Tag Archive 肠道核心菌

肠道核心菌——副拟杆菌属(Parabacteroides),是否是改善代谢减轻炎症的黑马?

谷禾健康

副拟杆菌(Parabacteroides

副拟杆菌属Parabacteroides)是人类肠道微生物群的核心成员,在谷禾几十万例的人群肠道样本数据库中Parabacteroides检出率大于90%。而且不同的时期样本均有检出,表明该菌与人体不同阶段健康关系密切

与另枝菌属(Alistipes)一样,副拟杆菌属是一个相对较新的属,具有其他肠道共生细菌所没有的独特特征。研发发现他们在百岁老人肠道中富集

副拟杆菌属有助于消化我们无法以其他方式处理的高纤维饮食,并且在抗性淀粉饮食中丰度增加。这些细菌从我们的口腔开始,最终到达粪便,遍布我们的消化道,但在肠道中占主导地位。

该共生细菌已被证明可以调节宿主粘膜免疫系统、减轻炎症、参与碳代谢,具有比较多的多糖利用位点(PUL),这点和拟杆菌类似。这些PUL赋予副拟杆菌属广泛的碳水化合物利用能力,并可能通过协调复杂多糖的降解而发挥竞争优势;此外分泌乙酸盐、丙酸盐等短链脂肪酸

需要注意的是,副拟杆菌存在抗生素耐药性:一些副拟杆菌属物种,特别是那些生活在人类肠道中的副拟杆菌对克林霉素或莫西沙星产生耐药性。

许多因副拟杆菌富集而在海马体中差异上调的基因与脂肪代谢和运输有关。因此,副拟杆菌有可能赋予大脑一种适应能力,将能量代谢偏好从碳水化合物转向脂质衍生的酮。Parabacteroides distasonis有可能减少肠道对葡萄糖的摄取,增强血液中葡萄糖的清除,或改变一般营养物质的利用,修复肠道屏障改善代谢障碍

副拟杆菌属Parabacteroides)可能通过多种方式影响宿主健康:(1)调节免疫系统导致在自身免疫病种的二分作用;(2)参与炎症影响炎症肠病;(3)调节宿主代谢对抗肥胖,影响心脑血管(4)分泌代谢物,部分菌种可以抗幽门螺杆菌。其中Parabacteroides distasonisParabacteroides goldsteinii是研究最多的两个种。

例如,Parabacteroides distasonis可以通过阻断肿瘤坏死因子α、白细胞介素6、白细胞介素17、白细胞介素12或干扰素γ的释放来控制先天性炎症反应,甚至对HT-29/SW480细胞或AOM诱导的肿瘤表现出抗肿瘤活性

Parabacteroides distasonisParabacteroides goldsteinii 已被证实能够缓解肥胖。通过灌胃Parabacteroides distasonis可以促进肠道中琥珀酸和次级胆汁酸的产生,这促进了肠道糖异生保护肠道通透性

此外,研究还发现在肥胖,炎症性肠病,非酒精性脂肪性肝炎以及代谢综合征患者中副拟杆菌属丰度下降;而在银屑病新生儿胆汁淤积病斑秃、高血压、多囊卵巢综合征的患者中丰度有所增加。然而其他实验数据显示出矛盾的结果,这表明副拟杆菌属Parabacteroides)可能根据具体情况发挥二分作用

Part1
副拟杆菌的基本知识

1

简介

副拟杆菌属Parabacteroides)是拟杆菌门,卟啉单胞菌科的革兰氏阴性专性厌氧、不形成孢子、不活动、呈杆状,中等大小的细菌,在有胆汁的培养基上生长。

2

分类和基因

副拟杆菌已经鉴定分离出20多个物种,其中13种是肠道常见细菌。但是目前大多数关于副拟杆菌的研究都集中在以下四个物种:

•Parabacteroides distasonis 模式物种

Parabacteroides goldsteinii (P. goldsteinii)

•Parabacteroides johnsonii(P. johnsonii)

•Parabacteroides merdae(P. merdae)

Parabacteroides distasonis是副拟杆菌属的模式代表菌种,下文我们也主要以这个菌种为代表介绍副拟杆菌与人体健康的相关知识。

Parabacteroides distasonis是一种革兰氏阴性厌氧细菌,通常定植于许多物种的胃肠道中。该菌株于20世纪30年代首次从临床标本中分离出来,名为Bacteroides distasonis,并于2006年被重新分类,归属于新的副拟杆菌属。

P.distasonis是该菌属中基因组最小的

在与人类肠道相关的Parabacteroides物种中,P.distasonis具有最小的基因组(<5Mb,而其他物种>6.5Mb)和环境感应及基因调控类别中基因组成的最小组合。P.distasonis的标准菌株ATCC 8503拥有4,811,369碱基对的基因组,3,867个蛋白编码基因,并与其他肠道Bacteroidetes共享1,416组同源蛋白编码基因。

P. distasonis拥有的与碳源降解相关的基因数量也最少;然而,P. distasonis在其蛋白质组中拥有两类碳水化合物处理酶P. distasonis能够为自身及肠道微生物群落中的其他成员提供脱乙酰化产品,其基因组中用于蛋白质降解的比例大于拟杆菌门其他成员。

已经从克罗恩病切除的肠道中发现了这种细菌,它们来自于肠壁的微空化(形成瘘管)损伤,这支持了它在炎症性肠病中可能具有促炎活性的潜力

以下是副拟杆菌属已鉴定的其他物种及来源

P. acidifaciens (人类粪便)

P. bouchesdurhonensis (人类肠道微生物群)

P. chartae (造纸厂废水)

P. chongii (腹膜炎患者的血液)

P. chinchillae (龙猫粪便)

P. distasonis (人体肠道)

P. faecis (人类粪便)

P. goldsteinii (人体肠道)

P. gordonii (人类血培养)

P. johnsonii (人体粪便)

P. massiliensis (人体粪便)

P. merdae (人体粪便)

P. pacaensis (人体肠道)

P. pekinense (人体粪便)

P. provencensis (人体肠道)

P. timonensis (人体粪便)

‘Candidatus Pa. faecavium’ (鸡粪)

‘Candidatus Pa. intestinavium’ (鸡粪)

‘Candidatus Pa. intestinigallinarum’ (鸡粪)

‘Candidatus Pa. intestinipullorum’ (鸡粪)

★ 副拟杆菌具有致病性和益生作用的双重潜力

近年来,副拟杆菌出现其致病性益生能力之间的双重潜力(尤其以模式菌种Parabacteroides distasonis为例),尽管我们目前对该细菌调节健康引起疾病的潜力了解并不理想且不完整。

在查阅了14项相关Parabacteroides distasonis研究中,5种菌株被假定为致病性,1种为益生菌菌株,而7种菌株既未被假定为益生菌也不是致病性菌株。在假定的五种致病菌株中,两种是从两名患有严重外科克罗恩病的患者的肠壁空洞微病变中分离出来的,一种与增强小鼠结肠炎有关,两种是人类临床分离株。

虽然这种细菌已被报道与炎症性肠病和其他疾病有关,但其具体机制尚不清楚。在肠外病变中发现P.distasonis事实并不一定表明P.distasonis是主要病原体,而是表明这种细菌从肠腔传播可能使P.distasonis成为机会性亲病原体,这是很多细菌的特性

3

代谢和生态

以副拟杆菌属典型物种Parabacteroides distasonis为例,一些报道证实P.distasonis拥有N-聚糖的代谢途径,并在体外粪便发酵中具有木葡聚糖降解能力。

P. distasonis的发酵可以产生甲烷

目前尚不清楚P.distasonis是否直接产生甲烷;然而,已知P.distasonis产生氢气、二氧化碳、甲酸、乙酸、羧酸和琥珀酸。其他微生物可能将二氧化碳和乙酸转化为甲烷。然后,产乙酸细菌可能会氧化这些酸,获得更多的乙酸以及氢气或甲酸。在现实复杂的肠道群落中,产甲烷菌可能会将乙酸转化为甲烷。

产甲烷细菌可能具有一定的致病作用

然而,有证据表明甲烷也可能起到致病作用。甲烷的产生已被证明与其他肠道疾病的发病机制有关,例如便秘型肠易激综合征(C-IBS)、憩室病结直肠癌。甲烷的产生可能会阻碍回肠蠕动,这解释了其诱发便秘的能力。但是需要注意对任何动物疾病模型或临床疾病的最终有益或致病作用还要取决于其他因素。此外,琥珀酸作为免疫细胞中的炎症信号,通过HIF-1α(缺氧诱导的转录因子)(琥珀酸的下游靶标)诱导 IL-1β

有报告称 Bifidobacterium longum subsp. longum ATCC 15707 从 P. distasonis ATCC 8503 中受益,特别是在富含乳糖的环境中。此外,研究揭示牛奶寡糖处理支持了 Bifidobacterium longum subsp. longum 和 P. distasonis 的生长,同时抑制了 Clostridium perfringens产气荚膜梭菌) 和 Escherichia coli 大肠杆菌)的生长。

另外,Parabacteroides goldsteinii 在葡萄糖代谢的主要最终产物中产生乙酸和少量的琥珀酸

Parabacteroides johnsonii 能够在含有20%胆汁的培养基上生长该菌可以将植物聚合物转化为简单糖,这些简单糖随后可以被宿主进一步吸收,对其宿主至关重要。

拓展:副拟杆菌属KEGG代谢途径

向上滑动阅览

2-氧代羧酸代谢

丙氨酸、天冬氨酸和谷氨酸代谢

氨基糖和核苷酸糖代谢

氨酰-tRNA生物合成

精氨酸和脯氨酸代谢

精氨酸生物合成

细菌分泌系统

碱基切除修复

不饱和脂肪酸的生物合成

生物素代谢

丁酸代谢

半胱氨酸和蛋氨酸代谢

D-丙氨酸代谢D-谷氨酰胺和 D-谷氨酸代谢

脂肪酸代谢

叶酸生物合成

果糖和甘露糖代谢

半乳糖代谢

谷胱甘肽代谢

甘油脂代谢

甘氨酸、丝氨酸和苏氨酸代谢

糖酵解/糖异生

乙醛酸和二羧酸代谢

组氨酸代谢

甲烷代谢

泛酸和 CoA 生物合成

次级胆汁酸生物合成

硒化合物代谢

鞘脂代谢

淀粉和蔗糖代谢

链霉素生物合成

硫代谢

牛磺酸和亚牛磺酸代谢

萜类骨架生物合成

硫胺素代谢

二元体系

酪氨酸代谢

缬氨酸、亮氨酸和异亮氨酸降解

万古霉素耐药性

维生素B6代谢

4

与其他菌互作

-Parabacteroides促进的菌:

(但是强弱目前还没有细化,仅供参考)

拟杆菌目(Bacteroidales)

拟杆菌属(Bacteroides)

消化球菌科(Peptococcaceae)

Odoribacter

-Parabacteroides抑制的菌:

(但是强弱目前还没有细化,仅供参考)

Bifidobacterium

Coriobacteriales

Adlercreutzia

Collinsella

Porphyromonas

Prevotella

Clostridium

Clostridiales incertae sedis

Clostridiales Family XIII. Incertae Sedis

Blautia

Coprococcus

Dorea

Lachnospiraceae

Ruminococcaceae

Ruminococcus

Dialister

Campylobacteraceae

Erysipelotrichaceae

!

拟杆菌属与副拟杆菌属

根据系统发育分析,副拟杆菌与拟杆菌属物种由共同祖先分化,这一点通过对不同细菌物种的完整 16S rRNA 基因进行核苷酸测序证实。

拟杆菌属为了适应肠道的恶劣环境,它们配备了不同的机制,例如代谢许多饮食和宿主来源的多糖、使用细胞色素bd氧化酶的耐氧性以及细胞表面结构的大量表达

拟杆菌属包括许多重要的机会病原体,但作为平衡微生物群的重要成员,它们被认为具有维持健康的作用。这是因为它们能够产生抗炎分子,如多糖A、鞘脂和外膜囊泡,从而通过厚粘液层将上述分子转运至上皮,从而增强上皮屏障改善炎症

副拟杆菌属的脂多糖被认为具有免疫抑制作用

副拟杆菌属和拟杆菌属有点类似,都是含有脂多糖的革兰氏阴性细菌,脂多糖被认为是一种强效内毒素,可在宿主体内诱导强烈的促炎反应然而,拟杆菌脂多糖与肠杆菌科(包括大肠杆菌)毒性更强的脂多糖具有截然不同的特性

注:脂多糖结构中的脂质A部分决定其内毒性程度,影响配体对TLR4-MD2复合物的亲和力以及下游NF-kB通路的激活

根据质谱分析显示,拟杆菌属物种似乎具有低酰化、毒性较低的脂质A结构,质谱分析表明存在五酰化和四酰化脂质A形式,而大肠杆菌则拥有高度促炎性的六酰化脂质A域。研究表明拟杆菌属和副拟杆菌属分离株缺乏构建六酰化脂质A所需的LpxL和 LpxM基因,因此与大肠杆菌LPS的促炎形式相反拟杆菌属和副拟杆菌属LPS是免疫抑制

副拟杆菌属可以产生细菌素有助于抵抗细菌入侵

事实上,拟杆菌脂多糖已被证明可以通过减少促炎细胞因子(如TNF-a和IL-6)的产生来调节原代人外周血单核细胞(PBMC)对大肠杆菌脂多糖刺激的反应。此外,弱激动性拟杆菌脂多糖通过改善实验性结肠炎小鼠模型中的炎症免疫反应而被证明具有减轻炎症的特性 。

微生物产生的拮抗物质对于维持不同生态位中的常驻微生物群很重要。它们还用于防止外源细菌定植和入侵,从而防止传染病的发展。在一项研究中,通过表型测定确定了从人类肠道微生物群中分离出的产生细菌素的拟杆菌属和副拟杆菌属物种的存在。114株菌株中有63株(55.2%)产生拮抗物质

结果表明,拟杆菌属和副拟杆菌属物种产生的具有异拮抗作用同拮抗作用的物质。在脆弱拟杆菌(40.9%)、普通拟杆菌(50%)和均匀拟杆菌(14.2%)中观察到了同拮抗作用。具有异拮抗作用和同拮抗作用的细菌素的产生可能表明肠道微生物群能够防御外源微生物的入侵。在一项关于粪菌移植封装递送的研究中,拟杆菌属和副拟杆菌属是主要促进供体植入的物种之一,有可能成为维持类供体微生物群的关键物种。

Part2
副拟杆菌与健康的关系


在炎症性肠病中的二分作用

炎症性肠病(IBD)是一系列终身的慢性疾病,影响人类和动物的消化道,并以缓慢、渐进的方式发展。在人类中,IBD的典型形式是克罗恩病(CD)和溃疡性结肠炎。克罗恩病会影响整个胃肠道,患者会有慢性的、使人衰弱的症状,包括腹痛、严重腹泻、含血便、体重减轻和疲劳。

总的来说,炎症性肠病对肠腔抗原有异常夸大的宿主免疫和炎症反应。因此,IBD是否由微生物群失衡触发,而研究发现这种组成可以通过类益生菌的增强抗炎细菌P. distasonis来纠正。

✦ 抗炎or促炎?

-抗炎的证据

在DSS(二硫化碳钠)诱导的结肠炎发作前,接种了P.distasonis全细胞裂解物的BALB/c小鼠,与对照组相比,炎症显著减少。几种P. distasonis菌株在体外和体内均显示出抗炎效果,并且能够在细胞培养模型中恢复上皮屏障,并在2,4,6-三硝基苯磺酸(TNBS)诱导的结肠炎小鼠模型中加强肠道屏障

此外,P. distasonis刺激调节性T细胞分化方面具有潜在作用。在另一项研究中,P. distasonis和几种Bacteroides物种被发现能够减轻大肠杆菌脂多糖诱导的HT-29细胞IL-8释放,并且缺乏合成六酰化、促炎症脂质A的基因,表现出抗炎属性。该研究表明,P. distasonis和其他测试的Bacteroides物种可以作为“下一代益生菌”使用。

-促炎的证据

已知肽聚糖识别蛋白(PGRPs)通过部分减少IFN-γ的诱导和NK细胞的迁移来控制肠道中的炎症。缺乏四种类型中任何一种PGRPs的小鼠,表现出DSS诱导的实验性结肠炎的严重程度显著增加,以及更多促炎肠道菌群

在PGRP缺陷的小鼠中,肠道中的P.distasonis水平始终升高,这表明通过PGRPs对P.distasonis的免疫控制可能存在缺失。

此外,用P.distasonis灌胃野生型小鼠增强了DSS诱导的结肠炎,并可能使小鼠更容易患炎症性肠病

另外一项研究发现,C11蛋白酶能够促进宿主免疫反应细菌致病性,特别是通过激活类似P.distasonis的细菌致病毒素。研究发现P.distasonis能够在小鼠模型中促进肠道炎症,降解粘膜屏障健康,从而可能促进炎症性肠病的发展。

此外,研究人员报告说,在患者远端肠道菌群失调中,蛋白水解活性和氨基酸升高之间存在相关性。发现P. distasonis能够影响胃肠道稳态相应的免疫活动,特别是以肠道半胱氨酸蛋白酶的形式。这些蛋白酶被假设要么固定在细菌细胞壁上;要么打包进外膜囊泡(OMVs)中,这些囊泡能够水解来自母细菌表面、其他细菌或宿主上皮细胞的底物或者两者都有。

如前所述,P. distasonis能够产生过氧化氢酶来发挥其对抗由炎症细胞产生的氢过氧化物介导的氧化应激的解毒作用。然而,怀疑这些氧化剂可能是克罗恩病的炎症触发因素。这是因为,包括P.distasonis在内的各种细菌产生的过氧化氢酶可以分解反应性氧物种,这可能会加剧炎症。

大胆的观点

关于P.distasonis与炎症性肠病相关潜在致病性的研究在人类中较少,但已发表的研究呈现了类似令人警觉的结果。P.distasonis及从克罗恩病患者小肠黏膜培养的其他九种厌氧细菌,增强了TH1和TH17细胞积累和肠道炎症

此外,最近在接受慢性炎症肠段切除手术的患者的深层肠壁组织中识别出P.distasonis,特别是受克罗恩病困扰的患者,支持了这一物种在克罗恩病中可能的病理作用。这与在自然倾向于类似克罗恩病的小肠炎的SAMP小鼠系肠道宏基因组中观察到的拟杆菌门的富集相一致。

综合这些相互矛盾的报告,我们认为P.distasonis肠道炎症中的作用需要明确阐明其在人类中的致病效应,以便开发临床相关的解决方案来解决这些效应。


在结直肠癌中的保护作用

迄今为止,P.distasonis只被证实对结直肠癌有益。多位研究者已经发现,粪便中P. distasonis的水平与肠道肿瘤的存在呈负相关

✦ P.distasonis具有抗肿瘤能力

P.distasonis膜部分负责抑制结肠癌细胞系中促炎细胞因子的产生。其他研究者的研究表明,P.distasonis具有抗炎和抗肿瘤属性,这是通过减少TLR4、MYD88和Akt的信号传导以及刺激凋亡来介导的。这些结果与在结直肠癌小鼠模型中观察到的P.distasonis微生物组水平降低一致。

✦ 在结直肠癌中潜在的抗炎作用

P.distasonis在结直肠癌中潜在的抗炎作用的证据,进一步得到了P. distasonis水平与肠道中IL-1β产生之间负相关的支持。将自发性结直肠腺癌患者与结肠中没有任何增生性病变的患者的粪便微生物组成进行比较,结果发现患有肿瘤的患者缺乏P.distasonis

这些研究综合表明,P.distasonis结直肠癌患者具有抗肿瘤和抗炎的潜力


对肥胖的改善作用

✦ P.distasonis与体重存在负相关

在肠道中P.distasonis和AKK菌的相对丰度较高能显著减少宿主的脂肪。与正常体重的儿童相比,患有肥胖和代谢综合征的儿童的肠道微生物组中P.distasonis的丰度降低

在代谢综合征(MetS)患者中,原本减少的P.distasonis在随后接受地中海饮食2年后部分恢复了。MetS患者的数据显示,腰围与P.distasonis的相对丰度之间存在负相关关系。采用富含抗氧化酚类化合物的食物的地中海饮食的患者,P.distasonis的丰度显著增加。这些结果表明,地中海饮食可能被用来纠正微生物失衡,特别是关于P.distasonis,进一步证明了P.distasonis可能参与缓解肥胖

✦ 减轻高脂血症、修复肠道屏障

最近,国内一篇研究揭示了P.distasonis通过产生次级胆汁酸和琥珀酸缓解了ob/ob和高脂饮食小鼠的肥胖、高血糖和肝脂肪变性

在这里,发现琥珀酸能够结合到果糖-1,6-二磷酸酶上,这是一种参与肠道糖异生(IGN)的限速酶,从而减少了ob/ob小鼠的高血糖。此外,用活的P.distasonis治疗激活FXR途径减少高脂血症,并因此修复了肠道屏障的完整性,凸显了P. distasonis肥胖肠道屏障完整性相关的额外疑似益处。

在一项研究中,使用缺乏胆碱的氨基酸定义饮食的小鼠模型中,P. goldsteinii丰度降低,这与在高脂饮食和酒精肝损伤的小鼠研究中的抗炎作用相关。

一项研究显示,P.goldsteinii急性酒精诱导的肝脏炎症小鼠中减少,而在使用大黄提取物治疗后,这种情况得到了扭转。

同时,在小鼠肝脏中,P.goldsteiniiTNF-α表达呈负相关。在另一项研究中,P. goldsteinii 与肥胖相关指标(空腹血糖、葡萄糖耐量试验的AUC、体重增加、血清甘油三酯和LBP)以及炎症因子(TNF-α和IL-1β)呈负相关,与血清HDL-C和IL-10在高脂饮食喂养的小鼠中呈正相关

从灵芝菌丝体和冬虫夏草中分离的高分子量多糖(分别为4300和>300 kDa)显示出类似的抗肥胖效果,并在高脂饮食喂养的小鼠中选择性增加P.goldsteinii的丰度。

相比之下,也有报告称P.goldsteinii在小鼠实验中增加,并与肥胖相关指标显著正相关。值得注意的是,为了验证P.goldsteinii在肥胖中的作用,通过口服给予高脂饮食喂养的小鼠活体P. goldsteinii ATCC BAA-1180显著减少了体重增加和与肥胖相关的代谢紊乱。这直接证明了P.goldsteinii在小鼠水平上的抗肥胖活性


在糖尿病中的二分作用

与炎症性肠病一样,P.distasonis根据研究结论对糖尿病有益也有害,这使得将其定义为有益共生菌还是致病菌变得复杂。

✦ P.distasonis在妊娠糖尿病患者富集

目前关于P.distasonis对糖尿病影响的研究非常有限。国内一篇研究对高脂饮食的小鼠中补充蜂胶提取物发现可以增加P. distasonis的丰度,该菌被认为是一种“抗肥胖和抗炎菌”,这与胰岛素抵抗的相关代谢参数一致。基于这些发现,P. distasonis可能在减少胰岛素抵抗预防糖尿病中发挥作用。

然而,一些证据显示P.distasonis可能参与糖尿病的发病机制。国外几项研究使用宏基因组学研究得出结论,P. distasonis在妊娠糖尿病(GDM)患者富集,可能作为GDM女性肠道微生物组的特征。这表明P. distasonis可能在某些类型的糖尿病发病机制中起作用。

未来值得进一步研究该菌糖尿病的关系。


在自身免疫性疾病的作用

✦ 促进多发性硬化症中的T细胞分化

多项研究表明P. distasonis可能在各种自身免疫性疾病中发挥作用。例如,在一项关于肠道细菌多发性硬化症(MS)中T细胞反应潜在功能关系的最新研究中,与健康对照组相比,人类多发性硬化症患者中P.distasonis的水平较低

研究显示P.distasonis促进T细胞向抗炎CD25+ T细胞的分化,相对于总的CD3+ CD4+ T细胞群体而言,这种分化的比例增加了。还发现了大量的CD25+ IL-10+ FoxP3- Tr1细胞,这些细胞与免疫调节表型密切相关。

有趣的是,这些结果得到了与C57BL/6J小鼠结肠固有层中CD4+ T细胞总群体中FoxP3+ T调节细胞比例增加的发现相印证。将多发性硬化症患者的肠道微生物组移植到无菌小鼠中,与接受健康人供体微生物组移植的小鼠相比,实验性自身免疫性脑脊髓炎的症状严重程度增加

✦ 在强直性脊柱炎患者中丰度增加

在强直性脊柱炎(AS)患者的粪便样本中,P.distasonis的丰度显著增加,AS是一种影响脊柱和骶髂关节的慢性炎症性疾病。这表明P.distasonis可能在强直性脊柱炎中发挥作用。

体外实验显示,P. distasonis以及其他AS富集的物种,包括 Bacteroides coprophilusEubacterium siraeum, Acidaminococcus fermentans  Prevotella copri,通过这些物种的细菌肽(模仿II型胶原蛋白)增加了IFN-γ产生细胞的数量,可能作为“通过分子拟态触发自身免疫”的“触发物”。

✦ 在皮肤炎症的调节中发挥作用

在银屑病患者中,P.distasonis的存在显著减少。而用抗生素甲硝唑治疗的动物在其肠道中P. distasonis的丰度显著更高,并通过下调TH17免疫反应减轻了皮肤炎症的严重程度。这些发现表明肠道菌群可能在皮肤炎症(IISI)调节中发挥重要作用。

✦ P.distasonis有助于预测斑秃状态

值得注意的是,一项研究发现由T细胞介导的自身免疫性疾病——斑秃患者的肠道微生物组中P.distasonis丰度更高(LDA得分>2)。与Clostridiales vadin BB60组一起,P. distasonis能够在80%的患者中正确预测斑秃状态,表明P.distasonis可能参与斑秃的病理生理过程。然而,这些发现是否表明肠道中P. distasonis的丰度与斑秃之间存在因果关系,以及该细菌的存在是否作为疾病的生物标志物,仍需进一步阐明。


在心血管疾病中的矛盾角色

P.distasonis也被认为与心血管疾病(CVD)的发病机制有关。然而,与其对糖尿病的影响一样,关于P.distasonis对CVD影响的研究是有限的。

✦ 在心血管疾病中存在矛盾的结果

一项专注于探索肠道微生物群心血管疾病之间关系的研究,在患有心脏瓣膜钙化冠状动脉疾病的患者中发现P. distasonis和其他细菌物种可能是导致CVD的潜在病原体

相反,一项关于肠道微生物群在大鼠血管炎症中作用的研究发现P.distasonis可能具有潜在的抗炎作用,有助于对心血管疾病产生潜在的有益影响。在这里,P.distasonis的相对丰度与颈动脉血管成形术后的新生内膜增厚复合内膜+中膜面积成反比

✦ 副拟杆菌丰度与收缩压升高相关

一项基于人群的基因横向研究结果表明,膳食中总黄酮类化合物(特别是花青素和原花青素聚合物)的摄入量较高,与收缩压和脉压的降低有统计学意义相关。

而副拟杆菌丰度与显著升高的收缩压相关,而较高丰度的未分类瘤胃球菌科与较低的收缩压和脉压相关。收缩压和类黄酮食物之间高达15.2%的关联可以通过肠道微生物群来解释。具体来说,收缩压与膳食浆果摄入量之间的关联有7.9%可以由副拟杆菌解释,9.6%可以由未分类的瘤胃球菌科解释。

饮食中摄入大量黄酮类化合物(浆果、红酒、苹果/梨)与肠道微生物多样性增加副拟杆菌减少、未分类瘤胃球菌科增加、收缩压降低高达4毫米汞柱以及脉压降低有关。

然而P. distasonis在心血管疾病发病机制中的作用还不确定,仍是围绕这种细菌的另一个争议点。显然,需要进行更多的研究来确定P. distasonis心血管疾病之间的关系。


肠和非肠脓肿形成中已确定的病原体

✦ 与多个部位的脓肿形成相关

脓肿是许多感染性细菌显现和繁殖的主要热点。临床研究报告发现在脓肿中能培养出P.distasonis分离株。临床研究和病例报告显示P.distasonis可能在包括脾脏、肝脏和伤口等多种组织的脓肿形成起重要作用。

例如,一例40岁男性患者的脾脓肿病例,患者因发热、左侧腹痛、意识改变和呕吐入院。在患者接受抗微生物治疗并进行脾切除术后,发现从脾脓肿抽取的脓液中培养出了P.distasonis。这是记录在案的少数几例由P.distasonis引起的人类脾脓肿之一;尽管如此,这一发现令人警觉,并支持P.distasonis人类感染中具有致病作用可能与肠道移位有关。

此外,在啮齿动物模型中,CD4+ T细胞被证明在P.distasonis引起的腹腔内脓肿形成中发挥关键作用。

关于P.distasonis脓肿形成方面的病理机制仍在研究中。一项研究利用腹腔内感染了不同细菌病原体的大鼠,包括金黄色葡萄球菌(Staphylococcus aureus)、脆弱拟杆菌(Bacteroides fragilis)以及屎肠球菌(Enterococcus faecium)和P.distasonis的组合,来检验P.distasonis感染形成脓肿腹腔内败血症方面的作用。


对其他疾病的作用

P. distasonis也可能对许多其他类型的疾病具有调节保护作用

✦ 可能与宫颈癌发展相关

例如,P. distasonis水平升高宫颈癌的进展呈正相关。然而,这项特定研究中的患者数量相当少,因此这些结果应谨慎解读。

✦ 具有抗癫痫作用

在近期的研究中描述了P.distasonisP.merdae可能的更多积极作用。这两种副拟杆菌属物种都被显示出能促进生酮饮食的有益抗癫痫效应。这些细菌物种的存在与抗癫痫保护强烈相关,可能通过增加海马区的谷氨酸和γ-氨基丁酸(GABA)水平实现。

众所周知,GABA水平降低会加剧癫痫。此外,一项全基因组序列分析显示,与神经典型对照组相比,自闭症谱系障碍儿童中P. distasonis的丰度较低。这里,宏基因组分析揭示了与产生褪黑激素、丁酸和GABA相关的基因表达减少

✦ 降低毒力因子,抵抗病原菌入侵

幽门螺杆菌的两种毒力因子VacA 和CagA利用胆固醇进行细胞内化和随后的疾病发展。降低细胞胆固醇已被证明可以有效地阻止病原菌引起的疾病的进展

他汀类药物等降胆固醇药物已被用来抑制细菌感染。用P. goldsteinii MTS01 处理细胞可显著抑制VacA和CagA的作用,从而减少NF-κB的激活促炎细胞因子的产生。

这些结果表明P. goldsteinii MTS01 具有抗菌毒力因子效应肠道屏障维持功能

主要参考文献:

Gervason S, Meleine M, Lolignier S, Meynier M, Daugey V, Birer A, Aissouni Y, Berthon JY, Ardid D, Filaire E, Carvalho FA. Antihyperalgesic properties of gut microbiota: Parabacteroides distasonis as a new probiotic strategy to alleviate chronic abdominal pain. Pain. 2023 Sep 27.

Cui Y, Zhang L, Wang X, Yi Y, Shan Y, Liu B, Zhou Y, Lü X. Roles of intestinal Parabacteroides in human health and diseases. FEMS Microbiol Lett. 2022 Aug 29;369(1):fnac072.

Liu D, Zhang S, Li S, Zhang Q, Cai Y, Li P, Li H, Shen B, Liao Q, Hong Y, Xie Z. Indoleacrylic acid produced by Parabacteroides distasonis alleviates type 2 diabetes via activation of AhR to repair intestinal barrier. BMC Biol. 2023 Apr 18;21(1):90.

Wang K, Liao M, Zhou N, Bao L, Ma K, Zheng Z, Wang Y, Liu C, Wang W, Wang J, Liu SJ, Liu H. Parabacteroides distasonis Alleviates Obesity and Metabolic Dysfunctions via Production of Succinate and Secondary Bile Acids. Cell Rep. 2019 Jan 2;26(1):222-235.e5.

Qiao S, Liu C, Sun L, Wang T, Dai H, Wang K, Bao L, Li H, Wang W, Liu SJ, Liu H. Gut Parabacteroides merdae protects against cardiovascular damage by enhancing branched-chain amino acid catabolism. Nat Metab. 2022 Oct;4(10):1271-1286.

Lai CH, Lin TL, Huang MZ, Li SW, Wu HY, Chiu YF, Yang CY, Chiu CH, Lai HC. Gut Commensal Parabacteroides goldsteinii MTS01 Alters Gut Microbiota Composition and Reduces Cholesterol to Mitigate Helicobacter pylori-Induced Pathogenesis. Front Immunol. 2022 Jun 30;13:916848.

Gomez-Nguyen A, Basson AR, Dark-Fleury L, Hsu K, Osme A, Menghini P, Pizarro TT, Cominelli F. Parabacteroides distasonis induces depressive-like behavior in a mouse model of Crohn’s disease. Brain Behav Immun. 2021 Nov;98:245-250.

Ezeji JC, Sarikonda DK, Hopperton A, Erkkila HL, Cohen DE, Martinez SP, Cominelli F, Kuwahara T, Dichosa AEK, Good CE, Jacobs MR, Khoretonenko M, Veloo A, Rodriguez-Palacios A. Parabacteroides distasonis: intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health. Gut Microbes. 2021 Jan-Dec;13(1):1922241.

Bank NC, Singh V, Rodriguez-Palacios A. Classification of Parabacteroides distasonis and other Bacteroidetes using O- antigen virulence gene: RfbA-Typing and hypothesis for pathogenic vs. probiotic strain differentiation. Gut Microbes. 2022 Jan-Dec;14(1):1997293.

肠道核心菌属——双歧杆菌,你最好拥有它

谷禾健康

双歧杆菌

双歧杆菌属Bifidobacterium)是放线菌门严格厌氧的革兰氏阳性多形性杆状细菌。末端常常分叉,故名双歧杆菌。是人和动物肠道的重要核心菌群和有益生理菌群,也是母乳喂养婴儿中发现的第二大菌。

肥胖、糖尿病和过敏等各种疾病都与生命各个阶段的双歧杆菌数量减少有关。双歧杆菌有助于改善消化问题,抗菌和病毒、抗炎、改善血糖控制,降低血脂水平,提高免疫力,表现出抗氧化活性,有助于预防湿疹,缓解压力和过敏

从代谢的角度来看,该属比较典型的特征是单糖的分解代谢(即所谓的果糖 6-磷酸途径),主要发酵葡萄糖产生乳酸和乙酸和少量乙醇

重要的是,双歧杆菌产生硫胺素(维生素B1)、核黄素(维生素B2)、维生素 B6和维生素 K。可能还具有合成叶酸、烟酸(维生素B3)和吡哆醇(维生素B6)的能力。双歧杆菌代谢产物还包括γ-氨基丁酸 (GABA)和生物素。比如青春双歧杆菌是人体肠道微生物群中 GABA生产的关键成员。

by Kateryna Kon

食用双歧杆菌食品可以通过降低胃 pH 值(促进矿物质的电离,这是矿物质的吸收所必需的)来提高某些矿物质的生物利用度,包括钙、锌和铁

多种因素会导致人体肠道内双歧杆菌变化

导致减少的因素包括:

  • 年龄(年龄增加)
  • 饮食(精制碳水化合物,如白面包、糖果、糕点,加工食品等,缺镁铁饮食、高脂肪饮食)
  • 疾病(肠病,炎症,代谢性疾病)
  • 生活方式(缺乏运动、过度使用抗生素、酗酒等)
  • 其他因素(比如感染,菌群失衡)

增加双歧杆菌的因素包括:

补充益生菌:可以通过食物或药物的方式补充益生菌,可以增加肠道内双歧杆菌。

发酵食品:多吃发酵食品,如酸奶、奶酪、泡菜,适量葡萄酒等,可以增加肠道内双歧杆菌。

增加特定膳食补充剂,比如低聚果糖,抗性淀粉,白藜芦醇、镁、绿茶、水苏糖,杏仁/杏仁皮、岩藻多糖、大麦、菊芋、阿拉伯木聚糖、菊粉等

多样性饮食,摄入足够的蔬菜、水果、豆类和全谷物,定期摄入奶制品。

合理运动和良好睡眠,清洁的水源等

存在于不同生态位的双歧杆菌物种与其宿主之间有不同的生态关系

  • B. scardovii存在于人类血液中,已经报道了由B. scardovii引起的几种类型的感染。
  • 齿双歧杆菌是口腔最常检测到的双歧杆菌种类,约占从龋齿病变中分离出的可培养细菌的8%。
  • 肠道中的双歧杆菌大部分是对人体健康有益处的,但是在临床上偶有报道称在免疫功能低下的宿主和肠道屏障受损的宿主中具有“败血症样图像”的侵袭性,并讨论了双歧杆菌菌血症如何可能是细菌从肠道转移到血液或其它部位的结果。

抗生素敏感性

药敏实验显示双歧杆菌对多种抗生素敏感,如氯霉素、四环素、红霉素等,但对氨苄青霉素、庆大霉素、痢特灵、丁胺卡那霉素、新霉素、环丙沙星等抗生素耐受。

应用

目前双歧杆菌制剂已经广泛应用于保健食品、医药等领域。比如双歧杆菌药品、双歧杆菌与药成分搭配的保健药品、双歧杆菌与双歧因子搭配的保健食品以及双歧杆菌与寡糖、葡萄糖酸、精氨酸配合,对青春双歧杆菌有选择的增殖作用,发挥特有的免疫赋活功能等。

开发价值

未来还可能扩大双歧杆菌利用面,促进双歧杆菌向多元化方向发展。比如双歧杆菌富含B族维生素,该菌的代谢产物富含(L+)乳酸和一些酶类,可用来生产微生态护肤品或其他化妆品。除用于特定保健食品和医药外,在畜业、水产业和肉制品加工中也广泛应用,也大有开发价值。

通过补充益生菌或益生元调节双歧杆菌水平可以改变肠道微生物群的整体组成和代谢。但是双歧杆菌介导的健康益处双歧杆菌、肠道微生物群的其他成员和人类宿主之间建立的复杂动态相互作用的结果。值得强调的是,某些双歧杆菌定植特征受肠道因素调节,包括其他微生物的存在。

这体现在具有不同肠道微生物群组成的个体似乎对双歧杆菌补充剂的反应不同,这一事实提供了双歧杆菌-肠道微生物群串扰存在的进一步证据。

本文主要讨论和介绍双歧杆菌的菌属特性,生态代谢特征,对人体的健康特性以及影响双歧杆菌在体内定植的主要因素。

—正文—

01
全面认识双歧杆菌

发现历史

双歧杆菌属于放线菌目,双歧杆菌在细胞壁类型上与其他放线菌(如链霉菌和诺卡氏菌)是分开的;双歧杆菌被指定为具有 VIII 型细胞壁(鸟氨酸浓度相对较高)。

属水平

双歧杆菌Bifidobacterium)于 1899 年首先由 Tissier 从母乳喂养婴儿的粪便中分离出来,并命名为Bacillus bifidus

然而,由于它们与乳杆菌相似的形态和生理特征,在 20 世纪的大部分时间里它们被归类为乳杆菌属的成员,直到最近才被认为是和乳杆菌不同的属

种水平

随着鉴定方案的技术改进和微生物系统学信息的扩展,该属中已定义物种的数量已经稳步增加。

Bergey 的系统细菌学手册(1986) 鉴定了 24 种不同的双歧杆菌。在这些物种中,被认为主要起源于人类的类型有以下种:

B.bifidum、B.longum、B.infantis、

B.breve、B.adolescentis、B.angulatum、B.catenulatum、B.pseudocatenulatum 、B.dentium 。

大多数这些物种在人类结肠中占主导地位,随后可以在粪便和污水中找到。

在2004共列出了 33 种双歧杆菌;大多数新添加的物种都是从动物来源中分离出来的。

截止2020年已在该菌属在分类学上已鉴定出 78 个种和 10 个亚种,而且这个数字每年都在上升。

简介和适宜生长条件

双歧杆菌是革兰氏阳性、不运动、过氧化氢酶阴性、不形成孢子和非还原细菌的多样化菌属。是厌氧菌和多形性细菌,具有单细胞、链、聚合物形、V 形或 Y 形或栅栏形等多种排列方式。

适宜生长条件

人源双歧杆菌的最适生长温度为 36 至 38 °C,而动物源双歧杆菌的最适生长温度为 41 至 43 °C。但蒙古双歧杆菌和嗜冷双歧杆菌除外,它们分别可以在 15°C 和 8°C 下生长;最高生长温度为 43–45°C,但嗜热双歧杆菌除外,其最高生长温度为 49.5°C。

双歧杆菌的最适生长 pH为 6.5–7.0。pH 值低于 4.5–5.0 或高于 8.0–8.5 时不会一般发生生长。嗜热双歧杆菌除外,它可以在 pH 4.5 下生长或 pH 8.0–8.5 下不生长。

双歧杆菌菌落与乳酸菌易混淆

在琼脂平板上,双歧杆菌的菌落与乳酸菌(尤其是乳酸杆菌)的菌落非常相似,容易混淆,经常被错误地称为乳酸菌的一员;然而,双歧杆菌与发酵食品生产中使用的传统乳酸菌都没有密切关系。

与乳酸菌相比,双歧杆菌的耐酸性较差,它们的生长不能称为“兼性厌氧”。双歧杆菌确实会通过碳水化合物的发酵产生乳酸,但通常产生的乙酸量高于乳酸,并且所使用的分解代谢途径不同于乳酸菌所采用的同源发酵和异源发酵途径。

乳杆菌的 DNA 的平均(G+C)mol%约为 37%,双歧杆菌的平均值约为 58%。

双歧杆菌通常在哪里定植

它们是正常人类和动物肠道菌群的天然居民,并且已经从六个不同的生态位中分离出来,双其中三个与人类和动物肠道环境直接相关:例如人类肠道、动物肠道(牛、兔、鼠、鸡和昆虫)和口腔,而其他(污水、血液和食物)可能是胃肠道污染的结果。

从不同生态位分离出来的双歧杆菌物种表

doi.org/10.2217/fon-2019-0374

不止是益生菌,还有致病性

通常在我们的认知中,双歧杆菌是益生菌,但实际上,双歧杆菌与其宿主之间可以建立不同的生态关系,从机会性致病相互作用(例如齿双歧杆菌)到共生甚至促进健康的关系(例如双歧双歧杆菌和短双歧杆菌)。

在已知的促进健康的菌群中,双歧杆菌代表了最主要的群体之一,一些双歧杆菌物种通常被用作许多功能性食品中的益生菌成分。

动物双歧杆菌已被证明是在冷藏条件下保持活力的双歧杆菌物种中最顽强的物种之一,并且一些菌株已被证明可以为人类带来健康益处,但动物这个名称在暗示对人类有益方面并不易于使用,尤其是老鼠粪便作为原始来源。

在当前的文献中,人们越来越意识到双歧杆菌的潜在致病性。双歧杆菌的致病潜力尚不清楚;有报道称在免疫功能低下的宿主和肠道屏障受损的宿主中具有“败血症样图像”的侵袭性

双歧杆菌的促炎作用

Lim HJ,et al., J Microbiol Biotechnol. 2020

先前的研究表明,最常见的引起双歧杆菌感染是长双歧杆菌和齿双歧杆菌。在儿科和成人菌血症病例中,无论是否使用过益生菌,公认的菌种是婴儿双歧杆菌、青春双歧杆菌、短双歧杆菌、长双歧杆菌和齿双歧杆菌(在较早的文献中称为埃里克森双歧杆菌)。

已经报道了由双歧杆菌引起的几种类型的感染。偶尔的感染发现还包括B. scardovii

在一项研究中,从无菌场所分离出的 15 种推定的双歧杆菌分离株或大量存在的双歧杆菌被鉴定到物种水平,鉴定出四种:A. omnicolens、B. breve、B. longum、B. scardovii ,来自胃肠道或泌尿生殖道,B. breve来自血液。Scardovia wiggsiae 是一种新物种,与严重的幼儿龋齿有关。

在血培养分析中,双歧杆菌约占厌氧血培养分离株的 0.5-3%,截至 2015 年,文献中仅报道了 15 例成人双歧杆菌菌血症,因此,双歧杆菌还是相对安全的。

代谢特征

双歧杆菌属属于放线菌门、放线菌纲(高 G+C 革兰氏阳性菌)、双歧杆菌目和双歧杆菌科

产生B族维生素

双歧杆菌可产生硫胺素、核黄素、维生素 B6 和维生素 K。还有报道称它们具有合成叶酸、烟酸和吡哆醇的能力。这些维生素B复合物在人体中被慢慢吸收。

产生乳酸

关于含有双歧杆菌的发酵乳的营养特性的现有信息表明,与非发酵乳相比,它们的残留乳糖含量较低,游离氨基酸和维生素含量较高。它们优先含有(+)-乳酸[双歧杆菌除乙酸外还产生(+)-乳酸,而乳酸菌产生(−)-乳酸],更容易被人体代谢。这对于 1 岁以下的婴儿尤为重要,因为在这些婴儿中代谢性酸中毒可能是一个问题。

所有与人类有关的物种都可以发酵乳糖;在考虑将双歧杆菌应用于乳制品和作为益生菌培养物以缓解乳糖吸收不良不适的预期效果时,这是一个重要特征。

主要代谢途径:果糖 6-磷酸途径

双歧杆菌使用果糖 6-磷酸途径(双歧途径)作为碳水化合物代谢的主要途径,其中Xfp是该途径的主要酶,具有双底物特异性,最终代谢产物是乙酸盐、乳酸盐和乙醇。

注:Xfp——果糖 6-磷酸磷酸酮醇酶

其他代谢途径

人们认为,双歧杆菌能够与其他胃肠道细菌竞争并在胃肠道区域的细菌菌群中占据很大比例,部分原因可能是它能够利用多种分子提供能量。双歧杆菌可能还参与的其它代谢通路如下:

2-氧代羧酸代谢

ABC转运体

丙氨酸、天冬氨酸和谷氨酸代谢

氨基糖和核苷酸糖代谢

氨酰-tRNA生物合成

精氨酸和脯氨酸代谢

精氨酸生物合成

细菌分泌系统

碱基切除修复

氨基酸的生物合成

抗生素的生物合成

次级代谢物的生物合成

不饱和脂肪酸的生物合成

生物素代谢

丁酸代谢

C5-支链二元酸代谢

碳青霉烯生物合成

碳代谢

氯代烷烃和氯代烯烃降解

柠檬酸循环(TCA循环)

氰基氨基酸代谢

半胱氨酸和甲硫氨酸代谢

D-丙氨酸代谢

D-谷氨酰胺和D-谷氨酸代谢

DNA复制

芳香族化合物的降解

脂肪酸生物合成

脂肪酸降解

脂肪酸代谢

叶酸生物合成

果糖和甘露糖代谢

半乳糖代谢

谷胱甘肽代谢

甘油脂代谢

甘油磷脂代谢

甘氨酸、丝氨酸和苏氨酸代谢

糖酵解/糖异生

乙醛酸和二羧酸代谢

组氨酸代谢

同源重组

肌醇磷酸代谢

胰岛素抵抗

赖氨酸生物合成

代谢途径

甲烷代谢

不同环境中的微生物代谢

错配修复

内酰胺生物合成

萘降解

烟酸盐和烟酰胺代谢

氮代谢

非核糖体肽结构

核苷酸切除修复

一个由叶酸组成的碳库

其他聚糖降解

氧化磷酸化

泛酸和 CoA 生物合成

戊糖和葡萄糖醛酸相互转化

戊糖磷酸途径

肽聚糖生物合成

苯丙氨酸代谢

苯丙氨酸、酪氨酸和色氨酸的生物合成

磷酸转移酶系统 (PTS)

聚酮化合物糖单元生物合成

卟啉和叶绿素代谢

丙酸代谢

蛋白质输出

嘌呤代谢

嘧啶代谢

丙酮酸代谢

RNA降解

RNA聚合酶

核黄素代谢

核糖体

次级胆汁酸生物合成

硒化合物代谢

鞘脂代谢

淀粉和蔗糖代谢

链霉素生物合成

硫代谢

牛磺酸和亚牛磺酸代谢

萜类骨架生物合成

硫胺素代谢

双组分系统

酪氨酸代谢

泛醌和其他萜类醌生物合成

缬氨酸、亮氨酸和异亮氨酸的生物合成

缬氨酸、亮氨酸和异亮氨酸降解

万古霉素耐药

维生素B6代谢

β-内酰胺抗性

基因结构和多样性

Bifidus在拉丁语中的意思是裂开或分开(当营养受限时,细胞的特征性分叉很明显)。

双歧杆菌属的物种具有较高的 rRNA 16S 序列相似性,构成了一个连贯的系统发育单元。

2002年,来自长双歧杆菌的第一个基因组被发表,并且此后公开可用的双歧杆菌基因组数量稳步增加。截至2016年4月,共有254个公开的双歧杆菌基因组序列,其中61个代表完整的基因组序列。通过比较不同物种的基因组,揭示了该属的系统发育和进化适应性。

双歧杆菌基因组平均长度为2.2 Mb,通常编码52-58个tRNA基因和3-5个rRNA操纵子。

在人体肠道内的变化情况

• 通常,在婴儿肠道内以婴儿双歧杆菌短双歧杆菌为优势菌群;

• 而在成人肠道内则缺少这两种双歧杆菌,仅有少量双岐双歧杆菌、青春双歧杆菌和长双歧杆菌存在

通过使用不同的方法和技术,已经观察到双歧杆菌的数量和多样性会随着年龄的增长而减少(当然这个目前仍然不明确)。

<来源:谷禾健康肠道菌群检测数据库>

其中能在人体肠道内定植并能用于制备保健食品的双歧杆菌主要有5种:

  • 双歧双歧杆菌 (Bifidobacterium bifidum)
  • 青春双歧杆菌 (Bifidobacterium adolescentis)
  • 婴儿双歧杆菌 (Bifidobacterium infantis)
  • 短双歧杆菌 (Bifidobacterium breve)
  • 长双歧杆菌 (Bifidobacterium longum)

婴儿:双歧杆菌占90%,断奶后迅速下降

双歧杆菌通常是婴儿肠道微生物群中最丰富的分类群(高达 90%),其丰富性与对婴儿健康的各种有益影响有关,包括肠道中叶酸的产生、对疫苗接种的免疫反应增加和预防或减少过敏性疾病

已知双歧杆菌产生的紧密粘附菌毛会刺激结肠上皮细胞增殖,从而可能影响新生儿肠道的成熟。富含双歧杆菌的健康肠道微生物群在母乳喂养期间继续存在,但相对丰度在断奶后迅速下降

成人:双歧杆菌参与复杂碳水化合物的代谢

存在于成人肠道中的肠道双歧杆菌基因组,例如青春双歧杆菌,似乎并不包含与母乳成分利用相关的基因,相反,它们包含大量专门用于成人饮食中常见的复杂碳水化合物的代谢(例如,淀粉和淀粉衍生的碳水化合物)。

到目前为止,饮食类型(西方、亚洲、地中海)与特定双歧杆菌种类在肠道中的富集之间尚无明确关系,但据报道不同人群和国家之间存在差异

老人:双歧杆菌物种水平变化

在老年人(百岁老人)中也提到了物种水平的变化。结果仍然有些争议。在某些地区,百岁老人的微生物群组成仍然与成年人相似,然而,也有些地方百岁老人的双歧杆菌比例高于年轻老人

衰老过程间接相关的其他外在因素也会影响双歧杆菌的组成抗生素在老年人群中的长期使用无疑对肠道菌群组成产生巨大影响,从而减少双歧杆菌数量。

与其他菌属的相关性和串扰相互作用

双歧杆菌介导的健康益处是双歧杆菌、肠道微生物群的其他成员和人类宿主之间建立的复杂动态相互作用的结果。

这些错综复杂的相关模式尚未在分子水平上得到完全破译。因此,目前正在努力了解肠道生态系统内的代谢通量,以辨别健康和疾病中的微生物群-宿主串扰。这将为通过以微生物组为目标的方法以更精确、安全和可控的方式调节宿主健康奠定基础

在双歧杆菌益处中,抑制肠病原体和减少轮状病毒感染是它们最确定的结果。许多体外研究表明,双歧杆菌可以通过产生有机酸、抗菌肽、群体感应抑制剂来抑制病原体, 或免疫刺激以及其他机制,为它们预防某些感染的能力提供分子线索。

双歧杆菌的抗菌作用

Lim HJ,et al., J Microbiol Biotechnol. 2020

另一个事实表明,存在一个关键的双歧杆菌-肠道微生物群-宿主串扰,即婴儿早期微生物群的建立似乎遵循一种精心策划和有组织的菌群演替模式。

与人类肠道菌群的串扰机制表现在:

第一批肠道定殖者,双歧杆菌占主导地位

有助于减少环境并产生代谢物,使其他细菌种群能够稳定地定植肠道。

和其他肠道细菌间存在显著的共生效应

多形拟杆菌能够在长双歧杆菌存在下,扩大其利用多糖的能力,这表明常驻肠道共生体能够调整其底物利用以响应对双歧杆菌。

通过补充益生菌调节双歧杆菌

通过补充益生菌调节双歧杆菌水平可以改变肠道微生物群的整体组成和代谢。

在源自人肠道的微生物群小鼠模型中补充长双歧杆菌菌株会增加丙酮酸、丁酸和生物素的产量。可能是由于长双歧杆菌和Bacteroides caccae的共存。

补充长双歧杆菌还与肠杆菌科的减少和直肠真杆菌的增加相关,支持双歧杆菌对其他肠道菌群的数量和功能的影响。

双歧杆菌分子调节肠道菌群

体外研究表明,在双歧杆菌胞外多糖存在的情况下,脆弱拟杆菌Faecalibacterium prausnitzii(粪栖杆菌,又名普拉梭菌)会改变它们的代谢。

通过补充益生元调节双歧杆菌

通过益生元(包括菊粉、阿拉伯木聚糖、低聚半乳糖和低聚果糖)促进双歧杆菌生长,也与更高的乳杆菌-双歧杆菌与肠杆菌科比例相关,并调节短链脂肪酸,有机酸等的产生。

对益生元代谢分析,了解双歧杆菌与其他菌群的交叉喂养机制

B. longum NCC2705 E. rectale ATCC 33656之间的交叉喂养机制,有利于双歧杆菌菌株产丁酸菌在同一生态位中共存。为阿拉伯木聚糖寡糖的产双歧和产丁酸作用提供了新的见解。

理解双歧杆菌和拟杆菌属物种以及双歧杆菌和普拉梭菌之间的交叉喂养机制),这将有助于理解共培养发酵的产丁酸活性。这些结果也有助于阐明益生元发酵过程中肠道内的细菌相互作用。

双歧杆菌菌株间的潜在串扰

分析长双歧杆菌和短双歧杆菌菌株之间的相互作用,证明它们对碳水化合物利用酶的产生显著影响。

双歧双歧杆菌PRL2010和短双歧杆菌UCC2003之间存在交叉喂养机制:

短双歧杆菌UCC2003不能在体外利用唾液酸作为唯一的碳源,尽管它可以以消耗唾液酸的残留物为代价生长。

双歧双歧杆菌PRL2010 从粘蛋白上裂解。事实上,对双歧杆菌属糖苷利用能力的详细分析强调了特定物种专门针对特定碳水化合物的利用,因此表明双歧杆菌物种可能在肠道内合作利用碳水化合物

也就是说益生菌菌株的混合物可能会产生协同效应,提高它们对肠道菌群以及宿主健康发挥作用的能力。

值得强调的是,某些双歧杆菌定植特征受肠道因素调节,包括其他微生物的存在。具有不同肠道微生物群组成的个体似乎对双歧杆菌补充剂的反应不同,这一事实提供了双歧杆菌-肠道微生物群串扰存在的进一步证据。

双歧杆菌与其他菌群可能的相互影响如下:

尽管这种不同行为背后的串扰的分子机制还远未被理解,但对它们的理解将极大地帮助设计基于益生菌的疗法,即使在目前在临床试验中被归类为“无反应者”的那些亚群中也能发挥作用。

02
双歧杆菌胃肠道定植和存活因素

双歧杆菌是革兰氏阳性菌,必须能够在胃肠道运输中存活下来,了解双歧杆菌对克服胃肠道应激因素的反应,对于合理选择益生菌菌株和开发分子工具箱以提高其性能至关重要。最近的发展,如表达载体和突变生成系统,以及功能基因组学和其他组学技术的巨大进步,揭示了双歧杆菌使用多种策略适应人类肠道的特定环境条件

应对胃肠道应激因素

在通过胃肠道期间,口服益生菌会遇到各种恶劣的环境条件(下图)。这些条件危及这些有益微生物的生存,损害它们的生存能力和功能。这些包括消化酶、胃中的酸性 pH 值防御素和肠道中高浓度的胆汁盐

人类胃肠道的示意图和双歧杆菌对各种环境因素或生态位的反应

低 pH 值

胃液成分造成的强酸性条件是双歧杆菌在胃中应对的首要障碍之一。除动物双歧杆菌和嗜酸双歧杆菌外,双歧杆菌对酸的耐受性较低。因此,益生菌的使用需要分离具有良好耐酸性的菌株,这些菌株通常对其他技术和胃肠道应激因素表现出交叉抗性

细菌可能通过一系列酸诱导机制对随后的酸胁迫产生耐受性。双歧杆菌中这种耐酸反应 (ATR) 的分子机制在部分研究中已经被报道。长双歧杆菌中的乳酸和酸适应与 F0-F1-ATP 酶亚基的过量产生有关,这通过增加的 H 排出活性来抵消这种 H + 积累。

注:暴露于低pH值会影响质子动力,导致H+在细胞内积累。

在双歧杆菌中发现了环境条件(例如可发酵碳源的可用性或生长期)对酸耐受性的强烈影响。这突出了体外模型模拟双歧杆菌在肠道中面临的条件的局限性。

胆汁

胆汁的存在是双歧杆菌在肠道中必须面对的生理障碍之一。胆汁酸是这种生物体液的主要成分,它们具有类似洗涤剂的抗菌特性。这些酸在细胞质中的积累会影响细胞的稳态,导致离子泄漏

双歧杆菌对这种肠道疾病的抵抗力取决于物种,尽管它们可以通过接触胆汁获得稳定的抵抗表型。这个过程经常涉及对其他压力因素的交叉抗性的出现、抗生素抗性模式的改变、碳水化合物代谢、细胞表面结构和组成,以及它们与肠道生态系统的相互作用等。

酶和抗菌肽

双歧杆菌在胃肠道中存活和功能受到多种因素的影响,其中包括消化酶(如胃蛋白酶和胰酶)、肠道抗菌肽(如防御素和导管素)以及某些益生菌的刺激。

研究表明,消化酶可能影响双歧杆菌的粘附,而肠道抗菌肽可能影响双歧杆菌的存活和功能,但其机制尚未完全了解。

某些益生菌会刺激肠道防御素的产生。B. animalis亚种lactis Bb12导致人体中 β-2-防御素的产生增加,这可能解释了双歧杆菌预防某些感染的能力。

粘附和肠道定植机制:关键参与者

微生物对肠粘膜的粘附是定植过程中的一个重要特征,并且与菌株与宿主相互作用的能力有关。因此,对粘膜的粘附经常被用作选择益生菌菌株的标准

菌株的粘附能力似乎对免疫调节和竞争性排斥病原体也很重要。肠粘膜的外部区域由覆盖上皮细胞的粘液层组成。这种粘液富含糖蛋白和糖脂,为细菌粘附提供了丰富的目标,包括碳水化合物部分。

竞争性排除肠道病原体

一些益生菌与肠道病原体共享碳水化合物结合特异性,这为使用益生菌抗过度竞争的病原体以预防感染提供了明确的理由。因此,对人肠粘液和/或人肠上皮细胞系的粘附一直是评估细菌粘附的最常用模型。在这方面,某些双歧杆菌菌株具有从肠道细胞和人体肠道粘液中竞争性排除肠道病原体的能力。

细菌粘附到胃肠道粘膜的机制很复杂,涉及非特异性现象,细胞壁特性和组成以及粘附素的存在等因素,构成了菌株粘附粘膜能力的最重要决定因素。

03
双歧杆菌的健康特性

双歧杆菌在预防疾病方面的作用仍在研究中,但它们的一些有益作用包括

  • 产生抗菌物质
  • 与病原菌竞争宿主受体
  • 直接与病原菌结合
  • 抑制促炎细胞因子水平
  • 增加肠道对电解质的吸收
  • 修复肠道通透性
  • 灭活致癌物
  • 降低肠道 pH 值
  • 诱导细胞凋亡
  • 改善 T 细胞增殖和细胞毒性
  • 调节自然杀伤 (NK) 细胞和树突状细胞相互作用以及干扰素的产生

doi.org/10.3389/fbioe.2021.770248

补充双歧杆菌也被证明可以增强肠道新陈代谢,理论支持两者之间的协同相互作用双歧杆菌和其他有益的肠道菌种

✔ 治疗消化系统疾病中发挥作用

在消化系统中可以看到双歧杆菌最流行的治疗效果之一

在因使用抗生素而出现腹泻的婴儿中,含有双歧杆菌和嗜热链球菌的益生菌配方可显著降低腹泻的发生率

施用婴儿双歧杆菌CECT 7210 和短双歧杆菌K-110 可成功抑制轮状病毒并治疗腹泻

双歧杆菌的抗病毒作用

Lim HJ,et al., J Microbiol Biotechnol. 2020

动物双歧杆菌已发现发酵乳制品中的双歧杆菌可以改善结肠规律性,这引发了关于双歧杆菌是否可以帮助治疗便秘的问题。

✔ 治疗感染疾病中发挥作用

双歧杆菌已被证明对产气荚膜梭状芽孢杆菌肠病原性大肠杆菌和轮状病毒具有作用。双歧杆菌的另一种普遍尝试的临床应用涉及粪便移植作为治疗复发性艰难梭菌结肠炎的方法。

研究进一步表明双歧杆菌在预防艰难梭菌相关性腹泻改善幽门螺杆菌根除(与抗生素治疗相结合)以及降低结肠手术后术后感染率方面的功效。

虽然作用机制尚不清楚,但研究报告称,双歧杆菌可轻炎症性肠病的症状,缓解溃疡性结肠炎,并降低早产儿坏死性小肠结肠炎的发生率。尽管溃疡性结肠炎症状有所改善,但益生菌在克罗恩病的治疗中没有显示出益处。

双歧杆菌属的抗炎作用

Lim HJ,et al., J Microbiol Biotechnol. 2020

✔ 治疗肝病中发挥作用

双歧双歧杆菌可能通过帮助重建肠道菌群在慢性肝病的管理中发挥作用,肠道菌群是肝硬化期间受到干扰的环境。在这些患者中,含双歧杆菌的益生菌补充剂可有效预防肝性脑病的发展,但无法确定对总体死亡率的影响。

✔ 免疫反应中发挥作用

双歧杆菌也可能在刺激宿主的免疫反应中发挥作用:给予长双歧杆菌的小鼠产生了 T 和 B 淋巴细胞显著增加,以及巨噬细胞吞噬活性的增加。有趣的是,已发现乳糜泻患者肠道微生物组中的双歧杆菌水平较低,并且在一些研究中,益生菌给药可降低 TNF-α 水平改善症状。

B. animalis、B. longum B. bifidum的某些菌株在体外和体内实验中展示的对免疫功能影响的示意图

doi.org/10.3389/fmicb.2017.02345

✔ 治疗过敏性疾病中发挥作用

服用含双歧杆菌的益生菌后,患有特应性皮炎过敏性鼻炎症状的儿童得到改善。还对高危婴儿的特应性皮炎的预防进行了研究,一些证据表明对产前或产后妇女给予益生菌有益。

✔ 治疗代谢性疾病中发挥作用

双歧杆菌对糖尿病、肥胖症和高脂血症的有益作用也得到了研究,证据显示其对普通人群的血糖水平和胰岛素抵抗具有有益作用,同时还能降低孕妇妊娠糖尿病的发病率。

一些数据也已发表,显示含有双歧杆菌的补充剂在降低胆固醇水平方面的功效,尽管更多的证据表明其他益生菌菌株的功效更大。双歧杆菌属,也显示出对减轻体重减少体脂有益。

✔ 治疗精神类疾病中发挥作用

双歧杆菌益生菌干预在改善重度抑郁症患者的症状方面显示出显着疗效,一些数据表明,服用含双歧杆菌的益生菌补充剂的健康个体和精神分裂症患者的抑郁和焦虑水平发生率较低

✔ 婴儿人群中发挥作用

在婴儿人群中,补充双歧杆菌可降低极低出生体重婴儿患坏死性小肠结肠炎的风险降低全因死亡率以及迟发性败血症。

双歧杆菌菌株在人体试验中显示出有效性

编辑​

doi.org/10.1128/microbiolspec.BAD-0010-2016

总之,大量证据支持双歧杆菌在治疗和预防多种人类疾病方面的安全、有益作用

04
双歧杆菌在癌症治疗中的应用:临床前工作和潜在的临床应用

各种研究报道双歧杆菌通过不同的机制表现出抗肿瘤作用,包括发酵和生物转化。

⇘ 双歧杆菌的抗肿瘤作用

不同种类的双歧杆菌通过下调和上调抗凋亡和促凋亡基因对结直肠癌细胞表现出抗癌活性。

此外,双歧杆菌可以与现有的癌症治疗手段发挥协同效应,通过调节免疫反应以帮助抗癌。越来越多的证据表明,双歧杆菌的某些物种和菌株可以改善免疫监视和抗肿瘤反应

通过对非小细胞肺癌患者队列中癌症治疗有反应者无反应者的肠道微生物群进行比较,作者发现,对治疗有反应的患者的粪便样本中富含双歧杆菌

特定的双歧双歧杆菌菌株与癌症治疗协同作用

Hall, L.J, et al.,Nat Microbiol 2021

在癌症小鼠模型中测试了四种商业双歧杆菌菌株。只有那些在细胞壁中表达高水平肽聚糖的菌株在额外处理的同时,才会产生协同效应。产生协同作用的菌株诱导TLR2依赖性反应,导致IFN-γ和IL-2水平升高,并增加抗肿瘤白细胞。研究结果表明,用某些双歧杆菌菌株补充,可能会使无反应患者变得有反应

⇘ 双歧杆菌在癌症预防中的作用

体内和体外研究表明,长双歧杆菌和短双歧杆菌菌株能够保护 DNA 免受致癌物的侵害,并在大鼠模型中抑制两种不同致癌物的遗传毒性作用。

另一项研究表明,动物双歧杆菌对致癌物喹诺酮具有抗突变活性。在研究双歧杆菌的潜力在预防和/或治疗癌症方面,发现益生菌和细菌的组合可以减少小鼠结直肠癌模型中致癌物诱导的癌细胞。

双歧杆菌在免疫监视和刺激宿主免疫反应中的作用

一项早期研究表明,将短双歧杆菌添加到淋巴集结细胞的培养物中会导致免疫反应增强,如抗脂多糖抗体生产。

一项更近期的综合研究比较了口服或未口服双歧杆菌的小鼠黑色素瘤的生长情况。接受细菌制剂的小鼠表现出自发的抗肿瘤作用,这些作用在粪便转移后被逆转。

此外,肿瘤控制得到了与检查点封锁相同程度的改善,两者的结合几乎消除了肿瘤的生长。这些作用是通过增加树突状细胞功能、增强 CD8 + T 细胞启动和肿瘤微环境中的积累来介导的。

双歧杆菌可以作为一种运载工具,这种运载工具可以被设计用来表达感兴趣的基因/质粒。

⇘ 双歧杆菌作为免疫调节的载体

双歧杆菌最有前途的作用,也是未来的药物输送载体。作为一种非致病性厌氧共生细菌,它成为了一种有吸引力的药物递送候选物,第一个肿瘤靶向研究表明该细菌在艾氏腹水小鼠肿瘤中高度定位。双歧杆菌对肿瘤组织的独特定位源于该细菌只能在缺氧条件下生存的厌氧特性:缺氧是恶性肿瘤的普遍现象,在肿瘤中心更为明显,从而选择性地吸引双歧杆菌生物体。

类似的后续工作证明了双歧杆菌不仅能够定位于肿瘤组织,而且能够表达lux报告基因的工程质粒

几项研究证明了双歧杆菌作为疫苗递送载体所需基因质粒的载体、可在无需质粒转染的情况下富集抗癌物质(如硒)的细菌的广泛用途。在不同的模式中,双歧杆菌证明有效地选择性靶向肿瘤细胞,同时表现出抗肿瘤作用。

⇘ 用于递送抗血管生成因子

当使用青春双歧杆菌菌株递送时,内皮抑素是一种广泛的血管生成抑制剂,可成功并选择性地抑制血管生成

肝癌小鼠异种移植模型注射了经改造以表达内皮抑素基因的青春双歧杆菌。结果与细菌对肿瘤的选择性定位一致,因为在处死的正常组织中没有发现杆菌,并且与对照小鼠相比,血管生成受到强烈抑制,肿瘤生长减少

⇘ 于递送分子通路调节剂和生物转化剂

考虑到双歧杆菌选择性定位于厌氧肿瘤环境的能力,及其携带转染质粒的能力,“货物”基因传递的可能性几乎是无限的。这种运载工具已被用于提供靶向分子通路调节剂。

双歧杆菌递送PTEN,抑制肿瘤生长

一个例子是使用长双歧杆菌穿梭载体递送PTEN,这是一种主要的肿瘤抑制基因,通常在癌发生的早期步骤中丢失,试图“挽救”其在小鼠实体瘤中的表达,并重建抑癌活性。 尽管结果尚未完全发表,但已描述了携带线性质粒的长双歧杆菌 L17菌株的成功改造,该质粒由pMB1和PTEN cDNA上游的HU基因启动子组成。当对小鼠实体瘤给药时,它会显着抑制肿瘤生长

双歧杆菌递送中草药

如前所述,通过双歧杆菌载体递送药物/产的可能性实际上是无限的,并且可能会扩展到包括递送正在临床评估的传统医学中使用的产品,比如,臭椿酮。

双歧杆菌递送生物转化剂

双歧杆菌也已被用于将生物转化剂递送至肿瘤部位。在该模型中,将无活性前药转化为其有效活性形式所需的酶通过双歧杆菌穿梭输送,确保在肿瘤内选择性地发生激活。

这种生物转化模型实现了两个目标:

  • 它产生了比系统所能达到的更高浓度的活性细胞毒性药物;
  • 它避免了静脉化疗的毒副作用。

此外,在有假体关节或心脏瓣膜等异物的患者中,细菌可能会脱靶到这些厌氧部位,需要高度警惕。

关于双歧杆菌属药物递送系统的可用临床前研究

doi.org/10.2217/fon-2019-0374

04
增加双歧杆菌水平的食物

双歧杆菌是杂食“动物”,许多食物有利于促进其生长。

优质益生元:

低聚半乳糖GOS、低聚果糖FOS 和 母乳低聚糖HMO 已被用于婴儿配方奶粉,以增强婴儿肠道中的双歧杆菌。它们是经过临床验证的益生元,对促进肠道中的双歧杆菌非常有效。

含有多酚的食物:

苹果皮、红茶和绿茶、黑巧克力、咖啡、橄榄、橄榄油、姜黄和石榴、蔓越莓、蓝莓、黑莓和覆盆子等深色水果,适量葡萄酒等。

含有可溶性纤维的食物:

苹果、梨、燕麦、大麦、萝卜、西兰花、鳄梨和豆类。

含有抗性淀粉的食物:

绿色或半绿色香蕉、煮熟和冷却的土豆、煮熟和冷却的米饭、豆类和豆类。

某些发酵食品:

例如,酸奶,开菲尔,泡菜等。

其他食物:

例如:菊苣、洋葱、大蒜等。

如何知道这些吃进去的食品或补充剂对双歧杆菌产生影响?

肠道菌群检测是目前较为直观地反映补充剂和食物对肠道双歧杆菌影响的方法,使用 DNA 测序技术评估肠道中的菌群丰度。

如果通过检测发现双歧杆菌处于正常水平,则不需要额外补充,过高的双歧杆菌水平并不代表更健康;如果发现双歧杆菌缺乏,那么通过食物或益生菌补充剂等各种针对性补充方式是有利于健康的手段之一。

结 语

双歧杆菌是益生菌混合物的重要组成部分,当以适当的剂量给药时,它基本上具有各种有益健康的特性,包括抗感染、抗炎、抗癌、促进宿主心理和身体健康以及调节宿主免疫系统。

双歧杆菌通过抑制促炎细胞因子,诱导抗炎细胞因子来调节免疫系统,表明其作为感染性或炎症性疾病或癌症的潜在疗法的有效性。

当然,并非所有双歧杆菌都可以是益生菌菌株,需要正确识别益生菌干预的菌株、病理学和对应人群。深入理解双歧杆菌在宿主微生物组中的作用机制,从而了解更多未来使用这些微生物治疗疾病的影响和安全性。

此外,双歧杆菌工程可以促进增值化学品的生物产量的增加,同时消耗更少的资源。有必要进一步研究双歧杆菌作为工程宿主的可行性。

除了特定保健食品和医药行业外,双歧杆菌在微生态护肤、畜业、水产业和肉制品加工中也广泛应用,大有开发价值。

注:本账号内容仅作交流参考,不作为诊断及医疗依据。

主要参考文献:

Turroni F, van Sinderen D, Ventura M. Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol. 2011 Sep 1;149(1):37-44. doi: 10.1016/j.ijfoodmicro.2010.12.010. Epub 2010 Dec 28. PMID: 21276626.

Lim HJ, Shin HS. Antimicrobial and Immunomodulatory Effects of Bifidobacterium Strains: A Review. J Microbiol Biotechnol. 2020 Dec 28;30(12):1793-1800. doi: 10.4014/jmb.2007.07046. PMID: 33144551; PMCID: PMC9728261.

Chen J, Chen X, Ho CL. Recent Development of Probiotic Bifidobacteria for Treating Human Diseases. Front Bioeng Biotechnol. 2021 Dec 22;9:770248. doi: 10.3389/fbioe.2021.770248. PMID: 35004640; PMCID: PMC8727868.

Sanchez B, Ruiz L, de los Reyes-Gavilan CG, Margolles A. Proteomics of stress response in Bifidobacterium. Front Biosci. 2008 May 1;13:6905-19. doi: 10.2741/3198. PMID: 18508704.

Sánchez B, Ruiz L, Gueimonde M, Ruas-Madiedo P, Margolles A. Adaptation of bifidobacteria to the gastrointestinal tract and functional consequences. Pharmacol Res. 2013 Mar;69(1):127-36. doi: 10.1016/j.phrs.2012.11.004. Epub 2012 Nov 22. PMID: 23178557.

Luo J, Li Y, Xie J, Gao L, Liu L, Ou S, Chen L, Peng X. The primary biological network of Bifidobacterium in the gut. FEMS Microbiol Lett. 2018 Apr 1;365(8). doi: 10.1093/femsle/fny057. PMID: 29546277.

González-Rodríguez I, Ruiz L, Gueimonde M, Margolles A, Sánchez B. Factors involved in the colonization and survival of bifidobacteria in the gastrointestinal tract. FEMS Microbiol Lett. 2013 Mar;340(1):1-10. doi: 10.1111/1574-6968.12056. Epub 2012 Dec 17. PMID: 23181549.

Andriantsoanirina V, Allano S, Butel MJ, Aires J. Tolerance of Bifidobacterium human isolates to bile, acid and oxygen. Anaerobe. 2013 Jun;21:39-42. doi: 10.1016/j.anaerobe.2013.04.005. Epub 2013 Apr 15. PMID: 23598280.

Gwiazdowska D, Juś K, Jasnowska-Małecka J, Kluczyńska K. The impact of polyphenols on Bifidobacterium growth. Acta Biochim Pol. 2015;62(4):895-901. doi: 10.18388/abp.2015_1154. Epub 2015 Nov 30. PMID: 26619254.

Jung DH, Seo DH, Kim YJ, Chung WH, Nam YD, Park CS. The presence of resistant starch-degrading amylases in Bifidobacterium adolescentis of the human gut. Int J Biol Macromol. 2020 Oct 15;161:389-397. doi: 10.1016/j.ijbiomac.2020.05.235. Epub 2020 May 30. PMID: 32479932.

Ferrario C, Milani C, Mancabelli L, Lugli GA, Turroni F, Duranti S, Mangifesta M, Viappiani A, Sinderen Dv, Ventura M. A genome-based identification approach for members of the genus Bifidobacterium. FEMS Microbiol Ecol. 2015 Mar;91(3):fiv009. doi: 10.1093/femsec/fiv009. Epub 2015 Jan 27. PMID: 25764568.

Lugli GA, Milani C, Turroni F, Tremblay D, Ferrario C, Mancabelli L, Duranti S, Ward DV, Ossiprandi MC, Moineau S, van Sinderen D, Ventura M. Prophages of the genus Bifidobacterium as modulating agents of the infant gut microbiota. Environ Microbiol. 2016 Jul;18(7):2196-213. doi: 10.1111/1462-2920.13154. Epub 2016 Jan 18. PMID: 26627180.

Lugli GA, Milani C, Turroni F, Duranti S, Ferrario C, Viappiani A, Mancabelli L, Mangifesta M, Taminiau B, Delcenserie V, van Sinderen D, Ventura M. Investigation of the evolutionary development of the genus Bifidobacterium by comparative genomics. Appl Environ Microbiol. 2014 Oct;80(20):6383-94. doi: 10.1128/AEM.02004-14. Epub 2014 Aug 8. PMID: 25107967; PMCID: PMC4178631.

Collado MC, Hernández M, Sanz Y. Production of bacteriocin-like inhibitory compounds by human fecal Bifidobacterium strains. J Food Prot. 2005 May;68(5):1034-40. doi: 10.4315/0362-028x-68.5.1034. PMID: 15895738.

肠道核心菌——戴阿利斯特杆菌属 (Dialister)

谷禾健康

戴阿利斯特杆菌属 (Dialister

Dialister戴阿利斯特杆菌属)是小的、厌氧或微需氧的革兰氏阴性球状或杆状菌,因次也被翻译成小杆菌属

Dialister菌是人体肠道菌群中的一种常见菌种。该菌属物种被发现出现在人体全身各个部位,包括骨骼和血液,但是主要从人体粪便,口腔以及上呼吸道阴道等部位分离或发现,属于人体肠道核心菌。

肠道菌群中Dialister菌属在96.15%的人群中检出,但平均丰度属于核心菌属中较低的,平均人群丰度为0.9%左右。

其中60.58%的人群中检出的是Dialister invisus,其次是55.77%的人检出Dialister sp.000434475,15.33%的Dialister propionicifaciens和12.98%的Dialister succinatiphilus(根据谷禾肠道菌群人群队列数据库)。

Dialister菌已在有症状和无症状的个体中被鉴定,因此被认为在正常微生物组发挥了一定作用。目前尚不清楚这是如何发生的,但可以推断该菌所在身体环境与其致病有益属性相关。

当在肠道中检出“Dialister invisus”与疾病无关,但是当在尿液中发现时,可能与尿路感染有关;当在口腔中检出“Dialister invisus”,它通常与冠周炎、边缘和根尖周炎、龋齿、口臭和牙髓感染有关。特别是“Dialister pneumosintes”被认为是一种新的牙周病病原体。

该菌属菌株难以与微小的革兰氏阴性厌氧球菌区分开来,所以在临床上比较难鉴定,一般需要分子方法,例如 16S rRNA 或宏基因组来鉴定。

Dialister 属于厚壁菌门,韦荣氏球菌科,代谢碳水化合物,产生琥珀酸乙酸,丙酸,丁酸,产生组胺,过氧化氢酶。与抑郁症,自闭症、情绪控制、口腔疾病、减肥、强直性脊柱炎疾病,不同组织部位的感染,肾病等相关。

酸奶、胡桃、芽孢杆菌补充、双歧杆菌补充、菊粉以及运动可增加肠道Dialister 属的丰度。

Dialister 代谢与分类

Dialister(戴阿利斯特杆菌属)是厚壁菌门革兰氏阴性、厌氧杆菌。大部分菌种不形成孢子、不运动。产生琥珀酸和乙酸,丙酸,丁酸,产生组胺,过氧化氢酶。

已鉴定物种:

  • Dialister invisus
  • Dialister micraerophilus
  • Dialister pneumosintes
  • Dialister propionicifaciens
  • Dialister sp. E2_20
  • Dialister sp. GBA27
  • Dialister sp. S4-23
  • Dialister sp. S7MSR5
  • Dialister sp. oral taxon 119
  • Dialister sp. oral taxon 502
  • Dialister succinatiphilus

其中,D. pneumosintesD. micraerophilus最常从临D. pneumosintes很难在常规培养基中生长,基于 16s rRNA 的 PCR 测定已开发用于检测这种病原体。这种微生物已从牙周炎、牙龈炎、根管感染、龈下菌斑 、人咬伤伤口感染 、呼吸道、头颈部感染 和阴道感染中分离出来。已报告严重的感染性并发症,包括脑脓肿 和肝脓肿,疑似牙源性感染。

Dialister 物种在人类感染中的作用已经明确,尽管真正的临床意义仍然未知。D. pneumosintes已从肺、血液、脑上颌窦中分离出来和D. micraerophilus菌株已从多微生物培养物中的几个临床样本中得到表征。

Dialister 物种被认为是口腔、鼻咽、肠道和阴道菌群的共生生物。细菌可以从这些位置传播到各个器官,并可能导致严重的疾病,例如菌血症。患者的感染源可能是阴道菌群,尤其是当她经历过数次前庭大腺炎发作并接受过多种抗菌药物治疗时。正如先前报道的那样,应注意这些疾病,以避免传播到血液中。

Dialister菌属下的许多种都可能导致感染。例如,Dialister pneumosintes是一种常见的致病菌,可以导致呼吸道感染、皮肤感染和肠道感染。Dialister invisus也是一种常见的致病菌,可以导致呼吸道感染、皮肤感染和肠道感染。

其他常见的致病菌包括:

  • Dialister micraerophilus
  • Dialister animalis
  • Dialister propionicifaciens

这些菌都可以导致许多不同类型的感染,包括呼吸道感染、皮肤感染和肠道感染。

应该注意的是,Dialister菌属下的所有种都不是总是致病的。在某些情况下,这些菌是人体的自然共生菌,并不会导致感染。然而,在免疫功能下降或者某些其他情况下,这些菌可能会导致感染。因此,应该根据临床症状和诊断结果来判断Dialister菌是否是致病的。

由于难以识别病原体, Dialister物种的抗菌药物敏感性数据仍然相对稀缺。Dialister分离株对根据 CLSI 指南测试的所有抗菌药物敏感,而 33 株菌株对一种或几种抗生素的敏感性降低,包括甲硝唑、红霉素、原始霉素、利福平、哌拉西林、左氧氟沙星和环丙沙星。

Dialister 与牙周病

Dialister 已经从人类临床标本中分离出来,尤其是肺息肉,并且与人类临床感染有关,其中大多数是牙源性感染

Dialister pneumosintes是一种不形成孢子、不运动、不发酵、革兰氏阴性厌氧杆菌。据报道,它作为正常菌群出现在鼻咽、口腔、肠道和阴道中。这种细菌于 1921 年首次在 1918-1919 年流感流行期间从患者的鼻咽分泌物中检测到,最初被命名为Bacterium pneumosintes.

Dialister pneumosintes 是一种与口腔感染相关的专性厌氧革兰氏性杆菌。研究报告了一名既往健康的 51 岁女性,她因 Dialister积气引起的肝脓肿作为牙脓肿的并发症就诊。通过在肝脏渗出液中使用广谱细菌 16S rRNA 基因 PCR 鉴定微生物。脓肿引流和 4 周抗生素治疗后,患者痊愈。

Dialister pneumosintes 是一种可疑的牙周病原体。它可以通过血行传播或区域传播影响身体的不同部位。这种微生物引起的牙周感染可能会引发潜在的危及生命的并发症

D. invisus 物种于 2003 年由 J. Downes 首次发现,并通过 16S rRNA 测序从牙髓感染患者的根管中分离出来。D. invisus 主要从深牙周袋中回收,发现于龈缘以下。

由于 D. invisus 与边缘牙周炎、龋齿、口臭和根尖周炎有关,并且通常从牙髓感染中分离出来,因此它被认为是一种重要的人类病原体。了解持久存在的牙髓微生物(例如D. invisus)有助于确定牙髓感染患者的最佳治疗方案。为了控制或消除与牙髓病例相关的病原微生物,需要对这些病原体有透彻的了解。

Dialister 其它健康相关性

由比利时鲁汶天主教大学的微生物学家 Jeroen Raes 领导的研究小组发现,被诊断患有抑郁症的人的肠道中缺乏的两种细菌。抑郁症患者的粪球菌 CoprococcusDialister也已耗尽。

虽然较低水平的Dialister与抑郁症有关,但最近的一篇论文将较高水平的Dialister关节炎联系起来。Raes 说,可能是一种 Dialister 流行增加患关节炎的风险,而另一种的流行降低了患抑郁症的风险,但要确定这些细节还需要更多的研究。

安大略省圭尔夫大学微生物学教授 Emma Allen-Vercoe 表示,CoprococcusDialister可能是用作精神益生菌或针对心理健康的益生菌的理想候选者。


癌症是复杂的多因素疾病,被认为是一个全球性问题。Dialister 的终产物,如乙酸盐、乳酸盐和丙酸盐,似乎在致癌机制中起着重要作用。一项Meta调查人类癌症研究中微生物组与 Dialister 成分变化之间的关联。结果:荟萃分析包括 26 项研究,包含 1649 个对照样本和 1961 个癌症样本。与健康对照相比,Dialister 在癌症患者样本中显着升高。表明不同癌症类型与 Dialister 微生物组组成之间存在关系。

Lindefeldt 等人报告了 12 名儿童为治疗难治性癫痫开了生酮饮食,发现饮食处方的 alpha 多样性没有变化。双歧杆菌、直肠真杆菌和Dialister随着生酮饮食减少

Joossens 等人发现克罗恩病患者中有五种细菌具有生态失调的特征,即Dialister invisus减少,梭状芽胞杆菌簇 XIVa 的非特征性物种,Faecalibacterium prausnitzii和青春双歧杆菌,以及Ruminococcus gnavus增加。

食用油炸肉降低了肠道菌群的丰富度,以及毛螺菌科(Lachnospiraceae)和黄曲霉属(Flavonifractor)的丰度,同时增加Dialister、多尔氏菌属(Dorea)和韦荣球菌属(Veillonella)的丰度(P FDR<0.05)。

通过比较3 个月后饮食转变 (DS) 从严重依赖肉食到素食和体育锻炼 (EX) 对肠道微生物组组成的影响发现,Dialister succinatiphilus的丰度被体育锻炼上调

在一项先导性研究中,26名受试者采用了低热量、富含蔬果的饮食习惯,而其中有些人减重的幅度不如其他人高。对受试者肠道菌群的分析显示,有两类特定细菌的含量会影响减重速度,其中有一种为Dialister

研究发现,比较容易减肥的人体肠道内考拉杆菌属(Phascolarctobacterium)水平较高,因此该菌也用来预测肥胖指标。而难以减肥的人体内则小类杆菌属(Dialister)水平较高。在难以减重的那部分人体内,这种细菌能够分解碳水化合物,更高效利用其中的能量

接受嗜酸乳杆菌和纤维二糖的健康志愿者表现出乳酸杆菌、双歧杆菌、柯林氏菌和真杆菌的水平升高,而Dialister降低了。

还有一些研究报告说,在1周龄时,非共生肠道细菌(如克雷伯氏菌和肠球菌)的相对丰度较高与1岁时的呼吸道感染有关;3 个月时链球菌的相对丰度与 5 岁时的特应性喘息有关;1岁时Rothia或Dialister的高相对丰度4-5岁时哮喘相关。但是具体作用机制目前还不清楚。

发现 Dialister 属的丰度与强直性脊柱炎疾病活动评分呈正相关(Spearman 的 rho = 0.62,错误发现率 – 校正 q < 0.01)。在 SpA 患者和健康对照者的非发炎回肠和结肠活检组织中观察到的低频率 Dialister 进一步支持了这一发现。

Dialister 属会增加下列菌群的丰度:

  • Bacteroides
  • Odoribacter
  • Peptococcaceae

Dialister 属会抑制下列菌群的丰度:

  • Bifidobacterium
  • Coriobacteriales
  • Adlercreutzia
  • Collinsella
  • Porphyromonas
  • Prevotella
  • Clostridium
  • Clostridiales incertae sedis
  • Clostridiales Family XIII. Incertae Sedis
  • Blautia
  • Coprococcus
  • Dorea
  • Lachnospiraceae
  • Ruminococcaceae
  • Ruminococcus
  • Campylobacteraceae
  • Erysipelotrichaceae

主要参考文献:

Morio F, Jean-Pierre H, Dubreuil L, et al. Antimicrobial susceptibilities and clinical sources of Dialister species. Antimicrobial Agents and Chemotherapy. 2007 Dec;51(12):4498-4501.

Wendy J. Dahl, … Jason M. Lambert, in Progress in Molecular Biology and Translational Science, 2020

Markus F. Neurath, in Mucosal Immunology (Fourth Edition), 2015

The Association of Fried Meat Consumption With the Gut Microbiota and Fecal Metabolites and Its Impact on Glucose Homoeostasis, Intestinal Endotoxin Levels, and Systemic Inflammation: A Randomized Controlled-Feeding Trial

Lkhagva E, Chung HJ, Ahn JS, Hong ST. Host Factors Affect the Gut Microbiome More Significantly than Diet Shift. Microorganisms. 2021;9(12):2520. Published 2021 Dec 6. doi:10.3390/microorganisms9122520

肠道核心菌属——萨特氏菌(Sutterella)

谷禾健康

Sutterella——萨特氏菌

Sutterella是一种革兰氏阴性杆细菌,主要从肠道和胃肠道感染中分离出来的。其属的成员已从横膈膜下方的人类感染中分离出来。

来源:spectrumnews

01
了解Sutterella

Sutterella(萨特氏菌)是变形菌门最丰富的菌之一,是一种厌氧或微需氧的、耐胆汁、解糖 、非运动不形成孢子和球杆菌形的短杆状革兰氏阴性球杆菌

Sutterella菌的体型极小,约0.4 到 2 微米,只能在培养基上形成小型菌落。当收集的细菌聚集成一团时,呈现为红色的特征。

肠道Sutterella中主要分为两大类,分别为华德萨特菌(Sutterella wadsworthensis)和粪链球菌(Sutterella stercoricanis)。

其中Sutterella wadsworthensis 菌是一种不溶性、硝酸盐阳性、脲酶阴性的有机体,需要甲酸盐、富马酸盐或氢作为生长添加剂,并可在琼脂培养基中培养。

扫描电子显微镜图像(S. wadsworthensis)

Mukhopadhya I, et al., PLoS One. 2011

Sutterella通常与人类疾病有关,例如自闭症、唐氏综合症和炎症性肠病 (IBD),但这些细菌对健康的影响仍不清楚。

Sutterella 属的成员是肠道重要的共生菌,在健康成人十二指肠中含量丰富,朝向结肠的梯度逐渐减小。在人类胃肠道中具有轻度促炎能力,并且对与微生物群失调和变形菌增加相关的上皮稳态破坏没有显著贡献。

02
相关疾病

母体传播,IgA缺乏

——Sutterella可以将肠道疾病从母亲传给后代

一项发表在《自然》杂志上报告说,该研究发现,母鼠可以通过一种名为 Sutterella的肠道细菌,将肠道疾病的易感性传递给她的后代,例如炎症性肠病。

长期以来,科学家们一直推测,母亲可以通过分娩过程,然后通过母乳喂养和接吻将有益细菌传递给她的后代。这些无数的细菌迅速传播并覆盖婴儿的皮肤、口腔和消化道。

到目前为止,大多数医生都认为 IgA 缺乏症(见于慢性腹泻、克罗恩病和溃疡性结肠炎等疾病)主要是遗传性的,这意味着这种缺乏症是通过基因遗传的。这一新发现是首次鉴定出后代可以遗传的特定特征——是一种称为免疫球蛋白 A 或 IgA 的血液蛋白缺乏,它是肠道疾病的根源——由特定的可以从母亲传给后代的细菌基因引起。

研究发现成年小鼠通过粪便将 Sutterella 细菌传播给彼此,而母鼠在出生后不久将 Sutterella 细菌直接传播给它们的后代,从而传递了这种低 IgA 的特征。Sutterella 抑制 IgA 的分泌。但是注意Sutterella 可能只是改变人类疾病易感性的众多细菌之一。

炎症

——Sutterella具有抑制降解IgA的能力

Sutterella会过分泌IgA蛋白酶,降解IgA,从而降低肠粘膜中IgA的浓度损害肠道抗菌免疫反应功能。但有实验指出Sutterella并不会引起大量的炎症反应,但是因为这项研究并没有确切以及多项的实验进行证明,所以并不能得出决定性的结论。

粪菌移植研究中发现,Sutterella的丰度和UC(溃疡性结肠炎)缓解程度呈负相关;并且,在临床队列的研究中发现,Sutterella丰度和炎症细胞因子(IL-12, IL-13,IFN-γ)水平呈负相关

同样的,在一组体外实验中Sutterella能黏附于肠上皮细胞,促进IL-8的分泌,有轻微促炎作用,但不破坏单层上皮细胞完整性。

炎症性肠病 (IBD) 发生在遗传易感个体中,这是由于未知的环境触发因素所致,可能是迄今为止未知的细菌病原体。

儿科炎症性肠病或乳糜泻患者与健康对照组之间 Sutterella 丰度未检测到显著差异。

另一项研究中表明,炎症性肠病成人结肠活检中 Sutterella wadsworthensis 的丰度与对照组没有差异, Sutterella parvirubra 比其他两种 Sutterella 粘附性更好

S. wadsworthensis 最初更频繁地从 IBD 受试者中分离出来,因此进行了这项综合研究以阐明其在 IBD 中的作用。利用这些样本,开发了一种新设计的 PCR,以研究这种细菌在成人溃疡性结肠炎患者中的流行情况。

发现83.8% 的成年溃疡性结肠炎患者检测到Sutterella wadsworthensis,对照组为86.1% (p= 0.64). Sutterella 16S rRNA 基因序列也在克罗恩病和溃疡性结肠炎患者的肠活检和粪便样本中得到鉴定。但因缺乏相关流行病学以及致病潜力的证明,所以对其是否存在人类感染以及炎症部位的物种代表原因还有待研究

腹泻

——Sutterella对于腹泻具有正相关影响

在一项对健康仔猪进行的实验中,采用16srRNA基因测序和宏基因组等技术测序粪便菌群得到其在属水平中,断奶前腹泻仔猪粪便菌群Prevotella、Sutterella和Anaerovibrio相对丰度都具有显著的增加

在对关于抗生素性腹泻(Antibiotic-associated diarrheaAAD)的相关实验中,30只七周龄SPF级雄性大鼠的粪便样本进行高通量测序发现,中药制剂在缓解抗生素性腹泻的同时,也显著改变了肠道菌群结构组成。其中,Sutterella属的相对丰度与SLBZS的给药呈负相关,与AAD病情的发展呈正相关,表明Sutterella属对于AAD的发生发展可能有重要作用。

而在属水平上,Sutterella属和Bacteroides属可能与AAD的发生发展关系密切。

粪菌移植FMT治疗效果

研究发现Sutterella可能在FMT治疗反应中起重要作用。在FMT治疗前后收集的患者粪便和结肠样本中,与未获得缓解的患者相比,FMT后未达到缓解患者体内的Fusobacterium gonidiaformansSutterella wadsworthensis和大肠杆菌种类增多,血红素和脂多糖生物合成水平增加。

一系列微生物类群与缓解不足有关,包括梭杆菌属(Fusobacterium)、萨特氏菌(Sutterella)、嗜血杆菌、大肠杆菌、嗜双歧杆菌等。

Sutterella、Eshcerichia和血红素生物合成可能允许为溃疡性结肠炎的FMT治疗精心选择合适的供体和患者,并告知如何修改FMT治疗或更明确的(如窄谱)治疗微生物操作,以提高其治疗效果。

自闭症

研究人员发现,被诊断患有自闭症和胃肠道紊乱的儿童中,超过一半的肠道活检组织中存在 Sutterella,而通常发育中的胃肠道紊乱儿童的活检组织中没有 Sutterella

胃肠道症状,如便秘、腹泻、腹痛和腹胀,在自闭症儿童中很常见。但目前尚不清楚胃肠道不适是自闭症的核心特征还是挑食或其他疾病症状的结果。

研究人员已从阑尾炎等感染和克罗恩病(一种导致胃肠道炎症的自身免疫性疾病)患者中分离出Sutterella。然而,目前尚不清楚这些细菌是感染的原因还是后果,也不知道它们是否总是存在于健康个体中。

目前尚不清楚儿童的胃肠道症状是否是由Sutterella引起的,但这种细菌可能会取代有益的共生细菌,从而导致症状。

11名孤独症儿童和1名对照儿童也携带与Sutterella交叉反应的抗体,Sutterella是感染和炎症的迹象。根据PCR分析,其中三名儿童对Sutterella不呈阳性,这表明总共有15名儿童可能携带该细菌。

肥胖

Sutterella是 LPS 的重要来源之一,可影响肠道通透性,导致血浆中 LPS 浓度增加(内毒素血症),与肥胖受试者典型的慢性低度炎症有关。大部分研究表示体重和脂肪量增加以及空腹胰岛素与拟杆菌、梭状芽孢杆菌、Sutterella 和肠杆菌科呈负相关

运动健身锻炼可以有助于减肥,一项研究证实高效有氧健身锻炼与Sutterella丰度增加和物种多样性呈正相关

其他

● 由21号染色体三体所引发的神经发育遗传病——唐氏综合症,其患者的异常行为评分与大量的Sutterella显著相关

● 通过对Roux-en-Y胃转流术(RYGB)SG后二型糖尿病(T2D)的特定肠道微生物群的研究发现,其Sutterella可能对RYGBT2D患者的糖代谢产生有益的影响。

Sutterella对于人体健康的影响并不仅限于以上病症,大多可归类为胃肠道类紊乱以及神经系统性疾病。

03
关于调节Sutterella

岩藻多糖

岩藻多糖具有降低Sutterella丰度的作用。

岩藻多糖是一种从褐藻中获取的复杂硫酸多糖,被认为是一种蛋白益生元。它可以改变肠道菌群,减缓环磷酰胺诱导的肠道粘膜损伤,减少宿主中的抗原负载和炎症反应。并且,岩藻多糖对减少Sutterella 的丰度,以及提高Prevotella的丰度具有显著的效果

一项健康成年人多酚干预研究显示Sutterella增加。

低聚半乳糖

低聚半乳糖和低聚果糖的组合可以改善抑郁的症状。

补充低聚半乳糖(GOS)以及低聚果糖(FOS)的混合补充物,可以改善啮齿动物的焦虑以及抑郁的行为。

一项研究指出给狗服用益生元后检测出更多的Sutterella。

由于现今对Sutterella 相关的临床性实验以及具有说服力的研究数据不足,无法支持证明其作用完全性。Sutterella 决定性作用以及对人体的确定性影响还有待研究。

维生素D

与所有营养素一样,维生素适量会帮助身体健康。但是高剂量的维生素会导致小鼠发生严重的结肠炎,Sutterella 增加,表明高剂量维生素D导致向促炎症微生物群的转变。此外,高剂量维生素D小鼠的血清维生素D水平显著下降,并伴有结肠炎,这可能是由于维生素D代谢产物因摄入过量维生素D引起的肠道炎症所致。

提高维生素D还应该多晒太阳和补充维生素D的丰富的食物,如鱼油等。

此外,Sutterella显示对甲硝唑的耐药性。

主要参考文献:

Targeting Gut Microbiota Dysbiosis: Potential Intervention Strategies for Neurological Disorders[J].Engineering,2020, 6(4):415-423.

Williams BL, Hornig M, Parekh T, Lipkin WI. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio. 2012 Jan 10;3(1):e00261-11

Xue M, Ji X, Liang H, et al. The effect of fucoidan on intestinal flora and intestinal barrier function in rats with breast cancer[J]. Food & Function, 2018, 9(2).

Sutterella Species, IgA-degrading Bacteria in Ulcerative Colitis,

10.1016/j.tim.2020.02.018,2020-03-23.

Hiippala K, Kainulainen V, Kalliomäki M, Arkkila P, Satokari R. Mucosal Prevalence and Interactions with the Epithelium Indicate Commensalism of Sutterella spp. Front Microbiol. 2016 Oct 26;7:1706.

Williams BL, Hornig M, Parekh T, Lipkin WI. Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio. 2012 Jan 10;3(1):e00261-11.

Lv W, Liu C, Ye C, et al. Structural modulation of gut microbiota during alleviation of antibiotic-associated diarrhea with herbal formula[J]. International Journal of Biological Macromolecules, 2017.

Adams JB, Johansen LJ, Powell LD, Quig D, and Rubin RA. 2011. Gastrointestinal flora and gastrointestinal status in children with autism—comparisons to typical children and correlation with autism severity. BMC Gastroenterol. 11:22.

Greetham HL et al. 2004. Sutterella stercoricanis sp. nov., isolated from canine faeces. Int. J. Syst. Evol. Microbiol. 54:1581–1584.

1
客服