Tag Archive 胃癌

肠道微生物群衍生的短链脂肪酸调节胃肠道肿瘤免疫:一种新的治疗策略?

谷禾健康

癌症是重要的死亡原因之一,影响着全球至少数百万人。据世界卫生组织统计,发现全球范围内癌症负担正在迅速增加

癌症的发展不仅仅是癌细胞的生长和增殖,其肿瘤微环境(TME)也与之共同进化,主要参与肿瘤的发生、发展、转移和治疗反应。

肿瘤微环境包含肿瘤细胞、肿瘤浸润免疫细胞、肿瘤相关其他细胞、细胞外基质、非细胞成分和非癌性宿主细胞微生物群也是肿瘤微环境中的细胞成分之一,发挥着重要且不可替代的作用,因为微生物群落可以调节各种生物过程,包括细胞代谢、生理学和免疫反应等

谷禾以前的文章曾多次讲述,肠道菌群肿瘤尤其是胃肠道肿瘤的发生、发展密切相关。肠道微生物群可以通过调节细菌的特定生物活性代谢物来影响肠道微环境。例如短链脂肪酸(SCFA)作为肠道细菌发酵产生的典型代谢物,在肠道稳态人体健康中发挥着关键作用。

短链脂肪酸可以调节能量代谢增强肠道屏障并发挥抗炎作用。短链脂肪酸作为免疫功能的关键调节剂,可以调节T细胞B细胞巨噬细胞其他免疫细胞。短链脂肪酸由于与G蛋白偶联受体(GPCRs)的结合或对组蛋白脱乙酰酶(HDACs)的抑制,可以影响免疫反应的信号转导途径,调节免疫相关炎症介质的释放,从而调节肿瘤免疫微环境

近年来,短链脂肪酸对肿瘤微环境的影响被广泛研究。在结直肠癌和胰腺癌实验模型中,已证明丁酸盐可以增强CD8+ T细胞的抗肿瘤作用。此外,独特组成的微生物群可能还有助于诊断和定位恶性肿瘤,全面了解肠道微生物群及其代谢物与肿瘤微环境之间的相互作用有望成为诊断、治疗和预防肿瘤的新方法。

在本文中,我们(1)讲述了微生物群及其代谢物短链脂肪酸肿瘤微环境宿主免疫的影响;(2)短链脂肪酸癌症发生、发展和治疗方面的相互作用;(3)介绍基于微生物群的癌症诊断和预后;(4)讨论了靶向微生物-短链脂肪酸轴调整肿瘤微环境以最大限度地提高癌症治疗效果的各种方法,包括粪便微生物移植、饮食调整和施用益生菌。这将为未来基于肠道菌群和肿瘤微环境的癌症靶向治疗奠定基础。

01
肠道微生物与肿瘤微环境

什么是肿瘤微环境?

肿瘤微环境(TME)是指肿瘤细胞及其周围的局部环境,包括周围的血管免疫细胞细胞外基质细胞间信号分子等。

肿瘤细胞和肿瘤微环境之间永久的相互关系不仅为肿瘤细胞提供了生长和扩散所需的物质和信息,还显著影响肿瘤的发生、进展、转移和治疗反应

肿瘤微环境的组成部分

Feng P,et al.Front Microbiol.2024

▸ 前沿资料

最近,具有抗肿瘤能力的常规药物包括阿司匹林、塞来昔布、β-肾上腺素能拮抗剂、二甲双胍他汀类药物,通过靶向肿瘤微环境成分显示出在联合治疗中的潜在用途。

 微生物群是肿瘤微环境的一个组成部分

肿瘤微环境是一个复杂的环境,其中微生物群被认为是一种新颖但必不可少的元素。微生物群在功能上减少肿瘤细胞代谢,例如炎症基因毒素的产生以及具有各种特征的细菌代谢物的产生。

越来越多的证据表明,肿瘤微环境中微生物群及其代谢物之间的相互作用可以影响宿主免疫肠上皮,最终驱动或抑制肿瘤生长

研究报告称,肠道细菌可以调节人体免疫细胞的激活,使其迁移到肿瘤微环境来消除肿瘤细胞。此外,肠道微生物群肿瘤微环境之间复杂的相互作用可能会使肿瘤细胞逃避免疫系统并增殖。了解这个系统将为癌症的预防、诊断和治疗带来希望。

肿瘤微环境在癌症免疫治疗中的作用

肿瘤微环境(TME)中肿瘤相关巨噬细胞(TAM)和其他免疫抑制细胞的大量积累对癌症的进展和治疗效果有重要影响。

★ 肿瘤微环境的免疫细胞影响癌症进展和治疗效果

CD163是一种标志物,主要表达在巨噬细胞表面,尤其是在肿瘤相关巨噬细胞(TAM)上。CD163阳性的TAM在肿瘤微环境中的高表达免疫抑制环境的形成有关,这种环境可以促进肿瘤的生长和扩散,并且与病人的不良临床结果相关。

当CD163+ TAM的消耗导致免疫抑制减少,意味着通过减少这些免疫抑制性的巨噬细胞,可以增强细胞毒性T细胞(CTLs)的浸润和活性,从而有助于控制肿瘤的发展。这是当前癌症免疫治疗研究的一个重要方向,即通过调节肿瘤微环境中的免疫细胞组成来增强机体对肿瘤的免疫反应

简而言之,CD163阳性的表达通常与肿瘤微环境中的免疫抑制状态相关,通过靶向这些细胞,可以改善免疫系统对肿瘤的攻击能力,为癌症治疗提供新的策略。

Feng P,et al.Front Microbiol.2024

★ 非细胞成分也调节癌细胞的增殖和治疗效果

肿瘤微环境的非细胞成分对于癌症进展、侵袭性和化疗耐药性也至关重要。细胞外基质的硬度促进肿瘤细胞存活和增殖,同时上调整合素信号传导。

透明质酸是一种CD44受体,在各种癌症的肿瘤微环境中含量丰富。它们的相互作用激活促癌信号通路并诱导非编码RNA种类的上调,例如miR-10b/miR-302/miR-21和lncRNA。在胰腺癌中,间质与不同的透明质酸高度反应,导致间质液压力升高,从而导致血管塌陷化疗效果不佳

注:使用重组透明质酸酶靶向胰腺肿瘤中的酶已被证明可以降解透明质酸并通过减少转移和提高生存率增强治疗效果

此外,肠道菌群的分泌成分也与肿瘤微环境有关。例如,外膜囊泡(OMV)可以将肿瘤微环境重新编程为pro-TH1模式,而代谢物(如丁酸盐和烟酸)可以介导结肠上皮中IL-18的Gpr109a依赖性诱导,抑制结肠炎结肠癌症

肠道微生物群对肿瘤微环境的影响

肠道微生物群对于宿主免疫系统的发育、维持和生长至关重要。肠道生态系统可以通过影响骨髓的流入、免疫环境、淋巴细胞以及炎症和代谢模式来影响局部和远处的肿瘤

肠道微生物群参与多种细胞内信号通路的调节

Sun J,et al.ISME J.2023

★ 肠道微生物群是肿瘤微环境的重要调节剂

肠道微生物群正在成为结直肠癌胃癌肝癌等各种癌症中肿瘤微环境的关键调节剂。例如,之前的一项研究报告称,具核梭杆菌(Fusobacterium nucleatum)等细菌可以通过抑制人类免疫反应增强肿瘤生长

此外,乳腺癌卵巢癌与微生物群中的特定生物特征有关,例如卷曲乳杆菌(Lactobacillus crispatus)的丰度,它与癌症的发生呈负相关

★ 肠道微生物群的代谢物影响肿瘤治疗

先前的研究发现,肠道微生物群代谢活动的产物显著影响与肥胖、血脂和能量稳态相关的宿主代谢途径。因此,揭示肠道微生物群的代谢物亚代谢物如何影响免疫细胞并重塑肿瘤微环境可以极大地促进肿瘤治疗的发展

肠道微生物群的代谢物进入宿主细胞并与人体免疫反应相互作用,促进各种肿瘤抑制免疫调节分子的产生。它们还通过维持上皮屏障肠道的完整性抑制炎症

肠道微生物代谢物,如短链脂肪酸肌苷,直接或间接与肿瘤微环境相互作用,重塑它,从而影响癌症过程。短链脂肪酸有助于维持肠道稳态调节肠道屏障功能

肠道微生物代谢物影响抗癌免疫

Sun J,et al.ISME J.2023

此外,一些脂肪酸胆酸炎症有关。丁酸盐等短链脂肪酸可由普拉梭菌(Faecalibacterium prausnitzii)产生,控制血管生成并减少促血管生成因子的表达。因此,增加丁酸盐浓度被认为可以减缓并阻止癌症的生长

相反,脱氧胆酸和石胆酸可通过增加活性氧的产生而导致DNA损伤。最近的研究表明,肠道细菌假长双歧杆菌(B.pseudolongum)可以产生肌苷,在外源IFN-g存在的情况下驱动Th1细胞分化

★ 影响免疫治疗的效果

此外,假长双歧杆菌(B.pseudolongum)通过与T细胞上的腺苷A2A受体相互作用,与免疫检查点治疗(例如抗CTLA-4和抗PD-L1)的反应相关。

CTLA-4和PD-L1是免疫检查点疗法的主要靶点,该疗法涉及膜结合分子,这些分子在初始刺激后会阻碍不受限制的T细胞反应。因此,癌细胞可以通过利用这种机制来逃避免疫监视。

然而,在重新激活低效T细胞的同时,免疫检查点抑制剂(ICIs)可以恢复对肿瘤抗原的反应。临床研究和临床前试验表明,肠道微生物群影响免疫检查点抑制剂的疗效,从而解释了患者对ICI反应的显著差异。因此,深入了解肠道微生物群、其代谢物宿主免疫系统如何相互作用以重塑和调节肿瘤微环境,有望推动癌症免疫治疗的发展。

总体而言,肠道微生物群肿瘤微环境的影响很复杂,目前尚未完全了解。然而研究表明,在控制肠道微生物影响癌症治疗的有效性改善患者预后方面具有潜在的应用前景。

02
短链脂肪酸在人体的作用

近年来,微生物微生物的代谢产物宿主的影响越来越受到人们的关注。

短链脂肪酸由少于6个碳原子组成,是共生细菌通过膳食纤维在胃肠道中发酵产生的典型代谢产物,已被广泛研究。短链脂肪酸的产生是一个复杂的过程,由多种细菌在结肠中进行。在所有短链脂肪酸中,乙酸盐、丙酸盐丁酸盐最具代表性。

短链脂肪酸对人体的基本作用

• 提供能量

当短链脂肪酸产生时,第一个功能是作为底物提供能量。大多数短链脂肪酸通过两种转运蛋白被结肠细胞吸收:单羧酸转运蛋白1(MCT-1)和钠偶联单羧酸转运蛋白1(SMCT-1)。

短链脂肪酸通过MCT-1以H+依赖性电中性方式转移,而短链脂肪酸阴离子通过SMCT-1运输。

• 调节生理反应

除了为结肠细胞提供能量外,短链脂肪酸还通过血液运输到全身的各个组织和器官,然后通过两种主要机制调节生物反应

一方面,短链脂肪酸会降低组蛋白去乙酰化酶(HDAC)的活性或表达,从而导致组蛋白乙酰化增加。据报道,HDACs的异常激活存在于多种类型的癌症中

另一方面,短链脂肪酸与G蛋白偶联受体(GPCR)结合,主要针对GPR41(更名为游离脂肪酸受体(FFAR)3)、GPR43(更名为FFAR2)和GPR109A,发挥相应的信号级联效。一些研究表明GPCRs的异常表达或活性参与多种肿瘤进展

短链脂肪酸调节炎症反应的机制

He M,et al.J Transl Med.2024

• 其他作用

既往研究总结了短链脂肪酸在调节能量代谢保护肠道完整性改善炎症反应等方面的作用,但短链脂肪酸对免疫系统的影响尚未引起足够的重视。一些作用罗列在下表中:

Dong Y,et al.Front Immunol.2023

短链脂肪酸对代谢稳态的影响

Dong Y,et al.Front Immunol.2023

在肿瘤免疫微环境中起重要作用

• 影响T细胞的分化

T细胞是肿瘤免疫微环境中的重要细胞,T细胞浸润减少功能障碍会导致许多癌症治疗临床效果不佳

由于幼稚T细胞在功能水平上表达时没有GPR41和GPR43,因此短链脂肪酸可以直接影响依赖于HDAC抑制剂活性的幼稚T细胞的分化。

通过这种方式,短链脂肪酸促进未成熟的CD4+ T细胞分化为不同的调节性T细胞效应T细胞,这取决于不同的极化条件,比如细胞因子表型和免疫环境。

短链脂肪酸诱导mTOR-S6K和STAT3的激活,参与T细胞分化所需细胞因子的产生。无论极化条件如何,短链脂肪酸都会促进白细胞介素(IL)-10的表达,但只能在特定环境下促进IL-17或干扰素-γ (IFN-γ)的产生。

• 影响白细胞介素等细胞因子的含量

有趣的是,分化T细胞(例如辅助性T(Th)1细胞)中 IL-10的分泌取决于与GPR43的相互作用。此外,短链脂肪酸上调Blimp-1的表达,这与Th1细胞中IL-10的产生T细胞功能的维持有关。

在高脂肪饮食治疗的小鼠中,IL-17和IFN-γ的水平升高,而转化生长因子-β(TGF-β)和IL-10的水平降低。这意味着T细胞向Th17和Th1细胞的分化程度较高,而向调节性T(Treg)细胞的分化程度较低,特别需要注意的是:短链脂肪酸可以扭转这种情况

CD4+ T细胞和先天淋巴细胞中IL-22被发现可以通过短链脂肪酸进行调节。丁酸盐通过与GPR41结合增加转录因子HIF-1α和AhR的表达,同时伴随着STAT3和mTOR的激活。

同时,丁酸盐促进的HIF-1α与IL-22启动子的HRE结合涉及组蛋白乙酰化。CD4+ T细胞分化过程也受到表观遗传调控。不同的CD4+ T细胞亚群具有特定的转录因子,例如Th1细胞的T-bet、Th17细胞的RORγT和Treg细胞的FOXP3。丁酸盐通过乙酰化 H4K16增加分化的Th17细胞中RORγT的表达,但在Th17极化条件下对初始CD4+ T 细胞没有反应。

• 短链脂肪酸在抗肿瘤免疫中的其他作用

丁酸盐

低丁酸盐浓度以TGF-β1依赖性方式促进CD4+ T细胞向Foxp3+ Treg细胞分化,而高丁酸盐浓度无论在什么条件和亚群中都会诱导T-bet表达和IFN-γ释放。这似乎打破了我们对短链脂肪酸对粘膜免疫影响的传统认识。更重要的是,暴露于高浓度的短链脂肪酸,尤其是丁酸盐,可以抑制肠粘膜中CD4+ T细胞和其他CD4+ T细胞亚群的增殖和活化。这与组蛋白乙酰化GPR43激活密切相关。

丁酸盐通过促进CD8+ T细胞作用参与抗肿瘤免疫。丁酸盐处理的细胞毒性T淋巴细胞(CTL)介导的抗肿瘤反应的促进作用依赖于一种称为ID2的转录调节因子,其水平在肿瘤微环境中的CD8+ T细胞中要高得多。丁酸通过抑制组蛋白脱乙酰酶(HDACs)的活性,诱导ID2表达并启动ID2-IL-12信号通路,从而提高奥沙利铂的化疗效果

戊酸盐

戊酸通过抑制HDAC活性来增强CTL中IL-2肿瘤坏死因子-α(TNF-α)、IFN-γ和其他效应分子的表达。

PVR/CD155 调节剂在恶性肿瘤中过度表达,并与具有Ig和ITIM结构域的T细胞免疫受体结合,介导免疫逃逸

乙酸盐、丙酸盐

醋酸盐通过抑制PI3K/AKT通路抑制PVR/CD155水平,增强CD8+ T细胞的抗肿瘤能力。活化的γδ T细胞是IL-17的主要内源性来源。丙酸盐还通过抑制HDAC来抑制人γδ T细胞中IL-17IL-22和其他细胞因子的分泌,从而防止癌症进展

短链脂肪酸对肿瘤免疫微环境的影响

Dong Y,et al.Front Immunol.2023

03
短链脂肪酸与胃肠道肿瘤

密切相关的证据

实验研究和谷禾检测数据发现胃肠道肿瘤患者短链脂肪酸产生短链脂肪酸的细菌丰度明显较低,本节主要讲述短链脂肪酸可以通过多种机制影响胃肠道肿瘤的发展。而这也有助于未来将调节体内短链脂肪酸和肠道菌群的水平用作一种预防癌症辅助治疗手段

胃癌

• 短链脂肪酸可能用来评估胃癌的进展

在胃肠道化生或胃癌患者的血浆中检测到较低浓度的丙酸盐和丁酸盐。短链脂肪酸似乎可以用来评估胃癌的进展

胃肠化生是指胃黏膜上皮转变为含有杯状细胞的肠黏膜上皮组织。肠上皮化生常见于慢性萎缩性胃炎,胃黏膜肠上皮化生属于胃的癌前病变

此外,丁酸盐以剂量依赖性方式抑制KATO III细胞的增殖和迁移,这与其调节miRNA调控网络的作用有关。

• 影响胃癌治疗的效果

胃切除术后服用丁酸梭菌(C.butyricum)可以增加短链脂肪酸浓度增强免疫力减轻炎症预防术后并发症

体内实验证明,醋酸盐诱导胃癌细胞凋亡,随后体外实验证明氧化应激发挥了重要作用。大量摄入醋酸盐会增加胃癌细胞中活性氧的产生和MCT1的表达。

活性氧的过度表达上调了HCP1,两者均导致胃癌细胞对卟啉的摄入量增加。作为光动力疗法的光敏剂,卟啉的过度吸收增强了疗效。而作为HDAC抑制剂,丁酸盐修饰肿瘤抑制基因Per1和Per2并诱导它们在KATO III和NCI-N87中的表达。

与短链脂肪酸联合使用的传统疗法似乎具有更好的效果更低的毒性。在裸鼠异种移植肿瘤模型中,丁酸盐-顺铂治疗抑制胃癌细胞的生长、迁移和侵袭,并依靠线粒体凋亡途径加速细胞凋亡。

此外,单独丁酸可以通过线粒体途径诱导胃癌细胞凋亡,这已在人细胞系BGC-823和SGC-7901中得到证实。

结直肠癌

先前的研究表明,结直肠癌高危人群中乙酸盐、丙酸盐和丁酸盐的浓度显著降低,并且短链脂肪酸水平较低的个体结直肠癌的发病率高于健康个体。各种短链脂肪酸均表现出抗癌行为

注:与单独治疗相比,这些化合物具有叠加效应。

1

乙酸盐

•常规浓度下乙酸会增强癌细胞的凋亡并减少增殖

乙酸可以增强癌细胞的凋亡减少增殖,已在不同的结直肠癌细胞系中得到证实,因此它已成为结直肠癌治疗的关键因素

在结直肠癌患者中,短链脂肪酸减少,乙酸盐代谢转化为乙酰辅酶A。过去的研究表明,乙酸盐介导的细胞凋亡依赖于部分溶酶体膜透化触发的溶酶体途径。然而,溶酶体依赖性选择性死亡途径中随后释放的组织蛋白酶D降低了乙酸盐的敏感性。因此,组织蛋白酶D抑制剂与乙酸盐联合可能比单独使用乙酸盐效果更佳。

•注意:在缺乏氧气和葡萄糖的情况下乙酸盐可能导致癌细胞增加

然而,在没有氧气的情况下,乙酸盐会增加癌细胞的增殖,这依赖于ACSS2的上调和HIF-2的激活

同时,在葡萄糖缺乏的情况下,乙酸盐通过激活 ACSS2/HIF-2 信号通路促进HCT-116(结肠癌细胞)和HT-29(结肠癌细胞)衍生肿瘤的生长。

因此,乙酸盐的抗癌作用可以根据环境和浓度的变化而改变

此外,乙酸盐作为PI3K/AKT信号驱动的免疫检查点配体PVR/CD155的调节剂,可以增强肿瘤微环境中CD8+ T细胞的功能反应,促进IFN-γ的产生,有望成为促进肿瘤免疫的相关药物。基于上述讨论,免疫检查点抑制剂(ICIs)的功效可能受益于乙酸盐。

2

丙酸盐

研究发现结直肠癌组织中丙酸盐含量降低,并且向SW480细胞(人结肠腺癌细胞)中添加丙酸盐显著抑制癌细胞生长

•丙酸盐调节免疫刺激来消灭癌细胞

短链脂肪酸调节免疫刺激抑制配体,并参与免疫细胞介导的杀伤。丙酸盐诱导的NKG2D配体MICA/B的上调既不依赖于HDACs的抑制,也不依赖于GPR41/GPR43受体的组合,而是依赖于线粒体活性,而丁酸盐则取决于其HDACs抑制剂活性。丙酸盐的这种作用与介导肿瘤抑制蛋白p21表达的PEPCK-M酶和mTORC2/PDK1/AKT通路密切相关。

•丙酸盐通过调节表观遗传导致癌细胞凋亡

除了免疫调节之外,表观遗传调节也是短链脂肪酸发挥抗癌作用的一个有前景的靶点。丙酸盐通过阻止p70 S6激酶磷酸化导致PRMT1表达下调,从而导致结直肠癌细胞选择性死亡

此外,丙酸盐诱导HECTD2上调,导致EHMT2降解,从而促进下游TNFAIP1的表达并最终促进癌细胞凋亡

在丙酸盐介导的抗癌治疗中,表观遗传修饰是不可忽视的。然而,最新的孟德尔随机化分析发现,没有强有力的证据证明粪便中丙酸盐浓度与结直肠癌风险之间的相关性。可能有必要全面检测短链脂肪酸及其产生细菌。

3

丁酸盐

研究发现,丁酸盐抑制结直肠癌细胞的增殖,但滋养正常结肠细胞的生长。

•丁酸盐相比其他短链脂肪酸对癌细胞具有更强的抑制作用

与其他短链脂肪酸相比,丁酸盐对结直肠癌细胞系具有更强的抑制作用

一方面,丁酸可以抑制促炎介质TNF-α、IL-1β、IL-6、IL-8,上调抗炎因子IL-10;另一方面,丁酸可以通过促进CD8+ T细胞发挥作用来促进抗肿瘤免疫

此外,丁酸盐通过促进上皮细胞增殖增加粘液层改善紧密连接来维持肠道屏障的完整性。

在HCT 116细胞(人结肠癌细胞)中,丁酸介导的细胞凋亡与p300-Wnt信号传导密不可分。其中,致癌Wnt信号基因表达模式下的结肠癌细胞比受体介导的Wnt信号基因表达模式下对丁酸盐更敏感

•丁酸盐影响结直肠癌细胞周期从而促进凋亡

结直肠癌中肠道微生物群的结构和稳定性发生显著改变,并与其进展密切相关。丁酸盐的施用改善了微生态紊乱,反映在病原体减少、厚壁菌门与拟杆菌门的比例减少以及益生菌丰度增加

与乙酸盐和丙酸盐相比,丁酸盐对结直肠癌细胞周期至关重要的调节网络具有更强的影响。丁酸调节癌症相关miRNA的表达,其中miR-139和miR-542是众所周知的代表。具体来说,它们作为丁酸盐的协作对象来调节细胞周期中的EIF4G2和BIRC5基因。

丁酸盐调节c-Myc/p21通路,诱导细胞周期停滞在G2期,其中包含27个凋亡相关基因。此外,丁酸盐在G1期触发细胞周期阻滞,需要复杂的lncRNA-miRNA-mRNA调控网络。

补充丁酸盐可逆转CSE1L的过度表达,并似乎与p53表现出协同作用,最终将癌细胞抑制在G1和G2/M期。

同时,丁酸诱导的p21和γ-H2AX增加以及细胞周期蛋白B1减少导致细胞周期停滞在 G2/M 期。

•丁酸盐抑制癌细胞的迁移

不仅如此,丁酸盐还通过上调miR-200c并抑制其直接靶点BMI-1对癌细胞迁移产生抑制作用

BMI-1是诱导依赖于AKT/GSK-3β/snail通路的上皮间质转化(EMT)驱动癌症转移的重要调节因子,丁酸盐阻止了BMI-1的作用。

丁酸盐处理还降低结直肠癌细胞而非正常结肠细胞中Trx-1的表达。研究证明,Trx-1与S100P的相互作用通过AKT介导的S100A4上调促进EMT。通过施用丁酸盐,类器官证明细胞外基质-整合素/PI3K-Akt 轴参与结直肠癌细胞形态变化和细胞凋亡

丁酸盐阻止结直肠癌细胞的迁移和侵袭,本质上是由于组蛋白脱乙酰酶(HDAC3)的抑制,从而阻断了AKT1和ERK1/2的激活。

•丁酸盐还改变表观遗传和代谢发挥抗癌特性

与其他短链脂肪酸不同,丁酸盐逆转前列腺素EP4受体的过度表达和环氧合酶2的产生,以减少从正常细胞到癌症的表型改变

此外,丁酸盐通过激活LKB1-AMPK/ACC信号通路和降解β-catenin诱导结直肠癌细胞自噬

丁酸盐致力于改变结直肠癌细胞的表观遗传学代谢谱,发挥其抗癌特性。通过调节KEAP1的DNA甲基化,丁酸阻断NRF2-ARE信号传导,从而增强其抗癌潜力

线粒体代谢和相关代谢物的变化参与了丁酸盐对表观遗传学的调节。丁酸激活三羧酸循环相关酶IDH1和PDH,从而下游产物α-KG水平升高。

作为一种信号分子,α-KG影响与细胞凋亡相关的MSH2和MLH1去甲基化。同时,α-KG减弱DNA和组蛋白H3K4me3的甲基化,导致结直肠癌中Wnt信号通路受到抑制。

丁酸盐通过促进PKM2的四聚化和去磷酸化来诱导有氧糖酵解的抑制,从而逆转癌细胞中的代谢优势。对于结直肠癌细胞,丁酸盐引起的代谢变化反映在促进氧化代谢而不是糖酵解。

此外,铁死亡是铁依赖性细胞程序性死亡的方式,丁酸盐通过CD44/SLC7A11信号通路诱导结直肠癌细胞中的铁死亡。

肝细胞癌

肝细胞癌是一种发生于肝脏的恶性肿瘤,它是全球范围内最常见的癌症类型之一。作为一个重要的危险因素,乙型肝炎病毒(HBV)会促进肝细胞癌(HCC)的进展。

• 丁酸盐促进肝癌细胞的凋亡和自噬

丁酸盐通过抑制SIRT-1从而促进p53乙酰化,显著抑制人肝癌细胞(Hep G2.2.15)的增殖和驻留乙型肝炎病毒的复制。

HBx是乙型肝炎病毒(HBV)编码的致癌蛋白,可能通过多种方式导致肝细胞癌的加速发生和发展。随着HBx相关途径的下调,短链脂肪酸导致肿瘤抑制因子DAB2的表达增加,从而延缓肝细胞癌的进展

先前的研究表明,丁酸盐通过增加活性氧的产生来抑制AKT/mTOR通路,从而促进人肝癌细胞的凋亡和自噬

• 短链脂肪酸延缓了肝癌进展

通过粪便罗伊氏乳杆菌(Lactobacillus reuteri)移植进行干预的肝细胞癌小鼠似乎也可以延缓癌症进展。相关机制是罗伊氏乳杆菌代谢产生的乙酸盐通过抑制HDAC和诱导Sox乙酰化,抑制先天淋巴细胞的效应分子IL-17A的产生。

另外,PD-1抑制剂与短链脂肪酸联合使用,在肝癌小鼠中显示出增强的抗肿瘤作用Lachnospiracea具有减少肝纤维化的作用,部分原因是短链脂肪酸介导的。

已证明口服短链脂肪酸可以抑制万古霉素治疗的小鼠纤维化。

• 增强常规化疗药物的效果

此外,丙酸盐可以增强常规化疗药物在肝细胞癌中的化疗效果。研究表明,丙酸盐通过激活GPR41诱导TNF-α表达,并增加顺铂诱导的caspase-3激活,从而介导肝癌细胞凋亡

肝细胞癌患者体内丁酸产生菌16s RNA表达降低,补充丁酸可促进肝癌细胞凋亡抑制增殖。更重要的是,丁酸盐可以增强索拉非尼的治疗潜力,通过减少HK2对c-myc信号传导的依赖,丁酸盐可以抵抗糖酵解,从而增强索拉非尼的功效

对于接受仑伐替尼治疗的肝细胞癌患者,无腹泻等不良反应的患者丁酸代谢相对丰富且活跃。最新研究表明,补充乙酸盐可以诱导人肝癌细胞中NAT2的水平,类似于葡萄糖和胰岛素,从而导致代谢相关基因的变化

不仅如此,丁酸盐在胆管癌细胞中也表现出同样的抗癌作用。丁酸盐和HDAC6抑制剂在防止增殖、迁移和上皮间质转化方面具有协同作用。

• 短链脂肪酸改善一些癌前病变症状

酒精性脂肪肝病(AFLD)和非酒精性脂肪肝病(NAFLD)可进展为肝硬化,最终可能发展为肝癌。丁酸盐抑制gasdermin D 介导的细胞焦亡,改善肠道屏障破坏和内毒素血症,从而减轻AFLD中的肝脏脂肪变性和炎症。

此外,丁酸盐通过LKB1-AMPK-Insig信号通路的调节诱导肝脂质谱的改变并减轻肝脂肪变性来治疗 NAFLD 。

总而言之,短链脂肪酸限制了肝细胞癌前阶段的进展

胰腺癌

研究发现,与对照组相比,胰腺癌患者的丙酸盐和丁酸盐水平降低,粪便微生物群的组成发生改变

• 短链脂肪酸增强了对肿瘤细胞的杀伤能力

短链脂肪酸以肿瘤特异性免疫细胞为目标,无论单独使用还是与其他肿瘤疗法联合使用,都显示出强大的抗癌作用

研究表明,与组蛋白脱乙酰酶(HDACs)抑制相关,丁酸和戊酸上调IL-2、CD25和mTOR的产生,这些物质参与T细胞激活的调节。通过触发增强的效应分子,丁酸盐和戊酸盐还增加了细胞毒性T淋巴细胞的肿瘤杀伤能力

短链脂肪酸在过继性免疫治疗方面也显示出良好的前景。用丁酸盐戊酸盐预处理的细胞在胰腺癌小鼠模型中显示出更好的治疗效果。

• 短链脂肪酸干扰胰腺癌的进展并减轻相关损伤

另一项研究表明,丁酸盐通过逆转胰腺腺癌患者的CD11b细胞的免疫抑制功能并增强CD8+ T细胞的免疫功能来延缓癌症的发展。

短链脂肪酸的影响不仅限于肿瘤微环境,还延伸至肿瘤相关基因。丁酸盐处理后,在AsPC-1细胞(人转移胰腺腺癌细胞)中可以观察到通过抑制组蛋白脱乙酰酶(HDACs)活性介导的p16INK4a、p14ARF和p15INK4b的上调

在BxPC-3(人原位胰腺癌细胞)和PANC-1(胰腺癌细胞)细胞系中,丁酸盐单独或与吉西他滨联合使用可抑制增殖并诱导细胞凋亡。特别是联合用药减轻了吉西他滨引起的胃肠粘膜、肝、肾损伤。由于HDAC的抑制作用,丁酸盐还调节肿瘤微环境相关成分。

拓展:基于微生物群的癌症诊断和预后

癌症通常是在通过触诊成像技术识别肿块后进行诊断,然后进行活检以确认细胞恶性肿瘤。断层扫描检测技术,包括PET-CT、MRI和CT,可以有效地识别体内的宏观病变

基于微生物的癌症诊断

此外,研究已经证实,肠道微生物群动态可能有助于诊断和定位恶性肿瘤,例如根据胃肠道来源的解没食子链球菌菌血症。大多数基于微生物的癌症诊断侧重于对呼吸消化道内的肿瘤进行测序,包括结直肠癌胰腺癌肺癌

有人提出,不同的癌症类型可能在呼吸消化道外具有独特组成的微生物群。一项研究了30多种癌症的瘤内微生物群,应用基于血液的诊断,并提供七种不同癌症中微生物瘤内空间分布和细胞内定位的视觉证据。

2017年的一项研究提出了结直肠癌粪便微生物组的宏基因组分析,以识别和验证不同种族群体中的细菌生物标志物。这项研究纳入了来自中国、丹麦、法国和奥地利的结直肠癌患者和对照样本,并强调了粪便宏基因组生物标志物在早期结直肠癌诊断中的潜力

此后,更多的研究发现,粪便微生物DNA标记可以单独或与粪便免疫化学测试结合使用,作为新的测试来筛查无症状受试者的结直肠肿瘤

此外,收集了41名肺癌患者和40名健康志愿者的粪便样本,并使用16S rRNA基因测序分析了肠道微生物群。他们发现, 肺癌患者中的放线菌属(Actinomyces)、韦荣球菌属(Veillonella)、巨球菌属(Megasphaera)、肠球菌属(Enterococcus)和梭菌属(Clostridioides)比健康个体更丰富。他们进一步证明肠道微生物及其相关代谢物是肺癌的潜在生物标志物和治疗靶点

检查肠道微生物群的变化及其作为胰腺癌患者生物标志物的潜力。他们比较了患有癌前病变的胰腺癌患者、非酒精性脂肪肝患者和健康对照者的微生物群,发现了与胰腺癌相关的独特肠道微生物群特征

主要特征是梭菌科、毛螺菌科的存在,瘤胃球菌科的缺乏,以及韦荣球菌科、阿克曼氏菌和Odoribacter的过度增加。

目前,已经开发了几种基于细菌的肿瘤检测策略,包括使用将肿瘤靶向细菌的特异性与生物标志物检测的敏感性相结合的工程细菌。使用远程诱导基因开关对减毒细菌进行工程改造,释放外源报告蛋白 ZsGreen

Feng P,et al.Front Microbiol.2024

体内和体外实验均表明,这些细菌可以通过对释放的ZsGreen的系统测量来识别肿瘤。尽管基于细菌的癌症诊断是一种有前景的策略,但它面临着一些挑战,例如相对于宿主的生物量较低以及试剂或环境污染物的干扰。因此,将基于肠道微生物群的方法与传统诊断技术(包括基因组测序、qPCR、免疫组织化学和电子显微镜)相结合,可以提供更准确、更有效的癌症诊断

基于微生物的癌症诊断已成为一个新领域,专注于根据各种癌症或不同肿瘤阶段肠道微生物群的特定生物特征来设计或开发新策略。此外,深度学习和机器学习算法能够识别表明癌症的微生物特征,这是精准医学的基础。基于微生物的癌症诊断还具有改善癌症筛查早期检测工作的潜力,有望为各种癌症开发更准确、更有效的诊断工具,并最终改善患者的治疗结果

肠道微生物群作为潜在预后标志物

在预后方面,许多研究表明肠道微生物群可以作为癌症的潜在预后标志物。在一项结直肠癌患者预后模型的研究中,风险模型与结直肠癌患者的免疫状态肠道微生物群相关,并且微生物组分析显示,高风险患者中拟杆菌(Bacteroidetes)和放线菌(Actinobacteria)的相对丰度低于低风险患者。

具核梭杆菌作为结直肠癌患者的预后标志物

研究发现肠道中高水平的具核梭杆菌(Fusobacterium nucleatum)和脆弱拟杆菌(Bacteroides fragilis)与结直肠癌患者术后预后不良相关具核梭杆菌作为结直肠癌患者预后标志物的作用已被多次证明。

例如,收集了100个结直肠癌组织和72个正常粘膜组织,并确定具核梭杆菌水平有助于预测结直肠癌患者的临床结果,发现IV期结直肠癌患者具有较高水平的具核梭杆菌

此外,研究证明特定的肠道微生物群与接受nabuliumab治疗的肝细胞癌患者的预后相关。具体而言,普雷沃氏菌/拟杆菌比率可用作纳武单抗治疗肝细胞癌的预后预测因子;该比率越高,疗效越好

纳武单抗(nabuliumab)是一种人类免疫球蛋白G4单克隆抗体。纳武利尤单抗主要治疗三种疾病,包括非小细胞肺癌、头颈部鳞状细胞癌、胃或胃食管连接部腺癌。

04
靶向微生物-短链脂肪酸轴

治疗胃肠道肿瘤

微生物抗癌疗法的结合早在19世纪就开始了,当时首次尝试将灭活的链球菌注射到人体肿瘤组织中来治愈癌症。此前的研究表明,微生物制剂直接注射到肿瘤组织或口服给药,可以对肿瘤细胞产生直接的细胞毒性作用或刺激机体局部抗肿瘤免疫反应

最近的研究发现,传统的放疗、化疗和免疫疗法可以改变患者的肠道微生物群,而菌群的组成可以深刻影响这些治疗的疗效和副作用,包括癌症复发耐药性对肠道菌群的附带损害

Feng P, et al.Front Microbiol.2024

施用益生菌

益生菌是一类存在于宿主体内并对宿主有益的细菌,给癌症患者服用益生菌的目的是重新激活患者受损的肠道微生物群,从而重建失败的共生微生物组的水平和功能。

益生菌在癌症辅助治疗中的作用

Sun J,et al.ISME J.2023

• 改善受损的肠道微生物群

益生菌还可以通过增加肠道微生物群的丰度、调节一些有助于产生致癌化合物的酶的活性以及改善肠道屏障对抗胃肠道肿瘤

23项随机对照试验表明,补充多种益生菌可改善结直肠癌患者的症状并提高生活质量,并减少传统治疗的不良反应

• 增加短链脂肪酸的含量

增加短链脂肪酸的产量是一个关键途径。从人初乳中筛选出潜在益生菌唾液链球菌(Streptococcus salivarius),可抑制结直肠癌细胞增殖55%以上。唾液链球菌直接粘附并诱导癌细胞凋亡促进短链脂肪酸的产生,并调节活化的B和T淋巴细胞。

丁酸梭菌(C.butyricum)依赖丁酸盐抑制胃肠道肿瘤的进展。C. butyricum调节Wnt/β-catenin的信号传导,减少高脂饮食诱导的结直肠癌,通过抑制NF-κB通路抑制结肠炎相关结肠癌,并增强免疫检查点抑制剂(ICIs)对肺癌的疗效

一些产生短链脂肪酸的细菌有助于抗癌的例子

费氏丙酸杆菌(Propionibacterium freudenreichii)

通过产生作用于线粒体的丙酸和乙诱导结直肠癌细胞的内在凋亡

乳酸片球菌(Pediococcus acidilactici UAMS)是一种高产丁酸细菌,它能抑制人结肠癌细胞(HT29)和

SW480细胞(人结肠腺癌细胞)的增殖。

肠道Roseburia intestinalis、普拉梭菌(Faecalibacterium prausnitzii)、植物乳杆菌(Lactiplantibacillus plantarum)和Eubacterium callanderi也已被证明可增强结直肠癌中的抗癌免疫反应,同时产生丁酸盐

用VSL#3益生菌治疗增加了丙酸盐丁酸盐的水平,导致通过CCL20/CCR6轴募集Th17细胞,以减轻黑色素瘤的肺转移。鼠李糖乳杆菌GG ATCC 53103、罗伊氏乳杆菌DSM 17938、约氏乳杆菌LC1和其他益生菌不仅抑制结直肠癌细胞增殖,而且改善了化疗反应

因此,补充益生菌可以在一定程度上增加短链脂肪酸,进而在癌症预防和治疗中发挥重要作用。

通过饮食成分改善

对于微生物群的组成代谢功能,饮食可能是一种强大的调节剂。

• 摄入更多的膳食纤维可以降低结直肠癌等疾病的风险

膳食纤维作为短链脂肪酸的前体。研究证实,摄入更多膳食纤维可以降低患包括结直肠癌在内的多种疾病的风险。膳食纤维摄入量与患结直肠腺瘤结直肠癌的几率之间存在统计学上显著且强烈的相关性

作为代表性的膳食纤维,果胶显著增加了肠道微生物群的多样性,特别是产生丁酸的细菌,并促进肿瘤免疫微环境中的T细胞浸润,从而增强抗程序性死亡-1(抗PD-1)单克隆抗体(mAb)效果。

肥胖女性在一段时间内摄入富含菊粉和低聚果糖的混合物后,体内产生丁酸盐的细菌增多,还降低了餐后血糖水平。

• Omega-3等不饱和脂肪酸改善癌症治疗

Omega-3多不饱和脂肪酸(PUFA)人体不能合成,必须从食物中摄取,已被证明可以改善高脂血症冠心动脉粥样硬化。每天服用更多的多不饱和脂肪酸时,可以观察到产生丁酸的细菌丰度增加

与此同时,乳杆菌等益生菌增加,具核梭杆菌减少。研究表明,一些多不饱和脂肪酸可以辅助化疗药物5-氟尿嘧啶(5-FU)和奥沙利铂治疗结直肠癌减少副作用

• 益生元的摄入与结直肠癌呈负相关

益生元是不被宿主消化吸收、能选择性促进肠道内益生菌代谢和增殖的食物成分。常见的益生元包括菊粉、低聚果糖、半乳糖和一些藻类。益生元在癌症的发展中也发挥着重要作用。

最近进行的一项病例对照研究,包括1953名经组织学证实的结直肠癌患者和4154名对照者,发现结直肠癌风险与饮食中半乳糖摄入量呈负相关

粪菌移植

除了补充益生菌、益生元外,粪菌移植也可能是加短链脂肪酸抵抗胃肠道肿瘤的一种选择。

• 粪菌移植有助于抗癌治疗的效果

在致癌物质诱导的常规小鼠或无菌小鼠中,来自结直肠癌患者的粪菌移植降低了肠道微生物群的丰富度并促进了胃肠道肿瘤的形成。

右旋糖酐硫酸钠或氧化偶氮甲烷的治疗可以在实验室小鼠中诱导结直肠癌,而从野生小鼠到实验小鼠的粪菌移植可以改善这一过程。

尽管没有临床证据表明粪菌移植可以直接治疗结直肠癌,但一项研究表明粪菌移植可以帮助提高化疗的疗效。将健康供体小鼠的粪便移植到FOLFOX治疗的小鼠体内,可以恢复FOLFOX治疗后破坏的肠道微生物群的组成,并减轻腹泻肠粘膜炎症的严重程度。此外,粪菌移植通过增加微生物群多样性调节免疫功能增强抗PD-1治疗效果。

粪菌移植是塑造微生物组最直接的方式,通过粪菌移植直接增加产生短链脂肪酸的细菌,为胃肠道癌症的治疗提供了广阔的前景。

!

短链脂肪酸调节对化疗和免疫疗法的反应

短链脂肪酸还可以调节肿瘤对放化疗免疫疗法的反应。临床研究发现,术前新辅助放化疗后,有反应的结直肠癌患者粪便中产生丁酸的细菌短链脂肪酸水平比未接受治疗的患者更丰富

• 丁酸盐协同增强抗癌作用

丁酸盐可作为奥沙利铂的增效剂,协同增强抗癌作用。丁酸盐通过调节CD8+ T细胞直接促进奥沙利铂的化疗疗效。

此外,与结直肠癌中无反应患者相比,有反应患者血清中的丁酸盐水平较高。与单独放疗相比,放疗-丁酸盐组合显著增强了抗癌效果。丁酸盐可以通过促进FOXO3A介导的转录来诱导细胞周期停滞,同时保护正常细胞免受辐射损伤。由于HDACs抑制剂已被证明可以增强放疗的敏感性,因此推测丁酸盐可能是因为抑制HDACs而增强了放疗的疗效

丁酸盐还可以通过GPR109a-AKT信号通路增强5-氟尿嘧啶(5-FU)的功效。同时,短链脂肪酸降低了5-FU的促炎作用,并增加了粘膜中紧密连接蛋白的表达。

然而,产丁酸细菌的异常活性和患者体内过量的丁酸会导致对化疗药物的耐药性。结果表明,对丁酸盐具有抗性的结直肠癌细胞系表现出明显的化学抗性。

结语

通过调节自身免疫细胞和免疫分子来靶向杀伤肿瘤细胞,同时减少对正常组织的损伤,已成为肿瘤免疫治疗的代表。

人类肠道微生物群肿瘤生长发展和治疗中发挥着关键作用。肠道菌群宿主免疫系统肿瘤之间的相互作用可以为调整肠道菌群以优化肿瘤微环境增强癌症免疫治疗提供有价值的见解。

短链脂肪酸是肠道微生物群的重要产物,已被证明可以改变免疫细胞的分化和功能以及细胞因子的产生和释放,通过多种信号通路控制肿瘤的生长和转移诱导细胞凋亡。此外,短链脂肪酸还有助于提高放疗和化疗的治疗效果减少不良反应

未来,个性化医疗可能会结合基于微生物组的诊断和治疗策略。以肿瘤免疫为目标,补充微生物源性 短链脂肪酸已成为诊断、治疗和预防肿瘤的新方法。可重点关注益生菌和粪便微生物移植以及合理的饮食提高短链脂肪酸水平,调节胃肠道微生态,激活有效的抗癌作用

主要参考文献

Feng P, Xue X, Bukhari I, Qiu C, Li Y, Zheng P, Mi Y. Gut microbiota and its therapeutic implications in tumor microenvironment interactions. Front Microbiol. 2024 Jan 23;15:1287077.

Dong Y, Zhang K, Wei J, Ding Y, Wang X, Hou H, Wu J, Liu T, Wang B, Cao H. Gut microbiota-derived short-chain fatty acids regulate gastrointestinal tumor immunity: a novel therapeutic strategy? Front Immunol. 2023 Apr 14;14:1158200.

Sun J, Chen F, Wu G. Potential effects of gut microbiota on host cancers: focus on immunity, DNA damage, cellular pathways, and anticancer therapy. ISME J. 2023 Oct;17(10):1535-1551.

He M, Wei W, Zhang Y, Xiang Z, Peng D, Kasimumali A, Rong S. Gut microbial metabolites SCFAs and chronic kidney disease. J Transl Med. 2024 Feb 18;22(1):172.

Hanus M, Parada-Venegas D, Landskron G, Wielandt AM, Hurtado C, Alvarez K, et al.. Immune system, microbiota, and microbial metabolites: The unresolved triad in colorectal cancer microenvironment. Front Immunol (2021) 12:612826.

Pansy K, Uhl B, Krstic J, Szmyra M, Fechter K, Santiso A, et al.. Immune regulatory processes of the tumor microenvironment under malignant conditions. Int J Mol Sci (2021) 22(24):13311.

Luu M, Riester Z, Baldrich A, Reichardt N, Yuille S, Busetti A, et al.. Microbial short-chain fatty acids modulate CD8(+) T cell responses and improve adoptive immunotherapy for cancer. Nat Commun (2021) 12(1):4077.

Kurokawa H, Ito H, Matano D, Terasaki M, Matsui H. Acetic acid enhances the effect of photodynamic therapy in gastric cancer cells via the production of reactive oxygen species. J Clin Biochem Nutr (2022) 71(3):206–11.

Marques C, Oliveira CS, Alves S, Chaves SR, Coutinho OP, Corte-Real M, et al.. Acetate-induced apoptosis in colorectal carcinoma cells involves lysosomal membrane permeabilization and cathepsin d release. Cell Death Dis (2013) 4:e507.

从生活习惯到肠道微生物,揭秘胃肠道癌症的成因

谷禾健康

编辑​

癌症一直是全球人类关注的重点,近年来癌症的发病率迅速增加,例如乳腺癌、前列腺癌和肺癌非常普遍。胃肠道癌在发病率和死亡率方面位居首位,并造成重大的社会经济负担。

胃肠道癌症包括胃癌、肝癌、食道癌、胰腺癌和结直肠癌等,占所有癌症的四分之一以上

▷生活行为影响胃肠道癌症

目前的证据表明,社会经济发展导致生活方式的一些改变。如吸烟饮酒是癌症最常见的风险因素,越来越多的共识也将饮食习惯列为胃肠道癌症的相关风险因素。这些行为与各种慢性非传染性疾病胃肠道癌症的出现直接或间接相关。

▷肠道微生物影响胃肠道癌症

肠道微生物群在人类的健康和疾病状态中都发挥着重要作用。大量研究证明肠道微生物群对胃肠道癌症(包括食管癌、胃癌、结直肠癌、肝癌和胰腺癌)具有一定的影响。

在本篇文章中,讲述了胃肠道癌症的一些基本特征,并探讨了在社会进步的背景下,不健康的行为饮食,及其影响的肠道微生物群变化对胃肠道癌症的影响。希望在未来有助于胃肠道癌症的预防诊断治疗

本文主要分三部分讲述

Part1:胃肠道癌症的一些基本特征

Part2:不良生活方式对胃肠道癌症的影响

Part3:肠道微生物与胃肠道癌症的关系

Part1
胃肠道癌症

胃肠道 (GI) 癌症,包括胃癌、肝癌、食管癌、胰腺癌结直肠癌,胃肠道癌症是全球最常见的癌症,也是导致死亡的主要原因之一,它们的患病率正在持续上升

疫情前的数据统计,2018年,约有500万例新增胃肠道癌症病例,超过300万例相关死亡。

胃肠道癌症严重危害人们健康

从GLOBOCAN数据库获得的数据估计,2020年食管癌新发病例超过60万例,相关死亡超过50万例

使用同一数据库,分析估计2020年全球有110万例胃癌新发病例超过70万例相关死亡。

同样,结直肠癌的发病率一直在以惊人的速度上升,2020年全球估计有190万新病例和90万例相关死亡。

胃肠道癌症已经成为不容忽视的健康问题,下面先来了解一下这些癌症:

食管癌

食管癌是第四常见的胃肠道癌症。

鳞状细胞癌是食管癌最常见的组织学类型

食管癌有两种主要的组织学亚型:腺癌鳞状细胞癌 (SCC)。鳞状细胞癌是世界范围内的主要亚型

我国食管癌90%以上为鳞状细胞癌,少数为腺癌。大多数食管癌患者表现为疾病晚期;因此,平均5年内总生存率仅为18%

注:腺癌在美国和北欧排名第一(约60%)。

✦食管癌的症状

早期无明显症状

食管癌在早期往往是无明显症状的,偶有表现为胸骨后隐痛不适。随着肿瘤增大,患者会出现进食时吞咽不适或异物感。常表现为进食速度减慢并常需汤水送饭。

病情加重导致肿瘤增大阻塞食管

数月后因肿瘤进一步增大并阻塞食管腔,患者只能进食流质,当肿瘤完全阻塞管腔时,病人表现为“滴水难通”。从症状出现至完全梗阻一般约一年时间。

因此,有可疑症状时应尽早到医院检查。

✦男性食管癌的发病率高于女性

食管癌的男女差异较大,男性患食管癌的比例明显高于女性。食管癌在男性患者中的发生率是女性患者的三倍

鳞状细胞癌的主要危险因素是饮酒吸烟,而腺癌的主要危险因素是胃食管反流(尤其是糜烂性食管炎和巴雷特食管)、吸烟和肥胖

胃食管腔因过度接触(或暴露于)胃液而引起的临床胃食管反流症食管黏膜损伤的疾病称为胃食管反流。

胃癌

胃癌是全球第五常见癌症,也是癌症相关死亡率的第三大原因

✦胃癌的症状

根据癌组织浸润深度分为早期胃癌进展期胃癌(中、晚期胃癌)。

胃癌早期较难诊断

胃癌及癌前病变的症状隐匿且无特异性,因此早期胃癌很难发现。事实上,中国只有5~10%的胃癌能被早期诊断。

如捉摸不定的上腹部不适、隐痛、泛酸、食欲减退、轻度贫血等部分类似胃十二指肠溃疡或慢性胃炎症状。

随着病情的进展,胃部症状渐转明显出现上腹部疼痛、食欲不振、消瘦、体重减轻和贫血等。后期常有癌肿转移、出现腹部肿块、左锁骨上淋巴结肿大、黑便腹水及严重营养不良等。

✦胃癌在不同人群中差异很大

非贲门胃癌 (NCGC) 占胃癌病例的近75%。与其他胃肠道癌症类似,非贲门胃癌的流行病学在不同人群中差异很大

非贲门胃癌在东亚的发病率(韩国每10万人中有34人;日本每10万人中有28人)明显高于欧洲或美国(每10万人中有6人)。

✦影响胃癌的风险因素

除了幽门螺杆菌感染外,胃癌的其他主要危险因素包括年龄增长、性别、种族、饮食摄入类型、社会经济地位、遗传和吸烟。

尽管在过去几十年美国胃癌的发病率有所下降,但50岁或以下人群的非贲门胃癌发病率却出现升高,并且经常出现诊断晚和预后不良的情况。

结直肠癌

结直肠癌是常见的消化道恶性肿瘤,也是导致癌症相关死亡的第二大原因,每年全世界约有180万新发病例。

发病多在40岁以后,好发部位为直肠及直肠与乙状结肠交界处,男女比约为2:1

✦结直肠癌的症状

结直肠癌的临床表现随其病灶大小所在部位病理类型而有所不同。

早期症状

腹部不适:可能表现为腹胀腹部隐痛等不适症状,疼痛多出现在中下腹部逐渐加重

排便习惯的改变:可能出现便频腹泻便秘,腹泻和便秘可交替出现,还可能出现腹部隐痛、肛门坠胀感等。

中期症状:

腹部肿块:当肿瘤生长到一定大小后,可能在腹部触及肿块,初期可推动,待到侵袭周围组织后则不易推动;

恶心、呕吐:当肿瘤侵犯胃部时,患者可能出现恶心、呕吐等症状;

晚期症状:

肠梗阻:以左侧结肠多见,由肿瘤向肠壁四周侵袭浸润,导致肠腔狭窄引起肠梗阻,多为慢性不完全性肠梗阻。可先出现腹胀、腹痛、肠鸣音亢进、便秘、粪便变细等;

全身中毒症状:以右侧结肠多见,由于肿瘤消耗体内营养,并造成慢性长期出血,还可继发感染,因此可出现贫血、消瘦、发热、无力、水肿等全身中毒症状;

转移症状:结肠癌晚期时可出现多处转移,肝转移可造成肝大、黄疸、腹水;肺转移可出现咳嗽、气促、血痰或呼吸困难等症状;脑转移可出现偏瘫、昏迷;骨转移可出现骨痛、跛行等。发展到最后可出现恶病质表现,引起全身多器官功能衰竭

✦影响结直肠癌的风险因素

超过90%的结直肠癌病例是偶发的,这突显了除了癌症相关基因之外,环境风险因素的重要性。例如不健康的饮食模式、超重、肥胖、2型糖尿病、久坐不动、吸烟饮酒

正如在其他胃肠道癌症流行病学研究中观察到的那样,不同国家和地理区域之间的结直肠癌发病率差异很大,澳大利亚和新西兰的发病率最高,中南亚的发病率最低。

工业化影响了结直肠癌的发病率

多项研究支持高人类发展指数结直肠癌发病率和死亡率之间的关系;发达国家通常报告的发病率最高。尽管经济发展和随之而来的工业化有望改善医疗保健的可及性,但这极大地影响了生活方式不健康习惯

尽管如此,许多欠发达国家的发病率正在上升,加拿大和巴西等国家的结直肠癌发病率的巨大差异可能不仅与卫生政策有关,还与地区贫困有关。

扩展阅读:结直肠癌防治新策略——微生物群

肝癌

一般分为肝细胞癌和肝内胆管癌

原发性肝癌一般可分为肝细胞癌(HCC)和肝内胆管癌(ICC),这两种约占肝癌75-85%的病例。

预后不良是该疾病的标志;因此,肝癌的发病率和死亡率密切相关。肝癌在胃肠道癌症中的发病率与死亡率均排名第三。此外,肝癌是全球第六至第七常见的癌症,也是导致癌症相关死亡的第四大原因

✦肝癌的症状

早期症状:肝癌从第一个癌细胞形成发展到有自觉症状,大约需要2年时间,在此期间,病人可无任何症状或体征,少数病人会出现食欲减退,上腹闷胀、乏力等,有些病人可能轻度肝肿大

中、晚期症状:肝癌的典型症状和体征一般出现于中、晚期,主要有肝痛、乏力、消瘦、黄疸、腹水等。

转移症状:如果肝癌出现转移,可能出现相对应的症状。肺转移可能出现咳嗽、咳痰等症状,骨转移可能出现疼痛的症状。

✦肝癌的地区差异较大

肝癌的全球分布差异很大,近75%的病例发生在亚洲,其中中国占病例的50%以上,蒙古的发病率最高(93.7/100000)。

在过去的四十年里,一些国家,如美国、加拿大、新西兰和澳大利亚,出现了肝癌病例增加的趋势

✦影响肝癌的风险因素

病毒性肝炎

乙型肝炎病毒(HBV)和丙型肝炎病毒(HCV)以及饮酒被认为是世界范围内肝细胞癌最重要的危险因素。

非酒精性脂肪肝

随着肥胖、糖尿病和相关代谢综合征的高度流行,非酒精性脂肪肝被认为是慢性肝病最常见的原因之一,也是肝细胞癌的相关原因。

工业化进程影响着社会经济环境,人们生活方式的改变,有利于高热量的西方化饮食,并增加了肥胖糖尿病的发病率。

扩展阅读:

深度解析 | 肠道菌群与慢性肝病,肝癌

肠-肝轴:宿主-微生物群相互作用影响肝癌发生

胰腺癌

胰腺癌是五种主要胃肠道癌症中最不常见的,累计5年生存率仅为5–15%

胰腺癌的发病率近年来呈快速上升的趋势,死亡率排在首位,因此也被称为“癌中之王”

✦胰腺癌的症状

胰腺癌是最致命的癌症之一,其特点是:难发现(发现多为晚期),病程短,发展恶化速度快,中位生存期为3-6个月,正所谓 “无声杀手”。

胰腺癌的早期临床表现往往是无特异性的,与许多其它常见疾病症状相似。中后期主要症状有:不明原因的厌食消化不良及体重下降;腹部不适或疼痛;黄疸。

✦影响胰腺癌的风险因素

高人类发展指数国家胰腺癌的发病率和死亡率均高出3-4倍,其中北美、欧洲和澳大利亚/新西兰报告的发病率最高,男性患者的发病率略高于女性患者。

高体重指数(BMI)、2型糖尿病,以及酗酒吸烟是胰腺癌的可变风险因素。关于胰腺癌的风险,发现吸烟者与非吸烟者的发病率比值约为1.74。大量饮酒似乎与胰腺癌有关,是胰腺炎的相关原因,胰腺炎也是胰腺癌的一个既定风险因素。

注:胰腺癌通常具有高度侵袭性,由于非特异性的临床表现而难以诊断。此外,同一国家的国家和地区的诊断准确性差异很大,主要与城市、大都市和高度发达的中心有关。

扩展阅读:“隐藏高手” 胰腺癌的新出路——微生物

Part2
影响胃肠道癌症的生活行为

中国是全球肝癌、食管癌、胃癌新发病例和死亡人数最多的国家,2020年新增确诊病例121万。中国结直肠癌发病率也在快速上升,占2020年全球发病率的40%以上。

中国胃肠道肿瘤负担沉重发病率高于世界平均水平。

★ 胃肠道癌症与生活习惯有关

中国近几十年经历了饮食和营养、身体活动及吸烟等生活方式的快速变化。大量证据支持胃肠道癌症与饮食和其他生活行为风险因素有关。

统计与胃肠道癌症风险相关的饮食等生活因素的时间趋势,将有助于衡量由这些因素引起的胃肠道癌症发病的未来趋势,影响预防癌症的公共卫生政策,并优化健康促进的资源分配。

研究团队根据1991年至2011年中国健康与营养调查 (CHNS) 的数据描述和预测了中国饮食和生活方式因素以及相关胃肠道癌症负担的时间趋势。

Wu Y,et al.Gastroenterology.2021

下面来讲述一下这些生活方式胃肠道癌症之间的具体关系:

饮酒

饮酒是全球疾病负担的主要风险因素,饮酒会增加患癌症的风险。1990年至今,全球成人人均酒精消费量增加,当前饮酒率从45%增加到47%,终生戒酒率从46%减少到43%,预计到2030年这两种趋势将持续。

✦大量饮酒会增加癌症风险

酒精饮料导致近4%的癌症,而最高风险与大量饮酒有关。考虑到不同的饮酒模式,研究表明癌症风险饮酒频率每天通常饮酒的量和偶尔大量饮酒之间存在不同的关联,所有这些都与风险增加有关。

教育状况、饮食、吸烟、个人偏好以及地区和宗教习惯是与饮酒或戒酒模式相关的多种生活方式因素中的一部分,可能会混淆当前的研究结果。

几种胃肠道癌症与饮酒有关:

鳞状细胞食管癌与饮酒有关,但与食管腺癌无关。

研究显示关于结直肠癌胰腺癌的不同结果;胰腺癌的风险似乎与大量饮酒有关,而 结直肠癌的风险与中度或大量饮酒有关。

关于胃癌,世界癌症研究基金会/美国癌症研究所2018年的报告观察到,酒精摄入量 >45 克/天的人群患胃癌风险增加

肝细胞癌饮酒直接相关;该关联主要由酒精相关性肝硬化、乙型或丙型肝炎病毒携带者饮酒以及可能大量饮酒驱动。

✦酒精致癌的一些途径

酒精可能通过多种途径促进致癌作用,包括:乙醇及其代谢物乙醛会影响DNA甲基化,导致致癌基因的表达;乙醛形成DNA加合物,损害DNA合成和修复并导致突变。

除此之外,炎症、氧化应激的诱导、叶酸吸收的破坏、免疫系统功能下降、微生物群失调、肝硬化和雌激素调节的变化也可能在癌症发展中发挥作用。

吸烟

吸烟是多种疾病的主要危险因素,包括胃肠道癌症

★ 烟草的危害非常大

尽管近几十年来吸烟率有所下降,但与吸烟相关的疾病和死亡仍然是一个令人严重关切的问题,也是一个全球健康问题。

《2019年全球疾病、伤害和风险因素负担研究》确定,就残疾调整寿命而言,吸烟是87个风险因素中的主导因素

烟草烟雾含有不同的化学制剂,包括活性氧(ROS)和活性氮(RNS)。氧化损伤导致遗传和表观遗传改变基因失调、调节元件破坏和炎症反应途径激活,在恶性循环中导致活性氧的进一步生成,并可能最终演变为癌症的发生和发展。

✦吸烟者患胃肠道癌症风险更高

食管鳞状细胞癌风险增加

过去几十年的研究支持吸烟胃肠道癌症之间的关系。吸烟也与食管鳞状细胞癌风险增加20-30%有关,重要的是,注意到烟酒联合使用的具有协同作用

吸烟人群患胃癌风险较高

数据还表明,吸烟是贲门型和非贲门型胃癌的危险因素。对于其他胃肠道癌症,吸烟率较高的吸烟者患胃癌风险更高

荟萃分析还支持吸烟在结直肠癌发展中的作用。 吸烟是肝癌胰腺癌的公认危险因素。2014年美国卫生部长的报告显示,目前吸烟者因吸烟而患肝癌的风险增加了70%,以前吸烟者增加了40%

在那些每天吸烟量最大的人中,患胰腺癌风险最高。荟萃分析研究发现,与不吸烟者相比,当前吸烟者的胰腺癌患者比值升高,但重度吸烟者的比值更高,随着戒烟后的年数成比例下降

戒烟的好处已经得到了很好的证实。戒烟者的死亡癌症风险降低

戒烟控制烟草消费需要战略规划。成功的戒烟尝试与社会经济地位、教育水平、获得原烟草广告、反烟草运动以及与其他吸烟者一起生活有关。

高脂饮食

高脂饮食显著促进胃肠道肿瘤的发生和发展,主要涉及代谢重编程和多种致癌分子的改变。

高脂饮食与胃肠道癌症的关联

Tong Y,et al.Theranostics.2021

✦高脂饮食下食管癌发病率较高

早在1994年,就发现喂食高脂饮食的小鼠食管癌发病率较高,提示高脂饮食食管癌之间存在关联。

胆汁酸组成发生变化

高脂饮食可导致小鼠胆汁酸组成发生变化,尤其是牛磺胆酸和牛磺熊去氧胆酸,导致小鼠巴雷特食管和食管癌的发病率增加

巴雷特食管——食管下段的鳞状上皮被柱状上皮覆盖,可能与反流性食管炎相关,并有发生腺癌的可能。

促炎和致瘤因子增加

喂食高脂饮食的小鼠的食管腺癌具有更高的生长代谢活性,脂肪组织中促炎和致瘤因子(如瘦素、IGFBP)的表达增加,而抗炎和生长抑制分子减少。

在临床流行病学研究中,发现“肉和脂肪”与食管腺癌和食管鳞状细胞癌密切相关。同时还发现,较高比例的脂肪会加剧食道癌食道胃腺癌的发生,而碳水化合物降低食道腺癌的发生。

✦过量膳食脂肪易导致胃癌

许多流行病学研究报告说,膳食脂肪可能是胃癌的危险因素。

瘦素在胃癌中发挥重要作用

瘦素被认为在肥胖相关的胃肠道恶性肿瘤中发挥重要作用,因为它在血管生成、细胞凋亡、细胞增殖和细胞迁移中发挥作用。

瘦素是一种由脂肪组织分泌的激素,它在血清中的含量与动物脂肪组织大小成正比。瘦素作用于位于中枢神经系统的受体,从而调控生物的行为以及新陈代谢。

它还显示通过调节mTOR、STAT3和ERK依赖性途径、PI3K依赖性途径和MAPK依赖性途径来促进粘蛋白产生胃肠道肿瘤形成。

作用机制

过度的瘦素和瘦素信号激活通过抑制胃肠道上皮细胞中的细胞因子信号3的抑制剂以及增加与肠上皮相关的异位分子如肠粘蛋白2和潘氏细胞标志物PLA2的表达而导致胃肿瘤,以及转录因子SRY-box转录因子2和H+/K+ATP酶的表达降低

由于瘦素受体(OBR)信号介导的胃上皮细胞器稳态、组织完整性和干性基因表达的破坏,与高脂饮食相关的脂肪毒性会诱发癌前病变

简而言之,高脂饮食通过上皮细胞中PI3K-Akt通路上调,促进β-连环蛋白并破坏细胞器稳态,并且可以上调癌症干细胞的特性。

一项研究发现,在高脂饮食喂养的8-20周内,胃壁细胞出现线粒体损伤,并伴有粘膜厚度增加。游离脂肪酸(FFAs)的添加可以复制这种表达并促进后生变化,表明游离脂肪酸的脂质毒性诱导壁细胞死亡癌前病变的发生。

还有研究发现高脂饮食可以为转移提供足够的能量,并增加O-Glc-N-酰化水平,从而促进脂肪酸受体CD36的转录激活。CD36上调导致癌症细胞脂肪摄取增加,形成促进癌症转移的恶性循环。

✦高脂饮食促进了肝癌

研究证实,高脂饮食可导致疏水性胆汁酸的肝脏滞留显著增加,这与肠道微生物的变化显著相关。同时,肝内胆汁酸的合成和转运紊乱,导致多种炎性细胞因子释放和胆汁酸严重沉积,促进癌症的发生。

此外,调节新陈代谢的各种分子也发生了变化。例如,饮食诱导的肥胖小鼠肝脏中的FGF21和CPT2减少,而FGF15、IRE1α和瘦素上调,然后与其他病理变化联系起来,促进致癌作用

FGF21减少与过度增殖、TGF-β和Smad信号以及肝脏中上皮-间质转化和Wnt信号通路/β-连环蛋白 信号的异常表达密切相关

脂肪酸氧化酶CPT2在高脂喂养小鼠体内显著下调,导致酰基肉碱在肝细胞癌组织和血清中蓄积,协同抑制脂肪酸氧化和激活STAT3,共同促进肝癌发生。

高脂饮食产生的代谢变化导致肝脏炎症

长期高脂饮食可降低小鼠香叶基香叶基二磷酸合酶的表达。肝香叶基香叶基二磷酸合酶敲除增强肝激酶B1超法尼基化,通过调节AMPK 活性破坏线粒体功能并促进糖酵解。这些代谢变化导致肝脏炎症,巨噬细胞和促炎细胞因子浸润,进而促进肝脏病理进展。

IRE1α与癌症内质网应激有关,并驱动发病机制。一方面,IRE1α促进NFκB途径的肥胖相关抑制剂的激活,导致肝脏中产生典型的促炎细胞因子,如肿瘤坏死因子和白细胞介素6。

另一方面,它维持STAT3的激活,从而促进肝细胞增殖。瘦素信号通路可以通过下游PI3K/Akt信号激活mTOR,而mTOR间接激活真核起始因子4E,从而刺激编码增殖和抗凋亡因子的mRNA的翻译。

同时,高脂饮食可显著提高血清DPP4水平,促进DPP4/CL2/血管生成的级联反应和DPP4调节的巨噬细胞浸润介导的炎症反应,所有这些都在高脂饮食相关的肝细胞癌进展中起着关键作用。

✦高脂饮食对胰腺癌有影响

高脂饮食降低了上皮对癌症的防御

高脂饮食能促进细胞增殖,抑制异常细胞清除。西方饮食诱导小鼠胰腺上皮细胞过度增殖,并导致突变频率和可能性增加。高脂饮食喂养显著降低了RasV12转化细胞的清除能力,从而损害了上皮对癌症的防御

高脂饮食可以产生炎症免疫抑制性肿瘤微环境。发现喂食高脂饮食的小鼠的胰腺组织具有更高的KRAS活性、纤维化基质、更短的存活时间和更高程度的胰腺上皮内肿瘤胰腺导管腺癌

高脂饮食导致高胰岛素血症

高脂饮食还可以导致高胰岛素血症并加速胰腺上皮内肿瘤小鼠中的形成和进展。同时发现增加的内源性胰岛素会促进高脂饮食诱发的癌前病变和胰腺癌,这表明可能存在致癌机制。

胰腺导管腺癌发展的机制可能与DNA损伤有关。给 小鼠喂食高糖、高脂肪饮食,高糖处理的正常胰腺细胞系在体外表现出明显的DNA损伤和KRAS突变增加,他们还发现KRAS突变细胞在正常和高糖条件下均具有生长优势环境

✦高脂饮食促进结直肠癌的发生和转移

结直肠癌高脂饮食的流行病学研究证实了它们之间的联系。

高脂饮食促进结直肠癌的发生和转移。伴随着APC基因的杂合丢失和ERK1/2、AKT和mTOR 信号通路的下调

以下几种途径在高脂饮食促进结直肠癌中发挥关键作用:

JNK通路在肥胖和胰岛素抵抗中起着至关重要的作用并促进致癌转化和细胞增殖。

STRA6通路充当高脂饮食和结直肠癌之间的桥梁,维持结直肠癌干细胞。高脂饮食促进肿瘤组织中STRA6的增加,而STRA6激活转导JAK2-STAT3信号级联。

高脂饮食还可以激活MAPK、ERK和PI3K/Akt信号通路。在一项研究中,高脂饮食引起的肥胖可促进炎症相关结直肠癌的发生,这是由PI3K/Akt途径和肿瘤微环境中IL-12、MCP-1、IL-6和TNF-α的增加驱动的。

关于高脂饮食对细胞因子或肥胖因素的影响,也有许多研究。血清胰岛素、瘦素、TNF-α、IGF1水平升高,以及增殖细胞核抗原、COX-2、细胞周期蛋白 D1、β-连环蛋白和 NFκB 蛋白水平升高表明高脂饮食促进通过炎症代谢异常形成结肠腺瘤,并影响细胞周期

扩展阅读:高脂饮食改变肠道微生物群,且削弱抗生素作用

慢性心理压力

慢性心理压力也被认为是包括癌症在内的多种疾病发展的危险因素。

慢性应激刺激下丘脑-垂体-肾上腺轴和交感神经系统,导致应激相关介质的合成和肾素-血管紧张素系统的激活 。

皮质类固醇和儿茶酚胺的过量产生会导致促炎细胞因子的产生和代谢变化,包括胰岛素抵抗的增加和脂肪分解释放游离脂肪酸

✦慢性心理压力造成炎症环境

总而言之,这些改变似乎创造了一个炎症环境,加剧代谢综合征糖尿病和胰岛素抵抗的发病机制以及其他非传染性慢性和免疫介导疾病的发展,所有这些都可能由慢性心理压力介导。

在癌症中,肾上腺素能受体在肿瘤细胞和肿瘤微环境中过度表达。肾上腺素能受体的下游激活反过来会抑制细胞凋亡和DNA修复,并具有增强细胞周期进程的原癌效应。

肾上腺素能受体的激活会诱导PI3K/AKT信号通路,从而刺激细胞增殖和血管生成。此外,应激介导的炎症反应和免疫功能改变可能会损害免疫监视机制,进一步促进癌变

扩展阅读:抑郁症,恐惧,压力和肠道微生物群脱不开的关系

病毒感染

恶性肿瘤的发展是一个多步骤的过程,病毒已被确定为肿瘤促进剂。肿瘤促进剂刺激信号通路和细胞增殖,最终导致癌症

✦乙肝病毒、丙肝病毒感染易诱发肝癌

乙型肝炎病毒丙型肝炎病毒感染是目前肝细胞癌最重要的全球危险因素,肝细胞癌是肝癌的主要组织学类型。

注:来自肝细胞癌高患病率地区的患者在诊断时往往比患病率地区的患者更年轻

乙型肝炎病毒引起的慢性坏死性炎症性疾病会诱发肝细胞突变,估计发生肝细胞癌的风险为10-25%,并且取决于是否存在活动性乙型肝炎病毒感染或肝硬化

丙型肝炎病毒是一种不整合到宿主基因组中的RNA病毒。丙型肝炎病毒引起的肿瘤发生可能是重复性损伤、再生和纤维化的结果,并且近90%的丙型肝炎病毒相关肝细胞癌之前有肝硬化

扩展阅读:细菌,真菌,病毒——感染,免疫反应以及治疗用药差异

其他影响胃肠道癌症的因素

研究团队应用比较风险评估方法估计归因于每个风险因素的胃肠道癌症的人群归因分数

2011年中国不同生活方式危险因素的胃肠癌归因分数

Wu Y,et al.Gastroenterology.2021

•高红肉摄入与51405例结直肠癌病例相关(PAF=19.0%)

•据估计,高身体质量指数(BMI)导致55244例新发肝癌病例 (PAF=16.6%)

•吸烟食管癌的首要归因危险因素,占48364例病例 (PAF=16.5%)

高钠摄入量与最多(68,858)例胃癌(PAF= 6.6%) 相关。

研究团队还根据1991年至2011年中国健康与营养调查估计了生活方式因素的时间趋势,同时预测了2011年至2031年生活方式因素的流行程度和胃肠道癌症的相关负担。

1991年至2031年按生活方式风险因素划分的胃肠癌病例的历史和预测趋势

Wu Y,et al.Gastroenterology.2021

•钠摄入量降低减少了胃癌

随着时间的推移,钠摄入量、低蔬菜摄入量、低水果摄入量和吸烟情况有所改善。人口的平均钠摄入量已从1997年的7.5 克/天减少到2011年的5.6克/天,预计到2031年将进一步减少到3.3克/天。

相应的归因胃癌病例估计为138796、68858和 35484,每20年下降约50%。

•蔬菜、水果的摄入增加有助于减少胃肠道癌症

随着平均蔬菜摄入量从252.6克/天上升到323.8克/天,肝癌食管癌胃癌的相关数量从1997年的 52774例减少到2011年的34623例。

水果摄入量表现出类似的趋势,1997年总体水果摄入量为18.2克/天,2011年中国人水果消费量为69.6克/天,与1997年相比新增病例减少10262例;到 2031 年,由于水果摄入量增加,预计年发病率将再次下降

扩展阅读:常见水果对肠道菌群、肠道蠕动和便秘的影响

•吸烟减少胃肠道癌症的发病率也减少

同时,与2011年和1991年相比,吸烟减少胃肠道癌症事件减少12940例相关,预计2011年至2031年期间将进一步减少

•饮酒使得胃肠道癌症病例增加

从1997年到2011年,与饮酒相关的胃肠道癌症病例增加了5539例,之后的预测趋势也稳定在每年约84000例。

•锻炼、乳制品和膳食纤维摄入影响结直肠癌

体力活动、乳制品和膳食纤维摄入量仅与结直肠癌有关。据估计,2011年身体锻炼不足与45531例结直肠癌病例相关,预计到2031年还会有7248例病例发生。

1997年、2011年和2031年的预计平均膳食摄入量乳制品分别为5.8克、12.4克和17.6克,膳食纤维分别为10.5克、10.8克和11.1克。2011年,摄入不足分别导致了29961起和45283例结直肠癌病例。

扩展阅读:

体育锻炼与饮食相结合:调节肠道菌群来预防治疗代谢性疾病

你吃的膳食纤维对你有帮助吗?

Part3
肠道微生物与胃肠道癌症

人类肠道微生物群在人类的健康和疾病状态中都发挥着重要作用。在过去的十年中,微生物与肿瘤之间的相互作用引起了人们的广泛关注,人们努力了解复杂微生物群落的各种特征,以及微生物群参与癌症预防致癌抗癌的可能机制。

大量研究表明,微生物失调通过多种途径促进癌症易感性。肠道微生物主要通过其细菌或分泌的代谢物成分导致消化道肿瘤的发生。

微生物群及其相关代谢产物不仅通过诱导炎症免疫失调致癌作用密切相关,还会干扰抗癌药物的药效学。

肠道微生物组与胃肠道癌症的关联

Tong Y,et al.Theranostics.2021

肠道微生物与胃癌

√幽门螺杆菌影响胃癌患病率

胃癌被认为是一种与炎症相关的癌症。幽门螺杆菌(H.Pyloni)感染被称为I类危险因素,可以刺激免疫反应炎症,调节许多信号通路,并诱发胃酸缺乏、上皮萎缩和发育异常。因此,有效根除幽门螺杆菌可预防胃癌

癌蛋白细胞毒素相关基因A(CagA)和空泡毒素A(VacA) 是幽门螺杆菌的关键毒力因子。幽门螺旋杆菌感染会显著增加患胃癌的风险。

空泡毒素A可通过直接作用于线粒体 ,导致细胞空泡形成,并在人源性胃上皮细胞内诱导自噬 , 上调 MAP激酶和ERK1/2表达, 激活血管内皮生长因子, 上调细胞生长和分化所必需的 Wnt/β-catenin 信号通路, 抑制GSK3通过PI3K/Akt信号通路。

幽门螺杆菌感染个体中炎症细胞因子增加

在幽门螺杆菌感染个体的胃中发现炎症细胞因子的积累增加,包括干扰素-γ、肿瘤坏死因子、IL-1、IL1β、IL-6、IL-7、IL-8、IL-10和IL-18。

因此,多种类型的免疫细胞受到刺激,包括淋巴细胞、外周单核细胞、嗜酸性粒细胞、巨噬细胞、嗜中性粒细胞、肥大细胞和树突细胞。

包含ERK/MAPK、PI3K/Akt、NF-κB、Wnt/β-catenin以及STAT3的致癌通路的活性随着幽门螺杆菌的感染而上调。相反,肿瘤抑制通路因诱导的P53突变而失活。

此外,幽门螺杆菌感染可导致E-钙粘蛋白和抑癌基因的CpG 岛甲基化,包括编码三叶因子2(TFF2)和叉头盒转录调节因子(FOXD3)的基因,导致显著增加胃癌的风险。

扩展阅读: 正确认识幽门螺杆菌

√其他微生物群

目前的测序技术使研究人员能够深入研究肠道微生物群的复杂性。

幽门螺杆菌阳性个体的微生物群落特征是以下细菌的数量增加

变形杆菌Proteobacteria) ↑↑↑

螺旋体Spirochaetes) ↑↑↑

酸杆菌门(Acidobacteria↑↑↑

而以下菌群的数量减少

放线菌门(Actinobacteria) ↓↓↓

拟杆菌门(Bacteroidetes) ↓↓↓

厚壁菌门(Firmicutes) ↓↓↓

相反,幽门螺杆菌阴性个体携带更丰富的厚壁菌、拟杆菌和放线菌。

√肠道微生物失调增加胃癌发生率

微生物失调也与胃癌发生有关。使用定量PCR,已经表明胃癌患者的微生物群组成非常多样化

例如卟啉菌属(porphyromonas)、奈瑟菌属(Neisseria)、苍白普氏菌(prevotella pallens)、Streptococcus sinensis减少,以及大肠杆菌、 肺炎克雷伯菌(Klebsiella pneumoniae)、鲍氏不动杆菌(Acinetobacter baumannii)和毛螺菌科(Lachnospiraceae)的富集

扩展阅读:

全面认识——肺炎克雷伯菌 (Klebsiella pneumoniae)

肠道核心菌属——毛螺菌属(Lachnospira)

来源于幽门螺杆菌的致病成分,如外膜蛋白磷脂酶C-γ2、BAK蛋白和镍结合蛋白,帮助微生物在胃粘膜层定植,然后加剧胃炎的进程,最终增加胃中肿瘤发生的可能性。

肠道微生物与食管癌

据报道,食管癌与常见的潜在危险因素密切相关,如人类乳头状瘤病毒和EB病毒的感染,尽管致病机制仍有争议。除了病毒,细菌感染也会导致食管恶性肿瘤的形成。

√感染幽门螺杆菌的人群食管癌呈下降趋势

在最近20多年来,在感染幽门螺杆菌的普通人群中,食管腺癌的发病率呈下降趋势,尤其是在东部人群中。与此同时,食管鳞状细胞癌的发病率也有所下降

胃食管反流病是巴雷特食管的主要原因,巴雷特食管是食管腺癌的一种癌前病变。通过抑制壁细胞功能或诱导萎缩性胃炎的发展,慢性幽门螺杆菌感染可以抑制壁细胞分泌盐酸,从而增加胃肠道的pH值,最终导致食管腺癌降低

√食管炎患者体内肠杆菌丰度较高

与正常人群相比,食管炎和巴雷特食管患者胃中肠杆菌科相对丰度更高

有人认为,抗生素可能会改变胃食管反流病患者食道中的微生物组。定植在食管和胃中的肠道微生物群通过质子泵抑制剂(PPIs)的治疗而显著改变。然而,质子泵抑制剂引起的变化是否有益还没有定论。

最新的系统综述和荟萃分析表明,质子泵抑制剂不会减少发育不良和巴雷特食管相关食管腺癌的发展。

√食管中的微生物参与致癌过程

食道传统上被认为是无微生物的部位,只有有限的微生物来自吞咽和胃食管反流。通过应用16S rRNA 测序技术,发现一些特定的微生物栖息在食管粘膜中,包括厚壁菌门拟杆菌门、变形菌门、放线菌门和梭杆菌门。

此外,与正常食管相比,食管鳞状细胞癌(I-II 期)和食管鳞状异型增生 (ESD) 患者的食管中发现了不同的微生物群落。

与正常胃粘膜微生物群一致,早期食管鳞状细胞癌和食管鳞状异型增生样本中最常见的门是变形菌门厚壁菌门拟杆菌门。当食管微生物群失调时,它们参与食管的致瘤过程

已经发现人类远端食管具有其自身特征性的微生物群。包括厚壁菌门链球菌在内的革兰氏阳性细菌在正常食管中占主导地位,而革兰氏阴性厌氧菌/微需氧菌,如拟杆菌变形菌、梭杆菌和螺旋体,主要与食管炎和巴雷特食管有关。

注:脂多糖是革兰氏阴性菌细胞壁的重要组成部分,通过多种机制参与肿瘤发生过程。这些包括激活导致NF-κB激活的先天免疫反应, 促进包括IL1β、IL6、IL8和TNFα在内的炎症相关介质的释放和延迟胃排空

肠道微生物与结直肠癌

结直肠中的肠道微生物组是人体中最复杂的群落。细菌种群主要包括厚壁菌门拟杆菌门变形杆菌门

√饮食、微生物代谢物影响结直肠癌

各种因素都会导致结直肠癌,而饮食是与结直肠癌相关的重要环境因素。许多不同的肠道微生物群代谢物具有致瘤抗肿瘤特性

在结肠细胞上表达的脂多糖受体抑制细胞死亡,通过Toll样受体2激活细胞免疫反应,然后刺激下游促炎细胞因子信号传导,导致肿瘤发生

脂磷壁酸是一种来自革兰氏阳性菌细胞壁的元素,被认为是脂多糖的对应物。高脂肪饮食会增加硫酸盐还原菌的相对丰度,例如普通脱硫弧菌,它将初级胆汁酸转化为次级胆汁酸,如石胆酸和脱氧胆酸,具有潜在的致瘤性

丁酸盐具有抗肿瘤作用

相反,丁酸是一种重要的短链脂肪酸 ,由结肠细菌从饮食中的可发酵纤维中产生,已被证明具有抗肿瘤作用

参与发酵过程最重要的丁酸盐产生微生物群是普拉梭菌(Faecalibacterium prausnitzii)和直肠真杆菌Eubacterium rectale)。

丁酸被结肠细胞中的线粒体利用,这有助于维持健康的能量平衡并有益于结肠上皮细胞增殖。GPR109a是一种在免疫细胞上表达的短链脂肪酸受体,主要激活丁酸的配体,然后抑制炎症细胞因子,从而抑制炎症过程。宿主免疫反应通过干扰素γ对抗DNA甲基化介导的GPR109a沉默,从而相应地促进抗癌作用

丁酸通过诱导P21基因表达、抑制激活蛋白-1(AP-1)信号通路以及增加c-Fos和ERK1/2的磷酸化来发挥各种化学预防作用。此外,尿石蛋白如尿石蛋白A是水果和坚果的肠道微生物群代谢产物,含有大量鞣花酸。据报道,它们可以抑制Wnt信号传导,并显示出对癌症的益处

扩展阅读:如何通过喂养菌群产生丁酸调节人体健康

√长期炎症容易导致结直肠癌

肠道微生物群引起的通路

Si H,et al.Semin Cancer Biol.2021

慢性炎症会产生大量炎症介质,如肿瘤坏死因子、白细胞介素6、白细胞介素1b和其他细胞因子,它们会激活NF-κB,从而导致结肠癌发生。

炎症性肠病与更高的结直肠癌风险相关。例如,与局限性结肠炎患者相比,全结肠炎患者患癌症的风险更高

与健康受试者相比,炎症性肠病患者的肠道微生物群具有较低的多样性和生态失调,其特征是厚壁菌门和拟杆菌门丰度较低

产肠毒素脆弱拟杆菌与炎症性肠病的存在显著相关。炎症性肠病和结直肠癌都有一个共同的过程,即转化生长因子-β (TGF-β)、TNFα、NF-κB、ROS 和其他信号分子水平升高,导致肠道微生物失调

已经证明伴有炎症性肠病的结直肠癌患者比没有炎症性肠病的患者预后更差

扩展阅读:肠道菌群失调与炎症性肠病的关联

√肠道菌群失调导致结直肠癌风险增加

如果肠道微生物群保持在失调状态,有益共生体的多样性和丰度可以最小化。一旦受干扰的微生物过度生长,它们就会产生积累的外毒素和内毒素

如大肠杆菌的细胞致死性膨胀毒素和大肠杆菌素,痢疾志贺菌的细胞致命性膨胀毒素,脆弱芽孢杆菌的脆弱芽孢杆菌毒素,粪肠球菌的细胞外超氧化物和过氧化氢等。

这些细菌毒素能够直接或间接诱导DNA损伤、基因组不稳定、肿瘤发生腺癌的侵袭

此外,微生态失调导致结肠上皮细胞暴露于致癌物质的增加。未修复的DNA和碱基切除修复(BER)中间体的积累导致基因组不稳定,并最终致癌

注意:微生物生态失调会使免疫反应失调增加炎症,导致PIK3CA基因突变,这可能会加速结直肠癌的发生或生长。

//梭杆菌粘附素A可作为生物标志物

梭杆菌粘附素A(FadA)是一种由梭杆菌表达的细胞表面毒力因子,经常在腺瘤性息肉或结直肠癌患者中检测到。

FadA与内皮上的E-钙粘蛋白相互作用,并调节E-钙粘素/β-连环蛋白通路,导致转录因子、癌基因和炎症基因的表达增加

它还促进梭杆菌粘附并入侵表达E-钙粘蛋白的细胞,从而直接影响上皮细胞的增殖和生长。最近的一份报告表明,结直肠癌组织中梭杆菌的总体丰度是邻近正常组织的400多倍。因此,FadA可能是结直肠癌诊断和治疗的潜在生物标志物

肠道微生物群与肝癌

虽然肝脏通常被认为是无菌的,但肝脏环境受到胃肠道微生物群通过肝门静脉系统产生的病原体或代谢物的极大影响。

肝细胞癌和胆管癌是最常见的肝癌组织学类型。酒精性肝病非酒精性脂肪肝以及食源性污染物黄曲霉毒素B1、乙型丙型肝炎病毒感染被认为是肝细胞癌的主要危险因素。

值得注意的是,肠道菌群失调非酒精性脂肪性肝病的主要诱因之一。

√肠道微生物失调会导致肝癌发生

肝脏通过过滤血流以及代谢和中和肠道微生物产生的毒素对宿主微生物群落产生重要影响。肠道微生物失调会导致肝癌发生,因为微生物群和微生物代谢物可被肝脏常驻免疫细胞检测到,并能够改变肝脏代谢

肝细胞癌患者粪便中大肠杆菌的丰度远高于健康对照者粪便中的大肠杆菌,而迪茨氏菌科(Dietziaceae),假单胞菌属(Pseudomonas)和草酸杆菌科(Oxalobacteraceae)在胆管癌患者的胆管样本中比非胆管癌个体的样本更丰富

据推测,肠道微生物的过度生长可能会促进肝癌的发展,这需要进一步探索。

√幽门螺杆菌促进肝癌的生长和迁移

幽门螺杆菌通常栖息在人的胃中。然而,来自肠道的幽门螺杆菌可以通过门静脉的血流到达肝组织,在吞噬消除后幸存下来,或者通过十二指肠反向迁移

已在肝细胞癌患者的肝组织中发现幽门螺杆菌产生的代谢物 。已经表明,来自幽门螺杆菌的脂多糖通过增加白细胞介素8和转化生长因子β1的水平直接促进肝癌的生长和迁移

作为螺杆菌科的一员,幽门螺杆菌通过激活NF-κB 和Wnt信号通路、肝细胞更新和氧化应激导致肝细胞癌的发展。

此外,一些螺杆菌属物种,如胆螺杆菌(H.bilis)、H.ganmaniH.hepaticus,与胆管癌特异性相关,但与胆管中的非肿瘤疾病无关。

√肠道微生物代谢物影响肝癌

微生物代谢物会扰乱肝脏中的代谢途径免疫反应

Toll样受体4(TLR4)识别来自细菌的脂多糖(LPS),并通过脂多糖诱导的TNF-β和IL-6激活库普弗细胞。它还可以通过上皮调节蛋白等生长因子刺激星状细胞,并启动各种炎症和致癌途径。LPS-TLR4通路可促进肝细胞癌,而去除脂多糖或Toll样受体4 基因失活可降低肝细胞癌的发展。

库普弗细胞——是位于肝脏中的特殊巨噬细胞,是单核吞噬细胞系统的一部分。

胆酸和鹅脱氧胆酸是肝脏产生的主要初级胆汁酸。它们通过增加活性氧的产生而导致DNA损伤,从而诱发肝癌的发展。

此外,胆汁酸也被证实可以调节肠道微生物群。胆汁酸数量减少会导致肠道菌群过度生长加速炎症。梭菌产生的脱氧胆酸的肠肝循环会导致DNA损伤并在肝星状细胞中引发衰老相关分泌表型。

这个过程涉及许多炎症细胞因子和生长因子,从而导致炎症肥胖相关的肝细胞癌转变。脱氧胆酸和石胆酸被证明可通过DNA损伤直接促进癌症

肠道微生物与胰腺癌

胰腺是胃外消化器官。胰腺导管腺癌(PDAC)是全球最致命的癌症之一,是最常见的胰腺癌类型。越来越多的研究表明,肠道微生物群可能通过促进炎症激活免疫反应和使癌症相关炎症持续存在来影响胰腺癌发生。

√幽门螺杆菌感染是胰腺导管癌的风险因素

对数百项胰腺癌荟萃分析的回顾表明,幽门螺杆菌感染是胰腺导管腺癌的一个重要危险因素。除胰腺导管腺癌外,幽门螺杆菌还参与急性慢性胰腺炎以及自身免疫性胰腺炎

许多源自幽门螺杆菌的致病成分,包括氨和脂多糖,以及由此产生的大量炎性细胞因子,都会损害胰腺

幽门螺杆菌感染激活NF-κB和AP-1,导致细胞过程失调。白细胞介素8水平升高会加速炎症反应,最终导致胰腺癌发生。

此外,幽门螺杆菌感染持续激活STAT3可通过上调抗凋亡和促增殖蛋白(包括Bcl-xL蛋白、MCL-1、生存素、c-myc和细胞周期蛋白D1)的表达来促进胰腺癌进展

√炎症及免疫反应与胰腺癌

微生物引起轻微和持续的免疫反应炎症反应,会导致胰腺癌的形成。

已经进行了许多研究来探索可能的机制。在各种免疫细胞上表达的toll样受体使免疫细胞能够识别多种微生物相关分子模式 (MAMP) 和非感染性炎症损伤相关分子模式 (DAMP),然后激活NF-κB和MAPK信号通路。这些过程引发并延续胰腺炎,最终促进胰腺癌的进展。

NLRs是细胞质模式识别受体(PRRs),参与NF-κB的激活炎症小体的形成。P38丝裂原活化蛋白激酶(P38 MAPKs)对细胞因子有反应,参与细胞分化、凋亡和自噬,从而加速胰腺导管腺癌的过程。因此,P38抑制剂可能是治疗癌症的药物。

味觉受体2型成员38(TAS2R38)是一种苦味受体。有趣的是,T2R38不仅在口腔细胞中表达,也在胰腺癌细胞中表达。铜绿假单胞菌(Pseudomonas aeruginosa)是T2R38的独特配体,据称可激活 T2R38,诱导多药耐药相关蛋白1(ABCB1),并参与癌症侵袭和转移

此外,梭杆菌属存在于8.8%的胰腺癌组织中。值得注意的是,梭杆菌属的状态是胰腺癌的一个独立的阴性预后生物标志物

扩展阅读:梭杆菌属Fusobacterium——共生菌、机会致病菌、致癌菌

√其他肠道微生物对癌症的作用

Tong Y,et al.Theranostics.2021

Part4
结语

研究显示生活方式胃肠道癌症风险的影响越来越大。吸烟饮酒、饮食构成、肥胖等都是影响胃肠道癌症的重要因素。

肠道微生物群与人类密切相关,在人类健康疾病中也发挥着重要而独特的作用。肠道微生物群还能够与化学治疗剂免疫治疗剂发挥协同作用

基于对肠道微生物群的研究,人们也在探索新的治疗靶点,以及使用人类肠道微生物群的诊断预测和预后癌症生物标志物。加速肠道微生物组研究在精准医学中的转化。

生活行为肠道微生物群胃肠道癌症之间的准确关系需要进一步探索,将对我们的日常生活临床治疗将产生重大影响。

主要参考文献:

Jardim SR, de Souza LMP, de Souza HSP. The Rise of Gastrointestinal Cancers as a Global Phenomenon: Unhealthy Behavior or Progress? Int J Environ Res Public Health. 2023 Feb 18;20(4):3640. doi: 10.3390/ijerph20043640

吃货贴 | 「咸、甜、辣」如何影响肠道菌群?

谷禾健康

You are what you eat

国庆放假除了玩玩玩,当然少不了吃吃吃,把各种一直想吃的都提上日程,应该是对假期最起码的尊重了…

有时候我们喜欢吃的并不是食材本身,而是喜欢融入食材中的“味道”,不知从什么时候开始,我们对“重口味食物”越来越上瘾,而“重口味食物”往往意味着过甜、过咸、过辣……

我们知道饮食可以影响肠道菌群,在之前的文章里也多次提到,诸如食物种类,饮食方式,饮食习惯等对肠道菌群的影响。

之前写过关于饮食对肠道菌群的文章:

间歇性禁食 & 肠道菌群 & 心血管疾病

利用饮食精准干预肠道微生物群

饮食-肠道菌群对心血管疾病的相互作用

正视暴饮暴食、厌食症等饮食失调问题

深度解析 | 炎症,肠道菌群以及抗炎饮食

饮食习惯或将引领新的健康革命

深度解读 | 饮食、肠道菌群与健康

本文试着从不同饮食口味的角度「包括甜、咸、辣」,来了解一下糖、盐、辣椒等对肠道菌群的影响,对健康的潜在影响机制,以及相关食用小妙招。

如果说厨房里只能有一款调料,那一定是盐。盐,号称”百味之王”,同时也是一把”双刃剑”。身体缺不了它,食用不当也会给身体带来很多伤害,例如体重增加,高血压,慢性肾病等。

氯化钠,“盐”,是日常食物的重要组成部分,对身体的体内平衡起着至关重要的作用。

盐参与调节人体内水分的均衡分布,增强神经肌肉兴奋性,为使机体内酸碱平衡和血压正常功能,保证体液的正常循环,参与胃酸的形成,促使消化液的分泌,能增进食欲

一般成人每天摄入3克食盐就可以维持基本生理需求。2022年颁布的《中国居民膳食指南》中也将食盐摄入量再次严格限制,每人每日食盐摄入量从原先的6克以内改为不高于5克

过多的盐摄入量,可能给健康带来危害。

高盐饮食给健康带来的危害

饮食中高盐含量会导致肠道免疫系统的变化。血液中含有过多的钠会导致体内免疫细胞产生较少的能量,还会影响机体正常代谢和细胞的渗透压等,引发心脑血管疾病和代谢性疾病,业已知道盐摄入过量是心脑血管疾病的主要风险因素之一。

doi.org/10.1016/j.biopha.2020.111156

 高盐饮食和体重增加相关

或许会有这样的疑惑,盐含的热量极少,为什么会与体重增加有关?

这个问题不在于热量,确实盐一点热量都没有。然而摄入大量的盐会导致体重暂时增加,是因为它会导致身体保留水分。

盐摄入过多会增加口渴感。身体消耗的额外液体被用来稀释身体无法足够快速排出的多余钠。

小鼠研究表明,高盐饮食也可能使身体对瘦素产生抵抗力

注:瘦素是一种激素,负责防止饥饿,让你感到充实和满足。

高盐饮食也可能间接导致体重增加,因为它们通常与大量的超加工食品有关。高度加工的食物导致摄入更多的热量并增加体重。

当热量相等时,高盐饮食不会比低盐饮食增加或减少更多的体脂。

含盐量较高的食物:零食、薯条、西式快餐、披萨、油炸食品、加工食品、调味品,甚至面包,也含有较高的热量。

因此,如果你的饮食中含有大量这些经过高度加工的食物,那么胃很可能会感觉不到满足感和饱腹感,最终导致摄入更多的热量并增加体重。

 高盐饮食和夜尿症相关

如果你有夜尿症,钠摄入量可能是罪魁祸首。

在一项研究中,当那些夜间排尿频繁且饮食中摄入高钠的人减少了钠的摄入量时,他们报告说夜间上厕所的次数减少了,而良好的睡眠习惯提高了生活质量。

在用餐期间和白天大量喝水可以帮助排出体内的钠,导致夜间小便减少。

 高盐饮食和心血管疾病的关系

说到高盐饮食,就会联想到高血压。

有些人可以吃含钠量很高的食物,但血压水平不会有任何有意义的变化。其他人吃同样的饮食可能会导致高血压,这是为什么呢?

可能与“盐敏感性”有关。“盐敏感性”的人,如果从低钠饮食转向高钠饮食,血压会增加。盐敏感性的潜在原因很多,从遗传到环境。

研究表明,对盐敏感的人比中度敏感的人患高血压的可能性至少高40%.

doi.org/10.1016/j.biopha.2020.111156

临床研究发现,较高的钠摄入量与心血管疾病和相关死亡有关。以下是重点研究:

研究人员测量了来自 32 个国家/地区的 10,000 多名成年人在 24 小时内排泄的钠量(这是盐摄入量的良好替代品)。平均每天接近 4,000 毫克钠。然而,范围很大,从巴西亚诺马莫人的每天 200 毫克到日本北部的 10,300 毫克。盐摄入量较高的人群平均血压较高,并且随着年龄的增长血压升高幅度较大。

两项预防高血压试验 (TOHP) 于 1987 年至 1995 年进行。他们测试了生活方式改变对血压的影响,例如减肥、压力管理、营养补充剂和摄入更少的钠。在每项研究中,在 18-36 个月内减少钠摄入后,血压略有下降。试验结束多年后,研究人员对参与者进行了调查,发现:

平均 10-15 年后,减钠组的 TOHP 参与者心脏病发作或中风的可能性降低 25%。需要手术打开或绕过胆固醇阻塞的冠状动脉,或死于心血管疾病的可能性降低。

参与者饮食中钾与钠的比例越高,患心血管疾病的机会就越低。这表明包括增加钾和降低钠的策略可能是对抗高血压的最有效方法。

 高盐饮食与慢性肾病进展有关

对诊断为慢性肾病的患者进行的一项系统评价发现,每天摄入超过 4600 毫克的高钠盐与慢性肾病的进展有关

与每天 2300 毫克的适度钠摄入量相比,每天摄入少于 2300 毫克的低钠盐没有显着影响

一般来说,指南通常建议适度而不是低钠限制以防止慢性肾病的发展。

对于慢性肾病的整体管理,建议每日钠摄入量少于 4000 mg,对于伴有体液潴留或蛋白尿症状的慢性肾病,建议每日钠摄入量少于 3000 mg.

 高盐饮食与骨质疏松症有关

身体通过排尿流失的钙量随着你摄入的盐量而增加。如果血液中钙供应不足,它会从骨骼中流失。因此,高钠饮食可能会产生额外的不良影响,即骨质疏松症。

一项对绝经后妇女的研究表明,两年内髋骨密度的下降与研究开始时24小时尿钠排泄有关,而且与骨质流失的联系与钙摄入量的联系一样强烈。

其他研究表明,减少盐的摄入量会导致钙的正平衡,这表明减少盐的摄入可以减缓随着年龄增长而发生的骨骼中钙的流失

 高盐饮食可能和胃癌相关

世界癌症研究基金会和美国癌症研究所的结论是,盐和咸的食物都是“胃癌的可能病因”。

高盐饮食通过肠道菌群影响健康

我们吃的东西和其中的盐,在某个阶段到达我们的肠道,是否会影响肠道微生物?

肠道菌群最有可能参与体内盐分的吸收,钠通过钠质子交换剂 3 (NHE3) 在结肠中被高度吸收。在小鼠 NHE-3 缺失时观察到肠道微生物环境的改变和血压的降低。

高盐饮食如何影响肠道菌群变化?

高盐消耗会影响蛋白质的消化并改变肠道菌群的多样性,菌群变化例如:棒状杆菌科的增加,乳酸杆菌的减少,详见下表:

doi.org/10.1016/j.biopha.2020.111156

在大鼠模型中,食盐摄入降低了鼠乳杆菌的丰度,并增加了促炎性脾Th17细胞数量。

反过来想,作为一种益生菌疗法,每天服用鼠乳杆菌显著减少治疗大鼠的Th17细胞并改善血压

另一项研究发现,8周的高盐摄入显著改变了小鼠的肠道微生物组成。结果显示,拟杆菌变形杆菌分别显著减少50.53%和2.96%,厚壁菌显著增加42.77%。

同时,在高盐饮食喂养的小鼠中,发现下肠中的短链脂肪酸水平显著降低,这归因于细菌发酵受到抑制

饮食中钠的适度减少可以增加循环中的短链脂肪酸,从而增加肠道微生物群。短链脂肪酸水平的增加反过来降低血压并改善动脉顺应性。

以上是高盐饮食带来的危害,然而最近的研究表明高盐饮食也有可能带来某些益处。

高盐饮食可能的潜在价值

▸ 高盐饮食:介导NK细胞和肠道微生物群之间的相互作用,诱导有效的肿瘤免疫

发表在《Science Advances》的一项研究报道了高盐饮食通过抑制PD-1表达,同时增强IFNγ和血清马尿酸水平,诱导自然杀伤(NK)细胞介导的肿瘤免疫。盐与次优剂量的抗PD1抗体联合使用可增强肿瘤免疫

虽然高盐饮食诱导的肿瘤免疫随着肠道微生物群的减少而减弱,但高盐饮食小鼠的粪便微生物群移植恢复了与NK细胞功能相关的肿瘤免疫。

高盐饮食增加了双歧杆菌的数量,并导致肠道通透性增加,导致双歧杆菌在肿瘤内定位,从而增强NK细胞功能和肿瘤消退。瘤内注射双歧杆菌激活NK细胞,抑制肿瘤生长

这些结果表明,高盐饮食通过潜在的平移作用调节肠道微生物组,诱导NK细胞依赖性肿瘤免疫。

▸ 高盐饮食:抵消高米饭饮食带来的肥胖影响

一项研究发现,高盐摄入可改善与大米饮食相关的代谢变化,包括粪便微生物群组成的变化。

研究将小鼠分为三组(n  = 9),分别喂食正常饮食(ND)、高米饭饮食(HRD)、补充高盐(HRS)的高米饭饮食12周。

与正常饮食的小鼠相比,喂食高米饭饮食的小鼠厚壁菌门与拟杆菌门的比率(p  < 0.01)和变形菌门与拟杆菌门的比率(p  <0.001)显着增加。然而,高盐摄入减弱了这些影响,尽管变形杆菌的比例没有减少。

高盐摄入降低了高米饭饮食引起的体质量和白色脂肪组织重量的增加。另外,高盐饮食并没有逆转葡萄糖耐量和胰岛素抵抗的增加。

高盐饮食改变了高米饭诱导的微生物组成,高盐饮食调节高米饭饮食诱导的PPAR-γ和脂质代谢相关蛋白表达的增加。

注:PPAR-γ——过氧化物酶体增殖物激活受体-γ

此外,在白色脂肪组织中,高盐饮食可以逆转高米饭饮食诱导的脂联素的减少和PPAR-γ表达的增加。在体外,高氯化钠浓度也显著降低了3T3-L1细胞的分化和调节脂质代谢,而不会引起细胞毒性。

▸ 适度增加盐摄入量对中枢神经系统自身免疫病具有多方面和潜在的有益影响

研究人员用自发 EAE 小鼠模型评估了高盐饮食对启动中枢神经系统自身免疫所必需的早期致病事件的影响。

高盐饮食消耗增加了糖皮质激素皮质酮的循环血清水平皮质酮增强了脑内皮细胞上紧密连接分子的表达,促进了血脑屏障 (BBB) 的收紧,从而控制了炎症性 T 细胞进入中枢神经系统。

注:需要进一步的研究来证实以上结果,以确保高盐摄入不会加剧高碳水化合物饮食引起的代谢紊乱。

以上高盐饮食带来的益处尚处于动物模型研究阶段,不宜擅自应用在个人健康。

减少盐摄入

  • 烹饪时少放盐

调整烹调方法减少食盐摄入量应当注意烹饪时少放盐 , 控制烹调时和餐桌上的用盐,一家3口每日用盐不宜超过 250 克 , 也就是全家每日总共用一小汤勺(约8克 )。

  • 多吃新鲜食物

大多数新鲜水果和蔬菜天然含钠量低。鲜肉比午餐肉、培根、热狗、香肠和火腿含钠量低。

  • 通过其他天然调味品满足口感的需要

习惯咸味的人, 为满足口感的需要,可在烹制菜肴肘放少许醋,提高菜肴的鲜香味,帮助自己适应少盐食物。

或者可以考虑有些时候用无盐香草和香料代替,例如迷迭香、百里香、大蒜粉,辣椒粉等。

  • 减少腌制食品的摄入

还要注意减少酱菜 、 腌制食品以及其他咸食品的摄入量。

  • 减少速食食品的摄入

从燕麦粥到汤面到土豆,一切都可以以“速食”的形式获得。通常,这些速食食品比非速食食品含盐量高得多。例如,普通即食燕麦片含有近200毫克的盐。

  • 食用前增加一个“涮洗”的步骤

例如,添加了盐的冷冻蔬菜可以在蒸或煮之前用漏勺冲洗一下。这个简单的步骤可以减少高达23%的盐量。

糖或甜味食物无处不在,很多人喜欢吃糖或者甜味食物,它在许多人心中占据重要的位置,甜食可能会唤起我们的舒适和美好的回忆。
然而需要注意的是,它让人上瘾的同时,可能会喂养有害菌,有害菌大量增殖的同时有益菌也在减少……
糖,正在悄悄地破坏着肠道菌群原有的平衡。

过量糖摄入的危害

  • 影响消化

研究表明腹泻和某些糖的消化不良有关,患有乳糜泻、克罗恩病和慢性腹泻的人在肠道中产生异常高量的粘液,这阻碍了消化,阻止了这些淀粉和二糖的吸收。

  • 扰乱肠道菌群

糖摄入可能会扰乱微生物群的平衡增加促炎性降低调节上皮完整性和粘膜免疫的能力。

大量摄入添加糖和加工食品,包括典型的西方饮食,都会损害有益菌,使我们更容易受到有害物质的影响

肠道内层很薄,没有肠道内有益菌产生的保护性粘膜层,一些东西会渗入血液中,这就会导致炎症

也就是说,持续摄入过量糖可能会带来肠漏、慢性炎症增加和各种健康问题的风险。

  • 产生气体

身体无法分解和吸收的多余糖分将留在肠道中发酵。这种糖通过大肠的速度更慢,喂养了有害细菌和酵母,并导致气体的积累。这种气体会导致抽筋、痉挛和疼痛。

  • 乳糖不耐受

乳糖是牛奶中的糖分。当身体不能产生分解乳糖所需的酶时,就会发生乳糖不耐症,导致胀气、腹胀和其他消化不适。

同样,高果糖玉米糖浆会抑制消化,因为身体也不能分解它。果糖停留在肠道中,导致胃肠胀气和不适

  • 腹胀

虽然吸收水分是大肠的主要工作,但糖可以将水分吸入大肠,或者至少阻止水分被正常吸收。这可能会导致腹胀或肠道沉重。

  • 肝脏损害

消化是由肝脏刺激的。果糖只能由肝脏处理,所以摄入的所有果糖都被一次性送到肝脏,使其超载并造成潜在的损害,进而损害消化。

  • 代谢功能障碍

果糖无法刺激胰岛素,而胰岛素又无法抑制“饥饿激素”。结果,饱腹荷尔蒙瘦素也没有被刺激,这导致吃得更多

这就容易导致体重增加、腹部肥胖、胆固醇升高、血糖升高等各种代谢疾病

而这些代谢疾病的发生离不开肠道菌群的运作,接下来我们来了解一下,糖是如何通过影响肠道菌群,从而引发代谢疾病的?

糖通过影响肠道菌群引发代谢疾病的机制

一项新的研究发表在8月29日在线出版的《细胞》杂志上,科学家们发现:

糖可能会破坏肠道菌群,从而耗尽关键的免疫细胞导致肥胖等代谢综合征

简单来说高糖饮食带来的影响如下:

高糖饮食

↓↓↓

刺激Faecalibaculum rodentium 的生长

↓↓↓

挤走了特定菌群SFB, SFB丢失

↓↓↓

改变了吸收膳食脂肪的方式

↓↓↓

出现“代谢综合征”的特征

注:SFB是小鼠肠道中的特定细菌,即分段丝状细菌。

我们来看下研究过程:

研究人员给小鼠喂食含蔗糖和麦芽糊精的高糖饮食,高糖饮食刺激了Faecalibaculum rodentium的生长,这种细菌基本上挤走了SFB。SFB的突然丢失在小鼠肠道内引发了连锁反应,最终改变了动物吸收膳食脂肪的方式

吸收脂肪的改变导致小鼠肥胖,并出现“代谢综合征”的特征。代谢综合征如高血压、高血糖和胰岛素抵抗,共同增加了患心脏病、中风和2型糖尿病的风险。

也就是说:SFB在某种程度上可以防止代谢综合征和过度体重增加那么,SFB是如何发挥作用的?

研究发现,随着小鼠逐渐失去SFB,它们的Th17细胞总数也下降,体重增加,出现胰岛素抵抗和葡萄糖不耐症等代谢综合征的症状。

这里不得不提一下,该过程中重要的细胞——Th17.

SFB会与免疫系统进行“对话”,促进产生一种特定类型的免疫细胞——Th17

可以这么说,Th17细胞是一种保护小鼠免受代谢疾病影响的“盔甲”。

这些免疫细胞释放影响肠壁的蛋白质,防止多余脂肪被组织吸收进入血液。这些免疫细胞产生的分子可以减缓肠道对‘坏’脂质的吸收,并减少肠道炎症。也就是说,它们保持肠道健康,保护身体不吸收致病的脂质。

当喂食高脂肪、高糖饮食时,小鼠肠道中的Th17细胞发生了什么变化?

小鼠迅速发展出代谢疾病的几个特征(体重增加、葡萄糖不耐受),并显示出肠道Th17细胞的减少

更具体地说,研究人员发现Th17水平的下降是由于饮食诱导的肠道微生物群的变化。已知促进Th17的细菌被其他种类的肠道细菌所取代。尤其是似乎增加了有害菌的数量,最终降低了Th17的水平。

也就是说,通过干扰微生物组分间接破坏了这种盔甲。

研究人员认为,只要动物保持高水平的诱导Th17的肠道细菌,高脂饮食就不会导致负面的代谢效应。

doi.org/10.1016/j.cell.2022.08.005

如果没有健康的肠道菌群,减糖也不能避免疾病

在另一个实验中,研究小组从一组小鼠中去除了SFB,然后喂它们无糖、高脂肪的饮食,发现这些小鼠尽管没有吃糖,但体重也增加了,并患有代谢疾病。那么,是什么导致体重增加呢?

本质上,如果没有健康的肠道菌群,小鼠就不会产生足够的Th17细胞,因此也就缺乏前面所说的“盔甲”。

研究小组发现可以通过两种方式提供这种盔甲:

  • 给小鼠喂食富含SFB的益生菌;
  • 或直接将Th17细胞注射到小鼠体内。

这表明,如果小鼠的肠道中已经耗尽了SFB,那么减少糖的摄入并不能帮助小鼠避免代谢疾病。

如果把这一发现放到人类身上,那就意味着如果一个人的肠道微生物群已经被破坏,那么减少摄入糖不一定会有帮助。

我们可以想象,一些流行的饮食干预,如尽量减少糖可能只对微生物群中有某些细菌种群的人有效。

研究人员说,可能需要额外的干预措施来恢复这些人的肠道细菌或Th17细胞

当然也需要更多的研究来了解类似的机制是否在人体肠道中起作用。

通过以上研究,我们可以大致了解糖对肠道菌群的影响,及带来的危害,因此,一定程度上减少糖的摄入会带来好处。

如何帮助自己控糖?

重新控制饮食习惯,试着对糖说不

当对糖强烈的渴望袭来时,试着忽略它,深呼吸几次,然后问自己:

  • 这是我的渴望吗?
  • 有没有可能是菌群在搞怪?
  • 微生物想操纵我来得到它们自己的糖?

意识到微生物只是利用你来喂养它自己,是很好的第一步,也就是重新控制饮食习惯

当你减少糖的摄入量时,这些以糖为食的微生物会进入饥饿模式,与此同时,你对糖的渴望会变得更加强烈,可能会“说服自己”去得到它。

编辑​

识别糖的触发因素

有时候会在特定的情况下渴望吃糖。

想想上一次吃甜食是什么时候,是感到有压力吗?疲劳?抑郁?焦虑?压抑?紧张?……

可以把这些糖分触发因素想象成某个按钮。这个按钮一触碰就想吃甜食类食物,每个人的按钮可能不一样,有些人是焦虑,有些人是疲劳…

了解属于你自己的糖分触发因素,会帮助你在渴望到来时安然度过。有意识地关注你的渴望,是减少 对甜食不受控的一个强有力的方法。

喂养健康的肠道细菌

  • 食用富含益生元的食物

相对较为健康的做法是多吃真正的食物,并在饮食中加入更多的植物,来自植物的益生元可以喂养我们的微生物群,例如:

菊苣、朝鲜蓟、蒲公英嫩叶、芦笋、大蒜、洋葱、苹果、浆果类、香蕉、菠菜、羽衣甘蓝、胡萝卜、番茄、山药、黄瓜、芝麻菜等。

  • 食用富含益生菌的食物

酸奶、泡菜、味噌、开菲尔、康普茶等。

  • 避免喂养有害菌的食物

尽可能避免加工和包装食品、含糖食物、酗酒等。

养成良好的生活方式

  • 好好吃饭

研究表明,如果你在吃饭时看电视或刷手机看各类小视频等,可能会吃得更快,嚼得更少,吃得更多。

吃饭时,试着把手机放在一边,关掉电视,有意识地彻底咀嚼每一口食物,并真正品尝味道,可能会吃的更少,消化更好。

看到一些新闻或对即将截止的工作任务感到压力,你会很难从膳食中吸收营养。因此,坐下来吃饭之前,试着深呼吸让自己平静下来。

其他还包括:适当运动、规律作息、保持充足的睡眠、适量沐浴阳光,保持良好的心情等方式。

扩展阅读:

菌群多样性是如何形成的,与健康的关系,如何改善?

20种有效改善肠道健康的科学方法

此外,减少糖的摄入并不意味着转向人工甜味剂。经常食用工甜味剂可能会对微生物群产生负面影响,导致代谢紊乱和肥胖。

扩展阅读:

你的焦虑可能与食品添加剂有关,警惕食品添加剂引起的微生物群变化

现代人的嗜辣程度日益走高,很多人已经到了无辣不欢的境界。
「辣」准确地说并不是一种味觉,可以说是痛觉,是舌、口腔和鼻腔粘膜受到刺激产生的辛辣、刺痛、灼热的感觉。
「辣」让人一边痛不欲生,一边欲罢不能。
「辣」对身体的影响褒贬不一。有人说吃辣上火,腹泻,长痘痘;有人说吃辣抗氧化,助消化,降胆固醇…

辣椒素的吸收部位:

辣椒素在胃和小肠上部被被动吸收的效率超过80%。

吃辣的健康益处

• 支持正常的血液循环,有利于心血管健康,以及降低患心脏病的风险。

• 促进新陈代谢和脂肪燃烧。一些研究表明,随着时间的推移,食用辛辣食物与体重增加较少之间存在联系,因为辛辣香料可能会增加卡路里燃烧。

• 增强消化健康支持肠道微生物群中的有益菌生长

• 提供抗氧化剂,包括抗氧化应激的酚类化合物。

• 减少炎症,包括胃肠道,以及影响关节和动脉的炎症。

• 通过表现出抗菌活性来支持免疫功能。

• 可能降低慢性病风险,包括高血压、高低密度脂蛋白胆固醇、二型糖尿病、心脏病和中风。

• 降低某些癌症的风险,包括食道癌和直肠癌等。

• 潜在地降低了过早死亡的风险。在一项研究中,与每周吃少于一次辛辣食物的成年人相比,那些每周吃六到七天辛辣食物的人受益于降低14%的风险总死亡率。

……

看到这里全是吃辣的益处,是不是想赶紧吃吃吃,先别急,这也要看辣的程度。

辣椒素(CAP)是辣椒的主要辛辣成分。

  • 在低剂量时,辣椒素具有广泛的生物活性,包括抗氧化、抗肥胖、减轻疼痛和抗炎作用等。
  • 在高剂量时,则会引起胃肠道不适,如胃灼热、腹泻、疼痛等症状。

接下来我们来了解一下,不同剂量的辣椒素引起的肠道菌群变化,以及肠道菌群在辣椒素对抗疾病(肥胖,糖尿病等)中的作用。

不同剂量辣椒素引起的肠道菌群变化

一项研究评估了辣椒素对胃肠道健康的影响,并研究辣椒素是否调节短链脂肪酸和肠道微生物群的组成。

以40、60和80 mg/kg的剂量给小鼠施用辣椒素。

高剂量的辣椒素会损害胃肠道组织

对照组小鼠的结肠组织显示出丰富的杯状细胞和具有整齐绒毛的健康隐窝结构;

辣椒素干预组小鼠显示出炎性细胞浸润,以及隐窝和杯状细胞的丧失

与对照组中的小鼠相比,用60 mg/kg 辣椒素处理的小鼠显示出产生粘液的杯状细胞的损失

80 mg/kg 辣椒素处理的小鼠中,炎症细胞浸润明显

doi.org/10.3390/foods11050686

辣椒素引起的炎症反应,与剂量有关

辣椒素影响胃和回肠中的抗炎细胞因子水平,但不会导致严重的炎症损伤

炎症反应与胃肠道损伤密切相关。研究表明,辣椒素诱导小鼠胃肠道炎症的主要特征是炎症细胞因子水平升高,尤其是IL-10、IL-1β和TNF-α

注:IL-10是一种关键的细胞因子,可以减少炎症介质的释放,并显示抗炎特性。

IL-1β和TNF-α是引起粘膜炎症和肠屏障损伤的重要促炎细胞因子。

高剂量辣椒素可能导致空肠和结肠的炎症损伤

结果表明,80 mg/kg 辣椒素干预组可导致所有胃肠组织中IL-10水平降低,空肠和结肠中IL-1β和TNF-α水平升高。

辣椒素调节肠道菌群的组成

多样性下降

与对照组相比,40 mg/kg 辣椒素组的香浓指数显著下降(p<0.001),Chao1指数略有下降。同时,与对照组相比,60 mg/kg辣椒素组显著降低了Chao1指数。

使用加权UniFrac距离的PCoA测量β多样性,揭示了对照组和不同剂量辣椒素组之间的不同菌群。

在门的水平上,对照组小鼠中:

  • 优势门为拟杆菌(57.24%)和厚壁菌(37.24%);
  • 其次是脱铁杆菌门Deferribacteres(1.68%)、Verrucomicrobia(1.41%)和变形杆菌属(1.06%)。

与对照组相比,40 mg/kg 辣椒素干预著降低了拟杆菌的丰度至34.17%,但增加了厚壁菌的丰度(56.64%)(p<0.0001)。

80 mg/kg的辣椒素干预显著降低了拟杆的相对丰度,增加了放线菌变形杆菌的丰度。

变形杆菌的存在是肠道微生物群稳态失衡的标志,与腹泻症状和炎症密切相关。

辣椒组的优势细菌标记物

对照组、40、60和 80mg/kg 辣椒素干预组中分别发现了优势细菌标记物。

差异最大的属包括丁酸杆菌属、乳杆菌属、粪杆菌属、科氏杆菌属_UCG_002、双歧杆菌属、Rikenellaceae_RC9_肠组、拟杆菌属、Alistites属Dubosiella属

高剂量增加了:双歧杆菌和粪杆菌的比例

对具有显著差异的选定属的相对丰度进行了分析,表明辣椒素处理以剂量依赖的方式增加了双歧杆菌粪杆菌的比例,但仅在80 mg/kg 辣椒素干预组中显示出显著变化

Faecalibacterium被认为是胃肠道疾病的生物指示剂,并与丁酸生成呈正相关。这可能是60和80 mg/kg 辣椒素组小鼠盲肠丁酸水平显著升高的原因。

在辣椒素干预组中,尤其是在40 mg/kg 辣椒素干预的组中,乳酸杆菌和Alistites的相对丰度显著降低

与对照组相比,40 mg/kg 辣椒素干预显著提高Dubosiella的比例,但减少了拟杆菌、丁酸单胞菌和Rikenellaceae_RC9_gut_group的丰度。

注:有研究曾报道,Dubosiella可以抑制小鼠的肥胖。

80 mg/kg 辣椒素干预后:Coriobacteriaceae_UCG_002的丰度增加。

注:Coriobacteriaceae_UCG_002可以通过产生必需氨基酸和发酵膳食蛋白而对宿主有利。

辣椒素在对抗疾病中的作用

辣椒素的抗肥胖作用

辣椒素已被证明能够引起饱腹感,减少热量摄入,增加能量消耗,并增强脂肪氧化,这反过来可能导致体重减轻。

厚壁菌/拟杆菌 ↑↑↑↑

大量研究表明,在以辣椒素作为补充的高脂肪诱导小鼠模型中,厚壁菌/拟杆菌的比率会更

发现肠道菌群失调可减少拟杆菌,并增强在肥胖人类和动物肠道中观察到的分泌革兰氏阴性病原体的厚壁菌和脂多糖。

AKK菌 ↑↑↑

最近,还研究了辣椒素的抗肥胖作用,与肠道微生物群的变化、喂食高脂肪辣椒素小鼠中变形菌门的减少以及对宿主新陈代谢有益的粘液降解细菌Akkermansia muciniphila 的高丰度有关。

Faecalibacteria ↑↑↑

辣椒素对肠道和微生物群有消炎作用。辣椒素可以增加Faecalibacteria,从而有助于防止肥胖,调节血糖水平,防止肠道炎症

产丁酸菌 ↑↑↑

此外,饮食中的辣椒素可以诱导产生丁酸盐的瘤胃球菌科和拉氏螺旋菌科的水平增加,但也可以刺激盲肠产丁酸细菌和丁酸盐水平的升高,以抑制结肠CB1受体,并减少LPS的生物合成。

注:丁酸盐的好处:保护肠道内壁,有助于肠漏的愈合,保护大脑和神经系统,它能增强免疫系统,更有效地对抗感染。

刺激微生物群减少饥饿激素——饥饿素

胃内产生的一种肽被称为“饥饿激素”.它是肠道在肠道微生物的帮助下产生的一种激素。它不仅能影响食欲,还能促进身体储存脂肪的能力。

辣椒素通过刺激微生物群向身体发送信号,告诉它减少饥饿素,从而帮助你控制饥饿。

综上所述,辣椒素是一种有效的抗肥胖化合物。补充后,它会激活肠道内的某些受体,称为TRPV1受体。一旦打开,这些受体向身体发送信号,告诉身体增加肠道菌群Akkermansia muciniphila。更高比例的Akk菌促进减肥和调节血糖水平,因此有助于控制糖尿病和肥胖症。

辣椒素抗糖尿病作用

大量体内和体外研究表明,辣椒素在改善葡萄糖代谢方面发挥着重要作用。早些时候已经证明,在糖尿病大鼠中,系统性辣椒素激活可导致辣椒素敏感细胞变性和葡萄糖诱发胰岛素分泌的长期变化。

补充辣椒素(100 mg/kg)的雄性肥胖Zucker大鼠的血浆CGRP水平升高,同时通过辣椒素诱导的感觉神经脱敏改善糖耐量

新生辣椒素治疗SD大鼠(50 mg/kg)胰岛素介导的糖代谢增加,通过辣椒素诱导的含有神经肽的感觉神经增强体内胰岛素敏感性

患有糖尿病的雄性Wistar大鼠以1 mg/kg·天的剂量长期服用辣椒素8周,表明辣椒素具有利尿作用,并增加了尿液表皮生长因子水平。含有高酚和辣椒素含量的红辣椒茎(9.7 mg/g,DW)具有较强的α-淀粉酶和α-葡萄糖苷酶抑制作用

所有这些发现表明,辣椒素敏感结构一定参与了调节胰岛素分泌和血糖

一项随机双盲临床试验表明,含有辣椒素的辣椒补充剂(5 mg/d辣椒素)定期改善妊娠期糖尿病妇女的餐后高血糖和高胰岛素血症以及空腹脂代谢紊乱。

膳食辣椒素通过对肠道微生物群的调节作用影响葡萄糖稳态和肥胖的拟议途径

doi: 10.3390/molecules25235681

辣椒素可降低2型糖尿病小鼠体内乳酸杆菌的丰度(db/db),从而降低胆汁盐水解酶活性(BSHa),增加肠道中结合胆汁酸(BA)的水平,尤其是法尼样X受体(FXR)拮抗剂牛磺酸-β-鼠胆酸(TβMCA)。FXR信号发生改变,肠肝FXR-FGF15轴(FGF15成纤维细胞生长因子15)也受到抑制,导致胆固醇7α-羟化酶(CYP7A1)表达上调,肝BA合成增强。在肥胖糖尿病小鼠中,辣椒素增加Roseburia抑制拟杆菌和副杆的丰度,随后粪便丁酸水平和血浆胰高血糖素样肽-1(GLP-1增加,血浆总ghrelin和促炎细胞因子减少

辣椒素通过调节肠-脑(下丘脑)轴,最终针对棕色脂肪组织、白色脂肪组织和小鼠食物摄入量,在高脂饮食喂养的小鼠中发挥抗肥胖作用。辣椒素减少了能够分泌LPS(i)(肠道细菌脂多糖)的革兰氏阴性病原体的数量,如S24_7科成员,并增加了高脂饮食小鼠中产丁酸菌的数量(例如,瘤胃球菌科Lachnospiraceae),从而增加了粪便丁酸盐。辣椒素可减弱高脂饮食小鼠肠道通透性增加和细菌移位,并抑制肠道大麻素受体1型(CB1(i))的表达。

通过这些途径,辣椒素增加了这些肥胖小鼠的肠道屏障强度,同时减少了肠道菌群改变所产生的高水平LPS(i),从而降低了高水平血浆循环LPS.

TRPV1通道在感觉异常中起着核心作用,并在糖尿病动物模型中显示出高表达水平。

“恶性循环假说”指出,肥胖期间TRPV1对感觉神经的激活可能导致持续的神经肽物质P(SP)和CGRP释放,从而阻止胰岛素介导的葡萄糖摄取,最终导致代偿性高胰岛素血症(下图)。因为CGRP可以减少胰岛素分泌,而SP可以诱导胰岛素抵抗,它们会引发一个恶性循环,从而导致2型糖尿病发病。

辣椒素作为一种TRPV1激动剂,可能会打破这种恶性循环,并有可能改善胰岛素分泌和胰岛素敏感性

辣椒素抗肥胖、抗糖尿病和抗高血压的可能机制

doi.org/10.1080/10408398.2021.1884840

抗肥胖机制:

通过磷酸化激活AMPK抑制ACC,抑制ACC降低丙二酰辅酶a浓度,导致CPT-1抑制解除,脂肪酸(FA)氧化增加,减少肌肉内脂质堆积。此外,辣椒素(CAP)没有增加HFD喂养的动物中UCP3的表达,但增加了正常肌肉细胞中的表达,因此影响产热。此外,CAP可能增加PRDM-16的表达,并促进其与PPARγ的相互作用,以及增加PGC-1α的表达来触发BAT分化和WAT褐变,从而增加产热和能量消耗来对抗肥胖。

抗糖尿病机制:

TRPV1在感觉神经上的激活可能导致神经肽P物质(SP)和降钙素基因相关肽(CGRP)的持续释放,从而阻断胰岛素介导的葡萄糖摄取。

抗高血压机制:

CAP诱导TRPV1激活Ca2+内流和PKA介导的内皮一氧化氮合酶(eNOS)磷酸化。此外,通过CAP激活TRPV1,通过增加α-平滑肌肌动蛋白(α-SMA)和SM22α的表达,减少骨桥蛋白(OPN)的表达,抑制PI3K/Akt信号通路,抑制高血压期间血管平滑肌细胞(VSMC)的表型转化,从而减轻颅内小动脉重塑。

辣椒素抗高血压作用

几项动物研究显示了辣椒素或辣椒摄入量与高血压之间的密切关系。

辣椒素对体内血压影响的关键研究综述

doi.org/10.1080/10408398.2021.1884840

一项包含9273名健康成年人的横断面研究表明,女性参与者中高频率的辛辣食物消费与高血压的低风险显著相关,但男性参与者中没有。

在1991年至2011年的中国健康与营养调查中,一项对13670名20-75岁成年人的队列研究表明,每1000人中不食用辣椒或每天食用1-20、20.1-50、> 50.1克辣椒的高血压发病率分别为30.5、33.4、31.9和24.0,表明辣椒食用量高血压风险负相关

辣椒素抑制高血压的机制可能涉及一些关键酶和不同的信号通路。

包括通过TRPV1激活、PKA活性激活和eNOS磷酸化增加以及p38/MAPK途径释放血管舒张神经肽。此外,抑制PI3K/AKT途径,刺激尿钠排泄和利尿,ACE抑制活性和L型钙2+平滑肌细胞中的通道抑制也涉及抗高血压机制。

因此,食用辣椒素可能是一种潜在的抗高血压干预手段。

辣椒素在炎症性肠病中的作用

克罗恩病患者的回肠粘膜碎片显示,Faecalibacterium prausnitzii的丰度较低,这与6个月后内镜下复发有关。众所周知,Faecalibacterium prausnitzii具有抗炎特性,在外周血单核细胞培养物和结肠炎动物模型中,分别减少促炎细胞因子的产生,并增加抗炎细胞因子IL-10的分泌。

扩展阅读:

肠道核心菌属——普拉梭菌(F. Prausnitzii),预防炎症的下一代益生菌

富含 CAP 的饮食可能对克罗恩病产生有益的影响,因为它们会增加厚壁菌门/拟杆菌门的比例粪杆菌的丰度,从而将免疫平衡改变为对食物抗原和共生细菌更具耐受性的状态。

辣椒素抗癌症作用

体外和体内研究表明辣椒素对不同种类的癌症具有抗癌作用,如胃癌、结肠癌、前列腺癌、胰腺癌、肺癌、乳腺癌、膀胱癌等。

辣椒素潜在的抗癌机制可能与其对肿瘤细胞凋亡、自噬和转移的影响有关。

辣椒素通过诱导凋亡和抑制血管生成来抑制各种永生化或恶性细胞系的生长。

辣椒素可以通过调节其广泛的分子靶标来调节细胞增殖和凋亡,这些分子靶标包括转录因子、生长因子及其受体、细胞因子、酶和基因。

除了细胞凋亡之外,辣椒素在防止体液细胞转移方面也起着重要的作用。

体内研究评估辣椒素在各种癌症中的抗癌机制

doi.org/10.1080/10408398.2021.1884840

总之,辣椒素的抗癌机制如下图,包括细胞凋亡的激活、细胞生长停滞、细胞自噬以及血管生成和转移的抑

辣椒素可能的抗癌作用机制:

  • 通过mAPK/JNK途径和hedgehog途径诱导细胞增殖;
  • p53途径诱导细胞凋亡;
  • AKT/PI3K-mTOR途径诱导细胞自噬发挥。

因此,辣椒素有可能成为一种预防和治疗癌症的新疗法。

辣椒素抗癌的关键机制

doi.org/10.1080/10408398.2021.1884840

CAP通过抑制Akt/mTOR途径抑制Akt磷酸化并诱导自噬。此外,CAP可以增加磷酸酶和张力蛋白同源物(PTEN)的表达,导致己糖激酶-2(hk2)表达的减少,从而抑制肿瘤细胞糖酵解。此外,TPPV1激活了Ca2+内流可以激活MAPK,进而阻断Hedgehog通路,抑制细胞增殖。此外,细胞内GSH水平的降低可能导致ROS的增加,进而激活线粒体死亡途径。CAP可能上调促凋亡基因,包括Cyc、AIF、Bax和裂解的caspase-3和-9,同时下调抗凋亡基因BCl2。P38和JNK MAPK通路以及AMPK/p53通路的激活也参与诱导细胞周期阻滞和凋亡。此外,CAP通过AMPK-SIRT1和AMPK-IκBα信号通路抑制NF-κB p65,从而抑制肿瘤细胞的迁移和侵袭,并引起基质金属蛋白酶-9 (MMP-9)的下调。

辣椒素的认知干预作用

在动物研究中,辣椒素在认知功能中的作用是有争议的。一些研究表明辣椒素具有神经毒性。

然而,辣椒素也被证明对认知功能老年痴呆症积极作用。例如,已经证明辣椒素对大鼠大脑中应激诱导的阿尔茨海默样变化具有预防作用。

具体而言,辣椒素可以部分减轻冷水应激诱导的大鼠空间记忆保留缺陷、LTP抑制、树突形态异常和突触相关蛋白丢失

此外,辣椒素可以降低含辣椒素的高脂饮食喂养的SD大鼠患阿尔茨海默的风险。

关于食用辣椒与认知功能之间关系的流行病学研究有限。

目前,一项针对338名40岁以上参与者的调查表明,高水平的辣椒素饮食可能对中老年人的认知功能和AD血清Aβ水平产生有利影响,中国健康与营养调查(CHNS)在4582名中国成年人中收集了15年的数据,这些数据支持辣椒摄入量与认知功能之间存在正相关

研究表明,与非消费者相比,那些累积平均辣椒摄入量超过50克/天的人,其总体认知功能的回归系数(和95%CI)为−1.13 (−1.71至0.54),自报记忆力差和自报记忆能力下降的比值比(和95%CI)分别为2.12(1.63–2.77)和1.56(1.23–1.97).

与食物一起摄入的辣椒素可以通过胃肠道中的非主动过程被迅速吸收。在被运输到门静脉,然后进入人和啮齿动物的全身后,约5%的未改变的辣椒素穿过血脑屏障并进入脑组织

辣椒素受体TRPV1被证实可增加海马胰岛素信号通路,从而抑制GSK-3β,防止ad相关的tau蛋白过度磷酸化。

此外,自噬在β-淀粉样蛋白的生成和代谢中也起着重要作用,tau的组装及其功能障碍可能导致阿尔茨海默病的进展。

总之,辣椒素可以通过抑制tau蛋白过度磷酸化来减轻阿尔茨海默样神经病理改变和认知障碍,这表明它可能是一种有前途的阿尔茨海默治疗干预方法。

扩展阅读:

阿尔茨海默病de饮食-微生物-脑轴

辣椒素抗抑郁作用

膳食辣椒素可改善LPS诱导的抑郁样行为小鼠的抑郁样行为,如厌恶刺激、快感缺失和绝望等得到缓解。

辣椒素可以恢复抑郁症相关微生物群的异常变化。特别是在属水平上,辣椒素增加了某些关键微生物的相对丰度,如瘤胃球菌、普雷沃菌、 Allobaculum, Sutterella, Oscillospira.

相关分析显示,微生物群落组成的变化与抑郁行为改善、5-HT下降和TNF-α水平密切相关。

注:5-HT是一种代表性的单胺类神经递质,涉及调节几种生理活动和行为,包括与情绪和焦虑有关的活动和行为,并且低水平的5-HT已被证明与抑郁有关。

这些结果表明,膳食辣椒素可以调节肠道菌群的结构和数量,并在预防抑郁方面发挥重要作用。

吃辣小课堂

▸ 健康的辛辣食物有哪些?

  • 黑胡椒
  • 辣椒粉 (由干的磨碎的红辣椒制成)
  • 芥末 (包括芥末籽或粉末和瓶装类型,如第戎芥末)
  • 姜黄 (咖喱酱的主要成分,通常与胡椒和红辣椒一起使用)
  • 辣根
  • 红辣椒
  • 波布拉诺辣椒
  • 塞拉诺辣椒
  • 墨西哥胡椒纸
  • 哈瓦那辣椒
  • 泰国辣椒
  • 四川胡椒子
  • 辣椒酱 (由辣椒、糖、盐和醋制成的酱)
  • 红辣椒酱 (由红辣椒片制成的酱)
  • 哈里萨辣酱 (由大蒜、油和红辣椒制成的糊状物)
  • 印度鬼椒 (最辣的辣椒之一)

▸ 什么人群不适合吃辣?

虽然辛辣食物不会引起溃疡,但在部分人中也会引发腹痛。

一项研究特别强调,经常食用辛辣食物会引发一些消化不良患者上消化道症状。对于肠易激综合征(IBS)患者,辛辣食物也会引发症状。

对于炎症性肠病(或IBD-克罗恩病或溃疡性结肠炎)患者,辛辣食物也会引发一些症状。

如果患有肛裂,可能会感觉到烧灼感。一项研究表明,辛辣食物会加重与肛裂相关的症状。

其他患胃酸倒流、胃灼热、腹泻、胃痛、怀孕期间的晨吐或恶心等人群,则需注意谨慎吃辣。

▸ 准备辣椒食物要注意什么?

准备辣椒时要戴手套,或者至少处理完后要彻底洗手。

保护眼睛和其他敏感区域。切辣椒时考虑戴眼镜。洗手前不要揉眼睛、鼻子或嘴巴等部位。

▸ 如何适应辛辣食物?

从微辣的食物开始,每周吃点辣的,舌头会慢慢习惯这种感觉,身体就像对酒精和咖啡因产生耐受性一样,慢慢也会对辣椒素产生耐受性。

▸ 一不小心吃太多辣如何缓解?

——牛奶或酸性饮料中和辣

辣的受不了的时候,可以喝点牛奶缓解,牛奶中的脂肪和蛋白质会中和食物中的香料,如果没有牛奶,可以喝冰水酸性饮料。

普通的一杯水不会对解辣有帮助,因为水会将辣椒素扩散到嘴里,而柠檬水、橙汁或葡萄汁之类的酸性饮品都可以。

——不同质地的食物分散注意力

不同食物的质地可能会分散你对辣的注意力,吃口卷饼、饼干、面包丁之类的固体食物,它们本身其实并不能对抗辣椒素,但会给舌头一些不同的东西来关注。

——碳水化合物有助于吸收辣椒素

淀粉类碳水化合物会形成一道屏障,使辣椒素更难进入味蕾。

——吃饭的时候用嘴呼吸

每一口之间,慢慢呼气,把辣吹走,让嘴冷却下来。如果真的很痛,想象自己真的把辣椒片吹向空中,可能有助于减轻压力

——提前吃点抗酸剂来防止胃不舒服

可以提前吃点抗酸剂或吃点小零食,比如三明治或土豆泥来填饱肚子,让辣椒素进入肠道后有所保留。注意不要过量使用抗酸剂,吃太多会扰乱胃产生酸的方式。

——记住熬过15分钟

辛辣食物的辣劲儿只需要15分钟就可以消散。如果感觉嘴巴着火一样,只要提醒自己这种感觉不会永远持续下去,不用害怕。

主要参考文献:

Naqvi S, Asar TO, Kumar V, Al-Abbasi FA, Alhayyani S, Kamal MA, Anwar F. A cross-talk between gut microbiome, salt and hypertension. Biomed Pharmacother. 2021 Feb;134:111156. doi: 10.1016/j.biopha.2020.111156. Epub 2021 Jan 2. PMID: 33401080.

Do MH, Lee HB, Oh MJ, Jhun H, Ha SK, Park HY. Consumption of salt leads to ameliorate symptoms of metabolic disorder and change of gut microbiota. Eur J Nutr. 2020 Dec;59(8):3779-3790. doi: 10.1007/s00394-020-02209-0. Epub 2020 Mar 3. PMID: 32125529.

Czesnikiewicz-Guzik M, Müller DN. Scientists on the Spot: Salt, the microbiome, and cardiovascular diseases. Cardiovasc Res. 2018 Aug 1;114(10):e72-e73. doi: 10.1093/cvr/cvy171. PMID: 30052920.

Na SY, Janakiraman M, Leliavski A, Krishnamoorthy G. High-salt diet suppresses autoimmune demyelination by regulating the blood-brain barrier permeability. Proc Natl Acad Sci U S A. 2021 Mar 23;118(12):e2025944118. doi: 10.1073/pnas.2025944118. PMID: 33723078; PMCID: PMC7999868.

National Academies of Sciences, Engineering, and Medicine; Health and Medicine Division; Food and Nutrition Board; Committee to Review the Dietary Reference Intakes for Sodium and Potassium. Dietary Reference Intakes for Sodium and Potassium. Oria M, Harrison M, Stallings VA, editors. Washington (DC): National Academies Press (US); 2019 Mar 5. PMID: 30844154.

Ma Y, He FJ, Sun Q, Yuan C, Kieneker LM, Curhan GC, MacGregor GA, Bakker SJL, Campbell NRC, Wang M, Rimm EB, Manson JE, Willett WC, Hofman A, Gansevoort RT, Cook NR, Hu FB. 24-Hour Urinary Sodium and Potassium Excretion and Cardiovascular Risk. N Engl J Med. 2022 Jan 20;386(3):252-263. doi: 10.1056/NEJMoa2109794. Epub 2021 Nov 13. PMID: 34767706; PMCID: PMC9153854.

Rizvi ZA, Dalal R, Sadhu S, Kumar Y, Kumar S, Gupta SK, Tripathy MR, Rathore DK, Awasthi A. High-salt diet mediates interplay between NK cells and gut microbiota to induce potent tumor immunity. Sci Adv. 2021 Sep 10;7(37):eabg5016. doi: 10.1126/sciadv.abg5016. Epub 2021 Sep 10. PMID: 34516769; PMCID: PMC8442882.

Kawano Y, Edwards M, Huang Y, Bilate AM, Araujo LP, Tanoue T, Atarashi K, Ladinsky MS, Reiner SL, Wang HH, Mucida D, Honda K, Ivanov II. Microbiota imbalance induced by dietary sugar disrupts immune-mediated protection from metabolic syndrome. Cell. 2022 Sep 15;185(19):3501-3519.e20. doi: 10.1016/j.cell.2022.08.005. Epub 2022 Aug 29. PMID: 36041436.

Xia J, Gu L, Guo Y, Feng H, Chen S, Jurat J, Fu W, Zhang D. Gut Microbiota Mediates the Preventive Effects of Dietary Capsaicin Against Depression-Like Behavior Induced by Lipopolysaccharide in Mice. Front Cell Infect Microbiol. 2021 Apr 27;11:627608. doi: 10.3389/fcimb.2021.627608. PMID: 33987106; PMCID: PMC8110911.

Wang F, Xue Y, Fu L, Wang Y, He M, Zhao L, Liao X. Extraction, purification, bioactivity and pharmacological effects of capsaicin: a review. Crit Rev Food Sci Nutr. 2022;62(19):5322-5348. doi: 10.1080/10408398.2021.1884840. Epub 2021 Feb 16. PMID: 33591238.

Xiang Q, Tang X, Cui S, Zhang Q, Liu X, Zhao J, Zhang H, Mao B, Chen W. Capsaicin, the Spicy Ingredient of Chili Peppers: Effects on Gastrointestinal Tract and Composition of Gut Microbiota at Various Dosages. Foods. 2022 Feb 25;11(5):686. doi: 10.3390/foods11050686. PMID: 35267319; PMCID: PMC8909049.

肠道微生物群与五种癌症的相互作用:致癌 -> 治疗 -> 预后

谷禾健康

肠道微生物群在癌症中发挥免疫调节和抗肿瘤作用,肠道微生物失调可诱导有毒代谢物的释放,并在宿主体内表现出促肿瘤作用。肠道微生物群也能调节标准化疗药物和天然抗癌药物的疗效

本文列举5种常见的癌症(结直肠癌、肺癌、乳腺癌、前列腺癌、胃癌),以及肠道微生物群在癌症中的复杂作用。

肠道微生物群与癌症发病的关系概览

K. Jaye et al. Critical Reviews in Oncology / Hematology,2021

在进入具体的5种癌症章节之前,我们先来了解一下,微生物群与癌症的关系。有研究人员将微生物群和癌症之间的关系分为三个层次: 一级、二级和三级相互作用

01 微生物群与肿瘤微环境的一级、二级和三级相互作用

K. Jaye et al. Critical Reviews in Oncology / Hematology,2021

一级相互作用(主要)

主要的相互作用考虑了肿瘤微环境和微生物群之间的直接联系。几项体内和体外研究主要从两个方面支持了这种关系:

a) 肠道微生物群可通过生物失调导致致癌

b) 肠道微生物可通过调节肿瘤活性干扰化疗药物的疗效

二级相互作用(次要)

次要的相互作用考虑了组织或器官系统的微生物群和同一大体分区内的肿瘤之间的联系。这种相互作用水平有助于识别用于筛选不同癌症类型的潜在生物标志物。特别地,来自局部组织或器官环境的次级微生物群可包含来自肿瘤微环境和初级微生物群落的痕迹,其可用作癌症的生物标志物;但这些诊断过程往往很复杂。

三级相互作用

肠道微生物群和肿瘤之间的三级相互作用解释了位于体内不同部位的肿瘤上的微生物群的影响。对这种相互作用水平的研究对于确定生理上遥远的微生物种类和感兴趣的肿瘤之间的关系具有重要意义,这对于确定癌症患者中潜在治疗选择的功效也具有临床相关性。

这些三级相互作用可以通过以下方式影响癌症:

  • 调节化疗的功效和毒性
  • 修饰免疫系统
  • 产生调节激素或宿主代谢的代谢物(所述代谢物可以影响癌症表型和/或结果 )

肠道微生物群可以通过启动代谢过程(包括水解和还原)来调节口服药物代谢,这直接影响药物毒性,并可以增强或抑制药物活性。微生物群与肿瘤之间的三级相互作用也可以帮助诊断不同类型的癌症。

肠道微生物群的促肿瘤、抗肿瘤和免疫调节作用

K. Jaye et al. Critical Reviews in Oncology / Hematology,2021

正确认识幽门螺杆菌

谷禾健康

幽门螺杆菌(helicobacterpylori,H.pylori)是一种独特的,能持续定植于人类胃粘膜并能引起胃感染的细菌。

幽门螺杆菌是革兰氏阴性,螺旋形,微需氧细菌,定居于人类胃粘膜中。世界上有超过一半的人感染了幽门螺杆菌,但很多没有临床症状。幽门螺杆菌及其患病率在某些人群中高达80%。

据推测,幽门螺杆菌可能是人类土著微生物组的一部分,它与人类宿主之间有着很复杂的关系。

本文主要讨论幽门螺杆菌是如何与人类共同进化的,可能的机制可以解释基于人群的研究中幽门螺杆菌感染与几种疾病的发展之间的正相关性和负相关性,以及炎症和/或微生物组的变化是如何联系的各自的结果。

01 幽门螺杆菌的症状和并发症

大多数幽门螺杆菌感染者并没有明显症状,但当症状出现时,一般是以下几种:

恶心,胃痛或胃灼热,空腹时腹部疼痛加剧。

怎样的情况有可能感染此菌?

幽门螺杆菌可能通过接触感染者的唾液、呕吐物或粪便传播,食用受污染的食物或水也会感染。

大多数感染幽门螺杆菌的人都是在儿童时期感染的。

有些因素可能会增加感染幽门螺杆菌的风险:  

比如在拥挤的空间生活,没有干净的水,和患有幽门螺杆菌的人一起生活等。

什么情况下需要看医生?

当感觉有不寻常的胃痛或不适时,尤其是持续或反复发作的胃痛;

吞咽困难;

血腥,黑色或柏油样的粪便;

呕吐物带血或看起来像咖啡渣;

以上情况,最好去看医生。

( 如自行随意服用抗生素,效果不好的同时很可能带来抗生素耐药 )

如何诊断幽门螺杆菌?

目前最常见也实惠的方法是呼气检测,从分析到出结果只需数分钟,简单准确。

胃镜检查:做胃镜检查也包括幽门螺杆菌检测,因为可以取到胃里活性组织做病理切片检查。

抗体检查:通过抽血检查,以确定是否感染过幽门螺杆菌以及目前处于感染状态。

幽门螺杆菌会导致并发症?

包括溃疡,胃炎和胃癌。

溃疡约有10%的幽门螺杆菌患者会发展为胃溃疡(疼痛)。当幽门螺杆菌破坏保护胃和小肠内壁的粘膜时,就会发生这种情况,胃酸会渗透到衬里并造成伤害。

幽门螺杆菌可导致90%以上的肠道溃疡和80%的胃溃疡。

溃疡本身也会导致严重的并发症:

 内部出血胃酸或溃疡渗入血管可能导致出血。

阻塞溃疡会阻止食物离开您的胃。

穿孔溃疡可能会深入并穿透胃或肠壁。

腹膜炎 当溃疡引起感染或发炎时,可能发生腹膜炎症(腹膜)。

胃炎胃炎是胃黏膜炎症。幽门螺杆菌是处于患有这种病症的风险增加。

如果不治疗胃炎,可能会导致严重失血,并可能增加患胃癌的风险。胃癌是世界上与癌症相关的死亡的第二大最常见原因。

此外,幽门螺杆菌感染还与其他疾病有关,例如缺血性心脏病,2型糖尿病,贫血,肥胖受试者的不良代谢特征和胰岛素抵抗等。

02 幽门螺杆菌和微生物群

幽门螺杆菌(Hp)感染会在胃微环境中产生剧烈变化,进而影响胃微生物群组成,并可能与肠道微生物群变化有关。可能会触发肠道共生稳态的重大改变,从而出现新的胃肠道平衡。

同时,用于根除幽门螺杆菌的治疗策略可以调节这种生理共生,但也可能相反,受到其特性的影响。感染,饮食,抗生素和/或生活方式会干扰这种共生关系。

幽门螺杆菌感染对胃微生物群的干扰

下一代测序对胃液和活检标本中的人体胃微生物群进行了研究,结果表明胃中存在多种细菌类群,主要由五个门组成,包括放线菌门、拟杆菌门、厚壁菌门、梭菌门和变形菌门。幽门螺杆菌感染极大地改变了胃微生物群的特征。

一项初步研究报道,幽门螺杆菌定植改变了胃微生物群,降低了微生物多样性,根除幽门螺杆菌可以恢复微生物多样性。

幽门螺杆菌可以利用几种机制来调节胃微环境。通过干扰质子泵的表达,幽门螺杆菌可以调节胃腔的酸度,从而使微环境与通常不能在胃中生长的微生物相容。

评估幽门螺杆菌感染对胃微生物群影响的研究

Tao et al., Helicobacter, 2020

此外,由于幽门螺杆菌的存在而改变的免疫反应可能会影响其他微生物群。幽门螺杆菌还可能通过动员抗菌肽或通过营养竞争来改变其他微生物群的生长。一般来说,研究人员表明,幽门螺杆菌的定植与α多样性的显著降低有关。微生物多样性和幽门螺杆菌丰度之间存在反比关系。

幽门螺杆菌感染对肠道微生物群的影响

与幽门螺杆菌阴性对照组相比,胃内有大量幽门螺杆菌的个体具有不同的肠道菌群,这表明胃肠段之间存在相互作用。

大多数研究表明,幽门螺杆菌感染与肠道微生物多样性之间的呈正相关。由于较高的微生物多样性通常与总体较好的健康状况有关,因此,探讨幽门螺杆菌感染后肠道微生物多样性的增加是否对宿主有一些有益的影响将是一个有趣的问题。

幽门螺杆菌感染对肠道微生物群影响的研究分析

Tao et al., Helicobacter, 2020

幽门螺杆菌感染组和阴性对照组的微生物群落结构存在显著差异。

在门水平上的成分分析发现,受感染个体中变形菌的丰度显著增加,这可能是由于幽门螺杆菌从胃转移到肠腔所致。值得注意的是,拟杆菌与厚壁菌(B:F)的比率幽门螺杆菌阳性组中更高。改变的B:F比值与临床相关,因为发现厚壁菌和拟杆菌与宿主的脂质代谢和能量平衡有关。

受感染与没感染组相比,双歧杆菌、乳酸杆菌和嗜粘液阿克曼菌的丰度没有显著差异。其他研究人员发现,幽门螺杆菌感染者体内乳酸杆菌的丰度更高

一项研究发现,在幽门螺杆菌感染的患者中,萎缩性胃炎患者的肠道微生物群中链球菌更为丰富

另一项研究发现,幽门螺杆菌感染的个体表现出短链脂肪酸(SCFA)产生者(如丁酸盐)水平的下降,SCFA对宿主产生有益的代谢作用。

此外,鉴于SCFAs受体在免疫细胞中的普遍表达,这些代谢物被认为在调节肠道内稳态中发挥重要作用。因此,幽门螺杆菌感染时抑制SCFAs的输出可能对人类健康有害

有功能分析指出,在幽门螺杆菌阴性人群中,疾病相关途径更活跃。相比之下,许多代谢途径在感染的患者中的比例过高。因此,微生物群中的功能变化可能是特定于部位的,因为在肠道中观察到的变化与在胃中观察到的变化呈现不同的趋势。

根除疗法对胃微生物群的影响

Tao et al., Helicobacter, 2020

充分的证据表明,成功清除幽门螺杆菌后,胃微生物多样性显著增加,但显示治疗失败后没有改善。研究人员认为恢复可能需要一定的时间,因为他们认为多样性从第0周到第6周和第26周逐渐增加。

此外,研究表明,成功根除幽门螺杆菌后,α多样性可以完全恢复到未感染对照组的水平。相反,尽管在清除幽门螺杆菌后,群落结构也可以部分恢复,但对于是否仍存在显著差异存在争议在根除后组和阴性对照组之间。

一些研究人员发现,接受抗幽门螺杆菌治疗的患者在治疗2个月后,胃微生物群落的组成恢复到未感染儿童的水平,然而,其他研究确定,成功治疗6个月后的成人样本仍显示出不同的菌群结构,阴性对照组则不同。

纳入分析的不同年龄组可能解释了相反的结论,因为另一项招募儿童的研究也发现根除组的菌群结构在治疗4周后与幽门螺杆菌阴性组的菌群结构接近。

根除治疗后评估胃微生物群变化的研究

Tao et al., Helicobacter, 2020

成分分析揭示了幽门螺杆菌的相对丰度治疗后幽门螺杆菌显著下降,而其他主要菌门,包括放线杆菌、拟杆菌、厚壁菌和梭杆菌,则增加

在属水平上,治疗后乳酸杆菌和双歧杆菌(两种公认的益生菌)的数量显著增加

两项研究的功能分析表明,成功治疗后,蛋白质和碳水化合物代谢途径上调。因此幽门螺杆菌感染期间,胃微生物群营养代谢功能受损,根除治疗可部分恢复。然而,预测的功能改变还需要进一步的验证。

根除治疗后肠道微生物群的变化

通过降低酸度,质子泵抑制剂(PPIs)已被证明对肠道微生物群产生显著影响。因此,抗幽门螺杆菌治疗对肠道微生物群的影响是PPIs、抗生素、铋联合应用的共同结果。总的趋势是,α多样性在根除后立即下降,随后又恢复

Tao et al., Helicobacter, 2020

具体来说,恢复需要多长时间仍有待阐明。大多数研究收集了随访2个月内的信息显示α多样性降低,而此后报告与基线无显著差异。

然而,一项研究报告,从第0周到第6周和第26周,Sobs指数Chao指数都在下降没有达到统计学意义。值得注意的是,另一项研究发现,不同的治疗方案对肠道微生物群的影响可能不同。

在临床试验中,三种不同的治疗方案,包括三联疗法、联合疗法和铋四联疗法。结果表明,所有组的α多样性在第2周时都有所下降,但只有接受三联疗法的患者在第8周时才具有基本α多样性,而其他两组的α多样性在治疗后1年也无法恢复

希望将来的研究验证根除疗法是否会导致肠道菌群的持续紊乱,以及不同的治疗方案如何影响可逆性。

分析根除疗法对肠道微生物群影响的研究

Tao et al., Helicobacter, 2020

 益生菌的补充可以缓解抗生素引起的多样性和结构紊乱 

益生菌,已被证明可稳定微生物群并改善胃肠道症状。在门水平上,治疗6个月后观察到厚壁菌群增加和拟杆菌减少,表明在幽门螺杆菌感染的个体中观察到的高B:F比率逆转。在另一项研究中报告了9个类似的结果。

临床证据支持肥胖与B:F比率降低相关。因此,这些研究中检测到的B:F比率降低可能为根除治疗后体重增加提供了一种可能的解释。然而,一些研究人员说明,在根除18个月后,降低的B:F比率可以逆转。有趣的是,益生菌补充被证明与根除治疗后较高的B:F比率相关。值得注意的是,报告的结果不一致。

一项研究表明,治疗后B:F比率立即增加,并在第13周保持高于基线水平。宏基因组研究的分类图谱显示,治疗后双歧杆菌的相对丰度下降。然而,另一项研究表明,双歧杆菌在成功根除6个月后增加。

在幽门螺杆菌阳性萎缩性胃炎的肠道微生物群中富集的链球菌在根除治疗后显著减少

尽管不同研究中肠道微生物群的长期变化不同,但根除引起肠道内稳态的短期紊乱似乎是一致的。

根除疗法对肠道菌群抗生素耐药性的影响

随着根除疗法的广泛应用,抗生素耐药性的出现已成为临床实践中的一个重要问题。

根除幽门螺杆菌感染后,抗生素耐药性的上升以及根除治疗后的长期安全性是重要的问题

通过药敏试验指导的个性化治疗可以在一线治疗中提供可靠的优异根除率,但贵且无法广泛获得。根据局部地区的抗生素耐药性,针对特定人群的经验疗法可能是一种替代策略。

03 幽门螺杆菌相关疾病的宿主和环境决定因素

已证明会改变幽门螺杆菌相关疾病风险的宿主因素包括宿主的年龄、在幽门螺杆菌的获得和幽门螺杆菌感染之间的持续时间,但更重要的是宿主免疫介质(多态性)和酸分泌状态

除宿主因素外,吸烟和饮食等环境因素还会影响幽门螺杆菌定植的生态位,因此可能会影响疾病风险。

Karin et al., FEMS Microbiol Rev. 2006

年 龄 

年幼时期感染幽门螺杆菌会增加患胃溃疡和胃癌的风险。 胃溃疡和胃癌的发展需要幽门螺杆菌的长期感染,因此,推测这些疾病是在慢性感染幽门螺杆菌的患者中更为常见。

此外,这种关联被认为是由不同年龄组的宿主免疫反应的差异所决定的。

炎症介质

感染幽门螺杆菌后,宿主胃上皮细胞释放细胞因子IL-8。这种细胞因子参与了巨噬细胞、中性粒细胞、肥大细胞、B细胞和T细胞募集到炎症部位。这些细胞通过分泌其他炎症介质,如干扰素(IFN-g)、肿瘤坏死因子(TNF-a)和白细胞介素(IL-1b),进一步增强免疫反应。

幽门螺杆菌相关发病机制的示意图

Karin et al., FEMS Microbiol Rev. 2006

A)在人类胃中,幽门螺杆菌主要定植于缺乏胃酸分泌壁细胞的胃窦中;

B)在胃小凹中,幽门螺杆菌尤其在上皮细胞紧密连接处附近增殖;

C)幽门螺杆菌对定植、持续和疾病发展具有重要作用的因子。

针对幽门螺杆菌的免疫反应进一步表现为活化的人类中性粒细胞中的氧化爆发。这种爆发会导致活性氧(ROS)的释放,活性氧是一种低分子量的代谢物,可破坏包括核酸在内的重要生物分。ROS可能损伤控制细胞生长的基因;并刺激癌症的发展。因此,免疫介质的存在会导致胃上皮的完整性受损。这种损伤是引起大多数与幽门螺杆菌感染相关的病理学,而不是直接的幽门螺杆菌活动。

幽门螺杆菌感染期间存在的免疫细胞主要是促炎细胞,而不是抗炎细胞。促炎介质由辅助性T细胞1(Th1)分泌。原始T细胞受多种因素驱动分化为Th1细胞,如TNF-a和IL-12。

在幽门螺杆菌刺激下,单核细胞大量产生细胞因子IL-12。因此,通过刺激IL-12的释放,幽门螺杆菌增强了促炎反应。这导致更多的损伤胃上皮,这容易发展胃萎缩。

一些编码免疫调节因子的宿主基因含有多态区域。这些基因的多态性将改变它们的转录,从而影响炎症过程。因此,幽门螺杆菌相关疾病的风险可能会改变。到目前为止,IL-1b、IL-1受体拮抗剂、IL-10和TNF-a基因的多态性已被证明与远端胃癌显著相关

人类白细胞抗原(HLA)通过将病原体衍生的肽片段呈递给适当的T细胞,有助于消除病原体。HLA基因具有高度多态性,某些HLA等位基因与胃腺癌的发生有关幽门螺杆菌感染也与胃腺癌的发生有关,但其存在与这些HLA等位基因的存在无关。因此,HLA等位基因在幽门螺杆菌介导的腺癌中的重要性仍然存在争议。

因此,遗传上预定的显性促炎性Th1反应与幽门螺旋杆菌疾病相关

另一方面,Th1反应的强度可能受到抗炎Th2细胞因子IL10的产生的限制,从而延长感染时间。Th2型反应是由寄生虫引起的。因此,感染幽门螺杆菌的人的炎症反应和病理改变逐渐减弱。这可能导致这些个体慢性胃炎进展为胃癌的时间延迟。另外,不同的促炎反应可能直接导致幽门螺杆菌相关病理学的不同途径。

胃 酸 分 泌

前面提到Th1反应导致胃壁细胞抑制其酸分泌。酸性较低的环境可能促进幽门螺杆菌的传播和持续。此外,当胃酸水平较低时,幽门螺杆菌以外的微生物可能在人体胃中生长,从而增强局部炎症反应促炎细胞因子胃酸分泌减少的联合作用增加了患消化性溃疡病和胃癌的风险

另一方面,当酸的分泌减少时,十二指肠溃疡就不太可能发生。当酸的分泌增强时,十二指肠溃疡发生的风险增加。然而,同样在低酸性条件下,幽门螺杆菌感染后十二指肠溃疡的风险可能会增加

胃壁细胞控制其产酸的能力在幽门螺杆菌相关疾病的发展中是重要的。幽门螺杆菌感染主要发生在人类胃中酸性较弱的部位,如胃窦。因此,胃酸分泌量高的宿主胃窦内幽门螺杆菌密度高,且主要发展为胃窦性胃炎。随后,胃体中完整的壁细胞被刺激分泌酸,从而诱导十二指肠的胃化生。幽门螺杆菌定植于这种胃化生,这可能导致十二指肠溃疡。

另一方面,胃酸分泌量低的宿主不仅胃窦易受幽门螺杆菌感染,而且胃体也易受幽门螺杆菌感染。感染的幽门螺杆菌可进一步抑制胃壁细胞的酸分泌。这可刺激胃上皮细胞持续增殖,导致胃腺进行性丧失,最终导致胃萎缩和癌症。

环境决定因素

吸烟

一些环境因素与幽门螺杆菌相关的发病机制有关。吸烟是胃癌发展的主要因素。烟草烟雾含有致癌的亚硝胺,引发癌症的发展。

高盐饮食

一些饮食因素与幽门螺杆菌疾病有关。高盐饮食与幽门菌定植率、胃炎和胃癌风险增加。高盐浓度导致壁细胞萎缩,粘膜屏障破坏。然而,只有长期高盐摄入才会增加幽门螺杆菌相关疾病的风险。

高米饭摄入量

高米饭摄入量与胃癌之间存在正相关关系。米饭含有碳水化合物,可能会刺激胃粘膜。

水果和蔬菜摄入量低

水果和蔬菜摄入量低可能会增加胃癌的风险。水果和蔬菜含有抗氧化剂维生素C和β-胡萝卜素,通过中和活性氧来防止致癌。

因此,尽管有几个环境因素被认为与幽门螺杆菌相关疾病的发生有关,但它们的作用往往是有争议的。据推测,不同环境因素以及宿主和细菌因素之间的复杂相互作用妨碍了对研究结果的解释。

04 幽门螺杆菌感染结果的细菌决定因素 

幽门螺杆菌因素在疾病发展中的总体影响是复杂的。到目前为止,已经描述了几种与幽门螺杆菌相关疾病的发生有关的幽门螺杆菌特异性蛋白。这些蛋白质被认为是导致幽门螺杆菌持续存在的原因。作为副作用,这些幽门螺杆菌蛋白诱导和改变炎症过程,损伤胃上皮,从而决定幽门螺杆菌感染后的结局。

 CagA 

与感染cagA阴性幽门螺杆菌分离株的患者相比,携带细胞毒素相关基因A(cagA)的幽门螺杆菌分离株的定植与严重胃炎、消化性溃疡病和远端胃腺癌的风险增加有关。

幽门螺杆菌cagA基因的存在或不存在经常被用作幽门螺杆菌中致病岛(PAI)存在或不存在的标记。  cag PAI由大约30个基因组成,并且在所有幽门螺杆菌分离株中占50%–70%。 位于cag PAI侧翼的两个31 bp重复序列之间的重组可能导致整个cag区域的缺失或获得。  

cag PAI上的18个基因对于产生IV型分泌系统至关重要。  IV型分泌系统将细菌细胞中的蛋白(与毒力相关)转运到宿主细胞的胞质溶胶中。 这通常导致上皮细胞反应的级联反应的启动,例如细胞骨架的变化和细胞因子IL-8的分泌。

在幽门螺杆菌中,IV型分泌系统的成分将CagA蛋白转运到胃上皮细胞中。 随后,CagA蛋白被磷酸化。 然后,这种磷酸化的CagA与宿主磷酸酶SHP-2相互作用,引起细胞骨架的重排。 这导致宿主细胞形态发生变化,也称为“蜂鸟”表型。该表型的特征在于细胞扩散,上皮细胞的延长生长以及片状脂蛋白和丝状伪足的存在。

作为抵消事件,磷酸化的CagA与宿主Src激酶相互作用,从而减弱宿主SHP-2磷酸酶的信号传导。 这个过程减少了细胞骨架的重排,并阻止了CagA的进一步磷酸化

最近,已经证明幽门螺杆菌菌株在体内诱导较高水平的CagA磷酸化。上皮细胞诱导更多的细胞骨架变化,并且更可能与胃癌有关。CagA磷酸化水平的差异是由cagA基因的30个区域内酪氨酸磷酸化基序(TPM)数量的差异引起的。

幽门螺杆菌人群,需要最低限度的免疫识别。因此,在萎缩的生态位中,这些TPM数量减少的亚克隆诱导了较弱的宿主免疫反应

另一方面,较高水平的CagA磷酸化可引起强烈的炎症反应。 这种炎症会导致萎缩,并可能在限制高酸输出的生态位酸应激中发挥作用。

通过观察发现,缺乏cagA基因的幽门螺杆菌菌株是从消化性溃疡或胃癌患者中分离出来的,尽管其频率比cagA阳性幽门螺杆菌菌株的频率更低。

cagA和幽门螺杆菌相关疾病之间的关联在不同的地理区域中有所不同。 这种变异可能与CagA表达的差异有关。 

然而,CagA并不是唯一的。幽门螺杆菌蛋白负责屏障功能障碍,而这一过程并没有随着CagA的清除而丢失。下一节讨论的VacA蛋白也很重要。

 VacA 

最初显示真核细胞在带有幽门螺杆菌的体外测试系统中经历空泡化和连续变性。 后来证明这种现象是由幽门螺杆菌毒素诱导的,现在被称为空泡细胞毒素A(VacA)。

VacA或CagA不能单独用作临床结果的决定因素。

 VacA如何发挥作用,导致细胞死亡?

幽门螺杆菌VacA是一种高度免疫原性的95-kDa蛋白。VacA结合上皮细胞的顶端部分,形成阴离子选择性孔。

通过这些孔,碳酸氢盐,氯化物和尿素从细胞质中释放出来,然后,VacA被内吞进入晚期的内体区室,并改变这些区室的通透性。

在弱碱(例如氨)的存在下,这会导致水涌入,从而导致囊泡肿胀和液泡形成。 细胞内内吞途径的损伤最终导致细胞死亡

这导致了上皮细胞抗性的降低,因此低分子量分子如Fe3+和Ni2+可以很容易地穿过上皮细胞层。Fe3+和Ni2+分子分别是幽门螺杆菌生长和脲酶活性的关键因子。 

因此,推测通过降解上皮细胞屏障,幽门螺杆菌可以更容易地获得这些关键因子。

幽门螺杆菌VacA也与壁细胞的降解有关,这导致酸分泌减少,使宿主容易患上胃癌。 持续感染过程中VacA表达水平的差异导致毒性改变。 因此,溃疡的消长可以通过随时间变化的VacA表达变化来解释

在体外在胃上皮细胞附近诱导vacA基因的转录。 这一发现证实了VacA与宿主细胞相互作用的重要性。 此外,VacA可以逃避适应性免疫反应,从而增强幽门螺杆菌在胃粘液层中的持久性

 幽门螺杆菌外膜蛋白(HOPs)

在革兰氏阴性细菌中,外膜介导与其周围环境的相互作用。 在感染期间,假定存在于幽门螺杆菌外膜上的蛋白质被改变,使得宿主免疫系统的识别作用降至最低。

幽门螺杆菌分离物含有约30种不同的外膜蛋白(HOP)。 其中几种是粘附素。 在革兰氏阴性细菌中,粘附素最常形成聚合菌毛结构。 但是,在幽门螺杆菌中,这些粘附素已经适应了胃环境,其中酸性条件可能会使这种聚合物菌毛结构解聚。 

岩藻糖基化的糖蛋白和唾液酸化的糖脂都已被证明是胃上皮中幽门螺杆菌的结合位点

与宿主细胞的粘附可保护幽门螺杆菌免受蠕动和粘膜脱落

此外,推测粘附力可以使幽门螺杆菌更好地获取从胃上皮释放的营养物质,并更有效地将细菌毒素传递至宿主细胞

另一方面,在剧烈炎症的部位,粘附特性的丧失可能使幽门螺杆菌逃脱宿主免疫细胞的杀伤。目前为止,一些HOP与疾病的发展有关。

幽门螺杆菌BabA (HopS)介导幽门螺杆菌粘附于人Leb血型抗原,这些抗原存在于胃上皮细胞上。BabA黏附促进幽门螺杆菌定植,增加上皮细胞分泌IL-8,导致粘膜炎症增强

BabA调节的两种机制都有助于促进慢性感染的动态反应。

在慢性炎症期间,选择增加或减少粘附的周期可在所有血型的人群中获得所有类型的Leb结合。

宿主粘膜糖基化模式导致BabA进化,使幽门螺杆菌菌株适应其个体宿主,这有助于避免宿主反应,并在全世界范围内造成幽门螺杆菌感染的异常长期性

幽门螺杆菌可塑性区域毒力因子

两个单独菌株基因组序列的比较表明,一个菌株中存在的幽门螺杆菌基因中约有6%-7%不存在于另一个菌株中,反之亦然。

大约一半的菌株特异性基因存在于高变区;可塑性区。 位于这种可塑性区域的基因通常与毒力增加相关

在幽门螺杆菌中,可塑性区确实编码了与IV型分泌有关的Vir型ATP酶。 在幽门螺杆菌中,该分泌系统在例如分泌CagA细胞毒素中很重要。目前为止,一些位于可塑性区的幽门螺杆菌基因与幽门螺杆菌相关的疾病有关。

幽门螺杆菌Jhp0947和Jhp0949与十二指肠溃疡疾病相关。这两个基因均位于幽门螺杆菌菌株J99可塑性区,在幽门螺杆菌介导的IL-12释放中很重要。

在体外测试系统中从单核细胞中提取。 细胞因子IL-12对于使免疫反应偏向促炎性Th1应答是必不可少的,并且与十二指肠溃疡的形成密切相关。

jhp0947jhp0949编码的蛋白质的功能未知。 然而,已经假设这些蛋白通过与单核细胞的相互作用诱导促炎细胞因子IL-12的产生。

IL-12水平升高会导致幼稚T细胞分化为活化的Th1细胞,从而导致炎症反应增强和组织损伤增加

幽门螺杆菌Jhp0950,编码一种未知功能的蛋白质,也是J99可塑性区的一部分。该基因的存在与cagA、cagE、vacA s1m1、babA2、hopQ T1、oipA有关。

在幽门螺杆菌J99基因组中,Jhp0950与Jhp0949相邻。与Jhp0949不同,Jhp0950与十二指肠溃疡风险增加无关。然而,它与疾病的关联支持了位于可塑性区域的幽门螺杆菌基因可能与毒性相关的观点。

其他幽门螺杆菌毒力因子

在美国和荷兰,幽门螺杆菌iceA1基因(iceA基因的两个等位基因变体之一)在幽门螺杆菌感染的消化性溃疡患者中比仅在幽门螺杆菌感染的胃炎患者中更为普遍。

与许多其他与毒力相关的基因相似,IceA表达与幽门螺杆菌相关疾病之间的联系是群体依赖性的。

在东南亚,未发现iceA1与幽门螺杆菌相关疾病之间的关联。 有趣的是,对iceA1呈阳性的南非幽门螺杆菌分离株在幽门螺杆菌感染的胃癌患者中比仅在幽门螺杆菌感染的胃炎患者中更普遍。

注:幽门螺杆菌iceA1最初是在与胃上皮细胞接触后转录上调后被鉴定的,iceA1基因编码的核酸内切酶与乳球菌中的限制性核酸内切酶NlaIIIR非常相似,伴随的高度保守的脱氧核糖核酸腺嘌呤甲基转移酶的活性,由幽门螺杆菌编码,似乎与控制幽门螺杆菌的基因表达有关。

幽门螺杆菌Jhp1462与MAL T淋巴瘤、十二指肠溃疡和胃腺癌的风险增加相关。由Jhp1462编码的蛋白质的功能是未知的,其在严重胃十二指肠疾病发展中的重要性仍有待阐明。

以上,我们看到幽门螺杆菌通过各种方式给人体带来种种不利影响,它似乎不应该在人体中长期生存,然而,幽门螺杆菌在人体内存在有着的悠久的历史,那么幽门螺杆菌是如何保护自己在人体中安稳生存下来?

05 幽门螺杆菌的生存之道

幽门螺杆菌在疾病发生之前会长期感染人胃粘膜。 因此,导致幽门螺杆菌定植和持续存在的因素与幽门螺杆菌相关的发病机理具有内在联系。 在胃腔进入后,幽门螺杆菌必须应付胃酸。

幽门螺杆菌通过其耐酸性在这种酸性条件下得以生存:然后穿过粘液层到达其接近胃上皮细胞的位置。趋化性,运动性和粘附性是胃上皮细胞定殖的重要过程。

为了在人胃粘膜中长期持久存在,幽门螺杆菌还不断需要宿主提供营养。 这是通过降解粘液层和下面的胃上皮细胞的完整性来实现的。 此外,通过抑制宿主免疫系统,抗原变异和抗原拟态避免了幽门螺杆菌的清除。

耐酸性

幽门螺杆菌生长的下限pH值是5.0-5.5,具体取决于测试的分离物。在胃粘膜层中,pH也是酸性的,大约在4-6.5之间变化。而且,当粘液层被破坏时,pH值可能会偶尔下降。

酸冲击(pH<3)后幽门螺杆菌的存活取决于幽门螺杆菌蛋白脲酶的活性,该酶将尿素转化为氨和碳酸氢盐。这导致幽门螺杆菌的周质或细胞质被中和。幽门螺杆菌尿素酶活性对于在酸性pH下体外存活以及在动物模型中胃粘膜定植至关重要,这证明了尿素酶在幽门螺杆菌感染中的重要性。

在中性pH下高度活跃的脲酶和酸调节的尿素通道的结合解释了为什么幽门螺旋菌在人类胃部的生存能力是独特的。有效抑制UreI蛋白,将提供一种从正常的,分泌酸的胃中根除幽门螺杆菌的方法。

除耐酸性外,脲酶还具有与胃定植有关的其他基本功能

尽管尿素酶对于酸休克的生存是必不可少的,但是幽门螺杆菌尿素酶在处理胃上皮细胞附近的慢性酸性环境时还是不够的。 用酸抑制剂治疗不能恢复尿素酶阴性突变体定殖在生侏儒仔猪胃中的能力。

脲酶参与幽门螺杆菌的氮代谢,脲酶活性产生的氨和碳酸氢盐被认为会影响宿主的许多细胞过程,包括细胞裂解。

除脲酶外,非脲酶基因也有助于耐酸,并且在酸性pH下的存活和生长与脲酶无关。 在这些非脲酶基因中,已显示三种调节蛋白(Fur,NikR和HP0166)对幽门螺杆菌的适应性有贡献。 这表明严格调节耐酸机理的重要性。

Karin et al., FEMS Microbiol Rev. 2006

NikR通过Fur调节系统直接和间接调节脲酶的表达。CsrA调节Fur和HspR调节系统的表达。通过不同基因调节蛋白的相互作用,幽门螺杆菌能够感知和响应多种信号。

细胞的趋化作用与运动

胃上皮细胞层覆盖着一层厚厚的粘液。假定该层甚至对于小分子也相对不可渗透。幽门螺杆菌的能动性和趋化性是有效穿透这一粘液层的关键

在小鼠感染模型中,几乎任何运动和趋化性系统基因的诱变都消除了幽门螺杆菌感染胃粘膜的能力,强调了这些因素对定殖的重要性。

运动性

幽门螺杆菌的运动性是通过存在两到六个极性的带鞘鞭毛而实现的。鞭毛由三个结构元素组成:基体,钩子和细丝。迄今为止,超过50种蛋白质与鞭毛的结构或调控组织有关。

鞭毛丝由两个亚基FlaA和FlaB组成。幽门螺杆菌flaA和flaB突变体无法在感染仔猪的模型中定植,表明幽门螺杆菌鞭毛对定殖是必需的,幽门螺杆菌的毒力也因此而增加。

幽门螺杆菌motB基因编码鞭毛运动旋转蛋白。 幽门螺杆菌motB基因敲除突变体仍包含鞭毛,但不能运动。该突变体在小鼠中定植的能力降低,证实了运动性是完全传染性所必需的

鞭毛基因转录的调控不同于许多其他细菌。与许多其他带鞭毛的革兰氏阴性细菌相反,幽门螺杆菌没有转录调控因子来调控鞭毛基因的转录。 

据推测,幽门螺杆菌的运动不需要严格的调节,因为它在任何时候都是不可或缺的。然而,在幽门螺杆菌中仍然可以看到一些转录调控。例如,蛋白质FlhA和FlhF,基体的组成部分,需要在中后期鞭毛基因转录之前出现。

趋化性

除了运动性,趋化性对于幽门螺杆菌的定植也是必不可少的。趋化性允许幽门螺杆菌将其运动导向胃上皮细胞层。

由HP0099编码的幽门螺杆菌趋化性受体传感器识别碳酸氢盐和精氨酸作为引诱剂。幽门螺杆菌外膜上这种传感器蛋白与反应调节剂CheY偶联。

反应调节剂CheY调节鞭毛运动蛋白的表达,使幽门螺杆菌游向其生态位。

应答调节因子CheY的一个敲除突变体未能在非生物小猪体内定殖,强调了趋化性在最初定殖中的重要性

反应调节因子CheY及其组氨酸激酶的敲除突变体显示出对粘蛋白的趋化性反应减弱

免疫逃避

在长期的定殖过程中,宿主对多种幽门螺杆菌抗原产生强大的免疫反应。然而,这些抗原通常没有表面暴露。

另一方面,表面暴露的抗原通常高度多样化,使宿主清除幽门螺杆菌变得更加困难。幽门螺杆菌感染极少产生足够的免疫反应,能够清除细菌。 实际上,幽门螺杆菌能够有效规避先天性和适应性免疫反应

先天的免疫反应不能实质上识别幽门螺杆菌。大肠杆菌脂多糖(LPS)通过TLR4激活先天免疫应答。然而,幽门螺杆菌LPS远不是TLR4介导的基因表达的有效诱导剂。

在幽门螺杆菌中,TLR5介导的免疫应答激活效率也较低。 与肠沙门氏菌血清型鼠伤寒鞭毛蛋白相比,幽门螺杆菌鞭毛蛋白没有被释放,并且在通过TLR5激活IL-8分泌中也没有那么强。 

先天性免疫反应未能识别幽门螺杆菌可能导致适应性免疫反应失败以随后清除感染。

自适应免疫系统的逃避至少由两个重要机制介导:抗原模拟免疫抑制。抗原模拟导致宿主免疫系统无法正确识别幽门螺杆菌。例如,幽门螺杆菌LPS上的Le血型抗原也在人类上皮细胞上表达。结果,幽门螺杆菌LPS免疫原性差,从而支持幽门螺杆菌的持久性。在其LPS上缺少O抗原的幽门螺杆菌菌株在小鼠中定殖的能力显着降低。因此,幽门螺杆菌LPS的典型结构在定植中很重要

除了通过抗原模拟来逃避免疫外,免疫抑制也有助于幽门螺杆菌感染的慢性化

免疫应答可能偏向更抗炎的应答,或者下调(VacA)。幽门螺杆菌VacA可以阻断巨噬细胞中的吞噬体-溶酶体融合,导致巨噬细胞无法杀死幽门螺杆菌。 

此外,VacA表达阻断T细胞活化并因此增殖,活化T细胞凋亡,并抑制T细胞中的抗原呈递。

B淋巴细胞的抗原加工可能被阻止,可能是通过将内体的成熟限制在发生抗原加载的MHC II类区室中。因此,VacA限制了针对幽门螺杆菌的T细胞和B细胞应答

幽门螺杆菌的存在可以预防某些疾病?

通过以上各种方式,幽门螺杆菌得以在人体中生存下来,从某种程度上来说,幽门螺杆菌并不总是对人类宿主有害。

研究表明,幽门螺杆菌的存在可能抑制引起结核的细菌(结核分枝杆菌),预防哮喘,克罗恩病,食管反流,腹泻病以及食道癌。 幽门螺杆菌的发病率下降与儿童过敏性疾病和自身免疫性疾病,多发性硬化,腹腔疾病的发病率上升相关。

因此,从某种程度上来说,幽门螺杆菌有其存在的价值。这引起了关于是否需要根除幽门螺杆菌的讨论。

06 是否需要根除幽门螺杆菌?

需要明确的是,幽门螺杆菌感染后不会立即对人体产生致死性危害和严重后果,所导致的慢性胃炎、消化道溃疡和胃癌等疾病是长期存在并慢性与其他因素共同作用的结果。

第五次全国幽门螺杆菌感染处理共识报告中有如下陈述:

根除幽门螺杆菌的获益在不同个体之间存在差异

根除幽门螺杆菌促进消化性溃疡愈合和降低溃疡并发症发生率,根除幽门螺杆菌可使约80%早期胃 MALT 淋巴瘤获得缓解。与无症状和并发症的 幽门螺杆菌感染者相比,上述患者根除幽门螺杆菌的获益显然更大。胃癌发生高风险个体有胃癌家族史、早期胃癌内镜下切除术后和胃黏膜萎缩和(或)肠化生等。根除幽门螺杆菌预防胃癌的获益高于低风险个体。

在做出可靠的功能性消化不良诊断前,必须排除幽门螺杆菌相关消化不良。

幽门螺杆菌胃炎伴消化不良症状的患者,根除幽门螺杆菌后可使部分患者的症状获得长期缓解,是优选选择。

幽门螺杆菌感染是消化性溃疡主要病因,不管溃疡是否活动和是否有并发症史,均应该检测和根除幽门螺杆菌。

总的来说,对于无抗衡因素 ( 高龄、伴存疾病、社区再感染率、卫生经济因素等 ) 的个体,根除幽门螺杆菌治疗利大于弊。

儿童:

不推荐对 14 岁以下儿童行常规检测幽门螺杆菌。推荐对消化性溃疡儿童进行幽门螺杆菌检测和治疗,因消化不良行内镜检查的儿童建议行幽门螺杆菌检测与治疗。

与成人相比,儿童根除治疗不利因素较多,包括抗菌素选择余地小,对药物不良反应耐受性低。此外,儿童幽门螺杆菌感染有一定自发清除率,根除后再感染率也可能高于成人。

老年人:

老年人根除幽门螺杆菌治疗药物不良反应风险增加,因此对老年人根除幽门螺杆菌治疗应该进行获益-风险综合评估,个体化处理。

问卷调查显示,多数临床医生对老年人根除幽门螺杆菌治疗的态度趋向保守。一般而言,老年人(年龄>70 岁)对根除幽门螺杆菌治疗药物的耐受性和依从性降低,发生抗生素不良反应的风险增加;另一方面,非萎缩性胃炎或轻度萎缩性胃炎患者根除幽门螺杆菌预防胃癌的潜在获益下降。

合理看待幽门螺杆菌感染后果至关重要,对自然人群中幽门螺杆菌感染是否需要进行干预,需要综合权衡利弊。对于有根除治疗指征的患者,需要给予规范治疗,提高首次根除率,减少耐药性发生。

07 结  语 

在慢性感染过程中,多株菌株同时定植于一个宿主,并且幽门螺杆菌分离株的遗传变异使幽门螺杆菌相关的发病机理难以从单个因素中预测。 幽门螺杆菌与其宿主的共同进化使它得以终生定居。  

随着现代卫生环境改善及抗生素的大量使用,幽门螺杆菌的生长和传播越来越难,年轻一代中感染率较低,在未来几十年中幽门螺杆菌感染率将进一步下降。

更好地理解幽门螺杆菌和其他胃肠道微生物群之间的对话可能为预防或治疗其感染提供新的方向。如在肠道菌群健康检测报告中发现幽门螺杆菌感染,则应引起重视。当需要治疗时,应评估新的治疗策略和药物,或者应该制定替代策略来控制细菌的毒力,从而避免出现溃疡和胃癌而不消除其积极影响。

附录: 幽门螺杆菌的发现史

1980年代初,幽门螺杆菌首次被发现是引起胃部疾病的原因。该发现帮助研究人员将幽门螺杆菌感染与胃炎,溃疡和胃癌等联系起来。

1982年,两名澳大利亚研究人员巴里·马歇尔和罗宾·沃伦描述了幽门螺杆菌感染的作用。

然而,沃伦和马歇尔关于幽门螺杆菌功能的理论并未立即被医学界接受。当时,大多数科学家都不相信细菌可以在人的胃中生活。

马歇尔无法在实验室小鼠中进一步测试他的工作,也不允许在人身上进行实验。马歇尔这位勇敢的科研工作者想到了一个办法。

他决定亲自吃下幽门螺杆菌。他从病人的肠道中提取该菌,将其放入肉汤中,然后饮用。

几天后,马歇尔出现了肠道症状,例如恶心,呕吐,口臭和疲劳。他做了胃活检,且能够培养幽门螺杆菌,证明是细菌引起了他的症状。

医学界最终接受了幽门螺杆菌引起溃疡和其他肠道问题的观念,但是接受的道阻且长。

1994年,美国国立卫生研究院共识发展会议正式承认幽门螺杆菌与溃疡之间的紧密联系。该小组建议对溃疡患者进行抗生素治疗。

1996年,FDA批准了首个针对幽门螺杆菌引起的溃疡的抗生素疗法。

一年后,疾控中心(CDC)与其他政府机构和学术机构合作发起了一项全国运动,为医患相关人员提供有关幽门螺杆菌与溃疡之间的联系。

2005年,马歇尔和沃伦获得了诺贝尔生理学或医学奖。溃疡不再被视为无法治愈的慢病,而是一种可以通过短期的抗生素和酸分泌抑制剂治疗的疾病。

【参考文献】

Burucoa C, Axon A. Epidemiology of Helicobacter pylori infection. Helicobacter. 2017 Sep;22 Suppl 1. doi: 10.1111/hel.12403. PMID: 28891138.

Camilo V, Sugiyama T, Touati E. Pathogenesis of Helicobacter pylori infection. Helicobacter. 2017 Sep;22 Suppl 1. doi: 10.1111/hel.12405. PMID: 28891130.

Eusebi LH, Zagari RM, Bazzoli F. Epidemiology of Helicobacter pylori infection. Helicobacter. 2014 Sep;19 Suppl 1:1-5. doi: 10.1111/hel.12165. PMID: 25167938.

Mentis A, Lehours P, Mégraud F. Epidemiology and Diagnosis of Helicobacter pylori infection. Helicobacter. 2015 Sep;20 Suppl 1:1-7. doi: 10.1111/hel.12250. PMID: 26372818.

Thorell K, Lehours P, Vale FF. Genomics of Helicobacter pylori. Helicobacter. 2017 Sep;22 Suppl 1. doi: 10.1111/hel.12409. PMID: 28891132.

Julie Marks.Robert Jasmer, MD What Is H. Pylori? Symptoms, Causes, Diagnosis, Treatment, and Prevention. 2020.9  

History of H. Pylori: What We Do and Don’t Know Before the discovery of the bacterium, doctors thought stomach ulcers were due to stress and spicy foods.

Burucoa C, Axon A. Epidemiology of Helicobacter pylori infection. Helicobacter. 2017 Sep;22 Suppl 1. doi: 10.1111/hel.12403. PMID: 28891138.

Kamboj AK, Cotter TG, Oxentenko AS. Helicobacter pylori: The Past, Present, and Future in Management. Mayo Clin Proc. 2017 Apr;92(4):599-604. doi: 10.1016/j.mayocp.2016.11.017. 

Eusebi LH, Zagari RM, Bazzoli F. Epidemiology of Helicobacter pylori infection. Helicobacter. 2014 Sep;19 Suppl 1:1-5. doi: 10.1111/hel.12165. PMID: 25167938.

Yang JC, Lu CW, Lin CJ. Treatment of Helicobacter pylori infection: current status and future concepts. World J Gastroenterol. 2014 May 14;20(18):5283-93. doi: 10.3748/wjg.v20.i18.5283. 

Sun Y, Zhang J. Helicobacter pylori recrudescence and its influencing factors. J Cell Mol Med. 2019 Dec;23(12):7919-7925. doi: 10.1111/jcmm.14682. Epub 2019 Sep 19. 

Tao Zhi-Hang,Han Ji-Xuan,Fang Jing-Yuan,Helicobacter pylori infection and eradication: Exploring their impacts on the gastrointestinal microbiota.[J] .Helicobacter, 2020, 25: e12754.

Algood HM, Cover TL. Helicobacter pylori persistence: an overview of interactions between H. pylori and host immune defenses. Clin Microbiol Rev. 2006 Oct;19(4):597-613. doi: 10.1128/CMR.00006-06. 

Kori M, Daugule I, Urbonas V. Helicobacter pylori and some aspects of gut microbiota in children. Helicobacter. 2018 Sep;23 Suppl 1:e12524. doi: 10.1111/hel.12524. PMID: 30203591. 

van Amsterdam K, van Vliet AH, Kusters JG, van der Ende A. Of microbe and man: determinants of Helicobacter pylori-related diseases. FEMS Microbiol Rev. 2006 Jan;30(1):131-56. 

Waskito LA, Yamaoka Y. The Story of Helicobacter pylori: Depicting Human Migrations from the Phylogeography. Adv Exp Med Biol. 2019;1149:1-16. doi: 10.1007/5584_2019_356. PMID: 31016625. 

Pereira-Marques J, Ferreira RM, Pinto-Ribeiro I, Figueiredo C. Helicobacter pylori Infection, the Gastric Microbiome and Gastric Cancer. Adv Exp Med Biol. 2019;1149:195-210. 

RU Nan, DU Yi-qi, LI Zhao-shen. 幽门螺杆菌根除指征的演变[J]. 中国实用内科杂志, 2019, 39(006):515-519.

中华医学会消化病学分会幽门螺杆菌和消化性溃疡学组, 全国幽门螺杆菌研究协作组, 刘文忠,等. 第五次全国幽门螺杆菌感染处理共识报告[J]. 胃肠病学, 2017(6).

1
客服