Tag Archive 2型糖尿病

肠道作为内分泌器官在代谢调节中的作用

谷禾健康

胃肠道除了在食物消化和吸收中发挥作用外,还是一个主要的内分泌器官,产生多种生物活性肽胺类物质,作为肠道激素。

大多数肠道激素来源于肠内分泌细胞,但来源于其他肠上皮细胞类型的生物活性肽也与代谢调节有关。

为什么说肠道激素重要呢?我们在日常生活中胃口好不好都可能与它相关,它能影响食欲和食物摄入,通过影响大脑中的食欲中枢,减轻食欲或刺激饱腹感。

其实,肠道激素在多种器官的多种代谢活跃组织中协调关键的生理过程,包括胰腺、肝脏、脂肪组织、肠道和中枢神经系统等。从局部控制营养吸收和调节肠道生长、肠道运动和液体分泌,到远距离调节胰岛素释放脂肪细胞功能。

近日,来自英国剑桥大学威康Trust-MRC代谢科学研究实验室团队发表了一篇文章在《Nature Reviews Gastroenterology & Hepatology》期刊,主要讲述了参与代谢调节的肠道激素,讨论了它们在胃肠系统内外的作用

肠道激素由多种肠内分泌细胞非肠内分泌细胞产生,它们对不同刺激的反应不同,并分泌特定的激素组合

肠内分泌细胞通过一系列感觉转运蛋白、离子通道和受体感知各种营养和非营养刺激,使其成为营养吸收肠道激素反应之间的有效联系

这些肠道激素信号传导过程可以作为治疗靶点;例如,GLP2受体激动剂用于治疗短肠综合征,并且GLP1受体激动器用于治疗2型糖尿病和肥胖。此外,激素类药物的组合可用于最大限度地提高疗效,同时最大限度地减少不良反应。

因此,深入了解肠道内分泌系统介导的复杂器官间串扰,有助于设计基于或靶向肠道激素及其受体的更有效药物,并将其治疗潜力扩展到肥胖和糖尿病之外的疾病。

01
肠道内分泌细胞和肠道激素

肠内分泌细胞沿着胃肠上皮的长度广泛分布。肠道内的一些细胞会分泌一些激素来应对不同的刺激。

■  肠内分泌细胞可分为两大类:

  • 肠嗜铬细胞,释放血清素,主要被机械和刺激性刺激激活;
  • 肽释放肠内分泌细胞,至少在小肠中,主要对吸收的营养物质做出反应。

以前我们认为这些肠内分泌细胞只会分泌单一类型的激素,但现在我们知道,实际上它们通常会同时分泌多种不同的激素,所以它们之间的分泌有一些重叠的部分。

■ 肠道中不同部位的激素表达也会有所不同,如:

  • GLP1主要存在于远端小肠和结肠中;
  • 葡萄糖依赖性促胰岛素肽(GIP)主要位于十二指肠中。

肠道特定区域的激素产生激素的功能作用及其反应的感觉输入有关。

决定肠道不同区域肠内分泌细胞激素特征的因素在很大程度上仍然未知。来自不同肠段的肠道类器官似乎保留了与起源相关的激素特征,这表明肠道干细胞的效力有限。

■ 肠道细胞功能受限的机制与激素分泌的发育演化

然而,随着细胞的发育成熟,肠内分泌细胞的激素特征会发生变化,并沿着隐窝-绒毛轴分化。

举个例子,回肠L细胞在肠隐窝中共表达GLP1和肽YY(PYY),但当这些细胞到达绒毛时,前胰高血糖素转录下调,分泌素转录上调。一旦这些激素分泌出来,它们有两条路:

  • 以旁分泌的方式作用,靶向粘膜和神经元网络中的局部细胞
  • 或进入血液,以经典的内分泌方式作用于远处的器官。

■ 激素在肠道中的分泌调节及其影响

肠道激素控制多种代谢活性组织的广泛生理过程,包括胰腺、肝脏、脂肪组织、肠道和中枢神经系统。这些激素大多具有不止一种生理作用,许多生理作用由不止一种激素发挥。如下表:

调节新陈代谢的主要肠道激素的特征

Bany Bakar R, et al., Nat Rev Gastroenterol Hepatol. 2023

02
营养调节的肠内分泌细胞活性

■ 肠内分泌细胞如何与营养物质密切接触

这就需要我们先来了解一下,肠内分泌细胞的结构特点,大多数肠内分泌细胞是开放型细胞,也就是说它们有一个顶端表面,带有向肠腔延伸的微绒毛,以及一个基底外侧表面,负责在刺激时通过胞吐释放分泌颗粒

因此,这些细胞与消化和吸收的营养物质直接接触,把它们推向产生肠道激素反应的理想位置,将营养吸收的变化传达给身体其他部位。

它怎么传达呢?

肠内分泌细胞的化学感受能力归因于它们表达一系列感觉转运蛋白、离子通道和受体,这些受体解释了它们对各种营养刺激的反应能力,包括葡萄糖、消化脂质、碳水化合物和蛋白质,以及非营养刺激,如胆汁酸、肠道激素、肠道神经递质,微生物产物和炎性胞质分裂。

■ GPCR——肠内分泌细胞通过其检测营养物质吸收

G蛋白偶联受体(GPCR)检测到广泛的营养和非营养刺激,肠内分泌细胞差异表达一系列GPCR,这些GPCR主要位于其基底外侧表面,能够检测胆汁酸、游离脂肪酸(FFAs)和氨基酸在上皮层内的消化和吸收过程中的变化

与肠道激素释放密切相关的GPCR包括:

  • 胆汁酸受体GPBAR1
  • 对芳香氨基酸有反应的钙感应受体CASR

各种脂质感应受体,包括:

  • 长链脂肪酸受体FFA1和FFA4
  • 短链脂肪酸受体FFA2和FFA3
  • 单酰基甘油受体GPR119

相反,葡萄糖在通过顶端膜上的钠偶联葡萄糖转运蛋白SGLT1吸收时激活肠内分泌细胞。SGLT1对钠离子与葡萄糖的共转运直接触发质膜去极化,进而激活电压门控钙通道。由此产生的钙流入进一步使肠内分泌细胞质膜去极化,并启动分泌颗粒的释放(下图)。

调节肠内分泌细胞活性的营养诱导机制

Bany Bakar R, et al., Nat Rev Gastroenterol Hepatol. 2023

03
非源自肠内分泌细胞的肠道激素

肠道激素GDF15、FGF19(小鼠中的FGF15)、鸟苷素尿鸟苷素不是由肠内分泌细胞产生的,而是由肠细胞和其他上皮谱系产生的。对这些激素生物合成和释放的途径了解相对较少。

肠内分泌细胞衍生的肽激素是由激素原转化酶的活性产生的,这些酶共同储存在囊泡中,囊泡与细胞膜融合以响应分泌刺激;而其他细胞类型中激素的产生则不同,它们并不经过传统的囊泡激素原转化酶和调节的囊泡分泌机制。

■ 肠道激素与二甲双胍疗效的关联

这些激素的生物合成与它们的mRNA水平有关,mRNA对特定刺激有反应。举例来说,FGF19(小鼠中的FGF15)的表达仅限于回肠末端,并通过核法尼糖样受体FXR被胆汁酸上调。在人体中,饭后胆汁释放后90-120分钟FGF19的循环水平上升。在小鼠中,GDF15在多个器官中表达,但其在肠道中的表达受到细胞应激途径的增加的影响,就像在二甲双胍治疗过程中观察到的那样。实际上,治疗2型糖尿病患者的二甲双胍可能导致循环GDF15水平升高,从而产生该药物减肥效果。

■ Proguanylin:胃切除后水平升高?

Proguanylin在成熟肠细胞、一些杯状细胞和Paneth细胞中表达,在接受胃切除术或肠移植的患者中检测到的环水平高于健康人

Proguanylin释放到肠腔中,在那里被切割形成成熟的生物活性鸟苷肽。鸟苷由两个分子内二硫键稳定,这两个键对消化酶提供了一些保护,并从顶端方向靶向上皮膜鸟苷环化酶受体。Proguanylin和 prouroguanylin 也进入血液,但这些形式是如何分泌和激活的尚不清楚。

04
肠道激素的胃肠作用

肠道激素控制许多胃肠道功能,这些功能涉及协调对食物摄入的反应,并确保摄入的食物被有效消化和吸收

肠内分泌细胞检测管腔内容物的化学成分局部营养吸收率,以及它们释放的激素控制过程,如胃酸分泌的调节、胃排空、胆囊收缩、胰腺酶和电解质的分泌、肠道运动和上皮屏障功能。

▸ 胃酸分泌

胃中特殊的壁细胞分泌酸有助于食物的消化和矿物质的吸收,并降低胃肠道感染的风险。胃酸的产生受到严格调节,以确保有效的食物消化,而不会损害胃和十二指肠粘膜。

胃窦G细胞分泌的胃泌素作用于肠嗜铬细胞上的胃泌素受体(称为CCKBCCK2受体),刺激组胺的释放,组胺是一种强效的盐酸促分泌剂。胃窦和胃底D细胞的生长抑素对该系统进行微调,除了直接抑制壁细胞的酸释放外,生长抑素还能抑制胃泌素和组胺的释放。

其他几种肠道激素,包括胆囊收缩素(CCK)、氧调素、PYY分泌素,通过不完全表征的机制抑制胃酸分泌,并募集涉及生长抑素的旁分泌回路。

▸ 胃排空

胃排空的速度决定了胃内容物输送到十二指肠的速率,并受到各种因素的调节,包括食物特性、肠道神经信号、肠道激素和血糖水平。胃排空率与食物消化率营养吸收率密切相关,并受到调节,使得胃排空率仅反映小肠消化和吸收所接收营养的能力。

如果胃排空速率超过十二指肠吸收能力,营养物质会进入小肠并触发回肠制动,从而导致胃排空的反馈抑制,从而恢复平衡。主要位于回肠和结肠的肠道激素GLP1PYY在回肠制动中起主要作用。回肠制动导致食物滞留在胃中,导致胃胀,从而激活发出饱腹信号的机械敏感迷走神经传入神经元。

▸ 胰腺和胆囊功能

一旦胃内容物进入小肠其他激素就会被吸收以促进消化。由十二指肠 I 细胞产生的CCK刺激胰腺酶分泌,并通过刺激胆囊神经节中传出迷走神经神经递质的释放促进胆囊排空

分泌素在各种成熟的肠内分泌细胞中产生,刺激胰腺碱性电解质分泌,也与餐后热遗传学有关。鸟苷激活肠细胞中的鸟苷酸环化酶-cGMP信号,从而触发上皮氯化物和液体分泌。

这种途径被热稳定肠毒素劫持,是它们引发分泌性腹泻的能力的基础。鸟苷素-cGMP信号通路也与结直肠癌的抑制有关。

▸ 肠道运动

幽门以外胃肠道的运动由协调纵向蠕动波的肠神经系统几种肠道激素之间的相互作用调节。

其中一种激素是胃动素,它存在于人类十二指肠中(尽管啮齿类动物不存在),并在胃中启动迁移运动复合体,特别是在餐间状态。胃动素受体激动剂,如低剂量红霉素,对胃轻瘫有治疗作用,一项研究表明,胃动素接收器的功能缺失变体在胃轻瘫患者中富集。

与调节小肠和大肠运动有关的其他激素包括:

  • 血清素
  • GLP1
  • GLP2
  • 神经降压素
  • CCK
  • PYY
  • GIP
  • 胰岛素样肽5(INSL5)

粘膜血清素对肠道运动和液体分泌的重要性受到质疑,因为缺乏产生粘膜血清素所需的色氨酸羟化酶1的小鼠没有强烈的表型。然而,在一个模型中,产生血清素的肠嗜铬细胞被有条件地切除,这一发现强调了这些细胞确实在肠道转运控制中发挥作用

▸ 肠道功能

除了控制肠道通道外,肠道激素还调节其他重要的肠道过程。例如:

GLP2刺激上皮生长,从而增加给定肠段的吸收能力。这种作用可能有助于GLP2治疗短肠综合征的疗效,

GLP1–GLP2双激动剂更有效。与血清素和神经降压素等其他肠道激素一样,GLP1和GLP2也会影响屏障功能调节免疫系统。分泌血清素的肠嗜铬细胞与内脏疼痛有关,对肠道炎症、肝脏病理生理学和焦虑具有重要意义。

05
肠道激素对其他器官的影响

内 分 泌 胰 腺

我们知道饭后一段时间,人体内胰岛素的分泌量会增加,这其实也跟肠道激素有关。GLP1和GIP是两种主要的肠促胰岛素,占餐后胰岛素分泌的70%


肠促胰岛素效应

肠促胰岛素对葡萄糖刺激的胰岛素释放的影响可以通过以下事实来证明:口服葡萄糖比静脉注射葡萄糖(不刺激肠促胰岛素释放)能引起更大的胰岛素分泌——这种效应被称为肠促胰岛素效应。从生理上讲,肠促胰岛素调节对碳水化合物摄入的反应,并确保餐后健康的葡萄糖耐受性,无论摄入的葡萄糖负荷如何。

GLP1和GIP如何增加胰岛素分泌?

GLP1和GIP分别通过直接作用于GLP1受体和GIP受体来增加胰岛素分泌,这两种受体在胰腺β细胞中高度表达。

在β细胞中,GLP1和GIP受体主要募集Gαs并触发cAMP的升高cAMP影响通过激活蛋白激酶A(PKA)和由cAMP-2激活的交换蛋白(EPAC2)调节胰岛素释放的几种下游途径。这两种效应物都调节离子通道活性以及参与葡萄糖依赖性胰岛素分泌的囊泡运输和融合

GLP1和GIP具有额外的促胰岛素作用,但两者对肠促胰岛素作用的贡献有争议

  • 基于外源激素输注的初步研究得出结论,这两种激素的作用相似。
  • 在过去5年中发表的研究中,在健康志愿者的口服葡萄糖或膳食摄入过程中测试了GIP和GLP1拮抗剂的作用,得出的结论是,GIP对健康个体肠促胰岛素作用的贡献远大于GLP1。这种差异可能反映了分泌GIP的K细胞位于更近的位置,使它们在摄入食物后迅速被激活。

GLP1和GIP对β细胞的作用不仅限于调控胰岛素分泌,还包括上调PDX1促进胰岛素基因转录,增加β细胞质量并通过细胞周期和MAPK的激活促进新生

基于这些作用,GLP1受体激动剂的长期治疗被认为是2型糖尿病的一种疾病改良治疗方法,可以通过增加或保留功能性β细胞质量来减轻β细胞功能障碍的进展。

注:迄今为止还没有证据表明GLP1受体促动剂调节人类的β细胞质量。


胰高血糖素分泌

虽然说GLP1和GIP都刺激胰岛素分泌,但它们对胰腺α细胞分泌胰高血糖素的作用相反

GIP刺激胰高血糖素分泌而GLP1抑制分泌

有证据表明,GLP1对胰岛素和胰高血糖素分泌的相反作用都有助于降低血浆葡萄糖

GLP1通过激活GLP1受体介导的内在(非旁分泌)途径抑制α细胞,从而减少了胰高血糖素的分泌。

然而,其他研究结果表明,GLP1通过涉及胰岛内生长抑素的旁分泌机制间接抑制胰高血糖素的释放,并且GLP1和GIP的不同作用可以通过GIP对α细胞具有强大的直接刺激作用来解释,该作用掩盖了局部生长抑素的抑制作用。


对2型糖尿病的影响

肠促胰岛素的作用通常在2型糖尿病中受损,这种作用是糖尿病的后果而非原因。

在这种情况下,即使GIP的水平是超生理的,其作用也会减弱或缺失,而GLP1的促胰岛素作用相对保留。然而,GIP在2型糖尿病中保留刺激胰高血糖素分泌的能力,这会导致餐后高血糖。在各种研究中,GIP对胰腺β细胞的作用减弱归因于GIP受体表达减少、GIP受体下调或细胞内信号机制的受体后缺陷。

值得注意的是,2型糖尿病患者的血糖正常化提高了对GIP和GLP1的敏感性,这也许解释了为什么在双激动剂药物中在GL1中添加GIP对胰岛素分泌有额外的有益作用。

2型糖尿病是否与GLP1或GIP分泌缺陷有关尚不清楚。对2型糖尿病患者循环GIP水平的研究产生了矛盾的结果——高、低和不变的水平都有报道。相比之下,几项研究表明,2型糖尿病患者在混合餐后GLP1的分泌减少

总的来说,2型糖尿病对肠道激素分泌的影响显然相对较小,这可能反映了这样一个事实,即:

肠内分泌细胞从隐窝干细胞中不断更新,在不利的代谢条件下,细胞损伤几乎没有时间积累

然而,2型糖尿病对肠道运动和营养吸收的影响可能通过改变营养和胆汁酸刺激的局部递送而间接影响肠内分泌细胞的释放。

GLP1对胰岛素释放的影响比GIP大,GLP1已被开发为2型糖尿病的主要治疗靶点,并改变了2型糖尿病和肥胖患者血糖控制和体重减轻的临床治疗。

肝 脏

来自动物研究和临床试验的数据强调了GLP1GLP1受体激动剂对肝脏代谢的多种有益作用。

GLP1受体是否在肝脏中表达有争议:

  • 一些研究似乎表明,GLP1受体在肝细胞中表达,并且可以被GLP1直接刺激;
  • 而另一些研究则对这一发现提出了质疑,并对用于评估肝脏GLP1受体表达的方法的特异性和敏感性提出了质疑。对GLP1R-Cre小鼠的研究,其中表达GLP1受体的细胞被荧光标记,同样未能证明GLP1受体在肝脏中的表达。

因此,在将GLP1对肝脏病理和功能的任何观察到的影响归因于肽对肝脏本身的直接影响之前,必须谨慎。

GLP1和GLP1受体激动剂对肝功能的间接作用

GLP1和GLP1受体激动剂对肝功能的间接作用是预期的,因为它们能够刺激胰岛素释放降低胰高血糖素水平、改善葡萄糖稳态、减少胃肠道中乳糜微粒的产生以及减少热量摄入和体重。GLP1对肝脏影响的复杂性体现在它可以抑制肝脏葡萄糖产生刺激肝脏葡萄糖摄取的发现上。20世纪90年代发表的研究将这些观察结果归因于胰岛素水平改变的间接影响,但后来的研究表明,胰岛素不是关键因素

GLP1对肝脏脂质代谢有几种有益作用:

  • 抑制肝脏新生脂肪生成
  • 降低肝脏FFA和甘油三酯含量(从而改善肝细胞胰岛素抵抗)
  • 防止肝脏VLDL的过度产生

肝脏脂质代谢的这些改善可能至少部分归因于食物摄入的减少和随之而来的体重减轻。然而,一些研究结果表明,GLP1在调节肝脏脂质代谢方面具有额外的直接作用

GLP1是否具有与体重减轻、胰岛素和胰高血糖素相关的肝脏作用之外的肝脏作用是一个有趣的问题。一项研究令人惊讶地表明,GLP19-36是GLP1的主要循环代谢产物,它独立于胰岛素的变化而抑制肝葡萄糖的产生,当GLP1受体被阻断时,这种作用仍然存在。这种作用的机制尚不清楚。一些证据表明,它涉及一种未鉴定的膜受体的激活,而其他研究结果表明,GLP19–36的降解产物(GLP128–36和GLP132–36)靶向PKA–β-连环蛋白–Wnt信号通路;这些降解产物可以在不涉及特定受体的情况下穿透质膜。需要进一步调查,以澄清和验证所涉及的机制。


GLP1受体激动剂治疗非酒精性脂肪肝

无论GLP1对肝脏的有益作用是直接的还是间接的,GLP1受体激动剂正在被研究用于治疗非酒精性脂肪肝(NAFLD),这是肝脂代谢紊乱的最常见的慢性肝病之一。

GLP1受体激动剂:治疗非酒精性脂肪肝的希望

GLP1受体激动剂可以通过多种途径的组合来改善与非酒精性脂肪肝的发作和进展相关的基本代谢变化。

对非酒精性脂肪肝和非酒精性脂肪性肝炎(NASH)小鼠模型的研究表明,GLP1受体激动剂可降低肝脏脂肪含量逆转脂肪变性,发挥抗炎作用,并改善纤维化的组织学严重程度。

此外,GLP1受体激动剂治疗非酒精性脂肪肝的临床试验(主要包括T2DM患者)产生了有希望的结果。几项研究表明,用GLP1受体激动剂治疗可降低肝脏脂肪含量,导致非酒精性脂肪性肝炎的组织学消退,并减缓纤维化的进展。然而,在这些临床研究中观察到体重血红蛋白A1c水平显著降低,因此GLP1受体激动剂的作用是否独立于体重减轻和血糖控制的改善仍不清楚。


双激动剂疗法:研究非酒精性脂肪肝的新选择

双激动剂疗法,其中GLP1受体激动剂与直接抑制脂肪酸合成或靶向纤维化的第二分子结合,正在作为非酒精性脂肪肝的治疗选择进行研究;一个例子是GLP1–胰高血糖素组合肽

其他肠内分泌激素(包括胃饥饿素和胃肠肽)对肝脏的影响尚不清楚。几项研究表明,GIP调节肝脏脂质含量,并可能参与非酒精性脂肪肝的发病机制。然而,GIP是否独立于其对胰岛素和脂肪组织的影响而直接影响肝脏中的脂质积聚(见“脂肪组织”)仍存在争议,因为GIP受体在肝脏中的表达仍未得到证实。几项动物研究表明,GIP信号传导的遗传或药理学破坏可以减少肝脏脂质积聚,但这些干预措施也可以防止饮食诱导的体重增加,因此研究结果不能证明GIP对肝脏有直接作用。

FGF19的多重代谢作用

与肠内分泌细胞衍生的肽不同,FGF19(小鼠中的FGF15)在回肠末端上皮中对胆汁酸吸收产生反应,是调节肝胆汁酸生物合成的重要抑制性反馈回路的基础。它还通过激活肝糖原合成抑制糖异生等途径具有更广泛的代谢作用。

在不同器官中由肠道激素调节的过程

Bany Bakar R, et al., Nat Rev Gastroenterol Hepatol. 2023

脂 肪 组 织

脂肪细胞是哺乳动物的主要燃料储存室,它们的调节可以产生重要的代谢后果。在肠内分泌激素中,GIP脂肪细胞功能的关系最为密切

GIP与脂肪细胞功能:代谢调节的关键

几项研究表明,GIP促进白色脂肪组织(WAT)中的脂质储存,包括在大鼠中观察到,GIP通过增加脂肪组织葡萄糖摄取、从葡萄糖重新生成脂肪和将FFAs重新酯化为甘油三酯来支持脂肪组织中的脂质存储,以及在小鼠中敲除GIP受体可以预防饮食诱导的肥胖

几项研究表明,脂肪组织中的GIP受体激活与胰岛素协同作用,增加脂质积累、葡萄糖摄取、新生脂肪生成和FFA再酯化。

脂肪细胞中的GIP受体类型:研究争议与需解决的问题

然而,这些发现需要在脂肪组织中哪些细胞类型表达GIP受体的争议中进行解释。单核转录组学表明,GIP受体不在成熟脂肪细胞中表达,而是在周细胞间充质细胞中表达。考虑到许多脂肪细胞模型是由可以表达GIP受体的未成熟细胞在体外产生的,这些模型中的GIP受体表达是否能概括天然成熟脂肪细胞中的表达值得怀疑。

另一个必须考虑的因素是,GIP受体与Gαs偶联,Gαs下游cAMP水平升高通常与脂解而非脂肪生成有关,例如β3-肾上腺素能受体激活的脂解作用。

GIP的脂肪生成作用有益,改善脂质储存,减少异位脂肪积聚

有趣的是,GIP受体在小鼠和人类脂肪组织周细胞中表达的发现与GIP在体内显著增加脂肪组织血流量的证据一致,这一过程可以间接促进胰岛素依赖性作用,比如:清除甘油三酯、摄取葡萄糖。

无论潜在机制如何,GIP的脂肪生成作用都是有益的,因为它改善了白色脂肪组织中健康的长期脂质储存,减少了肝脏、心脏和胰腺等外周组织中的脂质溢出和异位脂肪积聚。

在2型糖尿病和肥胖的GLP1受体激动剂上添加GIP受体激动剂的代谢益处

早期的研究表明,GIP纯粹是致肥胖的,因此有利于GIP拮抗作用的翻译策略来实现减肥,而自从2018年以来发表的研究表明双重GIP受体-GLP1受体激动剂,替西帕肽在2型糖尿病患者中实现血糖控制和减轻体重方面比单独使用任一受体的激动剂更有效,该治疗改善了白色脂肪组织健康。替西帕肽治疗显著降低了肝脏脂肪含量以及内脏和皮下脂肪组织的体积,因此可能成为非酒精性脂肪肝或非酒精性脂肪性肝炎的重要治疗选择,尤其是在同时患有2型糖尿病或肥胖的患者中。

然而,对于是激动还是拮抗GIP受体,仍存在不清晰;强有力的证据表明,任何一种方式都可以减轻肥胖和体重

注:已经提出了几个假设来调和这些自相矛盾的观察结果,但还需要更多的研究来澄清这一领域。

尽管GIP在肠道白色脂肪组织轴中的确切作用机制仍有争议,但GIP在脂肪组织中的生理作用是明确的。在啮齿类动物中,棕色脂肪细胞组织(BAT)中GIP受体的表达已得到充分证实,给予GIP或替西帕肽可促进产热;替西帕肽也与支链氨基酸分解代谢增加有关。

然而,小鼠棕色脂肪细胞组织中GIP受体的条件性敲除并不能像全局敲除GIP受体那样防止饮食诱导的肥胖,这表明GIP对棕色脂肪细胞组织的影响在生理上并不是主要的。那主要的会是什么呢?

其他激素在肠道棕色脂肪细胞组织轴中发挥重要作用

例如,血清素抑制棕色脂肪细胞组织活性,而缺乏血清素产生所需的色氨酸羟化酶1的小鼠可以免受饮食诱导的肥胖。然而,鉴于血浆5-羟色胺是由血栓细胞缓冲的,肠道来源的5-羟色胺的内分泌作用值得怀疑,而且关于血浆5-羟色胺水平相对于用餐时间的日变化的报道一直不一致。相反,分泌素激活棕色脂肪细胞组织,这种激活与食欲的改变有关。

肠-脑轴是胃肠道大脑之间传递信息的渠道,包括神经、激素和营养信号;下丘脑核团后脑检测和整合这些外周信号的主要中心。肠-脑轴的紊乱已在多种疾病中被发现,包括炎症功能性胃肠道疾病以及饮食障碍

肠道激素在大脑的作用可以解释一些饮食失调和进食障碍的发生?

肠道向大脑发送关于饮食营养摄入状态实时信号肠道激素是肠道和大脑之间复杂相互作用的主要介质,这些相互作用是饱腹感(两餐之间不饿的感觉)和饱足感(一餐结束时吃得足够的感觉)的基础。许多肠道肽及其受体也在中枢神经系统中表达,并调节中枢回路,包括与食欲有关的回路。这种在中枢神经系统中的表达可能会使涉及肠道激素受体的药理学或全局遗传操作的研究的解释复杂化,因为其结果可能归因于对中枢神经系统回路的影响,而与肠道分泌的激素无关

传入迷走神经神经元的细胞体位于结节神经节,并投射到孤束核(NTS),是介导肠道激素对食物摄入影响的主要途径肠内分泌细胞通过局部升高的肠道激素水平以及可能的突触连接与传入迷走神经和内脏神经末梢进行交流。到达心室周围器官(例如,脊后和正中隆起区)和邻近细胞核(分别为下丘脑的NTS和弓状核)的循环肠道激素与这些信号汇合,以调节进食行为。几种肠道激素对大脑有着重要而独特的影响,下文将对此进行讨论。


胆囊收缩素CCK与PYY

CCK是在食欲调节中发挥作用的肠道激素。餐后释放CCK通过与CCK1受体结合激活传入迷走神经,向大脑提供反馈信号,从而减少进食。然而,根据小鼠研究,反馈信号的性质仍不清楚,因为动物可能因各种原因停止进食。在人类中,输注生理浓度的CCK可以抑制能量摄入并增加幽门收缩,而不会引起恶心;食物摄入减少被认为是幽门收缩的结果。在小鼠中,CCK通过传入迷走神经发出信号,激活中枢奖赏通路,并增加脂肪和糖的消耗。

CCK似乎会触发相对短暂的饱腹信号,PYY与餐后食物摄入长期抑制有关。已知PYY的两种不同形式:PYY1-36PYY3-36。PYY1–36通过二肽基肽酶IV化为PYY3–36。两种形式的PYY都参与调节食物摄入,但它们表现出不同的特性受体偏好

  • PYY1-36是1型、2型和5型神经肽Y受体的激动剂,主要负责刺激食欲和促进体重增加。
  • PYY3–36对2型神经肽Y受体具有更高的亲和力,并抑制食欲,从而促进体重减轻。


GLP1和氧调节蛋白

GLP1和GLP1受体激动剂可以抑制食欲

GLP1受体激动剂主要通过作用于中枢神经系统内的GLP1受体来抑制食物摄入,但肠道来源的GLP1在大脑中是否达到足够高的水平以在生理条件下激活GLP1受体仍不清楚

几项研究表明,迷走神经传入神经元的末端露于胃肠道高水平的局部生物活性GLP1介导内源性肠道衍生的GLP1的饱腹作用

肠道来源GLP1控制食物摄入——不是主要的

在小鼠中,迷走神经神经元表达GLP1受体,而且响应机械刺激,外源性GLP1也可以增强由胃和肠道拉伸引起的饱腹感。然而,敲除肠道来源的GLP1不会影响小鼠的食物摄入或体重,这表明肠道来源的GLP1对控制食物摄入并不重要。

脑源性GLP1控制食物摄入——明显作用

虽然去除后脑GLP1表达也不会影响自由进食行为,但当化学遗传学激活时,它确实削弱了表达GLP1的神经元减少进食的能力,证明了脑源性GLP1在控制食物摄入方面的明显作用。

GLP1受体与氧调素的互动:探索胰岛素类似物的潜力

GLP1受体也被氧调素激活,氧调素是一种由肠道L细胞分泌的37个氨基酸的略微延伸的胰高血糖素类似物,在胰岛素受体处也具有活性。氧调节蛋白在体重管理葡萄糖稳态方面具有有益作用,这一作用正开始通过使用GLP1受体胰岛素受体双激动剂而得到利用;鉴于目前还没有发现特异性的尿囊素受体,这些作用被认为是由其对这两种受体的双重作用介导的。


减肥手术中的肠道激素

减肥手术后,餐后GLP1、氧调节蛋白PYY水平显著升高;循环水平足以对食物摄入和葡萄糖耐受性产生有益影响。然而,在小鼠中,Roux-en-Y胃旁路术的减肥作用在缺乏神经肽Y受体2型和GLP1受体的动物中仍然存在,这表明这些激素作用之外的机制也有助于减肥手术的益处。

神经降压素也与减肥手术的效果有关

神经降压素(Neurotensin)是一种13个氨基酸的肽,主要存在于大脑和胃肠道中。在啮齿类动物中,神经降压素直接进入大脑时会减少食物摄入,这种作用主要由NTSR1(神经降压素受体1)介导

在一些研究中,Ntsr1敲除小鼠食欲增加,体重增加,对神经降压素的食欲抑制作用没有反应

然而,在其他研究中,Ntsr1敲除降低了进食量并增加了活性,但对体重或组成没有影响。

脑源性神经降压素抑制食欲,外周的神经降压素对代谢的影响尚不清楚

一些研究表明,神经降压素的外周给药会导致啮齿动物的食物摄入量暂时减少。一些证据表明,这种影响可能归因于肠道中脂肪吸收的减少,但减少进食的确切机制尚不清楚。

另一种与减肥手术结果有关的激素是分泌素,因为它在手术后的餐后水平也会升高,尽管它在这些患者中的生理重要性尚不清楚。


源自非肠道内分泌细胞的激素

来自非肠道内分泌细胞肠道激素(GDF15、FGF19、uroguanylin)似乎也通过中枢途径调节食欲的作用。

最有力的证据是GDF15,它靶向后脑中有限的神经元群体,并导致由一系列毒性刺激(如化疗剂)诱导的恶心,这种恶心发生在癌症恶病质和妊娠剧吐中。

GDF15反应神经元表达GDF15受体,即GFRAL,并与脑干GLP1受体CCK回路密切相关。有趣的是,GIP可以通过表达GIP受体的海马后区GABA能神经元抑制GDF15(和其他肠道激素,包括GLP1和PYY)引起的恶心。


食欲增加的肠道激素

Ghrelin:非凡食欲刺激者

胃饥饿素(Ghrelin)是唯一被广泛接受的刺激食物摄入的肠道激素。根据这种生物活性,血液中胃饥饿素的水平在用餐前升高,在进食后下降

其生物学效应是通过生长激素促分泌受体(GHSR)介导的,GHSR存在于全身,包括胰腺、迷走神经传入神经元和大脑。几项研究表明,Ghrelin通过在下丘脑弓状核的中央和迷走神经传入神经的外周发挥其食欲产生活性

然而,后一种机制是有争议的,一些研究表明,胃饥饿素的食欲产生作用不需要迷走神经传入信号。一些研究表明,胃动素也能促进食物摄入,但胃动素的生理学特征很差,因为它不存在于啮齿类动物中。

注:胃动素是一种与胃饥饿素有关的肽,由十二指肠中重叠的肠内分泌细胞群体产生。

INSL5:微弱但可能的食欲促进者

INSL5由远端结肠和直肠L细胞的一个子集分泌,对小鼠的研究表明它它具有食欲促进作用。它通过RXFP4(松弛素-胰岛素样家族肽受体4)发挥作用,该受体在大脑的关键进食中心表达

INSL5的增食欲作用远低于胃饥饿素,这在一些研究中没有观察到,并且可能在体内被PYY所淹没,PYY是从相同的肠内分泌细胞平行分泌的。这些观察结果让人怀疑外周释放的INSL5是否在控制食物摄入方面具有重要的生理作用。然而,一项研究已经确定了腹内侧下丘脑中达RXFP4的神经元在调节食物摄入和偏好方面的潜在作用。

06
结 语

胃肠道和身体其他活跃的组织之间有着双向的信息传递,而这个信息传递的改变与多种代谢性疾病有关。目前对于胃肠激素如何与这个复杂的调节网络相互作用的理解正在逐渐加深,但仍需要进一步的研究来完全揭开这个谜团。

肠道菌群的异常变化可能影响肠道激素的正常分泌,从而导致代谢相关疾病发生。因此,肠道菌群的稳定和平衡对于保持肠道激素的正常分泌和代谢健康非常重要。这些发现为我们深入了解肠道菌群和肠道激素的相互作用、开发相关治疗方法提供了新的方向。通过调节肠道菌群的结构和功能,我们可能能够干预肠道激素的分泌,从而实现对代谢相关疾病的治疗和预防。

通过开发创新、微创且耐受性良好的治疗方法,我们可以利用胃肠激素受体的转化潜能。GLP-1双重和三重激动剂疗法的临床试验已经证明了这种方法的价值。这个领域研究进展迅速,很可能会进一步细化现有的认识,解决关键的机制问题。期待揭示出胃肠激素控制的多个信号通路,可以成功地用于治疗2型糖尿病和肥胖,并且将这些基于胃肠激素的药物在其他代谢性疾病中推广应用。

主要参考文献:

Bany Bakar R, Reimann F, Gribble FM. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat Rev Gastroenterol Hepatol. 2023 Aug 25. 

肠道重要菌属——Dorea菌,减肥过敏要重视它?

谷禾健康

认识 Dorea菌

Dorea菌属于厚壁菌门毛螺菌科广泛存在于人体肠道内,谷禾数据显示该菌在人群的检出率超89%。该菌最早也是从人体粪便中分离出来。

Dorea” 目前没有一个确定的译名,Dorea是以法国微生物学家 Joel Doré 的名字命名,以表彰他对肠道微生物学的诸多贡献。

该菌是一类革兰氏阳性厌氧菌,主要存在于人类和动物的肠道中,可以利用多种底物进行发酵代谢,包括葡萄糖、果糖、乳糖和芳香族化合物等。

它可能通过诱导Treg并抑制Th17细胞的分化和功能,从而调节肠道免疫反应,维持肠道黏膜屏障的完整性和稳定性。

编辑​

图源:microbiomology

Dorea在肠道微生态系统中的丰度和分布受到多种因素的影响,如年龄、饮食、生活方式、疾病等。在不同年龄段、不同饮食类型和不同疾病状态下存在差异,这可能与其在肠道内的营养代谢、免疫调节和菌群相互作用等方面的作用有关。

多发性硬化症、炎症性肠病患者,甚至结直肠癌、自闭症谱系障碍以及肥胖人群中的Dorea高丰度富集,被认为具有促炎作用。

多数研究证实Dorea与体重指数 (BMI)、腰围和舒张压呈正相关。基线肠道内富含高丰度的Dorea的人群,在减重方面更困难

然而Dorea菌在抑郁患者和患有食物过敏人群中减少,研究还表明Dorea菌可以预防或治疗过敏性鼻炎

相较于其他的肠道重要菌属,关于Dorea 的研究资料相对有限,本文将根据该菌相关的研究结果以及检测实践数据来综合分享该菌的相关信息和健康特性及其干预措施。

简 介

该菌是不形成孢子、革兰氏染色阳性、不运动、专性厌氧的菌。葡萄糖代谢的主要终产物是乙醇、甲酸盐、乙酸盐、H和 CO2不产生丁酸盐。DNA G+C 含量 (mol%):40–45.6 (Tm)。

该属的代表菌种是Dorea formicigenerans,是肠道中主要的产气菌,能够利用碳水化合物,这也是一些肠病部分肥胖患者会伴随腹胀气的原因之一。另外还有Dorea longicatena也比较常见。

该菌属包括目前已经鉴定的常见种包括以下:

  • Dorea acetigenes
  • Dorea ammoniilytica
  • Dorea amylophila
  • Dorea formicigenerans
  • Dorea hominis
  • Dorea longicatena
  • Dorea phocaeensis

Dorea菌与肠道微生态系统中的其他菌群之间也存在着复杂的相互作用。一些研究表明,Dorea菌与BacteroidesFaecalibacterium等菌群之间存在着协同关系,可以相互促进代谢产物的生成和利用,从而维持肠道微生态系统的平衡和稳定性

此外,青春双歧杆菌长双歧杆菌可以降低或抑制Dorea的丰度。

该菌作为肠道重要菌属,其与其它肠道菌群互作如下,仅供参考:

<来源:谷禾健康数据库>

健 康 特 性

▲ Dorea增多相关

➩ 非酒精性脂肪型肝炎

患有脂肪变性或非酒精性脂肪型肝炎(NASH)的儿童伴随着更高丰度的DoreaRuminococcus 菌属。


线粒体功能障碍,连同氧化应激和肠道菌群改变据信能够促进非酒精性脂肪型肝炎的进展。

证据表明非酒精性脂肪性肝病(NAFLD)会破坏肠-肝轴,将野生型和甲基化控制的J蛋白敲除(MCJ-KO)小鼠喂食6周的高脂饮食 (CDA-HFD),小鼠的Dorea属及Oscillospira属较WT小鼠高;研究结果阐明了MCJ-KO的特定菌群谱,表现为DoreaOscillopira菌属的粪便相对丰度增加,以及AllboaculumRuminococcus菌属的减少。

这些菌通过增强短链脂肪酸、烟酰胺腺嘌呤二核苷酸(NAD+)代谢和sirtuin(长寿蛋白)的活性,增加了无菌小鼠的脂肪酸氧化来发挥肝脏保护作用。值得注意的是,该研究强调Dorea菌属及其相关代谢产物是这种菌群依赖性保护表型的主要调节剂

研究者进一步利用公共数据库进行分析:通过一组肝硬化患者的数据,将患者根据体重指数(BMI)分为肥胖(BMI≥30;n=71)和非肥胖(BMI<30;n=121),有趣的是,在非肥胖受试者的子集中,粪便Dorea的丰度显著降低(p=0.026),而在肥胖患者中未观察到显著差异(p=0.636)。

这些发现可能表明瘦型非酒精性脂肪型肝炎患者的肠道菌群组成发生了特定变化,特征表现为Dorea菌属的减少

➩ 超重和肥胖

肠道菌群被认为在超重和肥胖的发展中发挥重要作用,但能量限制(特别是长期)对超重和肥胖成年人肠道微生物群的影响。发表于Genome Medicine的一项研究发现,基线时Dorea菌属丰度较高可能与随后难以减掉体重有关。

宏基因组研究也表明,BlautiaDoreaMediterraneibacter属的增加可能促成宿主肥胖

Dorea formicigenans 和 Dorea longicatena 在超重/肥胖人群中的丰度更高

基线Dorea的丰富随后的体重减轻适度的预测作用

Dorea丰度与肥胖呈正相关,在糖尿病前期患者中发现其丰度增加Dorea丰度的变化与粪中戊酸水平的变化呈负相关。Dorea高丰度可以降低产短链脂肪酸菌的丰度,导致粪便中包括戊酸在内的短链脂肪酸水平降低

➩ 2型糖尿病

2型糖尿病患者肠道菌群中产丁酸菌减少,而潜在致病菌增多。糖尿病前期患者肠道菌群也有相应的变化:梭菌属和黏蛋白降解菌AKKermansia显著减少。此外,Dorea菌属、瘤胃球菌属和链球菌属增多

➩ 肠易激综合征

肠易激综合征受试者中,与健康对照组相比,观察到肠道微生物群,肠杆菌科、瘤胃球菌、梭菌、Dorea物种增加

➩ 肿瘤息肉

肠道微生态系统组成变化与大肠肿瘤密切相关:与无腺瘤性息肉患者相比,腺瘤性息肉患者肠道微生态中拟杆菌比例相对降低,而变形菌比例相对较高,Dorea菌属及志贺菌属比例升高

➩ 结直肠癌

结直肠癌患者中DoreaPorphyromonas增加同时CatenibacteriumPrevotella减少的细菌属被证明产生了最准确的预测效果。Dorea在结直肠癌患者的粪便样本中比在健康对照者的粪便样本中更丰富Dorea菌具有粘附癌细胞的能力,这可能赋予Dorea在癌性结直肠环境中的竞争优势Dorea菌的机会主义能力带来潜在致癌作用。

➩ 牛皮癣

牛皮癣患者肠道菌群中的Ruminoccocus gnavus, Dorea formicigenerans, Collinsella aerofaciens丰度显著增加

➩ 自闭症

与健康对照组相比,自闭症孤独症谱系障碍儿童中毛螺菌科的数量有所增加毛螺菌科由大约几十个异质属组成。

众所周知,毛螺菌科成员中的许多属甚至可以主宰肠道微生物群,包括DoreaBlautia、LachnospiraCoprococcusRoseburiaRuminococcus。毛螺菌科成员具有广泛的代谢功能,包括合成短链脂肪酸(包括丁酸盐)、粘蛋白降解以及糖和芳香族氨基酸代谢。他们的生态失调与许多其他慢性疾病有关,例如炎症性肠病、肾脏疾病、肝脏疾病和神经行为疾病等。

▼ Dorea减少相关

➩ 过敏性鼻炎

过敏性鼻炎 (Allergic rhinitis,AR)是特应性个体接触环境中变应原后,通过IgE介导的多种细胞因子及炎性介质参与的鼻腔黏膜慢性非感染性炎症。发现过敏性鼻炎患儿的粪便Dorea菌、Dialister菌和组氨酸水平显著降低,而其差异代谢物与差异菌群无明显关联。

进一步研究发现DoreaRalstonia与淋巴细胞模式(Th2/Treg 比率)密切相关。有趣的是,DoreaRalstonia与淋巴细胞模式呈负相关:Th2/Treg 比率与Dorea呈负相关, 但与Ralstonia呈正相关。

在儿童早期,Dorea菌与屋尘螨特异性 IgE 水平呈负相关,并且似乎对过敏性鼻炎更具特异性。由于Dorea属与过敏的持续关联,因此Dorea菌丰度的改变可能通过改变对屋尘螨的过敏性致敏作用的发展,来预防或治疗过敏性鼻炎。

➩ 食物过敏

厚壁菌门的Dorea属与婴儿期的食物致敏和食物过敏呈负相关

研究表明提出婴儿双歧杆菌Bifidobacterium Infantis)可能通过增加Dorea和减少Ralstonia减轻 Tm 引起的过敏反应。Dorea可能有助于诱导 Treg 并抑制 Tm 诱导的过敏反应。

注:Tm 是指过敏原(allergen)或致敏物质(sensitizing agent)。

另外一项为期 3 年的后续研究表明,Dorea在后来发生食物致敏或食物过敏的婴儿的肠道微生物群中减少,因此表明Dorea可以防止食物致敏和食物过敏。

➩ 与肠道内肠道辅酶NAD正相关

Dorea相对丰度与肠道NAD总水平呈正相关。肠道NAD指的是肠道内的辅酶NAD(nicotinamide adenine dinucleotide)分子。NAD是一种重要的辅酶,在细胞中发挥着多种重要的生物学功能,包括能量代谢、DNA修复、信号转导等等。肠道内的NAD含量和代谢状态对肠道黏膜屏障的维护、肠道免疫和菌群平衡等方面都有着重要的影响。最近的研究表明,肠道NAD水平的改变可能与多种肠道相关疾病的发生和发展有关。

➩ 心力衰竭

此外,个别研究发现直肠真杆菌和Dorea longicatena在心力衰竭患者肠道微生物群中的含量低于健康受试者。

➩ 抑郁、睡眠

重度抑郁症是一种常见的精神疾病。研究结果显示属水平上,Dorea菌与抑郁和睡眠质量同时相关。压力诱导 Dorea, Coprococcus等菌群显著变化。

Dorea在抑郁症患者中减少,患有睡眠障碍的重度抑郁症患者的Dorea formicgenerans减少。

干 预 调 节

⇊ 

Dorea减少干预

在属水平上,摄入 3 g/d HMW β-葡聚糖会增加拟杆菌,但会减少 Dorea (P < 0.1)。

大麦干预具有更高丰度的 AkkermansiaBlautia 和 Bilophila,同时减少 Parabacteroides和 Dorea

属于厚壁菌门的 Dialister、 Dorea 、Pseudobutyrivibrio 和 Veillonella 在使用L-谷氨酰胺后显着减少。

补充维生素D,肠道内Dorea相对丰度降低。

补充硫酸铁(口服)导致 Dorea菌物种的丰度降低。

低聚半乳糖 (GOS) 补充显示Dorea减少。

补充益生元(低聚果糖FOS 和菊粉混合物)显示 Dorea 丰度较低。

Bifidobacterium longum 增加Dorea菌。

喂食鼠李糖乳杆菌hsryfm 1301或其发酵乳28天后,大鼠的肠道微生物群和血脂得到改善。血脂与瘤胃球菌、Dorea、Enterococcus正相关(P<0.05)。

刺梨(RRT)的果实可食用,被认为是具有降脂作用的药用果实。12 周刺梨降低 DoreaCoprobacillus 丰度,并促进双歧杆菌和Roseburia 丰度,来逆转高脂饮食诱导的肠道生态失调

芒果 ( Mangifera indica L.) 果皮是工业加工获取果汁和浓缩物的副产品,富含多酚和膳食纤维。将预先消化的芒果皮提交给人类结肠的动态体外模型。Dorea属在芒果果皮发酵中的含量为 6.69%。

抗生素(阿莫西林、四环素和甲硝唑)治疗 2 周后,Dorea formicgeneransEubacterium rectale的丰度下降。

白藜芦醇有效降低了AkkermansiaDoreaSutterella和Bilophila菌属的丰度 。

高蛋白饮食后,Dorea会随着 BMI 的降低而降低。

⇈ 

Dorea增加干预

Dorea菌属可以利用多种底物进行发酵代谢,包括葡萄糖、果糖、乳糖和芳香族化合物等。因此,调节饮食结构可以影响Dorea菌属的生长和代谢。

摄入动物性饮食五天后,肠球菌科、肠球菌属和 Dorea属的细菌在蠕虫感染中表现出丰度增加的趋势。

高纤维、低脂肪的饮食有利于增加Dorea菌属的丰度和多样性。

富含可发酵碳水化合物的饮食支持相对丰富的双歧杆菌、普雷沃氏菌属、瘤胃球菌属、Dorea 、 Roseburia 等。

果胶是一种水果蔬菜中发现的复杂的膳食纤维和益生元。果胶摄入增加LachnospiraDoreaClostridium,其中Lachnospira的增幅最大。

中等强度的运动干预持续 3 个月后,亚阈值抑郁症的年轻青少年的肠道菌群发生变化,在属水平上增加Coprococcus、Blautia、Dorea、Tyzzerella 、Tyzzerella nexilis 的相对丰度。

注:中等强度的运动,包括每天跑步 30 分钟,每周 4 天。

结 语

当谈到Dorea菌时,虽然仍有许多未知的领域,但我们已经取得了一些重要的研究进展。Dorea菌在肠道微生物组中扮演着重要的角色,与人类健康密切相关。它们能够帮助维持肠道菌群的平衡,支持营养物质的吸收和消化,并且可能对肥胖、炎症性肠病、自身免疫疾病等疾病的发生和发展起到重要作用。

然而,关于Dorea菌的研究仍然处于起步阶段。我们需要研究更多的样本、更多的群体,并使用更多的技术手段来深入了解这些菌属的作用机制。相信随着微生物组研究的不断深入,我们将能够更好地理解Dorea菌和其他肠道菌属对人类健康的影响,并开发更加个性化的干预管理方案。

主要参考文献:

Chaput N,Lepage P,Coutzac C et al. Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab.[J] .Ann Oncol, 2019, 30: 2012.

Sowah SA, Milanese A, et al., Calorie restriction improves metabolic state independently of gut microbiome composition: a randomized dietary intervention trial. Genome Med. 2022 Mar 14;14(1):30

Juárez-Fernández M, Goikoetxea-Usandizaga N, Porras D, García-Mediavilla MV, Bravo M, Serrano-Maciá M, Simón J, Delgado TC, Lachiondo-Ortega S, Martínez-Flórez S, Lorenzo Ó, Rincón M, Varela-Rey M, Abecia L, Rodríguez H, Anguita J, Nistal E, Martínez-Chantar ML, Sánchez-Campos S. Enhanced mitochondrial activity reshapes a gut microbiota profile that delays NASH progression. Hepatology. 2023 May 1;77(5):1654-1669.

Zhang Q, Yun Y, An H, Zhao W, Ma T, Wang Z, Yang F. Gut Microbiome Composition Associated With Major Depressive Disorder and Sleep Quality. Front Psychiatry. 2021 May 21;12:645045.

Dahl WJ, Rivero Mendoza D, Lambert JM. Diet, nutrients and the microbiome. Prog Mol Biol Transl Sci. 2020;171:237-263.

Chen D, Yang Z, Chen X, Huang Y, Yin B, Guo F, Zhao H, Zhao T, Qu H, Huang J, Wu Y, Gu R. The effect of Lactobacillus rhamnosus hsryfm 1301 on the intestinal microbiota of a hyperlipidemic rat model. BMC Complement Altern Med. 2014 Oct 10;14:386. 

Tangestani H, Boroujeni HK, Djafarian K, Emamat H, Shab-Bidar S. Vitamin D and The Gut Microbiota: a Narrative Literature Review. Clin Nutr Res. 2021 Jul 20;10(3):181-191.

Wang R, Cai Y, Lu W, Zhang R, Shao R, Yau SY, Stubbs B, McIntyre RS, Su KP, Xu G, Qi L, So KF, Lin K. Exercise effect on the gut microbiota in young adolescents with subthreshold depression: A randomized psychoeducation-controlled Trial. Psychiatry Res. 2023 Jan;319:115005. 

2型糖尿病如何做到可防可控?肠道菌群发挥重要作用

谷禾健康

2型糖尿病是一种血糖水平升高(高血糖)的慢性代谢疾病,主要由胰岛素抵抗和胰岛素分泌不足引起。2型糖尿病全球患病率在不断上升。

截止到2020年,根据美国糖尿病学会评估标准,糖尿病患病率已达到12.8%。其实在我国成年人中,已经有将近一半的人存在血糖异常,未来极有可能发展为2型糖尿病。如果不加干预治疗,会引发许多不良后果。

很多研究表明,肠道菌群在宿主的代谢和疾病状态中起着重要的作用。特别是2型糖尿病,其病因复杂,包括肥胖、慢性低度炎症,受肠道微生物群和微生物代谢产物的调节。

本文将从肠道菌群的角度了解其与2型糖尿病的关系;肠道菌群及其代谢物对葡萄糖代谢、免疫系统的影响;
从影响肠道菌群变化的因素来了解各种干预措施,包括药物,饮食,益生菌/益生元,粪菌移植,间接性禁食等方式。

01 2型糖尿病

葡萄糖主要通过食用的食物和饮料进入人体。胰腺会产生一种叫做胰岛素的激素,以帮助血液中的葡萄糖进入肌肉、脂肪和肝脏,用作能量。

  • 胰岛素如何将血液中糖分控制在正常水平?

胰岛素通过血液循环进入不同组织。组织大多数细胞表面有一种结构,叫胰岛素受体。当胰岛素流过时,会附着在胰岛素受体上,就像钥匙打开锁一样,糖可以进入细胞内,细胞获得能量维持正常运作,血液中糖分就会回落到正常水平。

  • 2型糖尿病如何形成?

2型糖尿病患者身上,细胞对胰岛素没有反应,这种情况就叫胰岛素抵抗。胰岛素没有了“钥匙”的作用,不能有效开启细胞上的“锁”,或者“锁”的数量也减少了,由此,糖分就不能进入细胞有效利用,被挡在了细胞外面,只好在血液中积累,血糖就升高了。

刚开始的时候,胰腺会觉得自己使不上力,于是不甘心开始拼命工作,产生更多的胰岛素来克服这种抵抗。

随着时间的推移,胰腺开始累了,力不从心,不能产生更多的胰岛素,这时候就是2型糖尿病开始了。

02 2型糖尿病患者的微生物群

肠道微生物群可以直接或间接地影响人类健康,肠道微生物群失调可能会增加促炎疾病的患病率,如肥胖、炎症性肠病、2 型糖尿病、关节炎和癌症。

2型糖尿病人群中个体微生物群的差异

Cunningham A L et al., Gut Pathog, 2021

在2型糖尿病患者普遍具有相对高丰度的特定属:Blautia、Coprococcus、Sporobacter、Abiotrophia、Peptostreptococcus、Parasutterella、Collinsella

2型糖尿病患者中,产生丁酸菌特别缺乏,特别是梭菌目,包括:

Ruminococcus、Subdoligranulum,Eubacterium rectale、Faecali prausnitzii、Roseburia intestinalis 、

Roseburia inulinivorans

2型糖尿病患者中,其他明显较少的菌属有:

拟杆菌属、普雷沃氏菌属双歧杆菌属

  • 双歧杆菌减少

心血管疾病监测治疗新靶点?

谷禾健康

心血管疾病(CVD)已成为主要的健康问题,是导致发病率和死亡率高的主要原因,2型糖尿病(T2DM)患者发生CVD和重大心血管不良事件(MACE:心衰梗死、中风、死亡)风险更高,且预后较差。传统的CVD风险指标以及T2DM的血糖控制都不能很好地预测T2DM患者发生CVD的风险。

肠道菌群最近被认为是一种新型的内分泌器官,它通过产生生物活性代谢产物,在调节宿主的心脏代谢和肾脏功能中发挥关键作用。

肠道并不是第一个被用来研究心血管疾病病理生理学的器官。它不仅是处理食物消化吸收的器官,而且是体内最大的具有免疫活性的器官。

最近的研究表明,肠道菌群会产生并释放许多谢产物和毒素,其中一些代谢产物和毒素会吸收到宿主的体循环中,作为微生物影响宿主的媒介。

我们整理汇总了这篇综述调查来自数项临床和实验研究的证据,这些证据表明肠道微生物群来源的毒素CVD之间存在关联,包括脂多糖LPS氧化三甲胺TMAO苯乙酰谷氨酰胺PAGln。目前已经正在进行一些临床研究,旨在探索降低这些毒素水平以抑制心血管事件的有效性。

了解这些菌群相关代谢物是如何产生并如何影响心血管疾病有助于我们了解可能的风险和找到更好的生活方式来预防CVD。

缩略词:

01 脂多糖LPS

LPS的结构和特点

LPS,也称为内毒素,是革兰氏阴性细菌外膜的组成部分,主要存在于人体的肠道和口腔中。LPS的基本化学结构由亲水区和糖部分结合到疏水区组成,称为脂质A(下图A)。

LPS的亲水区域由内核和外部核以及O抗原(物种特异性重复寡糖亚基)组成,该区域对LPS的促炎活性影响最小(下图A)。

脂多糖(LPS)和脂质A的结构

Yamashita T,et al., Toxins,2021

疏水区脂质A在各种革兰氏阴性细菌中在结构上是保守的,由磷酸化的二葡萄糖胺主链组成,该主链具有4至7条相连的酰基链(上图B)。脂质A是Toll样受体4(TLR4)的配体和LPS的最关键“毒素”部分,它激活先天免疫系统,包括单核细胞和巨噬细胞,并引起宿主的炎症反应

宿主血液中的 LPS 是从哪里来的?

——从肠道菌群中来

LPS是革兰氏阴性细菌外膜的主要成分,因此肠道微生物群可能是血液LPS的主要来源。人类胃肠道中存在数百万亿细菌,实际上,粪便LPS水平通常反映了肠道菌群衍生的LPS量,这个量因人的菌群构成和总量而异。

此外肠道通透性的提高增强肠道菌群来源的LPS从肠道到血液的渗透。高脂饮食增加肠道的通透性。

Akkermansia菌可以加强肠道的紧密连接并防止代谢性内毒素血症,此外肠道菌群产生的短链脂肪酸可以保护肠屏障功能。

——从食物中来

除了肠道菌群以外,食物也是LPS的天然来源,因为食物和水总是含有少量LPS。饮食模式反映了血液中LPS的水平。

具体来说,选择健康的饮食食物(包括鱼,新鲜蔬菜和水果)可能会带来积极的健康结果,因为它们有助于减少内毒素血症。

02 LPS与CVD的联系

CVD与几种传统的危险因素有关,例如高血压,血脂异常,糖尿病,吸烟和肥胖。

炎性过程已知在心血管病的发展中扮演至关重要的角色,而LPS是一种众所周知的炎症物质。LPS被认为是包括CVDs在内的炎性疾病的一种毒素,并参与CVDs发病和进展的病理生理过程。

由于LPS刺激TLR4诱导释放关键的促炎性细胞因子,而这些因子是激活有效免疫反应所必需的,大量的流行病学证据表明,内毒素血症的血液中LPS处于高水平,是动脉粥样硬化的重要危险因素,并且是LPS与动脉粥样硬化疾病之间联系的纽带。

不同的菌群,其LPS结构不同

虽然肠道菌群可以是粪便LPS的主要来源,但不同的菌群构成其LPS的炎症效应是不同的。LPS的脂质A部分的结构在不同菌群之间有所不同(上一小节图B)。这些结构差异可能是决定LPS活性的主要因素。

例如,已知拟杆菌属具有四酰基和五酰基酰化的脂质A部分,而大肠杆菌具有六酰化类脂A部分。通常,四和五酰化脂质A部分相比六酰化类脂A部分会减少TLR4反应。这表明如拟杆菌的LPS其诱导的促炎性细胞因子生成要远低于大肠杆菌的LPS。

因此肠道细菌组成和这些细菌所拥有的脂质A部分的类型可能是影响肠道微生物LPS与CVD之间关联的重要因素。

越来越多的证据表明,全身性内毒素血症和肠道菌群衍生LPS参与心血管病和许多其它流行疾病的发作和进展,如炎性肠疾病,肥胖和相关代谢性疾病,和非酒精性脂肪性肝炎。

03 三甲胺N-氧化物(TMAO)

2011年,Hazen博士和他的同事使用代谢组学方法在动脉粥样硬化研究中取得了显著发现,并揭示了肠道衍生的代谢产物TMAO是心血管疾病大型临床队列中心血管事件的独立预测因子

TMAO是心血管疾病的危险因素

TMAO在伴有冠状动脉疾病、血栓形成、慢性肾病和心力衰竭的CVD患者中升高,并与不良心血管事件和全因死亡率相关。

据报道,TMAO水平升高与慢性肾病患者的肾功能程度全身炎症增加密切相关,而TMAO可作为该组严重慢性肾病患者死亡率的独立预测因子。可以合理地得出结论,TMAO是肠道菌群来源的尿毒症或心血管毒素,可导致全身性炎症

TMAO的产生

Brown J M, et al., Nature Reviews Microbiology, 2018

磷脂酰胆碱是一种在食品中发现的饮食成分,例如奶酪,蛋黄,肉和贝类,在肠道中被转化为胆碱,随后利用肠道微生物酶TMA裂解酶代谢为三甲胺(TMA)。TMA从肠道吸收进入门脉循环,然后通过肝脏中含黄素的单加氧酶(宿主酶)转化为TMAO 。

他们还证明,饮食中的左旋肉碱是红肉中的一种丰富营养物质,含有类似于胆碱的三甲胺结构,会促进血浆TMAO水平的升高并加速动脉粥样硬化。

 肠道微生物衍生的TMAO代谢

Yamashita T,et al., Toxins,2021

与TMA产生有关的三个关键的微生物功能基因簇是胆碱TMA裂解酶(cutC)及其激活物(cutD)(cutC/D),一种糖基自由基酶和一种糖基自由基激活蛋白;肉碱加氧酶A/B(cntA/B),是一种由两部分组成的Riesketype加氧酶/还原酶复合物;甜菜碱还原酶途径(上图A)。

04 苯乙酰谷氨酰胺(PAGln)

2020年Hazen团队通过代谢组学分析发现苯丙氨酸(Phe)与T2DM患者发生CVD风险升高有关,该物质被肠道微生物代谢生成苯乙酰谷氨酰胺(PAGln)。

对人群队列的代谢物检测发现,高PAGln水平MACE高风险显著相关,较高的PAGln水平仍是MACE风险的独立预测因子。

肠道菌群影响PAGln水平

通过检测基线(Pre-Abx)、7天广谱复合抗生素处理(Abx)和3周清除期菌群重塑(Post-Abx)的血浆PAGln水平,发现PAGln水平受肠道微生物影响

有研究表明,PAGln由苯乙酸(PAA)与谷氨酰胺(Gln)在肝酶的作用下形成,而PAA由苯丙氨酸(Phe)经菌群代谢产生。此外,PAA也可与甘氨酸(Gly)结合形成苯乙酰甘氨酸(PAGly)。

因此,在人类和小鼠体内,PAGln和PAGly都是通过肠道微生物群将饮食中的苯丙氨酸转化为PAA的元生物途径产生的,此时宿主与Gln(人类首选)或Gly(啮齿类动物首选)发生结合反应,分别产生PAGln和PAGly

Nemetet al. Cell , 2020

PAGln与血小板相互作用

根据人PAGln水平与血栓事件正相关性,提示PAGln可影响血小板功能和血管基质相互作用。研究结果显示,PAGln加速了胶原依赖性血小板粘附和扩散速度,并呈现剂量依赖性,表明PAGln可能与血小板直接相互作用,促进胞质内Ca2+浓度([Ca2+]i)呈现依赖性升高,并进行了相关验证。此外,在PAGly实验中也观察到类似结果。

因此,肠道菌群相关代谢产物PAGln和PAGly显著影响血小板功能,增强血小板与胶原基质的粘附,以及血小板刺激依赖性[Ca2+]i升高和对激动剂的聚集反应。

降低血栓形成

有研究报道Phe主要由生孢梭菌(Clostridium sporogenes)代谢为PAA(氧化途径)和苯丙酸(PPA)(还原途径),随后分别与Gln或Gly缩合形成PAGln或PAGly。其中参与反应的酶主要由porA或fldH基因编码。基因porA主要影响PAA产生,而fldH主要调节PPA产生,且敲除fldH会增加PAA水平继而影响PAGly水平从而显著降低血栓形成。

PAGln通过G蛋白偶联受体和ADRs介导细胞反应

Nemetet al. Cell , 2020

研究人员发现PAGln与儿茶酚胺结构相似(上图E),暗示PAGln通过肾上腺素能受体(ADRs)发挥作用。遗传和药理学方法的功能丧失和功能获得研究证实,PAGln可通过G蛋白偶联受体(包括α2A,α2B和β2-ADRs)介导细胞反应。而β受体阻滞剂(卡维地洛)可显著降低PAGln诱导的高血栓风险。

05 结 语

微生物代谢产物可以调节宿主的生理和病理生理过程,这一发现开启了多种可能性,特别是证明了许多微生物途径可以作为抑制心血管病的治疗靶点。

LPS和TMAO可用于开发有效的治疗策略,然而目前还不能证明这些毒素水平是如何在宿主体内被确定和调节的。因此,需要进一步研究阐明肠道微生物源毒素与心血管疾病之间的因果关系,进一步探索肠道微生物及其代谢产物,包括毒素之间的关系,以确定心血管疾病治疗干预的最佳方法及患者的预后。

相关阅读:

最新研究进展 | 肠道微生物群在冠心病中的作用

认识肠道微生物及其与高血压的关系

肠道菌群 —— 中风的关键参与者

主要参考文献:

Brown J M, Hazen S L. Microbial modulation of cardiovascular disease[J]. Nature Reviews Microbiology, 2018, 16(3): 171.

Yoshida, N.; Yamashita, T.; Kishino, S.; Watanabe, H.; Sasaki, K.; Sasaki, D.; Tabata, T.; Sugiyama, Y.; Kitamura, N.; Saito, Y.; et al. A possible beneficial effect of Bacteroides on faecal lipopolysaccharide activity and cardiovascular diseases. Sci. Rep. 2020, 10, 13009

Nemet et al. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. 2020, Cell 180, 862–877. 

Yamashita T, Yoshida N, Emoto T, et al. Two Gut Microbiota-Derived Toxins Are Closely Associated with Cardiovascular Diseases: A Review[J]. Toxins, 2021, 13(5): 297.

Cui, X.; Ye, L.; Li, J.; Jin, L.; Wang, W.; Li, S.; Bao, M.; Wu, S.; Li, L.; Geng, B.; et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci. Rep. 2018, 8, 635

Guo, C.J., Allen, B.M., Hiam, K.J., Dodd, D., Van Treuren, W., Higginbottom, S., Nagashima, K., Fischer, C.R., Sonnenburg, J.L., Spitzer, M.H., and Fisch-bach, M.A. (2019). Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science 366, eaav1282

1
客服