Tag Archive 肥胖

体重管理的微观关键:脂肪组织、肠道菌群与肥胖的关联

谷禾健康

如今,全球约有 26 亿人(约占世界人口的 40%)受到超重或肥胖的影响。除非采取果断的行动来遏制这一日益严重的流行病,否则预计到 2035 年,将有超过 40 亿人,也就说世界人口的一半受到超重或肥胖的影响(世界肥胖联合会的研究统计)。

超重和肥胖的特点是能量摄入超过能量消耗时产生过多的脂肪量积累控制能量消耗的一种可能的方法是调节白色脂肪组织(WAT)和/或棕色脂肪组织(BAT)中的生热途径。

脂肪组织分为白色、棕色米色,在体内能量储存、产热和新陈代谢中具有不同的作用。环境因素极大地影响能量代谢,其中饮食、运动和睡眠是主要影响因素。

在能够影响宿主代谢和能量平衡的不同环境因素中,肠道微生物群现在被认为是关键因素。肠道细菌参与肠道和脂肪组织之间的双向通讯,影响能量代谢、营养吸收、食欲和脂肪组织功能。

开创性研究表明,缺乏肠道微生物(即无菌小鼠)或肠道微生物群耗尽(即使用抗生素)的小鼠产生的脂肪组织较少,许多研究调查了肠道细菌之间存在的复杂相互作用,其中一些它们的膜成分(即脂多糖)及其代谢物(即短链脂肪酸、内源性大麻素、胆汁酸、芳基烃受体配体和色氨酸衍生物)以及它们对 WAT 褐变和/或米色脂肪的贡献以及 BAT 活动的变化。

肥胖与多种不良健康后果相关,包括代谢紊乱,如 2 型糖尿病、心血管疾病和某些类型的癌症。因此,迫切需要新的治疗策略来解决日益流行的肥胖及其相关的健康问题。

一种有前途的方法是调节白色脂肪组织(WAT)棕色脂肪组织(BAT)中的生热途径,这可以帮助控制能量消耗并有助于减肥(下图)。此外,肠道微生物群已成为调节宿主代谢和能量平衡的关键角色,通过有针对性的方法对其进行调节可能有望治疗超重和肥胖。

Cani PD, et al., Nat Rev Gastroenterol Hepatol. 2023

除了储存脂质(白色和米色脂肪组织)和产生热量(米色和棕色脂肪组织)外,人体脂肪组织还通过产生脂肪因子参与各种代谢功能。

本文我们一起来了解关于白色、棕色米色脂肪组织的一般生理学,人类和小鼠之间的区别,同时也了解一下肠道菌群及其不同代谢物,它们的受体信号通路如何调节脂肪组织的发育及其代谢能力,通过呈现具体的关键示例,深入阐述了肠道微生物群和脂肪组织代谢之间的复杂机制,同时也展示了从实验室转向临床的主要挑战与前景。

01
肥胖和脂肪

肥胖人数翻倍

自1975 年以来,全球肥胖人数几乎增加了两倍,目前有超过 6.5 亿人的体重指数 (BMI) ≥30 kg/m2被归类为肥胖。

肥胖相关合并症

由于肥胖与其合并症(包括 2 型糖尿病、心脏病、中风以及罹患多种癌症的风险增加)之间的密切关联,肥胖每年导致全球超过 470 万人过早死亡。因此,开发新的疗法至关重要,不仅可以减少体重过度增加,还可以限制体内脂肪过多的人患病的风险。

肥胖是如何形成的?

肥胖是由于长时间的正热量摄入而产生的,其中能量摄入超过能量消耗,过量的营养物质以甘油三酯 (TG) 的形式积聚在白色脂肪组织 (WAT) 内。

什么是白色脂肪组织?它有什么作用?

白色脂肪组织最初被认为是一种不良的结缔组织,但越来越清楚的是,白色脂肪组织发挥着广泛的重要生物功能,而且缺乏 WAT 与脂肪量过多一样对代谢健康有害。

因此,如今脂肪组织被认为是一个中央代谢器官,通过营养物质交换和脂肪源性激素细胞因子的分泌(统称为脂肪因子)密切参与能量代谢的系统调节。

Hagberg CE, et al., Nat Rev Mol Cell Biol. 2023

人体脂肪组织大致可分为:

  • 皮下脂肪组织(SAT)
  • 内脏脂肪组织(VAT)
  • 棕色脂肪组织(BAT)

BAT 主要在瘦人的颈部、锁骨上、椎旁和肾周区域。此外,瘦人还含有乳房(粉红色)脂肪组织、骨髓脂肪组织和真皮白色脂肪组织(WAT),后者在解剖学上与 SAT 是分开的。

肥胖个体中,脂质开始异位累积在肝脏和肌肉等器官中,并且在更大程度上累积在VAT库中,包括网膜、纵隔、腹膜后、网膜和肠系膜库。脂肪也开始在血管周围积聚为血管周围脂肪组织 (PVAT) 和心脏周围的心包位置。

临床上可以根据病史、血液检查人体测量指标以及异位脂肪堆积和不良脂肪细胞特征的成像来预测与肥胖相关的病理。

BMI,身体质量指数;DXA,双能X射线吸收测定法;MDCT,多探测器计算机断层扫描;MRI、磁共振成像;MRS、磁共振波谱;WHR,腰臀比。

脂肪组织的复杂性与功能多样性

脂肪组织远非均匀的能量储存室。相反,它体现了一个由不同细胞类型组成的动态生态系统,这些细胞类型的相互作用决定了其生理和病理作用。这些细胞群包括脂肪细胞、巨噬细胞、T 细胞、成纤维细胞、内皮细胞、脂肪干细胞和祖细胞、中性粒细胞和 B 细胞)之间的相互作用形成一个高度整合的网络,协调脂肪组织功能和体内平衡

每个脂肪库都显示出其独特的功能模式细胞组成和疾病倾向,以及脂肪细胞类型的变化。

肥胖白色脂肪组织的特征

Hagberg CE, et al., Nat Rev Mol Cell Biol. 2023

例如,人类皮下脂肪组织(SAT)主要由白色单房(含有单个脂肪滴)脂肪细胞以及基质血管细胞组成,而血管周围脂肪垫通常包括多房(含有多个较小的脂肪滴)生热米色/brite脂肪细胞和乳腺脂肪组织含有粉红色脂肪细胞,有利于哺乳。

尽管这些特殊的脂肪细胞亚型对其各自的组织功能非常重要,但成人中的大多数人类脂肪细胞驻留在 WAT 中并发挥能量储存的作用。

脂肪细胞功能与代谢疾病

重要的是,这些也是与人类肥胖引起的病理学关系最密切的脂肪细胞。由于人类和啮齿动物脂肪库之间的解剖学、生理学和病理学特征存在巨大差异,当前的本文将主要关注人体研究的证据,旨在阐明哪些脂肪细胞功能已得到充分证实,以及哪些方面需要更多研究。

全基因组关联研究和转录分析的结果相结合,证实了脂肪细胞和 WAT 分布对于肥胖期间维持代谢健康的关键作用,并强调脂肪细胞功能障碍的发展是导致代谢疾病的第一步这包括脂肪组织在胰岛素抵抗和 2 型糖尿病发展中的既定作用,这在上面进行了简要讨论,我们建议读者阅读一些近期的优秀评论,以进行更深入的分析。

Hagberg CE, et al., Nat Rev Mol Cell Biol. 2023

体重增加和肥胖与罹患各种慢性、身体和精神疾病的风险增加有关,其中描述了其中一些疾病。

肥胖和脂肪细胞功能障碍对心血管疾病、癌症和生殖的影响。

心血管:血管周围脂肪细胞功能障碍改变脂肪因子和促炎细胞因子的分泌,从而促进血管收缩、平滑肌细胞增殖和内皮细胞渗漏,加剧动脉粥样硬化中发现的许多病理变化,从而增加发生症状性心血管疾病的风险疾病。

癌症:癌细胞与癌症相关脂肪细胞合作,促进邻近脂肪细胞释放游离脂肪酸 (FFA),促进癌细胞增殖和迁移。此外,脂肪细胞通过释放细胞因子、细胞外基质(ECM)蛋白和激素来促进癌症生长。癌症相关脂肪组织也与治疗抵抗有关。脂肪细胞以及相关的纤维 ECM 会阻碍癌症药物的输送。肥胖者的脂肪组织还具有慢性低度炎症和氧化应激增加的特征

生殖:功能失调的白色脂肪组织改变脂肪因子分泌可直接损害生殖器官功能,并导致多囊卵巢综合征(PCOS)和生育能力下降。肥胖还会增加患妊娠糖尿病的风险。

IL-6、白介素-6;PAI1,纤溶酶原激活剂抑制剂1;TNF,肿瘤坏死因子。

02
脂肪组织类型

长期以来,脂肪组织只是以脂肪形式被动储存多余能量的场所。然而,研究表明,它是一个活跃、动态的内分泌器官,能分泌激素,在调节体内新陈代谢和其他生理过程中发挥着至关重要的作用。

人体内的脂肪组织可以根据其位置皮下和内脏)或根据其形态(WAT或BAT)来划分,每个脂肪库都有其独特的生理和代谢特征。

脂肪因子有什么用?

脂肪因子可以局部作用(自分泌、旁分泌)或分泌到血流中,对远处的器官和组织发挥作用(内分泌)。

脂肪因子在调节体内各种生理过程中发挥着至关重要的作用,包括能量代谢、胰岛素敏感性、食欲调节、脂质代谢、生殖以及免疫和心血管功能。

肥胖和代谢紊乱中经常观察到的脂肪因子失调会导致多种慢性疾病的发生,包括胰岛素抵抗、炎症相关疾病、心血管疾病和癌症。

脂肪因子在不同的脂肪室中差异表达

例如,与皮下脂肪组织(SAT)相比,内脏脂肪组织(VAT)中的vistatin、网膜素(omentin)、chemerin、BMP2、BMP3和RBP4更高,SAT中的脂联素、瘦素、抵抗素、脂素(adipsin)和颗粒蛋白前体(progranulin)更高

多种细胞分泌600+ 脂肪因子

脂肪因子可由成熟脂肪细胞以及基质血管细胞(包括脂肪细胞前体细胞、内皮细胞、巨噬细胞、泡沫细胞、中性粒细胞、淋巴细胞、成纤维细胞等)分泌。已鉴定出超过 600 种潜在的分泌蛋白从脂肪组织中分泌。

脂肪细胞表达的脂肪因子的选择、它们的关键生物学作用以及表达水平随肥胖的变化如表所示。为了更深入地回顾脂肪因子(包括非脂肪细胞表达的脂肪因子)及其在健康和病理学中的作用。

Hagberg CE, et al., Nat Rev Mol Cell Biol. 2023

皮下脂肪扩张限制,可能导致异位脂肪沉积,与肥胖病变相关

有人提出,当皮下脂肪组织(SAT)扩张受损时,特别是当增生受到限制时,会导致肝脏和骨骼肌中异位脂肪沉积,从而导致肥胖相关疾病的发病机制。

持续的代谢改变可能会导致脂肪组织从健康变为功能失调,从而产生系统性后果

人体皮下脂肪的增加,对新陈代谢具有中性或有益的影响

人们越来越认识到皮下脂肪可能对新陈代谢具有保护作用。与此相一致的是,人体试验表明,皮下 WAT 的大容量吸脂术提供的代谢优势极小甚至没有。

来自小鼠模型的证据进一步表明,将皮下 WAT 移植到受体小鼠的内脏腔中会导致体重、总脂肪量、葡萄糖和胰岛素水平下降,并提高胰岛素敏感性,而移植的内脏脂肪则没有效果。这些数据表明皮下脂肪本质上不同于内脏脂肪。

不同类型的脂肪组织和脂肪细胞

Cani PD, et al., Nat Rev Gastroenterol Hepatol. 2023

白色脂肪组织包含单房白色脂肪细胞,其特征在于单个大脂滴和少量线粒体。

棕色脂肪组织由具有小多房脂滴和高线粒体密度的棕色脂肪细胞组成。

白色脂肪细胞在特定刺激下(例如寒冷暴露)可以呈现棕色样特征,这一过程称为白色脂肪组织米色化。


白色脂肪

皮下脂肪组织是体内最丰富的脂肪组织类型,是身体里存放多余能量的地方,以甘油三酯的形式。

白色脂肪组织WAT 由脂肪细胞组成,脂肪细胞是一种特殊细胞,可以根据身体的能量需求储存和释放脂质。除脂肪细胞外,WAT 还含有基质细胞、免疫细胞和细胞外基质成分。

这种白色脂肪组织主要位于两个地方

  • 一个是皮下,就是在皮肤下面的脂肪层
  • 一个是内脏脂肪,包围着我们的内脏器官

皮下的脂肪组织比较活跃,而包围内脏的脂肪组织跟身体的一些代谢问题,比如胰岛素抵抗有更直接的联系。

人类和啮齿动物不同类型的脂肪组织

Cani PD, et al., Nat Rev Gastroenterol Hepatol. 2023

与人类一样,小鼠的脂肪组织由多个储存库组成。皮下白色脂肪组织 (WAT) 遍布全身皮肤下,而内脏 WAT 则包裹着腹部的器官。

然而,人类有两个主要的皮下脂肪库位于腹部和臀股区域,而小鼠的两个主要皮下脂肪垫位于前面和后面。在成年人中,大多数产热米色脂肪组织 (BAT) 库位于颈部的锁骨上区域。相比之下,肩胛间库是小鼠中最主要的 BAT。

值得注意的是,与成年人相比,BAT 在成年小鼠中更为明显和可见。性腺 WAT 库位于卵巢和睾丸附近,在研究中经常用作内脏 WAT 的代表。

在这些脂肪组织类别(VAT 和皮下 WAT)中,有多种储存亚型。内脏脂肪组织VAT包括位于胃肠道的心外膜脂肪组织、肾周脂肪组织、腹膜后脂肪组织和肠系膜脂肪组织。

这些库具有不同的解剖位置、细胞特征、代谢功能和健康影响

例如,肾脏周围的脂肪组织主要充当缓冲垫和隔热体。它还通过分泌脂肪因子和促炎细胞因子影响肾功能和血压调节

另一方面,肠系膜脂肪组织在肠道免疫、屏障功能和营养吸收方面发挥作用。它还通过与肠道神经系统和肠道微生物群相互作用来调节肠道蠕动、分泌和激素释放。

人体中的 WAT 库及其与代谢病理学的关系

皮下脂肪组织(SAT)是储存多余脂肪的首选部位,这一过程有助于保护个体免受代谢疾病的影响,在肥胖症中也是如此。

SAT扩张保护代谢,超量则引发异位脂质沉积与疾病

代谢健康的一个主要决定因素是 SAT 安全扩展以响应能量需求和储存多余脂肪的能力。SAT 减少,如发生在脂肪营养不良综合征(全身或部分缺乏脂肪组织)中,由于缓冲过量脂质的能力下降,导致心脏代谢风险增加。

相反,当肥胖期间超过 SAT 储存容量时,游离脂肪酸 (FFA) 就会在 VAT 和异位位点积聚。

异位脂质沉积——代谢疾病的独立危险因素

异位部位包括组织驻留脂肪细胞(例如,心外膜和胰腺脂肪组织)、循环和非脂肪细胞(例如,骨骼肌和肝细胞中的脂质积累)。这些部位的脂质积累会引发脂毒性,导致葡萄糖代谢异常、全身胰岛素抵抗和炎症。因此,异位脂质沉积(VAT 扩张是其标志)是肥胖相关心血管和代谢疾病的独立危险因素

WAT 库在储存和释放脂肪酸以及产生脂肪因子的能力方面彼此不同。此外,它们的细胞特征也因区域分布而异,包括细胞组成、神经支配、代谢、血管化、细胞外基质(ECM)组成和分泌因子的库差异。

身体脂肪的位置和数量,在确定疾病风险中发挥着重要作用

上半身的脂肪堆积(即 VAT,但在某种程度上,腹部 SAT)会增加患糖尿病、高血压、动脉粥样硬化、血脂异常和癌症的风险,而外周或下半身脂肪(臀部皮下和股骨)可能会代谢保护。

这些差异是如何产生的?

储存库之间的差异可能是由于微环境造成的,例如独特的神经支配和血管方面(例如,内脏脂肪的静脉引流排空到门静脉循环中,并使肝脏沐浴在脂肪代谢和脂肪因子的副产物中),和/或由于细胞内在差异。

储存差异也可能是由于前脂肪细胞表型的不同造成的,因为WAT可以通过前脂肪细胞分化成新的脂肪细胞(增生)或通过预先存在的脂肪细胞增大(肥大)来扩张。与此相一致的是,前脂肪细胞的基因特征和分化潜力已被证明在不同的脂肪库之间存在差异,即使在相同条件下分离和长期培养后,这种情况仍然保持不变,表明脂肪细胞特征的强表观遗传调节。

不同仓库之间 WAT 的相对分布由多种因素决定,包括性别、遗传、年龄、疾病状态、食物摄入量以及对药物和激素的反应。

性别:女性更容易肥胖?

女性的肥胖率通常高于男性,并且在外围(雌性脂肪分布)储存脂肪的效率比在中央(机器人脂肪分布)储存脂肪的效率更高。男性往往有更多的肝内脂肪积累,这与男性比女性更高的胰岛素抵抗有关。

然而,这种情况女性绝经后发生了变化脂肪储存变得更加集中,代谢风险变得与男性相似。性激素对脂肪生成的影响不同,睾酮会损害脂肪生成,雌激素会刺激前脂肪细胞孕激素会刺激分化,这也许与许多女性孕育生产后更容易肥胖有关系。

遗传和环境因素也会影响脂肪分布

不同种族之间的内脏脂肪分布存在差异,南亚人比欧洲人后裔有更多的中心性肥胖,白人比非裔美国人和西班牙人有更多的内脏脂肪,我国北方人群比南方有更多的皮下脂肪。

年龄与腹部脂肪的优先增加以及下半身 SAT 的减少有关

随着年龄的增长,心脏、肝脏和骨骼肌等异位部位的脂肪沉积会增加,从而增加胰岛素抵抗和心血管疾病的风险

总而言之,尽管仍然很难控制储存间脂肪的相对分布,但很明显,VAT 中甘油三脂储存量的增加是异位脂质沉积的替代标志,因此与代谢疾病密切相关,而 SAT 积累是中性的或者甚至可以对全身健康和新陈代谢产生一些有益的影响。

功能失调的 WAT 的特征

WAT 是一个高度动态的组织。在肥胖期间,WAT 的几个形态特征发生显着改变包括脂肪细胞大小、组织炎症、血管化和细胞外基质组成。这些形态学变化与病理学密切相关,是 WAT 功能障碍的重要组织水平标志物。

★ 脂肪细胞大小和数

体重增加期间,脂肪组织需要储存更多的能量,这通常表现为甘油三酯的形式。脂肪细胞可以通过两种方式来适应这种增加的能量储存需求:

  • 肥大(Hypertrophy):现有的脂肪细胞体积增大,因为它们储存了更多脂肪(甘油三酯)
  • 增生(Hyperplasia):脂肪组织中新的脂肪细胞的数量增加。

这两种机制都是人体调节能量储备和脂肪组织大小的方式。

脂肪细胞——先肥大,后增生?

在某些情况下,脂肪细胞可能首先通过肥大来适应增加的脂肪存储需求,但当它们达到一定的容量限制时,脂肪组织会通过增生来进一步扩张。这个过程是复杂的,并且受到多种因素的调节,包括遗传、饮食、生活方式和激素等。

早期长胖时,脂肪细胞大小随 BMI 线性增加

研究表明,人类早期体重增加主要是通过脂肪细胞大小的增长来实现的,而病态(极度)肥胖则进一步与增生性组织扩张相关

一项对超过 89 项比较人类脂肪细胞大小的研究进行的荟萃分析表明,脂肪细胞大小随 BMI 线性增加

脂肪细胞大小的增加——代谢功能障碍最一致的标志之一

脂肪细胞肥大与代谢和心血管疾病密切相关,肥大而不是肥胖本身是 2 型糖尿病的强有力预测因子。这种对病理学的贡献在内脏脂肪中尤其明显。

严重肥胖女性中,内脏脂肪组织(VAT)肥大胰岛素抵抗高血压相关,而皮下脂肪组织 (SAT)细胞大小仅与高血压相关。

脂肪细胞大小与代谢疾病之间的关系

其他研究证实了内脏脂肪细胞大小代谢功能障碍之间的关系,包括胰岛素抵抗、糖化血红蛋白和血脂异常

增加小脂肪细胞数量(通过促进脂肪生成和增生)的治疗可显著改善 2 型糖尿病患者的代谢功能。

大脂肪细胞分泌更多炎症因子,包括IL-6、IL-8、MCP1、瘦素,这与多种炎症相关疾病的发生有关,比如糖尿病心血管疾病

此外,大脂肪细胞在胰岛素刺激下的葡萄糖摄取能力也受到损害。这种损害包括GLUT4到细胞膜的运输缺陷。

注:GLUT4是胰岛素依赖型葡萄糖转运蛋白,负责将血液中的葡萄糖转运进细胞,供细胞使用。在大脂肪细胞中,GLUT4功能受损会导致葡萄糖摄取减少,这是糖尿病发病机制的一部分。

★ 慢性低度炎症

肥胖的特点是脂肪组织中存在慢性低度炎症。脂肪细胞本身可以分泌促炎分子,这种分子在患有肥大性 WAT 的肥胖个体中会增加,导致免疫细胞的募集和激活,从而进一步放大炎症。这种慢性炎症会导致胰岛素抵抗、心血管疾病和其他合并症

例如,在啮齿类动物中,肿瘤坏死因子 (TNF) 的分泌可以直接降低脂肪细胞的胰岛素敏感性。

为什么在肥胖小鼠中“王冠状结构”较为常见,而在人类中不太常见?

“王冠状结构”(crown-like structures),是由巨噬细胞和其他免疫细胞形成的环状聚集体,它们环绕在濒临死亡的脂肪细胞周围,试图吞噬这些细胞的脂质,以防止这些脂质渗漏到血液循环中去

  • 在肥胖状态下,小鼠性腺周围脂肪组织内的巨噬细胞数量可占到所有细胞50%以上。
  • 在人体的白色脂肪组织中,巨噬细胞的比例通常较低,大约在10-20%之间。

肥胖相关胰岛素抵抗与脂肪组织炎症无关?有关?

新出现的数据还表明,肥胖患者的胰岛素抵抗与脂肪组织炎症无关。这可能强调了通过针对 WAT 炎症来治疗代谢疾病的临床策略的失败,这在一定程度上削弱了脂肪组织炎症作为引发人类肥胖诱发代谢疾病的致病因素的观点

然而,最近的研究表明,针对某些炎症介质如MCP1的信号传导途径在治疗糖尿病患者中显示出了一些积极的效果。这说明完全排除炎症作为改善白色脂肪组织功能障碍的治疗目标可能还为时过早

同时也应该认识到,WAT炎症在一定程度上具有生理上的组织调节作用。虽然这一点在小鼠身上的证据更为充分,但在人类中也有例证,比如健康的网膜肠系膜脂肪组织内的驻留巨噬细胞很可能有助于肠道的免疫防御。

总结来说,尽管在肥胖和代谢疾病脂肪组织炎症的角色可能没有之前想象的那么直接或者重要,但炎症和免疫反应在这一过程中仍然扮演着一定的角色,并且可能是未来治疗策略的一个潜在目标。同时,脂肪组织中的炎症反应也具有生理上的正面作用,这一点在治疗策略的设计中需要考虑。

★ 血管生成和血管化

瘦状态下,人体脂肪组织血管化良好,每个脂肪细胞都与至少一个毛细血管微血管相邻。脂肪组织的扩张需要同时从现有血管形成新血管(血管生成),以便为扩张的组织提供营养和氧气

早期体重增加是通过增加血管生成生长因子的分泌和血管萌芽来进行的。然而,随着固有脂肪细胞增大,微血管之间的距离增大,组织的血管密度逐渐减小。

此外,增大的脂肪细胞减少促血管生成因子,例如血管内皮生长因子A(VEGFA)的分泌,进一步减少氧扩散并导致肥胖期间组织的相对氧压降低。这导致肥胖 WAT (白色脂肪组织)血管生成潜力降低、毛细血管密度降低(毛细血管稀疏)甚至血管退化

此外,WAT 氧合减少会激活缺氧诱导因子 1A (HIF1A) 和下游缺氧反应通路(例如 NF-κB 通路),并促进促炎因子和纤维化胶原蛋白的分泌。因此,脂肪组织炎症可以被视为组织低氧环境的症状表现,这可能解释了为什么仅针对促炎细胞因子信号传导不足以改善整个组织功能和代谢健康。除了增加炎症外,组织缺氧的增加还会激活肥胖者脂肪组织的促纤维化硬化

★ 脂肪细胞外基质(ECM)改变

所有脂肪细胞都被一个丰富的三维细胞外基质(ECM)网络所包围,这个网络为脂肪细胞提供了机械支持,帮助保持脂肪组织的结构,并且在细胞信号传递中起着重要作用。

细胞外基质的作用与结构

在人类的脂肪组织中,细胞外基质网络主要由多种类型的胶原蛋白构成,尤其是COLI-VII,此外还有层粘连蛋白、纤连蛋白、透明质酸、弹性蛋白和糖胺聚糖等成分,这些都是由脂肪细胞和组织基质细胞所产生的。

健康的脂肪组织中,细胞外基质会经历一个连续的重塑过程,这个过程中合成和降解细胞外基质的成分,以便适应脂肪量的变化、细胞信号的传递以及组织血管化的需要。

肥胖对脂肪组织重塑的影响

然而,在肥胖症状态下,细胞外基质的这种重塑能力受到损害,导致某些细胞周围的细胞外基质胶原蛋白过度积累,最终可能导致脂肪组织的纤维化。其中包括胶原蛋白6(COL6),在小鼠研究中可以限制脂肪细胞扩张,这种限制作用可能直接导致在体重增加期间脂肪组织的功能障碍

具有高水平脂肪 ECM 的肥胖受试者同样被证明在减肥手术后体重减轻减少。除了 ECM 重塑减少之外,肥胖还与 WAT 中 ECM 成分之间较高水平的交联有关,这会增加组织硬度较高的 WAT 硬度与胰岛素抵抗、葡萄糖代谢受损和炎症增加有关,可能是因为它阻止了必要的组织重塑

肥胖相关的细胞外基质异常及其后果

值得注意的是,ECM 交联程度和组织硬度可能比 ECM 积累水平更能决定 WAT 功能障碍。好几项研究发现发现代谢不健康的肥胖受试者与瘦受试者相比,脂肪组织 ECM 沉积的总体水平降低,并且某些 ECM 成分(如 COL1 和纤连蛋白)的表达降低,而组织僵硬和相关转录本肥胖人群中增加。

这在一定程度上可以通过分泌基质金属肽酶 (MMP) 和其他促进肥胖症 ECM 降解的酶的免疫细胞来解释,促进免疫细胞侵入 WAT,同时通过降解限制性 ECM 促进脂肪细胞扩张。这一假设仍有待彻底检验,但可以解释为什么 WAT 形态学的许多病理变化(肥大、炎症、ECM 重塑)经常同时发生。这些病理性 ECM 变化的主要上游引发因素和驱动因素被认为是脂肪组织氧合作用的减少。缺氧还直接加剧炎症,进一步加速 ECM 变化和 WAT 纤维化的发展。

总之,脂肪组织中细胞外基质变化会导致脂肪细胞功能失调、胰岛素敏感性受损、慢性炎症和其他与肥胖相关合并症相关的代谢异常。


棕色脂肪(BAT)

棕色脂肪组织(Brown Adipose Tissue, BAT)含量低于白色脂肪组织,主要位于身体的锁骨上和肩胛间区域,并且其分布在个体之间差异很大。它由多房脂肪细胞组成,其中含有大量具有中央核和线粒体的细胞质脂滴,赋予它们特有的棕色。

注:多房脂肪细胞(multilocular adipocytes)是指那些含有多个脂质滴的脂肪细胞,通常与棕色脂肪组织中的细胞相关。这些细胞与单房脂肪细胞(unilocular adipocytes)不同,后者是指含有单一大脂质滴的白色脂肪组织(WAT)中的细胞。

这种特殊类型的脂肪组织负责通过称为非颤抖产热的过程燃烧储存的脂质来产生热量。这一过程是通过解偶联蛋白 1 (UCP1) 的高表达来实现的,UCP1是一种线粒体内膜蛋白,负责呼吸和产热活动的解偶联。BAT 的代谢活性比 WAT 更高,并且已被证明在调节能量稳态和葡萄糖代谢方面具有作用。

此外,还在小鼠的 WAT 库和肌束之间发现了可诱导的非表达 MYF5 的棕色脂肪细胞祖细胞。

2023 年,两篇补充论文证明,来自不同人类脂肪库(包括 BAT 和 WAT)的脂肪祖细胞具有相似的转录组,表明有一个共同的祖细胞。这些祖细胞分化为两种主要细胞命运之一:脂肪形成细胞或多能细胞,称为结构性WNT调节脂肪组织驻留(SWAT)细胞,提供了终生维持的祖细胞池。研究人员认为,这两种细胞命运(分化的脂肪细胞和未分化的多能祖细胞)之间的微妙平衡可能是脂肪组织组成和功能的决定因素。


米色脂肪

米色脂肪组织(有时称为浅色脂肪组织)是一种介于 WAT 和 BAT 之间的脂肪组织。米色脂肪组织存在于一些 WAT 库中,具有 BAT 的形态和功能特征,例如燃烧储存的脂质和产生热量的能力

脂肪组织内可以诱导生热作用来调节能量稳态并对抗肥胖的发展,这引起了人们对鉴定所谓的褐变剂(即可以增加 UCP1 数量或活性的条件或试剂)的高度兴趣。

尽管动物(小鼠和大鼠)研究取得了有希望的结果,表明米色脂肪细胞可以响应各种刺激(包括寒冷暴露、运动和某些药物制剂)而被诱导,但其病理生理学相关性仍不清楚,因为与米色褐变相关的生热能力与经典 BAT 相比,它可能仅具有次要的生理重要性。

03
肥胖脂肪细胞的功能缺陷

虽然上面列出的 WAT 功能障碍的标志已得到充分证实,并且易于在人类 WAT 活检中测量,但与肥胖相关的功能变化仍然不太清楚。


信号敏感性降低

从功能上讲,肥大脂肪细胞的早期变化之一是对生理胰岛素信号产生抵抗,同时对许多其他外源信号的反应性降低,如肾上腺素能刺激和有益代谢调节因子成纤维细胞生长因子21(FGF21)的信号传导。这对脂肪细胞功能具有广泛的影响,最值得注意的是脂肪细胞通过脂解释放脂肪酸的失调

肥胖→胰岛素不能正常限制脂肪分解→脂质渗漏

在健康的餐后状态下,胰岛素有效地限制基础脂肪分解和激素诱导的脂肪分解。两餐之间,儿茶酚胺会诱导脂肪分解,以便为肌肉和其他器官提供营养

肥胖期间脂肪细胞胰岛素抵抗的发生降低了胰岛素限制食物摄入后脂肪细胞脂解的能力。这种脂肪分解失调导致脂肪酸从肥胖脂肪组织持续低级渗漏到循环系统中,并在肝脏中早期积累

随着脂质渗漏的继续,从脂肪组织释放的脂肪酸也开始在其他器官中积累,例如骨骼肌、胰腺β细胞和肾足细胞,以及作为氧化脂蛋白的一部分在较大血管的壁中积累。

肥胖矛盾:脂肪释放减少与体重增加

矛盾的是,肥胖症中脂肪细胞的信号敏感性降低也使它们对相反的信号不敏感,即禁食期间通过肾上腺素刺激诱导脂肪分解。这种信号敏感性的降低至少部分是由于肥胖相关的脂肪细胞表面肾上腺素能受体的下调所致,导致激素诱导的脂肪分解水平降低,尽管基础脂肪分解增加

Hagberg CE, et al., Nat Rev Mol Cell Biol. 2023

这两种相反的变化的相对重要性,一种是由于胰岛素信号传导减少,另一种是由于肾上腺素信号传导减少,在人类中很难确定,但最近的研究提供了一些见解:纵向研究显示,肾上腺素刺激的脂肪分解水平降低,与储存脂质更长时间的倾向增加有关,可能导致体重增加和糖耐量受损的发展

重要的是,在体重增加的女性中,激素驱动脂肪分解水平的降低与基础代谢健康状况不佳的关系比基础(胰岛素控制的)脂肪分解水平的增加更为密切。几项测量脂肪酸通量的研究还指出,每公斤脂肪释放的脂肪酸速率随着体重的增加而下降,再次表明肥胖症中脂肪细胞的总脂肪分解能力受到损害。

这可以解释为什么尽管脂肪量大幅增加,但肥胖受试者的血浆 FFA 水平与瘦人相比仅略有增加。此外,一项荟萃分析发现脂肪酸水平与胰岛素抵抗测量之间没有相关性,这对胰岛素抵抗导致肥胖症中脂肪组织脂解的教条提出了质疑。这些研究表明,肾上腺素刺激的脂肪分解减少是肥胖人类脂肪组织的一个主要表型特征,这可能解释了肥胖期间脂肪组织持续扩张的矛盾(表明脂肪酸释放减少),尽管基础脂肪酸释放水平较高。


脂质储存有缺陷

肥胖者的脂肪组织在储存脂肪方面存在问题

除了肥胖者脂肪组织中脂肪酸释放的变化之外,WAT 的储存能力也受到循环中脂质摄取率降低的负面影响。使用稳定同位素或测量内脏(腹部)脂肪组织清除率的研究表明,肥胖者 SAT 摄取的脂肪酸较低。

脂蛋白脂肪酶的水平下降,可能导致肥胖和代谢综合征

需要更全面地了解肥胖症中介导脂质储存缺陷的机制,但一种已确定的分子机制涉及脂解酶脂蛋白脂肪酶(LPL)。LPL 是主要的脂肪分解酶,参与从循环中富含 TG 的脂蛋白(例如乳糜微粒和极低密度脂蛋白VLDL)中利用脂肪酸。

患有肥胖和代谢综合征的女性,她们体内的脂蛋白脂肪酶(LPL)水平通常会降低。LPL是一种重要的酶,它在脂质代谢中起着关键作用,可以帮助分解血液中的三酸甘油脂,从而使脂肪酸能够被肌肉和脂肪组织吸收并用作能量。较高的LPL水平通常被认为具有保护作用,因为它有助于维持脂质代谢的正常运作,减少脂肪积累,从而降低患上代谢疾病的风险。

不同人群和个体在脂肪组织的脂质代谢速度上存在显著差异

通过测量稳定同位素氘(一种氢的重同位素)的掺入情况来研究脂肪组织中的脂质周转,在人体内发现了脂质代谢的种族差异和储存模式。具体来说,他们发现与胰岛素敏感的人相比,胰岛素抵抗者体内的甘油三酯(TG)合成速度明显降低。

研究发现,相比瘦人,肥胖者的皮下脂肪组织(SAT)中的TG去除率降低,这反映了脂肪分解和随后的脂肪酸氧化过程的减缓;同时,他们的脂质储存率增加,即脂肪组织每年吸收的脂质量更多

脂肪细胞中脂质周转的速率与代谢疾病的风险密切相关

在体外实验中,分离出的脂肪细胞在受到刺激时脂肪分解的情况与体内通过放射性碳测年技术测量的TG去除率呈现正相关。这进一步证实了脂肪分解通过调节TG去除率来决定脂肪细胞中脂质周转的速度。因此,高脂质储存和低TG去除率会促进脂肪组织的积累,进而导致肥胖。相反,如果一个人的TG去除和储存率都低(如在家族性混合型高脂血症患者中观察到的情况),这会导致脂肪细胞储存和释放脂肪酸的能力降低。

降低的TG周转率可能导致肝脏中脂肪酸异常积累,引起血脂症

脂肪组织中 TG 周转率的降低可能会促进脂肪酸在肝脏中的异位沉积,从而导致血脂异常。因此,脂肪细胞脂质周转已成为预防和治疗代谢疾病的新目标

这些结果共同描绘了肥胖脂肪细胞失去有效摄取饮食来源脂肪酸的能力,以及在两餐之间从脂肪组织中保留和释放脂肪酸的能力,导致在进食期间将脂肪酸作为甘油三酯储存的能力总体上存在严重缺陷。

应该指出的是,除了脂质储存缺陷之外,肥胖脂肪细胞还表现出细胞内能量代谢和底物利用的普遍功能障碍。例如,研究表明,代谢不健康个体的脂肪细胞表现出柠檬酸循环代谢物的消耗,以及组织氨基酸水平和氨基酸分解代谢酶表达的显着改变。


脂质信号传导缺陷

脂质信号传导是指一个复杂的生化过程,其中脂质(例如脂肪酸)在细胞通讯和各种生理和病理过程的调节中发挥着关键作用。特别重要的是肥胖对脂质信号通路的影响,这可能为脂肪肝和高脂血症等有害疾病的出现铺平道路。

胰岛素抵抗引发的脂肪分解失调及对健康的影响

如上所述,脂质信号传导的关键参与者之一是胰岛素。胰岛素抵抗会损害脂肪细胞响应胰岛素而有效调节脂肪分解的能力。因此,脂肪细胞释放的 FFA 水平升高,涌入血流,导致脂毒性现象

过剩脂肪如何导致肝脏疾病和血脂异常

过量的脂肪酸会进入肝脏,在那里重新组装成甘油三酯。这种流入压倒了肝脏处理脂肪的能力,导致脂质在肝细胞内积聚,称为脂肪肝或肝脂肪变性。此外,肥胖扰乱了不同脂肪因子(例如脂联素和瘦素)之间的平衡。

肥胖导致的脂联素和瘦素水平变化

脂联素通常具有抗炎和胰岛素增敏作用,但在肥胖时会减少。相反,调节食欲和能量消耗的瘦素也可能失调,导致脂质稳态被破坏。脂质信号通路错综复杂的网络还涉及转录因子,例如过氧化物酶体增殖物激活受体 (PPAR) 和甾醇调节元件结合蛋白 (SREBP) 。

代谢指挥官出错:肥胖影响关键转录因子

在肥胖症中,这些转录因子表达错误,导致参与脂肪酸合成和储存的基因上调,同时抑制负责脂肪酸氧化的基因。这些破坏的最终结果导致高脂血症——一种以血液中脂质水平升高为特征的疾病。

脂肪过多,健康受损:高脂血症与肥胖代谢问题

由脂蛋白运输的甘油三酯胆固醇变得丰富,增加了动脉粥样硬化和心血管疾病的风险。此外,肥胖和相关的脂肪细胞肥大也会引发促炎细胞因子和趋化因子的释放,为慢性低度炎症状态奠定基础,进一步加剧脂质失调

因此,肥胖对脂质信号通路的多因素影响对代谢稳态产生深远的影响,由此产生的脂质失调为脂肪肝和高脂血症的发展奠定了基础。


改变脂肪因子分泌和衰老

众所周知,体重增加显著减少有益脂肪因子脂联素的分泌,同时增加瘦素的分泌。此外,SAT 脂肪细胞的大小与大量其他促炎细胞因子的分泌增加呈线性相关,包括 IL-6、IL-8、MCP1 和 TNF5 。这些细胞因子不仅可以促进脂肪组织内免疫细胞(包括巨噬细胞、T细胞和中性粒细胞)的浸润和激活,而且还可以损害成脂分化,诱导脂肪细胞胰岛素抵抗和细胞因子渗漏到循环中,促进全身代谢。

诱发炎症和发生合并症的风险

不同的脂肪组织库会带来更大或更小的疾病风险。例如,肌内脂肪比 SAT(和 VAT)具有更大的心脏代谢疾病风险,这在某种程度上归因于脂肪细胞代谢和分泌特性的差异。

肥胖症中脂肪因子分泌改变背后的新兴机制之一是细胞过早衰老或衰老,这也已知会影响细胞代谢。除了在人类脂肪组织中已充分确定的前脂肪细胞和内皮细胞衰老。之外,据报道,免疫细胞(T 细胞、巨噬细胞)衰老也在小鼠和人类肥胖症中累积 VAT。

为了更深入地了解这些细胞类型,读者可以阅读下最近报道,高胰岛素血症促进成熟人类脂肪细胞衰老,增加其细胞因子释放,这是衰老相关分泌表型 (SASP) 的一部分。

减少脂肪细胞衰老——减少WAT炎症

衰老细胞通过启用衰老抗凋亡途径来避免凋亡。人们发现一类被称为 senolytics 的化合物可以诱导衰老细胞凋亡,并对小鼠和人类的健康产生有益的影响。

两种抗衰老药物达沙替尼和槲皮素的短暂全身给药,可以减轻糖尿病肾病患者人体脂肪组织中的衰老细胞负担,已知这种疾病的脂肪组织衰老细胞负担会增加。其他人在小鼠和人类研究中也报告了类似的结果。因此,减少脂肪细胞衰老可能是减少肥厚性肥胖期间 WAT 炎症的有效方法。

04
影响能量代谢的环境因素

能量代谢是一个复杂的过程,涉及将食物转化为身体可用的能量形式。能量代谢的准确调节对于维持能量平衡和预防肥胖及相关代谢紊乱的发展至关重要。虽然年龄、性别和遗传等内在生物因素肯定在能量代谢中发挥作用,但饮食、运动和睡眠等环境因素也有很大影响(下图)。

值得注意的是,肠道微生物群还可以在调节脂肪组织代谢和产热方面发挥作用,并且人类和小鼠肠道微生物群的组成和功能可能有所不同。这些差异凸显了研究人类和小鼠模型以充分了解脂肪组织在代谢健康和疾病中的作用的重要性。

Cani PD, et al., Nat Rev Gastroenterol Hepatol. 2023

肠道菌群是一个动态的生态系统,其组成和功能受到饮食、吸烟、吸毒、睡眠、运动和情绪压力等多种环境和外部因素的影响。然而,这些因素的变化引起的调节程度在个体之间可能存在很大差异。

这种变异性受到肠道微生物群的初始组成以及年龄、生物性别和遗传易感性等内在因素的影响。这种微妙的平衡是我们的生活方式选择和固有特征之间复杂相互作用的结果,任何干扰都会深刻影响我们的整体健康。


饮 食

饮食是影响能量代谢的最重要的环境因素之一。除了消耗的卡路里数量外,研究表明饮食质量还可以显着影响能量摄入、能量消耗和能量代谢。

富含纤维白质的食物往往更容易产生饱腹感,并且可以减少总体卡路里摄入量。相比之下,高度加工和能量密集的食物往往可能导致过量。此外,卡路里的来源会影响食欲和食物选择,高脂肪饮食可能会增加饥饿感,并促进高热量食物的消费。

饮食质量也会影响能量消耗

体力活动和锻炼是能量消耗的重要因素,但食物的热效应 (TEF) 也占总能量消耗的约 10%。

TEF是消化、吸收和代谢食物所需的能量;它因人而异,并取决于体力活动水平和饮食的常量营养素成分。蛋白质的 TEF 高于碳水化合物或脂肪,这意味着与低蛋白饮食相比,高蛋白饮食可能会增加能量消耗。

饮食结构也会影响能量代谢

高糖和精制碳水化合物的饮食与胰岛素抵抗和葡萄糖代谢受损有关,影响身体有效利用能量的能力。相反,富含纤维、全谷物、水果和蔬菜的饮食可以提高胰岛素敏感性并促进更有效的能量利用。


锻 炼

运动可以通过促进瘦肌肉质量的发展、提高胰岛素敏感性和减少炎症来增加能量消耗改善代谢健康。此外,运动可以增加参与能量代谢的基因的表达

AMPK途径

一种重要的途径是 AMP 激活蛋白激酶 (AMPK) 途径,该途径在运动过程中被激活,并增加肌肉细胞中的葡萄糖摄取和脂肪酸氧化。AMPK 还调节线粒体生物发生和氧化代谢改善能量代谢和代谢健康。

PGC1α 途径

另一个重要途径是过氧化物酶体增殖物激活受体-γ 共激活剂 1α (PGC1α) 途径,该途径参与线粒体生物发生和氧化代谢。运动可以增加 PGC1α 表达,从而增加线粒体生物合成并改善能量代谢。

运动可以直接影响棕色脂肪组织中特定生物活性脂质的产生

有人认为,运动过程中该组织释放的物质是与定期身体活动相关的一些健康益处的可能机制。通过脂质组学分析,研究人员发现,一段中等强度的运动可显著提高以下人群中循环亚油酸代谢物 12,13-二羟基-9Z-十八碳烯酸 (12,13-diHOME) 的水平(P < 0.05),包括男性、女性、年轻人(24-42 岁)和老年人(65-90 岁),以及那些经常运动久坐生活方式的人。

12,13-DiHOME 是一种棕色脂肪组织衍生代谢物,也会因寒冷而释放。然而,在运动背景下,对小鼠进行的研究表明,单次运动定期运动训练均可直接增加来自棕色脂肪组织的循环 12,13-diHOME 水平。如果通过手术切除棕色脂肪组织,则 12,13-diHOME 的增加就会消失。此外,给小鼠施用 12,13-diHOME 会导致骨骼肌中脂肪酸的摄取和氧化增强,但不会影响葡萄糖的摄取。

这些发现表明,这种12,13-diHOME代表了一类由运动引起的新型循环因子,可能有助于身体活动期间发生的代谢变化。


睡 觉

睡眠是一个经常被忽视的环境因素,它会影响能量代谢。对于人类来说,睡眠不足或睡眠质量差与肥胖和代谢紊乱的风险增加有关。睡眠不足会扰乱食欲激素的调节,导致饥饿感和食物摄入量增加。

睡眠不足的人的血液样本显示出与肥胖者相似的代谢特征

此外,睡眠不足会损害葡萄糖代谢和胰岛素敏感性,从而导致 2 型糖尿病的发生。有趣的是,睡眠时间长也与人类患 2 型糖尿病的风险升高有关。

长期睡眠不足——下丘脑-垂体-肾上腺轴失调

受睡眠剥夺影响的一个重要联系是下丘脑-垂体-肾上腺轴,负责释放应激激素皮质醇,调节葡萄糖代谢和食欲。长期睡眠不足会导致下丘脑-垂体-肾上腺轴失调,导致人体皮质醇释放增加和葡萄糖代谢受损

睡眠不足——扰乱生物钟

另一个重要途径是生物钟系统,它调节生理过程的时间,包括新陈代谢。睡眠不足会扰乱生物钟系统,导致能量代谢失调。在小鼠中,这种失调是由几个基因介导的,包括Clock、Bmal1、Dec、Per1和Cry1,这些基因参与昼夜节律的调节。

睡眠不足——损害胰岛素信号与代谢

睡眠不足还会通过 AKT 途径损害胰岛素信号传导和葡萄糖代谢。AKT 是葡萄糖代谢的关键调节因子,睡眠剥夺已被证明会降低 AKT 磷酸化并损害人类和小鼠脂肪细胞和肌肉细胞的葡萄糖摄取。

睡眠不足——影响人类食欲激素的调节

包括生长素释放肽和瘦素。胃饥饿素是一种刺激食欲的激素,睡眠不足已被证明会增加胃饥饿素水平,导致饥饿感和食物摄入量增加。瘦素是一种发出饱足感的激素,睡眠不足已被证明会降低瘦素水平,进一步促进人类食欲增加。


肠道微生物群

肠道微生物群是一个复杂的微生物生态系统,包括驻留在胃肠道中的细菌、病毒、真菌、原生动物和古细菌。肠道细菌由于其可培养性、相对较大的基因组大小、复杂的功能多样性和有前景的治疗潜力,是迄今为止该菌群中研究和理解最广泛的成员。

肠道微生物群可以通过调节营养物质的吸收和利用调节食欲以及影响脂肪组织的发育和功能,对能量代谢产生重大影响。

肠道微生物群可以产生多种影响能量代谢的代谢物,包括短链脂肪酸、胆汁酸,不同的生物活性脂质包括内源性大麻素 (eCB)、氧脂素和氨基酸衍生物。

肠道微生物群与肥胖和代谢疾病的发展有关,肠道微生物群可以调节小鼠脂肪组织的发育和功能。例如,特定的肠道微生物群可以促进消除 WAT 的褐变,从而增加小鼠的能量消耗并改善代谢健康。

前面提到的影响能量的环境因素,如饮食、睡眠和运动,都与肠道微生物群组成的变化有关。一些临床前研究表明,肠道微生物群可能是影响能量代谢的关键因素之一,通过胆汁酸、SCFA、生物活性脂质等多种代谢物的变化发挥作用。

以微生物群为靶点改变脂肪组织代谢的方法

这里列出的所有饮食成分都被描述为会增加脂肪组织的米色或褐色并影响微生物群。它们都能防止小鼠因饮食引起的肥胖。这些化合物中的大多数通过改变脂肪褐变和脂肪氧化的相同标记物在棕色脂肪组织 (BAT) 和白色脂肪组织中发挥作用,例如增加解偶联蛋白 1 (UCP1)、DIO2、CPT1α、Cidea、过氧化物酶体增殖物的水平。激活受体-γ 共激活因子 1α (PGC1α)、SIRT1 和 BMP7。其中一些会增加冷诱导的生热作用和线粒体的数量和/或活性。


研究最多的膳食成分

白藜芦醇:又称反式-3,5,4′-三羟基二苯乙烯,是一种有机化合物,属于天然多酚。它主要存在于植物和植物衍生产品中,例如虎杖、各种水果,包括葡萄和浆果、花生和红酒。

辣椒素:一种存在于辣椒中的生物碱化合物。

槲皮素:一种重要的类黄酮,常见于人类饮食中,存在于苹果、浆果和洋葱中。

表没食子儿茶素-3-没食子酸酯:一种多酚化合物,存在于茶树 ( Camellia sinensis ) 264植物未发酵的干叶中。

小檗碱:一种天然衍生的生物碱,存在于小檗科、黄连和加拿大水螅等特定开花植物中,用于传统中药。

大黄提取物:源自大黄根的富含蒽醌的粗提取物。

卡姆果 ( Camu Camu,Myrciaria dubia ):一种具有独特植物化学特征的亚马逊水果。

特定细菌

Akkermansia muciniphila增加褐变、脂肪酸氧化和BAT活性,与增强肠道屏障功能有关。

Dysosmobacter welbionis J115 T:是一种丁酸盐生产者,最近被鉴定并描述为通过产生多种生物活性脂质(包括12,13-diHOME)来减少 BAT 白化增加线粒体活性。

其他详细可以看我们以前写的关于肥胖和肠道菌群文章。

扩展阅读:

微生物组对肥胖影响的最新研究分析

05
影响脂肪组织代谢的微生物群相关化合物


空腹诱导脂肪因子

禁食诱导脂肪因子 (FIAF),也称为血管生成素样蛋白 4 (ANGPTL4),是多种组织(包括肠道、肝脏和脂肪组织)响应禁食而产生的循环蛋白,它是主要的过氧化物酶体增殖物激活受体 (PPAR) 蛋白的作用位点。

FIAF 在小鼠体内可通过抑制脂蛋白脂肪酶 (LPL)(循环脂蛋白中甘油三酯核心水解的限速酶),来调节脂质代谢,从而减少脂肪酸进入脂肪组织和肌肉的摄取。

肠道微生物群与FIAF表达的相互作用

小鼠研究表明肠道微生物群调节 FIAF 的产生。FIAF 在无菌小鼠中组成型表达,而常规化(非无菌小鼠肠道微生物群的定植)会降低 FIAF 表达并增加 LPL 活性,从而导致体脂肪量增加

此外,FIAF基因被敲除的无菌小鼠失去了对高脂肪饮食引起的肥胖的抵抗力。然而,谨慎对待这些发现至关重要。

FIAF与肥胖抵抗力的复杂关系

目前的研究结果挑战了人们普遍认为的观点,即肠道微生物群的缺乏本质上会产生对肥胖的抵抗力,不同的结果可能与所使用的膳食脂肪来源有关。一项开创性研究的复制尝试未能反映最初的发现,因此肠道微生物群的缺失对肥胖的影响仍然没有定论

这一证据强调了肠道细菌与代谢疾病之间关系的复杂性,并表明需要进一步探索。FIAF 的产生是否与肠道微生物群介导的脂肪储存效应之间存在因果关系仍存在争议,特别是在无菌小鼠中,高脂肪饮食诱导的肥胖仅增加了肠道中 FIAF 的蛋白表达,而没有增加循环中的蛋白表达。

多项研究表明,施用某些细菌可以增加小鼠体内循环 FIAF 水平,并增加其在人肠上皮细胞中的表达,这表明肠道微生物群的调节可以影响 FIAF 的产生

尽管 FIAF 似乎还通过抑制小鼠下丘脑 AMPK 活性在能量代谢的中枢调节中发挥着至关重要的作用,但肠道微生物群调节 FIAF 蛋白表达的确切机制仍不完全清楚。肠道微生物群是否调节下丘脑 FIAF 尚不清楚。


短链脂肪酸和关键受体

人类不具备分解膳食纤维所需的消化酶。因此,不可消化的碳水化合物在穿过上胃肠道并到达大肠时保持不受影响,在大肠中它们可被厌氧细菌发酵。该发酵过程导致产生各种代谢物,其中短链脂肪酸是主要的代谢物。消耗的纤维的数量和类型对肠道微生物群的多样性和组成有重大影响,进而影响短链脂肪酸的产生。

短链脂肪酸(其中乙酸盐、丁酸盐和丙酸盐是肠道中的主要形式)是从未消化的食物中获取额外能量的重要来源。据估计,短链脂肪酸可以提供人类每日热量的 10%,并且结肠细胞使用短链脂肪酸,尤其是丁酸作为其首选能量来源。

此外,肠道来源的短链脂肪酸可以通过结肠细胞转运到血液中,在血液中与内源性短链脂肪酸(由组织和器官产生和释放)混合,并对多种组织中的脂质、葡萄糖和胆固醇代谢产生各种影响通过充当底物或信号分子3(下图)。

肠道微生物群产生的分子机制和代谢产物

作用于肠道或白色和棕色脂肪组织中的特定受体

Cani PD, et al., Nat Rev Gastroenterol Hepatol. 2023

某些微生物分泌的代谢物(例如脂多糖LPS、病原体相关分子模式PAMP、内源性大麻素),通过微生物消化膳食成分(例如短链脂肪酸)或通过转化产生宿主衍生因子(例如内源性大麻素和胆汁酸)可以通过各种受体和途径来感知,从而改变肠道完整性和宿主健康。右上图指结肠细胞或肠内分泌细胞中表达的特异性受体,不同的特异性受体及其配体来自微生物代谢产物或成分。右下图描绘了白色和棕色脂肪细胞中表达的受体、来自微生物代谢物或成分的特定配体,以及这些受体激活引起的特定代谢效应。

AHR,芳烃受体;CB,大麻素受体;CD14,分化簇 14;GLP1,胰高血糖素样肽1;GPR,G蛋白偶联受体;MYD88,骨髓分化初级反应88;PPAR,过氧化物酶体增殖物激活受体;PYY,肽YY;TGR5,武田G蛋白偶联受体5;TLR,Toll 样受体。

短链脂肪酸的浓度平衡与健康

低浓度过高浓度的短链脂肪酸对人类和小鼠的健康都有不利影响。为了防止血液中短链脂肪酸含量过高,肝脏有效地吸收循环中的大部分短链脂肪酸。在肝脏中,乙酸盐用作能量来源并用作合成长链脂肪酸和胆固醇的底物,丙酸盐用作糖异生的前体。

在人类、小鼠和大鼠中,低 SCFA 浓度与肥胖、胰岛素抵抗和糖尿病等慢性代谢紊乱的发展有关,对小鼠和大鼠的研究已经证实,膳食纤维或 SCFA 补充剂可以缓解高脂饮食引起的肥胖的发展。

短链脂肪酸:从食欲控制到能量平衡

其中一种机制是 SCFA 作为信号分子的作用。SCFA,特别是丁酸盐丙酸盐,充当信号分子,可以调节涉及食欲调节饱腹感能量消耗的各种激素的分泌。例如,SCFA 可以刺激GLP1、PYY和瘦素的释放。GLP1 和 PYY 是促进饱腹感减少食物摄入的激素,而瘦素则通过向大脑发出有关能量储存的信号来帮助调节能量平衡。

此外,SCFA可以与肠内分泌L细胞表面的G蛋白偶联受体(GPR),特别是GPR41GPR43相互作用,刺激肠肽的分泌。SCFAs除了直接刺激肠肽分泌(参与食欲调节)外,还提出SCFAs在这些受体激活后触发细胞内信号通路,最终影响不同细胞类型的能量代谢、炎症和胰岛素敏感性(即白色和棕色脂肪细胞、肝细胞、神经元和免疫细胞)。

SCFA 与脂肪组织之间的关系很复杂且尚未完全了解。例如,一些研究表明,SCFA 浓度升高可能会导致肥胖和胰岛素抵抗,而其他研究则发现 SCFA 可以提高小鼠、大鼠和人类体内的胰岛素敏感性并有助于减轻体重

不同的 SCFA 对脂肪组织代谢的影响有所不同

例如,丁酸盐可通过GPR43激活来诱导脂肪生成,而丙酸盐则通过GPR41激活来刺激成熟脂肪细胞中的脂肪生成。

事实上,在脂肪组织中,GPR41 和 GPR43 的激活可以促进脂肪细胞分化和脂肪生成,导致新脂肪细胞的形成(增生)和脂肪组织质量增加

SCFA 对 BAT 的影响

一项体外研究表明,乙酸盐可促进小鼠棕色脂肪细胞中脂肪细胞蛋白 2(AP2;脂肪细胞分化标志物)、PGC1α 和 UCP1 的基因和蛋白表达上调,从而增加线粒体生物发生,但这些作用在细胞中受到损害GPR43 表达减少

在人类白色脂肪细胞中,结果却有所不同

从培养 13 天的人网膜脂肪组织中分离出的前脂肪细胞,并暴露于不同的 GPR43 激动剂(即生理的或合成的)以研究对脂肪细胞分化的影响,没有显示出对AP2基因表达和最终分化的任何影响。

相反,曲格列酮(一种 PPARγ 激动剂)增加这些细胞中的AP2基因表达,并降低GPR43基因表达的趋势(P = 0.06) 。这一观察结果表明,与小鼠不同,GPR43 与人类脂肪细胞分化之间没有关系

此外,同一研究人员还发现,肥胖个体的脂肪组织中GPR43基因表达并未增加,但主要与肿瘤坏死因子 (TNF) 相关的炎症过程有关。

丁酸盐对食欲的调节

如果我们关注丁酸盐,丁酸盐给小鼠和人类带来代谢益处的机制仍然不完全清楚。2018年,李等人研究了丁酸盐对食欲能量消耗的影响,以确定这两个因素对丁酸盐的有益代谢作用的贡献程度,并发现通过胃管灌注一次急性口服丁酸(而不是静脉注射),能在饥饿过夜的小鼠重新进食后的1小时内减少食物摄入

丁酸盐还抑制大脑不同区域的食欲神经元的活动。研究人员证实,在饮用水中长期补充丁酸盐可以预防饮食引起的肥胖、高胰岛素血症、高甘油三酯血症和肝脂肪变性,但他们主要将这种效应归因于食物摄入量的减少

丁酸盐还适度增强脂肪酸氧化并激活 BAT

增加脂肪酸的利用率,这不仅是由于食物摄入量减少,而且主要是由于 BAT 的交感神经流出增加。研究人员最终发现,膈下迷走神经切断术消除了丁酸盐对食物摄入的影响和对 BAT 代谢活动的刺激。

总之,这些发现表明丁酸盐作用于肠-脑神经回路,通过减少能量摄入并通过激活 BAT 增强脂肪酸氧化来改善能量代谢。


LPS 和其他病原体相关分子模式

低度炎症是肥胖和相关代谢紊乱的标志之一。由于代谢性内毒素血症的发生,这种炎症的起源最初与肠道微生物群有关。代谢性内毒素血症也称为内毒素诱导的代谢性炎症,是指以血液中循环脂多糖(LPS;通常称为内毒素)水平升高为特征的病症,可导致低度慢性炎症代谢功能障碍。LPS 是在某些类型的细菌(例如革兰氏阴性细菌)的外膜上发现的分子。在正常情况下,肠屏障防止内毒素从肠腔易位到血流中。

然而,除了典型的感染或炎症性肠病外,某些因素也会损害肠道屏障的完整性,使内毒素渗入循环系统。这些因素包括高脂肪饮食、过量饮酒、肥胖、高血糖和缺乏膳食纤维,所有这些都会导致肠道屏障完整性的明显改变。这些改变涉及紧密连接蛋白的排列和定位的变化、抗微生物肽的产生的变化以及粘液层的组成的修改。

已经提出了多种机制,通过这些机制,肠道衍生的化合物(例如脂多糖)可以影响脂肪组织代谢。其中之一是通过 TLR4及其辅助受体 CD14 刺激炎症途径,从而触发脂肪组织中的免疫反应。

LPS暴露,抑制脂肪细胞分化

暴露于 LPS 时,脂肪细胞和前脂肪细胞会发生变化,干扰正常的脂肪生成。例如,LPS 可以通过破坏参与脂肪形成的关键转录因子(例如 PPARγ 和 CEBPA )的表达来抑制小鼠前脂肪细胞分化为成熟脂肪细胞。LPS 触发促炎细胞因子的释放,例如 TNF,它通过 WNT-β-连环蛋白-T 细胞因子 4 (TCF4) 途径干扰分化过程。

具体而言,在体外,TNF 增强 TCF4 依赖性转录活性,并促进 β-连环蛋白和阻碍脂肪生成的促炎环境的稳定

LPS可以改变不同脂肪因子的分泌

除了LPS和炎症对脂肪生成过程的直接影响外,在小鼠中也发现LPS可以改变不同脂肪因子的分泌,包括增加apelin、脂联素和瘦素的分泌,这些在调节能量代谢中具有重要作用和炎症还有脂肪生成。在体外,LPS 也可能在脂肪生成受损和脂肪组织细胞衰老的发生中发挥作用,特别是在肥胖和衰老的情况下。

然而,值得注意的是,LPS 对脂肪生成的影响可能因暴露的浓度持续时间以及特定的细胞环境而异。事实上,一些体内和体外研究表明,LPS 可以通过 JAK-STAT 和 AMPK 依赖性 cPLA2 蛋白表达以及 CD14 依赖性机制,来增加前脂肪细胞增殖和脂肪生成。

大肠杆菌产生的LPS影响肠道健康,葡萄糖代谢问题

为了研究肠道中的 LPS 是否足以促进葡萄糖和胰岛素耐受性以及 WAT 中巨噬细胞的积累,用大肠杆菌单定植无菌小鼠,发现这种产生 LPS 的细菌在肠道定植会导致葡萄糖代谢受损、巨噬细胞积累增加以及 WAT 中促炎 M1 表型的极化

相反,用表达LPS但免疫原性降低的大肠杆菌(即大肠杆菌MLK1067)对无菌小鼠进行单定植不会诱导WAT中的巨噬细胞积聚或炎症。

不同来源的LPS对代谢和免疫反应有不同影响

同样,数据表明,来自特定细菌的 LPS 可以对 TLR4 产生拮抗作用,但根据内毒素单位测量,仍会导致内毒素血症。来自大肠杆菌的 LPS损害了肠道屏障的完整性加剧了小鼠的血糖控制。

然而,当比较来自其他细菌(例如,球形红杆菌)的等量内毒素单位剂量的 LPS 时,研究人员发现,小鼠并没有产生相同的负面影响,甚至抵消了等量的大肠杆菌LPS 引起的血糖异常。肥胖小鼠的脂多糖。

这些发现表明,代谢性内毒素血症不应仅仅局限于 LPS 负荷,还应考虑 LPS 分子的具体特征,例如脂质 A 酰化

肽聚糖和脂肽也与肠道屏障损伤和肥胖相关

除了脂多糖之外,与超重和肥胖相关的肠道屏障的破坏也与其他病原体相关分子模式的易位脂肪量的发展有关。例如,研究表明,肽聚糖脂肽也可能导致代谢紊乱的发生,并且受肥胖影响的个体已被证明血液中肽聚糖和脂肽的浓度增加。肽聚糖是革兰氏阳性和革兰氏阴性细菌中细菌细胞壁的成分。

NOD1等受体通过激活多个信号途径促进肥胖个体中的脂肪分解

细菌肽聚糖可以通过激活含有核苷酸结合寡聚结构域的蛋白 1 (NOD1) 来诱导脂肪细胞中的脂肪分解。这种 NOD1 介导的脂肪分解涉及应激激酶(ERK1 和 ERK2)、PKA 和 NF-κB 途径,汇聚于激素敏感脂肪酶。内质网应激肌醇需求蛋白 1作为炎症期间脂肪分解和血液甘油三酯的关键调节剂。

这些数据表明,病原体相关分子模式的受体,例如 TLR 和 NOD 样受体,是一个汇聚点,可以将与肥胖相关的免疫反应与高脂血症和胰岛素抵抗联系起来,至少在小鼠中。

特定受体如Tlr5和Tlr2的缺陷,或改变与代谢综合征的特征相关

鞭毛蛋白(细菌鞭毛的蛋白质成分)、细菌 DNA 和细菌脂蛋白也是作用于特定 TLR 的分子,并且由于肥胖和糖尿病患者肠道通透性增加或易位而被释放到血流中。然而,这些化合物在代谢紊乱发生中的作用仍然存在争议

例如,Tlr5(细菌鞭毛蛋白受体)遗传缺陷的小鼠的微生物群组成发生了改变,并表现出与代谢综合征相关的特征。

同样与肠道微生物群组成的特定改变有关,缺乏Tlr2(一种检测细菌中许多配体的模式识别受体)的小鼠表现出代谢综合征表型,其特征是胰岛素抵抗、葡萄糖不耐受、脂肪量和体重增加以及循环 LPS 水平升高和亚临床炎症

最后,缺乏Nod2(检测肽聚糖)的小鼠在脂肪组织和肝脏中表现出更高的炎症,在高脂肪饮食喂养期间加剧了胰岛素抵抗,并且增加了共生细菌从肠道到脂肪组织和肝脏的易位

总而言之,这些发现强调了研究细菌成分检测以及更好地了解肥胖和 2 型糖尿病背景下肠道微生物、炎症和脂肪组织之间联系的重要性。


色氨酸衍生物

色氨酸可以在肠道微生物群和组织细胞中代谢成不同的代谢物。细菌来源的色氨酸代谢物吲哚,如 3-丙酸吲哚 (IPA),在肥胖个体的血液样本中的含量低于正常体重对照样本中的水平。

犬尿氨酸途径负责将色氨酸降解为犬尿氨酸 (Kyn)、犬尿酸 (Kyna) 和喹啉酸。相反,在肥胖个体的血浆中Kyn 水平升高,这可能归因于吲哚胺 2,3-双加氧酶 1 (IDO1) 的酶活性增强。然而,一些肠道细菌编码与真核 Kyn 途径同源的酶。

AHR信号通路

来自肠道微生物群的色氨酸衍生物和吲哚可以通过激活芳烃受体(AHR)信号通路促进前脂肪细胞分化为成熟脂肪细胞,从而调节脂肪组织发育。AHR 信号通路参与脂肪生成和脂肪细胞代谢的调节。

Kyna和GPR35

Kyna 通过激活 GPR35,促进脂肪组织中的脂肪酸氧化、产热和抗炎基因表达,从而抑制高脂肪饮食喂养的小鼠体重增加改善葡萄糖耐量

Kyna 和 GPR35 增强了脂肪细胞中 PGC1α 的表达和细胞呼吸,并增加了Rgs14的基因表达水平,从而增强了 β-肾上腺素能受体的信号传导。相反, Gpr35的基因缺失会导致体重逐渐增加、葡萄糖不耐受以及对高脂肪饮食的敏感性增加

此外,Gpr35基因敲除小鼠表现出运动引起的脂肪组织褐变受损。这些发现揭示了一种新的途径,肠道微生物群衍生的代谢物通过该途径进行交流以调节能量稳态。

IDO1酶活性

在肥胖症中,IDO1酶活性增加,与肠道中的活性增强相关,导致色氨酸代谢色氨酸代谢从吲哚衍生物和 IL-22 的产生转变为犬尿氨酸的产生。研究表明,抑制或删除IDO1可以改善胰岛素敏感性,保护肠道屏障,减少代谢性内毒素血症和炎症,以及改变肝脏和脂肪组织中的脂质代谢。

脂肪组织可能是 Kyn 的主要直接来源

体内研究表明,IDO1基因和蛋白质在脂肪细胞中表达。消耗脂肪细胞中的Ido1可以防止Kyn的积累,并保护小鼠免于肥胖。有趣的是,这种效应背后的机制仍然涉及 AHR 的激活,因为从脂肪细胞中基因去除Ahr会抵消 Kyn 171的影响

肠道微生物影响miR-181表达,调节脂肪代谢

研究还表明,肠道微生物群产生的色氨酸衍生代谢物控制小鼠白色脂肪细胞中 miR-181 家族的表达,从而调节能量消耗和胰岛素敏感性。此外,肠道微生物群-miR-181轴的失调会导致小鼠肥胖、胰岛素抵抗和WAT炎症的发生。 在一组按体重百分位数分类的儿童中发现,肥胖患者 WAT 中的 miR-181 表达和色氨酸 衍生代谢物的血浆丰度失调


生物活性脂质

生物活性脂质是一类源自脂质(脂肪酸、磷脂和鞘脂)的信号分子,参与广泛的生物活动,包括炎症、疼痛调节、血压调节、细胞生长和分化、细胞凋亡(程序性细胞死亡)和免疫反应

宿主和肠道微生物群产生的生物活性脂质可以影响微生物群的组成和活性以及各种宿主代谢过程。

★ 胆汁酸

胆汁酸的生产和调节

胆汁酸由肝脏产生,但受到微生物群的活性和组成的高度调节。胆汁酸在与甘氨酸或牛磺酸结合后,被储存在胆囊中,随后在进食时释放到小肠中。

脂质消化和吸收

胆汁酸的释放有助于膳食脂肪的消化和吸收。它们使脂肪乳化增加了脂肪酶的作用效率,从而促进了脂质的分解和脂溶性维生素的吸收

胆汁酸循环

约95%的胆汁酸在小肠的回肠部分被重吸收,并被运回肝脏重新分泌,形成了一种高效的循环。这个过程影响了胆固醇的代谢和体内胆汁酸的总量。

胆汁酸作为信号分子

胆汁酸不仅仅是消化助手,它们还能作为信号分子发挥激素的作用,影响葡萄糖、脂质和能量代谢。胆汁酸通过激活特定的受体,如G蛋白偶联胆汁酸受体1(TGR5),来调节代谢过程。

TGR5受体的作用

TGR5受体广泛分布于多种组织,特别是在棕色脂肪组织(BAT)中高度表达。通过TGR5受体,胆汁酸可以激活与脂质代谢、能量消耗和炎症相关的信号基因表达

胆汁酸对能量代谢的影响

胆汁酸可以增加脂肪分解和底物可用性改善线粒体功能和线粒体β-氧化,从而影响能量代谢。例如,口服补充CDCA可以增加棕色脂肪组织的活性和全身能量消耗。

胆汁酸与肠内分泌激素的相互作用

在肠内分泌L细胞上表达的TGR5受体与胃肠道激素如PYYGLP1的释有关,这些激素对维持能量平衡和代谢调节至关重要。

★ 内源性大麻素

eCB 系统以其广泛的生理作用而闻名,包括调节食欲(即能量代谢)、葡萄糖脂质代谢,以及其在免疫、炎症以及微生物群与宿主之间相互作用中的作用。

  • 第一个发现的内源性内源性大麻素是 anandamide(N-花生四烯酰乙醇酰胺),它既是 CB1 又是 CB2 配体;
  • 第二个被鉴定的内源性大麻素受体配体是2-花生四烯酰甘油。

对小鼠、大鼠和人类的几项开创性研究表明,eCB 参与脂肪组织的代谢,并且 eCB 系统的激活促进脂肪生成

eCB系统在肠道屏障功能、肠道微生物群和脂肪组织代谢发挥重要作用

具体来说,在小鼠中,肥胖和糖尿病期间 anandamide 的存在增加,这通过 CB1 依赖性机制触发肠道通透性。此外,当使用有效的 eCB 激动剂药理激活 eCB 系统时,它会增加脂肪生成破坏肠道屏障渗透性的增加进一步放大了血流中 LPS(即代谢性内毒素血症)的水平,扰乱了肠道屏障并影响了整个肠道和脂肪组织中的 eCB 系统。

肥胖的病理状态下,eCB 张力的改变和 LPS 水平的升高导致脂肪生成失调,使最初的不平衡长期存在,并建立一个有害的循环,导致脂肪组织代谢发生改变。这是一种将肠道微生物群与肠道 eCB 系统连接起来的新型病理生理学机制,在调节脂肪生成方面发挥着重要作用。

脂肪生成与eCB系统

脂肪生成受到内源性大麻素系统和脂多糖(LPS)之间反馈回路的影响。肥胖与eCB系统的变化、血浆LPS水平升高以及肠道微生物群组成的破坏有关。

肠道微生物群与代谢

肥胖和糖尿病小鼠的肠道微生物群组成发生了变化,这与代谢功能的变化和eCB系统功能的变化有关。这些发现在饮食诱导的肥胖小鼠模型和无菌小鼠中也得到了证实。

NAPEPLD酶的重要性

NAPEPLD酶在脂肪细胞中参与生物活性脂质的合成,对维持正常的代谢功能至关重要。小鼠模型显示,缺乏NAPEPLD酶导致自发的肥胖胰岛素抵抗和炎症,即使在正常热量饮食下也是如此。

NAPEPLD酶缺陷小鼠的肠道微生物群转移到无菌小鼠后,可以复制出类似的代谢表型,包括减少的产热程序和肠道微生物群的改变。

NAPEPLD酶的失调可能导致代谢并发症。

总之,所有证据都表明宿主 eCB 系统和肠道微生物群之间存在双向通讯。然而,还需要进一步研究来找出几个潜在的新治疗靶点。

★ 氧脂质

氧脂质是一类多样化的生物活性脂质分子,源自多不饱和脂肪酸的氧化。肠道微生物群对氧脂素介导的炎症过程有影响。

12,13-DiHOME是一种由亚油酸通过细胞色素 P450 和可溶性环氧化物水解酶的作用形成的氧脂素。12,13-DiHOME 主要由 BAT 米色脂肪组织产生,运动、饮食和温度等因素会影响其在体内的浓度。它具有调节脂肪组织中脂肪酸的摄取和寒冷暴露期间的体温调节的作用。

研究发现,28 名肥胖青少年男性的 12,13-DiHOME 浓度低于 28 名体重正常的同龄男性,并且随着剧烈运动而增加。在高脂肪饮食诱导的肥胖小鼠中,给予 12,13-diHOME 两周促进脂肪酸转运至 BAT,降低循环甘油三酯浓度并增加 BAT中LPL(一种水解脂蛋白中甘油三酯的酶)的基因表达。

一些肠道细菌可以产生并分泌 12,13-diHOME。例如,在Welbionis Dysosmobacter产生的几种生物活性脂质中发现了 12,13-diHOME ,将这种细菌给予小鼠可显著减少(P  < 0.001)高脂饮食引起的 BAT 变白增加线粒体活性

★ 琥珀酸和 GPR91 的作用

琥珀酸是三羧酸循环(也称为柠檬酸循环或克雷布斯循环)的中间体,是细胞代谢能量稳态的核心。

代谢调节

琥珀酸通过在脂肪细胞上的GPR91参与代谢调节,它可以由微生物通过碳水化合物发酵产生,作为分解代谢物出现。

微生物产物的重要性

琥珀酸作为微生物产物,在消耗膳食纤维时对代谢健康有益,例如通过普雷沃氏菌的作用增加琥珀酸的产生。Akkermansia muciniphila等琥珀酸生产者与肥胖、糖尿病和代谢紊乱有负相关性。


克罗恩病中的琥珀酸水平

克罗恩病患者的血浆琥珀酸水平显著高于健康对照组,且在活动性克罗恩病患者的脂肪组织中,SUCNR1的表达更高

琥珀酸盐可能在克罗恩病中促进白色脂肪细胞向米色脂肪细胞的转变

GPR91的作用

GPR91在小鼠白色脂肪组织(WAT)中高度表达,并调节脂肪量和葡萄糖稳态。在Gpr91敲除的小鼠模型中,GPR91的缺失影响新陈代谢和体重,但具体效果(增重/减重)取决于实验条件。

Gpr91敲除小鼠在常规饮食下表现出较小的WAT隔室、较小的脂肪细胞、增加的能量消耗和改善的葡萄糖调节。

GPR91可能是肥胖、高血压和糖尿病治疗的潜在靶点。

这些研究结果揭示了琥珀酸和GPR91在能量代谢和脂肪组织功能中的重要作用,以及在疾病状态下可能的病理作用。这为未来的治病策略提供了新的方向。

06
脂肪组织微生物群

目前的人类研究表明,个体的脂肪组织中存在微生物群特征,并且该特征可能根据宿主的代谢负担而不同。在本节中,我们讨论这个新课题,重点关注以下几个方面:

1)检测和表征脂肪组织微生物群的方法和挑战;

2) 微生物从肠道转移到脂肪组织的潜在来源和机制;

3)脂肪组织微生物群在不同脂肪库和代谢条件下的多样性和功能作用;

4) 对未来研究和治疗干预的影响和前景。

检测和表征脂肪组织微生物群的方法和挑战

研究脂肪组织微生物群的主要挑战之一是确保微生物检测方法的可靠性和有效性。多项研究使用基于 16S rRNA基因的细菌定量来识别和比较不同脂肪组织库和代谢条件下的微生物谱。然而,这种方法具有一些局限性,例如环境或试剂来源污染的风险、一些引物和探针的低灵敏度和特异性、以及难以区分活细菌和死细菌。

微生物从肠道转移到脂肪组织的可能途径

微生物从肠道转移到脂肪组织的起源和途径尚不完全清楚,但已经提出了几种机制。

1.

一种可能性是细菌或其成分通过增加肠道通透性穿过肠道屏障,这通常在肥胖和 2 型糖尿病中。

2.

另一种可能性是细菌或其遗传物质被免疫细胞主动运输,例如巨噬细胞或树突细胞,从肠道相关淋巴组织迁移到脂肪组织。

3.

第三种可能性是细菌或其成分由门静脉或淋巴系统携带至肝脏或其他器官,在那里它们可以影响局部或全身炎症和代谢。

脂肪组织微生物群,在不同脂肪库和代谢条件下的多样性和功能作用

脂肪组织微生物群的多样性和功能作用可能会因多种因素而异,例如脂肪库的解剖位置、宿主的代谢状态以及与其他宿主因素的相互作用。

例如,患有或不患有 2 型糖尿病的肥胖个体的不同脂肪组织库(皮下、肠系膜、网膜和肝脏)具有不同的微生物特征,并且这些特征与 BMI 无关

组织特异性定量、分类和组成细菌特征与组织依赖性炎症标记物代谢特征相关。

与体重正常的个体相比,肥胖个体的 SAT 细菌载量较高,细菌多样性较低,这些差异与脂质代谢和炎症相关基因表达的改变有关。

母乳中特定细菌的存在及其起源之间的联系

脂肪组织微生物群背景下的另一个重要挑战,涉及母乳中特定细菌的存在及其起源之间的联系,以及最终与“粉红色”脂肪细胞发育的可能联系。

“粉红色”脂肪细胞是一种可以发现的独特脂肪细胞怀孕和哺乳期小鼠的皮下脂肪库中。这些粉红色脂肪细胞是源自皮下白色脂肪细胞的特殊细胞,产生并释放乳汁

越来越多的证据表明,它们经历了一个转分化的过程,成为乳腺肺泡上皮细胞。证据还支持这样的假设:转分化可以以可逆的方式白色到粉色、粉色到棕色以及棕色到肌上皮细胞发生。

母乳中发现了具有独特组成的微生物群。健康女性的乳汁中细菌含量通常较低,主要包括葡萄球菌、链球菌、乳酸菌和其他革兰氏阳性菌,如棒状杆菌、丙酸杆菌和双歧杆菌,但也可以发现来自严格厌氧菌的DNA。它由协调的微生物群和互连网络构成。

关键的未知因素之一是乳腺组织以及最终母乳中微生物群的改变是否可能影响乳房健康、乳腺脂肪组织以及从白色脂肪细胞到粉红色脂肪细胞的转分化。值得注意的是,除了初乳和牛奶之外,无论是否哺乳的女性的乳腺组织都可能含有微生物群,这可能对乳腺癌的发生、进展和治疗产生影响。

对未来研究和治疗干预的影响和前景

脂肪组织微生物群的研究是一个新颖且有前途的研究领域,可能为代谢疾病的病理生理学和治疗提供新的见解。然而,许多悬而未决的问题和挑战仍然需要解决。例如:

  • 脂肪组织微生物群与代谢结果之间的因果关系是什么?
  • 饮食、生活方式、遗传、药物或其他环境因素如何影响脂肪组织微生物群?
  • 我们如何操纵或调节脂肪组织微生物群以改善代谢健康?

需要更多的纵向、介入和机制研究,以及脂肪组织微生物群数据采样、处理、分析和报告的标准化方案,来回答这些问题。

07
肠道-脂肪轴以及肥胖和胰岛素抵抗生物标志物寻找

对肠道微生物群和脂肪组织之间复杂相互作用的研究揭示了一种有趣的相互作用,这种相互作用远远超出了消化和新陈代谢的范围

肠道微生物群影响各种生理过程,包括能量稳态炎症胰岛素敏感性肠道-脂肪轴代表了一个双向通讯系统,涉及肠道微生物群和脂肪组织之间交换的信号分子、代谢物和免疫介质

脂肪组织曾经被认为是惰性能量储存库,现在被认为是一种活跃的内分泌器官,可以释放脂肪因子、细胞因子和其他具有全身效应的因子。另一方面,肠道微生物群产生一系列影响宿主代谢和免疫反应的代谢物。肠道微生物群和脂肪组织之间的这种动态相互作用为识别与肥胖和胰岛素抵抗相关的生物标志物开辟了新途径

这种相互作用产生的潜在生物标志物有望识别代谢紊乱风险的个体,从而实现早期干预和个性化策略,以减轻肥胖的影响并提高胰岛素敏感性。


与肥胖和胰岛素抵抗相关的生物标志物

微生物多样性和组成

肠道微生物群多样性和特定微生物类群丰度的改变与肥胖和胰岛素抵抗有关。例如,脂肪细胞直径、葡萄糖和胰岛素敏感性的替代指标似乎与人类中阿克曼氏菌的丰度密切相关。皮下白色脂肪细胞直径A. muciniphila丰度呈负相关A. muciniphila丰度高的个体具有较低的平均脂肪细胞大小。尽管由于许多混杂因素和巨大的个体差异而仍存在激烈争论,但某些微生物(核心)特征的识别,可以作为代谢功能障碍的早期指标。

代谢物

微生物代谢物,例如短链脂肪酸、次级胆汁酸和三甲胺-N-氧化物,可以反映肠道微生物群活动,并可能预测肥胖和胰岛素抵抗的风险。

短链脂肪酸水平的增加还与体重、脂肪量、腰围、空腹血糖、胰岛素抵抗和炎症的减少有关。

次级胆汁酸水平升高与体重指数、腰臀比、空腹血糖、胰岛素抵抗和炎症降低有关。

三甲胺-N-氧化物水平的增加与体重指数、腰围、体脂百分比、空腹血糖、胰岛素抵抗、血压、炎症和氧化应激的增加相关。

脂肪因子和炎症标志物

受脂肪组织健康影响的大量脂肪因子炎症标记物的循环水平可以作为肥胖相关胰岛素抵抗的指标。

对饮食的代谢反应

肠道微生物群对饮食干预反应的个体差异可能与肥胖风险胰岛素敏感性相关,为个性化饮食建议打下了基础。

微生物-宿主相互作用基因

影响肠道微生物与宿主之间相互作用的遗传变异可能导致肥胖胰岛素抵抗易感性,为风险评估提供遗传标记。

08
从实验室转移到临床:主要挑战

尽管过去几年人们对肠道微生物群和脂肪组织之间的相互作用获得了宝贵的见解,但将体外和动物研究的发现转化为人类仍然特别具有挑战性。

动物模型固有的局限性

无菌小鼠在没有肠道微生物群的情况下饲养,可以深入了解某些肠道细菌或细菌组合的作用。然而,这些小鼠在发育过程中缺乏微生物相互作用,因此代谢发生改变并损害免疫系统功能,这可能无法准确反映人类生理学

遗传性肥胖小鼠(如ob/ob和db/db小鼠)有助于我们了解肥胖的病理生理学,但它们的遗传基础限制了它们向人类肥胖的转化,因为瘦素和瘦素受体缺陷在人类中很少见,而且突变会导致重大肥胖代谢调节途径的破坏

物种差异与研究成果转化的复杂性

另一方面,高脂肪饮食的肥胖小鼠模仿了人类肥胖的某些方面,但未能复制该疾病的多因素性质。遗传和生活方式因素在人类肥胖中起着重要作用,并且很难在实验室中复制。

由于物种之间的生物学差异,将动物模型的研究结果转化为人类也具有挑战性。遗传变异、饮食、肠道微生物群组成和环境影响各不相同,使得直接翻译变得困难。动物模型常常过度简化复杂的人类代谢途径,并且无法解释在人群中观察到的异质性。这是动物研究的结果在人类研究中经常得不到证实的主要原因之一,也是为什么仅从动物实验中获得的数据必须谨慎解释的原因之一

肠道微生物群的个体差异和动态性

尽管许多动物研究表明,针对肠道微生物群及其代谢物的干预措施有望对抗肥胖和代谢紊乱,但设计临床试验来证实这些发现提出了独特的挑战。肠道微生物群表现出显着的个体间差异,因此很难建立在不同人群中产生一致效果的标准化干预措施。更复杂的是,肠道微生物群是一个高度动态且复杂的生态系统,可能受到饮食、药物、压力和其他环境因素等多种因素的影响,并且肠道微生物群的变化可能需要一段时间才能显现出来。

肠道微生物干预领域标准化的缺乏延伸到研究设计、样本收集和数据分析,使得比较和评估这些干预措施的有效性变得极其困难。

干预参数的变异性

肠道微生物群干预的参数存在相当大的变异性。这种差异包括所使用的益生菌和益生元的类型、给药剂量以及干预的持续时间和时机。不同的临床和临床前研究使用不同的菌株或菌株组合,因此比较它们的功效具有挑战性。此外,最佳干预剂量和持续时间尚未确定,导致治疗方案不一致。干预开始的时间和给药途径也不同,给研究带来了额外的可变性。

数据收集缺乏标准化

样本收集方法的变化,例如粪便收集技术、储存条件和运输方案,可能会影响肠道微生物群数据的质量和一致性。此外,元数据(包括饮食信息、生活方式因素、药物使用和临床特征)的收集和报告在研究中通常不一致。缺乏标准化的数据收集程序阻碍了准确解释和比较结果的能力。

粪便样本的局限性

由于其非侵入性收集方法和足够的生物量用于分析,粪便样本仍然是大多数肠道微生物群研究的主要材料来源。然而,重要的是要认识到仅依靠粪便样本时的局限性,因为粪便中的微生物群可能无法准确代表肠道内不同位置的微生物群落,从而导致不完全了解对肠道微生物群的作用和对健康的影响。

肠道微生物群的空间异质性

肠道微生物群沿着胃肠道的长度而变化,其影响因素包括环境变化、营养可用性以及从胃到大肠的不同氧气水平。不同的微生物群落在这些不同的条件下茁壮成长。

粘膜与肠腔微生物群的差异

此外,肠腔(粪便)中的肠道微生物群可能与靠近肠壁的粘膜的肠道微生物群有很大不同。粘膜层是宿主与微生物相互作用发生的动态界面。附着于粘膜的微生物可以具有与内腔中自由漂浮的微生物不同的作用和效果。此外,肠道不同部位的微生物群落可能具有不同的代谢活动。例如,结肠中的细菌通过发酵产生各种代谢物,对宿主健康产生系统性影响。仅研究粪便代谢物可能无法提供完整的信息,因为它们可能受到不同肠道部分细菌之间相互作用的影响。

微生物易位与系统性影响

最后,某些细菌或代谢物可以从肠腔转移到身体的其他部位,可能影响远处的器官和系统。了解易位动态和所涉及的特定微生物种群需要更全面的采样策略,而不仅仅是粪便样本。然而,迄今为止,尚无明确的易于临床使用的生物标志物来全面反映肠道通透性及其动态。因此,尽管粪便提供了宝贵的见解,但认识到它们的局限性并解决准确描述整个胃肠道肠道微生物群的挑战对于更全面地了解它们在健康和疾病中的作用至关重要。

肠道微生物群分析的技术挑战

由于缺乏标准化技术和工作流程,分析肠道微生物群也面临着自身的挑战。不同的研究采用不同的方法来分析肠道微生物群,例如 16S rRNA 基因测序、鸟枪法宏基因组学或宏转录组学。每种方法都有其自身的优点和局限性,技术的选择会影响结果的准确性和全面性。

通过识别有助于各种生理过程的功能性细菌基因和途径,使用鸟枪法测序和生化解释的功能性宏基因组方法已成为微生物组研究的强大工具,但即使这种技术也有其局限性。除了高成本、数据解释的复杂性和功能注释的挑战之外,鸟枪法宏基因组测序仅提供有关功能基因存在的信息,但可能无法完全捕获有关基因表达和调控的信息。此外,不存在用于处理和分析肠道微生物群数据的标准化生物信息学流程。不同的质量控制、分类分配和统计分析方法可能会导致比较研究结果的差异和困难。

虽然存在上述困难与挑战,但科研的步伐不会就此停止。随着技术的不断发展和完善,肠道微生物群分析的方法也将不断改进。标准化的技术和工作流程的建立将有助于提高数据的可重复性和准确性,从而推动肠道微生物群研究突破

09
结 语

与早期将脂肪细胞描述为储存和释放脂质的简单血管不同,我们越来越认识到脂肪细胞的复杂性

当我们过量喂养脂肪细胞时,我们开始欣赏WAT对全身健康的无数贡献。了解肥胖相关的脂肪细胞功能障碍如何导致疾病状态,可能有助于开发新的细胞靶向策略改善或恢复脂肪细胞功能。

虽然肥胖率持续上升,包括儿童肥胖率,但我们有了更多新兴治疗方法来解决肥胖和相关的合并症。鉴于肥胖、脂肪细胞大小和脂肪细胞功能障碍之间的紧密联系,减少脂肪量(和脂肪细胞大小)的策略是很好的治疗目标。

技术和数据整合的进步将继续为脂肪细胞如何受到体重增加的影响提供新的见解,并让我们更清楚地了解肥胖和相关疾病中的脂肪细胞功能障碍。

因此,尽管存在挑战,这方面的研究仍然充满着无限的潜力和机遇。微生物组时代的重点是了解和利用肠道微生物群的潜力,包括其在不同脂肪组织中的作用,这无疑是未来医学和医疗保健范式转变的重要组成部分。

主要参考文献

Hagberg CE, Spalding KL. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat Rev Mol Cell Biol. 2023 Dec 12.

肠道微生物群:心力衰竭的新治疗靶点

谷禾健康

心力衰竭 Heart Failure(HF)

心力衰竭是一种严重的心血管疾病,其特点是较高的发病率和死亡率,同时也会带来高昂的医疗成本。

一般都认为心力衰竭是老年人的疾病,但其实心力衰竭已经呈现年轻化趋势。

以上症状都有可能与早期心力衰竭相关。发生心力衰竭时,血液通常会回流并导致液体在肺部积聚,从而引发气短

长期熬夜睡眠不足,不健康饮食,吸烟酗酒,压力大,过度劳累等各种因素日积月累都有可能导致心律失常,诱发突发性心衰。

越来越多的证据表明,心力衰竭与肠道微生物群变化相关

肠道微生物群失调会导致肠道屏障功能受损,从而使肠道中的有害物质和细菌进入血液循环系统,引发炎症反应。这些炎症因子会进一步损害心脏功能,导致心力衰竭的发生和发展。

肠道微生物群还可以通过产生代谢产物,如短链脂肪酸、TMAO等,影响心血管系统的功能。

本文主要介绍有关肠道微生物群及其代谢物对心力衰竭的影响,以便更好地理解这种多层次的复杂关系。

更深入地了解人体肠道微生物组、心力衰竭和相关风险因素之间的相互作用,对于优化基于微生物群调节的治疗策略提供个体化治疗非常重要。

本文主要内容:

01 了解心力衰竭

心力衰竭的类型

心力衰竭的症状

心力衰竭的形成

心力衰竭的发病率

心力衰竭的风险因素

02心力衰竭&肠道屏障功能受损和炎症

03心力衰竭的肠道菌群变化

04心力衰竭的风险因素和肠道菌群

西方饮食

肥胖

2型糖尿病

高血压

05与心力衰竭相关的肠道菌群代谢产物

苯丙氨酸

TMAO

短链脂肪酸

胆汁酸

06 肠道菌群与心血管药物的相互作用

强心甙类药物

血液稀释剂

β-阻断剂、ACEi和ARBs

他汀类药物

07 基于肠道菌群的干预措施

饮食方式

特定食物

益生菌

益生元

抗生素

粪菌移植

生活方式

08 结语

01
什么是心力衰竭?

心力衰竭是一种心脏疾病,指心脏无法泵出足够的血液来满足身体需要,导致身体器官缺氧水肿等症状。

图源:American Heart Association / watchlearnlive.heart

▼ 

心力衰竭的类型

根据急缓程度区分:

  • 慢性心力衰竭(持续性)
  • 急性心力衰竭(突发性)

两者可以互相转变。

根据部位区分:

  • 左侧心力衰竭
  • 右侧心力衰竭

左侧和右侧心力衰竭不同,左侧心力衰竭比右侧心力衰竭更常见

左侧心力衰竭可能出现的症状有:

呼吸困难;咳嗽;疲劳(即使休息后也极度疲倦);手指和嘴唇呈蓝色;嗜睡;注意力不集中;平躺无法入睡。

右侧心力衰竭可能出现的症状有:

恶心(胃部不适)和食欲不振、腹部疼痛(胃周围区域);脚踝、脚、腿、腹部和颈部静脉肿胀;需要经常小便;体重增加。

根据射血分数区分:

  • 收缩性心力衰竭(射血分数降低,HFrEF)
  • 舒张性心力衰竭(射血分数保留,HFpEF)

注:射血分数是心脏强度的指标。在临床常用于判断心功能的基本情况以及心力衰竭的诊断,射血分数越低,心脏的泵血功能就越弱

  • 射血分数正常在 50%~70%之间;
  • 40% ~ 49% 是中等射血分数,可能没感觉到症状;
  • 低于40% 是射血分数降低的心力衰竭。

收缩性心力衰竭:心脏无法将足够的血液泵出,导致心脏收缩功能下降。

舒张性心力衰竭:心脏在舒张时无法完全放松和扩张,导致心脏无法充分填充血液,从而降低了心脏泵血的效率。

▼ 

心力衰竭症状

  • 活动时或躺下时气短
  • 疲劳和虚弱
  • 腿部、踝部和足部肿胀
  • 快速或不规则心跳
  • 晚上醒来呼吸急促
  • 运动能力下降
  • 持续咳嗽或哮鸣伴有白色或粉红色带血黏液
  • 肚子区域(腹部)肿胀
  • 体液积聚导致体重急速增长
  • 恶心和食欲不振
  • 难以集中注意力或警觉性降低
  • 如果心力衰竭由心脏病发作引起,则会出现胸部疼痛

▼ 

心力衰竭的形成

大多数情况下,心力衰竭是由另一种损害心脏的疾病引起的,比如冠心病、心脏炎症、高血压、心肌病、心律不齐等。

我们知道,心力衰竭是心肌无法泵出足够的血液来满足身体的需求,那么在心力衰竭的初始阶段,心脏会通过一些方式来弥补:

  • 心脏变大。心脏伸展从而更强烈地收缩并跟上身体泵送更多血液的需求。随着时间的推移,这会导致心脏扩大。
  • 心肌质量增加。肌肉质量的增加是因为心脏的收缩细胞变大了。这让心脏跳动更强劲。
  • 心跳更快。这有助于增加心脏输出量。

身体还会通过其他方式进行补偿:

  • 血管变窄以保持血压升高,试图弥补心脏失去的力量。
  • 肾脏保留了更多的盐和水,而不是通过尿液排泄。这会增加血液量,有助于维持血压,并使心脏泵送得更强。但随着时间的推移,这会使心脏负担过重,使心力衰竭恶化。

以上是身体的补偿机制,这就可以解释为什么有些人在心脏开始衰退多年后才意识到自己的病情。

▼ 

发病率

根据 Framingham 心脏研究的数据,心力衰竭的患病率随着年龄的增长而增加,该研究估计:

50 – 59 岁:

心力衰竭患病率为 8 / 1000;

80 – 89岁:

男性为66/1000,女性患病率为79/1000。

发病率随着年龄的增长而急剧增加

在 65 岁后,心力衰竭的发病率每增加10岁就会翻一倍,而在同年龄段的女性中,发病率会翻三倍

所有年龄段的血压和BMI越高,终身风险越高

▼ 

风险因素

以下人群更容易患心力衰竭:

  • 冠状动脉疾病
  • 糖尿病
  • 高血压
  • 心律不齐
  • 先天性心脏病
  • 睡眠呼吸暂停
  • 甲状腺疾病
  • 心脏瓣膜病
  • 肥胖
  • 病毒感染
  • 久坐不动
  • 吸烟
  • 过量饮酒
  • 吃高脂肪、高胆固醇、高钠的食物

02
心力衰竭 & 肠道屏障功能受损和炎症

心力衰竭中的“肠道假说”表明,肠道微生物群、其代谢物与心力衰竭发病机制之间存在密切关系。

这种细菌易位出现在心力衰竭中,是导致胃肠道结构和功能改变的各种机制的结果,从内脏充血到宿主的免疫防御系统。

心力衰竭的肠-心轴

doi.org/10.3390/cells12081158

心力衰竭患者 ⇒ 肠道屏障功能受损

肠道结构和功能的改变是心力衰竭患者微循环紊乱的结果。在这些患者中,尤其是在疾病失代偿的形式中,肠道微生物群落的正常组成被打破,这是由于肠道灌注不足导致的,从而导致局部pH肠腔缺氧

肠壁水肿

有证据表明,与心力衰竭相关的肠道上皮功能受损:这种改变似乎是肠道灌注减少缺血的结果。心输出量降低导致全身循环向多个终末器官的适应性再分配。因此,肠壁水肿增加肠壁增厚与肠道通透性标志物、血液白细胞和循环C-反应蛋白水平的增加正相关

肠道吸收能力降低,上皮通透性增加

除了肠壁水肿外,心力衰竭还表现为肠道吸收能力降低和上皮通透性增加,促进了多种肠道细菌和/或内毒素(如脂多糖)的通过,从肠道进入全身循环

脂多糖黏膜屏障功能恶化

脂多糖是革兰氏阴性菌壁的生物活性成分,具有潜在的免疫刺激活性,通过使用Toll样受体4(TLR4)模式识别受体。

在心力衰竭患者中,在肝静脉中发现高浓度的脂多糖,支持肠道菌群的肠道易位过程的假设。此外,据推测,脂多糖本身可以加剧黏膜屏障功能恶化,导致心力衰竭进展。

心力衰竭患者 ⇒ 炎症

内毒素易位导致炎症因子水平升高

内毒素肠吸收刺激系统炎症因子水平的增加。根据目前的数据,心力衰竭与慢性炎症状态相关,这种微生物易位可以诱导或加速炎症,间接影响心肌细胞的正常功能。

循环细胞因子水平升高,心力衰竭患者预后不良,与脂多糖相关

循环细胞因子水平的升高对应于心力衰竭患者生存中更严重的临床症状和更差的预后。心力衰竭患者的血清TNF-α、IL-1和IL-6水平直接受到现有脂多糖数量的影响,目前认为脂多糖是高炎症性疾病的主要因素

而在失代偿的心力衰竭患者中,脂多糖水平似乎与全身炎症标志物直接相关,并且在心力衰竭代偿后降低。治疗后血浆细胞因子水平并不一定会下降,这表明随着疾病的进展,其影响是持续的。根据两项大型随机安慰剂对照试验,使用TNF- α拮抗剂均不能降低心力衰竭患者的住院或死亡风险。

所有的心力衰竭患者炎症水平上升

另一项针对心力衰竭伴射血分数降低(HFrEF)患者的研究,该患者具有不同的疾病严重程度,或采用了先进的干预措施,如心脏移植(HT)或左心室辅助装置(LVAD),评估了他们的血液和粪便标本。从纽约心脏协会(NYHA)的I级到IV级的所有受试者,炎症标志物水平都有所增加

治疗后水平下降,但未到正常,脂多糖仍处高位

在左心室辅助装置和心脏移植治疗后,他们的水平下降,但未能达到正常值。然而,所有NYHA级别的脂多糖水平均有所增加,并且在心脏移植和左心室辅助装置干预的患者中仍保持升高。

与脂多糖类似,血清中IL-6、IL-1β和TNF-α水平的升高也诱导肠通透性,促进炎症细胞因子增加和内毒素易位的恶性前馈循环。

03
心力衰竭的肠道菌群

肠道微生物群已被证明对心力衰竭有很大影响。心力衰竭患者有更多的致病菌和更少的有益菌。

心力衰竭肠道菌群变化

在心力衰竭中,由于射血分数降低,肠道血流量减少,氧气输送减少。这使肠道容易滋生致病性厌氧菌

综合目前的研究来看,与对照相比,心力衰竭患者肠道菌群主要变化如下:

下列菌群丰度增加

↑↑ Ruminococcus gnavus 瘤胃球菌属

↑↑ Escherichia Shigella

↑↑ Streptococcus 链球菌

↑↑ Veillonella 韦荣氏球菌属

↑↑ Actinobacteria 放线菌门

↑↑ Pseudomonadota 假单胞菌门

↑↑ Klebsiella 克雷伯菌

↑↑ Salmonella 沙门氏菌

↑↑ Campylobacter 弯曲杆菌

↑↑ Candida 念珠菌

↑↑ Enterococcus 肠球菌属

下列菌群丰度减少

↓↓Eubacterium 真细菌

↓↓Prevotella 普雷沃氏菌属

↓↓ Faecalibacterium 粪杆菌属

↓↓ Faecalibacterium prausnitzii 普拉梭菌

↓↓ SMB53

↓↓ Megamonas 巨单胞菌属

↓↓ Dorea longicatena

↓↓ Roseburia intestinalis

↓↓Dialister 戴阿利斯特杆菌属

↓↓ Blautia 经黏液真杆菌属

↓↓ Collinsella 柯林斯氏菌

α多样性随着疾病严重程度的增加而降低

尽管接受了LVAD或HT等治疗,但仍保持较低水平,这可能是由于持续的炎症。随着心力衰竭发展到晚期内毒素血症和全身炎症水平增加,细菌群落的肠道多样性降低

几项关于急性失代偿或稳定型HFrEF患者肠道细菌谱的研究报告称,与健康个体相比,心力衰竭患者的α和β多样性显著降低

心力衰竭相关的肠道菌群失调因患者年龄而异

与已知患有心力衰竭的年轻患者相比,老年患者表现出拟杆菌门水平下降变形菌门、假单胞菌门数量

在所有已知的心力衰竭患者中,毛螺菌科Dorea longicatenaEubacterium rectale的数量都有所减少,而与年轻患者相比,Clostridium clostridioforme普拉梭菌Faecalibacterium prausnitzii)在老年心力衰竭患者中的数量更少

下表中总结了关于心力衰竭患者肠道微生物群的研究。

doi.org/10.3390/cells12081158

04
心力衰竭的风险因素和肠道菌群

患有心力衰竭的人有各种危险因素,但他们中的大多数人患有高血压、肥胖、血脂异常、糖尿病、遗传易患心力衰竭、吸烟、久坐不动的生活方式或不健康的饮食。新证据表明,肠道微生物群及其代谢物也可能对心力衰竭危险因素产生影响。

西方饮食

西方饮食的特点是摄入高糖精制碳水化合物,血糖指数高;抑制一氧化氮合酶的含量,导致心肌氧化功能障碍、心肌肥大和心肌细胞重塑,所有这些都是心力衰竭的诱发因素

西方饮食:通过菌群代谢增加TMAO,胆固醇积累,动脉粥样硬化,心力衰竭风险增加

这种饮食富含快餐食品会导致微生态失调,其菌群特征是假单胞菌Pseudomonadota)和Bacillota水平升高,从而增加TMAO和神经酰胺的水平,促进巨噬细胞中的胆固醇积累,并加剧动脉粥样硬化的发展。

西方饮食诱发心力衰竭

doi.org/10.3389/fmicb.2022.956516

西方饮食通过肠道微生物群代谢为 TMA,然后 TMA 在肝组织中转化为 TMAO。TMAO 积累在许多病理过程中触发胆固醇,包括运输和泡沫细胞形成,从而诱发心力衰竭。

西方饮食还会导致心肌中的脂质积聚、慢性炎症和肥胖。快餐食品加工中使用的食品添加剂(包括亚硝酸盐和磷酸盐)水平的增加心力衰竭风险的增加有关。它们改变了厚壁菌与拟杆菌的比例。

西方饮食:构建肠道屏障菌群减少,屏障破坏

西方饮食还改变了肠道屏障的通透性,其特征是拟杆菌属、双歧杆菌属、梭状芽孢杆菌属、乳酸杆菌属和Akkermansia muciniphila以及所有促进肠道屏障细菌的水平降低。此外,肠壁完整性似乎被脱硫弧菌属和Oscillibacter的增加破坏

扩展阅读:AKK菌——下一代有益菌

肥胖

研究表明,肥胖及其相关的代谢障碍,包括高脂血症、高血糖和胰岛素抵抗,与心力衰竭密切相关。

肥胖 ⇒ 促炎

肥胖及其相关的心脏代谢因子(胰岛素抵抗、血脂异常和腹部肥胖)加剧促炎环境,也就是促炎细胞因子水平升高。

肥胖 ⇒ 血容量改变

内皮功能障碍一氧化氮不可用,可能导致HFpEF的左心室肥大以及收缩和舒张功能障碍。此外,肥胖会导致血管系统和血容量的改变,这与氧气消耗的增加有关,导致心室肥大、平均肺动脉压增加和左心室舒张压升高

肥胖 ⇌ 肠道菌群变化

在动物和人类研究中,在大多数研究中,肥胖似乎与厚壁菌门和拟杆菌门之间的比例改变有关,拟杆菌门减少厚壁菌增加。肠道拟杆菌数量与肥胖有关。

限制热量饮食并减肥的肥胖者肠道微生物群中拟杆菌类的比例似乎较高。具体而言,所有产短链脂肪酸菌Clostridium bartlettiiAkkermansia muciniphila和双歧杆菌都高脂肪饮食诱导的肥胖及其代谢并发症呈负相关

扩展阅读:肠道菌群与肥胖


2 型糖尿病

2型糖尿病是心力衰竭和其他心血管疾病的强相关危险因素

已知2型糖尿病患者粪杆菌、双歧杆菌、Akkermansia、拟杆菌和Roseburia降低Roseburia、拟杆菌和Akkermansia具有抗炎作用。拟杆菌和Akkermansia水平下降导致紧密连接基因表达不足,“肠漏”加剧,从而导致内毒素血症。

扩展阅读:肠道重要基石菌属——罗氏菌属(Roseburia)

此外,产丁酸菌普拉梭菌和Roseburia nestiinalis的丰度降低,会导致脂肪酸代谢失调,导致氧化应激及其相关的心脏代谢不良表现。

另一方面,2型糖尿病与梭杆菌属、瘤胃球菌属厚壁菌门的细菌呈正相关,这些细菌都具有促炎活性。

扩展阅读:2型糖尿病如何做到可防可控?肠道菌群发挥重要作用


高血压

与血压正常的对照组相比,持续升高的血压患者的厚壁菌与拟杆菌比例更高(高达5倍)。此外,高血压时,肠道菌群以产乳酸菌属(如TuricibacterStreptococcus为主,而产短链脂肪酸菌属(如Clostridiaceae、Bacteroides、Akkermansia)似乎减少。其中一些相关的肠道菌群稳态扰动部分与心力衰竭发病有关,并增加心衰进展的风险。

扩展阅读:认识肠道微生物及其与高血压的关系

05
与心力衰竭相关的肠道菌群代谢产物

经典的心力衰竭的生物标志物:利钠肽(NP)、脑型钠尿肽(BNP)、BNP的N-末端原激素肌钙蛋白测量,已被欧洲心脏病学会和美国心脏协会纳入心力衰竭的诊断和治疗指南。

肠道微生物衍生的代谢物也可以在心力衰竭的发病机制中发挥重要作用。通过产生包括短链脂肪酸三甲胺(TMA) / 三甲胺 N-氧化物 (TMAO) 和胆汁酸在内的活性生物代谢物,肠道微生物群会影响宿主生理。

影响心力衰竭的微生物代谢产物及相关治疗策略

doi.org/10.3389/fmicb.2022.956516


苯丙氨酸

苯丙氨酸:与炎症细胞因子呈正相关,是心力衰竭的独立预测因子

这些代谢物可被视为肠道微生态失调的生物标志物,并且可以预测已知患有心力衰竭的患者的炎症。血浆苯丙氨酸水平升高的患者表现出炎症细胞因子(IL-8、IL-10)、C反应蛋白 (CRP) 水平升高,并伴有更高的死亡率。而甘氨酸表现出抗炎作用,似乎提供保护细胞和心脏。对从 FINRISK 和 PROSPER 队列收集的数据进行的分析中,苯丙氨酸是心力衰竭的独立预测因子。


TMAO

升高的TMAO水平与心力衰竭的风险相关

TMAO 是一种由包括厚壁菌和假单胞菌属在内的肠道细菌产生的代谢产物,从胆碱、磷脂酰胆碱和左旋肉碱发酵中获得。

高饱和脂肪和高糖饮食导致的 TMAO 水平升高,可导致纤维化、心肌炎症和舒张功能受损。瘤胃球菌、普雷沃氏菌和梭状芽孢杆菌属和毛螺菌科丰度增加,以及拟杆菌门水平降低,表明其血浆中的 TMAO 水平较高

心力衰竭相关生态失调的特点是循环中高水平的TMAO,能够通过促进心肌纤维化和促炎作用来刺激心脏重塑。现有证据表明,TMAO 水平升高会刺激具有促炎作用的细胞因子(包括 IL-1β 和 TNF-α)的过度表达,以及 IL-10 和其他具有抗炎特性的细胞因子的减弱。

TMAO水平升高可作为急性和慢性心力衰竭的预后生物标志物

与健康人相比,心力衰竭患者的血浆TMAO水平升高。TMAO水平升高可作为急性和慢性心力衰竭的预后生物标志物,独立于B型钠尿肽(BNP)和传统风险因素,因为TMAO水平可预测这些患者的死亡率。

TMAO血浆值升高对应于左心室舒张功能障碍的晚期。TMAO也可被视为HFeEF的预后预测因子和这一特定类别患者的风险分层标志物

对于住院的心力衰竭急性失代偿患者,TMAO水平升高与肾功能下降相关,可作为心力衰竭恶化死亡或再次入院风险升高的预测指标

TMAO水平还与血红蛋白、肌酐、BUN和NT-proBNP相关。

肉碱相关代谢产物与不良预后有关

特别是L-肉碱和乙酰-L-肉碱与短期预后(急性事件后30天)有关,而TMAO与长期预后(急性事件后1年)有关。


短链脂肪酸

短链脂肪酸属于胃肠道中肠道微生物产生的代谢产物。短链脂肪酸对心力衰竭具有保护作用,并在维持肠道屏障的完整性方面发挥主要作用:在粘液产生中,它们在抗炎保护中具有活性。

肠道菌群产生的短链脂肪酸对心血管系统的下游影响

doi: 10.1038/s41569-018-0108-7.

肠道微生物群产生的短链脂肪酸通过以下方式发挥其心血管作用:

  • 通过促进粘液产生间接改善肠道屏障功能;
  • 激活肾小球旁器官 (JGA) 和外周血管系统中的嗅觉受体 51E2(OR51E2),导致肾素释放增加和血压升高,从而抵消游离脂肪酸受体 3(FFAR3);
  • 激活组蛋白乙酰转移酶 (HAT) 和抑制组蛋白脱乙酰酶 (HDAC),从而抑制炎症、平衡基因调控和调节免疫细胞活化。

扩展阅读:缺血性中风和肠道菌群之间的桥梁:短链脂肪酸


胆汁酸

胆汁酸(BA)是由肠道微生物合成的胆汁代谢物,在脂质代谢中起着关键作用。饮食习惯、禁食昼夜节律对胆汁酸的产生和重吸收有影响。

胆汁酸信号传导的受体,如法尼醇-X受体(FXR),在几乎所有的心血管细胞中表达,与心脏组织中的电传导和细胞力学密切相关。因此,胆汁酸信号在调节宿主的生理过程和许多心脏疾病方面非常重要。

一项前瞻性队列研究评估了慢性心力衰竭患者的原发性和继发性胆汁酸水平,然后显示原发性胆汁酸水平显着降低继发性胆汁酸水平增加。研究人员这些发现归因于微生物群的功能,因为微生物代谢对胆汁酸合成的影响很大,尤其是次级胆汁酸。

这项工作揭示了胆汁酸和肠道菌群在调节心肌功能方面的密切相关性,但潜在的机制仍然未知。法尼类 X 受体(FXR)和 G 蛋白偶联受体 5 (TGR5)是 胆汁酸信号通路中的两个重要分子。

FXR是心力衰竭患者的潜在治疗靶点,因为FXR可以通过增加脂联素改善心功能障碍并促进心肌重塑。此外,FXR的敲除通过抑制心脏病细胞的凋亡和纤维化促进了衰竭心脏的恢复。

06
肠道菌群与心血管药物的相互作用

年龄、性别、营养状况、疾病状态以及遗传和环境暴露是可以解释个体对药物治疗反应的因素。我们知道,微生物群参与药物代谢和药理作用,同时也存在双向交流,药物也会影响微生物群的组成。

药物吸收是一个复杂的过程,取决于许多因素,如它们在胃肠液中的解度和稳定性、pH值、胃肠道转运期、通过上皮膜的渗透性以及药物与宿主和微生物酶的相互作用

人类肠道微生物群能够产生参与口服药物代谢的酶促进其在肠道和血液中的吸收。肠道细菌群落的失调可以进一步改变药物的药代动力学;前药的激活可能加剧产生不需要的毒性代谢产物和药物的失活

由于肠道细菌种类的个体间差异,“健康”肠道中也可能存在药物反应的变化。

心力衰竭患者粪便样本的宏基因组测序显示,他汀类药物、β受体阻滞剂、血管紧张素转换酶抑制剂、血小板聚集抑制剂等几种药物的使用对肠道微生物组成有重要影响。下表列出了微生物生物转化的例子。

肠道菌群可能影响心血管药物疗效的已知和提出的机制

doi.org/10.3390/cells12081158

➤ 强心甙类药物

地高辛,一种经常被推荐用于心力衰竭的药物,是微生物群影响药物生物利用度的一个很好的例子。

一些迟缓埃格特菌Eggerthella lenta菌株负责将地高辛转化为一种无活性的微生物代谢产物,限制了10%的患者吸收到系统血流中的活性药物的数量。

最近的研究证明,地高辛抗生素富含精氨酸的饮食共同给药,都会导致全身地高辛水平升高和药物水平的临床相关波动。

➤ 血液稀释剂

阿司匹林是一种非甾体抗炎药,通常用于降低脑血管和心血管疾病的风险

阿司匹林破坏肠道微生物群的组成

与未使用或未使用其他类型非甾体抗炎药的患者相比,使用阿司匹林的患者的瘤胃球菌科、普雷沃氏菌、Barnesiella和拟杆菌的细菌水平存在差异。

肠道菌群的组成对阿司匹林的代谢产生影响

口服抗生素可以通过减缓肠道微生物群的降解、提高其生物利用度和延长其抗血栓作用来降低其代谢活性

含有短双歧杆菌Bif195的益生菌可以预防阿司匹林摄入的不良反应,如肠壁损伤和阿司匹林诱导的胃溃疡。

抗生素通过改变肠道菌群影响华法林的药效

华法林是一种常用的抗凝剂,通过抑制维生素K依赖性的凝血因子II、VII、IX和X的激活来表达其作用。当与抗生素一起服用时,与华法林使用相关的出血事件增加

两种机制:抗生素可以通过抑制或诱导CYP酶来干扰华法林的使用;还可以改变肠道细菌组成,消除产生维生素K的细菌,如拟杆菌属。

➤ β-阻断剂、ACEi和ARBs

抗高血压药物的作用已经在动物和人类研究中进行了多次研究。

β受体阻滞剂、血管紧张素受体阻滞剂(ARBs)和血管紧张素转换酶抑制剂(ACE抑制剂)的使用之间的关联可以改变肠道微生物群的组成。

一项大型宏基因组学研究报告了,钙通道阻滞ACE抑制剂和肠道细菌组成之间的正相关。对高血压大鼠研究发现,包括卡托普利在内的血管紧张素转换酶抑制剂带来的有益作用,是通过减轻肠道微生态失调改善肠壁通透性和增加绒毛长度来实现。

➤ 他汀类药物

他汀类药物是用于降低低密度脂蛋白-C(LDL-C)和胆固醇水平的药物。

他汀类药物治疗反应的存在个体间差异,与特定的他汀类药物或剂量无关。

他汀类药物在调节肠道菌群方面的作用

接受阿托伐他汀治疗的个体表现出抗炎肠道细菌水平的增加,如普拉梭菌(Faecalibacterium prausnitzii)AKK菌(Akkermansia muciniphila)

已知患有高胆固醇血症的未经治疗的患者表现出具有促炎作用的细菌种类的增加,例如柯林斯氏菌(collinsella)和链球菌。

与LDL-C水平相关的菌群

LDL-C水平似乎与厚壁菌门和梭杆菌门呈负相关,而黏胶球形菌(Lentisphaerae)和蓝细菌门与LDL-C呈正相关。现有证据表明,LDL-C对他汀类药物治疗的反应可能受到含有胆汁盐水解酶(bsh)的细菌影响。路氏乳杆菌是一种bsh活性升高的肠道细菌,给药后LDL-C水平显著降低

同一项研究报告称,低密度脂蛋白胆固醇水平的个体变化与循环胆汁酸呈负相关。以前与LDL-C水平呈负相关的厚壁菌门也与bsh活性有关。几种动物模型维持了他汀类药物治疗对肠道微生物群落的有益作用。

使用瑞舒伐他汀有一种罕见的副作用

由于瑞舒伐他汀中含有一种叔胺,在肝脏水平上与TMA竞争代谢,血清TMA水平及其在尿液中的排泄量增加,导致鱼腥味综合征。

07
调节肠道菌群失调作为心力衰竭的潜在干预措施

考虑到微生态失调是心力衰竭发病机制和疾病进展的关键因素,靶向破坏的肠道微生物群是一个有效的治疗目标。

表征每个患者的肠道微生物群及其与疾病相关的肠道微生态失调的可能性,需要个性化的、有针对性的治疗计划。

有各种方法可以管理和调节失调的肠道微生物群,如饮食干预(也包括使用益生元、后生元)和粪便移植,但现有文献中的几份研究将饮食调节使用益生菌作为调节微生物群的主要干预措施

饮食方式

饮食一直被认为是塑造肠道相关微生物群结构和功能的关键因素

地中海饮食

医学文献中经常引用的地中海饮食包括高水平的多不饱和脂肪酸、膳食纤维、多酚和少量红肉

在其对人类健康的益处中,地中海饮食提供了更丰富的益生菌、更大的生物多样性、增加的短链脂肪酸减少的TMAO。坚持地中海饮食与心力衰竭发病率下降相关,最高可达74%

此外,地中海饮食的高依从性似乎与心力衰竭呈负相关,并改善了HFpEF患者的长期预后,因为这是10年随访的结果。地中海饮食可能具有抗炎作用,因为有益作用与CRP水平相关。

扩展阅读:深度解析 | 炎症,肠道菌群以及抗炎饮食

得舒饮食(DASH饮食)

控制高血压的饮食方法(DASH饮食)饮食计划代表了一种摄入多不饱和脂肪、富含全谷物营养、蔬菜、水果和低脂乳制品的饮食,在降低心力衰竭发病率方面具有重要潜力。

饱和脂肪和胆固醇会导致其他心血管问题,请避免使用黄油、起酥油和人造黄油,避免奶酪、熏肉等,并食用有限量的橄榄油、亚麻籽油、山茶油等

高纤维饮食

最近,在高血压诱导的心力衰竭实验模型中,高纤维饮食被证明可以改善肠道微生态失调(厚壁菌和拟杆菌的比例)、降低血压、改善心脏功能和使心脏肥大正常化。此外,纤维的发酵会增加短链脂肪酸的产量,对人类健康具有有益作用。

避免高钠饮食

通常建议心力衰竭患者限制饮食中的钠含量。美国心脏协会建议个人将钠摄入量限制在每天 2300 毫克以下

  • 可以阅读包装上的营养标签,并选择钠含量低的食物;
  • 自己准备饭菜,可以控制在烹饪食物时使用的钠量;
  • 如果觉得淡而无味,可以尝试使用天然香料、柠檬、酸橙汁、苹果醋或香草混合物来为食物增添更多风味。

管理液体量

心脏无法将血液泵送到身体其他部位时,体液就会积聚,喝太多液体可能会导致肿胀、体重增加和呼吸急促。

因此要控制饮水量,其他液体也要限制一定的量,比如说咖啡、果汁、牛奶、茶、苏打水等,还有酸奶、布丁、冰淇淋、果汁,少喝汤。

总体而言,饮食中尽可能将各种新鲜水果和蔬菜比例调大适量食用全谷物、去皮家禽、鱼、坚果和豆类以及非热带植物油。

尽量少吃饱和脂肪、反式脂肪、胆固醇、钠、红肉、糖果、油腻甜点、含糖饮料等。

特定食物

山楂

山楂有助于将心率和血压水平提高到正常水平。它还含有抗氧化剂,可以保护心脏免受自由基的侵害,山楂是心脏营养的绝佳来源,因为它含有生物类黄酮、单宁、维生素A、B族维生素、维生素C,以及铁、钙和钾等必需矿物质。

大蒜

大蒜可以降低心脏病的风险因素,包括高血压和胆固醇。它还降低了冠心病(CAD)心力衰竭患者的心率和心脏收缩力(心脏泵血的强度),冠心病是心力衰竭最常见的原因。

银杏叶

与安慰剂相比,银杏叶通过增加摄氧量、产生能量以及改善局部左心室功能,对心力衰竭有帮助。它还可以预防肾损伤。

人参

人参长期以来一直被用于中医治疗心脏病和心血管疾病。可以帮助降低血压,并降低因压力而导致的体内皮质醇水平。人参可以通过改善动脉和静脉的血液流动、增加心肌的氧合和防止动脉硬化来改善心脏功能

生姜

生姜含有有益心脏健康的营养物质,如抗氧化剂和抗炎剂。它可以通过预防心脏病发作或心肌损伤、降低胆固醇水平和调节血压来帮助治疗心力衰竭。

水飞蓟补充剂

水飞蓟补充剂已被用于心力衰竭患者,水飞蓟含有一组黄酮类抗氧化剂水飞蓟素,可减少心力衰竭时的氧化应激。

辣椒

辣椒能增加血液循环,这意味着心力衰竭患者可以从中受益匪浅。此外,辣椒中含有辣椒素,辣椒素可以使心脏动脉放松和扩张,从而减少心脏病发作。它还可以防止血栓形成或扩大


益生菌

大多数关于益生菌治疗心力衰竭疗效的研究都是在动物模型中进行的。

大鼠模型中:益生菌促进产短链脂肪酸

口服植物乳杆菌299v鼠李糖乳杆菌GR-1可产生有益的心脏作用。补充乳杆菌属似乎可以促进产短链脂肪酸菌,如真细菌、罗氏菌属(Roseburia)和瘤胃球菌,以促进膳食纤维发酵的副产物短链脂肪酸,在维持健康的心血管活动中发挥关键作用。

临床改善:益生菌改善心脏收缩功能

在一项针对心力衰竭患者(NYHA II级或III级,LVEF<50%)的小型双盲、安慰剂对照试点研究中,随机接受益生菌治疗,接受布拉酵母菌Saccharomyces boulardii)(每天1000mg,持续3个月)或安慰剂。与安慰剂组相比,接受益生菌治疗的心力衰竭患者总胆固醇水平和尿酸水平降低心脏收缩功能改善

在人类中,一项初步研究报告称,在慢性心力衰竭患者中使用益生菌布拉酵母菌进行干预后,不仅减少了全身炎症,而且改善了左心室射血分数。不过参与者人数较少(n = 20),应谨慎解释结果。

扩展阅读:如果你要补充益生菌 ——益生菌补充、个体化、定植指南


益生元

最近的一项研究报告称,益生元低聚果糖减少大鼠炎症细胞的浸润。益生元可以促进有益细菌的发生长,包括双歧杆菌和乳杆菌减轻体重和炎症改善葡萄糖和胰岛素耐受,所有这些都与更好的心力衰竭结果有关。

关于肠道微生物群对有害代谢产物产生的调节,临床前研究报告了DMB给药饮食中TMAO的去除,胆碱TMA裂解酶抑制剂碘甲基胆碱的给药在降低血清TMAO水平、改善心脏重塑和减少促炎细胞因子表达方面的有益作用。

白藜芦醇还可以通过重建肠道菌群来刺激肠道中有益细菌的生长,从而减少TMAO的产生

扩展阅读:如何调节肠道菌群?常见天然物质、益生菌、益生元的介绍


抗生素

与抗生素在心力衰竭患者肠道微生物群调节中的应用有关,研究结果存在争议

万古霉素

在动物模型中,与未经治疗的大鼠相比,口服万古霉素可诱导较小的左心室梗死面积,并改善缺血/再灌注实验后的心功能恢复

利福昔明

利福昔明除了具有杀菌和抑菌作用外,还具有减少细菌移位和毒性的能力,具有抗炎作用,可以积极调节肠道微生物群的组成,促进乳酸杆菌双歧杆菌的生长。至于人体临床试验,结果是矛盾的。

妥布霉素和多粘菌素B

在心力衰竭患者中使用妥布[拉]霉素多粘菌素B的混合物,使肠道革兰氏阴性杆菌水平正常化显著降低促炎细胞因子,血流介导的舒张改善:内皮功能障碍的证据。然而,结果仅限于给药治疗期间

此外,在开具抗生素治疗处方时,必须考虑副作用,如多粘菌素B毒性大环内酯类药物增加心肌梗死风险。

最近一项评估共生给药对慢性心衰患者左心室肥大的影响及其对血压和hsCRP作为炎症生物标志物的影响的研究报告称,与安慰剂组相比,共生给药10周后,作为左心室肥大标志物的NT-proBNP水平显著下降。hsCRP水平或血压值没有显著差异。


粪菌移植(FMT)

最近的一项研究报告称,在饮食诱导的HFpEF前啮齿动物模型中,FMT和三丁酸治疗改善了早期心脏功能障碍,并增加了支链氨基酸的分解代谢。

在人类受试者中,FMT使患有代谢综合征的肥胖个体的胰岛素敏感性正常化,但其影响是短期的。目前,还没有可用的临床研究来评估心力衰竭患者的FMT结果,但FMT具有巨大的治疗潜力,并代表了未来研究的一个有希望的方向。


生活方式

戒烟

烟草烟雾中的尼古丁会暂时增加心率和血压,吸烟还会导致血管结块或粘稠。戒烟的人更有可能改善心力衰竭症状。

适当运动,维持体重稳定

体重突然增加或减少可能是正在发展为心力衰竭的迹象。适当运动,维持体重,高强度间歇训练 (HIIT)、低强度有氧运动阻力训练等运动训练方法均能有效改善心肌功能。研究表明,高强度间歇训练在提高患者的活动水平和心脏性能方面最为有效

注意:具体合适的运动量请根据个人情况咨询医生。

限制饮酒

如果需要饮酒,请适度。男性每天不要超过一到两杯女性每天不超过一杯

管理压力


每天花 15 到 20 分钟静静地坐着,深呼吸,想象一个宁静的场景,或者尝试瑜伽或冥想等方式。

涉及深横膈膜呼吸的呼吸练习,可以帮助心力衰竭患者缓解焦虑、增加血液中的氧气水平和降低压力水平,从而改善心脏功能。

充分休息

为了改善晚上的睡眠,请使用枕头支撑头部避免睡前小睡和大餐。试着在午饭后打个盹,或者每隔几个小时把脚抬起来几分钟。

选择合适的衣服

避免穿紧身袜或袜子,例如大腿或膝盖高的袜子,它们会减慢腿部的血液流动并导致血栓。也尽可能避免极端温度。分层穿着,以便根据需要添加或脱掉衣服。

08
结 语

肠道相关微生物群的组成和功能及其在人类健康中的病理生理作用一直是活跃的研究领域。现代技术的不断进步进一步推动了心力衰竭研究的前沿,探索了心力衰竭的新方面。

本文总结了有关肠道菌群及其代谢产物对心力衰竭及其相关风险因素的影响。心力衰竭与肠道微生态失调、细菌多样性低、肠道潜在致病菌过度生长和产短链脂肪酸菌减少有关。肠道通透性增加,允许微生物移位和细菌衍生的代谢产物进入血液,这与心力衰竭的进展有关。

靶向被破坏的肠道微生物群可以被认为是一个有效的治疗目标。有许多方法可以用来调节失调的肠道微生物群,如饮食干预(包括益生元、益生菌)、生活方式调整、补充剂、粪菌移植等。

然而这些方式带来的效果可能各不相同,因为这在很大程度上取决于每个个体的肠道菌群特征,也包括遗传背景、肠道屏障功能等。因此,通过肠道菌群健康检测,以及基于菌群特征开发个性化的微生物组疗法,或为心力衰竭临床治疗带来新的途径。

注:本账号内容仅作交流参考,不作为诊断及医疗依据。

主要参考文献:

Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol. 2019 Mar;16(3):137-154. doi: 10.1038/s41569-018-0108-7. PMID: 30410105; PMCID: PMC6377322.

Lu X, Liu J, Zhou B, Wang S, Liu Z, Mei F, Luo J, Cui Y. Microbial metabolites and heart failure: Friends or enemies? Front Microbiol. 2022 Aug 15;13:956516. doi: 10.3389/fmicb.2022.956516. PMID: 36046023; PMCID: PMC9420987.

Desai D, Desai A, Jamil A, Csendes D, Gutlapalli SD, Prakash K, Swarnakari KM, Bai M, Manoharan MP, Raja R, Khan S. Re-defining the Gut Heart Axis: A Systematic Review of the Literature on the Role of Gut Microbial Dysbiosis in Patients With Heart Failure. Cureus. 2023 Feb 12;15(2):e34902. doi: 10.7759/cureus.34902. PMID: 36938237; PMCID: PMC10014482.

Malik A, Brito D, Vaqar S, Chhabra L. Congestive Heart Failure. 2022 Nov 7. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 28613623.

Lupu, V.V.; Adam Raileanu, A.; Mihai, C.M.; Morariu, I.D.; Lupu, A.; Starcea, I.M.; Frasinariu, O.E.; Mocanu, A.; Dragan, F.; Fotea, S. The Implication of the Gut Microbiome in Heart Failure. Cells 2023, 12, 1158.

Gallo A, Macerola N, Favuzzi AM, Nicolazzi MA, Gasbarrini A, Montalto M. The Gut in Heart Failure: Current Knowledge and Novel Frontiers. Med Princ Pract. 2022;31(3):203-214. doi: 10.1159/000522284. Epub 2022 Jan 28. PMID: 35093952; PMCID: PMC9275003.

Branchereau M, Burcelin R, Heymes C. The gut microbiome and heart failure: A better gut for a better heart. Rev Endocr Metab Disord. 2019 Dec;20(4):407-414. doi: 10.1007/s11154-019-09519-7. PMID: 31705258.

Chen X, Li HY, Hu XM, Zhang Y, Zhang SY. Current understanding of gut microbiota alterations and related therapeutic intervention strategies in heart failure. Chin Med J (Engl). 2019 Aug 5;132(15):1843-1855. doi: 10.1097/CM9.0000000000000330. PMID: 31306229; PMCID: PMC6759126.

Trøseid M, Andersen GØ, Broch K, Hov JR. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine. 2020 Feb;52:102649. doi: 10.1016/j.ebiom.2020.102649. Epub 2020 Feb 12. PMID: 32062353; PMCID: PMC7016372.

肠道短链脂肪酸如何让人变胖或变瘦

谷禾健康

在目前的审美中,无论男性或女性的肥胖都是不太加分项。除此之外,肥胖还被认为是几种疾病的重要标志物,特别是高血压、2 型糖尿病 (T2DM) 和代谢综合征,肥胖在这些疾病中发挥着明确而重要的病理作用。

肥胖的发生有多种病因,其中遗传倾向、错误的饮食习惯(脂肪食物)和生活方式(缺乏运动)是重要的。除此之外,某些激素失衡某些药物的副作用也有助于肥胖的形成和发展。但可惜这些致病因素无法解释所有肥胖的原因。

因此,世界范围内的研究正在继续寻找和探究,旨在找出上述因素以外的因素,以便对肥胖实行更好的管理和补救措施,从而防止这一世界性流行病的发展和由于其导致的严重病理负担

治疗肥胖有多种方法,包括饮食控制、基于激励的锻炼计划和胃绕道手术等,但并不适用于所有人。

最新研究进展揭示了肠道微生物群的构成和代谢与肥胖发生之间存在的关系。肠道微生物会帮助消化大部分食物,将其转化为营养物质、神经递质、维生素、激素等。肠道微生物组通过这些代谢物,可以影响几乎所有代谢活动

短链脂肪酸作为肠道菌群代谢产物之一,在肥胖中发挥重要作用,本文一起来了解一下。

什么是短链脂肪酸 (SCFA)?

短链脂肪酸(SCFA)是身体和饮食中的一种脂肪酸。链长是指化合物主链中的碳原子数 (C)。

短链脂肪酸(SCFA):5 个或更少的碳原子

中链脂肪酸(MCFA):6 至 12 个碳原子

长链脂肪酸(LCFA):13 至 21 个碳原子

极长链脂肪酸(VLCFA):22 个或更多碳原子

短链脂肪酸是少于 6 个碳 (C) 原子的脂肪酸。

其中乙酸盐 (C2)、丙酸盐(C3)和丁酸盐 (C4)是主要的短链脂肪酸,是在结肠中碳水化合物的细菌发酵过程中形成的。

短链脂肪酸的存在会使回肠(小肠末端)到盲肠(大肠起点)的肠道 pH 值降低,从而防止有害细菌(如肠杆菌科和梭状芽胞杆菌)过度生长。

短链脂肪酸有助于修复“肠漏”,通过增加粘蛋白 2 (MUC-2) 的分泌来加强肠壁,从而防止LPS穿过屏障

人体肠道中的短链脂肪酸

目前肠道微生物组,已经被视为是免疫系统和部分能量调节器的 “器官”。肠道微生物群促进消化和食物吸收以产生宿主能量 ,并提供维生素和短链脂肪酸。

短链脂肪酸是由肠道中的友好细菌产生的,它们是结肠细胞的主要营养来源。

在结肠中存在的总短链脂肪酸中,健康人体内的90%-95%是乙酸盐、丙酸盐和丁酸盐。

大多数短链脂肪酸在结肠中被吸收,与碳酸氢盐交换。短链脂肪酸是酸性的,而碳酸氢盐是碱性的。

短链脂肪酸和肥胖

关于短链脂肪酸和体重的信息存在一些相互矛盾的信息:

  • 一方面,它们增加了热量利用率;
  • 另一方面,它们与肥胖呈负相关

总体而言,丁酸盐似乎对肥胖具有广泛的保护作用,丙酸盐具有混合关联,而乙酸盐与体重增加有关。

肥胖个体的粪便中短链脂肪酸浓度比瘦的个体高 20%。根据一些研究人员的说法,这可能反映了一种针对肥胖的补偿性保护机制,其中更多的量从粪便中排出。这将防止肠道中短链脂肪酸的积累增加,这可能导致体重增加。

丁酸盐和丙酸盐等短链脂肪酸会增加肠道激素胰高血糖素样肽 1 ( GLP-1 ) 和多肽 YY ( PYY ) 的形成。这些通过降低食欲来减少食物摄入量。丁酸盐和丙酸盐主要是抗肥胖的。

丁酸盐

丁酸盐主要被结肠细胞用作主要的能量来源。

丁酸盐的产生受产丁酸菌数量和大肠 pH 值的影响。丁酸盐主要由肠道中的厚壁菌门细菌产生,会影响大脑中的基因表达。产丁酸菌似乎在更酸性的环境(较低的 pH 值)中茁壮成长,而乙酸和丙酸盐细菌似乎在更碱性的环境(更高的 pH 值)中茁壮成长。

结肠细胞的线粒体中,70%~90%的丁酸被氧化成乙酰辅酶A,随后通过三羧酸循环产生大量的ATP。丁酸盐已被发现可增加线粒体活性,预防代谢性内毒素血症,提高胰岛素敏感性,抗炎潜力,增加肠道屏障功能并防止饮食引起的肥胖

除此之外,研究人员还在研究丁酸盐对抗自身免疫、癌症和心理障碍等方面的潜力。

丙酸盐

丙酸盐还通过门静脉循环到达肝脏,用于产生葡萄糖。丙酸盐是肝脏进行糖异生的主要能量来源,激活三羧酸循环,改变下丘脑食欲调节神经肽的表达谱,也能刺激脂肪组织增加瘦素的表达与释放。

丙酸盐已观察到可能促进或抑制肥胖的作用,但总体而言,它似乎对肥胖具有保护作用。

丙酸盐可抑制胆固醇合成,从而拮抗乙酸盐的胆固醇增加作用,并抑制脂肪细胞中抵抗素的表达。而且,已发现这两种短链脂肪酸通过其对厌食性肠道激素的刺激作用增加瘦素的合成来引起体重调节。

乙酸盐

在所有三种短链脂肪酸中,乙酸盐似乎显示出更多的致肥胖潜力。它充当脂肪生成胆固醇合成的底物。高脂肪饮食增加了 LPS 的吸收,而 LPS 又被发现与代谢性内毒素血症有关,并诱发炎症导致肥胖。

肠道中相当大比例的乙酸盐很容易被吸收并到达肝脏(通过门静脉循环),在那里它被用来制造胆固醇

人体研究表明,在6名志愿者的饮食中给予乳果糖(经微生物群代谢产生大量乙酸盐)2周后,总胆固醇和LDL胆固醇、ApoB和血液中的乙酸盐水平均显著升高。

虽然乙酸盐主要是致胖的,但它也有一些可以防止肥胖的特性,其作用低于丁酸盐和丙酸盐。根据一些研究人员的说法,它可能通过增加GABA对抗下丘脑(弓状核)的体重增加

细菌种类和肥胖

肥胖动物和人的微生物群落多样性较低,拟杆菌门、疣微菌的百分比较低厚壁菌门和放线菌的百分比较。但是其中一些结果没有并不能在所有研究中重现。

种属层面:

<来源:谷禾健康肠道菌群检测数据库>

以下微生物导致肥胖的证据较少:

与较瘦的受试者相比,肥胖小鼠和人类体内的产甲烷古菌含量更高。

M. smithiiB. thetaiotaomicron的共定植导致膳食果聚糖发酵成乙酸盐,从而显着增加脂肪生成

M. smithii存在于 70% 的人类中,它会产生甲烷。已发现通过去除氢原子来增强多糖和其他碳水化合物的发酵,导致更多的短链脂肪酸产生,从而增加它们的吸收。这些短链脂肪酸作为额外的能量来源发挥作用,可能导致体重增加和随后的肥胖。

与瘦受试者和胃绕道手术后的受试者相比,肥胖个体的产氢普雷沃菌科(一种拟杆菌门)和甲烷杆菌目(古细菌,它们是一种氧化产甲烷菌)的数量处于较高水平。研究人员假设氢气减少了,这使得短链脂肪酸的产量更高。这导致更多的能量被肠道吸收。

已发现肥胖人类和小鼠的肠道菌群特征如下:

  • 普通拟杆菌Bacteroides vulgatus相对比例低
  • Erysipelotrichi 较高(与儿童热量摄入增加有关)
  • OscillibacterClostridium簇XIVaIV(在易肥胖的小鼠中发现,并且在其抗肥胖的对应物中完全不存在)
  • 瘤胃球菌高(其大多数物种属于几个梭菌簇,包括梭菌簇 IV 和 XIVa)
  • 已发现Clostridium leptum(簇IV)与肥胖和体重减轻有关
  • F. prausnitzii 与肥胖和糖尿病中低度炎症状态的减少直接相关(与卡路里摄入量无关)

增加短链脂肪酸的食物来源

直接含有短链脂肪酸的食物

主要来源是乳制品,黄油等,其中含有丁酸盐。例如,黄油大约含有 3% 至 4% 的丁酸。这听起来可能不多,但它比大多数其他食物都多。推而广之,酥油还含有丁酸。

其他类型的乳制品也很重要。开菲尔和酸奶通常含有益生菌。这些益生菌可以帮助提高短链脂肪酸水平,只要没有乳糖吸收问题。

然而需要注意的是,以上食物如黄油类的并不能多吃,而通过食物改善肠道菌群组成,从而增加短链脂肪酸是相对有效和安全的方式。

因此,饮食方式对于调节体内短链脂肪酸较为重要,低碳水化合物、高脂肪(或高蛋白)饮食可能降低丁酸盐的产量,因为这样的饮食方式可能会剥夺肠道中产丁酸的细菌最喜欢的食物。那么具体该怎么吃?

通过菌群调节增加短链脂肪酸的食物

大量富含纤维和抗性淀粉类的食物,例如水果、蔬菜和豆类,与短链脂肪酸的增加有关。其中每一种都是由许多不同的底物(食物中的元素)产生的,并且影响不同的肠道微生物,进而影响不同的短链脂肪酸的产生,在调节体重方面发挥着不同的作用。

一项针对 153 人的研究发现,植物性食物摄入量增加与粪便中短链脂肪酸含量增加之间存在正相关关系。

纤维摄入量和类型间接影响短链脂肪酸生成

摄入的纤维量和类型会影响肠道细菌的组成,进而影响短链脂肪酸的产生。例如,研究表明,多吃纤维会增加丁酸盐的产量。

以下类型的纤维最适合在结肠中产生短链脂肪酸

菊粉:进食菊粉刺激肠道菌群中芽孢杆菌属和拟杆菌属的细菌,产生短链脂肪酸显著提高。菊粉还能维持肠黏膜屏障的稳态,激活AMPK,缓解糖脂代谢紊乱,恢复免疫监控,防止肥胖等代谢性综合征的出现。

  • 大蒜、韭菜、洋葱、小麦、黑麦和芦笋中可以获取菊粉。

低聚果糖 (FOS):低聚果糖主要用作替代甜味剂。

  • FOS 存在于各种水果和蔬菜中,包括香蕉、洋葱、大蒜和芦笋
  • 也存在于某些谷物和谷物中,例如大麦和小麦
  • 低聚果糖最集中的来源是菊芋、雪莲果。但很多人不会经常吃这些。

抗性淀粉:抗性淀粉具有许多优点,与肠道健康特别相关,一些研究人员认为,吃富含抗性淀粉的饮食可以促进产丁酸菌的生长。抗性淀粉如绿色香蕉,还可以帮助降低血糖水平。

  • 大麦和糙米等全麦谷物含有抗性淀粉。
  • 扁豆、绿色香蕉(但不是黄色香蕉)、煮熟后冷却的土豆和红薯也是极好来源。
  • 一些块茎类如山药,也可以获取抗性淀粉。

果胶:水果是果胶的最主要来源——通常含有 5% 至 10% 的果胶。

  • 果胶含量很高的水果包括桃子、苹果、橙子、葡萄柚和杏子
  • 柑橘类水果对果胶特别有效,尽管数量会因品种而异。柑橘皮作为果胶的来源更为有效。
  • 相比之下,樱桃和草莓等软质水果通常含有较低水平的果胶。
  • 胡萝卜是果胶含量最高的植物来源,一根大胡萝卜含有约0.58克果胶。
  • 西红柿(中号番茄 0.37 克)和马铃薯(中号马铃薯 0.64 克)也是有用的果胶来源。
  • 豌豆是果胶的最高豆类来源,每杯含有近一克果胶。
  • 谷物也是果胶的良好来源。

阿拉伯木聚糖:阿拉伯木聚糖存在于谷物中。

  • 它是麦麸中最常见的纤维,约占总纤维含量的 70%。

阿拉伯半乳聚糖,也称为甘露半乳聚糖,是一种有助于为肠道提供短链脂肪酸的糖类。

瓜尔豆胶跻身提供短链脂肪酸的食品之列。瓜尔豆胶是一种增稠剂,来自一种豆类。极少量的瓜尔胶对肠道有益,但大量会导致腹胀和胀气。

目前还有短链脂肪酸补充剂。最常见的类型是丁酸盐,如丁酸钠。这些补充剂是直接提供,而不是让身体去产生它。可能存在的问题是,使用这种类型的补充剂,丁酸盐通常在化合物到达结肠之前很久就被吸收了。这可能意味着带来的健康效果不佳,但是不能排除部分情况下补充剂可能仍然有用

每种食物都有自己独特的营养成分,保持饮食多样性可以最大程度避免某些营养物质的缺乏。

一般人对饮食和补充剂的反应各不相同,因为每个人都有独特的“健康密码”。可能有些人吃了抗性淀粉或者高膳食纤维食物会出现腹胀,胀气等问题,可以进行肠道菌群健康检测,查看是哪些菌群超标可能带来的消化道问题。

需要深度挖掘自己的健康信息,并找到可能导致慢性健康问题的原因,然后根据个性化的建议调整,从而帮助达到最佳健康状态。

主要参考文献

Kallus SJ, Brandt LJ. The intestinal microbiota and obesity. J Clin Gastroenterol. 2012 Jan;46(1):16-24. doi: 10.1097/MCG.0b013e31823711fd. PMID: 22064556.

Chakraborti CK. New-found link between microbiota and obesity. World J Gastrointest Pathophysiol. 2015 Nov 15;6(4):110-9. doi: 10.4291/wjgp.v6.i4.110. PMID: 26600968; PMCID: PMC4644874.

Chakraborti CK. New-found link between microbiota and obesity. World J Gastrointest Pathophysiol. 2015 Nov 15;6(4):110-9. doi: 10.4291/wjgp.v6.i4.110. PMID: 26600968; PMCID: PMC4644874.

Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, Nauta A, Scott K, Stahl B, van Harsselaar J, van Tol R, Vaughan EE, Verbeke K. Short chain fatty acids in human gut and metabolic health. Benef Microbes. 2020 Sep 1;11(5):411-455. doi: 10.3920/BM2020.0057. Epub 2020 Aug 31. PMID: 32865024.

How Your Gut Microbiota Can Make You Fat (or Thin),Last updated: August 24, 2022,selfhacked

Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol. 2016 Feb 17;7:185. doi: 10.3389/fmicb.2016.00185. PMID: 26925050; PMCID: PMC4756104.


肠道核心菌属——优/真杆菌属(Eubacterium),你为什么要关心它?

谷禾健康

Eubacterium        通常翻译为真杆菌属或优杆菌属

Eubacterium革兰氏阳性细菌,属于真杆菌科,厚壁菌门。

Eubacterium 是在健康人结肠中发现的一种重要的肠道细菌,它是人类肠道微生物群的核心菌属之一,并显示出在大部分人群肠道,口腔等部位的广泛定植,对机体有营养代谢和维持肠道平衡有重要的作用。但是少数菌种可与其它兼性厌氧菌造成混合感染,引起人心内膜炎,盆腔炎等疾病。

这个家族的成员很重要,因为许多菌种产生短链脂肪酸,尤其丁酸。短链脂肪酸普遍被认为对维持人体健康具有多种重要作用,例如充当肠道上皮特殊营养和能量组分、保护肠道黏膜屏障、降低人体炎症水平和增强胃肠道运动机能等等。

F.prausnitziiEubacterium rectaleEubacterium halliiRoseburia gutisRuminococcus bromii是人类肠道中产生丁酸的主要物种。真杆菌属的几个成员均产生丁酸盐,丁酸盐在能量稳态、结肠运动、免疫调节和肠道炎症抑制中起着关键作用。

同时真杆菌属成员还被证明在以下过程发挥关键作用:

胆汁酸和胆固醇转化

参与草酸盐分解代谢

促进抗炎分子的产生

预防气道过敏性炎症

降低胰岛素分泌并增加“健康”脂肪的水平

与下腹部脂肪之间的关联

在越来越多的肠道菌群研究中发现,Eubacterium的减少或缺乏与很多疾病相关,比如抑郁和/或疲劳、肥胖、IBD、II型糖尿病、心脑血管、结直肠癌、自闭症、老年肌少症、肠道健康以及肿瘤预后良好和肠道稳态状态等。

该属的多个物种目前被认为是微生物治疗的有希望的目标。事实上,基于谷禾长期的菌群检测实践与肠道微生物科学研究等达成的“共识”表明,肠道真杆菌属(Eubacterium罗氏菌属(Roseburia)和粪杆菌属, (Faecalibacterium, 也称为普拉梭菌)等的特定产丁酸盐微生物菌株属于对人类健康有益的菌属,其作用方式与乳杆菌属和双歧杆菌属菌株可能相同。

但是,需要注意的是,Eubacterium属正如下面进一步讨论的一样,很难定义,因为最初分配给该属的几个物种随后被重新分配给现有的或新的属。即使是现在,该属在系统发育上仍然是多样化的,成员可以被分配到几个谱系。认识到这种分类学的变化,我们将包括一些最近重新分配给其他属的前真杆菌属物种。此外,本文也将在很大程度上讨论对真杆菌属的与肠道以及健康相关的信息。

01
简 介

真/优杆菌属(Eubacterium)是人类胃肠道含量较为丰富的菌属,是人和动物口腔与肠道正常菌群的成员。

该属由系统发生学上和表型上不同的物种组成,使真杆菌属成为分类学上独特且具有挑战性的属。该属的特征是包含多种表型多样化的物种,革兰氏阳性杆状生物属,非孢子形成,这些细菌的特点是坚硬的细胞壁。它们可以是能动的或不能动的。如果能动,它们就有鞭毛。通常单独出现,成对出现,或短链。偶尔与腹部、骨盆或泌尿生殖道的混合感染有关。

该物种是厌氧的,这使得真杆菌属的表型鉴定非常耗时,这可能一定程度抑制了对从粪便中分离的属成员的详细研究。

02
代谢与生态分布

真杆菌属

Eubacterium

化能有机营养,发酵代谢,有些种利用碳水化合物。发酵葡萄糖或蛋白胨的主要产物通常包括大量的丁酸、乙酸或甲酸并有可测得的H2的混合酸。接触酶阴性,通常吲哚阴性。可能还原硝酸盐,可能液化明胶。

1938年首次提出,常在哺乳动物的口腔和肠道中发现,包括在反刍动物的瘤胃以及在环境中。

该属构成人类肠道微生物群的核心属之一,并显示出在全世界人类肠道的广泛定植,包括亚洲、非洲、澳大利亚、欧洲、南美洲、北美洲等不同人群中,表明该菌属具有高度的特异性和适应性。真杆菌属DNA(G + C)含量约为30~57mol%,代表菌种为黏液真杆菌

多数物种要求特殊的厌氧培养技术和营养丰富的培养基,菌落通常低凸或平坦。这个属里的有些种在自然界中可被糖乳酸化或可运动。

本属细菌从碳水化合物或蛋白胨中产生有机酸混合物,其可能包括大量的丁酸、乙酸和甲酸。

03
系统发育上是多样性

根据Bergey的《细菌和古菌系统学手册》以及NCBI分类学的最新版本,真细菌属属于厚壁菌门、梭状芽胞杆菌目和真细菌科。

由于该属的定义相当宽松,目前该属中的许多物种不属于严格意义上的属,很可能会及时移至新的或现有的属中。

2020年爱尔兰Cotter 团队提供了该树的更新,以显示该属某些成员与其他密切相关物种之间的系统发育关系(下图)。

真杆菌属的系统发育关系

doi: 10.1080/19490976.2020.1802866

▸ 真杆菌属的重新分类

经过重新分类的真杆菌属的大多数成员被归入厚壁菌门,并广泛分布于其中。例如,E. formicgeneransE. timidum,它们分别被重新分配到DoreaMogibacterium

然而,其他几个成员已被重新分配到其他门;实例包括将真杆菌物种重新分配给Slackia CryptobacteriumEggerthela等属,所有这些属都属于放线菌门

值得注意的是,某些E. cylindroides等真杆菌属物种可能同时表现出革兰氏阳性和革兰氏阴性特征,从而在分类学分配中经常实施的基本表型特征中产生歧义;这进一步导致了真杆菌属物种分类的相当大的混乱

▸ 狭义的真杆菌属

有人提出,狭义真杆菌属的核心基因型仅限于该属的模式种Eubacterium limnosum,以及Eubacterium callanderi Eubacterium barkeriEubacterium aggregans,当有足够的基因组和系统发育证据支持时,其余物种可能被同化为/重新分类为现有或新属

为实用起见,迄今为止,成员已根据系统发育特征分为子类别。提议的松散系统发育子类别之一包含E. rectaleE. oxidoreducensE. ramulusRoseburia cecicolaR. intestinalis,其中除E. oxidoreducens之外的所有物种都产生丁酸盐并且是糖分解的

▸ 进一步分类的必要性

后来又有科学家提出了对其中一些物种进行重新分类的有力案例。E. eligens是一种重要的肠道真杆菌,已被发现与Lachnospira pectinoschiza具有相当大的系统发育和表型相似性,并且随着进一步证据的可用性而值得重新分类

鉴于它们不同的表型和系统发育特征,某些对肠道健康很重要的真杆菌属物种已经或计划进行重新分类。例如,建议将E. hallii重新分类为Anaerobutyricum hallii Comb。

2020年11月,报道了一种类似的新型产丁酸盐和丙酸盐的物种Anaerobutyricum soehngenii。事实上,E. halliiE. indolisE. cellulosolvensE. plexicaudatumE. ruminantiumE. saburreumE. xylanophilumE. uniforme 和 E. ventriosum 一起构成了真杆菌属中有趣的种。

值得注意的是,这一群体的成员在系统发育上或表型上与该属中的其他物种没有亲缘关系,并表现出独特的特征,从而为每个物种创建一个新的属。

▸分类对人类微生物群研究影响大,重新分类需谨慎

此外,最近有人提议将最重要的肠道微生物之一直肠肠杆菌重新归类为直肠Agathobacter。然而,这种重新分类受到其他科学家等人的质疑。认为没有理由重新分类并指出其分类学或系统发育隶属关系的任何变化都将对人类微生物群研究产生重大影响。

可以理解的是,提出的分类学重新分配尚未被普遍接受,事实上,如前所述,在考虑真杆菌属任何成员的分类学分类和报告时必须小心。与属的分类有关的进一步努力应该主要关注基因型,并强调基因组特征

真杆菌属目前的模式菌种为黏液真杆菌(Eubacterium limosum)。研究较多的是:

  • 黏液真杆菌(Eubacterium limosum)
  • 迟缓真杆菌(Eubacterium lentum)
  • 直肠真杆菌(Eubacterium rectale)
  • 霍氏真杆菌 (Eubacterium hallii)
  • 惰性真杆菌 (Eubacterium siraeum)
  • 挑剔真杆菌 (Eubacterium Eligens)

04
哪些因素影响肠道真杆菌属

饮 食

饮食是决定肠道菌群组成和多样性的最重要因素之一。就真杆菌属而言,它们在肠道中的存在在很大程度上与膳食纤维摄入量增加有关,多项研究证真杆菌属对消化抗性复合碳水化合物的利用,并且已被证明随着饮食中蛋白质/脂肪百分比的增加而减少

E. halliiE. rectale被证明能够利用证明能够利用补充有抗性碳水化合物的培养基,即长链的果聚糖,如低聚果糖、高性能菊粉。

▸ 地中海饮食增加真杆菌属的数量

多项研究报告称,西方饮食中动物蛋白和脂肪比例增加且纤维含量低,导致肠道细菌丰度显着下降,包括双歧杆菌和真杆菌属等理想的菌群。涉及地中海饮食的研究也表明,地中海饮食可以增加肠道中真杆菌属(Eubacterium的数量。

研究显示45岁男性食用富含多不饱和 omega-3 脂肪酸的饮食时,肠道微生物群的变化,包括真杆菌在内的几种丁酸盐菌的丰度急剧增加,表明多不饱和脂肪酸对真杆菌的正向调节

年 龄

衰老过程中,胃肠道会发生变化,包括粘膜屏障和肠神经系统的退化以及肠道运动的改变和胃肠道病变的增加。

▸老年菌群多样性↓,短链脂肪酸生成↓,肠道炎症↑

总的趋势是,老年人的微生物群多样性随着丁酸盐生产者的减少和潜在病原体数量的增加减少。肠道中短链脂肪酸生成的减少可导致肠上皮细胞粘蛋白分泌受损,从而增加病原体进入肠粘膜的机会, 潜在的肠道炎症

老年人中,肠道相关淋巴组织 (GALT) 受损会加剧肠道炎症,导致无法有效控制常驻微生物群并导致肠细胞释放促炎细胞因子和趋化因子;后者驱动效应 TH1、TH2 和 TH17 细胞的分化。

与上面观察结果一致的是,在百岁老人中,在百岁老人中发现了E. hallii、E. rectale 和 E.ventriosum相对比例降低,而来自变形杆菌门的潜在致病细菌增加

▸ 真杆菌:老年肠道微生物生态系统中的关键物种

后续的研究进行的一项广泛研究强调了真杆菌属的有益作用,其中调查了一大群老年人(n=612),以评估地中海饮食对其肠道微生物群的调节作用。作者报告称,真杆菌(Eubacterium)物种,如直肠真杆菌(E.rectale)和 E.eligens与一些较低虚弱、认知能力提高以及短/支链脂肪酸产量增加的标志物呈正相关。

真杆菌与炎症标志物如IL-2和C反应蛋白呈负相关。此外,网络分析显示,真杆菌属是老年肠道微生物生态系统中的关键物种。然而,与这些一般观察结果相反,其他研究推断出真杆菌属与年龄之间存在正相关。

05
Eubacterium 的健康特性

真杆菌有助于肠道健康

短链脂肪酸有益于人类健康,它们由不同的结肠微生物群产生,包括来自真杆菌属的几种物种(上图)。

▸ E. rectale 是研究最广泛的真杆菌种之一

它首先从健康的日本-夏威夷男性的粪便中分离出来,被确定为主要的丁酸盐生产者,能够利用复杂的碳水化合物(如纤维二糖和淀粉)进行生长和增殖。

▸ 产丁酸的途径,与真杆菌相关

E. hallii是人体肠道中的丁酸盐生产者。在肠道中,丁酸可以通过糖酵解从碳水化合物中产生,其中两分子乙酰辅酶A结合形成乙酰乙酰辅酶A,然后逐步还原生成丁酰辅酶 A。

目前已知丁酸CoA最终转化为丁酸的两种不同途径;这通过丁酸CoA:乙酸CoA转移酶途径或磷酸转丁酸酶和丁酸激酶途径进行。丁酰辅酶 A 转移酶途径与丁酸合成基因与直肠真杆菌和Roseburia等物种密切相关。

其他真杆菌种也采用相同的途径,例如E. halliiE. biforme(现在重新归类为Holdemanella biformis)用于生产丁酸盐。

▸ 丁酸高产的真杆菌属——E. rectale 和 E. hallii

E. rectaleE. hallii随后被确定为肠道中的高产丁酸盐生产者。它们被发现是人类粪便微生物群中最丰富的 10 个成员之一,贡献了从 10 名健康志愿者的粪便样本中检索到的超过 44% 的丁酰辅酶 A:乙酸 CoA 转移酶序列。

瑞士最近的一项队列研究也表明,E. hallii 是婴儿肠道中丁酸的首批生产者之一。

▸ 转化为丙酸的1,2-丙二醇可被E. hallii 代谢

肠道微生物通过糖发酵的两种途径形成丙酸。虽然琥珀酸途径处理大多数戊糖和己糖产生丙酸,但丙二醇途径代谢脱氧糖如岩藻糖和鼠李糖。后者作为膳食(例如人乳低聚糖)或宿主衍生(粘蛋白)聚糖在肠道环境中很容易获得,并且在被各种肠道微生物利用后可以产生 1,2-丙二醇作为最终产物。虽然不能降解脱氧糖,但 1,2-丙二醇可被E. hallii代谢,已证明携带甘油/二醇脱水酶PduCDE,这是1,2-丙二醇转化为丙酸和丙醇并生成一个ATP的关键酶

1,2-丙二醇转化为丙酸取决于维生素B12的有效性,并发生在称为多面体的小隔间内,以隔离有毒中间体丙醛。

虽然真杆菌属(Eubacterium)可以降解复合碳水化合物,但某些真杆菌属菌株可能缺乏降解特定复合碳水化合物的能力,并依赖于其他肠道微生物产生的代谢产物;然后,这些其他肠道微生物产生的发酵产物可以被真杆菌利用。

▸ 交叉喂养机制在真杆菌属生产短链脂肪酸中的重要性

已在多个实例中得到证明。在这些研究中,真杆菌与双歧杆菌在复合碳水化合物存在下共培养。这些双歧杆菌菌株能够降解阿拉伯木聚糖低聚糖岩藻糖基乳糖等复合碳水化合物,可产生乙酸盐、乳酸和 1,2-丙二醇,所有这些物质又被真杆菌属吸收和利用,生成丁酸和丙酸。真杆菌属这种交叉喂养的证据。

这不仅强调了肠道微生物抗性碳水化合物的产丁酸作用之间的协同相互作用,而且强调了肠道微生态整齐的生态互作,不是关注一个菌而是整体的菌群健康状况。同时也突出了真杆菌属在维持肠道健康中的生态作用。

真杆菌调节预防肠道炎症

研究已经证实丁酸盐构成了结肠细胞的主要能量来源,促进了它们的增殖、成熟,发育成健康的结肠。事实上,据报道,E. rectale 直肠真杆菌优先定殖粘液层,从而增加丁酸盐对上皮结肠细胞的生物利用度

▸ 短链脂肪酸促进肠道完整性

此外,短链脂肪酸已被证明在通过促进肠道完整性和调节免疫反应来调节肠道炎症方面发挥重要作用。短链脂肪酸可以通过上调紧密连接蛋白(例如 claudin-1 和 occludin)以及肠粘蛋白、粘蛋白 2 来改善肠上皮抵抗力。

▸ 短链脂肪酸激活GPCR,抑制HDAC

短链脂肪酸对免疫反应的调节,包括G 蛋白偶联受体 (GPCR) 的激活和组蛋白脱乙酰酶 (HDAC) 的抑制。 短链脂肪酸可以结合至少四种离散的 GPCR——FFAR2(游离脂肪酸受体)、FFAR3、GPR109a 和 Olfr78 作为配体,尽管具有不同的特异性。

▸ 短链脂肪酸抑制促炎细胞因子,上调抗炎细胞因子

一些研究表明,短链脂肪酸可以通过抑制促炎细胞因子(如 IFN-γ、IL-1β、IL-6、IL-8 和 TNF-α)发挥抗炎作用,同时上调抗炎细胞因子例如 FFAR2/FFAR3 依赖性方式的 IL-10 和 TGF-β。

GPR109a 激活结肠巨噬细胞和树突状细胞中的炎性体通路,从而诱导调节性 T 细胞和产生抗炎性 IL-10 的 T 细胞的分化。

doi: 10.1080/19490976.2020.1802866

▸ 短链脂肪酸增加IL-18 的产生

短链脂肪酸在肠上皮细胞 (IECs) 中激活 GPR109a 也可以增加 IL-18 的产生,IL-18 是修复和维持肠上皮完整性的关键细胞因子。丙酸盐和丁酸盐对 HDAC 活性的抑制与 IEC 中促炎细胞因子和趋化因子(如 CXCL8 和 CCL20)的表达下调有关。

短链脂肪酸对 HDAC 的抑制也与 β-防御素和导管素(如 LL-37)的表达增加有关。鉴于如上所述,短链脂肪酸广泛参与调节肠道健康,尤其是丁酸盐,由于肠道中短链脂肪酸分布的改变,涉及短链脂肪酸生产者的肠道微生物群失调具有重大影响。

注:组蛋白去乙酰化酶(histone deacetylase,HDAC)是一类蛋白酶,对染色体的结构修饰和基因表达调控发挥着重要的作用。

真杆菌属与炎症性肠病

炎症性肠病 (IBD) 是胃肠道的严重和慢性炎症,其特征在于两种主要的临床表型:克罗恩病 (CD) 和溃疡性结肠炎 (UC)。克罗恩病涉及上皮壁所有层的透壁炎症,而溃疡性结肠炎仅影响浅表粘膜层

▸ IBD患者真杆菌属持续减少

一般来说,IBD 反复表现出肠道微生物群失调,其特征是微生物群的多样性和时间稳定性下降。虽然微生物干扰在 IBD 的发病机制或病因中的确切作用仍在阐明,但包括真杆菌属(Eubacterium在内的丁酸盐生产者的比例在 IBD 受试者中肠道中的持续减少

▸ IBD患者丁酸水平降低

事实上,与非 IBD、健康个体相比,IBD 患者中梭菌簇 IV 和 XIVa 的丰度减少以及伴随的致病变形杆菌增加构成了 IBD 微生物失调的特征,可以被视为生物标志物。因此,在患有 IBD 的患者中通常会观察到肠道丁酸水平降低,从而导致宿主免疫系统调节不当。IBD 和实验性结肠炎患者肠道中短链脂肪酸水平降低也与调节性 T 细胞功能降低和炎症增加相关。

▸ 真杆菌在IBD中提供了丁酸盐介导的保护作用

用溃疡性结肠炎和克罗恩病患者粪便微生物群的体外研究表明,丁酸盐产生者较少,定植能力和丁酸盐产生能力降低;用已知的丁酸盐产生菌(包括真细菌属)补充IBD微生物群可恢复丁酸盐的产生,并改善上皮屏障完整性和定植能力。

真杆菌的作用在接受抗 TNF-α 治疗的患有 IBD 的儿童中,进一步证明了肠道健康中的丁酸盐-抗炎轴E. rectale基线丰度较高的患者对治疗更敏感,E. rectale(直肠真杆菌)的存在预示炎症的成功减轻

在体外和小鼠模型中已经证明了E. limosum粘液真杆菌及其产生的短链脂肪酸对肠道炎症的保护作用。当TNF-α处理刺激时,由E.limsum产生的短链脂肪酸诱导T84结肠细胞生长,并降低结肠细胞IL-6和TLR4的表达,其中丁酸盐是最显著的效应物。此外,与对照组相比,当提供5%的E. limosum时,小鼠在结肠炎诱导时显示出体重和结肠长度的显著保留。这些观察表明,真杆菌属对肠道健康具有丁酸盐介导的抗炎作用,并将其作为炎症性肠道疾病的一种有吸引力的生物治疗药物。

真杆菌属和肥胖

到目前为止,真杆菌属与肥胖的关系仍存在争议,有几份报告表明真杆菌属和肥胖呈正相关。BMI通常被认为是用来衡量肥胖的参数;一些基于BMI的研究也报告了肥胖受试者体内真杆菌的丰度更高

▸ 为什么肥胖人群真杆菌的丰度更高?

有趣的是,据报道,在接受治疗的肥胖受试者中,粪便短链脂肪酸减少的肥胖个体中总丁酸水平较高,这表明碳水化合物和脂质的同化增强,这可能导致肥胖表型。这一观察结果可以解释肥胖个体中丁酸盐产生菌(包括真杆菌属)的丰度较高

仔细观察饮食干预研究表明,肥胖受试者中真杆菌属其他丁酸盐产生者的比例可能主要受饮食影响。在几项研究中,肥胖个体肠道微生物对复合碳水化合物的利用受到限制,一直有报道称真杆菌属的显著减少

对印度肥胖和非肥胖儿童进行的一项研究没有发现各组间直肠大肠杆菌(Eubacterium rectale) 丰度的差异。

综合来看,目前的证据表明,当通过合理数量的复合碳水化合物的持续供应在肠道时,真杆菌属和其他丁酸盐产生菌在肥胖个体中的比例增加,从而促进肠道中的能量提取。肥胖个体的饮食而非改变的代谢参数也可能驱动丁酸盐产生菌(包括真杆菌属)的生长和增殖。

▸ 肠道微生物群调节肥胖的确切机制仍在阐明中

丁酸盐已被证明可以缓解饮食诱导的肥胖和改善葡萄糖稳态,这使得很难得出线性结论。在推断肠道菌群和肥胖之间的直接关联时必须谨慎,因为对于具有多因素影响的代谢综合征,任何的相关性结论可能会过于简单。我们在检测实践中也发现,菌群可能只能解释60%左右的肥胖,肥胖是一种多因素代谢综合征,还与菌群外的其他很多因素相关。

真杆菌影响胃肠激素和胰岛素,缓解 II型糖尿病

在几项研究中,真杆菌属和丁酸盐产生菌胰岛素敏感性呈正相关。最近的独立研究比较了健康和2型糖尿病个体的宏基因组,明确表明肠道微生物群与2型糖尿病病理生理学之间的潜在相关性

▸ 2型糖尿病患者真杆菌显著减少

一项在中国和欧洲人群中进行的研究均报告了2型糖尿病受试者中丁酸盐产生菌(包括真杆菌属)的显著减少。其他研究表明,在人和小鼠胰岛素抵抗模型中,丁酸盐生产商(包括从瘦个体移植的真杆菌属)具有恢复作用。

▸ 粪菌移植后真杆菌的增加,代谢改善

事实上,粪菌移植后真杆菌的增加与胰岛素抵抗个体的代谢改善相关。当向肥胖和胰岛素抵抗的db/db小鼠口服给药时,已表明E.hallii显著改善胰岛素敏感性和能量代谢。

▸ 2型糖尿病的代谢调节,与菌群代谢产物短链脂肪酸相关

短链脂肪酸对肠道激素的刺激和对食物摄入的抑制,是2型糖尿病个体肠道微生物群调节宿主代谢的可能机制。这种提出的机制与观察结果一致,即与FFAR2受体结合的丁酸盐和丙酸盐可以调节饱腹激素,例如生长素释放肽(促食欲肽)、胰高血糖素样肽-1(GLP-1)和PYY(促食欲肽) 。

短链脂肪酸对生长素释放肽和 GLP-1/PYY 的相反调节,其中 GLP_1/PYY 上调,生长素释放肽下调,确保减少食物摄入、饱腹感和减少肥胖。 Ghrelin,也与产生丁酸盐的E. rectale负相关

注:Ghrelin,也被称为“饥饿激素”,刺激食欲,在饭前分泌,而 GLP-1 和 PYY 由肠内分泌 L 细胞合成和释放,刺激胰腺 β 细胞分泌胰岛素,减少食物摄入,使能量正常化摄入量和体重减轻。

▸ 直肠真杆菌高丰度与较低的餐后血糖反应呈正相关

一个大型队列(n=800)进行了一项基于机器学习的研究,以便使用从饮食习惯、肠道微生物群、人体测量、身体活动和血液参数中得出的综合特征数据集来预测个体的个性化餐后血糖反应,也支持真杆菌属在胰岛素敏感性中的肯定作用。在他们的研究中,肠道微生物组的72个特征被推断为具有预测性,其中直肠大肠杆菌Eubacterium rectale)是最强大的特征之一,肠道中较高的细菌丰度与较低的餐后血糖反应呈正相关(n = 430)。

▸ 真杆菌产生的丁酸盐改善胰岛素敏感性和饱腹感

真杆菌产生的丁酸盐也可以通过HDAC(组蛋白去乙酰化酶)抑制介导的胰腺β细胞重编程来改善胰岛素敏感性和饱腹感,从而为2型糖尿病患者提供额外的益处。

▸ 真杆菌产生的短链脂肪酸有助于恢复炎症

据报道,2型糖尿病中存在低度炎症,其中炎症分子在胰岛素靶组织中上调,并导致胰岛素抵抗。例如,TLR4依赖性通过激活胰岛中的巨噬细胞和β细胞产生促炎细胞因子,导致β细胞的调节失调、功能受损和生存能力下降。由真杆菌产生的短链脂肪酸可通过上述机制有助于恢复生理炎症环境。2型糖尿病中其他肠道丁酸盐产生者的持续减少也加强了这种联系。因此,目前的观察结果一致表明,真杆菌属是缓解2型糖尿病的积极贡献者,应被视为一种潜在的治疗方法。

真杆菌属对胆固醇的转化提供预防心血管疾病的保护

20世纪30年代首次报道了肠道细菌将胆固醇转化为粪甾醇(coprostanol),此后进行了几项研究,以确定能够将胆固醇转化成粪甾醇的细菌。许多已鉴定的微生物最终被归入真细菌属

 可降解胆固醇的真杆菌:

——Eubacterium coprostanoligenes HL

Eubacterium coprostanoligenes HL (ATCC 51222) 代表了一种这样的细菌,该菌是从生猪污水泻湖中分离出来的,并且由于其降低胆固醇的特性而受到相当大的关注。

尽管随后有报道称多氏拟杆菌 (Bacteroides dorei)、乳杆菌(Lactobacillus sp)和双歧杆菌(Bifidobacterium sp)具有胆固醇利用特性,但这些特性似乎是暂时性的,可能会丢失,从而使Eubacterium coprostanoligenes HL成为唯一可降解胆固醇可培养肠道分离物。

▸ 肠道微生物群中E. coprostanoligenes 的存在与粪便粪甾醇密切相关

最近,在肠道宏基因组中发现了E. coprostanoligenes 的3β-羟基类固醇脱氢酶同系物,可将胆固醇转化为粪甾醇

有趣的是,这些肠道甾醇代谢A基因(ismA)被归因于尚未培养的肠道微生物,它们与生命树中的真杆菌物种形成了一个连贯的分支,并可能代表了参与肠道胆固醇降低的新真细菌物种

▸ Eubacterium coprostanoligenes的胆固醇代谢

doi: 10.1080/19490976.2020.1802866

来自膳食和额外膳食来源的近1克胆固醇每天到达人体结肠,在那里由共生肠道细菌代谢为粪甾醇。与胆固醇不同,粪甾醇在肠道中吸收不良,并被认为对胆固醇代谢和血清胆固醇水平的调节有影响。

发现血浆胆固醇水平与粪便中胆固醇与粪甾醇的比例之间存在反比关系,这一观点得到了证实。因此,胆固醇向共甾醇的转化被认为是人类胆固醇稳态管理的新策略。作为一种延伸,研究了肠道内高度参与粪甾醇代谢的真杆菌属Eubacterium spp)的降胆固醇作用。

▸ 动物实验发现E. coprostanoligenes降低胆固醇

据报道,喂食E. coprostanoligenes高胆固醇血症兔子的血浆胆固醇水平降低,消化液中的粪甾醇/胆固醇比值增加。在这些兔子中观察到的效果进一步归因于E. coprostanoligenes降胆固醇,因为E. coprostanoligenes优先在空肠和回肠中定殖,这两个地方都是胆固醇吸收的场所。在无菌小鼠中也发现了类似的观察结果。

代谢组学和宏基因组学联合研究的其他结果已经确定了多种细菌门型,包括 Eubacterium eligens ATCC 27750 发光真杆菌ATCC 27750(p=1.477e-02)与高粪便粪便甾烷醇显着相关。

▸ 肠道菌群的变化与胆固醇转化速率直接相关,从而影响心血管疾病风险

动脉粥样硬化性心血管疾病 (CVD) 发展过程中的关键风险因素包括血液胆固醇水平失衡和血清低密度脂蛋白胆固醇浓度高。事实上,CVD 患者的肠道胆固醇吸收更高。值得注意的是,肠道微生物群的变化与胆固醇转化为粪前列醇的速率直接相关,而胆固醇转化为粪前列醇的效率高与 CVD 风险降低有关。

由于它们的降胆固醇作用,真杆菌属和其他降低胆固醇的微生物可以预防心血管疾病

事实上,肠道真杆菌属在动脉粥样硬化受试者中,与已动脉粥样硬化标志物(如低密度脂蛋白、胆固醇和白细胞)呈显着负相关。当给小鼠喂食甲硫氨酸-胆碱饮食以诱发非酒精性脂肪性肝炎时,小鼠肠道中的Eubacterium coprostanoligenes 也减少了,其中对肝脏的损害会抑制内源性胆固醇的产生。

真杆菌属通过胆汁酸代谢促进肠道和肝脏健康

胆汁酸 (BA) 是宿主产生的代谢物,来源于肝脏周围肝细胞中的胆固醇

我们来了解一下肝肠循环。

胆酸 (CA) 和鹅去氧胆酸 (CDCA) 是肝脏中产生的主要 BA,然后与牛磺酸或甘氨酸结合,然后暂时储存在胆囊中;这些胆汁酸随后经过餐后分泌到达肠道。肠道中 95% 的总胆汁酸池被有效吸收并通过门静脉循环回肝脏,这个循环过程被称为肠肝循环。其余的作为肠道细菌代谢的底物,构成胆固醇从体内排泄的关键途径

胆汁酸可以以多种形式出现,包括初级胆汁酸、次级胆汁酸、共轭或非共轭。肠道微生物群的各种成员都能够转化胆汁酸,从而影响局部胆汁酸库的组成以及宿主生理学的其他各个方面。

胆汁盐水解酶(BSH)酶的肠道微生物(包括真杆菌属)能够水解共轭胆汁酸中的C-24 N-酰基酰胺键,以释放甘氨酸/牛磺酸部分。

真杆菌对胆汁酸的修饰与肠肝循环

doi: 10.1080/19490976.2020.1802866

▸ 真杆菌参与人体代谢,通过影响胆汁酸的溶解率,影响胆固醇水平

事实上,真杆菌属与其他属(如RoseburiaClostridium)一起构成了肠道中胆汁盐水解酶的主要储存库。解偶联使BAs的pKa增加到约5,从而使其不易溶解,这反过来导致胆固醇从头合成所损失的胆汁酸的吸收和补充效率低下

▸ 调节胆汁盐水解酶活性来调节宿主的体重增加和胆固醇水平

胆汁盐水解酶活性广泛分布于肠道微生物群中,因此可以通过调节胆汁盐水解酶活性来调节宿主的体重增加和胆固醇水平。解偶联还通过产生的游离胆汁酸重新捕获和输出共转运的质子,从而帮助胆汁解毒,从而抵消 pH 值。

▸ 肠道细菌转化胆汁酸的方式:生成异胆汁盐

肠道细菌转化胆汁酸的另一种方式是通过C3、C7和C12位羟基的氧化和差向异构化,从而生成异胆汁盐(β-羟基)。

聚合涉及从α构型到β构型的可逆立体化学变化,反之亦然,生成稳定的氧代胆汁酸中间体。这一过程由α-和β-羟基类固醇脱氢酶(HSDHs)催化,可以由含有两种酶的单个细菌物种进行,也可以通过两种物种之间的原合作进行,每个物种贡献一种酶。据报道,包括真杆菌在内的几个物种具有HSDH活性

▸ 肠道中胆汁酸的细菌转化,真杆菌能够进行

肠道中的细菌 7α-脱羟基酶将初级胆汁酸、CA 和 CDCA 分别转化为脱氧胆酸 (DCA) 和石胆酸 。尽管从数量上讲,7α-羟基化代表了肠道中胆汁酸最重要的细菌转化,但据报道只有少数肠道微生物的不同成员,如真杆菌和梭菌XIVa 簇能够进行这种反应

▸ 真杆菌:催化初级胆汁酸7α-脱氢化,对肠道健康有重要影响

对真杆菌菌株 VPI 12708 的研究已经鉴定出由胆汁酸诱导型 ( bai ) 操纵子编码的酶,该操纵子催化初级胆汁酸7α-脱氢化的多步途径。

脱氧胆酸DCA 和 石胆酸LCA 通过真细菌对初级胆汁酸的 7α-脱氢化作用产生属 可对主要通过胆汁酸信号受体表现出来的肠道健康和体内平衡产生重大影响。DCA 和 LCA 都是核激素受体法尼醇 X 受体 (FXR) 的高亲和力配体;DCA 或 LCA 激活肠道 FXR 会上调成纤维细胞生长因子 19 (FGF19) 的表达,后者又与肝成纤维细胞生长因子受体 4 (FGFR4) 结合,随后下调肝细胞中胆汁酸的合成。

胆汁酸诱导的信号通路影响胆汁酸稳态和炎症

doi: 10.1080/19490976.2020.1802866

▸ FXR促进抗炎特性,有助于控制病原体

主要是通过抑制 NF-κB 通路和胆汁酸解毒,通过调节增殖物激活受体 α (PPARα)。据报道,FXR 激活可诱导抗菌肽的表达,从而有助于控制病原体

▸ TGR5刺激GLP-1和胰岛素分泌,调节炎症反应

TGR5是一种在与胆汁酸相互作用后激活各种细胞内通路的 GPCR,它也以胆汁酸池中最高的亲和力结合 LCA 和 DCA。一旦被激活,TGR5 会刺激肠促胰岛素激素 GLP-1 和胰岛素的分泌,从而促进能量消耗

此外,TGR5 可以调节炎症反应,这在本质上可以是促炎或抗炎的;BA-TGR5 信号在肠道促炎细胞因子和抗炎细胞因子的复杂平衡中起着关键作用。

LCA 和 DCA 还与孕烷 X 受体 (PXR)、维生素 D 3受体 (VDR) 和组成型雄激素受体 (CAR) 结合,以不同方式影响胆汁酸稳态胆汁酸解毒

生产LCA和DCA的真杆菌属是TGR5的高亲和力配体。

胆汁酸信号受体对微生物群诱导的次生胆汁酸的强亲和力,突出了包括真菌属在内的肠道菌群如何通过胆汁酸信号调节胆汁酸稳态、胆汁酸解毒、控制和维持肠道细菌生长、炎症和血糖反应。

▸ 高脂饮食过度刺激->次级胆汁酸的产生↑->促炎

受饮食和其他因素调节的肠道微生物群可导致特定的胆汁酸分布,进而产生重要后果。高脂肪饮食(HFD)(如西方饮食)过度刺激胆汁酸向肠道的排放,导致肠道微生物群失调,并增加次级胆汁酸的产生,特别是LCA和DCA。

DCA和LCA是胆汁酸池中最疏水的,升高的水平可能具有细胞毒性;DCA和LCA产生的有害影响可通过对DNA的氧化损伤、引发促炎反应和增加细胞增殖来破坏结肠上皮的结构和功能。

▸ LCA/DCA的增加间接与真杆菌相关

在喂食高脂肪饮食的小鼠中,LCA/DCA的增加与梭状芽孢杆菌(一种来自XI梭状芽胞杆菌簇的细菌)丰度的增加相关。令人惊讶的是,据报道,真杆菌属的梭状芽孢杆菌簇XIVa是次要的贡献者,尽管它们表现出7-α羟基化性质。

如上所述,这种观察结果与真细菌属一致,真细菌属受到高脂肪饮食(HFDs)的负调节

高脂饮食引起的肠内继发胆汁酸的重吸收增加,随后转运至肝脏,导致肝脏炎症。由于炎症增加导致FXR信号减少,导致肝胆汁酸转运蛋白功能降低,这会导致持续的肝脏炎症,最终导致肝细胞癌。

肝脏疾病(如肝细胞癌、脂肪酸肝病(FLD)、纤维化和肝硬化)中的生物失调还表现为需氧、促炎、富含BSH的细菌(如肠杆菌和肠球菌)的增加,这也导致继发胆汁酸的产生增加

▸ 肝病患者粪便真杆菌比例较低

事实上,在非酒精性脂肪肝(NAFLD)患者中,粪便中的初级和次级胆汁酸之间的比率以及血清中结合和非结合胆汁酸的水平更高,而真细菌在肝脏疾病中的比例始终较低。与健康个体相比,患有纤维化和肝硬化的受试者的肠道微生物组真细菌种类(如E. rectaleE. hallii 和 E. eligens )显著减少

真杆菌与结直肠癌和炎症性肠病

肠道微生物群产生的二级胆汁酸也可能在结直肠癌(CRC)的发展和建立中发挥关键作用。

▸ 结直肠癌患者中真杆菌属显著减少

如上所述,丁酸盐抑制结直肠癌的发生,并且在结直肠癌患者中通常观察到包括真杆菌在内的肠道中产丁酸盐菌的显著减少。几种丁酸盐生产者,包括属于梭状芽胞杆菌簇 XIVa 的真杆菌属,可以通过初级胆汁酸(BA) 的 7-α 羟基化额外产生次级 BA。

据报道,在患有肠道慢性炎症的 IBD 受试者中,二级 BA 水平显着降低,同时粪便结合 BA 增加,梭菌簇 XIVa 显着减少。

次级 BA 水平的降低导致次级 BA 对肠上皮细胞的抗炎作用丧失,从而加剧慢性炎症。尽管 IBD 中丁酸盐生产者和二级 BA 生产者的损失是分开进行的,但这两个群体有很大的重叠,并且都在肠道慢性炎症中被耗尽

▸ 炎症性肠病患者中真杆菌属显著减少

事实上,最近对肠道宏基因组的生物信息学分析显示,IBD患者中丁酸盐产生者F.prausnitziiE.rectale的数量显著减少。可以理解的是,这组丁酸和次级胆汁酸产生细菌(包括真杆菌属)的缺失促进了IBD的发展,并可能最终发展为结直肠癌,因为在那里观察到类似的肠道微生物群。

实际上,胆汁酸分布和/或肠道微生物群的调节正被作为肝癌结直肠癌新治疗方法

真杆菌参与神经系统疾病

▸真杆菌改善自闭症儿童症状和肠道问题

我国陆军军医大学的专家,去年在《Frontiers in Cellular and Infection Microbiology》上发表了研究报告,指出真杆菌是通过肠道菌群调整,改善自闭症患儿症状,及肠道问题的重要关键菌群。而且该研究验证了特定细菌,即真杆菌特别是其中的粪甾醇真杆菌(Eubacterium coprostanoligenes)丰度变化,可以改善自闭症患儿症状和多种肠道问题,也让调整肠道菌群成为治疗自闭症的新手段。

▸真杆菌可能避免患上痴呆症

来自日本东京工业大学的 Takuji Yamada 团队通过粪便 16S rRNA 基因测序比较了健康、轻度认知功能障碍(Mild cognitive impairment,MCI)和阿尔茨海默病组的肠道微生物组成,发现肠道关键菌株——普拉梭菌 Faecalibacterium prausnitziiF. prausnitzii)具有保护人避免患上痴呆症的作用,此外,真杆菌属在两组之间也是存在显著差异,普拉梭菌和真杆菌都是产丁酸重要的肠道核心菌,可以推断真杆菌属可能也具有保护人避免患上痴呆症的作用。

▸重度抑郁症的真杆菌水平较低

来自中国和美国三个不同机构的的一组研究人员,最近在《Science Advances》上发表了一项研究,指出了人类肠道微生物组紊乱与重度抑郁症(MDD)之间的联系。研究人员从156名重度抑郁症患者和155名没有重度抑郁症的人中,收集了311份粪便样本进行基因分析,发现重度抑郁症患者的粪便样本中,出现了高水平的拟杆菌属 和较低水平的真杆菌布氏杆菌(Blautia。这意味着,重度抑郁症患者可能具有独特的肠道微生物特征,其中真杆菌是重要的菌群特征菌。

真杆菌参与肠道中的关键代谢转化

常驻微生物群对肠道中特定化合物代谢转化对人类健康至关重要。人体无法解毒或分解的物质可能会进入肠道,从而导致毒性作用。

真杆菌属已被证明能够在肠道中进行重要的代谢转化,对人类健康产生积极影响,包括将有毒化合物解毒为更良性的形式。

E.hallii 将致癌物转化为不可用形式

最近报道了E.hallii的多种有益转化E.hallii非常擅长将高度丰富的食物衍生杂环芳香胺致癌物2-氨基-1-甲基-6-苯基咪唑并(4,5-b)吡啶(PhIP)转化为生物学上不可用的形式7-羟基-5-甲基-3-苯基-6,7,8,9-四氢吡啶并[3′,2′:4,5]咪唑并[1,2-α]嘧啶-5-鎓氯化物(PhIP-M1)。

E.hallii 转化后的显示其作为保护剂的潜力

此外,在模拟的近端和远端结肠菌群存在的情况下,E.hallii的PhIP转化导致其丰度分别增加300120倍,表明其作为保护剂的巨大潜力。

在同一项研究中,还观察到E.hallii能够将甘油代谢为3-羟基丙醛(3-HPA),其在水溶液中以罗伊氏菌素(Reuterin的形式存在。有趣的是,罗伊氏菌素已被证明对革兰氏阳性和革兰氏阴性细菌、真菌和酵母具有抑制作用,可能通过调节细胞内谷胱甘肽增加氧化应激,从而使其成为治疗的一个有吸引力的靶点。

注:Reuterin是罗伊氏乳杆菌代谢甘油产生的一种特有广谱抗菌物质,它是一种复杂混合物,主成分为3-羟基丙醛,对多种病原微生物均有较强的抑制作用,在生物防腐方面极具潜力

除了生产短链脂肪酸,需要进一步的研究来真正开发真细菌属所能提供的所有潜在益处。

真杆菌参与肌肉质量

老年肌少症(Sarcopenia)是以肌肉量减少、肌力下降和肌肉功能减退为特征的增龄性疾病。研究表明肠道微生物可以通过参与宿主体内的多条代谢通路来影响宿主肌肉量与肌肉功能。

北京协和医院共招募87名受试者,包括11名肌少症患者、16名可能肌少症(Possible Sarcopenia)患者和60名健康对照受试者发现毛螺菌属(Lachnospira)、真杆菌属和瘤胃球菌属(Ruminococcus)握力具有显著正相关性(P < 0.05),罗氏菌属(Roseburia)、真杆菌属(Eubacterium)和蓝绿藻菌属(Lachnoclostridium)与五次起坐时间具有显著负相关性(P< 0.01),结果提示这些菌属的降低与肌肉量的减少和功能的降低存在相关性。

结 语

Eubacterium

真杆菌属(Eubacterium是一组系统发育多样的微生物,这一事实使得相关的分类学分配具有挑战性

但是,该属的许多现任和前任成员都表现出与肠道健康密切相关,并且作为主要的丁酸盐生产者和核心肠道微生物群组成部分,非常重要。

真杆菌在调节炎症、调节免疫反应、维持肠道屏障完整性、调节血糖反应和胆固醇稳态等方面发挥重要作用。在几种临床条件下与有益效果的强相关性促使人们对该属产生了进一步的兴趣,多个物种被考虑作为下一代益生菌/生物治疗剂进行商业尝试。

最值得注意的是,目前国际上已正在创建含有E. hallii菌株的口服制剂作为生物治疗药物,以降低患有代谢综合征的个体的胰岛素抵抗并预防2型糖尿病的发展。

但是,应该警惕的是,我们对所有相关物种的肠道微生物群在多大程度上影响临床状况以及反之亦然的理解仍然有限。可能需要对严格控制的饮食方案进行纵向研究,在长时间内评估肠道微生物群和相关健康参数,谷禾也在积极推进这样的研究合作,以阐明此类因果关系。

关于真杆菌属的体外和体内表征,需要在基因组、代谢组以及最终在生态水平上进行研究。这将使我们能够更好地了解相对未被充分研究的真杆菌属与肠道微生物组的其他成员相互作用(这也是我们非常看重的),比如它们与其他潜在的下一代健康促进微生物(如Akkermansia muciniphilaF. prausnitzii)分离和组合,以确保其在循证肠道治疗中的有效实践(这也是我们非常看重的)。

主要参考文献

Mukherjee A, Lordan C, Ross RP, Cotter PD. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes. 2020 Nov 9;12(1):1802866. doi: 10.1080/19490976.2020.1802866. PMID: 32835590; PMCID: PMC7524325.

Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes. 2018 Jul 4;9(4):308-325. doi: 10.1080/19490976.2018.1465157. Epub 2018 May 24. PMID: 29667480; PMCID: PMC6219651.

akansson A, Molin G. Gut microbiota and inflammation. Nutrients. 2011 Jun;3(6):637-82. doi: 10.3390/nu3060637. Epub 2011 Jun 3. PMID: 22254115; PMCID: PMC3257638.

Wing Sun Faith Chung, Marjolein Meijerink, Birgitte Zeuner, Jesper Holck, Petra Louis, Anne S. Meyer, Jerry M. Wells, Harry J. Flint, Sylvia H. Duncan, Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon, FEMS Microbiology Ecology, Volume 93, Issue 11, November 2017, fix127,

Mukherjee A, Lordan C, Ross P & Paul D. Cotter. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health, Gut Microbes, 12:1.

Chung W S F, Meijerink M, Zeuner B, Holck J, Louis P, Meyer A S, Wells J M, Flint H J, Duncan S H. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon, FEMS Microbiology Ecology, Volume 93, Issue 11, November 2017, fix127,

Chung WSF, Meijerink M, Zeuner B, Holck J, Louis P, Meyer AS, Wells JM, Flint HJ, Duncan SH. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol. 2017 Nov 1;93(11).

Peñaloza HF, Noguera LP, Riedel CA and Bueno SM. Expanding the Current Knowledge About the Role of Interleukin-10 to Major Concerning Bacteria. Front. Microbiol. 9:2047.

Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol. 2012;32(1):23-63.

Nauli A M and Matin S. Why Do Men Accumulate Abdominal Visceral Fat? Front. Physiol. 10:1486. December 2021.

Nie X, Chen J, Ma X, Ni Y, Shen Y, Yu H, Panagiotou G, Bao Y. A metagenome-wide association study of gut microbiome and visceral fat accumulation. Comput Struct Biotechnol J. 2020 Sep 20;18:2596-2609. 

微生物组对肥胖影响的最新研究分析

谷禾健康

在过去的几十年里,肥胖患病率持续快速增长。成为了许多国家的主要医疗保健问题,尤其是在2019年新冠状病毒时代以来。

肥胖是包括心血管疾病在内的一系列疾病不断扩大风险因素。2型糖尿病、慢性肾病、非酒精性脂肪肝病, 负重过大导致的关节炎,甚至许多癌症都与肥胖有关

▸ 肥胖的定义

肥胖定义为身体脂肪过度积累到可能对健康产生不利影响的程度。

一般使用体重指数(BMI;体重(千克)除以身高(米)的平方)进行评估。

我国规定的BMI正常范围在18.5-23.9之间,24-27.9为超重,超过28则为肥胖

肥胖不是单纯的体重增加,而是体内脂肪组织积蓄过剩的状态。肥胖是指一定程度的明显超重与脂肪层过厚,是体内脂肪,尤其是甘油三酯积聚过多而导致的一种状态。

主要原因是由于能量摄入过多机体代谢的改变而导致体内脂肪积聚过多造成体重过度增长并引起人体病理生理改变潜伏

▸ 引起肥胖的因素

肥胖是一个多因素问题,不仅限于饮食或缺乏运动的原因,还包括遗传、环境和心理社会因素,这些因素通过能量摄入消耗的生理介质起作用。

肠道微生物组是这些环境因素之一;大约 20年前,在小鼠研究中已经确定了脂肪储存和肠道微生物组之间的联系。粪便微生物群移植研究提供了更切实的证据。

本文结合了最新的学术研究和谷禾健康数据库,涵盖了不同的角度,既关注单个细菌的作用,也特别强调整个微生物组的组成,以试图解开肠道微生物组肥胖的关系。

让人们更好地了解肥胖以及其发病机制,在此基础上提出一些预防和治疗肥胖的建议,使人们拥有更健康的生活。

本文主要从以下几个方面讲述

●肠道微生物对肥胖发病机制的影响

●菌群代谢物对肥胖的影响

●健康与肥胖人群中的细菌比例

●肥胖与肠道微生物的研究分类

●微生物多样性与人体健康有关

●肥胖与肠道微生物的未来研究方向

●预防和治疗肥胖的一些建议

学术专业用词缩写

PRR—模式识别受体

NOD2—核苷酸结合寡聚化结构域2

FXR—法尼醇X受体

TLR5—TOLL样受体5重组蛋白CDI—复发性艰难梭菌感染

BSH—胆盐水解酶

GLP1—胰高血糖素样肽-1

GPR—G蛋白偶联受体

01

肠道微生物对肥胖发病机制的影响

研究肥胖的发病机制,有助于我们更好地了解肥胖,并以此制定相应的治疗方案。实验研究发现肠道微生物对肥胖的发病机制存在一定的影响。

许多研究已经确定了肠道微生物群与宿主免疫系统之间的关联。其中一个发现是肥胖与肠道微生物引起的慢性低度炎症有关。

肠道微生物群和肠道细胞之间的密切接触是由微生物相关分子模式介导的,这些分子模式可以与上皮细胞和免疫细胞中的模式识别受体 (PRR) 结合

这些识别受体属于先天免疫系统控制炎症和免疫反应。PRR还可以检测宿主细胞释放的损伤相关分子模式。

✦革兰氏阴性菌中的脂多糖易引起炎症

脂多糖 (LPS)是革兰氏阴性菌外膜的一种特有成分,由脂质和多糖构成,似乎会引起小鼠的低度炎症

在这里列举了一些常见的革兰氏阴性菌:

大肠杆菌、变形杆菌、痢疾杆菌

肺炎杆菌、布氏杆菌

需要注意的是,大部分革兰氏阴性菌对人体都有害

在一项人体研究中进行了类似的观察,其中能量摄入与内毒素血症和伴随的炎症有关

事实上,与健康对照组相比,在患有2型糖尿病的受试者中,革兰氏阴性菌的数量明显更多

脂多糖通过脂多糖分化受体14(CD14)和辅助受体 toll样受体 (TLR4)引起炎症,这反过来又导致脂肪细胞产生的促炎细胞因子增加

●饮食在脂多糖中起重要作用

果胶可抑制脂多糖诱导的单核细胞或树突状细胞中的TLR4活化,而果糖或高脂肪饮食导致含有脂多糖的变形菌增加,瘦素信号与饱腹感和能量平衡紊乱有关,因此失调

在此列举了一些高果糖高脂食物:

1.蜂蜜和市面上一些甜的饮料果糖含量较高

2.淀粉类:经油炸加工的馅饼、油条、葱油饼、油糕等食物中,含有大量脂肪与糖分

2、肉类:用糖汁、糖煎、糖烧的方法进行烹调的红烧肉、炸鸡等,也为高糖高脂食物;

3、奶油制品食物:如奶油蛋糕、奶茶、泡芙等甜品,主要原材料为淀粉黄油等物质,所以也有较高的糖分与脂肪。

同时还表明,分泌型脂蛋白脂肪酶(LPL)抑制剂血管生成素样蛋白4(一种禁食诱导的脂肪因子)可被微生物群抑制,进而导致分泌型脂蛋白脂肪酶活性增加和白色脂肪组织中的脂肪储存

✦肽聚糖影响体内平衡

另一个例子是肽聚糖,它是细菌细胞壁的一种成分,对人体内平衡很重要

核苷酸结合寡聚化结构域2 (NOD2) 是肽聚糖的产物,是一种位于上皮细胞和免疫细胞内的胞质 ,能够感知胞壁酰二肽。

这种胞质对于病原体入侵和几种炎症性疾病期间的免疫反应至关重要,从而调节粘膜细菌定植。

// 一些关于NOD2的研究案例

NOD2缺乏的小鼠在高脂饮食期间显示出脂肪组织、肝脏炎症和胰岛素抵抗增加。因此经常用于糖尿病研究。

在具有功能性NOD2受体的肥胖小鼠中,胞壁酰二肽识别显示可减少脂肪炎症胰岛素抵抗,而不会减轻体重或改变肠道微生物群组成。

上述案例在一定程度上可以说明NOD2对于减轻肥胖肠道微生物群稳定具有一定作用。

✦Toll样蛋白受体影响免疫

——Toll样受体5(TLR5)重组蛋白是免疫系统的关键成分,还是单体鞭毛蛋白的传感器,可以检测细菌感染启动宿主抗菌的防卫反应。

肠道微生物群也通过位于上皮细胞上的TLR5与免疫系统相关联。

免疫系统通过TLR5感知肠道微生物群的组成和肠道微生物群的定位,以避免共生肠道微生物群传播到肠外器官、产毒成员的过度生长以及机会性病原体的过度生长和入侵。TLR5检测鞭毛蛋白会导致白细胞介素-22的产生,从而预防与肠道炎症相关的疾病。

// 关于TLR5影响免疫在小鼠中的研究

与野生型无菌小鼠相比,TLR5缺陷小鼠的胰岛素抵抗肥胖水平增加。肠道微生物群从这些TLR5缺陷小鼠转移到野生型无菌小鼠也导致这些野生型小鼠代谢综合征的相似特征转移

一项调查缺乏TLR5受体的小鼠的研究,观察到鞭毛蛋白特异性免疫球蛋白的丢失导致鞭毛细菌增加,包括许多变形杆菌,以及粘膜屏障破坏和炎症增加

肠道微生物影响宿主免疫的推定机制

Levin E,et al.Therap Adv Gastroenterol.2022

部分肠道微生物群的鞭毛蛋白和脂多糖可以与toll样受体重组蛋白结合,而细胞内NOD2感知肽聚糖。几种短链脂肪酸的产生可以与GPR41和GPR43(2种特异性短链脂肪酸受体)结合,导致PYY(肽YY(一种新的胃肠道激素,具有抑制胃肠运动和胃酸分泌等作用))和GLP-1(胰高血糖素样肽-1)的表达增加。

胆汁酸激活TGR5和FXR(一种胆汁酸的受体)),影响脂质葡萄糖代谢。脂肪酸,如HYA,调节TNFR2,参与上皮屏障恢复。吲哚通过GLP-1调节和AHR的激活以及与PXR 的结合影响宿主

注意

事实上,与瘦的人相比,肥胖的人往往有的粪便鞭毛蛋白、更少的粪便抗鞭毛蛋白IgA和更高水平的慢性肠道炎症。

02

菌群代谢物对肥胖的影响

短链脂肪酸

短链脂肪酸(SCFA)主要是微生物厌氧发酵的衍生终产物,对宿主具有多种影响。它是一组少于六个碳的羧酸,包括乙酸盐、丙酸盐和丁酸盐。这些短链脂肪酸及其比例在几种不同的组织中具有多种有益的作用

✦短链脂肪酸有利于肠道环境的稳态

短链脂肪酸被认为是人类宿主的能量来源能量调节剂,但它们也有助于维持肠道环境的稳态。短链脂肪酸的细胞外活性主要由G蛋白偶联受体(GPRs)介导

这些受体在多种细胞上表达,包括肠上皮细胞、脂肪细胞、肠内分泌L细胞、先天免疫细胞和体细胞感觉神经节的神经元。

✦短链脂肪酸会影响饱腹感

短链脂肪酸参与L细胞产生的肽YY和胰高血糖素样肽1(GLP1) 激素的调节。这两种激素都调节神经系统的饱腹感,GLP1在葡萄糖刺激的胰岛素敏感性分泌中也起作用。

饱腹感也由丙酸盐通过激活脂肪细胞中的游离脂肪酸受体3(FFAR3)来控制,因为这些脂肪细胞会产生瘦素。微生物衍生的丁酸盐和丙酸盐都会诱导肠道糖异生,进而诱导对葡萄糖和能量稳态有益影响

✦短链脂肪酸促进能量消耗

研究显示丁酸盐通过游离脂肪酸受体2(FFAR2)的活化刺激棕色脂肪组织的活化,从而显著促进能量消耗。并且脂肪积累被丁酸盐诱导的白色脂肪组织中的游离脂肪酸受体2活化抑制。最后,丁酸盐通过降低肠屏障的通透性减少上皮细胞中的细菌易位

在肠道内,短链脂肪酸的产生通过各种中间体发生。不同的物种,在产生这些中间体和最终产物的每个步骤中使用不同的酶,都参与了这个过程。

●2型糖尿病中产丁酸盐菌丰度较低

在2型糖尿病中,许多研究看到的一个共同趋势是,糖尿病患者的丁酸盐生产者(如RoseburiaFaecalibacterium)的丰度低于对照组,这可能取决于饮食。

在肥胖症中也可能如此,短链脂肪酸的过量生产可能会导致更高的能量可用性和摄入量。

事实上,一项比较肥胖与瘦的受试者的研究表明,肥胖者的总短链脂肪酸水平较高,但必须指出,肥胖与丙酸盐水平特别相关

胆汁酸

胆汁酸是胆汁的重要成分,在脂肪代谢中起着重要作用。 胆汁酸主要存在于肠肝循环系统并通过再循环起一定的保护作用

许多研究报告了肠道微生物组胆汁酸肥胖肥胖相关疾病之间存在联系

初级胆汁酸通过两种途径在肝细胞中产生:

产生大部分胆汁酸的经典途径是由细胞色素P450中的胆固醇7α-羟化酶启动的。

替代途径由细胞色素P450中的27α-羟化酶启动。

注:细胞色素P450——一个很大的可自身氧化的亚铁血红素蛋白家族,属于单氧酶的一类,因其在450纳米有特异吸收峰而得名。它参与内源性物质和包括药物、环境化合物在内的外源性物质的代谢

7α-羟化酶和27α-羟化酶都属于细胞色素P450中的成员。

经典途径中的一种中间体胆固醇7α-羟化酶与总血浆甘油三酯浓度相关,表明肝胆汁酸合成对于调节肥胖者的血浆甘油三酯水平很重要

胆汁酸的作用途径

产生的初级胆汁酸是胆酸、鹅去氧胆酸和猪胆酸。这些初级胆汁酸与甘氨酸或牛磺酸结合。餐后,这些结合物被分泌到胆汁中并释放以促进膳食脂肪的溶解和吸收

此后,肠道微生物群使用胆盐水解酶(BSHs)去结合初级胆汁酸。

Bifidobacterium spp., Lactobacillus spp., Enterococcus spp.和Methanobrevibacter spp.,这些细菌中都含有这些胆盐水解酶。

接下来,这些去结合的初级胆汁酸随后被转化为次级胆汁酸。

注:这是通过肠道微生物群的脱氨基作用和7α-羟化酶的脱羟基化来完成的。

在最后阶段,胆汁酸被回肠远端吸收,完成肠肝循环。产生的次级胆汁酸是脱氧胆酸石胆酸。这些胆汁酸参与调节能量消耗,以及炎症和葡萄糖代谢脂质代谢

这表明这些胆汁酸在肥胖的病理生理学中非常重要,因为与肥胖相关的肠道微生物群的改变包括胆汁酸池大小组成的变化

✦不同胆汁酸具有不同的作用

不同的胆汁酸对各种肠道受体具有不同的亲和力,例如与膜结合的蛋白偶联受体(TGR)以及法尼醇X受体(FXR) 。

注:TGR5—是一种G蛋白偶联受体,不仅是胆汁酸的受体,也是多种选择性合成激动剂的受体。

法尼醇X受体(FXR):一种胆汁酸受体,被特定胆汁酸代谢物激活后发挥转录因子作用,参与调控胆汁酸的合成肠肝循环影响机体的糖脂代谢。

在小鼠中,已经表明肠道菌群通过FXR受体促进饮食诱导的肥胖。

在脂肪组织中,脂肪细胞分化受FXR通过促进过氧化物酶体增殖物激活受体γ活性,进而调节脂肪酸储存葡萄糖代谢

在棕色脂肪组织中,能量消耗因胆汁酸与TGR5结合而增加,随后产生的环磷酸腺苷会增加参与能量稳态的甲状腺激素活化。

在巨噬细胞中,胆汁酸激活TGR5会导致抗炎反应,因为抑制了NF-κb通路和NLRP3依赖性炎症小体活性。FXR和TGR5受体都存在于相似的细胞中,例如胰岛β细胞和肠内分泌L细胞。

在胰岛β细胞中,正向调节合成和葡萄糖诱导的胰岛素分泌。在肠内分泌L细胞中,观察到相反的效果。FXR的激活导致GLP-1分泌的抑制,而TGR5的激活诱导GLP-1的分泌。

✦饮食会影响胆汁酸的含量

几项研究已经将特定的肠道微生物群改变以及胆汁酸成分的改变与肥胖联系起来,同时考虑到饮食的类型。

与富含精制谷物的饮食相比,富含全谷物的饮食导致血浆胆汁酸含量显著增加,包括牛磺鹅去氧胆酸、甘胆酸和牛磺石胆酸。

这被假设为激活FXR和TGR5受体并影响葡萄糖稳态。事实上,高膳食纤维的纯素饮食Prevotella丰度较高相关被证明可以增强法尼醇X受体的信号通路

与杂食动物相比,纯素食者的粪便胆汁酸含量显著降低。当杂食动物的饮食中膳食纤维增加时,观察到粪便胆汁酸显著减少

//研究证明高脂饮食胆汁酸水平升高

在小鼠中,高脂饮食引起的肥胖导致粪便中脱氧胆酸水平升高。此外,高脂肪饮食略微增加总胆汁酸池,特别是增加肝脏和血浆中的脱氧胆酸和牛磺脱氧胆酸水平。

这些变化与以下菌群的丰度增加相关:

Blautia ↑↑↑

Coprococcus ↑↑↑

Intestinimonas ↑↑↑

Lactococcus ↑↑↑

Roseburia ↑↑↑

Ruminococcus ↑↑↑

另一项小鼠研究调查了胆盐水解酶对法尼醇X受体胆汁酸拮抗剂牛磺-β-鼠胆酸的影响,因为法尼醇X受体抑制会导致对肥胖的抵抗。他们发现,乳酸杆菌水平降低与BSH水平降低相关,因此与牛磺酸-β-鼠胆酸水平升高相关

事实上,从小鼠盲肠中分离出的L.johnsonii被发现表达产生胆盐水解酶的基因,这些基因专门针对牛磺-β-鼠胆酸,提供了肠道微生物群变化与调节法尼醇X受体和胆盐水解酶基因表达之间的机制联系

然而,与其他产生类似胆盐水解酶的肠道微生物相比,乳酸杆菌对法尼醇X受体拮抗剂浓度的贡献仍不清楚

一项调查肥胖受试者的人体研究发现了毛螺菌科的瘤胃球菌家族与甘氨脱氧胆酸的比例和血浆中次级胆汁酸与初级胆汁酸的比例呈正相关

除此之外,Faecalibacterium prausnitzii与粪便中的异石胆酸水平呈负相关

一项调查肥胖受试者的研究发现,该组的非12-OH胆汁酸比例降低。在同一项研究中,高脂饮食抗肥胖小鼠的这些非12-OH胆汁酸水平升高

在高脂饮食易肥胖的小鼠中,这些胆汁酸减少并与肠道微生物群的改变有关。在这里,梭状芽孢杆菌减少的很明显,肥胖与肠道微生物群通过胆汁酸池的大小组成有关,但在单个细菌、特定胆汁酸剖面和肥胖表型之间还没有明确的联系。

因此,还需要进行更多的研究,以将肥胖胆汁酸谱和胆汁酸池大小与特定细菌组成谱联系起来。

脂肪酸

除了产生胆汁酸外,一些细菌,包括LactobacilliBifidobacteria,还通过多不饱和脂肪酸的饱和代谢产生代谢物。这会产生中间脂肪酸,如羟基、氧代、共轭和部分饱和反式脂肪酸。

结果表明,与无菌小鼠相比,无特定病原体小鼠的羟基脂肪酸水平要高得多,这表明肠道微生物组的脂质代谢会影响宿主体内的脂肪酸组成,因此会影响宿主的健康

✦增强抗炎能力,促进屏障恢复

此外,共轭脂肪酸组中的一些脂肪酸对健康有益。体外对树突状细胞的实验表明,共轭亚油酸的异构体抑制脂多糖诱导的白细胞介素12产生并增强抗炎细胞因子白细胞介素10的产生。

一个例子是10-hydroxy-cis-12-octadecenoic acid(HYA),因为它部分调节肿瘤坏死因子受体2 (TNFR2),从而促进上皮屏障恢复作用。

注:HYA是不饱和脂肪酸的代谢过程中,肠道微生物产生的中间体游离脂肪酸。HYA能够改善与一些细胞中成熟标志物表达相关的抗氧化/解毒防御能力。

✦保护宿主,减少肥胖

另一项研究展示了HYA如何通过G蛋白偶联受体40(GRP40)和G蛋白偶联受体120(GRP120)分泌胰高血糖素样肽-1来减轻高脂饮食诱导的小鼠肥胖

此外,他们还证实了几种乳酸杆菌属,如

Lactobacillus salivarius

Lactobacillus gasseri,能够产生相似水平的 HYA,保护宿主免受高脂饮食引起的肥胖。

吲哚

吲哚是吡咯与苯并联的化合物,细菌产生吲哚对人体健康具有重要意义

✦饮食类型影响吲哚的产生

吲哚是通过降解肠中芳香族氨基酸如酪氨酸、苯丙氨酸和色氨酸的分解代谢产生的。因此,肠道吲哚水平取决于饮食类型。

富含蛋白质的饮食会促进吲哚的产生。然而,富含的饮食可能会降低吲哚合成,因为过度消耗糖可能会导致小肠饱和,从而导致更多剩余的糖进入大肠。

由于碳水化合物发酵优于蛋白水解活性,因此抑制色氨酸酶活性导致吲哚合成速率降低。吲哚通过以下途径影响宿主代谢L细胞对GLP-1分泌的调节,表明在2型糖尿病等代谢疾病中发挥作用

吲哚丙酸(3-Indolepropionic acid)由Clostridium sporogenes产生,它与膳食纤维摄入量呈正相关

•2型糖尿病会影响吲哚水平

事实上,一项研究发现较高的血浆吲哚丙酸水平与降低患2型糖尿病的风险之间存在关联

另一项研究发现,与瘦对照相比,患有2型糖尿病的肥胖受试者的吲哚丙酸水平降低。吲哚丙酸显示通过与孕烷X受体结合并随后下调肿瘤坏死因子α来调节炎症

✦吲哚具有抗肥胖等特性

研究显示吲哚丙酸可降低饮食诱导的肥胖小鼠的肠道通透性。吲哚丙酸也被证明在小鼠中具有抗肥胖活性

在肠道中,色氨酸可以被肠道菌群用作底物来产生吲哚,但也可以被宿主代谢。在低度肠道炎症(肥胖的一种慢性症状)期间,巨噬细胞中的吲哚胺2,3-双加氧酶活性增加导致犬尿氨酸的产生水平升高,从而将生产从微生物衍生的吲哚转移

注:吲哚胺2,3-双加氧酶是人体内色氨酸代谢中的关键酶,可通过介导色氨酸耗竭及其代谢产物调节机体抗肿瘤免疫

与正常饮食的小鼠相比,高脂肪饮食的小鼠显示出吲哚胺2,3-双加氧酶活性增加。然而,与高脂饮食的野生型小鼠相比,在这种酶被敲低的小鼠中观察到胰岛素耐受性有所改善

微生物衍生的吲哚,如吲哚乙酸激活芳烃受体,但犬尿氨酸抑制其激活。微生物衍生的吲哚乙酸进一步限制了巨噬细胞中脂肪酸的积累和炎症标志物的产生。

谷氨酸

除了吲哚,谷氨酸也可以影响人体

——谷氨酸是一种多功能氨基酸,谷氨酸在生物体内的蛋白质代谢过程中占重要地位。除此之外,谷氨酸也是人体兴奋神经递质,不仅参与消化系统和免疫系统,还是大脑健康密切相关。现在强有力的证据表明肠道微生物产生神经活性分子,如神经递质(即去甲肾上腺素、多巴胺、血清素、GABA 和谷氨酸)和代谢物(即,色氨酸代谢物,短链脂肪酸等)维持宿主和细菌之间跨界跨区域交流。谷氨酸代表了在这种跨界交流中活跃的众多神经活性分子之一。

根据对肥胖和瘦受试者的队列进行的全基因组关联分析显示,谷氨酸盐具有潜在危害

通过进行途径分析,谷氨酰胺/谷氨酸转运系统在肥胖个体中高度富集。这与拟杆菌属(包括B.thetaiotaomicron)的物种呈负相关。事实上,与瘦受试者相比,肥胖者体内这种细菌的数量减少。因此谷氨酸与人体之间也存在一定联系

•拟杆菌的在高脂饮食中的研究

多形拟杆菌B.thetaiotaomicron)在高脂饮食小鼠中的作用的研究表明,编码参与脂肪生成的蛋白质的基因表达较低,而编码参与脂肪酸氧化和脂肪分解的蛋白的基因表达较高。此外,炎症相关标志物的表达也降低

关于发现与肥胖相关的B.thetaiotaomicron,其效应可能是由于与某些其他物种的相互作用,例如B. uniformis,已知其部分恢复了高脂肪饮食诱导的肥胖效应

03

健康与肥胖人群中的细菌比例

有研究发现,健康人群和肥胖人群中的拟杆菌门和厚壁菌门比例存在不同。但是将健康受试者肥胖受试者用拟杆菌与厚壁菌的比例区分开来的一个有争议的话题。

•支持的证据

一项研究调查了遗传易感肥胖小鼠及其接受相同多糖饮食的正常野生型同胞的盲肠微生物群之间的差异。

在肥胖小鼠中,拟杆菌数量减少,而厚壁菌的相对丰度较高。一年后,在比较肥胖和正常时发现了类似的结果。

•反对的证据

然而,同一组在比较正常人和肥胖人双胞胎时观察到了有争议的结果。然而,此处观察到拟杆菌显著减少,与厚壁菌没有关联

除此之外,使用16s rRNA基因的类似管道和区域重新分析前面提到的文章的数据集和其他公开可用的数据也导致了与拟杆菌与厚壁菌比率相关的矛盾结果

鉴于人类肠道中这两个门所代表的目、科、属的物种众多,这些门水平上相互矛盾的肠道微生物群结果并不令人惊讶。

另一方面,厚壁菌门是如此广泛,以至于说某个菌属于厚壁菌门,但是不同菌的功能差别很大。

此外,这些门中分类上不同的细菌具有截然不同的属性。拟杆菌门中最重要的例子是普氏杆菌属和拟杆菌属,它们往往相互排斥。当比较多个研究时,将每个门的细菌汇集在一起时,预计会出现相互矛盾的结果。

因此,目前还不鼓励使用拟杆菌与厚壁菌的比例来区分健康人群与肥胖人群。我们在检测实践中也发现部分肥胖人群拟杆菌比例较高。

PrevotellaBacteroides的比例

在引入肠型后,在拟杆菌门内做出了更合适的区分,即PrevotellaBacteroides的比率。

Bacteroides相比,Prevotella个体在食用左旋肉碱时血浆氧化三甲胺浓度较高

Prevotella为主的肠道微生物群往往与素食主义或非工业化的富含膳食纤维的饮食有关。这些例子可以在非洲、南美洲或者东南亚狩猎采集者或农村人口进行的几项研究中找到。

PrevotellaBacteroides更利于减肥

研究很好地说明了饮食环境导致的从普氏杆菌向更为拟杆菌主导的肠道微生物群的转变,来自泰国农村的人移民到了美国。不出所料,这种转变也伴随着体重的增加。

关于减肥方案,这一比例很重要,因为普氏杆菌与拟杆菌比例较高的受试者在膳食纤维含量较高的情况下更容易减肥

研究发现,给予辣椒素时,拟杆菌量较多的受试者体重减轻更多,在此强调了个性化营养必要性

04

肥胖与肠道微生物的研究分类

为了更好更有条理地研究肥胖肠道微生物之间的关系,需要将微生物进行研究分类

大多数关于肥胖与肠道微生物群之间关系的研究通常将个体分类群病理生理途径联系起来,以建立与肥胖的联系。

影响微生物的因素

细菌并不存在于真空中,所以它们的生长速度以及它们能够进行的代谢活动取决于外部环境因素。

这些外部因素包括pH胆汁酸底物可用性。所有这些反过来又取决于微生物组分本身;这意味着一种细菌的功能受其周围所有其他细菌的影响

更直接地说,各种细菌种类依赖于其他细菌种类为它们提供中间底物(其他细菌的废物),并且反过来,依赖于将消耗其自身废物(发酵产物)的其他细菌,以使其从中获得能量的生化转化在能量上有利

同一物种的不同菌株可能存在很大差异

通常使用不同的分类水平(门/科/属/种)来归因特定的特征和关联,而物种的功能甚至在同一属内,甚至是目前被认为属于不同菌株的细菌。相同的物种,可以有很大的不同

因此,旨在通过查看更高的分类级别来限制分类组数量的降维策略通常应该优选地限制在类属级别

同一物种的不同菌株可能具有也可能不具有归因于它们的特定功能,正如在碳水化合物活性酶中观察到的那样。如果高度相似的基因存在于多种细菌中,则可能还会出现冲突模式。

越来越多的研究人员在过去几十年中得出结论,与肥胖相关的有益影响应归因于肠道微生物群中的多个参与者协同工作。而这种关联的紊乱可以被视为生态失调的一种形式。

微生物成员分组

——由于上述个体分类群分析的缺陷使得难以找到特定于健康结果的具有生物学意义的模式,因此创造了两个不同的术语来将个体微生物组成员分组。

▸ 微生物“聚类”

应用了“guild”这个术语,这在宏观生态学中已经众所周知。它包括“以类似方式利用同一类环境资源一组物种”,后来成为“功能组”的同义词。

通过构建基于微生物丰度协变的共丰度组,给出了一个框架,以更生态有意义的方式解开肠道微生物组与人类健康之间的关系。这将克服目前对基于分类单元的分析和以基因为中心的分析存在问题的各种缺点。

▸ 营养网络

另一个术语称为“营养网络”,营养网络被定义为微生物种群形成代谢相互依赖的生物体的食物网,随着时间的推移以相关的方式稳定地建立。

小结

通过观察微生物聚类或特定的营养网络,可以实现对与健康肥胖相关肠道生态学的更有意义的解释。

此外,将数百个分类群聚集到有限数量的微生物聚类或营养网络中将有助于降低维度,从而有可能应用经典统计数据来限制与校正多重测试相关的问题。

尽管基于微生物聚类的方法似乎是一种有前途的方法,在了解肥胖儿童的体重调节方面观察到了附加价值,但与肥胖本身的相关性仍有待阐明

05

微生物多样性与人体健康有关

α多样性与疾病状态有关

——在区分肥胖受试者和健康受试者时,一个常见的观察结果是他们平均较低的α-多样性

在许多其他疾病中也观察到相同的情况,例如克罗恩病、肠易激综合征和结肠直肠癌。因此,微生物多样性的丧失通常与各种疾病状态有关。可以说,断奶后肠道α多样性降低是与各种人类状况相关的普遍特征

在成年人中,较高丰度的细菌(如Akkermansia muciniphilaF. prausnitzii)通常与较高的α多样性相关

丰富的A. muciniphila与BMI、炎症标志物、脂质合成和总脂肪组织重量呈负相关

▸ α多样性是什么?

α多样性主要关注局域均匀生境下的物种数目,因此也被称为生境内的多样性。α-多样性是由扩散、局部多样化、环境选择和生态漂移共同形成的。

多样性本身不仅仅是健康的指标,因为多种高丰度的病原体持续存在一般不会让肠道感觉 “幸福”。

相反,更高的α多样性应该被视为存在发育良好和扩展的微生物营养网络,它们共同导致发酵能力的提高

✦低α多样性下的肠道微生物

富含拟杆菌的微生物群倾向于具有较低的α-多样性值、较简单的营养网络,并且更容易下降。

这种低α-多样性组合物通常富含诸如肠杆菌科、梭杆菌属、链球菌属、瘤胃球菌属和各种拟杆菌属物种的物种。

这种益生菌组合物在肠型方面与拟杆菌2肠型最为相似,最终会是肥胖和2型糖尿病的危险因素

营养网络被破坏导致α多样性减低

研究表明营养网络的彻底破坏以及由此导致的α-多样性、基因丰富度和肠道发酵能力的极大降低。

调查了(抗生素治疗)危重儿童的肠道微生物群、粪便短链脂肪酸和胆汁酸谱。由于缺乏代谢和发酵能力,这些儿童的初级胆汁酸与次级胆汁酸的比例较高,但短链脂肪酸的产量极低,而碳水化合物发酵的中间产物,如乳酸盐和琥珀酸盐与健康对照儿童相比含量增加

后一项发现,加上剩余的未发酵糖组分、较高水平的未接触蛋白质和更松散的粪便,突出了肠道中剩余的发酵仍然处于糖分解阶段

Christensenellaceae营养网络

——一个与高α-多样性和健康相关的特定营养网络

与肥胖受试者相比,体重指数正常的健康受试者的Christensenellaceae水平更高

Christensenellaceae和寄主BMI之间的关联被认为是最稳健的关联之一。在无菌小鼠体内移植来自人类供体的富含菊苣科植物的粪便可减少肥胖。在富含瘤胃球菌科或厚壁菌的肠型的人中,Christensenellaceae通常很丰富

如上所述,不应将Christensenellaceae视为一个独特的独立实体,因为它始终与其他细菌古细菌形成营养网络。

Christensenellaceae与古细菌的关联

Christensenellaceae与一种古细菌——Methanobrevibacter smithii 的关联可能是这一营养网络最典型的部分。

M.smithii 从微小梭菌产生的氢气中产生甲烷。如果这种营养网络与低BMI之间存在因果关系,则仍然相当不确定。

除了M. smithii是这一营养网络的一部分外,一项比较意大利瘦弱和肥胖老年人的研究发现,ChristensenellaceaeRikenellaceaePorphyromonadaceae之间存在相关性

在日本的一个队列中,调查了不同地区健康成年人的粪便样本,Christensenellaceae与各种其他细菌也与BMI呈负相关

注意

鉴于α-多样性、瘦弱性和Christensenellaceae细菌营养网络之间的紧密联系,未来将继续从机制上研究这种联系。还应注意的是,该营养网络对于短链脂肪酸生产的重要性尚未确定

虽然ChristensenellaceaeMethanobrevibacter可能仅占总微生物群的一小部分,但它们所代表的核心指示物种的营养网络在不同种族中绝不是一个小角色。这种营养网络,其中各种物种彼此之间非常密切相关,具有肠型定义潜力。

Prevotella stercorea营养网络

另一个营养网络,通常在工业化国家的人们中代表性不足,是Prevotella stercorea营养网络,它可以被视为Prevotella肠型组成中的一个重要因素。

这个营养网络的建立首先是通过观察冈比亚儿童正在发育的肠道微生物群来广泛描述的。P. stercorea与Succinivibrio dextinosolvensParaprevotella xylaniphila等形成一个大型营养网络,并且类似地与高α-多样性相关

✦肠道Prevotella的特征

肠道普雷沃氏菌是一个完美的例子来展示微生物“聚类”和营养网络之间的区别。

在人群范围内的研究中,例如使用多民族队列研究的数据,被定义为肠型普氏杆菌的人通常具有非常高P. stercorea水平和与P.stercorea营养网络相关的高水平物种

当在分层聚集的热图中可视化时,P.copri和P.stercorea营养网络中的物种聚集在一起。然而,这种共同发生主要是由于粪便中的Prevotella(包括P.copri、P.stercorea和其他许多普氏杆菌属)和Bacteroides/Phocaeicola.之间的强烈拮抗作用

P.copriP.stercorea营养网络在同一环境中表现良好Bacteroides贫乏),但P.copri的高丰度完全独立P.stercorea营养网络发展,这可以通过跟踪儿童在前3个年的肠道微生物群成熟情况看出多年生活在一个每个人都会发展出富含Prevotella的肠道微生物群的环境中。

12个月后,P.copri成为优势种并保持优势,而与P.stercorea营养网络相关的物种丰度在生命的前30个月以相互依赖的方式缓慢增加,直到达到稳定水平。推测在P. stercorea的营养网络中存在着各种代谢产物的交换,值得进一步研究,特别是与Prevotella肠型生产短链脂肪酸的能力增加有关。

Prevotella与健康相关

与肥胖率上升最快的工业化国家相比,肠型拟杆菌相关的拟杆菌和种类在冈比亚并不多见

肠道中的Prevotella本身也与较低的BMI相关,并且已观察到低密度脂蛋白胆固醇与肠道Prevotella负相关,这表明在非工业化国家,肠道Prevotella健康有关

06

肥胖与肠道微生物的未来研究方向

尽管使用大型队列关联研究对于试图解开与肥胖相关的肠道微生物组的极端复杂性至关重要,但其他几种研究途径也具有潜力,其中一种是粪菌移植。

粪菌移植

▸ 定义

粪菌移植,是将粪便从瘦供体转移到受体。也称为“人类肠道微生物群转移”、“粪便移植”和“粪便细菌疗法”。

✦粪菌移植的作用

粪菌移植已被证明是比抗生素更有效的复发性艰难梭菌感染 (CDI) 治疗方法。然而,与肥胖不同,从病理学的角度来看,CDI是一种相对简单的疾病,其中肠道微生物群的因果关系是明确的。

在一项对患有胰岛素抵抗的肥胖受试者进行的粪菌移植试验中。受试者接受自己的粪便(自体)或瘦供者粪便(同种异体)。短期内在接受瘦供体粪菌移植的受试者中观察到对胰岛素敏感性有益影响

进一步研究表明基线肠道菌群有利于粪菌移植的成功。在这里,当接受同种异体粪菌移植时,在α-多样性降低的受试者中,粪菌移植成功率更高

总的来说,与那些肠道微生物组组成尚未严重恶化的受试者相比,那些α-多样性较低的受试者有更大的改进空间。

✦其他影响粪菌移植的因素

一项研究,其中包括几个调查不同疾病的粪菌移植队列,显示生态变量(如低α-多样性)与临床变量(如抗生素治疗和灌洗)一起在植入成功中发挥作用

他们进一步表明,通过合并供体样本来增加α-多样性预计不会增加供体菌株的植入,这表明合并供体样本在功能上并不等同于单个高α-多样性供体样本。

对队列进行的分析表明,P.copri对接受同种异体粪菌移植的受试者具有有益的影响。P.copri与BMI、C反应蛋白和空腹胰岛素水平进一步呈负相关

此外,肠道微生物群的变化可能与特定血浆代谢物水平和血浆单核细胞中DNA甲基化的变化有关,为肠道微生物群影响肥胖相关疾病的机制提供了额外线索。

验证细菌植入的生物学工具

最近开发了几种工具来帮助解开粪菌移植中肠道微生物组肥胖之间的关系。

为了验证来自瘦供体的菌株是否已移植到受体中,需要进行菌株跟踪分析。比较了七种不同的生物信息学工具,用于在数据集上进行应变跟踪

减轻肥胖和相关疾病负担有前景的方法

Levin E,et al.Therap Adv Gastroenterol.2022

分析健康瘦供体粪便的微生物组成,以选择具有高 α 多样性(以及其他)的供体,这可以被视为存在复杂的健康相关营养网络的标志。

如果合适,然后将高α多样性供体的粪便转移到肥胖的接受者身上,这可能会减轻低度炎症。在粪菌移植之后,使用菌株追踪在接受者的粪便中追踪肠道微生物群基因组中特定位置的特定SNP的供体菌株验证。

在这里,观察到概率工具在宏基因组测序数据上表现最好。然而,随着最近开发的两种新的应变跟踪工具,这一技术领域仍在快速发展。

其中一个工具是基于物种特异性标记基因中的单核苷酸变体跟踪菌株,另一个是先前发布和改进的进一步构建工具,应用应变跟踪方法。

在接受粪菌移植后调查了受体中的菌株植入,观察到供体和受体特异性菌株可以共存。与此同时,发现肥胖受试者的粪菌移植胶囊会导致微生物群落组成发生变化,从而导致受试者从一种肠型转变为另一种肠型。这随后改变了菌群的代谢潜力。微生物组向供体的转变与α多样性正相关

此外,肠道微生物群组成的变化在治疗后持续26周。本研究结合了多个供体的粪便,并表明一些供体具有用于移植的高效微生物群,这意味着供体粪便的组成和整个营养网络的转移,而不是添加单个分类群的重要作用

07

预防和治疗肥胖的建议

预防肥胖

——鉴于肥胖症如此普遍,并且考虑到治疗的难度,预防尤为重要。

为预防超重和肥胖,人们应该根据自己的营养需求进食和饮水,定期锻炼,定期检查体重

•少吃高热量食物

就营养而言,他们应该少吃高能量密度的食物,多吃低能量密度的食物。由于水分或纤维含量高而能量密度低的食物,如全麦制品、水果和蔬菜,相对来说更能饱腹,能量含量也较低。地中海饮食有助于预防超重和肥胖。

还应减少酒精、快餐和含糖饮料的消费。快餐通常含有高比例的脂肪和糖,因此能量很高。不仅是加糖的饮料,还有果汁和果汁饮料,含糖量也很高

•避免久坐或不活动

经常坐着看电视或上网和类似活动的不活跃生活方式会促进体重增加。在日常活动和休闲活动中进行锻炼具有预防作用。这个目标最好通过每周2小时以上的以耐力为重点的体育锻炼(使用大肌肉群)来实现。

肥胖的治疗方法

✦饮食疗法

为了减轻体重,目标应该是遵循减量饮食,这将产生约500kcal/天的热量缺口,或在个别情况下更多。

每天500至600kcal的能量缺口将使体重减轻,以约0.5kg/周的速度发生,持续12周最多24周。

低碳水化合物饮食在开始时会比其他饮食导致更剧烈体重减轻,但一年后就看不到差异了。过去几年的几项大型研究表明,常量营养素组成(脂肪、碳水化合物和蛋白质的比例)与减肥无关。各种减脂饮食可在1至2年内减掉约4公斤。个人经验、知识和资源比营养关系更重要

✦益生菌帮助减肥

已经证明几种益生菌,单独使用或以共生混合物的形式使用,能够通过物种和菌株特异性机制(例如,肠道微生物群调节、降低胰岛素抵抗、更强的饱腹感)来治疗肥胖

更具体地说,乳酸杆菌和双歧杆菌物种由于其低致病性低水平的抗生素耐药性而已成功用于成熟的肥胖动物模型。

益生菌对减肥作用的一些实验

Abenavoli L, et al. Nutrients.2019

与安慰剂组相比,这些治疗导致不同程度的体重增加减少脂肪累积减少

所以在一些时候,我们可以利用例如乳酸杆菌等益生菌来帮助我们减肥

✦增加运动

有效的减肥需要>150分钟/周的运动,能量消耗率为1200至1800kcal/周。单独的力量训练对于减轻体重作用不大

运动中消耗的能量常常被高估。当使用大肌肉群,强度适中到高,运动时间长时,体重减轻是可以预期的。对照良好的研究和荟萃分析显示,在6至12个月内体重减轻了约2公斤,腹部脂肪减少了约6%.

应该向超重和肥胖的人解释运动的健康益处(代谢、心血管和社会心理),无论体重减轻如何,这些益处都会产生。即使在肥胖个体中,增加运动的健康价值不仅仅体现在体重减轻上。

✦行为矫正干预

在团体或个人中,基于行为方法的干预应成为减重计划的一部分。

干预的主要目的是改变营养运动方面的生活方式,并且可以由合格的非心理治疗师进行。如果伴随超重或肥胖的症状更严重,精神科医生或心理治疗师应参与患者管理,并应支持患者进行饮食治疗锻炼

08

结语

肥胖肠道微生物群以多种方式交织在一起。饮食的类型及其数量会影响能量的可用性并因此影响肥胖,但也会强烈影响肠道微生物组,这反过来又可以放大饮食的致肥胖特性,或另一方面提供各种保护性益处

许多微生物衍生的代谢物,包括短链脂肪酸、胆汁酸、吲哚和其他氨基酸,对健康同样至关重要。过量或缺乏这些,或者更具体地说,在任何这些方式中改变的整体组成,都可能是致肥胖的。

通过本文更好地了解肥胖以及其发病机制与微生物组之间的关系,有助于在日后的生活中更好地应对肥胖,使人人都有一个健康的身体。

主要参考文献

van der Vossen EWJ, de Goffau MC, Levin E, Nieuwdorp M. Recent insights into the role of microbiome in the pathogenesis of obesity. Therap Adv Gastroenterol. 2022 Aug 9;15:17562848221115320. doi: 10.1177/17562848221115320. PMID: 35967920; PMCID: PMC9373125.

Canfora, EE, Meex, RCR, Venema, K, et al. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol 2019; 15: 261–273.

Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, Aiello V, Romano B, De Lorenzo A, Izzo AA, Capasso R. Gut Microbiota and Obesity: A Role for Probiotics. Nutrients. 2019 Nov 7;11(11):2690. doi: 10.3390/nu11112690. PMID: 31703257; PMCID: PMC6893459.

GBD 2015 Obesity Collaborators . Health effects of overweight and obesity in 195 countries over 25 Years. N Engl J Med 2017; 377: 13–27.

Chauhan, S, Jena, KK, Mehto, S, et al. Innate immunity and inflammophagy: balancing the defence and immune homeostasis. FEBS J. Epub ahead of print 26 November 2021.

Beukema, M, Faas, MM, de Vos, P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells. Exp Mol Med 2020; 52(9): 1364–1376.

肠道核心菌属——经黏液真杆菌属(Blautia),炎症肥胖相关的潜力菌

谷禾健康

Blautia (经黏液真杆菌属)

Blautia 是一种最近发现的细菌属,是将几种丰富的胃肠道细菌归类,这些细菌以前属于 Ruminococcus 属。基于表型和系统发育分析,梭菌属和瘤胃球菌属中的一些物种也已被重新归类为Blautia.

Blautia 作为毛螺菌科的一个属,自成立以来,因其对缓解炎症性疾病代谢疾病的贡献以及对特定微生物的抗菌活性而备受关注。最近的几份报告表明,肠道中Blautia菌的组成和变化与宿主年龄、地理、饮食、基因型、健康状况、疾病状态和其他生理状态等因素有关。

研究人员发现:该属中的物种水平在老年患者中经常减少,在结直肠癌患者的黏膜样本中水平降低,在肠易激综合征 (IBS) 患者中水平升高

此外,Blautia与内脏脂肪面积负相关,内脏脂肪面积被认为是心血管和代谢疾病风险的肥胖生物标志物。研究还确定了Blautia luti Blautia wexlerae 的减少与肥胖个体的胰岛素抵抗有关。Blautia菌通过产生细菌素防止病原体的定植,并通过上调调节性 T 细胞和 SCFA 的产生而表现出抗炎特性和维持葡萄糖稳态作用。

Blautia. 图片来源:microbiomology

01
Blautia菌的基本属性和特征

Blautia 属严格厌氧,不能运动,是哺乳动物肠道内重要的核心菌属。Blautia 能够使用氢气和二氧化碳来制造乙酸盐。乙酸是肠上皮细胞的次要能力来源,也是肌肉和脑组织的能量来源,可以抑制病原菌,有抗炎作用。

Blautia菌通常为球形或椭圆形,成对或成股出现,大多数菌株无孢子。Blautia广泛分布于哺乳动物的粪便和肠道中。大多数Blautia菌株的最适温度和 pH 值分别为 37°C 和 7.0。DNA的GC含量约为 37-47 mol%。

培养实验表明,所有Blautia菌株都可以利用葡萄糖,但不同菌株对蔗糖、果糖、乳糖、麦芽糖、鼠李糖和棉子糖的利用能力不同。Blautia发酵葡萄糖的最终产物是乙酸、琥珀酸、乳酸和乙醇,主要生化试验显示卵磷脂、脂肪酶、过氧化氢酶和吲哚的阴性结果。

Blautia菌株的碳水化合物利用特性

Liu X, et al., Gut Microbes. 2021

02
Blautia的物种分类

Blautia属目前根据公布的有效名称物种共计20个,包括:

  • B. Hydrogenotrophica
  • B. coccoides
  • B. wexlerae
  • B. hansenii
  • B. producta

它们最初被错误分类为Ruminococcus、梭菌属或瘤胃球菌属。

文献中报道的Blautia的所有种

Liu X, et al., Gut Microbes. 2021

该属的组成通过增加新的种和品系而不断更新,但总的来说,Blautia中的种仍形成一个相对稳定和连贯的单系分支。

不同物种首次发现的来源不同,但是主要物种都是从人粪便分离出来的。

例如:Blautia hydrotrophica (B.hydrotrophica)Blautia stercoris (B. stercoris) 首先是从人类粪便中分离出来的。

B.hydrotrophica 的代谢途径

Blautia hydrotrophica 是革兰氏阳性、无芽孢、球杆菌状细菌,平均大小为 0.7-0.6 毫米。Hydrogenotrophica,意为以氢为食,是指生物体利用 H2 和 CO2 作为生长能源的能力。它将 H2 和 CO2 代谢形成乙酸盐作为唯一代谢物自养生长。该生物体还能够使用几种不同的有机化合物作为底物异养生长。通过葡萄糖和果糖的发酵,乙酸是主要产物,但也可以形成乙醇、乳酸以及较小程度的异丁酸和异戊酸。

B.hydrotrophica的生存环境

B.hydrotrophica的最佳栖息地pH范围为6.0-7.0,温度为35-37˚CB.hydrotrophica也可能是一种重要的微生物,可替代反刍家畜体内的产甲烷菌,以限制释放的甲烷量。

B.hydrotrophica栖息在哺乳动物的内脏中,有助于分解宿主饮食中原本难以消化的部分,主要是植物材料。膳食多糖和蛋白质的分解是通过微生物群在厌氧肠道环境中发酵完成的。这些微生物群是共生的,这意味着它们的相互作用创造了一个相互关联的食物网。这种代谢食物网的产物是短链脂肪酸,例如乙酸盐、其他有机酸以及 H2 和 CO2 气体。H2 气体的积累实际上可以抑制 NADH 的再氧化,从而减少 ATP 和短链脂肪酸的产生量。据估计,这些短链脂肪酸的代谢产生了人类所需能量的 5%-10% Blautia hydrotrophica在宿主新陈代谢中发挥重要作用,因此更好地了解这些微生物可能会导致能够操纵人体能量平衡。

B. wexleraeB. luti Blautia中最丰富的物种,是人类肠道的主要物种之一。

B. wexlerae 治疗代谢疾病

Blautia wexlerae B. wexlerae ) 是主要的丁酸盐生产者。动物实验表明,丁酸盐可以改善胰岛素抵抗,减少脂肪堆积。因此,这可能是B. wexlerae抗肥胖的机制之一。B. wexlerae治疗代谢疾病方面具有发展潜力。

B. faecis DSM33383 菌株预防管理呼吸道疾病

Blautia faecis也是从人粪便分离出来的,细胞染色呈革兰氏阳性严格厌氧。研究人员已经确定了B. faecis DSM33383 菌株,该菌株降低了 TNF 诱导的肠上皮细胞系 HT-29 产生的 IL-8。在流感后的两个临床前模型中进一步研究了该菌株的作用表明该菌株胃内给药可保护感染了肺炎链球菌的小鼠,并在较小程度上保护鼠伤寒沙门氏菌继发感染。该研究表明,粪杆菌DSM33383 可能是预防和管理呼吸道传染病的有希望的候选者。

B. coccoides参与促炎途径

B. coccoides最初是从喂食高乳糖饮食的小鼠的粪便中分离出来的;Blautia coccoides已通过免疫调节和促炎途径参与多发性硬化,包括与抗原呈递、B 和 T 细胞活化以及补体活化相关的基因的上调

B. hydrogenotrophica,以前称为 Ruminococcus hydrogenotrophicus,是一种在哺乳动物(人类和反刍动物)的肠道内发现的物种。

B. glucerasei从狗的粪便中分离出来。

另外的物种如B. productaB. schinkii甚至从痰液、污水和瘤胃中分离出来。

这些发现表明Blautia在肠道和其他微环境中的生存和进化的重要性。

03
Blautia 与其他微生物的交叉喂养

当细菌从膳食成分中产生的代谢物作为底物支持其他物种的生长时,称为交叉喂养。交叉喂养是肠道微生物群中厌氧菌之间的重要相互作用,可影响其代谢途径并有助于其稳定性和生产力

作为厌氧菌的一个属,Blautia与其他细菌的交叉喂养也在一定程度上有助于代谢调节

Blautia & R. bromii

一项研究发现,通过使用 0.2% 的抗性淀粉作为能量来源,布氏瘤胃球菌(R. bromii)在 RUM-RS 培养基上可以产生大致相等摩尔比的甲酸、乙醇和乙酸。

注:布氏瘤胃球菌(R. bromii)是存在于人类肠道中的降解抗性淀粉的细菌,富含抗性淀粉的饮食可以增加它的丰度。

然而,在淀粉上与产乙酸细菌B. hydrotrophica进行批量共培养导致甲酸消失,乙酸水平增加。产生甲酸的物种和产生乙酸的物种之间的交叉喂养可能在结肠中短链脂肪酸的形成中起重要作用,并有助于大量产生乙酸

Blautia & Dorea

肠易激综合征 (IBS) 患者中观察到 Blautia 菌种水平升高,研究人员推测可能由于由高丰度的Dorea菌产生的较高气体水平Dorea 是一种可以被 Blautia 使用的细菌。

Blautia & B. bifidum

Blautia hydrotrophica消耗 H2和 CO2通过 Wood-Ljungdahl 途径产生乙酸——当与双歧双歧杆菌共存时,该途径显着激活B. bifidum (双歧双歧杆菌)作为一种特殊的碳水化合物发酵物种并产生 CO2,它是 Wood-Ljungdahl 途径中的固定底物。因此,在 Blautia hydrotrophica 中观察到的 Wood-Ljungdahl 途径的变化可能是B. bifidum交叉喂养的结果。

备注:Wood-Ljungdahl 途径又称为厌氧乙酰辅酶 A 途径,存在于产甲烷菌、硫酸盐还原菌和产乙酸菌等化能自养的厌氧细菌和古生菌中。

04
饮食、年龄和地理对Blautia丰度的影响

饮食

饮食是驱动肠道菌群组成和代谢活动的主要因素,不同种类和数量的饮食以及主要营养素之间的平衡对肠道微生物有显着影响。

酒曲通过糖基神经酰胺作为 Blautia coccoides 的益生元

传统的日本烹饪方法和食,其中包含用非致病性真菌酒曲制备的发酵食品,与日本人的长寿密切相关。一项研究报道,酒曲中含有大量的糖基神经酰胺,并表明在小鼠饮食中添加 1% 纯化的糖基神经酰胺作为益生元1周可以提高小鼠肠道中球状芽孢杆菌的丰度,减少液糖水平,并上调其肾腺激素水平。同时发现Blautia coccoides可以将糖基神经酰胺降解为神经酰胺,然后将神经酰胺代谢为脂肪酸鞘氨醇碱,它们被肠道吸收并产生有益作用。

玉米中提取的膳食纤维F-FOP增加Blautia

将从玉米中提取的膳食纤维 (F-FOP) 添加到喂食高脂肪 (HF) 饮食的小鼠的饮食中,显着增加了小鼠粪便中Blautia的丰度。与 HF 饮食的小鼠相比,F-FOPs + HF 饮食的小鼠表现出体重和组织重量的损失,结果显示Blautia的丰度肥胖相关代谢紊乱的标志物呈负相关

低聚果糖、冻干豆浆增加Blautia

在喂食高脂饮食的大鼠中添加 20% 的冻干豆浆会导致大鼠粪便中的Blautia含量增加

在一项研究中,将 30 只雌性大鼠分为六组,分别喂食酪蛋白大豆分离蛋白,每组都含有纤维素、棉子糖或低聚果糖 (FOS)。结果表明,两种来源的日粮蛋白质都可以改变大鼠粪便中乙酸浓度乳酸杆菌的丰度,但无论膳食蛋白质来源如何, FOS都会增加Blautia的丰度

研究还表明,大鼠肠道酸化可能会抑制次级胆汁酸的形成。

omega-3增加Blautia

在另一项研究中,一名 45 岁的男性志愿者每天摄入 600 毫克 omega-3,持续 14 天,该志愿者的整体肠道微生物多样性下降,尤其伴随着粪杆菌丰度的降低Blautia丰度的显着增加

交替饮食和自助饮食增加Blautia

除了食物,人们的饮食方式也会塑造肠道菌群。与普通饮食相比,交替饮食自助饮食可以提高肠道菌群中Blautia菌属和瘤胃球菌的丰度,此外还会引起一些宿主代谢相关参数的变化。随着全基因组测序的发展,未来的研究可以检验各种饮食如何调节Blautia的代谢活动并改善宿主健康。

年龄:老年人Blautia丰度降低

在生命的不同阶段(即从童年到成年再到老年)的过渡期间,肠道微生物群会发生显着变化。使用高通量测序对 367 名 0-104 岁健康日本受试者的粪便样本进行的横断面研究报告称,日本成年人(21-69 岁)的肠道微生物群含有高丰度BlautiaBifidobacterium低丰度Bacteroides。此外,与成年人相比,老年人的微生物组多样性和个体微生物丰度降低,包括Blautia丰度降低。这种现象可能与年龄相关的免疫功能下降(称为免疫衰老)有关,并伴有许多与年龄相关的疾病,包括慢性低水平炎症。

Blautia wexleraeBifidobacterium pseudocatenulatum的丰度在成人型肠道微生物群中显着更高,而在老年肠道微生物群中观察到兼性厌氧菌(如大肠杆菌)的丰度更高。这些发现表明,通过增加会随着年龄增长而减少的菌群,将肠道微生物群从老年人型转变为成人型,可以预防与年龄相关的疾病的风险。

地理位置

最近的一项研究分析了来自亚洲温带和热带地区五个国家的城市或农村地区的 303 名学龄儿童粪便样本中的微生物群落特征。儿童肠道菌群分为普氏菌属(P型)和双歧杆菌/拟杆菌属(BB型)两组。中国(包括台湾地区)、日本等温带地区儿童肠道菌群多为BB型,泰国、印度尼西亚等热带地区儿童肠道菌群多为P型。值得注意的是,Blautia 在 BB 型肠道菌群中显着富集,占总 BB 型细菌组成的 10%,但仅占总P的 5%。

一项研究指出,日本人的主要肠道菌属是双歧杆菌梭状芽孢杆菌。在美国人、中国人、法国人和西班牙人中存在拟杆菌属;在澳大利亚人中是Blautia。据报道,地理位置之间人类肠道微生物多样性的差异在很大程度上与遗传、生活方式和饮食有关。

有趣的是,据报道Blautia在双胞胎遗传中具有很强的分类关联。一项研究收集了七种宿主的粪便样本,包括人类、猪、牛、鹿、狗、猫和鸡,并对 16S rRNA 基因的 V6 区域进行了测序。发现Blautiaoligotypes可以准确识别不同的宿主来源,表明该属具有宿主特异性宿主偏好

05
Blautia 的生理功能

Blautia 对生物活性物质的生物转化

近年来,Blautia对草本植物和功能性食品的生物转化和代谢的研究引起了研究关注。

多甲氧基黄酮 (PMF) 是从山奈柑橘类水果中分离出来的黄酮类化合物,具有抗癌、抗炎、抗病毒和抗凝血等生物学功能。

研究表明,Blautia菌属通过将 5,7-二甲氧基黄酮 (5,7-DMF) 和 5,7,4-三甲氧基黄酮 (5,7,4-TMF)分别转化为具有生物活性的白杨素芹菜素,对芳基甲基醚官能团具有水解作用。该菌还具有去糖基化能力,它可以将异黄酮、黄酮和类黄酮代谢成相应的苷元。

作为黄酮类化合物的另一个例子,姜黄素在治疗某些疾病,包括癌症、心血管疾病、糖尿病、肝病和神经退行性疾病方面表现出抗氧化、抗炎、抗病毒、抗菌的有益作用,受到了广泛的关注。

由于姜黄素结构中含有β-二酮,该化合物具有高的疏水性、低的溶解性和“生物利用度”,因此,每天大量摄入姜黄素,可以观察到对健康的促进作用。不幸的是,大量摄入姜黄素可能会产生有害影响并降低疗效,这会导致限制了姜黄素在疾病预防中的应用。

由肠道细菌产生的姜黄素代谢物具有生物效应,而不是姜黄素的原始形式。

据报道,姜黄素是由人肠道细菌Blautia 菌株MRG-PMF1通过甲基芳醚裂解,转化为去甲基姜黄素双去甲基姜黄素的。有证据表明,未被吸收的姜黄素可以间接调节结肠微生物群,通过产生额外的生物可利用和生物活性分子(如二氧去甲基姜黄素和二甲氧基姜黄素)对多种疾病产生有益的影响。

此外,Blautia sp AUH-JLD56 菌株已被证明可特异性且有效地将牛蒡子苷或牛蒡子苷元生物转化为具有良好自由基清除活性的 (-)-3′-去甲基牛蒡子苷元。 B. glucerasei sp. 产生一种特定的细胞外葡萄糖神经酰胺酶,将葡萄糖神经酰胺水解成功能性物质,对结肠癌具有特定的预防作用。

但是值得提醒的是,Blautia的某些生物转化可能无益,甚至可能有害。某些Blautia物种可以对初级胆汁酸进行 7-α-脱羟基化,并将其转化为次级胆汁酸,如石胆酸脱氧胆酸。这些物质是诱发结肠癌的致癌物,在溃疡性结肠炎、发育不良或癌症患者的粪便中发现这些物质浓度

一般来说,肠道中的细菌代谢不涉及氧气,而是还原和水解,导致形成非极性低分子量产物。在类黄酮转化过程中,Blautia菌种催化的反应包括去甲基化、脱羟基化、O-和 C-去糖基化和 C-环裂解,这可能是由于其相应的酶,如 β-葡萄糖苷酶和 O-糖苷酶。因此,深入开发Blautia对生物转化的探索对于开发用于食品补充剂的新酶和生物活性代谢物至关重要,并为人体肠道微生物组的代谢组学研究提供有价值的视角。

Blautia 和 次生代谢物

次级代谢产物是微生物在生长代谢过程中产生的具有生物活性的化合物,广泛用于抗菌抗癌药物、除草剂、杀虫剂等,也是微生物药物开发的重要来源。如双歧杆菌产生的细菌素对单核细胞增生李斯特菌、产气荚膜梭菌和大肠杆菌等病原微生物具有抗菌活性。

Blautia通常具有生产细菌素的能力。通过antiSMASH数据库对次生代谢物的注释,将74株Blautia菌株注释为7类共261个次生代谢生物合成基因簇(BGCs),包括NRPS、sactipeptide、lanthipeptide、bacteriocin、lassopeptide、betalactone、transat-pks

NRP、sactipeptide、lanthipeptide 通常分布在所有菌株中。NRP 和 PK 是具有多种功能的最丰富的次级代谢产物家族之一,包括参与铁清除的铁载体、提供针对一系列压力因素的保护的色素,以及营养获取、化学通讯和防御反应

备注:antiSMASH数据库可实现基因组与基因组之间的相关天然产物合成基因簇的查询和预测。临床上使用的大部分抗生素和药物均来自植物或微生物的天然产物。近二十年来,基因组数据的不断增加,使通过基因组挖掘来获取化合物的生物合成簇成为可能。antiSMASH是该领域最流行的工具之一。自2011年首次发布以来,antiSMASH已成为次级代谢产物基因组挖掘的标准工具,antiSMASH数据库为许多公开可用的微生物基因组提供预先计算的antiSMASH结果,并允许进行高级跨基因组搜索。

Blautia产生的细菌群具有抑制肠道内病原菌定植的潜力,并且它还可以影响肠道微生物群的组成。研究显示B. obeumB. producta可以抑制产气荚膜梭菌耐万古霉素肠球菌的增殖,使其成为潜在的益生菌,发挥益生菌功能。

06
Blautia的健康特性

肠道微生物群是一个复杂的生态系统,与宿主疾病的发展、药物代谢、免疫系统调节和其他过程有关。Blautia 作为肠道微生物群中的优势菌属,与宿主生理功能障碍具有显着相关性,例如肥胖、糖尿病、癌症和各种炎症性疾病。

肥胖相关疾病

一项研究观察到连续 3 周食用低热量高蛋白饮食的超重/肥胖非酒精性脂肪肝患者的肠道微生物群组成发生变化和Blautia丰度增加。在另一项研究中,无论是否存在非酒精性脂肪性肝炎,肥胖儿童的肠道拟杆菌属丰度较,同时Blautia粪杆菌丰度较

在一项基于人群的横断面研究中,研究人员调查了 20-76 岁日本男性和女性的内脏脂肪积累体重指数与按性别分层的肠道微生物群的关系。发现Blautia是唯一一个其丰度与日本人的内脏脂肪积累呈显着负相关的属,无论性别如何。

Blautia是肠道中常见的乙酸生产者,可通过激活 G 蛋白偶联受体 GPR41 和 GPR43 来抑制脂肪细胞中的胰岛素信号传导和脂肪积累,进而促进其他组织中未结合的脂质和葡萄糖的代谢,从而减轻肥胖相关疾病

Blautia有效减肥组女性肠道菌群中的优势菌属,但在减肥无效组中则不然。在另一项研究中,与健康儿童相比,糖尿病儿童Blautia丰度显着下降。一项横断面研究表明,Blautia,特别是B. lutiB. wexlerae,可能有助于减少与肥胖相关并发症相关的炎症

肥胖组的Prevotella、巨型单胞菌(Megamonas)、梭杆菌属和Blautia显著增加

炎症性疾病

Blautia作为共生的专性厌氧菌属,通过上调肠道调节性T细胞和产生短链脂肪酸,在维持肠道生态平衡和预防炎症方面发挥着重要作用。

IBD患者和健康人的粪便和黏膜菌群分析表明,CD患者盲肠黏膜菌群中Blautia的丰度显着降低。在结直肠癌患者的黏膜粘连菌群中,同样报道了Blautia的丰度降低

霍乱弧菌通常会导致人类腹泻,但人们对病原体的易感性不同,这可能是由人际微生物组变异驱动的。

发现霍乱患者的肠道菌群与健康个体存在显着差异,其中Blautia obeum霍乱弧菌的定植呈显着负相关。进一步研究表明,B. obeum基因组中编码胆汁盐水解酶(BSH)的基因可以降低霍乱弧菌tcpA基因的表达,抑制其定植,缓解腹泻

一项生物标志物分析研究表明,接受异体 BMT 的患者肠道微生物群多样性增加,特别是Blautia共生细菌的丰度增加,与致死性移植抗宿主病的减少总生存期的增加有关。

少数研究也报道了Blautia丰度降低回肠袋-肛门吻合肝硬化的关系。Blautia作为共生的专性厌氧菌属,通过上调肠道调节性 T 细胞和产生短链脂肪酸,在维持肠道环境平衡预防炎症方面发挥重要作用。

上述研究表明,Blautia的丰度与某些疾病呈负相关。然而,与健康个体相比,在肠易激综合征溃疡性结肠炎患者的粪便微生物群中发现了更高丰度Blautia.

尽管Blautia在各种疾病中的潜在机制尚不明确,但 Blautia丰度仍可作为相关疾病早期诊断或治疗的潜在工具。

食欲不振和营养不良

老年人特别容易出现食欲不振和营养不良。这可能部分是由于肠道微生物群老化Blautia属的较丰度可能与营养不良有关,而来自毛螺菌科、瘤胃球菌科 UCG-002、Parabacteroides merdaeDorea formicigenerans 的分类群丰度较与食欲不振相关。食欲不振或营养不良的参与者的粪便乙酸水平降低

Blautia丰度减少可能会增加慢性低度炎症,并降低通过发酵从饮食中摄取的能量。该结论需要进一步的研究支持。

与对照组相比,来自虚弱组的粪便样本下列菌群具有较高的水平:

Akkermansia, Parabacteroides, Klebsiella

而共生属较低水平菌群如下:

Blautia, Megamonas, Faecalibacterium, Prevotella, Roseburia

神经类疾病

自闭症谱系障碍患有功能性肠胃疾病的儿童中观察到几种与粘膜相关的梭菌显着增加,而 Dorea 和Blautia以及 Sutterella的显着减少

此外,帕金森病患者子中发现在属的分类水平上,来自 Blautia、Coprococcus 和 Roseburia 属的推定“抗炎” 丁酸盐产生菌在对照组的粪便中明显多于帕金森病患者。

其他

肌肉减少症是一种症状性病症,其特征是由于骨骼肌质量随着年龄的增长而过度损失,导致肌肉力量和身体机能下降。

肌肉减少症伴随着身体平衡差、步态障碍、使用拐杖和跌倒。研究发现与附肢骨骼肌质量/体重 (ASM/BW)与 ASM/BW 呈正相关BlautiaBifidobacterium可能有助于增加骨骼肌质量

Blautia coccoides可能会通过免疫调节促炎途径参与多发性硬化,包括与抗原呈递、B 和 T 细胞活化以及补体活化相关的基因的上调。与其他疾病一样,在多发性硬化中,肠道菌群失调会增加肠道通透性,从而促进 LPS 的进入

07
Blautia如何调节

如何增加(来自文献,证据不是很充分)

食物:

富含 Omega-3 的食物

糙米

大麦

迷迭香

黄酮类

高谷物饮食

益生元或药物:

二甲双胍

黄连素

小檗碱

红花油

丁酸钠

抗性淀粉(II、IV型)

橙子(果胶/黄烷酮)

葡萄籽多酚/酒

亚麻籽

维生素 D3

益生菌:

枯草芽孢杆菌

布拉酵母菌

德氏乳杆菌

鼠李糖乳杆菌GG

长双歧杆菌 BB

例如:一项研究指出富含阿拉伯木聚糖的麦麸提取物提高Blautia物种的比例 ,这表明有可能设计基于饮食的干预措施,以增加肥胖儿童体内耗尽的这些细菌物种的肠道生态系统。需要对B. lutiB. wexlerae菌株进行临床前和临床干预试验,以明确证明它们对肥胖和糖尿病前期状态的潜在保护作用。

减少Blautia

  • 抗生素:氟喹诺酮和克林霉素
  • 高胆汁酸
  • 饮酒
  • 缺乏乳酸菌

08
小结

人类肠道微生物研究的不能忽略的关注之一是研究核心微生物群。拟杆菌、普雷沃氏菌、瘤胃球菌、经黏液真杆菌属(Blautia)、考拉杆菌、罗伊氏菌、吉米菌、粪杆菌、毛螺菌以及梭菌等是世界代表性人群的核心肠道菌群。在目前谷禾健康超过60万的肠道菌群数据库中,肠道微生物群的几个核心肠道细菌普遍存在于超过90%人群粪便中。

Blautia作为一个重要的核心菌属,在肠道中占比丰度,是短链脂肪酸尤其乙酸主要生产者,对于减肥抗炎均有重要的积极作用。此外,其属下某些菌株分泌的细菌素可以抑制特定病原菌,这对于当下耐药性问题无疑看到了新方向。

但是经黏液真杆菌属(Blautia)作为一种严格厌氧的细菌,需要苛刻的培养条件和严格的操作程序。因此,将属于该属的细菌用作商业益生菌并不容易。相反,Blautia的益生元底物可以用于健康维护。一些食物成分,例如低聚果糖、乳果糖和日本酒曲糖基神经酰胺,均表明可以增加小鼠体内的Blautia丰度。然而,需要注意的是粪便微生物群的益生元作用也会因人而异。

主要参考文献:

Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, Zhao J, Zhang H, Chen W. Blautia-a new functional genus with potential probiotic properties? Gut Microbes. 2021 Jan-Dec;13(1):1-21.

Benítez-Páez A, Gómez Del Pugar EM, López-Almela I, Moya-Pérez Á, Codoñer-Franch P, Sanz Y. Depletion of Blautia Species in the Microbiota of Obese Children Relates to Intestinal Inflammation and Metabolic Phenotype Worsening. mSystems. 2020 Mar 24;5(2):e00857-19.

Stanley D, MS G, SE D, VR H, TM C, RJ H, RJ M. Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Vet Microbiol. 2013;164(1–2):85–21.

Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by lachnospiraceae and ruminococcaceae in diverse gut communities. Diversity. 2013;5(3):627–640.

Chakravarthy SK, Jayasudha R, Prashanthi GS, Ali MH, Sharma S, Tyagi M, Shivaji S. Dysbiosis in the gut bacterial microbiome of patients with uveitis, an inflammatory disease of the eye. Indian J Microbiol. 2018;58(4):457–469.

Milani, C.; et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiology and molecular biology reviews. 2017, 81(4): e00036-17.

Luu TH, Michel C, Bard JM, Dravet F, Nazih H, Bobin-Dubigeon C. Intestinal Proportion of Blautia sp. is Associated with Clinical Stage and Histoprognostic Grade in Patients with Early-Stage Breast Cancer. Nutr Cancer. 2017 Feb-Mar;69(2):267-275

Chen, W., Liu, F., Ling, Z. et al. “Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer.” PloS ONE. 7(6): e39743; doi: 10.1371/journal.pone.0039743

Grisham, J. “Bacteria May Hold the Key to Preventing Dangerous Side Effect of Transplants.” Memorial Sloan Kettering Cancer Center. (2014). Memorial Sloan Kettering Cancer Center

Jenq, R.R., Taur, T., Devlin, S.M. et al. “Intestinal Blautia is Associated with Reduced Death from Graft-versus-Host Disease.” Biology of Blood and Marrow Transplantation. (2015). 21(8) 1373-83; doi: http://dx.doi.org/10.1016/j.bbmt.2015.04.016,/p>

Murat Eren, A., Sogin, M.L., Morrison, H.G. et al. “A single genus in the gut microbiome reflects host preference and specificity.” The ISME Journal. (2015). 9: 90-100; doi: 10.1038/ismej.2014.97

Rajilić-Stojanović, M., de Vos W.M. “The first 1000 cultured species of the human gastrointestinal microbiota.” FEMS Microbiology Reviews. (2014). 38(5) 996-1047; doi: 10.1111/1574-6976.12075

Horigome A, Hashikura N, Yoshida K, Xiao JZ, Odamaki T. 2′-Fucosyllactose Increases the Abundance of Blautia in the Presence of Extracellular Fucosidase-Possessing Bacteria. Front Microbiol. 2022 Jun 2;13:913624.

妇科癌症中的肠道菌群:病因、治疗潜力

谷禾健康

宫颈癌、卵巢癌和子宫内膜癌是最常见的妇科癌症。根据最新的全球癌症数据,女性宫颈癌的发病率和死亡率分别居第四位和第六位,而卵巢癌的死亡率居第五位,居妇科恶性肿瘤之首

此外,随着人类生活水平的提高,肥胖、内分泌失调、环境污染也可能增加妇科癌症的发病率死亡率

研究表明,妇科恶性肿瘤患者在发病前和治疗期间表现出肠道菌群的变化,表明肠道菌群与妇科恶性肿瘤之间存在相关性。深入研究妇科癌症患者的肠道菌群变化,可用于妇科癌症的筛查改善妇科癌症的治疗,改善不良预后。

本文从肠道菌群这个角度出发,介绍肠道菌群绝经后状态以及妇科恶性肿瘤之间的潜在关系,肠道菌群与早期筛查以及治疗方面的关系,此外还描述了益生菌在妇科恶性肿瘤预防治疗预后中的作用。

妇科恶性肿瘤和肠道微生物

健康稳定的肠道菌群会抑制癌症的发展,而失调的肠道菌群对身体的保护作用有限,可能会促进癌症的发展,也会对癌症免疫、化疗疗效和预后产生不利影响

绝经后女性的菌群变化

大多数妇科恶性肿瘤好发于绝经后和老年女性;因此,有必要探讨绝经后女性肠道菌群的变化及相关疾病。

绝经后女性缺乏内源性雌激素会引发一系列问题,例如心血管疾病、骨质疏松症、肥胖、糖尿病、乳腺癌和其他妇科癌症的发病率增加。在绝经过渡期间发现肠道通透性增加;此外,肠道通透性增加炎症发展之间存在关系

✦绝经前后女性的菌群变化

绝经后女性的粪便样本显示出与内分泌失调骨质疏松症相关菌群变化

下列菌群减少

  • Firmicutes ↓↓↓
  • Roseburia spp ↓↓↓

下列菌群增加

  • Bacteroidetes ↑↑↑
  • Tolumonas ↑↑↑

用于对抗这些疾病的激素替代疗法可能会增加雌激素相关癌症的发病率,包括乳腺癌和卵巢癌。因此,有必要分析微生物对雌激素水平的影响,创新微生物辅助疗法减少激素替代疗法的副作用。

先前的研究报道,非卵巢系统性雌激素水平与肠道菌群的丰度α多样性直接相关,并可能通过肠肝循环影响其水平。

由此引发思考,是否可以通过人为干预绝经期和绝经后女性的肠道微生物,从源头上控制疾病,降低疾病的发病率。

此外,绝经后女性的阴道干燥和组织萎缩显著影响生活质量。阴道环境状况的改变可能使病原菌更容易从阴道侵入,导致阴道生态失调和妇科恶性肿瘤。

✦ 卵巢和肠道微生物存在直接相互作用

在一项实验中,将卵巢完整且多产的雌性小鼠的粪便微生物移植到卵巢切除的阴道萎缩小鼠体内,萎缩症状显著改善

这表明卵巢和生殖道状态以及肠道微生物之间存在相互作用。此外,通过粪菌移植改善阴道上皮萎缩症状,可能通过改善阴道上皮萎缩相关的保护作用,对预防妇科恶性肿瘤产生影响

总之,研究绝经后妇女肠道微生物的变化及其在疾病发展和治疗中的作用,将对绝经后妇女的健康生活质量产生前所未有的影响。

宫颈癌与肠道菌群

▸ 宫颈癌

宫颈癌是威胁女性生命和健康的最常见妇科恶性肿瘤之一。目前对肠道菌群与宫颈癌关系的研究主要集中在宫颈癌患者放疗后肠道微生物及相关肠道疾病的变化。

大多数学者对宫颈癌患者的肠道微生物改变持相似观点。然而,肠道生物标志物的研究存在争议,缺乏相关生物学机制的研究。

✦ 宫颈癌患者与健康个体的肠道微生物差异

通过16S rRNA测序比较,学者们注意到宫颈癌患者和健康个体之间肠道微生物差异。根据最新研究,下列菌群是鉴定宫颈癌的潜在生物标志物:

  • phylum Proteobacteria
  • genus Parabacteroides
  • Escherichia Shigells
  • Roseburia

然而,不久之后的另一项研究显示了不同的结果。研究结果将下列菌群确定为预测早期宫颈癌的生物标志物:

  • Prevotella
  • Peptostreptococcus
  • Finegolida
  • Ruminococcus
  • Clostridium
  • Pseudomonas
  • Turibacter

上述研究为未来宫颈癌早期预测和诊断方式的升级提供了未来方向和催化剂。

✦ 短链脂肪酸能抗肿瘤,产短链脂肪酸菌减少

研究人员发现早期宫颈癌患者肠道中产生丁酸盐的细菌RuminococcusClostridium减少了。

微生物代谢产生的丁酸等短链脂肪酸具有良好的抗肿瘤活性影响各种有益的过程,如癌细胞的免疫凋亡

从而提示肠道菌群与癌症发展之间可能通过特定属的存在或缺失以及数量的改变间接联系。需要更多的实验来验证肠道微生物和宫颈癌发生之间的相互关系及其在筛查和诊断中的作用。

卵巢癌与肠道菌群

腹部不适是卵巢癌的标志性症状,且治疗期间胃肠道不良反应明显,因此研究肠道微生物与卵巢癌之间的关系具有重要意义

肠道微生物的失调与卵巢癌的发展密切相关。肠道微生物疾病促进肿瘤生长并导致异种移植小鼠的上皮-间质转化。

✦菌群失调➝肥胖和雌激素失衡➝卵巢癌

肠道微生物的不平衡与肥胖和雌激素水平相关;肥胖和雌激素失衡是卵巢癌发病的危险因素。这表明失调的肠道微生物可能导致肥胖雌激素失衡触发卵巢癌

此外,非肥胖者应调节饮食。高油、高脂肪和高盐的饮食也是不可取的。一项对接受高脂肪饮食的动物的研究报告称,这种饮食可能通过破坏炎症因子的水平来促进卵巢癌的发展。因此,不良的饮食习惯和健康习惯是癌症发生的关键危险因素

✦肠道菌群影响人对铂类药物的敏感性

对卵巢癌治疗的研究表明,肠道微生物会影响人体对铂类药物敏感性化疗会对肠道微生物产生不利影响,例如菌群失调,在患有卵巢癌的患者和动物模型中更为普遍。

此外,与铂类敏感患者相比,铂类耐药患者的肠道微生物菌群失调更为明显,健康相关菌群减少,产乳酸菌的比例增加,包括Coriobacteriaceae和双歧杆菌。

✦失调菌群促进肿瘤生长,降低存活率

除了降低对铂的敏感性外,动物研究还表明,肠道微生物的破坏促进卵巢恶性肿瘤的生长并降低小鼠的存活率。同时也表明肠道微生物的完整性和稳定性调节化疗药物的疗效

胆汁酸等肠道菌群代谢物可以与宿主药物代谢酶相互作用,从而影响药物配置、药代动力学和药效学。

✦肠道菌群及其产物可能有助于治疗卵巢癌

肠道微生物潜在特征的发现可能为未来上皮性卵巢癌的早期检测、治疗甚至预后提供新思路。肠道微生物及其产物也可能有助于治疗卵巢癌。

分离出四株芽孢杆菌从健康人和癌症患者的粪便中观察到细菌产物抑制卵巢癌细胞的增殖,可能是通过引起细胞凋亡,这些细菌产物将来可能被优化为抗癌药物。

✦肠道菌群有利地影响抗癌药物

此外,一项使用小鼠模型的研究发现,抗癌药物对 肠道微生物有一定的作用,导致革兰氏阳性细菌转移到次级淋巴器官并产生免疫反应。这表明肠道微生物群有利地影响抗癌免疫反应的形成和化疗的疗效。

还应注意卵巢癌治疗后肠道微生物的变化。与卵巢癌术前粪便样本不同,术后粪便样本中拟杆菌门厚壁菌门的丰度显著降低,而变形菌门的丰度显著升高。化疗组也有类似的变化。这意味着卵巢癌的治疗对肠道菌群有显著影响,肠道菌群与卵巢癌患者的临床预后之间可能存在潜在的相关性

子宫内膜癌和肠道菌群

▸ 子宫内膜癌

子宫内膜癌是一组子宫内膜上皮恶性肿瘤,最常见于围绝经期绝经后妇女。子宫内膜癌的危险因素包括肥胖、糖尿病和高血压

子宫内膜癌的发病率不仅在绝经前和绝经后妇女之间存在显著差异,而且在不同发展程度的国家之间也存在着差异。欧洲和北美的发病率高于发展中国家。

研究人员推测,子宫内膜癌的发展可能与由于生活质量和人们饮食改善而导致的荷尔蒙异常超重的不良后果有关。

✦ 影响子宫内膜癌的发病因素

肠道微生物失调引起的消化吸收中断可能导致肥胖,肥胖的发生可能导致高血压、糖尿病和激素紊乱。这表明肠道微生物与子宫内膜癌之间存在关系

此外,子宫内膜癌的发病与月经、婚育、吸烟、饮酒等因素有关。不同国家的饮食习惯、婚恋政策和风俗习惯,环境污染,甚至种族差异都可能导致不同的子宫内膜癌发病率。

✦ 肠道菌群能调节女性的全身雌激素水平

由雌激素编码的β-葡糖苷酸酶和β-葡糖苷酸,例如双歧杆菌、梭状芽孢杆菌和乳酸杆菌能够在肠道中发挥作用调节循环雌激素水平,去除通过胆汁排泄的结合雌激素的葡糖苷酸,以获得游离的雌激素分子。

此外,羟基类固醇脱氢酶也广泛存在于人体肠道中,并参与从胆固醇前体合成雌激素的部分还原过程。

尿液和血清雌激素水平与肠道微生物多样性正相关。肠道微生物还赋予外来雌激素样化合物生物活性。例如,肠道微生物能够催化大豆苷元以雌马酚或O-去甲基安果胶的形式代谢。木脂素的有益作用还取决于肠道微生物代谢物肠二醇肠内酯的活性。

因此,除了女性遗传差异和身体条件改变以及环境雌激素暴露的直接影响在激素水平上,由于不良生活方式、饮食抗生素滥用导致的肠道微生物生态失调也间接影响雌激素水平,进而促进子宫内膜癌的发生。

最近关于肠道菌群、肥胖、绝经状态、雌激素和子宫内膜癌之间潜在关系的综述也表明,更年期和肥胖可以通过引起肠道菌群失衡引起的雌激素变化来调节子宫内膜癌的发展。

✦ 肥胖导致子宫内膜癌的风险增加和预后更差

一项研究发现,肥胖妇女的子宫内膜上皮细胞显示出大量甲基化变化,与I期子宫内膜癌存在54个重叠的差异甲基化区域。

这表明肥胖通过影响DNA甲基化并导致相关代谢途径的失调促进子宫内膜癌的发生。肥胖对子宫内膜癌的影响引发了人们的猜测,即减肥手术是否可以通过稳定肠道微生物雌激素水平来帮助改善肥胖,甚至可能在未来促进子宫内膜癌治疗。

一项相关研究报告称,减肥手术会导致肠道微生物发生变化,产生有益的影响,但不会影响激素水平,而且减肥手术与子宫内膜癌发病率之间没有直接关系。然而,深入研究减肥手术在子宫内膜癌中的潜在作用可能会在未来的癌症研究中有前所未有的应用。

影响肠道微生物的因素及其在妇科癌症中的潜在作用机制

Han M,et al.Front Oncol.2022

不健康的饮食、肥胖、雌激素药物滥用和癌症治疗都会影响肠道微生物的体内平衡,共生菌减少,病原菌增加

益生菌在妇科恶性肿瘤辅助治疗中的潜在作用

益生菌是在一定剂量范围内对身体有益的微生物。可以在一定程度上改善肠道微生物的生态失调,进而通过影响雌激素水平、癌症免疫、癌细胞增殖和凋亡、耐药性等对妇科癌症产生有益的影响

益生菌和粪菌移植在妇科癌症中的意义

Han M,et al.Front Oncol.2022

益生菌及其代谢物、基因工程菌株和粪菌移植可以改善肠道微生物环境。肠道微生物环境的改善可以影响雌激素水平提高癌症免疫力和化疗疗效,增加癌细胞的凋亡,减少癌细胞的快速增殖和药物副作用。

鼠李糖乳杆菌

鼠李糖乳杆菌(Lactobacillus rhamnosus)是益生菌领域的一个明星属,具有广泛的应用。鼠李糖乳杆菌在癌症中的潜在作用广泛分为以下几部分。

● 鼠李糖乳杆菌帮助恢复肠道屏障功能

首先,鼠李糖乳杆菌通过增强健康肠道通透性相关基因的表达调节肠道菌群的动态平衡,保护粘膜恢复肠道屏障功能,上文也已经提到了肠道菌群对妇科恶性肿瘤的稳态作用

● 鼠李糖乳杆菌调节免疫

其次,关于人的自我保护,鼠李糖乳杆菌潜在地调节免疫,通过激活或抑制细胞因子表达和病原体入侵引起癌细胞凋亡抗炎作用

最终,鼠李糖乳杆菌还可以保护身体免受放射疗法和其他治疗方法的毒性副作用

从分泌物或排泄物中分离的细菌(益生菌特性)

一些研究记录了从人和动物的分泌物或排泄物中分离出的某些细菌的抗癌活性

  • 从人类粪便中分离的Bifidobacterium adolescentis SPM1005-A
  • 从青春期女性阴道分泌物中分离的Lactobacillus plantarum 5BL
  • 从健康人阴道中分离的Lactobacillus gasseri G10和H15

从母乳中分离的三种潜在益生菌菌株:

  • Lactobacillus casei SR1
  • Lactobacillus casei SR2
  • Lactobacillus paracasei SR4

还有从猪肠道食物中分离的Enterococcus faecalis por1

以上这些菌群具有益生菌特性,并且可以通过靶向癌基因、防止癌细胞生长、诱导凋亡或调节免疫应答能力来抑制癌症的发展

细菌代谢物抑制妇科恶性肿瘤的发展

研究发现,从Bacillus thuringiensis 4R2中分离出来的parasporin-2Aa1被蛋白酶K激活诱导来自不同组织的各种人类癌细胞的凋亡,包括子宫内膜癌细胞,但它不影响正常细胞。由于其良好的特性,parasporin-2Aa1可在未来与化疗药物联合使用减少对正常细胞的杀伤。

益生菌混合物和益生菌修饰

益生菌混合物和基因工程益生菌通过靶向免疫系统促进癌症治疗

研究发现,经鼻内给药的Lactococci 被设计为表达HPV-16 E7抗原,可刺激细胞介导(分泌IL-12和IFN-γ)和体液免疫系统(产生E7抗体),以预防HPV相关宫颈癌

此外,口服含有特定鼠李糖乳杆菌、嗜酸乳杆菌和乳铁蛋白RCXTM的益生菌混合物可调节阴道和全身的先天性和适应性免疫反应削弱Gardasella vaginalis诱导的阴道病,并预防由炎症引起的妇科癌症。

与妇科恶性肿瘤相关其他方面的作用

● 雌激素过多或过少都可能影响妇科癌症

雌激素缺乏会影响女性的健康,然而,不适当的雌激素补充也可能导致包括乳腺癌子宫内膜癌在内的疾病。因此,益生菌与激素相关药物联合用药是未来雌激素缺乏研究的热点。

具有选择性雌激素受体亲和力的生物可利用异黄酮在预防治疗因雌激素缺乏引起的骨质疏松症方面具有潜力,同时最大限度地减少或消除其致癌副作用。

● 益生菌调节癌症治疗副作用的预防和管理

通过放射疗法治疗宫颈癌的一种可能的急性副作用是辐射引起的腹泻。许多实验表明,补充益生菌包括乳酸乳杆菌、动物双歧杆菌和嗜酸乳杆菌可以最大限度地降低宫颈癌患者放射引起的腹泻的发生率和严重程度

上述研究大多基于现象,需要深入研究来证明结论的准确性。益生菌在妇科肿瘤治疗中的作用机制研究尚缺乏,有待进一步探索。

结 语

微生物本身没有好坏之分;它们分为对宿主有益和有害的细菌,导致微生物对宿主产生双重作用

菌群失调和病原菌入侵促进癌变,不利于妇科恶性肿瘤的后期治疗。然而,维持菌群稳态益生菌的应用可以抑制癌症

肠道微生物的有效利用对妇科恶性肿瘤的未来具有重大影响。以上研究促进了妇科恶性肿瘤微生物学方面的进步;但是,还存在样本量小和机制研究不完整等缺点。

更多研究应增加样本量,考虑影响结果的所有相关参数,并侧重于研究机制和临床效果,以便更好地延长妇科恶性肿瘤患者的生存时间,提高生存率和生活质量。

附录

关于妇科癌症预防治疗的建议

▸避免或减少肉类、乳制品和饱和脂肪

总体而言,病例对照研究发现,尤其是与红肉相关的子宫内膜癌风险增加。一项研究队列发现血红素铁(在红肉和白肉中都存在)与肝脏消耗和子宫内膜癌之间存在显着关系。对脂肪摄入和子宫内膜癌的剂量反应分析得出结论,将总脂肪摄入量增加 10% 的卡路里会使患这种癌症的风险增加 5%

然而,饱和脂肪摄入量增加 10 克/1000 大卡与更大的风险相关(17%)。也就是说饱和脂肪对增加子宫内膜癌风险的影响是其他类型脂肪的三倍以上

▸避免生的或未煮熟的海鲜

化疗会影响女性的免疫系统和抵抗感染的能力,因此不应食用可能含有细菌的生的或未煮熟的海鲜或肉类,因为受损的免疫系统更难抵抗食源性感染。在手术或化疗期间发生感染可能会导致癌症治疗延误。

▸限制含有丙烯酰胺的食物(油炸食品)

包括国际癌症研究机构在内的多个来源都认为,饮食中的丙烯酰胺是一种“可能的致癌物”。膳食丙烯酰胺是高温烹饪某些淀粉时产生的化学副产物。它存在于深度加工和油炸食品中,例如:薯片、炸薯条、某些加工过的谷类食品和零食等都可能含这种物质。

▸多吃水果、蔬菜

先前的研究表明,蔬菜水果可能与降低风险的程度有关,可达50-60%。在美国癌症协会的癌症预防研究II营养队列(超过41,000名女性)中,蔬菜和水果(分别降低20%25%的风险)对食用这些食物最多的人的保护作用仅在从未使用激素治疗的女性中确定。例如苹果、西兰花、蓝莓、草莓、辣椒等。

尤其是所有的十字花科蔬菜,如西兰花、芥菜和球芽甘蓝,都有抗癌作用。这些蔬菜中存在的一种叫做萝卜硫素的化学物质会产生一种减少肿瘤生长的酶。

另一种化合物 Indole-3-carbinol 在对抗癌细胞方面也很不错。

β-葡聚糖是一种存在于某些蘑菇中的化合物,在抗癌方面很受欢迎。

在水果中,葡萄具有巨大的健康益处。它们含有抗氧化剂,可以防止自由基破坏身体的健康细胞。葡萄皮含有白藜芦醇,这是另一种具有抗癌特性的化合物。

▸避免糖和高血糖指数碳水化合物

研究发现,饮用含糖饮料多的女性患子宫内膜癌的风险要高出 78%。一项荟萃分析比较了饮食中血糖负荷最高的女性与血糖负荷最低的女性,发现前者的风险高出约20%.

▸尽可能吃完整的、未加工的食物

子宫内膜癌主要与体内高水平的无拮抗雌激素有关。包装食品不仅缺乏营养,还含有人造防腐剂和化学物质,以及包装中的塑料,导致雌激素循环增加。

对于子宫内膜癌患者来说,理想的饮食需要包含大量的天然食品,并且应该不含高度加工的食品。糙米、燕麦片、豆类和麸皮全谷物提供足够的纤维,有助于定期排除体内的毒素。

许多非有机食品中的杀虫剂增加体内的雌激素。吃完整的有机食品可能对其预防和管理特别重要。

▸喝咖啡和绿茶

研究发现,喝咖啡量相对较多的女性患子宫内膜癌的风险降低20%,而喝咖啡量高从未接受过HRT治疗的女性,患子宫内膜癌症的风险降低40%

可能是由于咖啡中的咖啡因和其他甲基黄嘌呤能够增加性激素结合球蛋白(SHBG)并增加胰岛素敏感性。

同样,喝绿茶的人患子宫内膜癌的风险在最高摄入量组低近20%。其作用可能包括促进细胞凋亡、细胞周期阻滞、上调谷胱甘肽- s转移酶,使致癌物失活,以及抗雌激素作用。

▸适度饮酒

酒精摄入与子宫内膜癌风险之间似乎存在J型关系。研究发现,与不喝酒或偶尔喝酒的女性相比,每天喝半杯到一杯的女性风险降低4-7%,而每天喝2.5杯或超过2.5杯的女性风险分别高出14%和25%

▸补充维生素

据《营养杂志》报道,每天服用 500mg 维生素 C和 400 国际单位的维生素 E 可以将患卵巢癌的风险降低 68% 。斯坦福大学的科学家说,这两种营养素都有助于关闭为异常细胞生长提供燃料的酶。

▸可能预防卵巢癌的食物

  • 生姜

密歇根大学的研究人员认为,生姜的活性化合物(姜酚)破坏卵巢癌细胞。

  • 番茄汁

番茄汁的细胞壁在加工过程中被分解,更容易吸收。研究人员报告称,每天只需喝八盎司番茄汁就能将患卵巢癌的风险降低一半。

  • 三文鱼

一项针对人体细胞的妇科肿瘤学研究发现,一种仅存在于鱼类中的 omega-3 脂肪酸 DHA 可抑制卵巢癌的生长。

  • 含硒食物

发表在BMC Cancer上的研究表明,含有矿物质硒的食物可能会降低卵巢癌的风险。它在体内充当抗氧化剂,降低破坏细胞的自由基水平。高蛋白食物中很多富含硒,例如瘦肉、鱼(金枪鱼)、虾、豆类、坚果等。

▸其他营养和生活方式建议

限制高能量密集型食物和高盐(或高钠食物)、定期运动和保持健康体重可能会降低癌症风险。

与其他饮食模式相比,遵循植物性饮食提供更高的饮食质量,有助于实现健康体重。

▸疫苗接种

HPV 疫苗可以帮助预防导致大多数宫颈癌病例的HPV 类型的感染,最好在青少年时期就接种。

▸肠道菌群健康检测

随着深入研究体内微生物群妇科恶性肿瘤发生发展的关系,利用菌群预测癌症的早期阶段成为可能。

通过及时调整饮食、生活方式、配合益生菌的使用等干预手段,尽可能避免疾病发展。

主要参考文献

Han M, Wang N, Han W, Ban M, Sun T, Xu J. Gut Microbes in Gynecologic Cancers: Causes or Biomarkers and Therapeutic Potential. Front Oncol. 2022 Jul 13;12:902695. doi: 10.3389/fonc.2022.902695. PMID: 35912194; PMCID: PMC9326394.

Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and Cancer Risk: Emerging Biological Mechanisms and Perspectives. Metabolism (2019) 92:121–35. doi: 10.1016/j.metabol.2018.11.001.

Tong J, Zhang X, Fan Y, Chen L, Ma X, Yu H, et al. Changes of Intestinal Microbiota in Ovarian Cancer Patients Treated With Surgery and Chemotherapy. Cancer Manag Res (2020) 12:8125–35. doi: 10.2147/CMAR.S265205.

Ding K, Hua F, Ding W. Gut Microbiome and Osteoporosis. Aging Dis (2020) 11(2):438–47. doi: 10.14336/AD.2019.0523.

Garcia-Gutierrez E, Narbad A, Rodriguez JM. Autism Spectrum Disorder Associated With Gut Microbiota at Immune, Metabolomic, and Neuroactive Level. Front Neurosci (2020) 14:578666. doi: 10.3389/fnins.2020.578666.

间歇性禁食 & 肠道菌群 & 心血管代谢疾病

谷禾健康

在过去几十年中,人类的饮食行为发生了巨大的变化。传统的早餐-午餐-晚餐模式已被频繁的小吃、夜间大餐和不吃早餐所取代。这种不规律的饮食模式可能对心血管代谢疾病风险产生不利影响,如肥胖胰岛素抵抗高血糖症、2型糖尿病等。

间歇性禁食已被越来越多的人认为是一种有前途的治疗心血管代谢疾病(CMD)的方法。一些神经科学家认为,我们的身体已经进化到能够不吃东西几个小时,甚至几天。

进食时机频率可以一定程度上改善生活方式心血管代谢,防止2型糖尿病心血管疾病的发生。

间歇性禁食(IF),包括周期性禁食限时饮食(TRF)等开始越来越流行。

本文讨论肠道微生物组的组成和功能改变,对代谢高血压2型糖尿病肥胖症及其长期微血管和大血管并发症发展的风险之间潜在联系的新证据,同时也包括间歇性禁食的安全性,将间歇性禁食融入日常生活的建议等。

本文关键词

01
间歇性禁食(IF)

间歇性禁食在进食和禁食之间循环,通常是只能在特定时间进食,比如通过每周12小时至几天的限制进食。它关注的不是吃什么,而是在什么时间段内可以吃。

在食物缺乏的时间内,人体新陈代谢通过产生和利用脂肪酸衍生的酮,以及通过自噬增加细胞水平的营养循环,将脂肪从储存转换到动员

注:脂肪动员是指储存在脂肪细胞中的脂肪,被脂肪酶逐步水解为游离脂酸(FFA)及甘油并释放入血液,被其他组织氧化利用的过程。

目前已有许多研究表明,间歇性禁食在减轻体重、改善葡萄糖稳态和血脂以及抗炎作用等方面都带来益处。

间歇性禁食包括以下几种常见的方式:

隔日禁食(ADF)

在某一天规律进食第二天不进食之间进行交替。

周期性禁食(5:2天)

5:2天的进食也称为周期性禁食,其特征是一周两天极度限制或完全禁食,而一周其他五天可以不受限制地进食。

模拟禁食的饮食(FMD)

定期禁食的一种变体,特点是连续几天低热量摄入周期,然后每一到四个月或每隔一周进行一次正常的饮食循环。

限时饮食(TRF)

不那么极端的饮食,将每天的食物摄入量限制在4-12小时内,例如,分别在12:12小时或16:8小时(禁食:进食),包括斋月期间的禁食。

此图概述了一周中每一天的隔日禁食、5:2 饮食和限时进食 (TRE)(此处显示 8 小时 TRE)期间的食物摄入时间。食物摄入时间用苹果图标表示。

临床上对间歇性禁食的研究结果不一致:

几项临床研究表明,间歇性禁食可延长预期寿命并提供广泛的益处,包括减轻肥胖、高血压、2型糖尿病和心血管疾病。

然而,其他研究发现,特定时间的饮食在改善心血管和代谢结果方面并不优于控制能量的饮食。

因此,禁食和进食期间代谢转换的机制值得进一步研究

最近,间歇性禁食已被证明会影响肠道菌群,几乎涉及宿主生理学的所有方面,这表明间歇性禁食生理影响的全新机制。

人类研究中,关于禁食对肠道菌群的影响

Angoorani P, et al.,Nutr Metab (Lond). 2021

02
心血管代谢疾病:间歇性禁食与菌群调节

本小节重点介绍一些关于肠道微生物组在间歇性禁食中作用的显著发现,肠道微生物组反过来影响心血管疾病相关的代谢表现,如肥胖、高血糖、高血压等。

肥胖与脂质代谢

我们知道,体重增加是由于过多的能量摄入加上较低的能量消耗,这通常是由体内脂肪的积累造成的。脂肪积累会对心血管系统造成严重的威胁。

关于肥胖与菌群的关系详见我们之前的文章:

体重增长:目前为止我们所知道的一切(更新你的减肥工具箱)

对人体随机对照试验的Meta分析表明,每周定期禁食2-3天的间歇性能量限制可改善超重肥胖使体重减轻降低体脂。这些改善的重要贡献可归因于肠道微生物群脂质代谢能量平衡的影响。

其中一种机制涉及脂肪组织,这是一种对营养刺激敏感并在间歇性禁食期间经历动态重塑的异质器官。

在哺乳动物中发现了两种不同形式的脂肪组织:

  • 白色脂肪组织(WAT)以甘油三酯的形式储存能量(在WAT中,米色脂肪细胞与棕色脂肪组织具有相似的特性,并在应对各种刺激时形成,主要是低温)
  • 棕色脂肪组织燃烧额外的热量来产生热量

▸ 肠道菌群在隔日禁食介导的代谢改善中具有因果作用

喂食高脂肪食物并接受隔日禁食方案的肥胖小鼠在WAT中表现出白色脂肪积累增加,同时伴有体重减轻和肠道微生物组组成改变。

值得注意的是,向接受隔日禁食的肥胖小鼠补充抗生素消除了隔日禁食的有益代谢作用,并且将 隔日禁食小鼠的粪便移植到抗生素治疗的肥胖小鼠的粪便改善了代谢健康,表明肠道微生物在隔日禁食介导的代谢改善中具有因果作用。

间歇性禁食介导的肠道微生物群调节宿主能量代谢的积极作用

Rong B, et al.,Anim Nutr. 2021

(1) 间歇性禁食通过改善肠道菌群,促进WAT米色脂肪组织

(2) 在不摄入营养期间,肠道微生物群参与增加肝酮的产生

(3) 间歇性禁食优化的微生物群还负责保护宿主肠道屏障

▸ 隔日禁食诱导多种肠道细菌产生乙酸和乳酸

将盲肠代谢组学与Shotgun宏基因组学相结合,发现隔日禁食会导致肠道微生物群的组成发生变化,从而导致产生乳酸和乙酸的细菌(如罗伊氏乳杆菌)发生变化,进而导致血清乳酸和乙酸的积累。

关于罗伊氏乳杆菌详见:认识罗伊氏乳杆菌(Lactobacillus reuteri)

隔日禁食还通过促进米色脂肪生成增加能量消耗,并改善体重增加和其他代谢紊乱。

在另一项研究中,仅在喂食正常饲料的小鼠中,乳酸杆菌水平在隔日禁食喂养的小鼠身上重复升高,而Allobaculum则只在隔日禁食高脂肪饲料的小鼠中富集。Allobaculum属是一种活性的葡萄糖代谢产物,能产生丁酸盐和乳酸盐

这些结果表明,隔日禁食诱导多种肠道细菌产生乙酸和乳酸。然而,还需要更多的研究来确定乳酸和短链脂肪酸对WAT褐变以及对宿主产热和能量消耗的影响。

肠道微生物群的变化除了影响脂肪细胞产热之外,也可能影响适时进食过程中的脂质摄取

控制宿主昼夜脂质吸收可能通过以下几种机制发生:

▸核因子白细胞介素-3 (NFIL3)的调节

核因子白细胞介素-3是一种受昼夜节律控制的转录因子调节参与肠上皮细胞中脂质的摄取、加工和储存的基因的节律性表达

NFIL3中的节律振荡肠道微生物组通过激活先天免疫细胞反应驱动。

▸组蛋白脱乙酰酶3(HDAC3)的调节

刺激HDAC3的节律性表达和向染色质招募导致肠上皮组蛋白乙酰化的同步昼夜振荡,这反过来调节营养转运蛋白的基因表达,从而影响营养物质摄取和脂质吸收

总的来说,肠道微生物群通过调节控制脂质营养摄入的基因,以及通过产生影响脂肪组织的微生物代谢物来影响能量代谢。

间歇性禁食导致肠道微生物组分和功能的改变,这反过来可能影响心血管代谢健康

Karina R,et al.Rev Art Jou of Dia.2022

肠道微生物群驱动的WAT褐变和脂质吸收有助于体重管理。微生物通过GLP-1分泌和β细胞再生对血糖控制的影响。

微生物衍生的次级胆汁酸激活TGR-5以控制血压。

血糖控制

对啮齿动物和猴子的研究表明,间歇性禁食对血糖控制具有持续的有益作用

肠道微生物组分血糖水平相关,并适应日常生活中的禁食和再喂养期,包括昼夜饮食模式和限时饮食(例如,作为宗教禁食的一部分)。

在小鼠中,乳酸杆菌属禁食期间高度富集,而Akkermansia muciniphila喂养期间高度富集。除了昼夜变化外,A. muciniphila在接受限时饮食的人和小鼠体内都显著扩增

A. muciniphila的增加如何在血糖控制中发挥作用?

这些成分的变化很有趣,因为A. muciniphila 与啮齿动物和人类的血糖水平呈负相关

此外,A. muciniphila的增加GLP-1分泌增强有关,GLP-1是一种促胰岛素激素,由肠内分泌L细胞分泌,对膳食作出反应,并在全身血糖控制中发挥关键作用。

▸ 微生物群的昼夜变化 & GLP-1的昼夜分泌

GLP-1的分泌遵循昼夜节律,在活动期葡萄糖负荷后,餐后GLP-1水平较高,而在静息期,GLP-1水平较低,此外还受L细胞时钟机制的调节。

在喂食西方饮食的肥胖小鼠和缺乏微生物组的小鼠中,GLP-1的波动性分泌减弱。这项研究表明,通过将食用正常食物的常规小鼠的粪便微生物群转移到肥胖小鼠中,可以无菌小鼠GLP-1的昼夜节律

间歇性禁食、肠道微生物群和昼夜节律之间的多向关系

Daas MC, et al.,Benef Microbes. 2021

这些结果表明,微生物群的昼夜变化可能在GLP-1的昼夜分泌及其对葡萄糖稳态的后续影响中起着核心作用。至于机制,最近的研究已经确定了由A. muciniphila产生的几个假定的生物分子,它们可以触发肠L细胞分泌GLP-1。其中,丙酸盐和蛋白P9和Amuc-1100可刺激L细胞分泌GLP-1。

▸ 间歇性禁食改善血糖调节和2型糖尿病

给予肥胖和高血糖小鼠或缺乏瘦素受体的糖尿病db/db小鼠间歇性禁食或模拟禁食的饮食(FMD),可分别改善血糖控制和2型糖尿病。

模拟禁食的饮食有益于葡萄糖稳态的一个主要潜在机制包括神经生长素3(Ngn3)的激活,Ngn3是产生胰岛素的β细胞发育所必需的转录因子。β细胞的再生发生在暴露于间歇性模拟禁食的饮食后,并表明其遵循肠道微生物群的重组,这与db/db小鼠的血糖水平相关

根据粪便微生物群的16S rRNA测序,

模拟禁食的饮食增加了下列菌的丰度:

  • Parabacteroides distasonis ↑
  • Blautia ↑

模拟禁食的饮食降低了下列菌的丰度:

  • Lachnospiraceae NK4A ↓
  • Prevotellaceae ↓
  • Alistipes ↓
  • Ruminocaceae ↓

这与低血糖水平相关。

在此背景下,发现在模拟禁食饮食中具有较高丰度的Blautia,在糖尿病大鼠经2型糖尿病药物治疗后相对增加

总之,营养时间对肠道微生物群、GLP-1分泌以及β细胞增殖的影响可能有助于改善血糖控制和胰岛素敏感性,从而为基于饮食和微生物群的2型糖尿病治疗潜力提供理论基础。与间歇性禁食对啮齿动物β细胞再生的影响一致,人类随机临床试验表明,与每日热量限制的匹配组相比,定期禁食(5:2饮食)对空腹胰岛素的影响更为显著

血压

有几个迹象表明,间歇性禁食和进餐时间可能有助于改善小鼠和人类的高血压。

不过间歇性禁食的有效性仍有争议,但DASH饮食(阻止高血压的饮食方法)提供了一种可以降低高血压的低钠饮食

最近的一项研究表明,在高血压代谢综合征患者中,五天禁食后进行改良DASH饮食可以降低收缩压

▸ 五天禁食通过改变肠道菌群影响血压

这种禁食还改变了肠道微生物群,包括一些与短链脂肪酸产生相关的菌群和基因。

使用对基线微生物组数据的机器学习分析来预测持续的收缩压反应,确定以下菌群为控制高血压的潜在贡献菌

  • 脱硫弧菌科(Desulfovibrionaceae)
  • 氢化亚诺杆菌属(Hydrogenoanaerobacterium)
  • 阿克曼菌属(Akkermansia)
  • 瘤胃球菌科(Ruminococcaceae)

在大鼠中,五周的隔日禁食治疗显著降低易患高血压卒中动物的血压。这种表型变化伴随着微生物组结构的改变,包括下列菌升高:

  • 拟杆菌
  • 罗伊氏乳杆菌
  • 约式乳杆菌(Lactobacillus johnsonii)

Shi H, et al.,Circ Res. 2021

▸ 隔日禁食饮食的调节血压机制

从机理上讲,隔日禁食饮食与微生物向产生次级胆汁酸的细菌转移有关,包括共轭和非共轭的二级胆汁酸(如牛磺胆酸、牛磺脱氧胆酸、牛磺脱氧胆酸[TUDCA]、LCA、甘鹅脱氧胆酸等),以及胆汁酸受体TGR5的激活。

此外,用胆酸TGR5激动剂治疗这些高血压大鼠可降低血压,从而超过隔日禁食的需要。

从隔日禁食喂养的大鼠到无菌大鼠的粪菌移植防止收缩压升高,表明肠道微生物群在降低血压方面的因果作用。

进一步的研究需要确定对次级胆汁酸产生反应的靶组织和细胞类型,以及这些胆汁酸诱导的导致血压下降的细胞途径。此外,还需要更多的试验来确定不同的间歇性禁食在降低各种心血管代谢紊乱患者血压方面的疗效和可持续性。

03
长期心血管代谢并发症中的间歇性禁食和菌群调节

心血管代谢疾病是一种进行性疾病,具有长期和毁灭性的后果

2型糖尿病患者的常见表现是微血管并发症,包括视网膜病肾病以及心血管疾病。作为营养疗法的一部分,间歇性禁食已经成为治疗2型糖尿病几种长期并发症的潜在干预措施,包括视网膜病认知能力下降心力衰竭肾病

Karina R,et al.Rev Art Jou of Dia.2022

视网膜病变

糖尿病性视网膜病变是2型糖尿病的一种并发症,它会影响视网膜血管,并可能导致未经治疗的个体失明

幸运的是,通过早期检测及时治疗可以控制血糖水平和血压,可以降低糖尿病性视网膜病变导致的失明风险

▸ 糖尿病性视网膜病变的菌群变化

以下三者之间的肠道微生物群存在显著差异

  • 健康个体
  • 糖尿病性视网膜病变患者
  • 没有视网膜病变的2型糖尿病患者

比如说,研究人员Das等人发现,糖尿病视网膜病变患者中菌群变化:

  • 降低:双歧杆菌,Turicibacter
  • 升高:Akkermansia

在这项观察性研究之后,其他研究人员提出了肠道微生物组作为糖尿病视网膜病变鉴别生物标志物的潜在用途,并发现以下细菌是区分2型糖尿病患者和糖尿病视网膜病变患者的主要生物标志物

  • 巴氏杆菌科(Pasteurellaceae)
  • 草酸杆菌科(Oxalobacteraceae)
  • 嘉利翁氏菌科(Gallionellaceae)

这可能有助于视网膜病变的诊断。

其中,巴氏杆菌科在患有视网膜病的2型糖尿病患者中特别减少,这种细菌的减少可以作为该疾病的预测生物标志物

▸ 隔日禁食干预后,糖尿病小鼠的菌群变化

研究人员使用糖尿病小鼠(db/db)比较了隔日禁食喂养的小鼠与随意喂养的小鼠糖尿病视网膜病变的经典标志物,发现隔日禁食方案阻止了无细胞视网膜毛细血管数量的增加,并减少了炎性细胞对视网膜的浸润

隔日禁食的糖尿病小鼠具有厚壁菌门显著扩张的特征,更具体地说,在属的水平上,下列菌群丰度增加

  • 颤螺菌属 Oscillospira ↑
  • 瘤胃球菌属 Ruminococcus ↑
  • Turicibacter ↑

下列菌群减少

  • 拟杆菌属 Bacteroides ↓
  • 阿克曼氏菌属 Akkermansia ↓
  • 双歧杆菌属 Bifidobacterium ↓
  • Allobaculum ↓

随着肠道微生物组组成的变化, 作者观察到,与非糖尿病小鼠相比,糖尿病小鼠表现出昼夜微生物模式的差异,这种差异也在对隔日禁食的反应中发生了改变。

▸ 隔日禁食引起的代谢变化,有助于改善及诊断视网膜病变

值得注意的是,隔日禁食仅糖尿病小鼠中增强了初级至次级胆汁酸的代谢,如TUDCA。

TUDCA的受体TGR5在视网膜神经节细胞中表达,这表明TUDCA的微生物生产可能会潜在地影响视网膜

给糖尿病小鼠补充TGR5的强效激动剂导致糖尿病视网膜病变减少,其特征是视网膜炎症减少无细胞毛细血管减少

因此,隔日禁食可能导致次级胆汁酸肠道细菌生产发生改变,激活视网膜TGR5防止视网膜变性

综上所述,这些结果表明,如果隔日禁食等干预措施可能导致肠道微生物群代谢物独特改变,这可能有助于视网膜病的诊断,并可能潜在改善糖尿病视网膜病变

认知障碍

▸ 2型糖尿病 → 认知障碍

2型糖尿病可引起明显的中枢神经系统并发症,包括结构改变脑萎缩脑微血管损伤神经炎症以及最终导致认知缺陷的脑电生理特性改变。

随着时间的推移,这些认知和大脑结构的改变可能会导致认知能力的加速下降,并增加老年痴呆症等与年龄相关的神经退行性变的风险。

多项因素会导致糖尿病认知障碍,包括大脑胰岛素抵抗和葡萄糖摄取降低以及神经递质代谢紊乱。在动物模型中,各种类型的间歇性禁食有益于大脑健康,延缓神经退行性疾病的发展。

▸ 肠道菌群在调节隔日禁食诱导的认知功能中发挥作用

隔日禁食治疗糖尿病db/db小鼠期间,肠道微生物组认知功能之间存在联系

糖尿病小鼠表现出认知能力下降,但28天的隔日禁食方案改善了焦虑行为、运动活动和突触结构,同时保护了海马中的胰岛素信号和线粒体生物生成。

隔日禁食干预小鼠组脑功能的改善伴随着下列菌群增加

  • 乳酸杆菌属(Lactobacillus) ↑
  • Odoribacter ↑

下列菌群减少

  • 肠球菌属(Enterococcus) ↓
  • 链球菌属(Streptococcus) ↓
  • 肠球菌科(Enterococcus) ↓

抗生素治疗后,隔日禁食对糖尿病小鼠认知功能的保护作用被部分消除。学者发现隔日禁食组的初级和次级胆汁酸生物合成途径丰富

▸ 菌群代谢物在调节隔日禁食诱导的认知功能中发挥作用

此外,db/db隔日禁食小鼠组的粪便和血浆中几种微生物相关代谢物的水平升高,其中包括短链脂肪酸TUDCA(也可预防视网膜病变的次生胆汁酸)、吲哚-3-丙酸(IPA)和血清素

补充这些代谢物可改善db/db小鼠的认知功能胰岛素敏感性。

总的来说,隔日禁食诱导的肠道细菌种类代谢物可能有助于减轻糖尿病诱导的认知障碍,并表明即使在没有隔日禁食的情况下,细菌代谢物也可能调节大脑功能的特征。

心力衰竭

胰岛素抵抗的小鼠模型表明,如TRF和FMD等饮食方式可以改善高血压血脂异常高血糖高胰岛素血症,所有这些都是心血管健康的一般指标。

▸心力衰竭与肠道菌群联系的证据

多项研究表明,心力衰竭患者肠道微生物群的组成发生了改变。对Dahl盐敏感大鼠进行的一项研究表明,补充益生菌植物乳杆菌降低其对心力衰竭的易感性,并可在心肌梗死后更好地恢复

已经提出了几种机制来解释肠道微生物组与心力衰竭之间的潜在联系,包括微生物组诱导的症调节肠道通透性以及与细菌过度生长和细菌生物膜形成的关联。

▸肠道菌群影响心血管健康的机制:增加短链脂肪酸产生菌,为心脏提供能量

在几项研究中,在心力衰竭患者中也检测到几种病原菌扩增。一项研究揭示了间歇性禁食对心脏的益处,提出肠道微生物群可以产生短链脂肪酸,在禁食期间为心脏提供充足的能量

常规小鼠相比,无菌小鼠肝脏酮体生成量减少。根据这项研究,禁食与更高丰度的拟杆菌有关,这些拟杆菌可能负责产生短链脂肪酸,尤其是乙酸盐,可用于肝脏生酮,从而为心脏提供能量来源。

▸肠道菌群影响心血管健康的机制:TMAO降低

一项开创性研究表明,肠道微生物代谢膳食胆碱和左旋肉碱产生TMA,TMA被宿主肝脏转化为 TMAO.

研究发现,TMA-TMAO通路与动脉粥样硬化、血小板过度活跃血栓形成有关,并用于预测心血管疾病风险的增加

禁食影响肝脏代谢,与TMAO降低有关。此前有研究表明,维持低水平的TMAO可能对预防2型糖尿病相关的心肌病特别有帮助。

最近,在白天和夜间的db/db小鼠中发现TMAO水平升高,这与各种肠道细菌昼夜振荡消失有关。作者建议,可以通过限制活跃期的摄食恢复失去的细菌的昼夜振荡。

根据啮齿类动物的研究结果,间歇性禁食是否能够利用肠道微生物群,调节氧化三甲胺水平,并导致2型糖尿病患者心血管预后的有效改善,仍有待确定。

肾病

糖尿病可能导致肾功能障碍或肾病。在糖尿病患者中,血糖控制不良高血压可导致肾小球滤过、蛋白尿、肾病性蛋白尿,并发展为终末期肾脏疾病

多项研究表明,糖尿病肾病患者的肠道细菌丰度发生改变,总体上较低细菌多样性疾病进展相关。

在啮齿类动物中,糖尿病肾病菌群及其代谢物(如苯基硫酸盐)的改变有关,并与肾素-血管紧张素系统激活相关。

已有多项观察性研究测试了斋月禁食糖尿病肾病严重程度的影响,但没有一项研究显示肾功能有显著变化。这些报告不是随机对照研究,样本量小,并且包含使用不同药物或透析治疗的患者。

目前,间歇性禁食对肾功能和糖尿病肾病的疗效以及肠道菌群在这一过程中的作用尚未阐明。

04
间歇性禁食的其他健康益处

通过食欲调节促进减肥

间歇性禁食除了前面章节提到的,通过脂质代谢来调节能量平衡从而减轻肥胖之外,还可以改善食欲调节,促进减肥。

▸ 三项短期研究评估:间歇性禁食增加饱腹感

在为期8周的ADF试验中,从基线检查到治疗后,主观饥饿感保持不变,饱腹感水平增加。这些饱腹感的增加与肽YY(PYY)的增加平行,肽YY是一种有效的饱腹激素。然而在任何时间点,饱腹感和PYY的变化与体重减轻或静息代谢率无关

其他研究也有类似的发现。12周ADF后,肥胖受试者的饥饿感未受影响饱腹感显著增加。饱腹感增加与体重减轻之间没有显著关系

研究人员比较了ADF和每日卡路里限制对体重减轻后食欲的影响(比基线降低5%)。饥饿感在两组中都有类似的下降,但饱足指数保持不变。

▸ 一项长期研究评估:间歇性禁食对食欲调节没有长期有益影响

Kroeger等人进行的一项为期12个月的试验表明,ADF期间体重下降不理想和饮食依从性差与食欲没有任何有益变化有关

总之,对ADF的短期研究表明,主观食欲有所改善(最常见的是饱腹感增加),而对ADF的长期研究表明,在食欲调节方面没有长期的益处。这方面还需要更多的研究。

睡眠

目前似乎还没有任何人体试验检测ADF或5:2饮食对睡眠的影响,但有几项研究测试了限时进食对睡眠的影响。

▸三个限时进食试验:限时进食期间睡眠质量无变化

研究一:经过8周的4小时或6小时限时进食后,睡眠质量没有改变。

研究二:观察到8小时限时进食治疗12周后对睡眠质量没有影响。

研究三:10周10小时限时进食后,睡眠质量没有变化。

虽然这一初步证据表明,限时进食不会影响睡眠质量,但应该注意的是,这些研究的参与者基本上都是良好的睡眠者。因此,通过干预,他们的睡眠质量没有进一步改善,这并不奇怪。

▸限时进食不会影响睡眠时间

限时进食是否会改变睡眠时间也已得到评估。

前面的研究指出,4小时或6小时限时进食的睡眠时间没有变化。同样,8小时和9小时限时进食的睡眠时间保持不变。

然而,大多数参与者的平均睡眠时间为每晚约7小时,这符合国家睡眠基金会规定的最低7小时。这些受试者已经有足够的睡眠时间,这可以解释为什么限时进食不会影响睡眠时间。

▸限时进食可能改善睡眠

研究还评估了限时进食对失眠严重程度的影响。

研究人员推测,睡前禁食2-3小时可能会改善睡眠。更具体地说,睡前不吃脂肪和酸性食物可以减少胃酸反流和夜间胃灼热,这可能有助于降低失眠率

在6小时限时进食研究中,受试者在基线检查时表现出阈下失眠症,到8周试验结束时,没有出现具有临床意义的失眠症

相比之下,对于基线检查时无临床意义失眠的受试者,4小时和8小时限时进食对失眠严重程度没有影响

综上所述,这些发现表明,对于已经显示出健康睡眠习惯的受试者来说,使用限时进食进行轻度减肥不会影响睡眠质量或睡眠时间。相比之下,限时进食可能有助于减轻受这种情况困扰的人的失眠严重程度。需要更多的研究来证实这些初步发现。

05
间歇性禁食的安全性

间歇性禁食虽然带来以上种种益处,但其安全性一直受到质疑。有些人对胃肠道问题、能量水平紊乱、饮食失调症状和激素紊乱的发生率增加表示担忧。这些饮食是否会对饮食质量产生负面影响也是一个问题。

胃肠道问题和能量水平紊乱

人体试验的结果表明,禁食通常不会产生任何长期的胃肠道不良反应,例如便秘、腹泻、恶心、口干或口臭。不过早期的 6 小时限时进食导致了一些轻微的呕吐和腹泻病例。

最近的几项试验证明了,间歇性禁食也不会导致易怒、疲劳或头晕的程度增加。因此,迄今为止的研究结果表明,间歇性禁食几乎不会产生胃肠道问题或能量水平紊乱。

饮食失调症状

禁食因可能增加饮食失调风险而受到质疑。

来自 ADF 和限时进食研究的最新数据表明,这类饮食不会增加抑郁、暴饮暴食、通便行为或对肥胖的恐惧的发生率。

事实上,一项研究表明,ADF 可能对身体形象感知产生很小的有益影响。ADF 的这些发现与每日卡路里限制的发现相当

在减少能量摄入的长期影响综合评估 (CALERIE) 试验中,将能量限制 25% 不会增加饮食失调症状,也没有其他有害的心理影响。

因此,间歇性禁食,也和卡路里限制一样,不会增加饮食失调症状,并且对身体形象感知具有良性或有益的影响

然而,应该指出的是,这些研究排除了有饮食失调史的参与者。对于诊断为饮食失调的人来说,间歇性禁食是否安全仍然未知。

甲状腺和生殖激素紊乱

▸甲状腺激素

在健康人群和亚临床甲状腺功能减退人群中,研究了禁食期间甲状腺激素水平的变化。

招募年轻男性运动员参加8小时限时进食与阻力训练相结合的试验。8周后,血浆总三碘甲状腺原氨酸(T3)略有下降,但促甲状腺激素(TSH无明显变化。在这些受试者中未观察到体重变化。游离甲状腺素(fT4)的变化没有报道,因此很难确定限时进食是否破坏这些甲状腺功能正常受试者的T3:fT4比率。

其他研究人员比较了ADF和每日卡路里限制对肥胖和亚临床甲状腺功能减退患者甲状腺水平的影响。24周后,ADF和卡路里限制(8%)同样降低体重,循环fT4、T3和TSH保持不变。这些试点数据表明,在间歇性禁食期间瘦人的T3水平可能会略有降低,但这些影响不会发生在肥胖和亚临床甲状腺功能减退的人身上

▸ 生殖激素

在 5:2 禁食 24 周后,绝经前妇女的睾酮、雄烯二酮、脱氢表雄酮硫酸盐、性激素结合球蛋白或催乳素没有变化

相比之下,在 8 小时限时进食 8 周后,年轻男性的游离和总睾酮浓度降低。合成代谢激素睾酮的减少并没有导致身体成分的任何有害变化或肌肉力量的损害。

由于缺乏这方面的数据,因此很难就禁食对生殖健康的影响得出结论。此外,这些变化如何影响生育能力仍然未知,因为没有研究测试过这些饮食对男性和女性怀孕能力的影响。

饮食质

据推测,在限时进食期间限制进食时间窗口期会导致高能量食物的消耗增和补偿性地多喝(即,增加无糖苏打水和咖啡因的摄入)。

研究人员评估了4小时和6小时限时进食期间饮食质量的变化。

▸ 纤维摄入量偏少

8周后,4小时和6小时限时进食组的糖、饱和脂肪、胆固醇和钠摄入量与对照组相比没有显著差异。然而,限时进食受试者纤维摄入量远远于(∼10-15克/天)在基线检查和治疗后的推荐量[25-38克/天]。ADF和5:2饮食试验中也经常报告纤维摄入不足

▸ 饮料、酒等摄入量没有变化

至于饮料摄入,8周后,4小时限时进食、6小时限时进食和对照组的饮食苏打水、含咖啡因饮料(即咖啡、茶和能量饮料)和酒精的摄入没有差异

作为这些发现的补充,一项为期一年的ADF试验报告称,饮料摄入量没有变化

这些初步发现表明,间歇性禁食不会对饮食质量或饮料摄入产生不利影响。然而,应在间歇禁食期间向受试者提供膳食咨询以增加纤维摄入量,以确保肠道健康

▸ 间歇性禁食并不代表胡吃海喝

重要的是,个人应注意间歇禁食期间的饮食质量。诚然,这些方案要求个人更多地关注用餐时间,而不是所摄入的营养素类型。虽然如此,临床医生应该向患者明确指出,进食窗口时间并不能让患者完全不考虑健康影响,彻底放纵自己乱吃。

为了使这些方案成为改善健康的可持续解决方案,应鼓励间歇性禁食的人食用水果、蔬菜和全谷物含量高、加工食品含量低的饮食

06
将间歇性禁食融入日常生活的实用建议

本章节总结了一些关于如何开始禁食方案,以及如何将这些方法融入日常生活的实用建议。同时,就哪些人不应该使用间歇性禁食来控制体重提供建议。

初始调整期

对于大多数人来说,大约需要1-2周才能完全适应这种新的饮食模式。

据报道,在初期可能会出现头晕,头痛和便秘,但这些不良反应通常在禁食第二周后消退

头痛通常是由于水分摄入不足导致脱水,当食物受到限制时可能会发生脱水。增加饮水量(每天增加1.5升)可能有助于个人在禁食期间缓解头痛

禁食期间的运动

与普遍的看法相反,禁食时锻炼确实是可能的。已经进行了几项将禁食与运动相结合的人体试验。

这些研究中的受试者可以在12-36小时的禁食期内进行中等强度到高强度的耐力或阻力训练。

有趣的是,在研究中,受试者在快节奏的日子里感觉到能量的增强,这对那些希望锻炼的人来说是有利的

然而ADF期间,建议个人在运动后食用禁食日餐。一些人在运动后会出现能量摄入的代偿性增加。因此,把饭留到运动后吃,可能有助于个人保持在禁食日卡路里目标的范围内。

禁食期间的饮食建议

虽然对于间歇性禁食期间摄入的食物类型没有具体的建议,但始终建议强调多吃水果、蔬菜和全谷类食物

这些食物可以帮助禁食参与者增加纤维摄入量,从而有助于缓解禁食期间偶尔出现的便秘

避免超加工食品也很重要。与富含能量相匹配的未加工食品的饮食相比,富含加工食品的饮食会导致自由摄入的能量增加体重增加

酒精和咖啡因

间歇性禁食期间允许饮酒。然而不建议在ADF和5:2禁食模式中的禁食日饮酒

禁食日的能量摄入非常有限(∼500千卡),因此建议将这些卡路里花在能提供营养的健康食品上,而不是酒精上,因为酒精会消耗营养。

无论是在禁食期间还是在进食窗口,都允许喝含咖啡因的饮料。越来越多的证据表明,与基线相比,个体在禁食期间的含咖啡因饮料消费模式没有显著改变

不过,将咖啡因的摄入限制在上午和下午可能是值得的,这样它就不会干扰一个人晚上的入睡能力。

哪些人不应该做间歇性禁食?

  • 不建议孕妇或哺乳期妇女间歇性禁食,因为尚未进行任何研究来评估这些人群中这些饮食的安全性。
  • 12岁以下的儿童不应参加禁食。间歇性禁食是否能帮助肥胖青少年控制体重仍不确定,但新的证据表明它可能是安全有效的。
  • 对于有饮食失调史和BMI低于18.5的人,也不建议间歇性禁食。
  • 轮班制或者值夜班的工作人员可能难以坚持禁食方案,因为他们的作息规律和饮食模式每天都可能发生巨大变化。
  • 对于那些需要在一天的规定时间内随食物服药的人来说,限时进食可能很困难。因此,临床医生在开一种特殊的禁食方法之前,应该检查患者的用药方案。

除以上人群之外,一般都可以安全地进行间歇性禁食,这可能是一种生活方式的改变。

如果尝试间歇性禁食后持续发现,异常焦虑、头痛、恶心或其他症状,不要勉强继续,说明暂时还不适合这种方式,可暂停。

07
结 语

间歇性禁食导致肠道菌群结构改变,以及细菌产生特定的代谢物发生变化,如次级胆汁酸和酮体,可能会潜在地影响正常宿主生理,及心血管代谢异常的临床结果。这些发现可以作为治疗干预的潜在基础

相同的膳食不同的时间提供时,餐后对食物的反应因人而异。由于肠道微生物群参与了个人对食物的反应,因此有理由假设个人对间歇性禁食的反应也与肠道微生物群有关。这也是将间歇性禁食方案转化为临床实践的一个挑战。

需要更多控制良好的前瞻性的纵向的临床研究,来确定不同饮食带来的微生物变化,以便进一步转化为临床实践。同时包括肠道菌群健康检测在内的对个体肠道微生物组的进一步了解,或将为最终的临床实践带来益处

注:本账号内容仅作交流参考,不作为诊断及医疗依据。

主要参考文献:

Ratiner K, Shapiro H, Goldenberg K, Elinav E. Time-limited diets and the gut microbiota in cardiometabolic disease. J Diabetes. 2022 Jun;14(6):377-393. doi: 10.1111/1753-0407.13288. Epub 2022 Jun 13. PMID: 35698246.

Angoorani P, Ejtahed HS, Hasani-Ranjbar S, Siadat SD, Soroush AR, Larijani B. Gut microbiota modulation as a possible mediating mechanism for fasting-induced alleviation of metabolic complications: a systematic review. Nutr Metab (Lond). 2021 Dec 14;18(1):105. doi: 10.1186/s12986-021-00635-3. PMID: 34906176; PMCID: PMC8670288.

Varady KA, Cienfuegos S, Ezpeleta M, Gabel K. Cardiometabolic Benefits of Intermittent Fasting. Annu Rev Nutr. 2021 Oct 11;41:333-361. doi: 10.1146/annurev-nutr-052020-041327. PMID: 34633860.

Shi H, Zhang B, Abo-Hamzy T, Nelson JW, Ambati CSR, Petrosino JF, Bryan RM Jr, Durgan DJ. Restructuring the Gut Microbiota by Intermittent Fasting Lowers Blood Pressure. Circ Res. 2021 Apr 30;128(9):1240-1254. doi: 10.1161/CIRCRESAHA.120.318155. Epub 2021 Feb 18. Erratum in: Circ Res. 2022 Mar 4;130(5):e18. PMID: 33596669; PMCID: PMC8085162.

Aron-Wisnewsky J,Clément K.The gut microbiome, diet,and links to cardiometabolic and chronic disorders. Nat RevNephrol. 2016;12(3):169-181.

Di Francesco A, Di Germanio C, Bernier M, de Cabo R. A time to fast. Science. 2018;362(6416):770-775.

Daas MC, de Roos NM. Intermittent fasting contributes to aligned circadian rhythms through interactions with the gut microbiome. Benef Microbes. 2021 Apr 12;12(2):147-161. doi: 10.3920/BM2020.0149. Epub 2021 Feb 3. PMID: 33530881.

Rong B, Wu Q, Saeed M, Sun C. Gut microbiota-a positive contributor in the process of intermittent fasting-mediated obesity control. Anim Nutr. 2021 Dec;7(4):1283-1295. doi: 10.1016/j.aninu.2021.09.009. Epub 2021 Oct 9. PMID: 34786501; PMCID: PMC8567329.

AKK菌——下一代有益菌

谷禾健康

嗜黏蛋白阿克曼菌(Akkermansia muciniphila, 简称A. muciniphila, Akk菌)的缺乏或减少与多种疾病(如肥胖糖尿病肝脂肪变性炎症和对癌症免疫治疗的反应)有关。

关于AKK菌,我们之前的一篇文章也有详细介绍过,点击详见:

肠道重要菌属——Akkermansia Muciniphila,它如何保护肠道健康

谷禾肠道样本大数据库显示A. muciniphila缺乏或未检出情况在人群中很常见尤其是那些有肠道问题的人。在健康个体中其约占肠道微生物群总数的0.5%–3%

现如今,关于AKK菌的研究正在从动物模型转向人类验证试验,AKK菌与疾病之间的研究不仅仅停留在相关性,更是开始向因果性及具体产生作用的机制方面深入探讨。

– A. muciniphila –

本文我们将依次介绍A. muciniphila的起源主要特性,以及它与不同疾病间的联系,并解释产生有益作用的主要机制

01
来 源

一所在瓦格宁根(Wageningen)的微生物实验室的研究人员使用一种专门用于分离优势细菌的策略,即稀释到消亡(即基于连续稀释的分离),从一名健康成人身上分离出一株高度丰富的粘液降解菌株。

该菌株似乎是疣微菌门(Verrucomicrobiota)中一个新属的新种,被命名为嗜黏蛋白-阿克曼菌(Akkermansia muciniphila, A. muciniphila, Akk菌),并以典型菌株MucT为代表。

02
主要特性

粘液主要由粘蛋白组成,粘蛋白是一种由粘多糖组成的保护肠道细胞的糖蛋白。

长期以来,粘液的降解被认为是一种可能导致宿主紊乱的不良特性。然而,对于结肠微生物群来说,粘蛋白在肠道中大量分泌,因此提供了持续的宿主产生的碳、能量和氮源。粘蛋白的代谢转换需要一组酶,如唾液酸酶和硫酸酯酶,这些酶参与顺序降解。

粘蛋白降解“专家”

A. muciniphila 是人类早期生命中存在的独特的粘蛋白降解“专家”。此外,对无菌小鼠的单体型关联研究表明,A. muciniphila MucT不会损害宿主,并在结肠中显示出特异性的代谢和免疫信号。其2.7Mb的基因组预测了粘蛋白降解的酶机制,比较生长分析表明,A. muciniphila是体外利用粘蛋白最有活性的菌株

A. muciniphila MucT也可以利用人乳寡糖作为能量来源。值得注意的是,在纯培养中,只有少数其他底物被发现能刺激其生长,包括二甲双胍甜菜碱色氨酸

由于A. muciniphila是人类肠道中疣微菌门的唯一代表,许多报道这一门的16S rRNA基因序列调查往往代表A. muciniphila 。最近的一项研究分析了2,000多个Akkermansia基因组,表明A. muciniphila是迄今为止具有高度相似(超过98%同一性)16S rRNA 序列的优势物种。

非工业化人群A. muciniphila下降

在这个大型宏基因组数据库中对四个已确定的A. muciniphila亚种的详细分析表明,它们的基因组通常存在于西方和中国人群中。对哈扎部落和其他非工业化人群的肠道微生物群与工业化世界个体的肠道微生物群进行分析比较,发现拟杆菌纲疣微菌门微生物群的丰度减少。这些结果表明,非工业化种群的A. muciniphila丰度水平有所下降,但这一观察结果是否与粪便样本保存、DNA提取或测序深度的技术问题有关仍有待调查。

值得注意的是,A. muciniphila宏基因组已在非人类灵长类动物中发现,包括野生和圈养。类似地,与模式菌株MucT具有高度基因组同源性的A. muciniphila已从同样生活在野外的各种动物中分离出来。

部分A. muciniphila菌株产维生素B12

长期以来,A. muciniphila型菌株MucT是唯一可用的人类分离株然而,在过去的 5 年中,从不同的肠道环境中分离到了其他A. muciniphila菌株,包括野生哺乳动物和圈养哺乳动物,特别是人类。在临床前试验中报告了人类相关 A. muciniphila菌株之间的一些变异性,但尚不清楚观察到的差异的稳定性和可重复性如何。

迄今为止,观察到的菌株之间最显著的代谢差异是产生维生素B12的能力,而维生素B12是产生丙酸盐所必需的。大约三分之一的A. muciniphila分离株能产生类似于A. glycaniphila的维生素B12。多种结肠微生物可以产生可供A. muciniphila利用的维生素B12,正如霍氏真杆菌(Eubacterium hallii)(重命名为Anaerobutyricum soehn genii)所显示的那样,在共培养实验中,发现该细菌与菌株MucT形成微生物网络,导致从粘液中产生丙酸盐丁酸盐

03
AKK菌与疾病

代谢紊乱

由于观察到益生元补充剂(即低聚果糖)对肥胖发育的保护作用与啮齿动物疣微菌门的主要繁殖相吻合,因此引起了人们对A. muciniphila和代谢紊乱的兴趣。随后在人类和啮齿动物上进行的观察研究都表明,与瘦小的对应物相比,患有肥胖症的个体肠道中的A. muciniphila反复出现表达不足代谢紊乱,包括肥胖、T2DM、非酒精性脂肪性肝病(NAFLD)和心血管疾病,都与Akkermansia spp.丰度减少有关。

研究发现,11名超重者和38名肥胖者体内A. muciniphila的丰度与更健康的代谢状态以及热量限制后较好的临床结果呈正相关。通过在小鼠和人类身上注射该模式菌株,研究了A. muciniphila在肥胖过程中的因果作用及其潜在的有益影响。首次证明,小鼠每天服用活的A. muciniphila MucT可以逆转高脂饮食引起的代谢紊乱,包括脂肪增加、代谢内毒素、脂肪组织炎症和胰岛素抵抗。

在合成培养基中生长的A. muciniphila MucT的巴氏杀菌增强了它减少小鼠脂肪团发育、胰岛素抵抗和血脂异常的能力。事实上,A. muciniphila MucT可以降低小鼠的胆固醇水平和血清甘油三酯水平

代谢健康背景下黏质阿克曼菌的代谢效应及主要影响因素

Cani PD, et al. Nat Rev Gastro Hepat. 2022

影响肝脏脂肪代谢

研究发现A. muciniphila MucT补充剂通过调节与脂肪合成有关的基因的表达(例如,降低肝脏中固醇调节元件结合蛋白的表达)和同的炎症标志物(例如,降低IL-1β和IL-6的表达,ALT和髓过氧化物酶活性),可以积极地影响小鼠的肝脏脂肪代谢,预防非酒精性脂肪性肝病

减轻动脉粥样硬化

在动脉粥样硬化发展的小鼠模型(载脂蛋白E缺陷(ApoE−/−)小鼠)中,A. muciniphila MucT的注射似乎减轻了动脉粥样硬化的损害

降低糖尿病发病率

有趣的是,除了T2DM,在啮齿类动物和人类中,A. muciniphila通过降低肠道通透性、减少炎症和胰岛炎症的机制减少了T1DM的发病,从而有助于胰岛的保存。早期应用万古霉素可增加非肥胖型糖尿病小鼠(T1DM小鼠模型)的A. muciniphila丰度,降低糖尿病发病率

神经退行性疾病

2016年至2020年间发表的几份报告表明,A. muciniphila在帕金森病多发性硬化症中的作用,因为其相对丰度与受影响患者的疾病严重程度呈正相关。然而,尽管将患者的粪便微生物移植到无菌小鼠体内会导致疾病某些方面的发展,但这些研究都没有检测到受体小鼠粪便中的A. muciniphila,从而表明其他细菌可能参与了该病的发生表型

多发性硬化症

对于多发性硬化症,在一项纳入62名复发缓解性疾病患者的研究中,作者发现脑脊液中的抗-Akkermansia IgG水平高于健康同行,并且局部脑脊髓特征与残疾评分呈正相关,而在同一个人的血液中检测到IgG水平没有明显的改变。

虽然在这些研究中观察到的抗-Akkermansia IgG水平的增加与肠道中嗜粘蛋白A. muciniphila丰度的改变无关,但另一项研究提供了支持 A. muciniphila在多发性硬化症中的积极和有益作用的机制解释。

这项研究表明,在多发性硬化症实验性自身免疫性脑脊髓炎小鼠模型的粪便和未治疗的多发性硬化症高峰期患者的粪便中发现的A. muciniphila的大量繁殖与miR-30d的富集有关

有人发现,从这些小鼠或人类身上收集的粪便的转移导致A. muciniphila的丰度增加,并有利于调节性T (Treg)细胞的扩增,进而控制效应T细胞以抑制疾病症状。研究人员表明在患有多发性硬化症的小鼠中接种A. muciniphila可降低疾病评分、减少轴突损失的脱髓鞘和增加Treg细胞群

相反,A. muciniphila衍生肽被确定为环境因素,与多发性硬化症(即HLA-DR15单倍体型)最强的遗传风险易感因素相结合,可以介导免疫调节介导的患者自身反应性T细胞的激活。

更具体地说,从患者体内分离出的 HLA-DR-SP反应性 CD4+ T细胞可以被某些外来因子(例如Epstein-Barr病毒和从A. muciniphila中分离出的一些肽)激活,然后对血液中的潜在致病多肽或自身抗原(如髓鞘碱性蛋白)产生反应,可能还会在脑脊液和/或脑中发生交叉反应,从而针对脑组织。

帕金森病

文献中关于阿尔茨海默病和A. muciniphila的发病机制存在差异,相关研究显示阿尔茨海默病患者的A. muciniphila含量较高,而干预研究清楚地报告了这种细菌在病理学中的有益作用。阿尔茨海默病是一种疾病,其最强的病理标志之一是淀粉样蛋白β肽42 (Aβ42)在老年斑中的积累

由于肥胖T2DM是痴呆的重要危险因素,一项机制研究探讨了在喂食高脂肪饮食的阿尔茨海默病小鼠模型中施用A. muciniphila的影响。除了抗肥胖作用外,无论饮食如何,接种都能显着减少大脑中的 Aβ并改善认知测试的表现。A. muciniphila给药还恢复了生命早期(生命3周时)暴露于高脂肪饮食的小鼠的认知能力下降和海马发育障碍

癌症免疫治疗反应

免疫疗法是一种利用免疫系统对抗肿瘤形成细胞的癌症疗法,并已发展成为治疗各种癌症的成功方法。

肠道微生物组的相关性是增强对检查点抑制剂治疗的临床反应的标志物和辅助剂。

该疗法通过阻断程序性死亡受体1(PD1)等免疫检查点来恢复对抗癌细胞的活性。对100名对抗-PD1抗体反应良好的非小细胞肺癌肾细胞癌患者的微生物组进行了详细的表征,结果显示A. muciniphila富集。此外,在疾病进展迅速的个体和后来死亡的个体中,A. muciniphila的患病率最低(34%)。

A. muciniphila菌株在用抗-PD1 药物治疗后,在移植无应答者粪便的无菌小鼠和预先暴露于抗生素的小鼠中改善了抗肿瘤活性。一项具有统计学意义的研究旨在专门评估338例非小细胞肺癌患者的A. muciniphila 基线检测与临床反应之间的关联。证实了A. muciniphila的存在与临床反应之间的密切关联

在另一项研究中,42名主要使用抗-PD1药物治疗的转移性黑色素瘤患者的肠道微生物群也被证实富含多种分类群,包括Akkermansia。2020 年发表的一项研究确定肌苷是抗癌细胞活性的潜在因素,尽管这种核苷是由许多其他细菌产生的。

总之,这些研究表明,A. muciniphila是一种有望提高对检查点抑制剂免疫疗法的临床反应的候选菌。

肠道屏障和肠道炎症

最初发现A. muciniphila MucT 可以通过恢复小鼠的粘液层厚度以及抗微生物肽Reg3g的肠道表达来改善肠道屏障功能,这在肥胖和代谢紊乱期间都会发生改变。后来,在A. muciniphila MucT补充剂中观察到的粘液层厚度增加与小鼠粘液产生细胞数量的增加有关

此外,来自A. muciniphila MucT (AmEVs)的细胞外囊泡,也显示通过调节小鼠的紧密连接来降低肠道通透性

肠道炎症的情况下保护的肠道屏障

已有研究表明,与健康人相比,克罗恩病 (n = 26)和溃疡性结肠炎(n = 20和n = 15 ) 患者相比,A. muciniphila显著减少。这种相关性已在临床前模型中进行了因果研究。

改善结肠炎

已发现A. muciniphila MucT在结肠炎中的有益作用,AmEVs可保护葡聚糖硫酸钠 (DSS) 诱导小鼠结肠炎的进展。

随后,几项研究观察到A. muciniphila MucT细胞恢复肠道屏障功能改善了:

  • DSS诱导的结肠炎
  • 体重减轻
  • 结肠长度缩短
  • 组织病理学评分

改善衰老引起的变化

衰老是另一种肠道屏障减少和炎症增加的情况。各种人类研究报告称,与年轻成人(<50岁)和百岁老人相比,老年人(>65岁)A. muciniphila丰度较低

这一发现导致了旨在评估A. muciniphila MucT给药对不同衰老小鼠模型中几个年龄相关参数的影响的研究。

总之,这些研究表明,施用A. muciniphila MucT改善了一些与年龄相关的变化,包括炎症、屏障完整性和行为。

代谢综合征

在啮齿动物中,A. muciniphila被认为是健康的生物标记物。在啮齿类动物中,许多对A. muciniphila种群具有生长促进作用的膳食补充剂因其促进健康的作用而受到广泛关注。

在患有代谢综合征的人类中,给药被证实是可行的、安全的和有良好的耐受性。事实表明,与炎症、血液学、肾脏、肝脏和肌肉功能相关的任何标志物的变化,都可以用任何A. muciniphila MucT制剂来观察。这一结果是在不考虑所使用的形式以及短期(即2周)和长期(即3个月暴露)的情况下观察到的。

巴氏灭菌Akk菌比活菌效果好

以前的结果表明,高压灭菌灭活A. muciniphila可消除其对小鼠代谢综合征的保护作用。对植物乳杆菌或干酪乳杆菌菌株进行的研究表明,不剧烈的热诱导灭活,如巴氏杀菌,可以使细菌在稳定它们的同时保留部分有益的特性

因此,有人在相同的饮食诱导肥胖小鼠模型上,通过比较活菌和巴氏灭菌菌的给药效果,检验A. muciniphila巴氏灭菌的效果。结果是,接受巴氏灭菌菌株的小鼠在体重、脂肪质量增加、血脂和胰岛素抵抗标志物方面降幅甚至比接受活细菌的小鼠更大。除了提高A. muciniphila粘液的有效性,巴氏杀菌还具有提高菌稳定性延长其保质期的好处,从而便于给人服用。

在未经治疗的患者中,给予巴氏灭菌A. muciniphila MucT成功地防止了与代谢综合征相关的参数的自然恶化。与补充安慰剂的志愿者相比,补充已过活的A. muciniphila MucT显著改善胰岛素敏感性降低了胰岛素血症和血浆总胆固醇水平。

为了进一步评估巴氏灭菌A. muciniphila MucT的安全性,对大鼠进行了一项强有力的毒理学长期评估。结果表明,口服90天,即使在测试的最高剂量(每公斤体重9.6×1010A. muciniphila MucT细胞,没有观察到不良反应的水平)下,也没有转化为亚慢性毒性,而体外遗传毒性试验显示阴性结果。

04
AKK菌对健康的作用方式

如前面所述,A. muciniphila可能有多种作用模式,所有这些都已用 MucT菌株进行了研究。当使用巴氏杀菌细菌时,可以观察到A. muciniphila MucT的几种有益效果和令人惊讶的功效增加

产短链脂肪酸,作用于宿主代谢

最明显的答案是短链脂肪酸(如丙酸盐)的一般作用,因为A. muciniphila MucT在维生素B12存在下被称为丙酸盐生产者。虽然A. muciniphila对肠道中丙酸盐总水平的贡献可能相对于其他主要的丙酸盐生产者(例如拟杆菌)相对较低,尤其是在禁食条件下。但 Akkermansia似乎在动物和人类中都上调,并且可能对生产这种短链脂肪酸做出重大贡献

在这种情况下,某些影响可能与肠道上皮细胞和肠道黏膜中存在的不同类型免疫细胞上表达的FFAR3FFAR2受体(也分别称为GPR41和GPR43)有关。然而,值得注意的是,巴氏杀菌的 A. muciniphila MucT也可以作用于宿主代谢,不会改变丙酸盐的产生。

通过外膜上的蛋白质Amuc_1100发挥作用

2017年,有人确定了A. muciniphila MucT可以在宿主健康中发挥作用的特定和独特的分子机制。他们发现存在于A. muciniphila外膜中的一种特定蛋白质,称为Amuc_1100,概括了这种细菌的有益作用。A. muciniphila的所有有益作用是否都可归因于Amuc_1100目前尚不清楚,但其每个细胞的生产水平足以解释临床前模型中的作用。

重要的是,他们发现这种蛋白质在用于巴氏杀菌的温度下仍保持其活性构象,从而解释了为什么巴氏杀菌的A. muciniphila MucT在小鼠和人体实验中保持活性。

此外,发现Amuc_1100可激活Toll样受体2 (TLR2),单独给药可复制A. muciniphila MucT细胞的大部分有益作用,包括在肠道炎症结肠癌的特定疾病模型中的作用。

这一发现表明,即使死亡(即巴氏杀菌后),A. muciniphila MucT仍然可以改善宿主健康,并反对需要潜在的分泌代谢物来观察细菌的有益作用。

外膜上的蛋白质 P9,刺激GLP1水平增加

2021年的一项研究确定了A. muciniphila MucT产生的另一种蛋白质。发现A. muciniphila处理的饮食诱导的肥胖小鼠在口服葡萄糖挑战期间表现出循环GLP1水平略有增加

通过体外实验,作者鉴定了一种84kDa的蛋白质,命名为蛋白 9P9;由早期鉴定的 Amuc_1831 基因编码),它负责体外刺激GLP1

在体内,他们测试了 8周以非常高的剂量口服P9的效果,发现体重增加脂肪量增加都有所减少胰高血糖素前体(即GLP1的前体)的肠道表达增加

这些影响怎么与较高的循环 GLP1 水平联系起来?

研究发现P9的药理作用激活 ICAM2,这些作用与可能的GLP1分泌有关,因为抗-ICAM2抗体在体外部分消除了P9对GLP1分泌的影响

此外,A. muciniphila MucT增加了小鼠回肠中IL-6的表达。除了证实IL-6是一种促炎细胞因子外,这种细胞因子还在体外剂量依赖性地增加GLP1的分泌

因此,有人假设A. muciniphila MucT也可以通过 IL-6-GLP1信号传导发挥作用。为了进一步支持他们的发现,研究人员使用了IL-6敲除小鼠,发现这些小鼠对P9诱导的GLP1分泌没有反应,而阻断GLP1受体消除了P9对产热的影响。尽管这些发现是相关的,但应评估其他因素,例如P9的生理剂量和位置(可能被分泌)。

与Akkermansia或相关分子在疾病中的作用相关的主要机制

Cani PD, et al. Nat Rev Gastro Hepat. 2022

A. muciniphila MucT表达的酶潜在益处

一项研究证明天冬氨酸蛋白酶Amuc_1434*通过TRAIL介导的细胞凋亡途径抑制LS174T细胞活力。然而,没有进一步的位置、热稳定性或体内数据报告,因此尚无法评估这一发现的潜在和生理相关性。

第二项研究表明,A. muciniphila MucT表达的β-乙酰氨基己糖苷酶Amuc_2109*保护小鼠免受DSS诱导的结肠炎;然而,尚未报告热稳定性数据。

此外,已在人类身上表明,活的或巴氏杀菌的A. muciniphila MucT 改善了几种心脏代谢风险因素,包括胰岛素抵抗,而不增加 GLP1 的循环水平,也不影响 DPP4 活性,DPP4 是一种参与 GLP1 降解的酶

有趣的是,无论使用何种形式的A. muciniphila MucT——活的或巴氏杀菌的,甚至是蛋白Amuc\U 1100,文献中的所有数据都通过作用于不同的关键标记物来强化肠道屏障。

事实上,所有的治疗都指向更高的粘液产量紧密连接蛋白的恢复,抗菌因子的恢复,以及最终加强肠道屏障。

特异性调节

此外,一部分人通过对用活的或巴氏杀菌的 Akkermansia治疗的人体进行脂质组学代谢组学分析。已经发现A. muciniphila MucT治疗诱导了不同生物活性脂质的特异性调节,这些被鉴定为 PPARα 激动剂(2-PG和1-PG)

重要的是,在人类中使用非靶向代谢组学分析,他们已经能够重建一条指向通过β-氧化激活脂肪酸氧化的代谢途径,并且所有鉴定的代谢物都在PPARα的控制下趋向于增加线粒体活性,这些数据也在啮齿动物身上得到了证实。

除了对肠道屏障的影响,这可能涉及对几种疾病(即糖尿病、肥胖症、NAFLD和/或非酒精性脂肪性肝炎、炎症性肠道疾病、多发性硬化症)的保护作用,A. muciniphila对癌症的作用也是与依赖免疫系统的其他机制有关。

例如,使用检查点抑制剂(抗-PD1)的免疫疗法与动物数据中涉及 IL-12 依赖性效应的特定机制方面有关。此外,数据表明A. muciniphila菌株对抗-PD1反应的辅助作用增加特定T细胞向肿瘤床的募集

在炎症性肠病、T1DM或肠癌的小鼠模型中,A. muciniphila MucT或特定蛋白增加Treg细胞群的分化降低结肠中浸润性巨噬细胞和CD8+细胞毒性T淋巴细胞的水平

05
结 语

A. muciniphila MucT的代谢抗炎作用是强大的,因为来自不同研究团队的许多结果已经证实了A. muciniphila菌株的各种健康特性。

A. muciniphila的生理和有益作用是多效性的(例如,能量、脂质、葡萄糖代谢、炎症、免疫、脑功能),重要的是要强调有许多汇聚的作用模式,可能是由于其特异性特性与其粘蛋白代谢的特化有关。

事实上,已经确定了几种常见的途径,都指向调节肠道屏障功能(即粘液产生和免疫系统)。肠道屏障的恢复,也有助于恢复几种改变的途径的正常功能,包括例如线粒体活性、肝脏代谢、脂肪组织和大脑活动。

最后,A. muciniphila MucT的有益作用已从临床前观察转化为代谢综合征背景下的人类干预。这种情况是独一无二的,是其他下一代微生物无法比拟的。

需要注意的是,虽然A. muciniphila具备各种有益特性,但是该菌丰度并不是越多越好,要保持在合适范围。谷禾肠道菌群检测结果中曾经有案例,发现该菌丰度过高,占比超50%

该菌过量将过度消耗粘液蛋白而存活下来,这是大多数其他细菌所缺乏的生存优势,该菌增殖异常,从而可能导致肠道屏障损伤,诱发肠道炎症、LPS 进入血液的增加、自身免疫性疾病有关。

样本检测报告也显示菌群多样性低,肠炎和几项慢病注意风险:

<来源:谷禾健康数据库>

总的来说,在合理范围内,A. muciniphila 带来有益影响。

当然也需要更多的研究来支持A. muciniphila的有益特性及临床治疗应用:

  • 探索基于Amuc_1100及产生的其他分子的治疗方法;
  • 确定改善的临床反应是否与基线肠道微生物群和饮食习惯有关;
  • 确定营养和环境因素,以维持肠道中A. muciniphila的充足水平,并最终限制疾病风险
  • 在代谢综合征或2型糖尿病患者中(即限制饮食、定期禁食或服用抗糖尿病药物),补充巴氏杀菌A. muciniphila对人类进行联合治疗的效果研究

主要参考文献

Cani PD, Depommier C, Derrien M, Everard A, de Vos WM. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol. 2022 May 31. doi: 10.1038/s41575-022-00631-9. Epub ahead of print. PMID: 35641786.

Kostopoulos I, Elzinga J, Ottman N, Klievink JT, Blijenberg B, Aalvink S, Boeren S, Mank M, Knol J, de Vos WM, Belzer C. Akkermansia muciniphila uses human milk oligosaccharides to thrive in the early life conditions in vitro. Sci Rep. 2020 Aug 31;10(1):14330. doi: 10.1038/s41598-020-71113-8. PMID: 32868839; PMCID: PMC7459334.

Yin J, Song Y, Hu Y, Wang Y, Zhang B, Wang J, Ji X, Wang S. Dose-Dependent Beneficial Effects of Tryptophan and Its Derived Metabolites on Akkermansia In Vitro: A Preliminary Prospective Study. Microorganisms. 2021 Jul 14;9(7):1511. doi: 10.3390/microorganisms9071511. PMID: 34361945; PMCID: PMC8305782.

Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020 Dec;69(12):2232-2243. doi: 10.1136/gutjnl-2020-322260. Epub 2020 Sep 11. PMID: 32917747; PMCID: PMC7677487.

心血管疾病的神经免疫—微生物轴

谷禾健康

神经免疫,菌群,心血管疾病

最新的《中国心血管病健康和疾病报告2019》数据显示,中国居民心血管病现患人数已达3.30亿拐点尚未到来,且7-17岁儿童青少年高血压患病率呈现上升趋势。

心血管疾病(CVD)仍然是全世界发达国家死亡和残疾的主要原因。此外,广泛存在的心血管危险因素,如代谢综合征、糖尿病、肥胖和性类固醇激素代谢紊乱,有效预防策略已成功减少急性心血管事件和死亡的影响。

大脑和其他器官系统之间的双向通信对于大脑健康和生物体的整体健康至关重要。曾经被认为具有免疫特权的大脑现在被认为是一个高度免疫特化的器官,拥有自己的大脑驻留免疫细胞。这些细胞形成神经元回路和淋巴系统,这些系统调节免疫细胞的复杂流出,以及从脑脊髓空间与循环的其余部分交换的液体

而共生微生物群是个体间异质性的重要来源,可以通过调节宿主免疫来影响人类健康。人们越来越认识到 CVD 的许多潜在原因,包括免疫和肠道菌群失调可能是 CVD 的致病因素,提出了对新的免疫调节治疗策略的需求。

本文总结了免疫、炎症的神经调节以及肠道菌群如何参与 CVD 的发病和进展,并探索菌群-神经免疫通讯是否为 CVD 的潜在治疗靶点

本文缩略词:

CVD: 心血管疾病 (cardiovascular disease )

心血管疾病,又称为循环系统疾病,是一系列涉及循环系统的疾病,循环系统指人体内运送血液的器官和组织,主要包括心脏、血管(动脉、静脉、微血管),可以细分为急性和慢性,一般指心脑血管疾病。

ANS: 自主神经系统 (autonomic nervous system)

自主神经系统是脊椎动物的末梢神经系统,由躯体神经分化、发展,形成机能上独立的神经系统,是外周传出神经系统的一部分,能调节内脏和血管平滑肌、心肌和腺体的活动,又称植物性神经系统、不随意神经系统,故名自主神经系统(参考自:百度百科)。

SFO: 穹窿下器神经元 (Neurons of the subfornical organ )

穹窿下器官,室周器官,位于第三脑室前背侧壁、海马连合腹侧穹窿柱分歧处、适平室间孑L平面。

OVLT: 下丘脑终板血管区(Organum vasculosum laminae terminalis)

终板就是第三脑室前缘的隔膜。下丘脑终板血管区,内生致热原作用于血脑屏障外的脑血管区,即下丘脑终板血管区,该区位于第三脑室壁的视上隐窝处。

PVN: 下丘脑室旁核 (paraventricular nucleus)

下丘脑室旁核 位于第三脑室下丘脑部的上端两侧,呈长楔形轮廓,是下丘脑前区最显著的核团之一,与神经内分泌活动和植物性功能等有关的复合体结构,参与体内电解质与体液平衡,心血管活动调节及其它多项生理功能的调控。

NTS: 孤束核 (nucleus tractus solitarius)

孤束核为延髓内重要内脏感觉性核团,为一般内脏感觉和味觉传导通路上的第一级中继站。随着神经解剖学和神经生理学研究方法的不断发展,人们对孤束核的认识日趋深入,近年来HRP和ARG技术有关孤束核的大量的研究证实了孤束核不但与低级中枢(脊髓、脑干)具有传入、传出神经联系,而且与高位中枢(前脑、小脑)也具有复杂的往返联系。

DMV:迷走神经运动背核 (dorsal nucleus of vagus nerve)

迷走神经背核是2014年经全国科学技术名词审定委员会审定发布的人体解剖学名词。位于延髓室底灰质内,迷走神经三角深面的神经核。属一般内脏运动核,支配颈部、胸部所有内脏器官和腹腔大部分内脏器官的平滑肌、心肌的活动和腺体的分泌。

CVD中的神经免疫沟通

神经和免疫系统通常通过特定的大脑区域传入和传出周围神经以及神经激素通路进行交流(下图)。

大脑和周围器官之间的通讯途径

Carnevale D. Nat Rev Cardiol. 2022

大脑通过不同的途径周围器官和组织相连。特定的大脑区域,统称为脑室周围器官,与周围形成自然的大脑界面,内衬有渗漏的血脑屏障。神经网络从脑室器官延伸到周围神经系统,并建立重要的神经解剖学连接。

穹窿下器官 (SFO) 和终板血管器官 (OVLT) 的神经元密集表达 1 型血管紧张素 II 受体和渗透压感受器,并为下丘脑的室旁核 (PVN) 提供神经支配。反过来,PVN 与延髓腹外侧 (RVLM) 的交感神经元相连,RVLM 具有调节外周交感神经活动的重要功能。

PVN 的其他神经元连接到孤束核 (NTS) 和迷走神经背运动核 (DMV) 的复合体,它们负责通过迷走神经传递的外周胆碱能神经支配。

所有主要的外周器官通常都有交感神经支配(包括心脏、脉管系统、肾脏和颈动脉体)和副交感神经支配(包括心脏、颈动脉体、肝脏、胃和肠)。

交感神经支配是免疫器官(以浅蓝色显示)和内脏组织的神经控制的主要途径。大脑、心血管系统和免疫器官之间的进一步整合轴是由神经内分泌系统通过下丘脑-垂体-肾上腺轴形成的。

中枢神经系统

循环物质,如细菌源性肽、宿主源性细胞因子组织代谢物,向特定的大脑区域发出信号,这些区域的特点是存在渗漏血脑屏障

脑室周围器官由穹窿下器官(SFO)、终板血管器(OVLT)和末梢区组成,是监测周围组织并在神经免疫过程中发挥关键功能的大脑区域。同时,脑室周围器官在心血管疾病中起着至关重要的作用。

穹窿下器官富含血管紧张素II受体1型,它是肾素-血管紧张素-醛固酮系统的关键介质

OVLT的神经元同时表达血管紧张素II受体1型和渗透压感受器,它们对感知细胞外钠/盐负荷浓度至关重要。

它们共同传递有关血容量、血压和细胞外液渗透压的外围信息。

有趣的是,从穹窿下器和OVLT投射到下丘脑室旁核(PVN)的神经元也被描述过,脑室旁核也接受后脑的投射,这表明它具有整合功能。虽然它们位于脑室周围器官之外,但孤束核(NTS)和迷走神经背侧运动核(DMV;心血管功能最有效的调节器之一)接收来自末梢区的输入。

大脑通过在脑室旁核和脊髓中间外侧细胞柱之间建立直接投射,或通过延髓头端腹外侧间接连接,来控制周围交感神经反射反应。外周的稳态扰动由延髓头端腹外侧感觉到,并通过蓝斑的甲肾上腺素神经元以反射反应传递。

作为补充,神经元表达细胞因子受体,这有助于神经免疫串扰和脑与身体的相互作用。

当细胞因子在各种生理和病理生理环境中的外周组织中分泌时,神经元活动就会改变。虽然神经元细胞因子受体的生理功能仍在研究中,但细胞因子在脑发育、外周组织损伤和动物行为方面的作用已被证明。这些观察表明存在由细胞因子介导的脑-体双向轴。

接下来进一步的讨论这些信号是如何在心血管疾病中启动、传播和转移到大脑的。

外周神经系统

投射到中枢神经系统之外的神经被称为外周神经系统,它双向连接大脑和外周器官和组织。

外周神经系统分为两个部分

躯体神经系统和自主神经系统(ANS)

躯体神经系统与中枢神经系统交换感觉和运动信息,而ANS调节非自愿功能,并在神经免疫和心血管相互作用中起决定作用。

ANS由传入和传出神经元组成,将大脑与周围内脏器官和组织连接起来。历史上,ANS被定义为平行的交感和副交感臂,分别负责所谓的“逃跑或战斗”和“休息和消化”反应

ANS作为大脑与外周沟通的关键途径的概念不断发展,有证据表明,ANS也发挥了神经免疫调停者的作用。生理和心血管反应的改变都受到ANS的深度影响,ANS的失衡是许多心血管疾病的典型特征

我们对ANS如何调节心血管功能的理解有了实质性的进步,这得益于实验方法的发展,使直接分析神经系统活动成为可能

实验性和临床性的显微神经学被用来测量指向心血管系统的节后交感神经传出的电活动。例如,骨骼肌血管的显微神经造影术成为评估人类区域交感神经活动的金标准方法

应用于动物实验的类似程序有助于确定ANS调节心血管功能的解剖路线和分子机制。在过去5年中,已经制定了直接评估调节免疫系统的ANS臂的实验方案,从而能够定义神经免疫机制如何促进心血管疾病的发病和进展

下丘脑-垂体-肾上腺轴

神经系统和免疫系统之间的进一步相互作用是通过神经内分泌系统进行的,主要通过下丘脑-垂体-肾上腺轴进行调节。下丘脑-垂体-肾上腺轴通常对心理压力敏感,是免疫反应和心血管功能的有效调节剂

免疫器官的神经调节

神经元顺行和逆行追踪技术已被用于通过周围神经系统的传入和传出臂绘制大脑和免疫器官之间的连接(下图)。

Carnevale D. Nat Rev Cardiol. 2022

a |初级淋巴器官神经支配。胸腺主要由去甲肾上腺素能纤维支配。虽然不存在直接的胆碱能神经支配,但交感神经与下丘脑-垂体-肾上腺(HPA)轴之间的相互作用已被证实。相反,骨髓神经支配更为复杂,包括交感神经系统(SNS)、副交感神经系统(PNS)和与大脑建立双向通讯的感觉纤维。骨髓的造血和免疫功能受到这种神经网络的严格调节。

b |次级淋巴器官包括脾脏和淋巴结,由去甲肾上腺素能纤维密集支配,其起源于大脑,已通过神经调节研究确定。淋巴结也有一个明显的感觉神经网络,可以严密监测外周免疫状态。

c |三级淋巴器官是为了应对非淋巴器官的病理挑战而形成的,具有独特的组织特异性组织。控制第三淋巴器官神经支配的神经纤维仅在少数解剖部位被发现。

d |粘膜相关淋巴组织在粘膜组织(如支气管或肠道)中形成,以响应稳态的扰动,并由神经网络严格控制,包括SNS、PNS和肽能感觉纤维。

神经元追踪确定外周器官神经支配路线

神经元连接性的研究需要对轴突进行双向追踪,包括从神经元细胞体到轴突终末的顺行追踪,以及从终末到胞体的逆行追踪。神经解剖学追踪是一种通过追踪神经元在突触前或突触后水平的连接来识别神经元的常用方法神经解剖学追踪技术在确定包括免疫器官在内的外周器官的神经支配途径方面变得特别有用

原始追踪研究的基础是将氟金注射到免疫器官中,使研究人员能够逆行识别节前神经元,或注射生物素化葡聚糖胺以顺行识别神经元连接。几十年来,这些单独使用或联合使用的示踪剂使研究人员能够研究连接大脑和周围器官的神经回路

随后的技术进步利用伪狂犬病病毒(一种高度传染性的神经营养性α疱疹病毒,Pseudorabies virus,PRV)的能力来定义中枢神经系统中的多突触回路。病毒的逆行扩散只发生在突触相连的神经元链中。在将伪狂犬病病毒注射到感兴趣的器官或组织后,更高阶的神经系统结构在稍后的时间点被标记。通过这种方式,可以定义神经元连接的精确路径,从外周器官开始,追溯到大脑。此外,伪狂犬病病毒在神经元细胞体中复制的过程具有自我放大的能力,这使得在受感染动物的大脑中识别二级、三级甚至四级神经元成为可能

初级免疫器官

初级免疫器官包括胸腺和骨髓,它们参与淋巴细胞的产生和初始选择。胸腺在新生儿和青春期前发育阶段活跃,逐渐退化,只有残留的淋巴细胞生成持续到成年期。骨髓包含在骨腔中,从未成熟的造血祖细胞开始产生红细胞和免疫细胞

胸腺神经支配和神经元调节

不同类型的细胞与胸腺器官发生,这需要神经嵴细胞的协调相互作用。基于旧追踪技术的初步研究显示,交感神经纤维错综复杂,主要释放去甲肾上腺素,并在胸腺中形成血管周围神经网络。使用经典单突触逆行和顺行示踪剂的类似方法并没有识别胸腺的副交感神经支配

后续的研究使用伪狂犬病病毒(PRV)的逆行跨神经元多突触追踪,来确定负责交感神经流出到胸腺的中枢神经系统区域。PRV感染的神经元分布在脊髓、延髓、脑桥、下丘脑室旁核、去甲肾上腺素能细胞A5组、延髓头端腹外侧核和中缝尾侧核

值得注意的是,PRV感染的动物在DMV中没有PRV阳性细胞核,这与之前的观察结果一致,之前的观察排除了支配该区域胸腺的迷走神经纤维的存在。

虽然连接胸腺大脑的硬连线路径的证明来自动物研究,追踪技术是可行的,但报告显示人类存在类似的胸腺神经支配模式,为这些发现提供了转化相关性。

神经样纤维和垂体激素通过人胸腺的免疫组织进行化学鉴定。胸腺糖皮质激素通过调节儿茶酚胺释放和肾上腺素受体表达,对胸腺细胞的存活和分化以及交感神经系统功能都很重要。相反,接受肾上腺切除术的动物胸腺去甲肾上腺素水平显著降低

典型的感觉神经肽,如P物质和降钙素基因相关肽(CGRP),已在胸腺中被发现,但没有明确的报告表明,这些神经肽可以为大脑提供感觉通路,这意味着交感神经支配可能是调节胸腺免疫功能唯一神经通路。

骨髓神经支配和神经元调节

骨髓神经支配沿着主动脉传导,并通过血管丛穿透骨髓。实质以神经纤维树枝状排列为特征,末端靠近造血细胞和淋巴细胞大多数纤维支配骨髓血管系统,但其他一些神经末梢支配实质性和血窦元素以调节造血和细胞迁移。

酪氨酸羟化酶是去甲肾上腺素合成的限速酶,存在于大动脉周围的所有神经中,并延伸至骨髓实质。除了主要的甲肾上腺素能神经支配外,还确定了神经肽Y的免疫反应性,从而表明骨髓的去甲肾上腺素能神经支配和肽能神经支配是混合的。

在很久以前发表的研究中也检测到对 P 物质和 CGRP 呈阳性的神经纤维,但感觉神经元的功能直到最近才被发现。CGRP感觉纤维与去甲肾上腺素能神经一起延伸到骨髓,在那里它们与酪氨酸羟化酶神经元合作,控制造血干细胞的动员。这些发现表明大脑通过硬连接的交感神经感觉连接控制骨髓免疫和稳态功能。

随后的研究还发现了支配骨骼和骨髓的副交感神经纤维。尽管在造血生态位附近检测到合成乙酰胆碱的胆碱乙酰转移酶的免疫反应性,但仅在骨中发现了明显的功能性副交感神经支配,其中胆碱乙酰转移酶调节骨重塑。

后来的研究表明,骨髓神经支配昼夜节律密切相关。骨髓中去甲肾上腺素的释放依赖于昼夜振荡,进而调节与控制白细胞和造血干细胞的保留和排出过程相关的基因表达。尽管这种构成过程在生理上是相关的,但神经介导的白细胞和造血干细胞转运的节律过程在疾病背景下可能特别重要

未来的研究将有必要澄清清晨急性心血管事件的高发病率是否与神经调节白细胞和造血干细胞运输的影响有关。

次级淋巴器官

次级淋巴器官包括淋巴结脾脏和与粘膜相关的淋巴组织,通常由交感神经和感觉神经支配。

淋巴结神经支配和神经调节

淋巴结的结构包括血管系统和淋巴管,它们穿透髓质实质,在 T 细胞区域中被复杂的去甲肾上腺素能纤维网络缠绕。相比之下,富含B细胞的生发中心缺乏神经支配

在稳定状态下,去甲肾上腺素的释放依赖于昼夜节律的激活,进而通过β2-肾上腺素受体信号调淋巴细胞的生理日常再循环。

通过使用各种技术,从整体免疫标记到逆行神经元追踪、单细胞基因组学和光遗传学,研究人员发现了支配淋巴结的独特感觉神经元阵列。将腺相关病毒注射到淋巴结后,四种类型的神经元被追溯到背根神经。对这些不同的神经元群体进行的单细胞RNA测序确定了肽能伤害感受器的密集表达,形成了与大脑的双向通讯途径,并持续监测周围免疫环境。

脾神经支配和神经调节

脾脏最大次级淋巴器官监测血液传播的物质和抗原。脾脏主要由去甲肾上腺素能脾神经支配,通常通过神经信号调节免疫功能

脾神经从腹腔神经节分支,从脾门进入脾脏,沿着脾动脉外侧走行。去甲肾上腺素能神经分布穿过边缘区,伸入白髓,在白髓中,T细胞、B细胞和树突状细胞附近可以发现神经末梢。相反,红髓的神经支配似乎稀疏而分散。通过组织学和追踪的方法,在脾脏中没有发现直接的胆碱能神经支配

白髓,位于脾脏内部,包含着一种特殊的白细胞,这些细胞聚集在血管周围,当血液流过脾脏的时候,白髓中的淋巴细胞辨认并吞噬掉任何侵入的细菌和病毒,以此方式过滤人体血液,防止机体被病菌感染。

红髓,动物体内最大的淋巴器官。位于左上腹胃的背面,胃与膈之间,呈内侧向内凹陷的扁椭圆形或条索状等。

一项使用完整全组织3D成像的研究提供了有关脾脏神经支配的额外信息。实质内交感神经支配的结构被揭示为圆锥状结构,这在其他免疫器官中是不存在的,这表明独特的神经调节功能发生在脾脏中

在脾脏中发现了具有独特特征的神经胶质细胞,这又增加了复杂性。自主神经支配通常包含非髓鞘神经胶质细胞。虽然神经胶质细胞在由周围神经系统支配的内脏器官中的特定功能尚未得到充分研究,但它们在免疫器官中的存在可能在神经细胞和免疫细胞之间起着中介作用,这需要进一步研究。

使用逆行示踪剂和后来的跨神经元多突触PRV追踪的研究明确证明,脾脏神经支配完全是去甲肾上腺素能的,起源于腹腔神经节

通过对脾脏注射PRV后较长时间点的分析,确定了脑干、桥脑和下丘脑的运动前脑核团。随后,光遗传学领域出现了一种追踪神经元回路的完全创新工具,它在功能上映射直接投射到腹腔神经节的DMV胆碱能神经元。

当DMV神经元被光激活时,会诱发脾神经放电,从而直接证明腹腔迷走神经和脾神经之间的解剖联系。

粘膜相关淋巴组织神经支配

身体内的粘膜,如呼吸道和胃肠道的粘膜,有分散的粘膜淋巴组织区域,这些区域共同构成了最广泛的淋巴组织,这些区域统称为粘膜相关淋巴组织,保护机体免受各种挑战。

虽然传统的次级淋巴器官是在胚胎发生过程中发育起来的,但淋巴滤泡,如支气管相关淋巴组织或肠道相关淋巴组织,在出生后会因炎症或感染而聚集。尽管如此,这些异位淋巴组织与传统淋巴组织在结构上有许多相似之处

粘膜相关淋巴组织的一个典型特征是广泛的神经支配。早期研究描述了支气管相关淋巴组织和肠道相关淋巴组织的交感神经和肽能神经支配,这些淋巴组织含有大量神经肽,如P物质、血管活性肠肽和生长抑素。通常情况下,神经纤维沿着小血管排列,然后在与淋巴细胞接触的粘膜组织的实质中分支,在含有T细胞的区域,神经占优势。

随后的研究通过专门检测和解码各种有害外周刺激的伤害感受器,确定了粘膜相关淋巴组织神经支配的感觉通路

支配肠道相关淋巴组织的伤害感受器感知胃肠道的扰动,并建立具有保护功能的神经反射。虽然肠道相关淋巴组织的感觉神经支配在抵御微生物方面的作用越来越明显,但对心血管疾病中肠道神经系统的影响仍不清楚。

支气管相关淋巴组织的神经支配作用研究较少,但交感神经、胆碱能神经和感觉神经纤维已被确定。

三级淋巴器官

三级淋巴样器官是指在成年期由淋巴样新生在随机、典型的非淋巴样和非粘膜部位形成的淋巴样组织,以应对慢性炎症。这些组织在身免疫性疾病微生物感染慢性同种异体移植排斥反应、癌症甚至动脉粥样硬化中都被观察到。

在几种转基因小鼠模型中诱导第三淋巴器官,可以表征炎症细胞因子和淋巴趋化因子的模式,这些细胞因子和趋化因子是其发育和调节所必需的。

虽然已经描述了三级淋巴器官的形态、细胞和血管成分,与第二淋巴器官(如B细胞和T细胞室的独特组织、含有滤泡树突状细胞的B细胞滤泡和生发中心)有相当大的相似性,他们在疾病进展中的参与是有争议的,并且仍然是研究的主题。

例如,在微生物感染期间,三级淋巴样器官会在局部保留病原体,从而阻碍它们进入生物体的其他部位。相反,自身免疫性疾病的进展可能因同时存在三级淋巴器官而加剧。通过选择性地去神经支配肠道交感神经或胆碱能神经,迷走神经在三级淋巴器官形成中的重要作用已在实验性结肠炎中得到证实。目前还尚不清楚ANS是否有助于其他器官中第三淋巴器官的发育、组织和功能。

胆碱能炎症反射

神经免疫相互作用是对挑战体内平衡的应激源做出快速反应的基本适应机制。这一概念首次出现时,脾脏神经支配在细菌内毒素血症(对身体最危险的疾病之一)期间被观察到具有保护功能。

去甲肾上腺素能纤维和淋巴细胞之间的直接神经免疫相互作用被描述,同时确定在脾脏中引起去甲肾上腺素能放电的神经回路,该回路在抑制脂多糖诱导的细胞因子负荷和对抗感染性休克方面有效

CVD中免疫反应的神经调节

神经免疫相互作用已被确定为心血管危险因素和心血管疾病病理生理学的潜在机制。

神经免疫相互作用促进心血管危险因素的发生及进展

Carnevale D. Nat Rev Cardiol. 2022

大脑中的环室器官被心血管系统的挑战激活。通过一系列中枢和周围神经系统的解剖连接,大脑在免疫器官中建立神经反射来控制和调节免疫功能。心血管危险因素,如高血压、代谢紊乱和动脉粥样硬化,是常见的神经免疫机制改变的基础。心血管疾病,例如心肌缺血、压力过载心肌病、心力衰竭、肾脏疾病和神经血管功能障碍,其特征在于受影响的心血管组织中局部和免疫器官中的神经免疫改变。ARC,弓状核;DMV,迷走神经背运动核;MnPO,正中视前核;NTS,孤束核;OVLT, 终板的血管器官;PVN,下丘脑室旁核;SFO,穹窿下器官。

神经免疫相互作用和心血管危险因素

高血压

高血压相关的炎症和免疫反应最早出现在20世纪70年代。然而,这些过程大多被认为是高血压导致靶器官损害的结果。

免疫系统在高血压中的机制作用的第一个证据,来自缺乏 T 细胞和 B 细胞且典型的高血压刺激不会增加血压的Rag1 -/-小鼠的研究。通过过继转移重建Rag1 -/-小鼠中的 B 细胞或 T 细胞池,这项研究表明,血管紧张素II或脱氧皮质酮醋酸盐(DOCA)仅在小鼠具有成熟 T 细胞时才会诱发高血压

随后大量研究调查了特定的T细胞亚群是否对高血压的发展至关重要,发现血管紧张素II给药不会增加Cd8 -/-小鼠的血压,但会增加Cd4 -/-小鼠的血压。免疫系统在血压升高中所起作用的细胞和分子机制仍有待研究。

与血压稳态有关的基本生理变量,如血管张力和肾脏钠排泄,依赖于严格的神经控制。因此,神经调节系统、免疫器官和心血管功能之间建立的关系值得研究。

重要的研究揭示了大脑和免疫系统之间的联系可能对高血压至关重要。首先,在动物模型中,脑室内注射血管紧张素II可通过交感神经系统诱导外周细胞因子的释放。此外,选择性的脑室周围器官损伤阻碍了小鼠对血管紧张素II的典型血压升高反应。

有趣的是,脑室周围器官受损的小鼠无法激发T细胞并促进T细胞在血管系统中的浸润,这表明高血压患者的神经系统和免疫系统之间存在关系。

Carnevale D. Nat Rev Cardiol. 2022

高血压患者免疫系统的直接神经控制随后被证实。利用小鼠脾神经的显微神经学检查,血管紧张素II和DOCA盐均能增加神经放电促进脾脏中去甲肾上腺素的释放。选择性脾脏去神经可防止血压升高以应对任何一种高血压刺激,脾切除术也重现了这一效应。

逆行追踪法,加上在测量脾神经放电时进行的选择性去神经手术,阐明了腹腔迷走神经输出是由高血压刺激激活的节前神经元

在分子水平上,脾脏中的去甲肾上腺素释放是促进胎盘生长因子激活所必需的,胎盘生长因子是一种血管内皮生长因子家族的血管生成生长因子,也具有对血压升高至关重要的免疫调节功能

高血压患者的神经免疫另一个相互作用的水平被称为双向脑-骨髓轴,即骨髓中交感神经流出增加先于全身炎症

有关高血压患者肠道失调的证据正在迅速积累,来自小肠的激活免疫细胞已被证明与血压升高和大脑靶器官损伤有关。目前还不清楚是否存在相反的途径,即神经信号控制与高血压发病和进展相关的肠道和免疫机制。

动脉粥样硬化

脂质在动脉壁的积聚是动脉粥样硬化的一个典型特征,并伴随着免疫细胞的进行性浸润,导致斑块的形成。这一过程以慢性低度炎症为特征,逐渐增加动脉粥样硬化斑块的大小并导致动脉阻塞

尽管有很多工作研究了导致斑块形成和决定斑块稳定性的机制,但神经免疫通讯的潜在作用才刚刚开始研究。

动脉粥样硬化斑块没有神经支配,但在斑块形成和进展过程中调节免疫反应的神经线索已被确定。Netrin 1首先被确定为指导轴突生长锥的神经信号,在人和小鼠动脉粥样硬化动脉的巨噬细胞中也发现了Netrin 1,它通过趋化因子驱动的迁移过程抑制巨噬细胞的排出。

巨噬细胞中的Ntn1缺失阻碍了小鼠的动脉粥样硬化过程,促进巨噬细胞从斑块中流出。

另一种蛋白质通常存在于神经元中,与胆碱能途径有关,可调节高胆固醇血症Ldlr–/–小鼠的动脉粥样硬化过程。在骨髓来源的细胞中,编码α7烟碱型乙酰胆碱受体(α7-nAChR)的Chrna7被切除会恶化小鼠动脉粥样硬化的进展。值得注意的是,人类动脉粥样硬化病变的特征是存在α7-nAChR+免疫细胞,表明该受体的通用相关性。

对受动脉粥样硬化影响的动脉周围三级淋巴器官的鉴定表明,神经机制可能与这些淋巴聚集相互作用,以控制和/或调节动脉粥样硬化疾病的进展。

Carnevale D. Nat Rev Cardiol. 2022

代谢紊乱和肥胖

代谢综合征通常指可能单独或合并发生的一系列疾病,总体上增加了CVD的风险。除了血压升高,通常还包括高血糖和肥胖

已知ANS失衡和免疫系统激活是代谢综合征的特征。在小鼠中发现了自身免疫性糖尿病的神经免疫机制。由CD8+T细胞介导的对胰腺β细胞的攻击诱导,糖尿病的发病取决于完整的胰腺神经支配的存在。

事实上,6-羟基多巴胺的化学消融或去甲肾上腺素能胰腺纤维的手术去神经支配阻碍了这些小鼠糖尿病的发病。在分子水平上,这种效应是由α1-肾上腺素能受体信号诱导的,因为使用哌唑嗪而不是普萘洛尔可以重现胰腺去神经支配的保护作用。

神经信号还可以控制与高脂饮食诱发的肥胖相关的糖尿病。患有肥胖症的小鼠和人类的脂肪组织被免疫细胞密集浸润,这些细胞导致脂肪组织炎症和胰岛素抵抗

值得注意的是,脂肪组织中存在神经免疫指导线索netrin 1,这表明netrin 1可能调节巨噬细胞向脂肪组织的动员。此外,选择性缺失小鼠造血细胞中的Ntn1可有效促进巨噬细胞从脂肪组织中排出,减少炎症,并改善胰岛素敏感性。

这些发现确定了靶组织中的神经免疫相互作用,但免疫器官的神经控制也参与了疾病相关炎症状态的系统调节。例如,由脾交感神经驱动的神经通路已被确定为糖尿病的关键。通过手术或使用6-羟基多巴胺实现的选择性脾脏去神经支配,阻碍了糖尿病小鼠的过度脾脏骨髓生成。


一种连接大脑和脂肪组织的新型神经免疫途径已经被描述。在小鼠的脂肪间充质细胞附近发现了交感神经,交感神经控制着一个特定免疫细胞亚群的活动:2型固有淋巴细胞。

反过来,2型固有淋巴细胞通过释放神经营养因子来调节脂肪组织的稳态和肥胖。重要的是,通过在小鼠身上使用逆行追踪技术,结合外科手术和化学遗传学操作,定义了一个新的神经回路,通过交感主动脉-肾回路将脂肪组织中的2型固有淋巴细胞连接到高阶脑区,如室旁核。未来的研究应该调查这种新发现的神经免疫回路是否与肥胖和胰岛素抵抗的心血管并发症有关。

生活方式相关的危险因素

众所周知,生活方式相关的风险因素对CVD的发病率有着深远的影响,同时也对免疫系统构成挑战。此外,心理或身体上的应激状态与ANS的紊乱有关。对生活方式相关风险因素对心血管系统有害影响的潜在相关神经免疫相互作用的研究可以揭示创新的治疗机会。

正如在人类身上经常观察到的那样,慢性应激状态会增加小鼠的血压。值得注意的是,Rag1–/–小鼠对应激诱导的高血压具有抵抗力,并能减轻靶器官损伤

除了血压升高,慢性应激还会增加动脉粥样硬化和心肌梗死的易感性。经过反复和各种应激性挑战的小鼠显示出造血干细胞增殖增加,导致产生高水平的促进疾病的炎性白细胞。这种效应是由骨髓交感神经纤维释放的去甲肾上腺素增加介导的,而去甲肾上腺素又反过来调节造血干细胞增殖、中性粒细胞和炎性单核细胞的排出

睡眠障碍对心血管健康构成了重大挑战。小鼠正常睡眠节律的改变会增加动脉粥样硬化,与过度造血和促炎性单核细胞积聚有关。

在分子水平上,研究发现,睡眠碎片化可下调小鼠130的下视黄醇水平下视黄醇是一种下丘脑神经激素,在控制睡眠、觉醒和觉醒方面具有重要功能。鉴于下视黄醇通过减少巨噬细胞集落刺激因子1的产生来限制骨髓生成,睡眠不良引起的下视黄醇水平降低与白细胞增多有关。

流行病学数据显示,健康的生活方式,如定期的体育活动,可以降低患CVD的风险。尽管许多观察分析都支持这种关联,但很少有机制研究调查这种有益关系的根本原因。有趣的是,习惯性自愿性跑步会降低小鼠的造血活动。在动脉粥样硬化小鼠中,运动抑制了慢性白细胞增多,但不影响紧急造血。通过降低脂肪-瘦素水平,这种效应促进造血生态位静止,改善心血管炎症和预后。

CVD中的神经免疫相互作用

心肌缺血、心肌病和心力衰竭

ANS通过控制血管张力和各种心肌细胞特性,如收缩力、传导和频率,调节心脏功能。交感神经流出增加是慢性心力衰竭不良后果的最强预测因子之一。此外,非心肌细胞,尤其是常驻和非常驻免疫细胞,在应对各种挑战的心脏重塑中起着至关重要的作用。神经、免疫和心脏机制之间的相互作用值得研究。

急性缺血性心脏损伤通过增加骨髓中的交感神经信号与脾髓样细胞的生成增加有关。从脾脏部署的一部分单核细胞积聚在缺血心肌中,并参与心脏重塑。心-脾轴也被发现参与慢性心肌缺血的长期免疫反应,这总体上有助于不良的心脏重塑。脾脏的神经控制是否与这些表型有关仍有待阐明。

慢性高血压和肾功能衰竭会对心肌造成压力或容量过载,如果没有得到充分补偿,最终会导致心力衰竭

在舒张功能不全的小鼠中,由于单核细胞募集和骨髓和脾脏造血增加,心脏巨噬细胞的数量增加。当巨噬细胞进入心肌时,会产生促纤维化细胞因子IL-10,进而促进胶原沉积和心肌僵硬,进一步加重舒张功能损害。

然而,其他巨噬细胞群体可以通过依赖于多器官相互作用的机制,促进慢性压力超负荷的适应性重塑。受到横向主动脉收缩以诱导心脏压力超负荷的小鼠增加了肾交感神经流出,由此甲肾上腺素刺激粒细胞-巨噬细胞集落刺激因子的分泌,并对心脏巨噬细胞产生旁分泌作用。这项研究表明,心肌对慢性压力超负荷的适应取决于肾脏和心脏的神经和免疫反应之间的整合。

随后的研究阐明,心肌在稳定状态下含有大量不同的免疫细胞,对挑战的反应取决于常驻和招募的免疫细胞群体之间的整合。

鉴于ANS通过从颈上神经节、星状神经节和胸上神经节分支的纤维直接支配心肌,可以想象,参与心脏重塑的免疫反应的神经调节可能发生在心脏局部

值得注意的是,尽管颈上神经节的去神经支配对心肌缺血引起的急性心脏重构没有影响,但从长远来看,这一过程减少了炎症浸润减轻了心力衰竭

肾脏疾病

肾钠处理、肾素分泌和肾血管张力ANS的严格调节。肾传入和传出神经支配构成了最广为人知和研究最广泛的心血管反射系统之一。此外,炎症和免疫浸润通常伴随肾脏疾病

急性肾损伤或慢性肾脏疾病均可导致肾功能衰竭,总的来说会增加心血管疾病的风险促炎症环境和ANS平衡改变是肾病的特征,但神经系统和免疫系统之间的相互作用才刚刚开始澄清。

已经证实神经免疫调节在急性缺血再灌注反应中对肾损伤的重要作用。当用能引起胆碱能炎症反射的胆碱能激动剂进行预处理时,患有双侧肾缺血-再灌注或细菌内毒素血症的啮齿类动物对肾损伤敏感性较低,这意味着神经反射调节由不同原因引起的肾损伤引起的炎症过程。

鉴于在类似的肾缺血再灌注损伤小鼠模型中,通过超声激活胆碱能炎症反射通过抑制炎症减轻了结构和功能损伤,该发现具有转化相关性。

2021发表的一项研究确定在小鼠急性肾损伤期间连接肾脏、大脑和脾脏的神经通路。通过光遗传学,迷走神经的传出或传入纤维被选择性地刺激,表明两者都对肾脏损伤有保护作用。通过激活传入的顺行感觉纤维,可以描绘出从肾脏追溯到延髓头端腹外侧的神经回路,以补充迷走神经-脾反射

肾脏也是高血压损害的主要目标,这是心血管疾病不良后果的一个强有力的独立风险因素浸润肾脏的活化免疫细胞和ANS失衡是高血压性慢性肾病的特征。

在动物模型中,肾脏去神经支配可有效对抗过度的肾交感神经流出和血压升高,并抑制T细胞聚集和由此引起的炎症反应、肾纤维化和蛋白尿

在分析传入和传出肾神经支配的差异贡献时,在DOCA盐大鼠中,传入特异性肾去神经支配降低动脉血压和交感神经活动的程度与总(传入+传出)肾去神经支配的程度相同,但对血管紧张素II诱导的高血压没有影响。

有趣的是,在随后的一项研究中,同样的研究人员对已建立高血压和肾炎症的DOCA盐大鼠进行了传入特异性或全肾去神经支配。在这些动物中,虽然传入特异性和全肾去神经支配在降低血压方面仍然轻微有效,但两种治疗均未显着改变已确立的肾脏炎症

总之,这些研究表明,肾神经(传入神经和传出神经)和炎症高血压和肾脏炎症的发病机制中存在密切联系但是,在确定高血压后,去肾神经支配不是抑制炎症过程的有效治疗,是通过其他机制维持的。

内脏器官炎症由ANS调节的观察可以追溯到之前研究肾传入和传出神经支配的作用

一项初步研究表明,肾脏去神经支配可有效预防大鼠实验性肾小球肾炎,从而减少蛋白尿、系膜血管溶解、肾小球胶原沉积和转化生长因子-β的表达。这些数据表明,来自肾脏神经输入的信号分子可能在各种疾病环境下引发肾脏炎症和纤维化,进一步导致终末器官肾损伤

Carnevale D. Nat Rev Cardiol. 2022

神经血管功能障碍和痴呆

大脑由于没有能量储备,一直依赖于通过循环提供的营养,必须根据动态区域激活来适应其需求。因此,大脑对循环系统的改变特别敏感

多种细胞类型构成脑实质和血管周围组织,包括免疫细胞。正如在其他器官和组织中观察到的那样,大脑中含有常驻免疫细胞(主要是小胶质细胞和血管周围巨噬细胞),当挑战干扰血脑屏障通透性时,这些细胞可以与招募的免疫细胞相互作用。

心血管风险因素会影响血脑屏障的完整性,改变脑血管内稳态,增加患痴呆症的风险。在小鼠和人类中,高血压会导致进行性脑血管损伤,并伴有典型的认知障碍症状

免疫系统在高血压发病中的作用已得到明确证明,但免疫细胞如何参与高血压诱导的脑损伤才刚刚开始研究。

血管紧张素II诱导的高血压小鼠脑血管周围巨噬细胞的耗竭抵消了血管氧化应激和神经血管损伤,表明免疫的关键作用

相反,在小鼠中,募集的免疫细胞会导致由血管危险因素(例如过度盐摄入)引起的脑损伤。脑血流、内皮功能和认知能力的损害取决于T淋巴细胞产生的IL-17,而IL-17是通过摄入肠道中的盐激活的。随后的一项研究还阐明了辅助性T淋巴细胞17对大脑有害影响的机制,表明肠道免疫轴对神经的调节非常关键

针对CVD中的神经免疫通信

外周神经系统的解剖结构和组织结构对轴突亚群选择性和精确治疗提出了挑战,轴突亚群在特定器官中发挥独特的调节功能。因此,研究人员试图开发出越来越复杂的电极,以刺激更靠近目标组织的较小神经。这种方法有助于获得有关生理学和疾病中免疫神经调节的病理生理学基础的信息。

值得注意的是,靶向脾神经并直接测量其活性的技术的发展,使我们能够确定该免疫器官神经系统和心血管系之间串扰的中枢介质。相反,选择性去神经提供了有关该通路在CVD发病和进展中的相关性的机制信息。


研究表明,ANS调节免疫功能的功能障碍是心血管风险和CVD进展的重要组成部分。免疫器官自主神经外流的靶向调节是将这些发现转化为患者治疗的一种可能性。

值得注意的是,神经免疫通讯的机制研究被认为与一系列临床条件有关,如克罗恩病、类风湿性关节炎和原发性干燥综合征,所有这些都涉及免疫和炎症过程的失调。在临床前模型以及随后的炎症和自身免疫性疾病的人类临床试验中进行了探索,以非侵入性方式针对神经免疫机制的可能性也可能成为CVD的一种可能性。

对心血管疾病中调节免疫反应的神经通路的分子和电生理成分的临床前和临床研究为创新疗法提供了理论基础。能够对涉及心血管疾病的神经免疫反射进行精细调节的工具将有助于设计针对组织靶向免疫调节作用的策略,而不会增加感染风险或导致其他不良反应的普遍免疫抑制。根据特定疾病的特定背景和炎症环境,可以通过设计对腹腔迷走神经传出神经的生物电子刺激的选择性模式来微调脾脏的迷走交感神经激活。迄今为止,只有临床前工具已被开发并证明可有效调节免疫细胞从脾脏排出的过程。相反,通过手术切除腹腔神经节或热消融脾动脉周围的交感神经纤维,可以减弱脾交感神经流出的过度激活。

到目前为止,迷走神经刺激的研究主要集中在使用颈部植入装置,这些装置会触发传出和传入神经通路的混合,并产生潜在的不良影响。因此,尽管在自身免疫性疾病的临床试验中取得了有希望的结果,但迷走神经刺激方案具有引起脱靶刺激的局限性。

为了克服这一缺点,已经实施了改进的实验性迷走神经刺激方案,以选择性地刺激腹腔传出迷走神经并诱发脾神经流出。有趣的是,一系列研究提供了交感神经介导的脾神经控制的证据。特别是,通过腹腔神经节与脾神经相连的内脏神经已被证明可调节脾介导的炎症反应。具体作用是整合的还是单独作用的,取决于具体的病理生理学背景。


腹腔迷走神经刺激后的脾脏免疫细胞的分析显示,特定的生物电子调节模式促进选择性T细胞亚型的排出,这表明可能会发展出靶向免疫调节

使用活体和离体制剂对小鼠、大鼠、猪和人脾神经进行神经解剖学和功能比较,表明将临床前发现转化为临床相关工具的可行性。然而,尽管这种方法需要在实验模型中进行进一步研究,以揭示CVD中神经免疫通讯的病理生理学基础,但临床应用可能会受到该过程侵入性的限制。

肠道微生物群在CVD发病机制中的神经免疫作用

肠道微生物群决定下丘脑-垂体系统的激活水平。特别是,肠道微生物群是心血管疾病发病机制中神经免疫介质的重要来源。

心肌缺血、心肌病和心力衰竭

与 CVD 相关的压力通过激活 ANS 的交感神经分裂来影响整个生物体,包括胃肠道。在 ANS 的影响下,肠道内微生物群的血液供应减少,从而降低了消化腺的活动,胃肠道的肠道蠕动减慢。上述机制决定了由于 CVD 相关应激导致的肠上皮细胞的进一步紊乱

CVD相关应激期间肠道上皮损伤的机制

Suslov, Andrey V,, et al. J Clin Med. 2021

ANS-肠壁-供血-缺氧-菌群紊乱-CVD

肾上腺素能交感神经纤维支配,在刺激期间增加水和钠的吸收,伴随着肠道通透性的增加。同时,在大肠迷走神经的影响下,肠上皮杯状细胞产生的粘液减少

值得注意的是,一方面,粘液为肠道上皮细胞提供保护,使其免受共生体及其代谢产物的影响,另一方面,粘液阻止免疫细胞的过早激活。因此,粘液层的减少和肠壁通透性的增加可导致肠道细菌的紊乱和肠上皮细胞的空间分离

Wistar大鼠中显示,出生后早期有限的筑巢压力会导致高皮质类固醇激素血症增加肠道通透性,减少粪便微生物多样性,导致肠道微生物群组成失衡。肠道血供减少不仅是由于ANS交感分裂的影响,也是由于CVD的致病影响。

几项研究表明,肠道供血衰竭伴随着多种类型的CVD:心肌梗死、严重动脉粥样硬化、慢性心力衰竭、糖尿病和肥胖。因此,CVD期间肠道内的血供衰竭是由多种机制同时决定的。

肠血供减少伴有组织缺氧,而肠粘膜缺氧最为敏感。

肠粘膜是一种支持粘液层以及微生物群与上皮下组织空间分离的解剖结构。在缺氧期间,有氧和无氧分解代谢循环中的葡萄糖转化会在中间阶段损害能量的生物合成。这导致活性氧(ROS)的释放。

由于活化免疫细胞的积累和 ROS 的产生,再灌注会增加缺血性损伤的破坏性影响。活性氧蛋白质、脂质、碳水化合物和核酸具有高反应性,导致肠上皮完整性受损。至于肠道菌群与缺血性肠道损伤之间的关系,在大鼠模型中显示,肠道缺血-再灌注损伤导致肠道菌群发生显著变化,大肠杆菌和口腔普氏杆菌数量增加,随后在愈合阶段乳酸杆菌数量增加

同时,在急性心肌梗死大鼠模型中证明,肠道微生物群的改变会导致肠道炎症和细胞凋亡的发展,也就是说,肠道缺血不仅会导致肠道微生物群失衡,反之亦然,肠道微生物群的变化会导致肠道损伤

肠上皮层-肠屏障-心脏代谢疾病

除粘液层外,肠上皮层在提供肠屏障功能方面也起着重要作用。肠上皮层由与紧密连接蛋白连接的上皮细胞组成,特别是紧密连接蛋白、封闭蛋白、钙粘蛋白和粘附分子。

紧密连接蛋白作为肠-脑轴结构中肠屏障的重要元素。研究表明,脑肠肽ghrelin可以减轻动物模型脑出血后激活紧密连接蛋白 zonula occludens-1 和 claudin-5 的肠道屏障功能障碍。

一些研究通过改变紧密连接蛋白证明了肠道微生物组变化与肠道屏障损伤的关系。例如,植物乳杆菌增强上皮屏障刺激基因的表达,这些基因参与紧密连接zonula occludens-1、zonula occludens-2 和 occludin 的信号通路。

在小鼠模型的另一项研究中也证明了相同的效果,其中用乳酸杆菌、双歧杆菌和链球菌的混合物治疗增加了紧密连接 zonula occludens-1 和紧密蛋白的表达。紧密连接完整性的改变可导致与代谢宿主状态受损相关的细菌或细菌代谢物的流入增加,表现为心脏代谢疾病

神经免疫网络形成中的肠道微生物群

肠上皮和粘液屏障位于肠道环境、肠道细菌和免疫系统之间。

众所周知,肠上皮层包括不同类型的细胞:

肠细胞

杯状细胞

肠内分泌细胞

潘氏细胞

簇状细胞

M细胞

以及多种专业免疫细胞,如

淋巴细胞

树突状细胞

巨噬细胞

均位于肠粘膜表面附近

上皮内淋巴细胞第一个对致病因素做出反应的免疫细胞,它侵入上皮并传播树突以检测肠腔抗原

其他细胞位于有组织的淋巴结构中,如派尔斑和隐斑,或分散在固有层内

巨噬细胞和树突状细胞等专业免疫细胞类似肠上皮细胞表达先天免疫受体,如模式识别受体,包括 Toll 样受体 (TLR) 和核苷酸结合蛋白,含有寡聚化结构域 (NOD)。

潘氏细胞合成抗菌分子受 TLR4/MyD88 和 NOD2 信号传递的调节,这些信号传递受肠道微生物的控制。

TLR 通过激活促炎信号通路以响应微生物抗原,在先天免疫系统中发挥着重要作用。

肠道免疫细胞通过细胞因子或直接的细胞连接支持肠道黏膜的屏障功能。因此,由 Th17 细胞或 3 型先天性淋巴细胞 (ILC3) 产生的 IL-17 和 IL-22 会增加肠上皮细胞分泌的 AMP 和 Reg3 家族蛋白 。

此外,上皮内淋巴细胞产生的 IL-6 可增强肠上皮细胞增殖并促进损伤后黏膜的修复。然而,其他促炎细胞因子,如 TNF-α 和 IFN-γ,通过抑制 β-连环蛋白/T 细胞因子 (TCF) 信号传递来抑制上皮细胞增殖 。

肠上皮细胞还通过分泌细胞因子和趋化因子来调节宿主免疫反应

在用革兰氏阴性细菌大肠杆菌和变形杆菌的鞭毛蛋白刺激肠内皮期间,TLR5 / MyD88 信号促进 IL-8 的产生,IL-8 将中性粒细胞募集到固有层中。

前面CVD中提到的胆囊收缩素胰高血糖素样肽 (GLP) 和血清素由肠道内分泌细胞分泌,影响肠道免疫系统的活动。

胆囊收缩素通过 CD4+ 细胞和 B 细胞调节细胞因子的分化和产生。值得注意的是,交感神经系统调节的消化腺活性的降低间接影响免疫细胞的活性。

有趣的是,微生物群对上皮肠屏障的影响不仅取决于免疫成分,还取决于其他影响。特别是,由肠道微生物群合成的短链脂肪酸被用作上皮细胞的能量来源,并间接增强上皮屏障。微生物代谢产物吲哚通过激活孕烷-X 受体具有防御屏障作用,并增加胰高血糖素样肽-1 的分泌。

无法保存肠上皮的复杂解剖和功能特征会降低上皮屏障的抗菌、免疫调节和再生能力。粘膜的破坏导致共生细菌及其代谢物从肠腔转移到上皮下组织,导致促炎细胞因子的分泌。反过来,这会导致器官功能障碍,并伴有肠粘膜炎症。

现在越来越多的证据表明,肠道细菌的代谢物在炎症过程中通过被破坏的肠道屏障进入循环。

微生物组介导疾病的三个因素:

首先,肠道细菌的代谢物是慢性免疫反应的永久激活剂,会在肠道以及整个生物体中引起持续性炎症

其次,先天免疫系统成熟期肠道微生态失调导致免疫耐受性受损,随后表现为自身免疫和自身炎症性疾病。

第三,微生物组可以影响控制肠道远处组织特异性免疫的免疫因素

考虑到肠道微生物群在神经免疫网络形成中的作用脑源性神经营养因子 (BDNF) 是一种应激蛋白,是神经营养因子家族的成员,可增加大脑中神经元对功能障碍的抵抗力,并提供神经系统的可塑性

BDNF 控制了广泛的过程,包括微生物群-肠-脑轴参与心脏代谢疾病的发病机制。研究表明,BDNF 信号可能介导间歇性禁食对血糖调节和心血管功能的影响 。此外,研究表明,用高剂量益生菌治疗可以调节斑马鱼的行为,导致一些大脑相关基因的表达发生显着变化,例如 BDNF。因此,BDNF 可能代表了微生物-肠-脑轴的分子机制。

神经免疫轴:微生物群-肠-脑-CVD

肠道粘液膜的缺氧损伤、微生物群转移到上皮下组织、肠上皮屏障功能的破坏、肠道细菌代谢产物和炎症细胞因子的合成使肠道成为最大的内毒素源。炎症介质通过全身血液和淋巴循环到达神经系统中心

血脑屏障

血脑屏障 (BBB) 在妊娠期间形成,充当大脑和血液循环系统之间的选择性过滤器。肠道微生物群和微生物代谢物在血脑屏障形成中的重要性已在不可知菌小鼠身上得到证实。在没有肠道微生物的情况下,与正常动物的血脑屏障相比,小鼠的血脑屏障变得具有渗透性

研究发现,大脑的淋巴系统流入脑脊液,进入蛛网膜下腔,并进一步进入颈深淋巴结脂质的溶解度、蛋白质的三级结构、浓度、分子质量和化合物的电荷决定了介质从外周血供应和淋巴系统到大脑的通道。

外周血中的细胞因子主要是亲水性的,可以调节神经系统的免疫功能。研究还表明,静脉注射吲哚(类似于色氨酸的细菌代谢产物)可以克服BBB

LPS(脂多糖)的神经炎症效应通过外周组织中的TLR激活发挥作用,通过血脑屏障阳性的促炎细胞因子在神经系统中引起继发效应

血脑屏障和淋巴血管系统被认为是信号进入大脑的入口。例如,循环免疫细胞和炎症介质(包括宿主和细菌的激素和神经递质)以及迷走神经刺激代表了有助于直接或间接微生物信号从肠道传输到大脑的机制 。

炎性细胞因子也是激活中枢神经系统的一个重要因素,作为对各种刺激的反应,包括在肠道病理过程中激活下丘脑-垂体-肾上腺轴的促炎性细胞因子。

肠易激综合征患者的皮质醇和促炎细胞因子白细胞介素IL-6和IL-8显著升高。IL-1α细胞因子在中枢神经系统水平上刺激机体的整个葡萄糖代谢;IL-6、IL-1、TNF-α和IFN细胞因子相互独立地刺激下丘脑-垂体-肾上腺轴(HPA轴)。

除了炎性细胞因子外,炎症期间环氧合酶系统合成的前列腺素也参与HPA轴的激活。多项研究发现炎性细胞因子(TNF-α、IL-1和IL-6)在HPA轴激活中的作用。任何炎性细胞因子的注射都会刺激HPA轴,并导致循环皮质酮水平升高。值得注意的是,在LPS穿透后,任何细胞因子的阻断都不会阻断HPA轴的激活也就是说,如果肠上皮屏障功能停止LPS进入血液,那么细胞因子激活HPA轴的复制效应就会实现。那么接下来就是神经免疫性疾病和靶器官损伤了。

因此,所有炎症介质都会促进HPA轴的激活,而阻断任何一种细胞因子都不能减少HPA轴的刺激,因为它们之间存在重复效应

因此,下丘脑-垂体-肾上腺轴的激活是大脑介导的对疾病的基本反应之一。HPA 轴被认为是神经内分泌系统的基础,它在心理和生理压力(包括感染)的影响下调节机体的稳态,促进对压力的充分反应。

所考虑的机制在慢性应激中非常重要。由于情绪唤醒的阈值不足以在CVD期间形成压力,因此神经系统中形成全值压力反应,随后通过肠内炎症介质持续激活HPA,激活ANS的交感分裂

值得注意的是,机体的整个复杂病理变化是通过急性应激途径发展起来的,而情绪成分(情绪刺激)与慢性应激阈值相对应或完全缺失。这个问题需要进一步研究。因此,综述的机制对神经系统中心(包括ANS中心)有激活作用,ANS中心反过来又支配内脏器官,包括微生物群居住的肠道

肠道介质-血液/淋巴-大脑-ANS-CVD疾病

结合有关肠道微生物群的机制及其与神经系统通过肠-脑轴发育紊乱的关系,可以初步得出结论在CVD期间,来自肠道的介质通过血流和淋巴进入大脑,并激活下丘脑核团。然后,只要下丘脑是ANS的节段上整体中心,ANS的交感神经分裂就会被激活

因此,来自肠道的介质到达ANS的节段上中心,并激活交感和副交分裂的工作,从而关闭肠道微生物群参与CVD发病机制的病理循环。许多发表的研究报告表明,微生物群介导的炎症介质的增加会加重CVD的病程预后。

研究还发现,恢复CVD患者的肠道菌群可以改善疾病的预后。使用增加阿克曼菌属、双歧杆菌、乳酸杆菌、拟杆菌和普氏杆菌的细菌数量的复合治疗制剂可改善CVD的病程

众所周知,双歧杆菌和乳酸杆菌属的细菌对肠壁具有局部抗炎作用。肠上皮屏障功能的恢复是因为肠壁炎症的减少,这意味着炎症介质在体循环中的水平降低,因此它们对神经系统的激活作用降低

尤其是,高血压与肠道微生物群紊乱和肠脑轴失调有关。在高血压大鼠模型中证明,长期开菲尔治疗可降低IL-6和TNF-α蛋白密度,并消除在下丘脑室旁核和延髓头端腹外侧区观察到的小胶质细胞激活,保护心脏调节核免受肠道介导炎症的影响,从而提供开菲尔的降压作用。在小鼠缺血性中风或脑缺血模型中进行的一些研究表明,缺血性中风脑损伤通过增加促炎反应和细胞因子、趋化因子和免疫细胞浸润大脑结构,促进肠道失调的发展,这与不良预后有关。

CVD患者肠道菌群与神经系统的相互作用

Suslov, Andrey V,, et al. J Clin Med. 2021

肠道微生物群参与了 CVD 的发病机制并决定了 HPA 轴的炎症激活。

一些研究调查了微生物组靶向制剂可改善 CVD 病程,减少动脉粥样硬化的进展和主要 CVD 并发症的风险 。

在这里,我们可以假设基于微生物组治疗的有益心脏保护机制是由于其对微生物组-肠道-脑轴的影响。

通过阻断左前冠状动脉诱发心肌梗死的大鼠中显示,与安慰剂组相比,使用基于瑞士乳杆菌和长双歧杆菌组合的益生菌可降低与心肌梗死相关的不同脑区的凋亡倾向。

另一项针对小鼠的研究表明,在实验性中风后,抗生素调节肠道微生物群可降低缺血脑内的LPS水平和神经炎症。一项针对冠心病患者的研究发现,益生菌鼠李糖乳杆菌与益生元菊糖复合物对抑郁、焦虑和炎症生物标志物具有有益作用。

CVD的干预措施建议

运动

建议所有成年人每周至少进行150-300分钟的中等强度或75-150分钟的高强度有氧运动,或两者的同等组合。当然要视身体状况而定,如果自身基础不太好,在能力和条件允许的情况下尽可能保持一些低强度活动。

减少久坐时间,适当进行轻度体力活动是有益的。

饮食和生活方式

饮食对人类健康的多个方面都有重大影响,不健康的饮食模式(例如高脂肪的西式饮食)与动脉粥样硬化、代谢综合征和肥胖症等一系列慢性疾病的风险增加有关。免疫系统正在成为这种关系的关键中介,通过食物诱导调节与慢性炎症相关的促炎/抗炎因子以及增加/减少各种病理结果的风险。

支持这一观点的大型流行病学研究表明,以高摄入饱和脂肪和低纤维为特征的饮食模式与促炎生物标志物水平升高有关,例如 C 反应蛋白 (CRP) 和白细胞介素 IL- 6。相反,摄入大量水果和蔬菜和/或经常食用鱼类的饮食模式与较高的脂联素血清浓度相关,脂联素具有抗炎特性。

这些观察性研究得到了干预试验的进一步支持,干预试验表明饮食可能会影响血清炎症生物标志物谱。例如,高胆固醇食物的饮食干预增加了对胰岛素敏感的参与者的 CRP 和血清淀粉样蛋白 A 浓度。

Yu E, et al.,J Am Coll Cardiol. 2018

健康的饮食可以降低心血管疾病和其他慢性疾病的风险。从更多荤食(以动物为基础的)饮食模式转变为素食(以植物为基础的)饮食模式,可能会减少心血管疾病。

建议饮食中多吃水果、蔬菜、坚果等;少量食用低脂乳制品和海鲜;而且尽可能少摄入加工肉类、含糖饮料、精制谷物、盐等。

戒烟可迅速降低心血管疾病风险,是预防动脉粥样硬化性心血管疾病最具成本效益的策略。

建议限制饮酒或戒酒,每周最多饮酒100g。

通过改变生活方式来达到和保持健康体重,对这些指标可产生有利影响(如血压、血脂、血糖等),并降低CVD风险。

当饮食和体力活动改变以及其他常规的非侵入性干预措施效果不佳时,应考虑对高危人群行减重手术;也可以考虑使用具有心血管保护作用的抗肥胖药物。

压力管理

新指南提出心理压力与动脉粥样硬化性心血管疾病风险相关,需要加强对心理障碍患者的关注和支持,对其进行生活方式和药物干预,方式包括呼吸练习、冥想、写日记、适当锻炼、与大自然接触、与他人建立联系等,尽可能改善压力症状和生活质量,可改善心血管疾病。

日常健康管理

通过对血压,血糖,血脂等指标的日常监测来了解健康状况,也可以通过肠道菌群健康检测等方式来了解慢病风险,阻断这类慢病的进程,预防控制代谢紊乱,从根本上预防心血管疾病的发生。

结 语

本文主要基于研究阐述免疫、炎症的神经调节以及肠道菌群如何参与 CVD 的发病和进展。

CVD的初始阶段肠道微生物群在其发病机制中的作用是次要的,这意味着细菌的定性和定量变化不像在随后的阶段那么重要。

然而,后来,当肠道微生物群决定了下丘脑-垂体-肾上腺轴的炎症激活水平时,肠道微生物群的变化对CVD的发展具有重要意义。

在CVD进展过程中,肠道细菌与肠壁的病理过程密切相关,成为CVD发病机制中的关键因素之一。在这方面,试图确定与CVD进展过程最相关的肠道细菌,可能是开发CVD诊断、预防和治疗新相关方法的重要一步。

此外,注意通过饮食衍生的微生物代谢物、炎症反应转变、校准神经免疫从而影响CVD干预和治疗反应。

·

具体基于肠道菌群的饮食调节,以及CVD 进展中的饮食-微生物群串扰的机制,菌群代谢产物的作用等详见本次推文的第二篇:

《 饮食-肠道微生物群对心血管疾病的相互作用 》主要参考文献:

Carnevale D. Neuroimmune axis of cardiovascular control: mechanisms and therapeutic implications. Nat Rev Cardiol. 2022 Mar 17. doi: 10.1038/s41569-022-00678-w. Epub ahead of print. PMID: 35301456.

Yu E, Malik VS, Hu FB. Cardiovascular Disease Prevention by Diet Modification: JACC Health Promotion Series. J Am Coll Cardiol. 2018;72(8):914-926. doi:10.1016/j.jacc.2018.02.085

Suslov, Andrey V et al. “The Neuroimmune Role of Intestinal Microbiota in the Pathogenesis of Cardiovascular Disease.” Journal of clinical medicine vol. 10,9 1995. 6 May. 2021, doi:10.3390/jcm10091995

Thaiss CA, Zmora N, Levy M, Elinav E. The microbiome and innate immunity. Nature. 2016 Jul 7;535(7610):65-74. doi: 10.1038/nature18847. PMID: 27383981.

Huh JR, Veiga-Fernandes H. Neuroimmune circuits in inter-organ communication. Nat Rev Immunol. 2020 Apr;20(4):217-228. doi: 10.1038/s41577-019-0247-z. Epub 2019 Dec 17. PMID: 31848462.

Frank L J Visseren, François Mach, Bryan Williams,et al., ESC Scientific Document Group, 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice: Developed by the Task Force for cardiovascular disease prevention in clinical practice with representatives of the European Society of Cardiology and 12 medical societies With the special contribution of the European Association of Preventive Cardiology (EAPC), European Heart Journal, Volume 42, Issue 34, 7 September 2021, Pages 3227–3337

12
客服