季食用富含蜂蜜和浆果的饮食,拟杆菌等属中表现出较大的季节波动

饮食对微生物群的影响也可能在人类健康中发挥作用,许多工作致力于了解特定的饮食成分和总体饮食模式如何影响微生物群及其对健康的影响。

•疾病在短期内改变微生物群

肠道中的许多疾病,如炎症性肠病,破坏了微生物群落,但没有达到新的稳定群落组成,而是在没有干预的情况下继续长期不稳定

在皮肤上,特应性皮炎的特征是免疫介导的炎症引起的金黄色葡萄球菌大量繁殖细菌多样性减少。在金黄色葡萄球菌大量繁殖期间观察到马拉色菌属数量减少,反之亦然,真菌数量增加导致金黄色葡萄菌数量减少。

除了饮食和疾病,还有许多其他因素会在一定时间内影响成年人的微生物群,包括地理因素、压力、代谢情况等。

注:谷禾将在下一章节中具体讲述影响人体微生物群的因素

老年人微生物群:优势菌丰度减少

衰老会影响细胞功能的各个方面,微生物群也不例外。随着年龄的增长,微生物群α多样性减少β多样性增加

•肠道

一般而言,老年人肠道中观察到的微生物群变化是年轻成年人中占优势和普遍的细菌属丰度减少,如双歧杆菌Bifidobacteria), 拟杆菌Bacteroides),乳杆菌Lactobacillus), 抵御机会细菌爆发的能力降低

•皮肤

在65岁及以上的人群中,genera CutibacteriumStaphylococcus的皮肤细菌数量减少,同时观察到更多的Corynebacterium

•口腔

在口腔部位,RothiaStreptococcus spp.是核心口腔细菌群落Porphyromonas,TreponemaFaecalibacterium spp.的数量持续减少

03
影响微生物组成的因素

由于微生物组的动态特性,它在空间和时间上会不断变化,还与个体的健康状况有关。

这些变化的程度和后果取决于性质、持续时间、扰动强度微生物群的结构和稳定性

已经发现许多因素影响微生物群的组成,如分娩方式年龄性别、地理位置、饮食、怀孕、昼夜节律、宿主遗传和社会经济地位,药物以及其他一些因素(益生元和益生菌补充剂,手术和非手术治疗)。

Zaidi S,et al.Arch Microbiol.2023

下面谷禾列举了其中一些对微生物群组成重要影响的因素。

1

年龄

上一章节讲述了微生物群会随着年龄而变化。微生物群经历了一系列的发育阶段,它们的复杂性丰富性提高,从新生儿期到断奶后的明显稳定

这样的初级共生群落不断进化,变得更加多样化和稳定。一旦儿童达到3岁,其微生物群变得与成人的微生物群相似。

2

出生方式

出生方式会决定了最初的微生物。在剖腹产和顺产婴儿之间有惊人的微生物差异

√阴道分娩的婴儿微生物群和母亲更相似

在阴道分娩时,孩子接触到女性产道的微生物,导致母亲和孩子的微生物组成相似。这些婴儿的肠道中含有大量的乳杆菌Lactobacillus)和普雷沃氏菌Prevotella)。

√剖腹产分娩的婴儿微生物群主要来自母亲皮肤

相反,在剖腹产分娩的母亲和婴儿之间没有观察到大量微生物群重叠。通过剖腹产出生的新生儿从母亲的皮肤中获得细菌群,从而导致链球菌(Streptococcus、棒状杆菌(Corynebacterium)和丙酸杆菌(Propionibacterium较多

剖腹产出生的婴儿在头六个月中乳杆菌的丰度较低,不像顺产的婴儿,在前六个月的时间里乳杆菌的百分比都在增加

不过一旦儿童满3岁,乳杆菌检出率的这种差异就会消失。产后,尤其是拟杆菌双歧杆菌在剖腹产出生的婴儿肠道内的定植也较晚,相反,他们的艰难梭菌水平增加。

注:剖腹产似乎是婴儿早期微生物群落破坏的原因之一。这种在剖腹产时定植的躁动扰乱了微生物与宿主的相互作用,这可能进一步表现为代谢紊乱的形式。在剖腹产分娩后的最初两年里,婴儿患特应性疾病的比例更高

3

婴儿的喂养方式

一旦婴儿出生,影响微生物群组成的最重要因素是婴儿饮食,要么是配方奶,要么是母乳。

√母乳喂养有助于诱导肠道微生物群成熟

饮食塑造了早期的微生物群,尤其是肠道中的微生物群。母乳中含有低聚糖,容易被乳酸菌双歧杆菌(普遍存在于母乳喂养的婴儿肠道中)代谢,从而导致短链脂肪酸浓度上升

这些短链脂肪酸进一步控制免疫系统过度表达免疫球蛋白G,并诱导新生儿肠道微生物群的成熟。

而在用配方奶粉喂养的婴儿中,常见的种类是肠球菌肠杆菌拟杆菌梭菌链球菌

√母乳喂养下得婴儿免疫系统更完善

婴儿时期的微生物群定植似乎在整个儿童生长阶段的早期免疫发展中起着关键作用。因此,初始微生物群的组成是重要的,因为它可以防御可能由于免疫力低下而引起的多种疾病。

许多研究比较了母乳喂养和配方奶喂养的新生儿的肠道微生物群粘膜免疫反应。观察到母乳喂养导致更稳定和更好的粘膜免疫反应。

相反,依赖配方奶粉的婴儿在以后的生活中发现免疫系统发育受损以及代谢不正常。在哺乳期间,影响母乳成分的生理和激素波动也可能影响微生物群的组成。

4

抗生素使用

抗生素会扰乱微生物群结构。它们不仅对消化道上下段微生物的系统发育组成有不同的影响,而且对去除抗生素后微生物群落的恢复也有不同的影响。

√抗生素会减少微生物多样性

抗生素的使用导致肠道微生物多样性的减少耐药物种的增加,宿主的应激反应和噬菌体基因的表达。

使用抗生素是一把双刃剑:它消除了病理微生物和有用微生物,最终导致生态失调。研究表明,一些抗生素如克林霉素、克拉霉素、甲硝唑和环丙沙星对微生物群结构的影响是长期的

下面列举了使用一些抗生素后的微生物变化:

克林霉素可以持续2年而不恢复拟杆菌的多样性;同样,使用克拉霉素对抗幽门螺杆菌导致放线菌数量减少,然而环丙沙星已被提出导致鲁米诺球菌数量减少。

万古霉素是治疗艰难梭菌感染的最佳药物,但它也会引起肠道微生物群的改变,导致艰难梭菌感染的复发性感染,并诱导致病性大肠杆菌菌株的生长。

此外,万古霉素还会导致拟杆菌(Bacteroidetes)、Fuminococcus普拉梭菌(Faecalibacterium)等肠道微生物群的减少,以及变形菌门(Proteobacteria)种类的增加

特定抗生素对肠道菌群的影响和恢复时间取决于个体的生理状况。此外,围产期给孕妇服用抗生素也会影响新生儿的微生物群,因为其中一些抗生素可以穿过胎盘

√抗生素的作用取决于身体部位

此外,抗生素的作用取决于身体部位。例如,与肠道相比,在抗生素治疗后,喉咙和唾液在更短的时间内恢复了最初的共生多样性。

抗生素还会干扰微生物组和免疫系统的相互作用,导致免疫紊乱,并增强宿主对病原体的易感性。抗生素的广泛使用推动了病原微生物耐药性的进化,导致耐药基因的流行增加。

5

饮食

膳食成分除了影响微生物组的功能外,还能调节其组成

√不同饮食成分下的微生物群组成不同

饮食对于确定微生物群的形态、结构多样性至关重要。素食饮食与健康、多样的微生物群有关,其特征是能够代谢不溶性碳水化合物的物种占优势,即瘤胃球菌(Ruminococcus)、罗氏菌属Roseburia)和真杆菌(Eubacterium)。

而非素食饮食与厚壁菌门比例下降和拟杆菌门比例增加有关。随着肉类的摄入,微生物群代谢氨基酸,以短链脂肪酸的形式产生能量源,但也会形成产生不利影响的化合物。

在一项研究中,测定了150名健康的杂食性、素食性和纯素食性志愿者粪便中存在的微生物群的组成结构以及代谢组。研究表明,富含蔬菜的食物增加纤维降解细菌的丰度,并导致粪便短链脂肪酸的产生。

对地中海饮食依从性降低的志愿者拥有较高百分比的有害微生物代谢产物,如酚类和吲哚衍生物,以及三甲胺N-氧化物。

这些例子表明,饮食调节微生物群的组成和功能,从而影响个体的代谢状态

6

微生物群的混合

不同身体部位的微生物组成是不同的,那么当微生物群的位置从身体的一个部位交换到另一个部位时,优势微生物物种的生态或流行如何受到影响,这是一个有趣的研究。可见,器官相关微生物群既具有动态性,又具有可塑性

器官特异性微生物群可以跨界到与身体其他部位相关的其他生态位,在此过程中,微生物承受与身体各器官相关的pH、温度、毒素、免疫细胞等变化。

然而,在给定的生态位上,微生物群的结构组成基本上没有受到干扰

微生物群在不同器官内混合的机制在很大程度上是未知的。

√器官间的微生物联系可能有利于宿主平衡

从空间和生长的角度来看,跨生态位的微生物对特定器官的优势微生物群构成了挑战,但不同微生物物种之间的竞争是有利于宿主的微妙平衡。宿主细胞的器官特异性微环境有利于与该器官相关的微生物群的优势种群,并防止微生物群生态中的无意干扰。

04
微生物群对宿主生理的作用

宿主微生物群之间存在着复杂的相互作用。宿主提供了微生物群生存和繁殖的环境,而微生物群则对宿主的生理状态代谢产生着重要的影响。

由于微生物群与其宿主之间存在高水平的串扰,因此对微生物与宿主之间相互作用的研究仍然具有挑战性,尽管如此,以代谢物为中心的研究已经认识到对宿主健康重要的各种微生物靶点。

调节食欲

微生物群对人体食欲的影响是非常复杂的,因为不同类型的微生物群会产生不同的代谢产物,一些研究表明,肠道微生物群可以通过产生短链脂肪酸等代谢产物来影响人体的食欲能量代谢

短链脂肪酸是肠道微生物群代谢产物的一种,主要包括丙酸、丁酸和乙酸等。

▷短链脂肪酸影响神经系统进而影响食欲

关于短链脂肪酸在调节能量摄入食欲中的作用已经有了详细的研究。研究表明,这些化合物也可以影响外周和中枢神经系统的活动。

不过目前尚不清楚是单一的短链脂肪酸驱动,还是这些化合物的组合被利用。

目前关于可发酵纤维食欲调节中的作用的研究有限,但增加每日纤维摄入量在16-35克/天范围内可以帮助改善这种调节。

虽然短链脂肪酸在食欲调节中的确切作用机制尚不清楚,但已有研究表明,人类体内短链脂肪酸的存在可以触发短期食欲调节

例如,人类结肠丙酸盐通过PYY和GLP-1介导的机制诱导短期食欲调节。

影响脂质代谢

短链脂肪酸脂肪代谢的影响也是显著的。

▷调控脂质积累和瘦素分泌

研究表明丙酸盐可以防止脂肪和胆固醇生成,它可以通过抑制FARE 2信号的活性来阻止脂肪细胞中的脂质积累

还有研究表明,乙酸盐可以刺激脂肪细胞中瘦素激素的分泌。这一关键信号调节食欲和能量平衡。其他研究表明,抑制脂肪分解可以减少游离脂肪酸从脂肪细胞向肝脏的转运。

在脂肪肝疾病中,已知来自脂肪细胞的脂肪积累贡献了肝脏中总脂肪酸的60%。直肠输注丙酸和乙酸显示血清脂肪酸水平降低40%

因此,重要的是保持丙酸与乙酸的比例,以确保结肠乙酸对脂质储存的最佳贡献。

参与骨骼发育

几项临床研究指出,肠道中细菌过度增殖骨矿物质密度(BMD)降低之间存在关联。小肠细菌过度生长综合征患者的骨矿物质密度值低,骨软化,其中一些患者具有高水平的促炎细胞因子TNF-α和IL-1,以及破骨细胞活化增加

肠道微生物组和骨骼之间的联系

doi.org/10.1016/j.jbspin.2018.02.008

近年来,一些横断面的临床研究以及系统评价和荟萃分析均发现肠道菌群改变调节骨量、骨髓生成,骨骼发育骨代谢、骨质疏松、骨骼炎症、骨折风险以及骨癌有关。

调控免疫

微生物群对宿主免疫系统的影响非常重要,可以通过多种机制来影响宿主的免疫系统。

▷直接影响免疫细胞功能

微生物群中的某些成分可以直接影响宿主免疫细胞的功能,如调节巨噬细胞树突状细胞的活性,从而影响宿主的免疫反应。

▷调节免疫细胞分化和增殖

微生物群中的一些成分可以影响免疫细胞的分化和增殖,如调节T细胞的分化和功能,从而影响宿主的免疫反应。

▷影响肠道黏膜屏障

微生物群可以通过影响肠道黏膜屏障的完整性和功能来影响免疫系统。肠道黏膜屏障是宿主体内与外部环境之间的主要屏障,它可以防止有害物质和微生物进入宿主体内。微生物群通过增强肠道黏膜屏障的功能来促进免疫系统的正常功能。

总之,微生物群宿主免疫系统的影响是非常重要的,它们可以影响宿主的免疫反应、调节免疫细胞的分化和增殖、以及影响肠道黏膜屏障的完整性和功能。

肠道菌群及其代谢产物对人体还有其他影响,谷禾罗列在下表中:

Ayariga JA,et al.Arch Microbiol.2022

05
微生物群与疾病的关联

微生物群不仅影响宿主的生理功能,研究发现病理状况也与微生物群的组成、功能和生长动态密切相关

肥胖、高血压、2型糖尿病非酒精性脂肪肝以及胃肠道疾病、过敏、自闭症、神经退行性疾病甚至癌症等都被发现与微生物群生态失调相关

Zaidi S,et al.Arch Microbiol.2023

微生物群与高血压

研究表明肠道微生物群的存在可以影响血压调节

在高血压大鼠中,观察到肠道中的微生物多样性丰富度显著下降。这种情况已知是由血管收缩血管阻力引起的。

在无菌小鼠中观察到血管紧张素II对血压的影响,表明肠道微生物群调节血压方面发挥作用。尽管肠道微生物群调节血压的机制尚不完全清楚,但人们认为这种情况可能是导致高血压发展的一个因素。

动物中的特定肠道微生物代谢物,如短链脂肪酸,可能是导致高血压的一个因素。

来自HELIUS队列研究表明,克雷伯氏菌属链球菌属与血压呈正相关。已显示,Lactobacillus coryniformis可以改善血管功能和胰岛素敏感性。

注:乳杆菌(Lactobacillus)治疗不仅可以改善心血管疾病,还可以改善实验性自身免疫性疾病

微生物群与癌症

一些研究表明,微生物群的失调可能与某些癌症的发生有关。

•结直肠癌

在与肠道微生物群相关的各种癌症中,对结直肠癌的研究最为广泛。

已经确定了肠道微生物群中的几种菌,这些细菌除了它们的致病性之外,还被假设对结肠直肠癌具有致癌作用,包括幽门螺杆菌、肝螺杆菌(Helicobacter hepaticus)、牛链球菌(Streptococcus bovis)、大肠杆菌脆弱拟杆菌、败血梭菌(Clostridium septicum)、粪肠球菌、具核梭杆菌、厌氧消化球菌(Peptostreptococcus anaerobius)和牙龈卟啉单胞菌(Porphyromonas gingivalis),所有这些细菌都显示出潜在的致癌作用

•肺癌

肺癌是常见的恶性肿瘤之一,迫切需要制定有效的肺癌治疗策略。研究表明,肠道和肺部微生物群之间通过淋巴和血液循环系统在双向轴上存在复杂的联系。

Martins D,et al.Pathobiology.2020

•乳腺癌

一项关于绝经后妇女的研究调查了乳腺癌肠道代谢组学改变的相互关系。发现健康对照受试者和绝经后乳腺癌患者的肠道微生物组的组成和生物活性存在差异,其中绝经后乳腺癌患者的肠道宏基因组具有编码β-氧化铁复合物转运系统脂多糖生物合成的基因。

体外研究提供了支持肠道微生物群乳腺癌转移进展之间联系的功能证据,其中微生物代谢物可以通过血液传播,影响乳腺癌细胞和免疫细胞的功能。

除此之外,分析唾液微生物组组成的变化有助于早期发现胰腺癌。另一种被称为产肠毒素脆弱拟杆菌的菌株与肠上皮细胞的致癌性有关。

微生物群与肠道疾病

肠道微生物群的扰动可能导致炎症性肠病。同样,厚壁菌门相关细菌的不足和某些变形菌门数量的升高,可能导致粘膜免疫功能受损,这是引发慢性肠道炎症的主要原因,从而导致炎症性肠病的发生。

•肠易激综合征

肠易激综合征中厚壁菌门(RuminococcusClostridium)数量增加普拉梭菌双歧杆菌种类数量减少

•克罗恩病

此外,与克罗恩病患者或健康患者相比,回肠克罗恩病患者的普拉梭菌Faecalibacterium Prausnitzii)数量明显减少,而大肠杆菌Escherichia coli)数量过多。

微生物群与组织感染

已经证明某些微生物可以通过感染特定的组织而引起疾病。

•细菌性相关组织感染

最早被人们了解的传染病是那些由制造毒素的细菌引起的传染病。白喉、肉毒杆菌和破伤风毒素分别与白喉棒状杆菌(Corynebacterium diphtheria)、肉毒梭菌(Clostridium botulinum)和破伤风梭菌(Clostridium tetani)引起的局部感染相关。

•细菌性腹泻和败血症

大肠杆菌、沙门氏菌、志贺氏菌、葡萄球菌和霍乱弧菌产生的肠毒素可导致由这些微生物引起的腹泻病

革兰氏阴性菌脂多糖的脂质A部分具有强大的生物活性,可引起革兰氏阴性细菌性败血症的许多临床表现,包括发热、肌肉蛋白水解、血管内凝血失控和休克。

大多数致病的病原体都经过类似的途径,如呼吸道胃肠道生殖器官,这些途径被认为是通过与身体直接接触传播的;然而,其中一些微生物也可以通过与环境的间接接触获得,例如通过血液

注:外科手术中的一些植入物也有可能引发细菌感染

外科植入物引起的相关细菌感染

Zaidi S,et al.Arch Microbiol.2023

微生物群与其他一些疾病:

过敏

最近的研究表明FaecalibacteriumBifidobacteriumAkkermansia减少,加上Rhodotorula或念珠菌数量的增加,可能通过影响T细胞分化而使新生儿易过敏

哮喘

同样,已发现罗氏菌属Rothia)、毛螺菌属Lachnospira)、韦荣氏球菌属(Veillonella)或普拉梭菌(Faecalibacterium )数量的减少增加患哮喘的风险

帕金森病

帕金森病最一致的发现是阿克曼菌Akkermansia)的丰度增加

其他组成特征包括双歧杆菌Bifidobacterium)和乳杆菌Lactobacillus)的丰度增加,丁酸生产菌(Roseburia)、(Faecalibacterium)和(Blautia)的丰度减少

注意

微生物群评估有望在早期发现不同的疾病,如癌症、神经退行性疾病、代谢性疾病和自身免疫性疾病等。它采用非侵入性采样技术,同时降低了分析成本,从而使诊断过程变得可行。

06
微生物群与医学治疗

对人类生理学、基因组学更好理解使我们的重点转向了针对患者的个性化/精准诊断和治疗。

个性化医疗的标志之一是对易感亚人群的特定疾病风险进行评估,从而可以对人群进行分层,提供更准确更具成本效益的治疗。

微生物群在人类疾病和健康中的作用致使新的生物疗法发展,可以解决特定的疾病机制。微生物和免疫系统之间的相互作用是复杂的,它们的治疗可以提高患者的生活质量

微生物对药物的反应

每个人对医疗药物的反应也有很大的差异,可能与体内微生物群不同有关。不同微生物组在药物吸收代谢功效和毒性方面起着关键作用,并具有重大的健康影响

地高辛

例如,地高辛是一种心脏糖苷类药物,专门用于治疗充血性心力衰竭。在微生物组研究进展之前,人们注意到一些患者能够化学还原地高辛,从而导致其失活,抗生素的使用导致血浆地高辛浓度增加两倍。

研究人员推断肠道细菌能够调节地高辛的代谢。最近的报告表明地高辛可被Eggerthella lenta灭活,而抗生素的摄入可使这种作用最小化,从而导致其在血浆中的浓度大幅增加

对乙酰氨基酚

同样,对乙酰氨基酚,一种存在于许多镇痛药物中的化合物,在个体的临床作用中表现出明显的差异。这种个性化的反应最近被解释为与微生物组功能的差异有关。

他汀类药物

另一个微生物组驱动的个体化药物案例是他汀类药物和化疗药物,它们也被发现由于共生菌的作用而受到显著影响

另一方面,药物可以通过微生物群转化为衍生物,这些衍生物可能具有非靶标效应。用于生产这些营养物质的底物的变化会影响肠道的代谢组学特征。这可能会对宿主产生不同的影响

微生物疗法

根据上述数据,针对患者量身定制的微生物组操作似乎是多因素疾病更精确的微生物组特异性治疗的最佳替代方案。

饮食干预、抗生素的应用、益生菌和益生元的使用以及粪便微生物群移植可用于调节微生物群以获得有利的反应。

微生物疗法的原理是通过调节宿主的微生物群,来促进身体健康预防疾病。它可以包括多种形式,例如口服益生菌粪菌移植、皮肤微生物移植等。

★ 肠道微生物群检测

要对人体的微生物群进行干预,首先要做的就是对体内的微生物群进行检测。肠道微生物群检测是一种通过分析肠道微生物群的组成和数量来评估患者的健康状况的方法。这种方法已经被证明对诊断肠道炎症炎症性肠病等多项疾病有效。

口服益生菌改善健康

口服益生菌可以帮助恢复肠道菌群的平衡,从而改善肠道健康免疫系统功能

口服补充乳杆菌,可以提高耐受性减轻儿童对牛奶的过敏,并通过过敏患者粪便中产生丁酸盐的细菌的活性恢复丁酸盐的最佳水平。

此外,酵母菌和乳酸菌可以将抗生素相关疾病的风险降低50%。益生菌持续治疗多种胃肠道肠外疾病,如阴道感染、肠易激综合征炎症性肠病和免疫增强。

食用合生元改善健康

此外,合生元是微生物群靶向治疗的另一种有效方法。包括在原始微生物群中引入新的微生物,补充足够的底物以促进新的所需微生物的生长。

例如,植物乳杆菌(益生菌)与低聚果糖(益生元)一起生长被发现可以减轻新生儿因败血症而死亡的数量。

麦角硫因是一种在蘑菇、豆类和谷物等食物中发现的著名抗氧化剂。研究证明麦角硫因被幽门螺杆菌利用来保护它免受宿主胃组织的侵害。

麦角硫因对人体有抗炎作用。更重要的是,麦角硫因的减少与心血管疾病自身免疫性疾病和神经系统疾病的风险增加有关,这意味着肠道中的细菌会影响人类健康

微生物移植改善健康

粪菌移植疗法的工作原理是通过引入健康的微生物群来替代患者肠道中的有害菌群,从而恢复肠道菌群的平衡

这可以改善肠道健康免疫系统功能,从而减少肠道炎症和其他与肠道微生物群失调相关的疾病的发生。

除了治疗肠道疾病外,粪菌移植疗法还可以用于治疗其他疾病,例如自身免疫性疾病代谢性疾病神经系统疾病等。皮肤微生物移植可以用于治疗某些皮肤疾病,例如顽固性湿疹痤疮

07
结语

微生物群在我们身体的许多部位中存在着,如肠道、皮肤、口腔和生殖道等。这些微生物群与我们的身体密切相连,对我们的健康和疾病起着重要作用。

了解人体微生物群的组成功能影响因素,对于我们更好地了解自身健康以及疾病的预防和治疗具有重要意义。

主要参考文献

Zaidi S, Ali K, Khan AU. It’s all relative: analyzing microbiome compositions, its significance, pathogenesis and microbiota derived biofilms: Challenges and opportunities for disease intervention. Arch Microbiol. 2023 Jun 6;205(7):257.

Ayariga JA, Ibrahim I, Gildea L, Abugri J, Villafane R. Microbiota in a long survival discourse with the human host. Arch Microbiol. 2022 Nov 28;205(1):5.

Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, SharifiRad J, Aiello V, Romano B, De Lorenzo A, Izzo AA, Capasso R (2019) Gut microbiota and obesity: a role for probiotics. Nutrients 11(11):2690.

Apparao Y, Phan CW, Kuppusamy UR, Sabaratnam V (2022) Ergothioneine and its prospects as an anti-ageing compound. Exp Gerontol 170:111982.

Aarnoutse R, Ziemons J, Penders J, Rensen SS, de Vos-Geelen J, Smidt ML (2019) The clinical link between human intestinal microbiota and systemic cancer therapy. Int J Mol Sci 20:4145.

Aggarwal N, Kitano S, Puah GR, Kittelmann S, Hwang IY, Chang MW (2022) Microbiome and human health: Current understanding, engineering, and enabling technologies. Chem Rev 123:31.

De Angelis M et al (2020) Diet influences the functions of the human intestinal microbiome. Sci Rep 10:1–15.

微生物防晒?

谷禾健康

 “ 要美白,要抗老,先防晒… ” 

“ 护肤中最重要的是防晒… ”

“ 防晒,一年四季都需要… ”

在各大美妆博主的科普下,你可能已经对防晒已经做足了攻略,甚至囤货满满,然而,你可能不知道还有这样一种防晒——“微生物防晒”。

最近,化妆品和皮肤病学领域将其研究重点放在皮肤微生物群及其与皮肤和环境的相互作用上。

现已有研究证明了细菌分子可以阻挡紫外线或逆转它们的有害影响。

为什么细菌可以阻挡紫外线?

在回答这个问题之前,首先我们来认识一下皮肤微生物群。

01 人类皮肤微生物群

皮肤是一个复杂的分层器官,提供了非常多样的生态条件。该生态系统是人体最大的生态系统之一,包括细菌、真菌、酵母、古生菌、病毒,甚至螨虫等。

 皮肤微生物群如何形成?

从出生开始,一个人的皮肤微生物群是通过分娩后阴道菌群的转移形成的,或者是通过剖腹产分娩时的环境菌群形成的。

 皮肤微生物群有什么作用?

皮肤共生菌群对病原体具有几个关键的防御功能,并作为(生物)化学和物理攻击的屏障,以及皮肤先天(通过抗菌肽合成)和适应性免疫系统的调节器。它的成分对免疫稳态至关重要。这种平衡的破坏可能导致疾病,如特应性皮炎,牛皮癣,酒渣鼻,过敏等。

 皮肤微生物群主要有哪些菌属构成?

成人皮肤微生物群的组成和分布受皮肤局部参数的调节,且湿润、干燥和皮脂腺皮肤微生物群的数量差异显著。从20多个皮肤部位采集的样本来看:

每个类群的丰度强烈地依赖于适当生态位的特征。例如,亲脂性菌群,如痤疮杆菌Cutibacterium acnes,在皮脂腺部位发现,而葡萄球菌主要在潮湿部位发展。

葡萄球菌和痤疮杆菌在人体皮肤上的分布

Souak Djouharet al., Microorganisms,2021

 皮肤真菌

关于真菌的研究比较有限,但已经确定马拉色菌是身体和手臂上的主要微生物。其他微生物,包括在足弓上存在曲霉Aspergillus, 隐球菌Cryptococcus, 红酵母Rhodotorula,附球菌Epicoccum.

在人类皮肤上共鉴定出17种马拉色菌:

M. restricta、M. globosa 、 M. sympodialis为主。

 皮肤古细菌

人类皮肤微生物群中也有古细菌,2013年出现了关于古细菌的研究,发现古细菌在躯干等特定区域可以代表4.2%的微生物群。已鉴定的物种包括土壤类群古菌、产甲烷菌和嗜盐菌。

在大致了解皮肤微生物群的基本构成之后,我们再来看紫外线对皮肤微生物群的影响。

02 紫外线对皮肤及其微生物群的影响

紫外线对皮肤的影响

阳光照射会影响皮肤表面的不同比例,这取决于季节,但它仍然是皮肤环境压力最强大和最持久的来源之一。

紫外线辐射对皮肤的影响因其能量和穿透潜力而异(图2)。

Souak Djouharet al., Microorganisms,2021

太阳紫外光谱本身根据辐射的波长和能量分为三个部分:

UVC(200-290nm);

UVB(280–315 nm);

UVA(315–400 nm)

UVA分为UVA1(315–340 nm)和UVA2(340–400 nm)

辐射波长越长,穿透皮肤的深度就越深,也就是UVA的穿透力最强。平流层中的臭氧能有效地吸收紫外线。在海平面上,人类主要暴露于UVB和UVA。

穿透皮肤的紫外线占阳光辐射的5-8%,相当于约5-10%的UVB和90-95%的UVA。这些数值随太阳高度、海拔高度、臭氧、云量和地面反射而变化。

UVA:晒黑、晒老(皮肤光老化)

UVB:晒伤、晒红、晒出水泡

在皮肤中,紫外线辐射被皮肤发色团以及不同的分子吸收,包括DNA、膜脂和反式尿氨酸。这种靶点的多样性解释了大量已知的生物反应。

紫外线对皮肤微生物群的影响

间接影响

紫外线对皮肤的影响可以间接影响皮肤的微生物群,细菌本身已经发展出对紫外线辐射的抵抗力。

已经证明,紫外线辐射影响皮肤微生物群的组成和活性,但其后果是不明确的。

积极影响:导致金黄色葡萄球菌等条件致病菌的减少

消极影响:出现慢性炎症

紫外线辐射可以通过刺激角质形成细胞产生抗菌肽,如hbD2、hbD3、RNase7、psoriasin或S100A12,从而上调皮肤保护性天然免疫机制。

最近,在一个由6名志愿者组成的小组中研究了UVA和UVB对皮肤微生物群的影响。暴露于UVA和UVB后,观察到其皮肤微生物群的组成发生改变。

蓝藻门细菌Cyanobacteria增加的趋势,而乳酸杆菌科和假单胞菌科有减少的趋势。蓝藻门的增加归因于它们对紫外线辐射的高内在抗性

蓝藻门细菌发展了多种防御机制,包括紫外线吸收/筛选化合物的生物合成,如类菌胞素氨基酸(MAAs)和酶,包括超氧化物歧化酶(SOD),它们可以对抗氧化应激。

直接影响

紫外线也直接影响皮肤细菌,如痤疮表皮菌,减少其卟啉的生产。

紫外线也作用于另一种常见的皮肤细菌,藤黄微球菌Micrococcus luteus。该菌株具有显著的特性,能够通过逆转紫外线在皮肤暴露过程中产生的顺式尿氨酸来对抗紫外线对免疫系统的有害影响。

这使得化妆品行业在开发用于防晒产品时考虑到了皮肤微生物群。

03 防晒措施

随着年龄增长,皮肤的自然老化是不可避免的,但是光老化却是可以通过防晒措施来缓解的。

防晒

经典防晒措施:

穿防晒衣(由防紫外线布料制成的衣服)。紫外线可以穿透一般夏天穿的薄棉质衣服。

现代防晒:包括一级保护和二级保护两种手段。

防晒霜能够吸收或反射紫外线。

抗氧化剂、渗透剂和DNA修复酶有助于减少皮肤损伤。

更准确地说,防晒霜可以根据其作用机制分为物理阻挡紫外线、化学吸收紫外线和混合紫外线过滤。

物理紫外线过滤器反射和散射光,特别是UVA和UVB。这些过滤器包括有色化合物和微粉化颜料。在后者中,我们发现了钛氧化物(TiO2)和氧化锌(ZnO ex Z-Cote®-BASF Care Creations)。

化学紫外线过滤剂(如Tinosorb®M-BASF Care Creations, MexorylTM XL-L’Oréal, Triasorb™-Pierre Fabre)能够吸收高能紫外线并释放较低的能量辐射,这得益于一个发色团,该发色团通常是一个芳香族分子,或与羰基结合或不结合。

这些过滤器既不能穿透皮肤屏障,也不能进入细胞,在细胞中它们会导致变异,也不能进入体循环。

然而,仅仅保护皮肤不受紫外线照射是不够的

紫外线空气污染物的结合已被证明会协同加剧皮肤损伤,加速皮肤老化

最近的研究显示,紫外线大气污染物(如香烟烟雾和多环芳烃)之间可以存在协同效应。这些污染物具有内在的皮肤氧化特性,其作用可以增强紫外线的作用。这在UVA和B[a]P(苯并芘)中得到了特别的证明,这是最有害的光反应性多环芳烃之一,通过增加脂质过氧化DNA损伤导致细胞活力下降

作为对紫外线过滤器的补充,基于对环境协同损害的内源性保护的策略已经通过刺激天然抗氧化途径添加例如修复酶抗氧化剂、肽、天然或生物技术提取物来实现(表1)。

根据其作用机理与防晒相关的市售化妆品成分的非详尽清单。

Souak Djouharet al., Microorganisms,2021

INCI:化妆品成分的国际命名法

抗氧化剂,如维生素C、维生素E、类胡萝卜素、多酚和类黄酮可以减少紫外线产生的活性氧

“微生物防晒剂”——MAAs

如前所述,类菌胞素氨基酸(MAAs)是地衣、真菌和蓝藻在太阳紫外线照射下产生的天然光稳定次生代谢产物紫外线吸收化合物

MAAs通常被称为“微生物防晒剂”,它能以热的形式散发紫外线能量而不产生自由基,还能阻止紫外线诱导的嘧啶酮光产物(6-4光产物)和嘧啶二聚体的形成。这些UVs光产物导致突变、细胞转化和细胞死亡。

MAAs是一种多功能化合物,具有抗紫外线辐射损伤、抗氧化、渗透和热应激等作用。这些分子吸收光的带宽很宽,最大吸收率在310-362nm之间(UVA和UVB范围),摩尔消光系数很高(e=28100–50000 M−1厘米−1).

因此,MAAs可作为化妆品的活性成分,以抵消紫外线辐射的负面影响。

MAAs是典型的小化合物(<400 Da),无色,水溶性。已鉴定出20种形式的MMAs,研究最多的是Porphyra-334、shinorine和mycsporin-glycine.

这些化合物具有类似的结构,由含有环己酮或环己烯胺环的4-脱氧戊醇组成,环己烯胺环与氨基酸或亚氨基醇的氮取代基共轭。

许多研究表明,MAAs是抗氧化剂,因为它们通过防止脂质过氧化超氧自由基活性来对抗氧化损伤。例如,红藻紫菜提取物,商品名为Helioguard 365a(瑞士Mibelle AG Biochemistry),据称是一种天然防晒霜,含有脂质体MAAs、shinorine和紫菜-334的混合物(表1)。这种化合物对UVA引起的DNA损伤的光保护作用已在体外HaCaT细胞中得到证实。

表皮葡萄球菌——抑制紫外线诱导的新生细胞生长

最近的研究强调了皮肤细菌的一种新功能,它可以保护皮肤免受外部攻击,比如紫外线辐射。表皮葡萄球菌产生一种化合物6-HAP(6-N-羟基氨基嘌呤),具有预防肿瘤的保护活性。该分子能抑制DNA合成,选择性地阻止肿瘤细胞的增殖,抑制紫外线诱导的新生细胞生长

藤黄微球菌——减轻紫外线辐射

众所周知,UVB辐射通过反式尿氨酸(trans-UCA)到顺式尿氨酸(cis-UCA)的光异构化来降低细胞介导的免疫。研究还表明,皮肤共生的藤黄微球菌 micrococcus luteus 能够将顺式UCA降解为反式异构体,从而可能降低UVB的免疫抑制作用。因此,这种细菌可以减轻紫外线辐射的有害影响。

此外,藤黄微球菌特别产生一种有趣的酶,一种核酸内切酶,它有能力提高DNA修复酶复合物的效率。这种核酸内切酶可以被包裹在磷脂包被膜中,以促进其进入细胞。

光裂解酶——抵消紫外线产生的DNA光产物形成

为了限制DNA损伤,另一类酶,光裂解酶,是光破坏防御领域的主要研究对象。这些酶由许多自然暴露于紫外线辐射下的动物物种、植物和细菌产生,但在包括人类在内的胎盘哺乳动物中不编码。

光裂解酶属于一类50-60kDa的黄蛋白,被可见光谱的蓝光或紫外光激活。如前所述,它们能够抵消紫外线产生的DNA光产物的形成,如环丁烷嘧啶二聚体(CDPs)和6–4光产物。

光裂解酶是一种特定的产物,但其作用机制尚不清楚。不过作者已经证明,用脂质体局部治疗人类皮肤,脂质体中含有一种从蓝藻中分离出来的光裂解酶,即Anacystis nidulans,能够降解40%的紫外线照射产生的CDP,并减少红斑。同时,表皮细胞间粘附分子-1(ICAM-1)减少,对免疫和炎症起作用。此外,光解酶似乎能有效降低UVB的有害作用并产生免疫保护。

痤疮表皮杆菌——分泌抗氧化酶

最近的一项研究表明,皮肤共生细菌,痤疮表皮杆菌,能够分泌一种抗氧化酶。这种被称为RoxP的蛋白质是痤疮丙酸杆菌的自由基加氧酶,在体外促进有氧细菌的生长

另一项研究表明,RoxP积极影响单核细胞和角质形成细胞的活力暴露于氧化应激。这种酶可能有助于减少与紫外线暴露有关的氧化应激

放线菌——抑制紫外线诱导的新细胞生长

放线菌(Actinobacteria),特别是链霉菌(Streptomyces)是具有光保护活性的代谢物的来源,如抗氧化抗炎化合物以及吸收紫外线的分子。这些分子包括酰胺类化合物,通常与抗炎活性和生物碱显示更具体的抗氧化活性。这些化合物现在被用作化学成分来开发保护产品。

防止紫外线损伤的细菌营养方法

现在大家都知道各种各样的膳食补充剂对皮肤健康有好处。最近,口服补充抗氧化剂(如抗坏血酸、类胡萝卜素或多酚)和益生菌被提议保护皮肤免受紫外线辐射引起的损害。

“益生菌”一词于1989年被定义为”活的微生物,如果摄入足量,就会对宿主的健康产生影响”。乳酸菌的特定菌株可能会对肠道微生物群的组成和代谢产生有益的影响,在某些情况下还会抑制肠道病原菌的生长

许多研究表明肠道免疫轴皮肤有关,食用含有益生菌的食物可以改善皮肤健康,维持皮肤稳态,调节皮肤免疫系统。

Lactobacillus johnsonii NCC 533 (约氏乳杆菌NCC 533)

对于紫外线辐射引起的皮肤损伤,益生菌如约氏乳杆菌NCC 533 (La1)的功效已被证实。

研究表明,约氏乳杆菌的吸收可以通过防止紫外线产生的白细胞介素-10的增加来增强皮肤免疫系统稳态,并减少表皮朗格汉斯细胞的募集。

鼠李糖乳杆菌

以同样的方式,一种益生菌鼠李糖乳杆菌(Lactobacillus rhamnosus GG, LGG)的施用被证明可以防止皮肤肿瘤的发生,这是由于其脂磷壁酸(lipoteichoic acid, LTA)的活性,LTA是革兰氏阳性菌细胞壁的一种成分。

在小鼠模型中,LTA降低了紫外线诱导的皮肤免疫抑制,从而显著降低了紫外线诱导的皮肤肿瘤生长。

还可以考虑其他的光保护候选种,如植物乳杆菌HY7714、短双歧杆菌和长双歧杆菌。这些观察结果是很有希望的,但还需要在人类身上得到证实。

04 结  语  

目前的防晒策略多种多样。优化策略可以使用改善紫外线内源性保护反应的成分和/或修复或抗氧化酶,对紫外线暴露后的皮肤恢复具有积极作用。

本文中的提到的皮肤微生物群是具有间接防晒特性的化合物的来源。皮肤微生物群中的一些细菌甚至具有直接的紫外线辐射阻断或吸收作用,以及抗炎抗氧化活性

此外,一些临床研究也强化了某些益生菌具有预防或逆转紫外线辐射有害影响的有益活性的观点。内源性和外源性细菌不仅是分子的来源,也是开发新的自然防晒措施的灵感来源。

附录:  防晒常识

#01 化学防晒和物理防晒有什么区别?

化学防晒霜的作用就像海绵一样吸收阳光。它们包含以下一种或多种活性成分:氧苯甲酮,阿伏苯宗,辛酸盐,辛二烯,高渗酸盐和辛氧酸盐。这些配方往往更容易擦入皮肤,而不会留下白色残留物。

物理防晒霜的作用就像护盾一样在皮肤表面,使太阳光线偏转。它们包含活性成分氧化锌和/或二氧化钛。皮肤敏感者或小朋友,请尽量选择物理防晒霜。

#02 什么人需要防晒?

任何人,不论年龄,性别或种族,都需要防晒。

(6个月以下的婴儿尽量避免使用防晒霜,可以选择戴帽子,穿长袖等方式。)

#03 如果使用防晒霜需要多少量?

如果只涂脸的情况下,需要一个一元硬币或以上的量。涂身体需要在这个基础上增加相应的量,如果是在海边沙滩上,按照AAD(美国皮肤学会年会)的规定,至少要涂满1盎司的防晒霜才能完全覆盖身体。

#04 防晒霜上SPF和PA代表什么?

SPF值(Sun Protection Factor),也就是我们平常说的防晒系数,指紫外线照射到不伤害肌肤的一个时间范围。假设不涂防晒时15分钟后晒伤,那么SPF30的意思是15(分钟)*30=450分钟,也就是可以保护皮肤7.5小时。【实际上在很多因素下,并不能有效保护这么久,需要补涂】

PA值是衡量防晒产品UVA的防护能力,美国产的和部分欧洲产的防晒霜并没有标有PA,市面上一般有PA+,PA++,PA+++三个等级。PA+:有效;   PA++:相当有效;   PA+++:非常有效

#05 多久补涂?

在户外时,请大约每两个小时后补涂,或在游泳或出汗后补上。

#06 防晒霜多久失效?

如果每天以正确的量使用防晒霜,那么一瓶不会使用太久。

FDA要求所有防晒霜保持其原始强度至少三年。如果已过期,请扔掉防晒霜。

#07 防晒霜的成分安全吗?

FDA提议的规则对防晒成分进行了分类。FDA提议将两种成分“普遍认为是安全有效的”(GRASE):

二氧化钛、氧化锌 

FDA提议不要添加其他两种成分:

聚氨基甲酸乙酯、甲苯胺水杨酸酯 

#08 防晒喷雾如何?

FDA还在评估喷雾防晒霜的安全性和有效性。使用防晒喷雾的挑战在于,你很难知道是否使用了足够的防晒霜来遮盖身体所有暴露在阳光下的区域,有可能会导致覆盖范围不足。使用喷涂防晒霜时,请确保喷涂足够量并擦拭以确保均匀覆盖。

为避免吸入喷雾防晒霜,切勿将其喷涂在脸部或嘴部周围或附近。或者喷的时候应避开人群,注意风向,以免自己或他人吸入。

#09 含有驱虫剂的防晒霜值得买吗?

AAD不建议购买标签上注明含有驱虫剂的防晒霜。

建议购买单独的产品,因为:

防晒霜应自由使用,并经常使用

驱虫剂应少用,且应比防晒霜少使用

参考文献:

Yokoyama, H.; Mizutani, R. Structural biology of DNA (6-4) photoproducts formed by ultraviolet radiation and interactions with their binding proteins. Int. J. Mol. Sci. 2014, 15, 20321–20338.

Bernard, J.J.; Gallo, R.L.; Krutmann, J. Photoimmunology: How ultraviolet radiation affects the immune system. Nat. Rev. Immunol. 2019, 19, 688–701.

Souak Djouhar,Barreau Magalie,Courtois Aurélie et al. Challenging Cosmetic Innovation: The Skin Microbiota and Probiotics Protect the Skin from UV-Induced Damage.[J] .Microorganisms, 2021, 9.

Patra, V.; Sérézal, I.G.; Wolf, P. Potential of skin microbiome, pro- and/or pre-biotics to affect local cutaneous responses to UV exposure. Nutrients 2020, 12, 1795.

Hannigan, G.D.; Meisel, J.S.; Tyldsley, A.S.; Zheng, Q.; Hodkinson, B.P.; SanMiguel, A.J.; Minot, S.; Bushman, F.D.; Grice, E.A. The human skin double-stranded DNA virome: Topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. mBio 2015, 6, e01578-15.

Morifuji, M. The beneficial role of functional food components in mitigating ultraviolet-induced skin damage. Exp. Dermatol. 2019, 28, 28–31

Paller, AS et al. New Insights About Infant and Toddler Skin: Implications for Sun Protection. Pediatrics. 2011 July; 128 (1): 92-102.

Hughes MC, Williams GC, Baker P, Green AC; “Sunscreen and Prevention of Skin Aging, a Randomized Trial”. Annals of Internal Medicine. 2013; 158(11):781-790.

动画简报 | “集天使与魔鬼于一身”的皮肤菌群

谷禾健康

http://v.qq.com/s/videoplus/457452244

皮肤菌群如何导致痤疮、湿疹?如何维持皮肤健康?_腾讯视频

相关阅读:

这7种类型的食物可能引起 “痘痘”

痘痘?粉刺?皮肤问题很可能是肠道问题

牛皮癣看似皮肤病,实则关系到肠道

1
客服