未分类

细菌如何交流和占地盘——细菌的群体感应和生物膜

谷禾健康

有人在的地方就有江湖,这也同样适用于细菌。

单个细菌的行动往往只是徒劳,然而当它们在一起的时候,集体行动的能力令人刮目相看。

细菌使用化学物质作为它们的“语言”,使用化学通讯来区分自己的物种和其他物种。

实际上它们看不到,并不知道彼此在那里,但它们可以测量化学物质的浓度。

当这些化学物质的水平达到临界水平时,会向细胞内部传递一个信号,该信号会提醒每个细菌细胞及其他在附近的细菌同胞,告诉它们已达到“法定人数”。

然后,整个细菌群作为一个大的、协调的群体,去执行单个细菌无法完成的任务

以上就是所谓的“ 群体感应 ”。

微生物细胞群体密度的增加使微生物之间的细胞间通讯成为可能,从而产生群体感应信号。

生物发光、毒性因子产生、次级代谢产物产生、DNA摄取能力、生物膜形成等,这些都离不开群体感应。

如果有一两个细菌进入我们体内,它们释放出一些有毒物质或毒素,对于我们几乎没啥影响。

但是如果它们“略施计谋”,等待并计算自己的数量,等到大量细菌一起分泌毒素,攻击人体,那么就可能会压倒人的免疫系统

它们可以利用群体感应启动致病性。

干扰群体感应有可能阻止有害细菌的致病。当然,促进群体感应,特别是有益细菌,也可以使我们更健康,并可能产生有价值的药品和工业产品。

本文我们详细了解一下细菌世界里的各种故事,群体感应期间会发生什么,群体感应如何影响宿主,群体感应在生物膜的形成中发挥什么作用,与哪些疾病相关,该如何利用群体感应控制疾病从而利于人体健康。

01
群体感应具体是如何实现的

群体感应(简称QS)是细菌细胞与细胞之间的交流过程,涉及到细胞外信号分子自诱导剂(AIs)的产生、检测和响应。AIs使细菌能够感知和响应时间和连续环境,并通过改变基因表达来协调菌落的行为。

doi: 10.3748/wjg.v27.i42.7247

说起群体感应,就要了解以下三个主要的信号分子。

1. AHL(酰基高丝氨酸内酯Acyl-Homoserine Lactones)

在革兰阴性菌中由AHL介导

AHL是由合成酶复合物产生的,AHL可以通过膜自由扩散。AHL被其细胞内受体识别,复合物与靶基因调控元件结合。

许多革兰氏阴性细菌利用LuxI/LuxR型群体感应系统,产生一系列AHL信号,当与同源LuxR同源物结合时,这些信号可调节控制多种性状的基因的表达。LuxR同系物可与一系列AHL结合。

图片来源:Wikimedia Commons

2.自诱导肽 AIP(Autoinducing Peptides)

在革兰阳性菌中的由AIP介导

在革兰氏阳性细菌中,群体感应通常由称为自动诱导肽(AIPs)的小分泌肽控制。AIP由核糖体作为前体肽合成,然后加工并主动运出细菌细胞

AIP传感涉及与细菌膜中的传感器激酶信号受体结合,然后使控制靶基因转录的细胞质反应调节器磷酸化。

AIP控制革兰氏阳性细菌的一系列细菌功能,包括枯草芽孢杆菌的产孢和能力,以及金黄色葡萄球菌的毒力

3. AI-2(Autoinducer 2)

在革兰阴性菌和革兰阳性菌中均能由AI-2介导,细菌世界里的“通用语言”

Al-2存在于一些革兰氏阴性和革兰氏阳性细菌中。AI-2需要一种转运蛋白才能进出细胞。现在人们普遍认为,AI-2在革兰氏阳性和革兰氏阴性细菌中都是一个重要的信号,但其信号活性仅限于具有特定AI-2受体的细菌。

AI-2控制多种细菌功能,包括哈维氏弧菌的发光和许多细菌的生物膜形成。

除了以上三种之外,当然也有其他一些信号分子,例如:

  • AI-3

研究人员从luxS/AI-2细菌性肠出血性大肠杆菌中纯化了一种假定的自诱导信号AI-3。进一步的研究证实,AI-3的合成独立于LuxS(AI-2合酶)。

AI-3是属于吡嗪酮家族的几种产物。苏氨酸脱氢酶(Tdh)介导的AI-3信号产生和氨基酰基tRNA合成酶相关的自发环化是两个基本反应。

不同细菌种类采用的主要群体感应系统

doi.org/10.3390/microbiolres12040068

02
群体感应是肠道生态系统中的一个新角色

肠道是一个特别动态的环境,许多观点表明群体感应是肠道生态系统中的一个新角色。

微生物群具有极其稳定的结构。肠道微生物群的稳定性取决于群体感应。

▸在正常生理条件下,群体感应可能有助于肠道细菌的空间分布

肠道细菌分布和群体感应信号

doi.org/10.3389/fmicb.2021.611413

回肠(小肠)中,乳酸杆菌变形杆菌是最丰富的细菌。大肠杆菌属于变形杆菌,通过AI-2、吲哚和AHL信号与其他细菌进行通信。

盲肠隐窝中,可以发现厚壁菌,包括梭状芽孢杆菌、乳酸杆菌、肠球菌、变形杆菌和放线杆菌。该区域可能存在AIP、AHL、吲哚、AI-2和AI-3

在近端结肠的远端,一条薄而致密的带(交错层)将细菌与上皮分离。近端结肠的交错层主要为毛螺菌科和瘤胃菌科。

从横结肠到直肠,粘液增加并分为两层。厚壁菌、拟杆菌、放线菌、变形菌和疣微菌门生活在松散的黏液层中。

▸肠道菌群如何利用群体感应来生存?

根据已发表的研究,可以推断,盲肠和近端结肠的隐窝和横向皱襞中的聚集物的大小大于肠腔中的聚集物,在肠腔中,粪便不断被肠道运动挤压。生活在这里的厚壁菌可能会产生足够的群体感应信号,通过AI-2影响自己的群落以及邻近物种。

厚壁菌

约83.33%的厚壁菌含有LuxS蛋白直系同源物,这是一种产生AI-2的必要合成酶,而拟杆菌中仅在16.83%发现。这种AI-2生产能力的显著差异可能加强厚壁菌的竞争优势,使其能够支配盲肠和近端结肠。

拟杆菌

在拟杆菌中,B. thetaiotaomicron从膳食中植物多糖或无多糖的黏液聚糖中获取碳源。它们有很高的代谢能力,在粘液和管腔中同样复制自己。然而,由于缺乏LuxS直系同源物(KEGG碱基),它们发现很难与其他物种竞争,如梭状芽孢杆菌和乳酸杆菌等,它们利用AI-2形成生物膜或自我生长

▸同样是大肠杆菌,生活在粘液比管腔获取更多铁,这离不开群体感应AI-2

粘液驻留细菌和管腔共生细菌种类繁多,通常分布在不同的生态位中,营养素的利用方式不同

同样是大肠杆菌,它在外粘液中能够快速复制;而在肠腔中,由于有限的糖苷水解酶,大肠杆菌保持在固定相。

粘液是分离细菌和肠上皮的物理保护屏障,并不断更新。内粘液层周转迅速,最终转化为松散的外粘液层。外层通过肠道运动与结肠内容物一起排出。下一轮的食物伴随着潜在的粘液,使细菌重新定居。

AI-2分子调节生物膜的形成,并允许一些细菌(如双歧杆菌和乳酸杆菌)粘附和富集。在粘液周转期间,生活在粘液中的大肠杆菌细胞选择性增殖,而不是从管腔内容物中重新定居。

此外,AI-2信号与细菌的铁代谢调节有关,包括放线杆菌、弧菌和双歧杆菌。

研究表明,相对管腔而言,定植于粘液中的大肠杆菌可以利用更多的铁,这可能是由于在粘液中暴露更多的AI-2信号所致。

群体感应信号可能有助于共栖肠道细菌相互协作,增强抵抗入侵者定殖的能力,并通过调节某些物种的相对丰度来保持动态平衡。当然这是一个需要进一步探索的研究领域。

03
群体感应如何影响宿主?

在肠道这样一个网络化、复杂的生态系统中,宿主不断与数以万亿计菌群相互作用。 细菌的交流必须从一个大的角度来看待。群体感应如何影响宿主?

可以通过两种方式:直接或间接。

细菌和宿主之间通过群体感应分子的对话

doi: 10.3748/wjg.v27.i42.7247

▸直接的方式:

群体感应分子可以通过与宿主细胞(如上皮细胞或免疫细胞)的直接接触(全箭头,左)影响宿主,如铜绿假单胞菌群体感应分子3-oxo-C12-HSL那样,它可以自由进入哺乳动物细胞。

▸间接的方式:

当达到细菌群落内的阈值浓度时,群体感应自动诱导剂会同步群体行为,如肠出血性大肠杆菌中的毒力和附着消除策略,从而间接影响宿主(上图虚线箭头,中间)。

此外,群体感应分子可以通过对具有不同代谢特性的其他细菌种群的影响,间接改变宿主(右虚线箭头)

细菌代谢改变有益的代谢产物,如短链脂肪酸和胆汁酸。通过调节肠道微生物群组成,群体感应可以通过促进有害或有益细菌间接影响肠道生理学。

例如,AI-2通过促进厚壁菌生长来调节失调菌群。体外和体内的一些研究描述了肠道病原体如何通过群体感应向共生体发出信号,并触发毒素、毒力因子和生物膜的表达。

此外,AI-3控制使肠出血性大肠杆菌通过附着和清除过程引起损伤的基因。

以上是群体感应影响宿主的途径。接下来我们来看,肠道细菌的群体感应给宿主带来的影响具体表现在哪些方面?

目前研究其对宿主的影响,主要包括屏障功能、炎症过程、致癌作用这三方面。

群体感应分子对肠上皮屏障功能的影响

群体感应分子对肠上皮屏障功能不同参数的影响

doi: 10.3748/wjg.v27.i42.7247

铜绿假单胞菌群体感应分子3-oxo-C12-HSL诱导多种细胞类型的凋亡,包括上皮细胞,促进肠道屏障的破坏。此外,3-oxo-C12-HSL破坏紧密连接,从而导致细胞旁通透性增加,并影响粘蛋白的产生。而3-oxo-C12:2-HSL和色氨酸代谢物吲哚保护紧密连接。

与OCTN2结合的枯草芽孢杆菌CSF也通过激活HSP27信号来减少细胞死亡,从而促进肠道屏障的完整性

群体感应分子对肠道屏障功能和免疫反应的影响

doi: 10.3748/wjg.v27.i42.7247

3-oxo-C12-HSL刺激中性粒细胞的化学吸引和吞噬并诱导细胞死亡,其对免疫细胞的促炎或抗炎作用更为复杂。

群体感应分子对免疫反应的影响

除了对肠道屏障的作用外,群体感应分子在肠道免疫室的不同因子也产生作用,该免疫室参与与上皮室的复杂串扰,以维持对肠腔内容物的适当免疫反应。

群体感应分子对不同细胞类型炎症的影响

doi: 10.3748/wjg.v27.i42.7247

自体诱导剂AI-2和AI-3通过分别诱导免疫介质TNSF9和白细胞介素(IL-8)的表达,对巨噬细胞产生促炎作用,而3-oxo-C12:2-HSL可减少上皮细胞产生IL-8。

所有这些群体感应分子如何在生理环境中穿过肠道屏障和/或到达体内免疫细胞仍有待澄清。

群体感应分子对致癌作用的影响

越来越多的证据表明,肠道微生物群失调在大肠癌的发展中起着重要作用。条件致病菌较多促进肠道炎症,这是大肠癌发病的驱动因素之一。

一些驱动病原体,如脆弱拟杆菌,可以促进强烈的Th17炎症反应。这种促炎微环境可能有利于条件致病菌(如梭杆菌属)的定植。因此,梭杆菌优势生物膜与人类结直肠癌相关。

总之,这些发现支持多微生物相互作用细胞间通讯可能在大肠癌的发展中发挥重要作用。然而,在大肠癌期间,细菌如何与自身和宿主进行沟通仍不清楚。

最近的研究,为群体感应分子AI-2在大肠癌细胞间通讯中的作用提供了新的见解。

首先,与人类大肠癌周围正常组织相比,肿瘤中的AI-2浓度增加。根据CRC TNM(肿瘤结节和转移)评分,这些水平也与疾病的进展相关。

CD4-TnAi的表达与肿瘤细胞的免疫反应呈负相关。

在分子水平上,已证明AI-2通过TNFSF9信号通路诱导U987衍生巨噬细胞的体外M1极化。

这些发现表明,AI-2可能是与免疫肿瘤微环境相关的一个重要因素,并阐明了群体感应系统在大肠癌发展和进展中的作用。

有趣的是,哺乳动物上皮细胞能够产生模拟AI-2效应的AI-2类似分子,这说明了细菌-宿主串扰的复杂性。因此,更好地了解参与肿瘤发生的群体感应分子,可能是提高我们对大肠癌发生机制的认识的一个机会。

以上是群体感应对宿主的影响,那么对于群体感应的影响,宿主有没有什么回应?下面章节我们继续来看。

04
宿主通过群体感应影响细菌

宿主细胞除了受到细菌群体感应分子的调控外,还通过反击对群体感应信号作出反应。

肠上皮细胞分泌模拟AI-2的信号类似物

当受细菌衍生的可溶性分子影响时,肠上皮细胞可以分泌模拟AI-2的信号类似物,从而影响肠道细菌。当缺乏AI-2信号产生的LuxS突变株与从结肠组织分离的上皮细胞共培养时,发现通常由AI-2诱导的lsr基因转录增加。这归因于肠上皮细胞生产的AI-2模拟物。

此外,这些信号与上皮紧密连接损伤有关。上述结果表明,宿主衍生的AI-2模拟物可能与肠道细菌粘附和上皮屏障破坏有关

宿主分泌的分子可以被细菌利用,作为肠道微环境中的群体感应信号

儿茶酚胺等宿主激素可促进细菌生长。Epi/NE可由群体感应系统的QseC受体感知。最近的研究表明,其他肾上腺素能受体包括QseE和CpxA在内,它们与 QseC 在系统发育图谱上存在显着差异,它们也充当受体发挥作用。

1-辛酰基-rac-甘油(OCL),一种在哺乳动物胃肠道中含量丰富的单酰甘油,形成三酰甘油,并作为化学伴侣稳定大肠杆菌中的SdiA,使其具有基础活性。

脂肪酸抑制生物膜,影响群体感应

脂肪酸(FAs)广泛存在于各种生物体中,其化学结构与扩散信号因子(DSF)家族相似。一些革兰氏细菌将DSF用作生物膜形成和毒力的群体感应信号。FAs与DSFs相似,可抑制细菌生物膜或其他群体感应依赖性基因的表达并影响AHL和AI-2信号转导

常见的人体病原体,包括伯克霍尔德菌、铜绿假单胞菌、弧菌、幽门螺杆菌和沙门氏菌,都利用DSF。其中一些药物专门针对胃肠系统。在小肠缺乏物理屏障的情况下,化学屏障在分离小肠中的细菌和上皮细胞,从而保护宿主免受病原体感染方面起着关键作用。胆汁中的FAs还可以模拟群体感应信号来调节细菌生物膜的形成。

以上是细菌通过群体感应和宿主之间的互相交流,具体到疾病中,这些交流是怎么运作的?

05
病理条件下肠道细菌通讯的变化

铜绿假单胞菌是一种作用于人体组织的条件致病菌。它通过三个主要的群体感应系统起作用,包括两个AHL依赖的LuxI/LuxR型系统和一个假单胞菌喹诺酮类信号(PQS)系统

铜绿假单胞菌利用AHL信号家族中的N-3-氧代-十二烷基-高丝氨酸内酯(3O-C12-HSL)和N-丁基-L-高丝氨酸内酯(C4-HSL)控制300多个基因,其中许多基因参与毒力调节。PQS系统与生物膜的形成有关。

当铜绿假单胞菌感染人体时,上述群体感应信号与人体细胞相互作用,导致包括中性粒细胞、巨噬细胞以及上皮细胞在内的免疫细胞发生生理和功能变化

与缺乏AHL产生的突变铜绿假单胞菌菌株相比,含有3O-C12-HSL和C4-HSL的野生型菌株促进巨噬细胞吞噬。3O-C12-HSL导致细胞体积增加,这与水通道蛋白9(AQP9)的上调有关,AQP9是炎症性肠病(IBD)的一种慢性炎症标记物

▸ IBD

研究分析了健康受试者和出现炎症发作或病情缓解不足的IBD患者的粪便。使用液相色谱法和质谱法检测这些样品中的AHL。

在AHL中,3-oxo-C12:2健康组中显著富集,与伴有FLARE的IBD患者相比,IBD缓解组中含量更高。与3-oxo-C12(3O-C12-HSL)不同,3-oxo-C12:2可以减少IL-1β刺激的肠上皮细胞中IL-8的分泌,但对上皮细胞旁通透性没有影响(图2)。

此外,3-oxo-C12:2水平与粪杆菌、类球梭状芽孢杆菌和细梭状芽孢杆菌的较高计数呈正相关。这些细菌种类很罕见,属于厚壁菌,尤其是普拉梭菌F.prausnitzii。事实上,一项早期研究报告称,口服活的 F.prausnitzii 或其上清液可降低2,4,6-三硝基苯磺酸(TNBS)结肠炎的严重程度。F.prausnitzii抗炎作用部分是由于其分泌的代谢物阻止IL-8的产生

▸艰难梭菌感染(CDI)

与CDI阴性腹泻患者相比,艰难梭菌感染(CDI)患者的粪便中含有高水平的吲哚和艰难梭菌毒素诱导的群体感应信号肽。这表明艰难梭菌利用群体感应信号调节其在胃肠道的感染,并且该群体感应信号与吲哚的产生有关。

然而,艰难梭菌缺乏色氨酸酶基因,这有助于吲哚的生成。随后的研究结果表明,艰难梭菌可能利用毒素诱导的群体感应信号来调节吲哚产生菌的相对丰度,并为其生存创造有利的环境。

同时,共生肠道细菌的吲哚耐受性低于艰难梭菌,共生肠道细菌的恢复将受到抑制,从而为艰难梭菌的定植和扩张提供更有利的环境

理论上,AHL仍然是使用群体感应中的天然分子调节微生物群组成和肠道炎症的良好候选方法AHL信号可能涉及有助于控制肠道炎症的不同途径,例如抑制NF-κB、调节、抑制MAPK激活、增加调节性T细胞诱导、减少促炎细胞因子和调节上皮屏障中的连接复合物。

事实上,使用群体感应分子可以在代谢和炎症疾病中的肠道生态系统紊乱的两个组成部分(肠道微生物群和宿主反应)中发挥作用。基于AHL的群体感应已经作为治疗应用存在,用于动态控制革兰氏阴性菌群,尤其是在传染病中。其他群体感应分子可以扩展为潜在的临床治疗方法,用于治疗与肠道微生物群相关的疾病,尤其是涉及生物膜形成和抗生素耐药性相关。

当然以上只是从群体感应的角度来了解其与疾病之间的关联,我们知道,疾病的发生发展不止这些因素,还包括其他的,比如说致病菌生物膜的存在,会使某些致病菌难以清除,与疾病的发生有关。

为什么生物膜的存在会使某些致病菌难以清除?我们前面阐述的群体感应与生物膜是不是类似?它们之间又有什么样的联系?

下一章节我们继续了解。

06
群体感应系统对生物膜生成的调控作用

在了解群体感应与生物膜的关联之前,我们先了解一下生物膜是什么?

生物膜是粘附在表面上的细胞外基质,由核酸、蛋白质、多糖和脂质的复合物组成。

约 80% 导致慢性感染的细菌都能产生生物膜,它是一种重要的毒力机制,可诱导对抗菌剂的耐药性逃避宿主免疫系统

许多细菌物种,包括病原菌都能产生生物膜,金黄色葡萄球菌、铜绿假单胞菌等,它们通过产生生物膜,变得对细胞外应激条件更具抵抗力,更能生存下去,所以生物膜是微生物的一种有用的适应

它们更好的生存能力对人类来说可不是好事,一般来说,生物膜内的微生物比以单细胞存在时更难根除。这主要是由于生物膜相关的细胞外网络、代谢休眠和其他潜在机制介导的耐受性。

参与生物膜形成的细菌种类及其生物效应的例子

doi: 10.15190/d.2019.13

生物膜是怎么形成的?

形成生物膜的细菌嵌入在由细胞外聚合物(EPS)构成的自生黏液基质中。这种生长模式可以改变细菌的生物学和生理特性,如繁殖、生长、基因转录率和对抗生素的耐药性。

生物膜的形成需要五个成熟阶段

doi.org/10.3390/microbiolres12040068

小蓝点和大蓝点代表抗生素浓度不同的区域(表示存在梯度),灰色区域是细菌可以在低浓度抗生素下存活的“避难所”,有利于产生耐药性。

(i) 浮游细菌在表面的初始附着(可逆)

(ii)产生和分泌EPS和/或其他对接方式,以及驱动从可逆到不可逆的过渡附着的特定粘附素(例如,鞭毛、自转运蛋白、菌毛、卷曲纤维和F型结合菌毛)

(iii)作为超级细胞结构的生物膜结构的早熟

(iv)微菌落的晚熟和进化为成熟生物膜

(v) 细胞从生物膜上分离并分散到周围环境中

所有这些过程都受到不同细胞间信号分子的严格调控,这些信号分子负责种群密度依赖的基因表达,这些基因表达会深刻影响生物膜的形成过程。

生物膜的成熟与细胞外聚合物物质的积累并行。最后一步涉及到细菌菌株从微菌落分离,可能导致在不同位置形成一个新的生物膜菌落

以上我们可以看到,群体感应和生物膜形成是细菌的两种群体行为。

群体感应 & 生物膜形成

  • 群体感应是通过细胞间自我诱导物的信号传递来检测细菌密度的能力;
  • 生物膜是细胞的聚集。

由于生物膜聚集体中的细胞非常相似,并通过自生的细胞外基质相互连接,因此生物膜代表了与群体感应相关的生态环境

一些研究表明,群体感应信号分子在革兰氏阳性和革兰氏阴性细菌的生物膜形成中起着重要作用。

S. oralis 34 产生的AI-2信号分子已被证明是口腔链球菌34 和Antinomyces naeslundiiT14V 形成生物膜所必需的。AI-2介导的群体感应也参与大肠杆菌生物膜的形成、运动基因的调节、鞭毛的合成和趋化性。

乳糖可诱导蜡样芽孢杆菌生物膜,观察到AI-2产生的乳糖以剂量依赖性方式增加。而其他研究表明,添加外源AI-2可以削弱金黄色葡萄球菌生物膜的形成。

低浓度的AI-2可以促进猪链球菌生物膜的形成,但高浓度的AI-2显示出抑制作用。

细菌生物膜的形成是一个动态的分层过程。粘附在宿主表面是细菌生物膜形成的第一个也是关键的阶段。细菌通常有两种粘附表面的方式:

(i)通过外膜粘附蛋白与宿主表面结合;

(ii)胞外多糖(EPS)对宿主表面的粘附,如多糖细胞间粘附(PIA)。

群体感应如何影响生物膜生成

以目前研究较多的铜绿假单胞菌为例,我们具体来看群体感应对生物膜形成的影响。

铜绿假单胞菌的群体感应非常复杂,可以由转录调节器(MvaT和RsaL)、转录后调节器(RsmA)、σ因子因子(RpoN和RPO)甚至其他群体感应系统(PQS系统)进行调节。

在LasI/LasR-RhlI/RhlR系统调节的功能中,有几种与生物膜形成相关的毒力因子,如鼠李糖脂、凝集素和铁载体。鼠李糖脂被证明是维持生物膜聚集所必需的,它影响一种称为“聚集”的表面运动,这种运动与生物膜的形成有关。

LecA和LecB是两种依赖群体感应的碳水化合物结合凝集素,已被证明会影响生物膜的形成,突变菌株无法形成成熟的生物膜。

群体感应控制的铁载体,如吡啶不能产生这种影响生物膜聚集体形成的铁螯合剂。

与野生型铜绿假单胞菌形成的生物膜聚集性大的特点不同,lasI突变株产生的生物膜结构均匀,结构平坦,多层细胞密集。

在生物膜形成过程中,PQS群体感应系统负责增加细胞外DNA(eDNA)的产生eDNA可与基质中带正电的EPS相互作用,产生生物膜。在PQS缺陷突变体中,生物膜聚集体不能充分发育。

因此,铜绿假单胞菌的三个群体感应调节系统可以影响生物膜的形成,并具有一定的促进作用。

微生物感染群体感应介导的生物膜密切相关,群体感应信号分子参与各种细菌生物膜的形成、成熟和功能调节。那么,治疗微生物生物膜相关的感染可以从群体感应入手,群体感应抑制可作为对抗生物膜感染的有效工具。

07
群体感应抑制剂对生物膜的影响

通常,群体感应可通过以下三种方式受到抑制:

(1) 延迟或阻断群体感应信号分子的产生(细菌利用QSI阻断AIs);

(2) 使用QSMs同系物阻断受体。例如,从革兰氏阴性菌Rheinhemiera aquimaris QSI02中获得的活性二酮哌嗪环(Trp-Ser),不仅可以降低由QS调节的紫罗兰素的生物合成能力(67%),还可以降低弹性蛋白酶活性、铜绿假单胞菌生物合成和PAO1的生物膜形成能力。可能是环(Trp-Ser)比通常的革兰氏阴性信号分子(AHLs)更容易与lasR受体结合;

(3) 在氧化压力下,群体感应信号分子的酶降解,例如通过酰化酶和乳糖酶降解类似于AHL的群体感应信号更有效。这些策略已被证明是降低细菌致病性和生物膜的有效方法,有可能提高细菌对抗生素和噬菌体等抗菌剂的敏感性

群体感应抑制剂影响生物膜的形成

doi.org/10.1016/j.foodres.2020.109742

以上是群体感应通过影响生物膜生成来阻止细菌感染,其他只要能干扰群体感应的物质,也可以作为微生物感染的治疗方式。

08
群体感应作为微生物感染的前瞻性治疗靶点

通过靶向细菌群体感应系统,可以开发新的治疗策略。

与健康人相比,大肠腺瘤和结直肠癌(CRC)患者的结肠粘膜和粪便中观察到更高的AI-2水平。重要的是,发现AI-2浓度随着大肠癌的进展而增加,这表明其有可能成为大肠癌临床筛查的新标志物

另一项关于烧伤部位感染的最新研究集中于铜绿假单胞菌群体感应系统。烧伤常伴有肠道菌群失调、肠道完整性受损、免疫失调和细菌肠外移位。铜绿假单胞菌是烧伤后感染的主要病原体。其毒性产物可延长肠道功能障碍,加重全身感染。

研究人员观察到,在使用MvfR拮抗剂抑制MvfR转录因子后(一种控制该菌株毒力的重要群体感应相关转录调节因子),肠道功能障碍得到改善,铜绿假单胞菌传播减少

事实上,抗菌治疗策略已经开始从使用抗生素扩展到开发基于群体感应系统的抑制剂,如抗毒性抗生物膜。这些抑制剂或类似物内源性存在于细菌或真核细胞中。

一个例子是鼠尾草酸,它是金黄色葡萄球菌群体感应系统的一种特殊抑制剂。它存在于迷迭香叶中,可以在低浓度下抑制Agr表达和金黄色葡萄球菌毒力

综上,这些研究指出了难治的传染病药物开发的新潜力。下面列举一些小分子物质,通过干扰细菌群体感应系统,从而达到抑制致病菌的效果

09
作用于细菌群体感应系统的中药单体

1.黄酮类

具有酚类结构的黄酮类化合物有槲皮素、山柰酚、黄芩素等。黄酮类单体对细菌群体感应和生物膜均显示出抑制活性

研究表明,这是由于黄酮类骨架中存在的两个羟基基团,阻止LasR/RhlR受体与信号分子的结合,从而抑制群体感应系统。

▸槲皮素

槲皮素是一种天然存在的黄酮醇,普遍存在于蔬菜和水果中。64μg/mL槲皮素显著抑制铜绿假单胞菌生物膜的形成,并且当槲皮素的浓度为16μg/mL时与阿奇霉素浓度为32 μg/mL具有相同效应的生物被膜抑制作用。

PCR显示lasI、 lasR、rhlI 和 rhlR等群体感应相关基因与相关毒力因子基因的mRNA表达水平均显著降低

利用计算机分子对接技术,观察到槲皮素与LasR受体蛋白通过竞争性结合方式与LasR受体蛋白进行结合,且槲皮素比信号化合物结合更为牢固。

▸山柰酚

研究显示,64 μg/mL山奈酚对生物膜形成的抑制率为 80%,粘附降低约75%,说明山柰酚可影响生物被膜形成的粘附阶段

柚皮素、山柰酚和槲皮素均显著抑制信号分子诱导的生物发光,槲皮素和柚皮素哈维氏弧菌生物膜的形成有抑制作用。

▸黄芩素

研究了40种中药及天然来源的黄酮化合物,对耐药鲍曼不动杆菌菌株的体外抑菌作用和生物膜形成能力的影响,结果显示黄芩素和汉黄芩苷具有良好的抑菌效果。

其最低抑菌浓度(MIC)分别为0.0625和0.125 mg/mL, 黄芩素对鲍曼不动杆菌生物膜的形成具有明显抑制作用。

32、64 μg/mL黄芩素下调群体感应系统调节因子agrA、RNAIII和sarA等基因的mRNA表达水平,明显抑制生物膜的形成。

2. 苯甲酸衍生物

有研究报道,一些苯甲酸衍生物如没食子酸、香草酸、肉桂酸等可通过群体感应系统调节细菌的致病性和毒力。

▸肉桂酸

亚MIC的肉桂酸(CA)显著影响细菌的群集运动和生物被膜完整性, 减少EPS的产生。CA对LasR和RhlR受体均有拮抗作用,从而影响细菌群体感应活性。

▸没食子酸

Luis等研究结果显示,4 μg/mL的没食子酸可使金黄色葡萄球菌菌株的生物膜形成减少约40%。Srivastava等研究结果表明,没食子酸、香草酸等 中药单体的合成衍生物可抑制群体感应系统和生物膜的形成。

3. 萜类化合物

萜类化合物是甲戊二羟酸衍生的一类化合物。从植物中提取的萜类化合物有香芹酚、丁香酚、芳樟醇,甘草次酸、熊果酸和白桦脂酸等。

▸香芹酚

百里香精油中含有较高的单萜类化合物香芹酚和麝香草酚,可抑制紫色杆菌的紫色菌素产生。亚MIC的香芹酚和麝香草酚可以显著减少紫色杆菌CV026中信号分子的产生

L-香芹酮是一种单萜,是传统香料植物的主要成分。亚MIC的L-香芹酮可显著减少蜂房嗜血杆菌在聚丙烯和锌表面形成生物膜。

▸丁香酚

丁香酚可以显著降低紫色杆菌CV026中的紫色菌素生成;亚MIC的丁香酚可抑制铜绿假单胞菌弹性蛋白酶、绿脓菌素的产生和生物膜的形成。

将丁香酚转化为纳米乳状态后对群体感应的抑制显著增强,亚MIC的丁香酚纳米乳剂对紫色杆菌中的紫色菌素生成可抑制约50%

Joshi等通过分子对接技术将丁香酚与高丝氨酸内酯合成酶(ExpR)和调节蛋白(ExpI)进行对接,观察到丁香酚与受体蛋白的对接效果优于呋喃酮C-30等已知的抑制剂,因此推断丁香酚的作用机制可能是通过与ExpI/ExpR蛋白的结合,抑制信号分子的产生。

▸芳樟醇

芳樟醇具有显著的抗菌活性,MIC值在2 μg/mL~8 μg/mL之间;亚MIC的芳樟醇对紫色杆菌的群体感应系统有抑制作用。此外,芳樟醇可以减少鲍曼不动杆菌生物膜的形成和降低其粘附性。

4. 香豆素类

100 μg/mL香豆素及其衍生物能够显著抑制紫色杆菌CV026的紫色菌素产生和铜绿假单胞菌生物膜的形成;在7种香豆素衍生化合物中,含6,7二羟基和7-羟基的化合物对生物膜形成的抑制活性更强。

5. 生物碱类

▸小檗碱

小檗碱亦称黄连素,是中药黄连抗菌作用的主要有效成分。1/2MIC和1/4MIC小檗碱显著下调大肠杆菌群体感应系统相关基因luxS、pfS、hflX、ftsQ和ftsE,对生物膜的形成表现出明显的抑制作用。扫描电镜结果显示,菌株经处理后,粘附性下降,菌体形态也发生改变。

▸苦参碱

苦参碱明显抑制大肠杆菌群体感应系统;2.56 mg/mL苦参碱能显著降低大肠杆菌的LuxS 、 sdiA等群体感应相关基因和生物被膜相关基因的mRNA表达水平;在对大肠杆菌外膜蛋白ompA基因和群体感应基因表达的双重抑制作用下,使细菌不易产生聚集和粘附

除上述提及的中药单体外,硫类化合物、苯丙素类化合物和单宁类等中药单体均具有群体感应抑制作用。

作用于细菌群体感应系统的中药单体的抗细菌感染,与传 统的抗菌中药相比具有剂量明确、副作用少等特点。

但是,中药单体抗细菌感染的研究主要局限于体外实验,研究方式过于单一,具体作用机制的研究还不够深入,研究多集中在观察与验证上;但细菌感染机制是复杂的,中药单体的作用机制也是多样性的,因此需要更进一步研究。

此外,大部分中药单体通常在较高的浓度发挥抗菌或抗毒力作用,这也增加了产生毒性的风险并且在体内也难以达到有效的浓度,对其进行适当的结构修饰合成中药单体衍生物则表现出对群体感应活性抑制更高,同时降低了药物浓度,这为后续抗菌药物研发提供新的思路

10
中药单体联合抗菌药物对细菌耐药及群体感应系统的影响

由于目前临床常规使用的抗菌药物不足以对抗耐药性细菌感染,因此抗菌药物与中药单体联合用药是提高耐药细菌感染疗效的新策略。

小檗碱与亚胺培南和美罗培南联用时89%表现为协同抗菌作用;黄芩苷联合替加环素则100%协同抗菌作。

姜黄素降低头孢他啶和环丙沙星的MIC;姜黄素和头孢他啶组合具有协同抗菌效应,姜黄素和环丙沙星组合具有相加效应。

头孢他啶单独和与姜黄素联合使用时,群体感应系统的lasR基因的mRNA表达水平显著降低。

文献报道,阿奇霉素具有群体感应拮抗活性,2 μg/mL阿奇霉素可能通过影响自身诱导分子的合成,抑制铜绿假单胞菌PAO1的群体感应并能减少毒力因子的产生。1/4和1/16MIC的阿奇霉素、庆大霉素和姜黄素单独和联合用药均可显著降低生物膜形成能力。

阿奇霉素单独和与姜黄素联合作用时,lasR基因的表达水平显著下降。阿奇霉素单独给药和与姜黄素联合给药使群体感应系统的rhlI基因的mRNA表达分别降低60%和67%.

头孢吡肟、头孢他啶和亚胺培南等抗菌药物具有群体感应抑制活性。

亚MIC的阿奇霉素、美罗培南、头孢吡肟和哌拉西林/他唑巴坦对群体感应依赖性毒力因子的影响,结果所有菌株的群体感应依赖性毒力因子(如生物被膜、绿脓

菌素、蛋白酶、溶血素和DNase生成)均明显降低。

亚MIC多西环素显著降低紫色杆菌的紫色菌素产量(70%),4 μg/mL多西环素显著抑制生物被膜的生成

(72.8%),并显著降低铜绿假单胞菌的弹性蛋白酶(67.2%)、绿脓菌素(69.1%)产量以及群集运动(74%) 。

亚MIC红霉素对紫色杆菌群体感应系统的抑制率为84%,红霉素抑制群体感应的机制可能是与AbaI自身诱导剂合成酶结合而阻止信号分子合成。

许多中药单体通过作用于细菌群体感应系统而发挥抗感染作用;当与抗菌药物联合应用于细菌感染,不仅可产生协同抗菌协同抗群体感应作用,还能提高抗感染的疗效、降低单一药物的剂量、减少不良反应,逆转细菌的耐药性。

将群体感应抑制剂中药单体与抗菌药物联合应用,成为恢复抗菌药物对细菌敏感性的一种新策略。中药单体种类繁多,抗感染作用机制复杂多样,还需要对其更深入研究,为临床多重耐药菌引起的感染提供新的治疗药物。

除中药外,益生菌也能作为群体感应的干扰剂,通过群体感应来预防病原体定植和黏膜感染

另一方面,对于益生菌,我们更多的是希望延长它们在肠道中的停留时间并最大限度地发挥益生菌的作用。

生物膜的形成依赖于粘附、自聚集和共聚集作为细菌的重要特征。益生菌最理想的特性是其良好的粘附性,可延长它们在肠道中的停留时间,从而有效增强屏障功能,维持肠上皮稳态,增加黏液分泌、改善肠蠕动来保护或治疗肠道疾病。

11
益生菌作为对群体感应的干扰剂

益生菌对肠道菌群和宿主生理具有恢复或保护作用,例如,在存在生态失调或微生物群受到干扰的情况下,缓解胃肠道症状。

IBD患者菌落生物膜的平均密度比健康人高100倍。核梭杆菌以侵袭性生物膜的形式引起肠道疾病。同时,在感染CRC和IBD的邻近健康组织中也出现了成熟的生物膜。

生物膜可能是肠道疾病的早期预警信号。在某种程度上,生物膜提供了一个保护性环境,促进宿主防御机制的逃避,并进一步加剧疾病。虽然抗生素可以去除大多数有害细菌的生物膜,但生物膜在慢性伤口愈合过程中可以快速再生,表明生物膜中存在持久性细胞。

厚的多微生物致病性粘膜生物膜的生长标志着健康微生物群和疾病微生物群之间的过渡。

大肠杆菌Nissle 1917具有良好的生物膜形成能力,其生物膜形成能力强于肠致病性大肠杆菌(EPEC)和肠毒性大肠杆菌(ETEC),并在生物膜形成过程中与这些菌株竞争。因此,大肠杆菌Nissle 1917可作为一种益生菌用于治疗各种肠道疾病

双歧杆菌

双歧杆菌是人类健康中最重要的益生菌之一,具有LuxS/AI-2 群体感应系统,产生包括AI-2在内的群体感应信号分子,并促进生物膜的形成

添加碳水化合物后,双歧杆菌中AI-2的生成量正增加至89.45%。对感染产志贺毒素大肠杆菌(STEC)O157:H7的小鼠施用短双歧杆菌,通过产生高浓度的乙酸(56 mM)抑制STEC的Stx毒素表达,显示出强大的抗感染活性

乳酸杆菌

植物乳杆菌中也存在LuxS/AI-2 群体感应系统和细菌素的产生,植物乳杆菌是一种控制一些重要区域(如肠道和阴道)微生态平衡的益生菌,在保持食品质量方面也有实际应用。

一些病原体对植物乳杆菌群体淬灭系统敏感(例如,铜绿假单胞菌PAO1/ATCC 27853,耐甲氧西林金黄色葡萄球菌ATCC 43300),该系统对金黄色葡萄球菌的生物膜形成和铜绿假单胞菌的绿脓菌素生成表现出最大的活性。

用铜绿假单胞菌感染小鼠烧伤皮肤模型,并用植物乳杆菌上清液处理。结果显示,感染后5、10和15天,铜绿假单胞菌在皮肤、肝脏和脾脏中的定植受到抑制,这表明局部益生菌给药已经阻止了病原体的血液传播。

体内研究表明,不同益生菌(例如干酪乳杆菌酪蛋白亚种ATCC 393、乳乳杆菌罗伊氏亚种ATCC 23272、植物乳杆菌植物亚种ATCC 14917和唾液乳杆菌ATCC 11741)对口腔病原体变形链球菌具有抗链球菌活性。

研究人员开发了一种牛奶模型,以研究LAB的抗李斯特菌活性(抗单核细胞增生李斯特菌),使用具有AI-2分子的沙克乳杆菌Lactobacillussakei和植物乳杆菌

群体感应系统可能在生物膜的组织、形成和成熟阶段发挥关键作用;因此,它可以被视为开发新型抗菌剂的一个有吸引力的目标。

乳酸菌菌株——QS拮抗剂

doi.org/10.3390/microorganisms10020350

结 语 

细菌群体感应和生物膜领域的研究迅速扩大,群体感应在细菌行为中发挥着关键作用,通过细菌-宿主串扰影响感染状态和疾病发展。目前很多临床难以治疗的感染或疾病与细菌的群体感应和生物膜形成有关。大多数病原菌病理反应受群体感应系统的调控。生物膜细菌通过屏障作用、群体感应系统、抗免疫清除机制、特殊的生长特性及独特的微环境、生物膜耐药基因开启等机制形成耐药,造成临床耐药菌株增多,给临床治疗带来严重困难。

上述我们可以看到,利用各种群体感应抑制剂或干扰病原菌群体感应的药物进行治疗,是一种合理且有前景的策略。例如通过群体感应靶向剂调节细菌 群体感应信号传导是控制细菌毒力因子产生和生物膜形成的有效策略。这种新型的非抗生素疗法可以抑制致病基因的表达,预防感染,降低细菌细胞耐药性的风险,近年来得到了广泛的应用。

还可以考虑群体感应分子作为菌群失调相关慢性疾病(如IBD或CRC)的可靠生物标志物。已证明,肠道生态系统中某些AI-1 群体感应分子的存在与细菌群大小直接相关。AHL可以代表细菌水平群体的生物标记物,作为菌群失调的放大镜

此外,在腺瘤向结肠直肠转移和大肠癌进展期间,AI-2浓度增加。这为使用群体感应系统作为慢性病预防和随访的生物标志物开辟了前景。

主要参考文献:

Coquant G, Aguanno D, Pham S, Grellier N, Thenet S, Carrière V, Grill JP, Seksik P. Gossip in the gut: Quorum sensing, a new player in the host-microbiota interactions. World J Gastroenterol. 2021 Nov 14;27(42):7247-7270. doi: 10.3748/wjg.v27.i42.7247. PMID: 34876787; PMCID: PMC8611211.

Deng Z, Luo XM, Liu J, Wang H. Quorum Sensing, Biofilm, and Intestinal Mucosal Barrier: Involvement the Role of Probiotic. Front Cell Infect Microbiol. 2020 Sep 25;10:538077. doi: 10.3389/fcimb.2020.538077. PMID: 33102249; PMCID: PMC7546212.

Meroni, G.; Panelli, S.; Zuccotti, G.; Bandi, C.; Drago, L.; Pistone, D. Probiotics as Therapeutic Tools against Pathogenic Biofilms: Have We Found the Perfect Weapon? Microbiol. Res. 2021, 12, 916-937. doi.org/10.3390/microbiolres12040068

Li J, Zhao X. Effects of quorum sensing on the biofilm formation and viable but non-culturable state. Food Res Int. 2020 Nov;137:109742. doi: 10.1016/j.foodres.2020.109742. Epub 2020 Sep 22. PMID: 33233307.

Prazdnova, E.V.; Gorovtsov, A.V.; Vasilchenko, N.G.; Kulikov, M.P.; Statsenko, V.N.; Bogdanova, A.A.; Refeld, A.G.; Brislavskiy, Y.A.; Chistyakov, V.A.; Chikindas, M.L. Quorum-Sensing Inhibition by Gram-Positive Bacteria. Microorganisms 2022, 10, 350. doi.org/10.3390/microorganisms10020350

Wu L, Luo Y. Bacterial Quorum-Sensing Systems and Their Role in Intestinal Bacteria-Host Crosstalk. Front Microbiol. 2021 Jan 28;12:611413. doi: 10.3389/fmicb.2021.611413. PMID: 33584614; PMCID: PMC7876071.

曾利,凌保东.作用于细菌群体感应系统的抗菌中药单体[J].中国药理学与毒理学杂志,2021,35(10):802-803

Preda VG, Săndulescu O. Communication is the key: biofilms, quorum sensing, formation and prevention. Discoveries (Craiova). 2019 Sep 30;7(3):e100. doi: 10.15190/d.2019.13. PMID: 32309618; PMCID: PMC7086079.

Jiang Q, Chen J, Yang C, Yin Y, Yao K. Quorum Sensing: A Prospective Therapeutic Target for Bacterial Diseases. Biomed Res Int. 2019 Apr 4;2019:2015978. doi: 10.1155/2019/2015978. PMID: 31080810; PMCID: PMC6475571.

肠-肝轴:宿主-微生物群相互作用影响肝癌发生

谷禾健康

​前面的文章中,我们已经了解到,在肝病的发生发展中肠道菌群的变化,详见:

深度解析 | 肠道菌群与慢性肝病,肝癌

到目前为止,大多数研究都集中在细菌多样性及其代谢物与靶癌细胞表型的关联上,而没有考虑环境的微调。实际上生态系统中,个体在环境中与其他个体相互作用、相互影响和限制。

在肿瘤微环境中,特定的微生物会影响其他细胞(微生物或宿主细胞)并受其影响。

微生物群及其代谢物影响肠-肝轴的组织细胞。肠道微生物群以及肿瘤本身的细菌可以影响肿瘤微环境,包括通过调节癌症、基质和炎症/免疫细胞中的基因转录以及促进或抑制肿瘤进展。

同时,微生物群也受饮食、环境等因素影响,在环境扰动后会适应,从而影响宿主-微生物的相互作用。

本文主要阐述了微生物群在肝脏稳态中的作用,肠道菌群及其代谢物直接和间接地调节肝脏基因表达,导致肠-肝轴失衡,从而促使肝病的发生发展,甚至致癌,并对肿瘤微环境产生影响。

肠-肝-胰腺轴中的微生物群有助于体内平衡和致癌作用

我们的健康和生存能力取决于共生微生物(微生物群)的存在,它们主要存在于上皮细胞界面上,在下消化道中特别丰富

菌群维持肠道稳态

肠道微生物群中的平衡生态有助于食物加工和吸收,调节宿主新陈代谢,并通过防止病原体和病原菌的扩张或通过调节宿主免疫力维持肠道上皮的完整性来防止感染。

肠道-肝脏-胰腺轴

在物理上,肝脏和胰腺通过胆管和胰管与肠道相通,而门静脉将肠道菌群产物输送到肝脏。因此,肠道菌群与肝脏和胰腺之间的串扰(肠道-肝脏-胰腺轴)可以将信号整合为一个相互关联的系统

宿主与微生物群之间复杂而高度协调的相互作用代表了一个自然生态系统。共生相互作用,如互利共生、共栖、捕食、寄生和竞争,是微生物、微生物-宿主和宿主-宿主细胞之间相互作用的基础。

因此,肠-肝轴中的细胞处于稳态平衡,环境扰动会改变这种平衡,从而调节局部和全身的转录反应,并影响健康和疾病,例如癌症。

图1 微生物与宿主的相互作用调节体内平衡和疾病

关于微生物群在致癌中的作用的研究,最初集中在上皮屏障界面的肿瘤上,如胃癌和结肠癌,但胰腺导管腺癌 (PDAC) 为口腔和肠道微生物群以及癌症相关微生物群的作用提供了很多证据。

微生物群对致癌作用的影响,及细菌调节肿瘤微环境的一些机制如下:

胰腺癌研究解决了肠道菌群失调、瘤内细菌和癌症之间的联系

人类胰腺癌前体病变显示被产生 IL-17 的Th17 细胞浸润加速了癌症的发生和进展。

几项研究表明,胰腺导管腺癌与口腔微生物组的组成、口腔病原体(如牙龈卟啉单胞菌Porphyromonas gingivalis、伴放线聚合杆菌Aggregatibacter actinomycetemcomitans)的丰度增加或口腔微生物抗体的存在有关。胰腺癌中出现了较低的α多样性,产生LPS的细菌增加,产丁酸盐菌减少

基于与胰腺导管腺癌相关的口腔和肠道微生物群落的概况,已经提出了将胰腺导管腺癌患者与健康个体区分开来的无创诊断模型

此外,胰腺导管腺癌研究已经确定,胰腺含有与组织相关的细菌和真菌,这些细菌和真菌在胰腺癌中比在正常胰腺组织中的含量更高。胰腺导管腺癌中的细菌主要存在于免疫细胞和癌细胞内

在分析的每种肿瘤类型中,肿瘤内细菌的组成是不同的,可用于预测肿瘤与正常组织和肿瘤类型

尽管在大约三分之二的胰腺导管腺癌中观察到细菌,并且数量高于大多数其他肿瘤类型,但与人类细胞相比,它们在肿瘤中的绝对数量仅为约 1/40 – 1/400。

与其他肿瘤相比,胰腺导管腺癌中的肿瘤相关细菌 Gammaproteobacteria较多尤其是肠杆菌Enterobacterales,与胃癌和结肠癌不同的是,它们的梭杆菌fusobacteria较少

胰腺导管腺癌相关微生物群的组成与十二指肠微生物群相似,这一事实表明细菌可能是通过胆胰管逆行迁移

肿瘤相关微生物通过各种机制参与胰腺癌的发生或对治疗产生抵抗

例如,表达胞苷脱氨酶长同工型的细菌(如 Gammaproteobacteria)将吉西他滨代谢成无活性形式,导致胰腺导管腺癌出现耐药性

瘤内细菌可能通过诱导 MDSCs 和抑制 M1 巨噬细胞分化和 CD4 +和 CD8 + T 细胞活化来重新编程肿瘤微环境;通过抗生素治疗进行的细菌消融可重新编程胰腺肿瘤免疫微环境,防止癌变并使免疫检查点抑制治疗产生反应。

然而,肿瘤内细菌也可能是有益的,并且 胰腺导管腺癌的长期幸存者在肿瘤相关微生物群中表现出更高的微生物 α 多样性和独特的特征(假黄单胞菌属Pseudoxanthomonas、链霉菌属Streptomyces、糖多孢菌属Saccharopolyspora),这可能诱导有效的免疫细胞浸润和抗肿瘤免疫

最近有多项综述回顾了微生物调节在胰腺导管腺癌中的作用。这些研究支持胰腺导管腺癌患者的肿瘤外和肿瘤内微生物群与发育和临床进展的易感性之间的直接联系。

作为一个相互关联的系统,肠-肝轴中的微生物-宿主串扰有望成为肝癌发生的一个重要因素,就像在胰腺导管腺癌中一样。

细菌通过微生物-宿主和宿主-宿主相互作用参与致癌作用

幽门螺杆菌,已被正式确定为胃癌的明确人类致癌物。然而,新出现的证据表明,细菌,无论是存在于上皮屏障界面上还是存在于肿瘤中,都与局部或远处组织的癌变和肿瘤进展有关

细菌在肿瘤微环境中产生选择性压力以促进肿瘤发生,部分原因是引发 ROS 的产生,影响对 pH 变化的反应,竞争有限的营养物质,增加 DNA 损伤和诱变,调节癌基因途径,影响化学疗法的代谢药物,或调节免疫。

携带产生大肠杆菌素的聚酮化合物-非核糖体肽合酶操纵子 (pks) 的大肠杆菌菌株在结直肠癌中诱导了明显的突变特征,这为细菌在基因组突变中的作用提供了证据。

微生物群对致癌基因诱导的肿瘤进展的影响得到以下观察结果的支持

突变的p53仅在远端结肠中致癌,因为存在微生物产生的没食子酸,通过破坏 WNT 通路阻止突变的 p53 作为肿瘤抑制因子。相反,肿瘤会对局部组织细胞施加的竞争压力可能会影响肿瘤微环境周围组织和肠道中的细菌

宿主-宿主相邻细胞之间的肿瘤微环境竞争动态是生态系统模型的基础,在结肠和肝脏中均发现有致癌作用,并且可以为细菌调节肿瘤微环境提供底物

恶性干细胞分泌促进邻近干细胞分化为含有促癌突变的克隆的因子微生物群的改变可能代表另一个触发因素,结合宿主细胞串扰中涉及的其他多个信号,不仅影响癌症前体靶细胞,而且通过调整局部组织环境影响所有细胞。

此外,肿瘤相关细菌大多存在于癌细胞和免疫细胞的细胞内,可能影响癌细胞的信号传导,并在抗原呈递细胞表面以 MHC 限制性肽的形式呈递,从而刺激宿主免疫

尽管在改进低生物量正常和肿瘤组织样本中稀有细菌的鉴定和分析技术方面取得了很大进展,但这些结果仍需谨慎解读。不过,这支持肿瘤微环境选择居住的微生物群并反过来受微生物群影响的新概念。

此外,肝脏和胰腺之间的生理联系提出了一个问题,即:最近在胰腺导管腺癌中建立的模型是否可以应用于肝细胞癌 (HCC)?

在此阐述了微生物群在维持肠-肝轴稳态中的作用,并关注环境扰动如何直接(通过诱导微生物相对丰度/多样性的变化)或间接(通过微生物代谢物的作用)触发与肝癌发生相关的基因反应。

一系列相互关联的反应将肠道菌群与肝脏联系起来

微生物群的组成是在婴儿早期建立的,并在成年后保持相对稳定。然而,由于生活方式、饮食、疾病、感染和抗生素的使用,细菌种类的相对丰度可能会迅速改变

微生物群与宿主之间的串扰对健康和疾病产生关键影响

微生物群通过其扩张/收缩、占据不同的解剖生态位以及遗传物质的突变和交换来适应环境变化并调节宿主反应

微生物群在宿主从出生开始的先天性和适应性免疫系统发育中发挥着重要作用,免疫系统也塑造了宿主-微生物的相互作用。这个过程依赖于肠道黏膜表面的分隔、微生物群感应和信号传递以及免疫细胞启动,以产生特定的反应并维持体内平衡。

结合起来,上皮屏障、其微生物群落和局部免疫系统不仅可以耐受环境中的共生细菌,还可以使免疫系统对条件致病菌或微生物产物做出反应

当这些防御机制失败时,例如由于肠道通透性增加(肠道渗漏)或生态失调(与疾病相关或与疾病有因果关系的微生物群组成的变化),就会出现细菌代谢物的涌入或先前被分隔,并且有害微生物可能通过肠道血管屏障(GVB)并通过门静脉循环延伸到肝脏。

微生物群在肝脏稳态中的关键作用

在肝脏中,环境扰动会触发肝脏免疫反应,这种反应依赖于常驻免疫细胞以及来自肠道微生物群的循环抗原和内毒素。由与肠道相关淋巴组织 (GALT) 相关的免疫监视形成,证实了微生物群作为一个相互关联的系统在肝脏稳态中的关键作用

为什么肠道屏障的紊乱会改变肝脏的微环境?

小肠细菌过度生长(SIBO)也与肠漏和细菌流入肝脏有关。

细菌产物或微生物易位的增加刺激与慢性肝病相关的促炎反应。相反,肝脏通过胆道在肠道中释放胆汁酸和其他生物活性介质,这些介质可能会被肠道微生物群进行生物转化,然后被吸收并释放到体循环中。

生理组织稳态的改变可能导致癌症等疾病。此外,通过将饮食模式与微生物组对免疫和代谢状态的影响和癌症治疗反应联系起来,这种关系揭示了微生物群和肝脏之间的联系,这是由局部环境扰动引发的一系列相互关联的反应。

总的来说,肠-肝轴生态系统可以触发局部和远处的反应,并勾勒出肠道微生物群与肝脏之间的直接和间接相互作用(图 2)。

图2 肠肝轴的双向关系调节体内平衡

(A) 粘液从物理上将微生物群与上皮衬里分离,而抗菌肽使内部粘液几乎无菌。(B) 因此,微生物群与宿主之间的相互作用主要是间接的,并由代谢产物介导,这些代谢产物可能穿过粘液和上皮屏障,到达固有层中的免疫细胞和基质细胞,或通过淋巴和血管系统到达肝脏和体循环。(C) 免疫细胞通过产生生长因子和细胞因子来巡逻上皮细胞,并加强上皮和粘液屏障。这些产物对微生物产生选择性压力。(D) 树突状细胞感知环境并诱导T细胞和B细胞反应,从而产生IgA抗体,这些抗体转移到管腔,并通过调节微生物组成和多样性来促进粘膜免疫保护。代谢产物通过(E)肠血管屏障通过门静脉流入肝脏。(F) 在肝窦中,免疫细胞扫描异物。(G) 反过来,肝脏通过释放胆汁酸和其他生物活性介质进入胆道与小肠沟通;这些代谢物可被回肠和大肠末端丰富的微生物群生物转化,部分通过门静脉再循环到肝脏,从而可能影响局部和全身功能。

不同的触发因素与改变的菌群相对丰度相关:肠-肝轴的后果

健康的肠道屏障对一些微生物代谢产物可渗透的,但大多数完整的微生物却不能通过。

然而,饮食和其他环境因素的影响会迅速丰富或消耗特定的营养物质和细菌。这种效应会对微生物代谢物的产生和胆汁酸的转化产生影响,这有可能塑造局部微环境并与包括癌症在内的慢性肝病的发展相关。

例如,酒精会导致肠漏。与 SIBO 一起,它允许内毒素进入循环,导致肝脏疾病。SIBO 是肠道微生物菌群失调的一种表现,其特征是 α 多样性降低,在某些情况下,β 多样性增加,这可能导致全身性炎症。

增加的细菌易位会促进肝硬化进展(肝细胞癌的前体),包括:导致纤维化,通过增加肝细胞与微生物和细菌代谢物的接触,或通过在肝脏中创造转移前的小生境,改变环境以利于转移细胞的募集和增殖,从而促进肝硬化进展。

最后,在某些慢性肝病中,活细菌的易位可能导致 GALT 的免疫麻痹,表明微生物平衡的变化直接影响局部环境的机制

下文将阐述肠道细菌如何通过扩散到肝脏、影响环境或改变其他细胞中的串扰直接影响肝癌发生。

饮食模式影响微生物组

饮食改变肠道微生物组,对免疫和新陈代谢状况、癌症风险对癌症治疗的反应产生影响。因此,摄入食物的来源和类型在调节肠道微生物组中起着关键作用,并对宿主-微生物相互作用产生影响。

人类肠道中主要有三种类型(肠型)(拟杆菌属Bacteroides、普氏菌属Prevotella和瘤胃球菌属Ruminococcus)。

在工业化和非工业化人群中观察到的蛋白质和动物脂肪(拟杆菌属Bacteroides)与碳水化合物或植物性食物(普氏菌属Prevotella)的摄入比例不同。工业化与天然富含纤维食品的减少有关。

膳食纤维是饮食中的重要组成部分,分为不溶性(抗发酵)或可溶性(可被肠道微生物群代谢),例如益生元纤维菊粉,在结肠中它被肠道微生物群发酵成短链脂肪酸:乙酸盐、丁酸盐、和丙酸盐。

菊粉 是果糖聚合物的异质混合物。果糖摄入转化为乙酸盐,并通过微生物群衍生的乙酸盐经门静脉到达肝脏触发从头脂肪生成。在肠道中,菊粉对成年人微生物组组成的影响:

下列菌增加

双歧杆菌Bifidobacterium

厌氧菌Anaerostipes

粪杆菌Faecalibacterium

乳杆菌属Lactobacillus

下列菌减少

拟杆菌属Bacteroides

普氏菌Prevotella、密螺旋体Treponema、琥珀弧菌属Succinivibrio的丰度增加主要与蔬菜的纤维碳水化合物发酵相关的饮食有关。

高纤维饮食增加了微生物组编码的聚糖降解碳水化合物活性酶,而不影响群落多样性。相比之下,高发酵食品饮食增加了微生物组的多样性并减少炎症

从机制上讲,缺乏纤维的饮食可以使结肠粘液降解细菌增多,增强柠檬酸杆菌粘液层翻转和相关的结肠炎。这表明饮食模式可能影响肠-肝轴的多种机制

健康的植物性食物会影响肠道微生物的多样性和组成,包括产丁酸菌的富集,例如:

Roseburia hominis

Agathobaculum butyriciproducens

普氏粪杆菌Faecalibacterium prausnitzii

厌氧菌Anaerostipes hadrus

丁酸盐是一种短链脂肪酸,通过肠道内膳食纤维的微生物发酵产生。丁酸盐有助于黏膜稳态和肠道内壁的完整性,从而提供肠细胞的大部分能量需求,并通过与几种 G 蛋白偶联受体结合并作为组蛋白脱乙酰酶抑制剂发挥抗炎作用。在小鼠模型中,增加的膳食纤维以微生物群和丁酸盐依赖的方式止结直肠肿瘤发生

总的来说,这些研究强调了饮食对微生物群落的深远影响及其对宿主的影响,具体取决于摄入的食物来源。

饮食作为导致肝脏疾病的环境扰动

先前的研究表明,地中海饮食与拟杆菌门Bacteroidetes和某些有益梭菌群Clostridium的富集以及变形杆菌门Proteobacteria和芽孢杆菌门Bacillota的减少有关,可以减少肝脏脂肪,被推荐用于预防非酒精性脂肪性肝病 (NAFLD)。

调节与饮食相关的微生物组是预防肝癌的潜在途径

长期食用可发酵的富含纤维的食物(如可溶性纤维菊粉或富含菊粉的高脂肪饮食)容易导致生态失调的小鼠出现炎症、胆汁淤积和肝细胞癌。总细菌负荷增加,多样性减少,变形杆菌和纤维发酵细菌(如梭菌属)的特定增加。消除这些产生丁酸盐的细菌成功地预防了富含菊粉的肝细胞癌,这表明调节与饮食相关的微生物组是预防肝癌的潜在途径。

由于肠道微生物群失调,高胆固醇/高脂肪饮食依次导致小鼠阶段进展为脂肪变性、脂肪性肝炎、纤维化,最终导致 NAFLD-肝细胞癌。

在每个阶段都富集了不同的微生物群组成,因为在肝细胞癌患者中:

Mucispirillum、Desulfovibrio、Anaerotruncus和 Desulfovibrionaceae依次增加

Bifidobacterium、Bacteroides耗尽

综合这些发现,饮食模式会通过富集与健康或疾病相关的特定细菌来影响肠道微生物组,从而对肝脏产生潜在影响。

与肝脏慢性疾病和肝癌发生相关的微生物多样性

许多微生物群代谢物是肝癌发展的危险因素。考虑到环境塑造和选择特定的微生物群,推测某些物种可能获得哪些竞争优势以及特定微生物群的富集如何影响肝癌的进展。

相似或不同的微生物群组成是否可能参与肝细胞癌胆管癌 (CCA) 的发展?现在下结论还为时过早,在这部分讨论这两种类型的肝癌。

肝脏中肿瘤和非肿瘤区域之间菌群不同

最近有报道称,病毒非病毒病因的肝细胞癌中的 16S rRNA 基因测序确定了肝脏中肿瘤和非肿瘤区域之间不同的微生物组成,其中拟杆菌门Bacteroidetes、厚壁菌门Firmicutes、变形杆菌门Proteobacteria的物种占肿瘤相关菌群的主导地位。相关微生物群Ruminococcus gnavus被确定为感染肝炎病毒的 肝细胞癌患者的特征分类群

肝硬化、肝细胞癌患者的肿瘤微生物群显示出更高丰度的嗜麦芽窄食单胞菌Stenotrophomonas maltophilia,这与肝星状细胞 (HSC) 中的衰老相关分泌表型 (SASP) 相关,证实了菌群失调与肝细胞调节之间的关联

NAFLD肝硬化中,伴或不伴肝细胞癌的患者菌群不同

肝细胞癌患者的拟杆菌属Bacteroides瘤胃球菌科Ruminococcaceae丰度增加双歧杆菌Bifidobacterium丰度降低,这与粪便钙卫蛋白水平升高和全身炎症相关。同样,与肝硬化患者相比,早期肝细胞癌患者的肠道菌群中产生脂多糖 (LPS) 的菌群增加,而产生丁酸盐的菌群减少

这些数据表明,在患有 NAFLD 和肝硬化的肝细胞癌患者中,肠道菌群组成与全身炎症相关,并可能促进肝癌的发生。

乙肝病毒感染进展的肝细胞癌的菌群特点

从乙型肝炎病毒 (HBV) 感染进展的肝细胞癌患者显示出丰富的抗炎细菌(例如,普氏菌Prevotella、乳酸杆菌Lactobacillus、双歧杆菌Bifidobacterium、粪杆菌Faecalibacterium)和减少的促炎细菌(例如,大肠杆菌-志贺氏菌Escherichia-Shigella、肠球菌Enterococcus),道微生物群可能与调节宿主免疫生物学途径的 HBV 感染有关的成分。

这些研究强调了在肝细胞癌中观察到的微生物多样性,这代表了已知风险因素与肝细胞癌发展之间的相关性。

作为饮食和其他环境因素影响微生物组的相互关联的系统,有必要在多个评估部位(肿瘤和非肿瘤)和组织中表征局部微生物群的组成和多样性,与单细胞分析相关并可能相关与环境因素。此外,突出特定细菌物种富集的潜在因果关系的功能分析是超越相关性的关键步骤。

胆管相关的微生物群

一些细菌科,如Dietziaceae、Pseudomonadaceae、Oxalobacteraceae主导了胆管相关微生物群,表明独特的微生物群落存在于这一解剖学定位中。

肝外胆管癌患者有大量肠球菌Enterococcus、链球菌Streptococcus、拟杆菌属Bacteroides、克雷伯氏菌属Klebsiella、锥体杆菌属Pyramidobacter

此外,与胆总管结石患者相比,胆管癌患者的胆汁样本富含肠杆菌属Enterobacter、假单胞菌属Pseudomonas、窄食单胞菌属Stenotrophomonas

最后,与肝细胞癌或肝硬化患者和健康个体相比,肝内胆管癌患者肠道菌群中的4个细菌属增加

乳酸杆菌Lactobacillus、放线菌Actinomyces、消化链球菌Peptostreptococcus、异体卡多菌Alloscardovia

肠道微生物群特征可以来区分胆管癌和胆石症

胆管癌中富集的菌群:拟杆菌属Bacteroides、Muribaculaceae_unclassified、Muribaculum、Alistipes属的物种。

而不同的微生物物种在胆石症组中富集,这表明在从良性肝胆疾病到恶性肝胆疾病的演变过程中微生物关联发生了变化

总的来说,这些过程可能解释了肠道细菌易位直接导致建立有利于肝癌发展和进展的发炎肝脏环境之间的联系。然而,很难根据与微生物相对丰度的相关性来唯一地假设因果关系,微生物相对丰度由于多种环境因素而迅速改变。

因此,全面的跨界网络分析比较肝细胞癌和胆管癌,并将局部肠道和组织微生物群的组成和多样性以及环境因素对代谢、免疫和转录改变的影响联系起来,对于剖析微生物群在肝癌的发生及其作用机制调节中的因果作用至关重要。

微生物群间接诱发肝癌的分子机制

强调了微生物群变化对肝脏环境的间接影响(可能通过环境中其他细胞或微生物代谢物的串扰)及其与肝癌发生和进展的关系。

为了了解特定微生物群在肝肿瘤中的潜在影响,有必要将潜在机制以及微生物与其他细胞之间的串扰联系起来。

小鼠中肝细胞癌发展的演变

从这个意义上说,最近的一项研究描述了Mdr2 缺陷小鼠中肝细胞癌发展的时间演变,这些小鼠缺乏从肝脏将磷脂分泌到胆汁中的能力,从而经历胆汁淤积和肝细胞癌发展

在这些代表炎症诱导肝细胞癌的有用模型的小鼠中,肠道菌群失调诱导肠道屏障功能障碍先于 LPS 介导的肝脏转录改变,从而导致肝细胞癌发展。

此外,肝内炎症基因谱肝损伤早期的促炎表型转变为肝细胞癌免疫抑制表型。这种变化与通过微生物组功能从碳水化合物向氨基酸代谢的转变来重新调整能源利用有关。

菌群改变通过代谢和炎症影响肿瘤发生

微生物群的改变通过影响肝脏碳水化合物和脂质代谢调节炎症,从而导致 NAFLD 及其进展为非酒精性脂肪性肝炎 (NASH)。代谢和炎症的调节可能同样影响肝脏肿瘤发生。

肠道微生物组受饮食和其他环境因素的影响,微生物与营养物质的竞争是调节新陈代谢和免疫反应的关键步骤。例如,通过微生物群介导的膳食纤维发酵产生 SCFA 与胆汁淤积型肝细胞癌相关。

有人认为,细菌产物的易位可能会刺激炎症并释放 GALT 中的活性氧 (ROS),从而影响机械和分泌屏障以及局部微生物群。

这些研究强调需要继续进行系统和全球研究,将肠-肝轴中微生物物种的多样性和丰度作为一个生态系统进行表征,同时也需要开始剖析这些表型背后的机制。

细菌代谢物调节环境中的关键肝细胞

最近有人提出,母亲在怀孕期间摄入丁酸盐和谷氨酰胺会影响新生小鼠的粪便微生物群和代谢物,这与拟杆菌梭状芽胞杆菌的粪便特征有关。

此外,这些新生小鼠对肝脏免疫激活有抵抗力,导致胆管炎症和损伤

从机制上讲,细菌代谢物在宿主细胞中触发基因反应的影响可能取决于环境中的转录改变

对急性肝衰竭动物模型中不同的转录特征进行了检查,表明肠道微生物群和 Toll 样受体 (TLR) 信号激活肝星状细胞、枯否细胞和肝窦内皮细胞 (LSEC) 中的 MYC 依赖性转录程序,导致 Ly6C 阳性炎性单核细胞浸润和肝功能衰竭。

图3 微生物代谢产物和多样性是肝癌进展的触发因素

(A)一些细菌可能会穿透粘液屏障或参与其降解,在某些情况下导致上皮屏障的破坏或破坏,从而允许(B)微生物和微生物代谢物和免疫细胞之间的直接接触,诱导促炎细胞因子的产生和全身传播。粘液/上皮屏障的破坏也可能促进(C)细菌转移到肝脏(D),这为癌细胞的播散创造了一个有利的生态位。因此,先前划分的细菌和微生物产物的涌入影响了局部肝细胞的基因表达。例如:(E)肝细胞可能表达CXCR1并诱导CRCX2+多形核髓系衍生抑制细胞(PMN-MDSCs)的积累,创造免疫抑制环境促进胆管癌(CCA);(F)激活的肝星状细胞在肝细胞癌(HCC)和癌症转移中发挥多种功能,可能通过CXCL12-CXCR4相互作用破坏肝脏中自然杀伤细胞(NK)的功能,改变NK细胞介导的免疫,促进乳腺向肝脏转移;而(G)其他的肝脏免疫细胞可能通过脂多糖(LPS) – toll样受体4 (TLR4)或脱氧胆酸(DCA) -TLR2调节而被激活,并诱导促进肝细胞癌发生的炎症反应。相比之下,(H)被肠道菌群修饰后的肝脏产生的胆汁酸可能会激活肝脏自然杀伤T细胞(NKTs)在肝脏中的趋化因子依赖性积累,从而控制肿瘤的生长。

LPS调节影响肝细胞癌

循环水平的LPS通过TLR4 激活并诱导肝星状细胞分泌生长因子、调节肝脏慢性炎症状态和抑制细胞凋亡,这些过程肝细胞癌促进有关。门静脉区域 LPS-TLR4 相互作用下游的转录调节因子 YAP1 的激活调节肝细胞的干性。

因为肝细胞周转的位点定位在激活基础稳态和再生的分子途径中很重要。推测 LPS 也可以通过调节局部微环境重编程来调节这些机制以影响肝细胞癌。

肠道微生物群调节肝细胞的基因表达程序,促进肝细胞癌和胆管癌

胆管癌中,增加的肠道通透性诱导微生物 LPS 易位进入肝脏,通过 TLR4 依赖性机制诱导肝细胞中 CXCL1 的表达。这种表达反过来导致 CCR2 +多形核髓源性抑制细胞 (MDSCs) 的积累。

肝硬化肝细胞癌患者的瘤内S. maltophilia丰度更。 通过激活 TLR4/NF-κB/NLRP3 通路诱导衰老肝星状细胞中衰老相关分泌表型SASP因子和促炎因子的表达,从而促进肝纤维化,随之而来的肝纤维化加重并发展为肝细胞癌

肝星状细胞增殖是肝纤维化发展的关键事件。最后,胆汁酸通过激活表皮生长因子受体导肝星状细胞增殖

饮食代谢物影响肝脏环境

饮食会迅速改变人体肠道微生物组。饮食衍生的微生物代谢物对甲酚硫酸盐、4-乙基苯基硫酸盐和 4-甲基儿茶酚会影响肝细胞癌亚型

人类肠道微生物组编码的代谢途径通过众多生物活性分子不断与宿主基因产物相互作用。例如,营养过剩会增加 IL-17A,进而诱导白色脂肪组织中的中性粒细胞浸润和 NASH 诱导的肝细胞癌。

IL-17A 是一种促肿瘤细胞因子,通过调节Kupffer细胞和骨髓源性单核细胞的炎症反应和脂肪变性肝细胞的胆固醇合成调节酒精诱导的肝脂肪变性、炎症、纤维化和肝细胞癌的进展。

地高辛,一种类视黄醇孤儿受体 γ t (RORγt) 拮抗剂,降低了 IL-17A 水平并稳定了体重。表明其在代谢紊乱中的关键作用

此外,TNF和IL-17A 与骨髓来源细胞中NLRP3 炎性体激活诱导的肝脏炎症纤维化的发展有关。

总的来说,这些研究表明饮食代谢物、细胞因子和肝癌疾病之间存在机制联系。

胆汁酸作为微生物-肠道-肝脏相互作用的信使

初级胆汁酸在肝细胞中合成,释放到十二指肠,大部分在小肠中重新吸收。一小部分初级胆汁酸逃逸到结肠,肠道共生细菌将其转化为次级胆汁酸,次级胆汁酸对新陈代谢和宿主先天免疫反应具有多种重要功能

饮食和微生物胆汁酸代谢物均可调节 RORγt 阳性调节性 T 细胞(Treg) ,有助于维持宿主免疫稳态和改善肠道炎症。此外,胆汁酸代谢物可以通过调节 Th17 和 Treg 细胞的平衡来控制宿主免疫反应

胆汁酸可以在高脂肪饮食中发挥积极作用

膳食胆固醇诱导肠道细菌代谢物改变,包括增加牛磺胆酸和减少 3-吲哚丙酸,从而在小鼠中驱动 NAFLD-肝细胞癌。因此,胆固醇抑制疗法和肠道菌群操作可能是预防 NAFLD-肝细胞癌的有效策略。

石胆酸 (LCA) 衍生物直接影响 CD4+ T 细胞(3-oxoLCA 和 isoalloLCA)

3-oxoLCA 通过直接结合转录因子 RORγt 抑制 Th17 细胞分化,而 isoalloLCA 增强 Treg 细胞分化,证实肠道微生物群可能控制宿主免疫反

对于肝内胆管癌,观察到甘熊去氧胆酸和牛磺脱氧胆酸血浆:粪便比率增加血浆牛磺胆酸和 IL-4 呈正相关,表明肠道微生物群、代谢物、细胞因子和胆汁酸之间存在相互关系

肥胖诱导的菌群失调促进肝癌发生

最近的一项综合组学研究揭示了一种胆汁酸代谢物升高、胆固醇代谢失调和与 BMI 增加相关的独特炎症反应的胆管癌亚型,这表明肥胖诱导的肠道微生物群失调促进肝癌发生的模型。

从机制上讲,胆汁酸/致癌轴涉及胆汁酸受体,例如法尼醇 X 受体 (FXR) 和 G 蛋白偶联胆汁酸受体 1,它们可能代表癌症的重要治疗靶点胆汁酸如脱氧胆酸 (DCA) 被证明可阻断 FXR 的功能及其抑制肠癌干细胞增殖的能力,从而影响肠-肝轴稳态

此外,胆汁酸传感器 FXR 或 G 蛋白偶联受体 TGR5 的激活通过抑制 NF-κB 依赖性信号通路和 NLRP3 依赖性炎症小体活性来抑制炎症信号传导。因此,饮食-肝脏-胆汁酸-微生物群的串扰在胃肠道炎症以及结直肠癌和肝癌的发生中起重要作用,可用于预防癌症的发生或进展。

菌群利用胆汁酸作为信使影响抗肿瘤免疫

肠道微生物组可以利用胆汁酸作为信使,来控制趋化因子依赖性肝脏自然杀伤 T 细胞 (NKT) 的积累,从而影响肝脏中的抗肿瘤免疫。这一过程是由共生肠道细菌的改变、初级和次级胆汁酸的平衡以及 LSEC 中的 CXCL16 表达介导的,LSEC 是最早暴露于肝脏中肠道衍生代谢物的细胞之一。

相反,NKTs 通过与肝细胞的相互作用与 CD8 T 细胞合作,促进 NASH  NASH相关的肝细胞癌

NK 细胞和肝星状细胞之间的相互作用——癌症休眠和转移的主要开关

基质反应阻碍了 NK 细胞和干扰素 γ 介导的肿瘤细胞休眠的维持,并通过组织损伤和活化的肝星状细胞分泌 CXCL12 的过程诱导肝转移,CXCL12 通过 CXCR4 保留和使 NK 细胞静止,抑制免疫监视和促进转移性生长

某些与肥胖相关的细菌具有增加次级胆汁酸脱氧胆酸的能力

脱氧胆酸的增加会导致肝星状细胞中的 DNA 损伤,从而诱导衰老相关分泌表型,导致炎症和肿瘤促进因子以及 COX2 诱导的免疫抑制性 PGE2 在肝脏中的产生,从而促进肝细胞癌的发展。

肥胖还与微生物群改变有关,导致 TLR2 激动剂脂磷壁酸 (LTA)这一革兰氏阳性菌的主要细胞壁成分的积累增加。脱氧胆酸增加肝星状细胞上 TLR2 的表达,并与 LTA 协同诱导衰老相关分泌表型因子和 COX2,后者通过 PGE2 诱导免疫抑制,并在化学致癌物暴露后促进肥胖相关的肝细胞癌。

总之,这些研究支持了一个模型,即平衡状态的改变会对环境中的连接细胞产生影响,证实微生物组及其代谢物是肠道和肝脏基因反应的关键影响因素,对肝癌发生具有影响。

结 语

本文主要介绍了影响肝细胞癌的微生物群的复杂相互作用,强调了微生物群多样性或肠-肝轴中微生物代谢物的改变触发局部细胞中的基因反应。

与肝细胞癌相比,微生物群和PDAC对患者预后的相关性已得到更彻底的研究,并已明确开始确定特定机制,通过这些机制,微生物群可以局部或系统地影响肿瘤微环境,以及肿瘤进展和对治疗的反应。因此,胰腺导管腺癌研究中使用的一些策略可以应用于肝细胞癌研究。

可以看到,目前的研究分析环境中局部细胞内微生物群介导的直接和间接变化,研究视角已逐渐从靶细胞转向微环境/生态系统。肠道微生物群以及肿瘤本身的细菌通过调节癌症、基质和炎症/免疫细胞中的基因转录程序以及促进或抑制肿瘤进展来影响肿瘤微环境。

癌症干细胞和免疫细胞之间的串扰在癌症进展中起着重要作用,那么癌症干细胞是否容易被微生物/代谢物的改变触发?这也是值得关注的问题。由于物理和生理上的联系,评估微生物群对癌症干细胞分化的影响以及作为一个综合系统对肠-肝轴生态系统的影响也非常重要。

主要参考文献:

Silveira MAD, Bilodeau S, Greten TF, Wang XW, Trinchieri G. The gut-liver axis: host microbiota interactions shape hepatocarcinogenesis. Trends Cancer. 2022 Mar 21:S2405-8033(22)00045-0. doi: 10.1016/j.trecan.2022.02.009. Epub ahead of print. PMID: 35331674.

Komiyama S, Yamada T, Takemura N, Kokudo N, Hase K, Kawamura YI. Profiling of tumour-associated microbiota in human hepatocellular carcinoma. Sci Rep. 2021 May 19;11(1):10589. doi: 10.1038/s41598-021-89963-1. PMID: 34012007; PMCID: PMC8134445.

Zhang T, Zhang S, Jin C, Lin Z, Deng T, Xie X, Deng L, Li X, Ma J, Ding X, Liu Y, Shan Y, Yu Z, Wang Y, Chen G, Li J. A Predictive Model Based on the Gut Microbiota Improves the Diagnostic Effect in Patients With Cholangiocarcinoma. Front Cell Infect Microbiol. 2021 Nov 23;11:751795. doi: 10.3389/fcimb.2021.751795. PMID: 34888258; PMCID: PMC8650695.

Nejman D, Livyatan I, Fuks G, Gavert N, Zwang Y, Geller LT, Rotter-Maskowitz A, et al. The human tumor microbiome is composed of tumor type-specific intracellular bacteria. Science. 2020 May 29;368(6494):973-980. doi: 10.1126/science.aay9189. PMID: 32467386; PMCID: PMC7757858.

利用酶作为调节肠道微生物群的有力工具

谷禾健康

口服酶可以对肠道微生物群的组成产生深远的影响,并且可以作为一种有吸引力的替代调节剂。

本文总结了酶影响肠道微生物群的三种方式,并讨论了选择合适的酶来调节肠道微生物群的挑战。

酶:一种被忽视的调节肠道微生物群的因子

人类肠道容纳多达100万亿微生物,包括细菌、古细菌、真菌等。

最近的一项研究发现,有178种肠道微生物可产生400多种高度丰富的代谢物,其中许多可通过肠道屏障迁移,进入血液循环,并对宿主进行免疫、代谢和神经元调节

目前用于调节肠道微生物群的大多数策略都集中在化学品和整个微生物细胞上。而酶,作为具有催化功能的特殊蛋白质,却没有被广泛考虑。

几乎在所有生化反应中都需要酶。在畜牧业中,各种酶被广泛添加到饲料中,以促进动物的生长。它们的有益作用与肠道菌群的变化有关,并可能部分归因于肠道菌群的变化,这强烈表明可以有意选择酶来调节肠道菌群

事实上,在小鼠和其他实验动物中,酶无疑已被证明对肠道微生物群有潜在影响。

酶影响肠道微生物群的方式

酶可以通过三种方式影响肠道微生物群。

1

// 一些酶可以杀死肠道微生物

溶菌酶、类溶菌酶糖苷水解酶和细菌噬菌体溶菌酶直接降解细菌细胞壁的主要成分肽聚糖

Su X, Yao B. Trends Microbiol. 2022

在小鼠中,口服赖氨酸-防御素嵌合蛋白可显著减少粪便艰难梭菌孢子,从而降低死亡率可以产生对肠道微生物有害反应产物

在肠道中,管腔葡萄糖(浓度为几十毫摩尔)、L-氨基酸(回肠中的几毫摩尔),甚至细菌衍生的游离D-氨基酸(盲肠内容物中的约200-500 nmol/g)都可以被酶氧化,释放过氧化氢杀菌。在小鼠体内,D-氨基酸氧化酶导致霍乱弧菌(Vibrio cholera)在小肠中的定植显著减少

2

// 酶可以刺激肠道微生物生长

在人类中,食物中约一半的木聚糖被肠道微生物木聚糖酶降解为低聚木糖,低聚木糖支持某些肠道微生物(如拟杆菌、双歧杆菌和乳酸杆菌属)的生长

Su X, Yao B. Trends Microbiol. 2022

木聚糖酶的刺激谱可以通过肠道微生物的生态网络进一步扩展

酶还可以通过催化去除有害化学物质来刺激肠道微生物生长

肠道碱性磷酸酶(IAP)是一种由肠上皮细胞分泌的内源性酶,通过降低抑制细菌的管腔核苷酸三磷酸的浓度来促进特定肠道微生物的生长。这与减轻肠道屏障损伤减轻酒精诱导的肝脂肪变性等疾病密切相关。

3

// 酶能通过干扰微生物网络影响肠道菌群

群体感应(QS)是微生物群形成网络的一种方式。通过感应信号分子,微生物同步生成生物膜排出有毒分子。

Su X, Yao B. Trends Microbiol. 2022

通过N-酰基高丝氨酸乳糖等酶去除QS分子(群体猝灭)可以调节金鱼的肠道微生物群,这可以通过增加变形菌的丰度和减少肠道中致病性嗜水气单胞菌(Aeromonas hydrophila)来证明。

分散素B也证明了微生物网络的干扰,它水解生物膜稳定剂1,6-N-乙酰-D-葡萄糖胺,从而显著减少铜绿假单胞菌(Pseudomonas aeruginosa)在肠道中的定植。

选择合适的酶来调节肠道菌群

研究表明,有充分的机会利用酶来调节肠道微生物群,进而促进宿主的健康。

这其中最大的挑战可能是该使用什么酶

以治疗慢性疾病为例。由于整合多组学分析的能力不断发展,慢性病中的致病菌群正逐渐被识别出来。

因此,酶可以作为有选择地富集或减少有害致病微生物的宝贵工具。

因为酶能够通过将致病微生物与微生物结合模块(如抗体)连接起来,从而瞄准致病微生物。

为了制造这种具有精确调节功能的酶,可以从拟杆菌的“自私”策略中获取经验。这种细菌编码细胞表面附着的甘露聚糖酶,以帮助它在竞争激烈的肠道生态位中靠甘露聚糖繁衍生息

此外,成功地将赖氨酸细菌素融合,使酶能够杀死革兰氏阴性细菌,可以减少不必要的病菌

酶可以作为已知化学物质或微生物的增强剂,影响致病微生物。

例如,2型糖尿病患者(50%)对两种精心设计的高纤维饮食没有积极的反应。在那些从饮食中受益的人中,利用低聚糖的细菌,如双歧杆菌属,属于少数“公会”致病微生物。在这些饮食中添加纤维特异性酶可以释放更多低聚糖,从而改善细菌的生长,从而有助于缓解更多患者的疾病。

然而,许多其他疾病与肠道微生物群变化之间的机制联系目前仅限于关联而非因果关系。因为肠道中几乎所有的成分都是酶的潜在底物,除了上述几种酶之外,还有大量其他候选酶。

从理论上讲,直接受酶影响的肠道微生物可以从酶的作用模式中推断出来,根据已知的机械关联,可以使用该模式选择酶作为进一步测试的候选酶。

酶可以用来帮助释放真正的效应剂

这在使用化学药品和微生物来调节肠道微生物群的组成时是不容易做到的。例如,溶菌酶通过杀死乳酸乳球菌(Lactococcus lactis)释放细胞内超氧化物歧化缓解结肠炎

总的来说,这些结果表明,通过询问与上述三种酶以及其他类似的候选酶,并对其进行系统地测试,可以发现在有效调节肠道微生物群方面的隐藏酶。或者,将有关酶、饮食和宿主基因型的累积信息集成到现有数据库中,如Amadis (http://gift2disease.net/GIFTED/)将肠道微生物群与疾病联系起来,可能会有更合理的选择,并减少需要筛选的酶的数量。

选择酶的重要考虑因素

尽管生产、储存和口服都很容易,但在选择合适的酶时仍有重要的考虑因素。

1、考虑酶的耐受条件,相应增加剂量

口服给药时,酶必须能够耐受肠道内的恶劣条件,包括酸性pH值蛋白酶消化,这表明应选择候选酶来满足抵抗力,最初计算的剂量应在实验验证的基础上相应增加,以补偿储存和使用过程中任何可能的活性损失。

2、考虑酶的多效作用甚至危害影响

虽然酶不具有水平基因转移和引入多药耐药生物体甚至与基因工程益生菌和粪便微生物群移植相关的病原体的安全风险,但酶可以发挥不必要的多效作用,甚至产生有害影响。例如,磷脂酶将磷脂酰胆碱水解为胆碱,可被肠道细菌进一步转化为代谢产物三甲胺,三甲胺与不良疾病相关。

3、同一家族中不能调节菌群的酶需要排除

同一家族中的一些略有不同。那些不能调节目标微生物的也应该被排除在外。例如,木聚糖酶释放大量不同的低聚木糖,肠道细菌Roseburia intestinalisBacteroides ovatus对具有不同糖链长度的低聚木糖的反应非常不同

结语

酶影响肠道微生物群,进而影响宿主健康,再加上大量候选者的可用性和可感知的优势,使其成为调节肠道微生物群的一种不错的方式。了解酶的功能和催化机制可以更好地调节肠道菌群,指导药物使用,治疗人类疾病。

然而,由于酶与其底物、肠道微生物群和宿主之间的复杂相互作用,开发酶等新试剂并非易事。需要针对不同情况选择合适的酶。此外,酶并非排他性的,它们可以与化学物质和微生物合作,改变肠道微生物群的组成,进一步促进宿主的健康。

主要参考文献:

Su X, Yao B. Exploiting enzymes as a powerful tool to modulate the gut microbiota. Trends Microbiol. 2022 Feb 1:S0966-842X(22)00003-8. doi: 10.1016/j.tim.2022.01.003. Epub ahead of print. PMID: 35120774.

Jia B, Han X, Kim KH, Jeon CO. Discovery and mining of enzymes from the human gut microbiome. Trends Biotechnol. 2022 Feb;40(2):240-254. doi: 10.1016/j.tibtech.2021.06.008. Epub 2021 Jul 22. PMID: 34304905.

Neves ALA, Yu J, Suzuki Y, Baez-Magana M, Arutyunova E, O’Hara E, McAllister T, Ominski KH, Lemieux MJ, Guan LL. Accelerated discovery of novel glycoside hydrolases using targeted functional profiling and selective pressure on the rumen microbiome. Microbiome. 2021 Nov 23;9(1):229. doi: 10.1186/s40168-021-01147-1. PMID: 34814938; PMCID: PMC8609826.

慢性肾脏病中的人类微生物组:一把双刃剑

谷禾健康

慢性肾病 (CKD) 影响着全球约 13.4% 的人口,是一个日益严重的全球健康负担。成人中,高血压和糖尿病是慢性肾病的主要原因,而先天性肾脏和泌尿生殖道异常儿童慢性肾病病因的大部分。慢性肾病与心血管疾病、神经系统并发症、不良妊娠结局和高钾血症等严重健康状况的发展有关。在儿童中,慢性肾病会影响神经认知能力、学校表现、成长、生活质量等。

而许多研究已证明,慢性疾病过程与人类肠道微生物群及其代谢物之间存在关联。

那么慢性肾病与肠道微生物群之间存在什么关系?

肠道菌群代谢产物在慢性肾病中起着什么样的作用?

肠道失调是如何启动炎症过程并导致菌群代谢产物泄漏到血液中的?

哪些饮食方式可以对其进行干预?

本文一起来了解一下。

概 要

· 慢性肾病与菌群关系是双向的;肠源性代谢物和毒素影响慢性肾病的进展,尿毒症环境影响微生物群。

· 微生物代谢物和毒素的积累与肾功能丧失和死亡风险增加有关,但短链脂肪酸和胆汁酸等肾脏保护代谢物有助于恢复肾功能和提高慢性肾病患者的存活率。

· 改变肠道微生物组的特定饮食干预可改善慢性肾病患者的临床结果。

·低蛋白和高纤维饮食增加了产生短链脂肪酸和抗炎菌的丰度。

· 尿液微生物组的波动与感染易感性和抗生素耐药性增加有关。

01

慢性肾病是什么

肾脏的存在好处多多。肾可以帮助调控血液稳态,维持电解质平衡,调控全身水平衡,甚至可以产生激素。

慢性肾病是一个泛指,包含多种肾功能轻微下降的症状,且肾功能下降和微结构改变持续时间超过3个月,而小于3个月的肾功能恶化则是急性肾损伤。

慢性肾病的病理生理学

慢性肾病包括一系列与肾功能异常肾小球滤过率(GFR)逐渐下降相关的病理生理过程。

注:单位时间内两肾生成滤液的量称为肾小球滤过率,正常成人为100-125ml/min/1.73㎡。

但是呢,由于GFR的测量麻烦、经济与时间成本较高,临床实践中相对较少使用。于是就出现了eGFR(Estimated Glomerular filtering Rate,即估算的肾小球滤过率),临床上一般用这个指标来衡量肾脏的工作情况。可以对慢性肾病患者的疾病严重程度进行分级,分级越高,滤过率越低,病情越严重。

慢性肾病的潜在病因年龄、合并症、急性肾损伤反复发生和蛋白尿水平而异。

无论潜在的病因如何,剩余肾单位的过度过滤和肥大、肾小管间质纤维化、肾素-血管紧张素-醛固酮系统的激活以及内皮屏障的破坏都很常见,并导致肾排泄功效eGFR下降

从一个等级到下一个等级的转变通常伴随着肾脏内分泌功能的丧失。特别是,患有心血管病的慢性肾病患者表现出肾功能恶化和严重炎症

肾小管间质间隙中免疫细胞的浸润和免疫衍生成分的积累促进慢性肾病的进展。

慢性肾病治疗的一个关键目标防止患者进展到疾病的下一阶段。

02

慢性肾病中的肠道菌群失调

最近的研究表明,肠道微生物群失调在慢性肾病的病理生理学中起着关键作用,并导致严重的慢性肾病。

慢性肾病中的菌群变化

双歧杆菌和乳酸杆菌慢性肾病进展和长期生存率呈负相关

一项对223名终末期肾病患者的研究表明,与对照组相比,慢性肾病患者的次级胆汁酸和尿毒症毒素水平升高与Eggerthella lenta、Fusobacterium nucleatumAlistipes shahii正相关。在这项研究中,作者表明,Faecalibacterium prausnitzii(普拉梭菌)、Roseburia、Prevotella(产短链脂肪酸菌)的存在与疾病进展和尿毒症毒素积累呈负相关。

另一项对92例慢性肾病患者的研究报告称:

慢性肾病队列中的Paraprevotella,Pseudobutyrivibrio(假丁酸弧菌属),Collinsella数量增加;这一发现使作者提出,这个特征可以用来区分慢性肾病患者(甚至是处于疾病早期的患者)和健康人。

肠道菌群失调引发慢性肾病的两种机制

其一:影响肠道屏障

微生物群组成的变化增强了肠道氨的产生,从而提高了肠腔的生理 pH 值,导致粘膜刺激破坏了结肠上皮屏障。这导致肠道通透性增加,通常称为“肠漏”。

因此,内毒素和细菌产物易位进入循环并诱导局部炎症,由免疫细胞激活和促炎细胞因子和趋化因子的释放引起,以及慢性全身炎症,加剧肾功能的恶化。

其二:影响血压变化

肠道菌群失调可能促进慢性肾病进展的另一个机制是通过肠道生态失调在内皮功能障碍血管收缩反应和随后的高血压发展中的作用。

肠道中乳酸杆菌的较丰度与高血压和肾脏疾病的发生有关。与正常饮食的小鼠相比,高盐饮食的小鼠具有异常的微生物群;这些变化与T淋巴细胞活化和血压升高有关。

肠道微生物群的变化可能是慢性肾病通过一系列免疫反应改变、血压改变、代谢变化和长期炎症进展的起点。

上述是菌群失调影响慢性肾病,反过来,慢性肾病也影响菌群失调。

肠道菌群 ⇋ 慢性肾病

菌群失调与慢性肾病的发病机制之间存在双向关系。

吃进去的营养物质被分解代谢最终产物中的,通过肝脏代谢转化为尿素,并释放到循环中。尿素主要通过肾脏排出部分通过结肠排出

肾功能的恶化将主要排泄部位从肾脏转移到结肠结肠中尿素的持续存在会触发产脲酶菌的增殖,导致肠道生态失调。

肠道微生物组与慢性肾脏病之间的关系是双向的

Al Khodor D, et al., Frontiers in Medicine,2022

 在一个方向上,肠道菌群影响肾脏:

(A)健康的肠道

(B)肠道微生物失调和破坏粘膜层

(C)释放血液中炎性因子和炎症级联的开始,尿毒症毒素积累

(D)估计的肾小球滤过率下降(eGFR),白蛋白肌酐比值(ACR)升高,肾脏内分泌功能丧失

 在另一个方向,慢性肾病驱动肠道内的生态失调(虚线箭头所示),并引发炎症级联

03

慢性肾病中的微生物代谢物

一般来说,与慢性肾病相关的微生物代谢物分为两类;有害和肾脏保护代谢产物。

一方面,有害代谢物的水平增加,包括三甲胺 N-氧化物 (TAMO)、硫酸吲哚酚和对甲酚硫酸盐与肾纤维化、内皮功能障碍、估计肾小球滤过率 (eGFR) 下降、心血管并发症以及慢性肾病死亡率和发病率增加有关。此外,5-甲氧基色氨酸和硫酸吲哚酚的血清水平与慢性肾病进展呈正相关

另一方面,包括短链脂肪酸在内的肾脏保护代谢物通过抑制上皮屏障的破坏和调节抗炎反应来预防慢性肾病的进展。来自肠道菌群的吲哚丙酸水平与慢性肾病患者的对甲酚硫酸酯和吲哚硫酸酯浓度负相关

菌群代谢产物和慢性肾病的关系

Al Khodor D, et al., Frontiers in Medicine,2022

一些人类和动物研究已经证明了TAMO对肾脏的有害影响,表现为肾间质纤维化、eGFR下降、内皮功能障碍和心血管疾病风险增加

我们知道,肾脏的功能就是代谢身体废物,它的功能类似一个“清洁工”,肾脏生病也就是清洁工罢工,那么代谢废物就清除不出去了,于是在血浆中累积

慢性肾病患者死亡率和发病率的增加归因于毒素的积累硫酸吲哚酚硫酸对甲酚。这些毒素与血浆蛋白具有很高的亲和力,从而减轻了它们通过透析膜的清除。

TAMO、硫酸吲哚氧基和硫酸对甲酚分别参与SMAD信号传导、色氨酸代谢和酪氨酸途径。

广泛的尿毒症毒素和其他微生物代谢物积聚在慢性肾病患者的生物样本中,包括血浆、粪便和尿液等常见生物样本中的毒素和其他微生物代谢物,也包括呼出气中的挥发性代谢物和粪便培养物中收集的气体。例如,慢性肾病患者体内会积聚气体代谢物,包括异戊二烯、醛、二甲基二硫、二甲基三硫和硫酯。

04

慢性肾病中的饮食干预

慢性肾病患者存在微生物失调和肠道代谢物积累。

益生菌

对慢性肾病患者进行的随机对照临床试验表明,益生元和益生菌治疗后肠道微生物群组成的变化改善了疾病结果,并降低了尿毒症毒素水平。

双歧杆菌和乳酸杆菌含量高的患者血清中尿毒症毒素水平较,炎症环境减轻,肾功能改善

益生元

益生元是不易消化的膳食成分,如膳食纤维和耐消化淀粉。它们存在于谷物、水果、牛奶、蜂蜜和蔬菜中,或者可以作为膳食补充剂。益生元发酵通过增加双歧杆菌和乳酸杆菌的丰度降低类杆菌、梭状芽孢杆菌和肠杆菌的水平,有益地改善肠道细菌。

不利肾脏的食物:

摄入富含胆碱和 L-claritin的食物(TMAO的前体),如蛋黄、内脏、肉类和牛奶,与尿毒症毒素大量积累和肾小球滤过率的下降相关。

低蛋白饮食减少炎症菌

一项前瞻性交叉临床试验将60例慢性肾病患者随机分为不同的饮食干预组;与常规饮食组相比,极低蛋白饮食组的肠道放线菌丰度增加,炎性变形菌减少

膳食纤维降低慢性肾病风险

在慢性肾病患者中,膳食纤维摄入可降低循环中促炎细胞因子的水平,减缓eGFR的下降,降低尿毒症毒素的血浆水平,并将慢性肾病相关的心血管风险降至最低。

抗性淀粉降低血浆毒素

研究人员研究了补充抗性淀粉(16克/天)对慢性肾病患者的影响;他们观察到尿毒症毒素(硫酸吲哚氧基和硫酸对甲酚)、IL-6和硫代巴比妥酸反应物质的血浆水平降低

乳果糖糖浆降低血清肌酐

这些结果与另一项将32例慢性肾病患者随机分为两组的研究一致;接受乳果糖糖浆治疗8周的组,肠道微生物群中双歧杆菌和乳酸杆菌的含量更高,血清肌酐水平降低

虽然这些研究表明益生菌和益生元对慢性肾病有有益的作用,但也有其他研究表明循环肠道菌群代谢物或慢性肾病结果没有显著变化。

重要的是要指出,现有的研究是异质的;他们使用不同的膳食补充剂,有不同的干预持续时间,并对其他共病患者、肾病严重程度和潜在病因不同的患者进行管理。这种异质性使得从这些研究中得出结论非常困难。这就是说,在儿童饮食干预研究中可能会获得更好的结果,因为其他共同因素是最小的。

总之,这些研究表明,饮食干预疗法有可能调节微生物组组成及其代谢产物,从而改善慢性肾病并发症和慢性肾病进展率。然而,需要进一步设计良好的前瞻性研究来明确证明营养疗法对慢性肾病的益处。

05

尿和血液微生物群在慢性肾病中的作用

微生物组学领域的大部分注意力集中在肠道微生物组及其代谢产物上;然而,尿液微生物组正受到更多的关注。

新一代测序技术的发展使研究表明,健康个体的尿路由不同种类的微生物控制,这些微生物的分布模式影响尿路健康。

泌尿系微生物组的波动发生在泌尿系感染中,并与抗生素耐药性有关。肾移植后,尿液微生物组发生变化,这些改变被认为是导致同种异体移植功能障碍和增加感染易感性的原因。此外,慢性肾病患者尿液微生物多样性eGFR值相关。

健康个体的循环微生物群包含多种细菌类群,其中以变形菌门为主。血液中循环的肠源性内毒素可改变血液微生物组。

一项研究调查了399名参与者的血液代谢组与肠道微生物群α多样性之间的相关性,结果表明,对甲酚和TAMO等肠道菌群代谢物反映了肠道细菌的香农多样性,可能是反映肠道健康的生物标记物

使用16S rRNA靶序列对血液样本进行的病例对照研究表明,与对照组相比,慢性肾病患者的肠杆菌科和假单胞菌科的多样性较,这也与较低的eGFR相关。

因此,肠道微生物群通过不同途径对慢性肾病的结局产生最终影响。

06

结 语

双歧杆菌、乳酸杆菌和胆汁酸成分水平较与慢性肾病患者的不良后果有关。TAMO、硫酸吲哚氧基、硫酸对甲酚和其他有害微生物代谢产物在慢性肾病患者体内积累,这些代谢产物的水平与疾病进展相关。

肠道、泌尿道和血液微生物群以及相关代谢物之间的复杂相互作用可能协调慢性肾病发病机制中的亚临床变化,并促进疾病的发生

通过饮食干预调节肠道微生物群可以改善慢性肾病患者的临床结果。

随着肠道微生物群的深入研究,可为慢性肾病的病因、代谢途径和潜在治疗提供线索。

未来可在以下方面深入开展研究:

  • 开展基于组学的研究,如宏基因组学和转录组学,以确定与慢性肾病相关的肠道微生物群、代谢途径和微生物基因。
  • 在不同疾病阶段,特别是在疾病早期,筛选肠道微生物群。
  • 在早期阶段对慢性肾病患者进行饮食干预研究。
  • 慢性肾病患者尿液和血液微生物组学研究的评估。

主要参考文献:

Al Khodor D, Wehedy E, Shatat I F. The human microbiome in chronic kidney disease: a double-edged sword[J]. Frontiers in Medicine, 2986.

Mertowska P, Mertowski S, Wojnicka J, et al. A Link between Chronic Kidney Disease and Gut Microbiota in Immunological and Nutritional Aspects. Nutrients. 2021;13(10):3637. Published 2021 Oct 17. doi:10.3390/nu13103637

Feng Z, Wang T, Dong S, et al. Association between gut dysbiosis and chronic kidney disease: a narrative review of the literature. J Int Med Res. 2021;49(10):3000605211053276.

Giordano L, Mihaila SM, Eslami Amirabadi H, Masereeuw R. Microphysiological Systems to Recapitulate the Gut-Kidney Axis. Trends Biotechnol. 2021 Aug;39(8):811-823. doi: 10.1016/j.tibtech.2020.12.001. Epub 2021 Jan 6. PMID: 33419585.

通知

谷禾健康

10.29-11.1谷禾管理后台数据库升级,涉及到数据迁移和测试,期间可能会在后台显示信息缺失,数据并无问题仅因数据库迁移可能导致显示不正常,预计11.2日会完成升级工作。

特此通知

杭州谷禾信息技术有限公司

肠道菌群与睡眠:双向调节

谷禾健康

人一生中平均有三分之一的时间在睡觉。睡眠对于我们是必不可少的存在,它能够促进我们的幸福感。

然而目前,睡眠障碍已经成为了一种流行病。尤其是在新冠肺炎流行之后,进一步加剧了睡眠问题。

随着睡眠障碍的患病率越来越高,人们开始深入研究——是什么因素决定了睡眠的质量

众所周知,各种环境因素和其他因素(如心理压力和饮食)的共同作用会影响睡眠质量和睡眠持续时间(下图)。

图1 各种因素的相互作用影响睡眠质量和持续时间

Sen P, et al.,Trends Mol Med. 2021

各种因素对睡眠质量和持续时间的相互作用影响。已知各种不同的因素会影响睡眠。其中包括饮食、压力、昼夜节律调整以及整个生命周期的各个阶段(上图,蓝色背景)。最近的研究表明,这些因素与肠道微生物群相互作用,影响睡眠

反过来,睡眠质量和持续时间也影响各种因素。睡眠质量差或睡眠不足可导致免疫、代谢功能障碍、血压升高,并可发展为肠易激综合征、各种神经退行性疾病和精神障碍、睡眠呼吸暂停和发作性睡病(下窗格,粉红色背景)。睡眠不足可能通过影响肠道菌群组成而导致这些疾病的发展

本文从微生物群的角度探讨各种因素如何与肠道微生物群相互作用影响睡眠。包括睡眠与微生物群具有相互作用的可能机制。
此外,还提出了常见的伴随睡眠障碍的疾病以及针对各种睡眠障碍时微生物群对肠道和大脑进行调节改变的现有证据。

01
睡眠和微生物群组成

睡眠质量与肠道菌群组成之间存在双向关系。使用抗生素干扰肠道微生物群会导致更大的非快速眼动(NREM)睡眠碎片化,从而降低睡眠质量睡眠中断也会导致肠道微生物群组成的变化。不过,关于睡眠障碍和微生物组成之间关系的结果缺乏一致性。

此外,大多数睡眠研究只关注单一时间点的肠道微生物群。由于肠道菌群每天动态变化,睡眠和肠道菌群之间的关系可能在一天的不同时间有所不同

尽管如此,越来越多的研究表明,微生物-肠道-大脑轴与睡眠生理和行为有关。

表1 探索肠道微生物如何影响睡眠的各种研究

Sen P, et al.,Trends Mol Med. 2021

睡眠和微生物群组成:交流机制

肠道微生物群通过微生物群-肠道-大脑轴与大脑沟通的各种可能机制。

图2 影响睡眠的微生物群-肠道-大脑轴交流模式

2型糖尿病如何做到可防可控?肠道菌群发挥重要作用

谷禾健康

2型糖尿病是一种血糖水平升高(高血糖)的慢性代谢疾病,主要由胰岛素抵抗和胰岛素分泌不足引起。2型糖尿病全球患病率在不断上升。

截止到2020年,根据美国糖尿病学会评估标准,糖尿病患病率已达到12.8%。其实在我国成年人中,已经有将近一半的人存在血糖异常,未来极有可能发展为2型糖尿病。如果不加干预治疗,会引发许多不良后果。

很多研究表明,肠道菌群在宿主的代谢和疾病状态中起着重要的作用。特别是2型糖尿病,其病因复杂,包括肥胖、慢性低度炎症,受肠道微生物群和微生物代谢产物的调节。

本文将从肠道菌群的角度了解其与2型糖尿病的关系;肠道菌群及其代谢物对葡萄糖代谢、免疫系统的影响;
从影响肠道菌群变化的因素来了解各种干预措施,包括药物,饮食,益生菌/益生元,粪菌移植,间接性禁食等方式。

01 2型糖尿病

葡萄糖主要通过食用的食物和饮料进入人体。胰腺会产生一种叫做胰岛素的激素,以帮助血液中的葡萄糖进入肌肉、脂肪和肝脏,用作能量。

  • 胰岛素如何将血液中糖分控制在正常水平?

胰岛素通过血液循环进入不同组织。组织大多数细胞表面有一种结构,叫胰岛素受体。当胰岛素流过时,会附着在胰岛素受体上,就像钥匙打开锁一样,糖可以进入细胞内,细胞获得能量维持正常运作,血液中糖分就会回落到正常水平。

  • 2型糖尿病如何形成?

2型糖尿病患者身上,细胞对胰岛素没有反应,这种情况就叫胰岛素抵抗。胰岛素没有了“钥匙”的作用,不能有效开启细胞上的“锁”,或者“锁”的数量也减少了,由此,糖分就不能进入细胞有效利用,被挡在了细胞外面,只好在血液中积累,血糖就升高了。

刚开始的时候,胰腺会觉得自己使不上力,于是不甘心开始拼命工作,产生更多的胰岛素来克服这种抵抗。

随着时间的推移,胰腺开始累了,力不从心,不能产生更多的胰岛素,这时候就是2型糖尿病开始了。

02 2型糖尿病患者的微生物群

肠道微生物群可以直接或间接地影响人类健康,肠道微生物群失调可能会增加促炎疾病的患病率,如肥胖、炎症性肠病、2 型糖尿病、关节炎和癌症。

2型糖尿病人群中个体微生物群的差异

Cunningham A L et al., Gut Pathog, 2021

在2型糖尿病患者普遍具有相对高丰度的特定属:Blautia、Coprococcus、Sporobacter、Abiotrophia、Peptostreptococcus、Parasutterella、Collinsella

2型糖尿病患者中,产生丁酸菌特别缺乏,特别是梭菌目,包括:

Ruminococcus、Subdoligranulum,Eubacterium rectale、Faecali prausnitzii、Roseburia intestinalis 、

Roseburia inulinivorans

2型糖尿病患者中,其他明显较少的菌属有:

拟杆菌属、普雷沃氏菌属双歧杆菌属

  • 双歧杆菌减少

什么是军团菌肺炎

谷禾健康

曾经,央视网也有过类似的报道 ↓↓↓

军团菌到底是什么?

军团病为什么会这么严重?

夏季吹空调怎样才能避免?

今天我们就详细了解一下

——“军团病”

军团病

是一种由军团菌引起的严重肺炎。大多数病例都是由嗜肺军团菌引起的,但其他种类的军团菌也能引起这种疾病。它之所以被命名为军团病,是因为1976年,在宾夕法尼亚州费城参加美国退伍军人大会的人群中爆发肺炎后,首次发现了这种疾病。

军团菌(Legionella)

军团菌是一种小型,水性的,未被包裹的芽孢杆菌,革兰氏阴性菌,过氧化氢酶呈阳性,专性需氧菌。该菌通过雾化水颗粒传播,不会在干燥的表面上存活。

军团菌科有超过42种,其中嗜肺军团菌L. pneumophila 是最常见的,已鉴定出嗜肺军团菌的15个血清群,其中血清组1、4和6被确定为人类疾病的病因。血清组1被认为是造成80%报告病例的原因。

军团菌有可能从哪里感染?

军团菌广泛存在于自然水系统中,例如河流和池塘。然而,人们从这些来源感染疾病的情况很少。

最有可能发生感染的情况,包括淋浴器、水龙头、浴缸、装饰喷泉、游泳池或通过大型建筑(如酒店、办公楼、医院、游轮)通风系统的水滴

还有当喝水时咳嗽或意外呛到,这时候如果吸入的水含有军团菌,那么也有可能发展为军团病或庞蒂亚克热。

注:庞蒂亚克热是一种比军团病更温和的感染,类似流感。症状主要是发烧和肌肉酸痛。症状可在接触细菌后数小时至 3 天内开始出现,通常持续不到一周。庞蒂亚克热通常会自行痊愈,但军团病需要治疗。

感染军团菌会有什么症状?

大多数接触军团菌的人不会患上军团病。生病的人通常在接触后2~10天内出现症状,但也可能需要更长时间(20天)。最初的症状可能包括头痛、寒战、肌肉疼痛和温度可达40℃或更高的发烧

其他症状通常在最初症状后1~2天出现,可能包括咳嗽、气短、胸痛、关节疼痛、食欲不振、腹泻、恶心和呕吐,甚至意识混乱、协调性丧失。军团病主要影响肺部,但有时也会导致身体其他部位的感染,如心脏或身体伤口。

军团菌的致病机制

生命早期营养和肠道菌群对幼儿大脑和行为发育的影响

谷禾健康

围产期营养是健康生长和长期发育轨迹的早期决定因素。关键发育时期的营养不良可以显著持续地改变许多身体系统的发育过程,包括神经系统。

营养不良 是指热量、大量营养素或微量营养素的缺乏、过量或差异比例的改变。

研究表明,肠道微生物组可以调节饮食对宿主生理的影响,且调节神经系统的发育和功能

本文围绕营养不良、肠道微生物群和神经发育三者之间的关系,讨论了围产期营养不良改变孩子大脑发育的证据,并研究了母体和新生儿微生物群作为一个潜在的促成因素,介导营养不良和大脑发育之间的关系。

01 围产期营养不良和神经发育

常量营养素

生命早期蛋白摄入:与运动,智商,抑郁等都有关

营养不良的幼儿在社会行为上有缺陷。尤其是出生后早期蛋白质摄入与早产儿的运动和认知评分以及总脑容量正相关,与髓鞘形成相关缺陷、脑萎缩和心室扩张、皮质树突发育不良以及枕大池扩大和室周白质异常呈负相关

出生后第一年低蛋白摄入的青少年表现出认知功能下降,包括儿童时期的智商和注意力下降,青春期抑郁症增加

生命早期脂肪摄入:影响大脑发育,甚至持续到成年

其他常量营养素也同样至关重要:在早产儿中,出生后早期脂肪摄入更大的小脑、基底神经节、丘脑和全脑有关,此外还有内囊、辐射状晕、丘脑放射、后纵束和皮质脊髓束的分数各向异性增加。重要的是,大脑发育与后来的精神运动功能有关。

一些神经缺陷可能会持续到成年:在荷兰饥荒出生队列的118名成员中,暴露于产前营养不良与成年后期白质灌注减少,男性扣带皮层血流量减少,与男性衰老相关的大脑特征相关。

来自巴巴多斯的成年人在出生后第一年受到蛋白质限制,有持续的注意力缺陷执行功能下降,包括认知灵活性、工作记忆和视觉空间整合。

微量营养素

出生后早期缺乏微量营养素,如维生素B12、叶酸和维生素K,也与脑萎缩和胼胝体变薄、精神疾病颅内出血风险增加有关。

营养过剩

母亲营养过剩(怀孕前和/或怀孕期间的高BMI)与婴儿在认知和语言发展领域得分下降视觉运动技能受损社交和学习能力下降(尤其是男孩)、胎儿丘脑和皮质连接性改变有关。

实际上,营养需求以及这些需求得不到满足的后果可能比以前的模型所显示的更加复杂和相互依存,可能构成一个连续体,而不是营养不足和营养过剩的二元对立现象

为了进一步了解营养不良作为一个连续体,研究产前营养不良的特定亚型破坏大脑和行为发育的基本机制至关重要。

02 围产期营养不良和肠道微生物群

肠道微生物群是饮食对宿主生理影响的关键决定因素,具有调节大脑发育和行为的能力。

饮食和营养的变化,改变了肠道微生物群的结构和功能,尤其是在发育的关键时期。

营养不良——α多样性下降

孟加拉国2岁以下儿童出生后严重急性营养不良与微生物α多样性(物种丰富度和均匀度)下降相关,表明菌群不成熟的情况即使在饮食干预后也持续存在。在一个类似的队列中,α多样性降低的原因是发育迟缓和非发育迟缓儿童之间噬菌体(细菌病毒)的差异

营养不良不同亚型,α多样性下降程度不同:

在塞内加尔和尼日尔的幼儿中,出生后营养不良亚型之间的微生物多样性差异显著

  • 患有夸希奥科病的儿童多样性严重减少且致病菌增加 (夸希奥科病是指一种以水肿为特征的蛋白质缺乏的恶性营养不良病)
  • 患有消瘦症的儿童多样性中度减少 (消瘦症是指一种以体重减轻和脱水为特征的热量缺乏形式)

不同亚型之间的菌群构成差异:

  • 夸希奥科病的变形杆菌和梭杆菌增加
  • 消瘦症的拟杆菌减少

出生后严重急性营养不良儿童体内的微生物群减少,代谢和营养吸收相关的功能途径减少,毒力相关基因增加。还显示肠道氧化还原电位增加,这可能是微生物群落组成改变的功能结果。

营养不良——α多样性升高

解构微生物群中分类群与分类群与环境之间的相互作用

谷禾健康

生态学的一个长期目标是捕获多种物种相互作用的多样性,生态系统中存在多种物种时产生的不可预测的影响。例如,动物具有多样的微生物群落,它们的组成是可变的,受随机过程控制,这会影响系统的整体行为。许多涉及复杂网络结构的生态研究通常集中于成对相互作用,忽略了涉及三个或更多的分类单元之间的高阶交互作用(higher-order interactions)带来的潜在影响。

高阶交互作用

高阶交互作用(higher-order interactions):高阶相互作用一直是遗传学领域中相对严格的研究对象,在遗传学领域中,它们被讨论为上位性,或基因和突变之间的非线性相互作用。尤其是高阶上位性,因为这些相互作用包含了理解和研究其他系统甚至微生物中的高阶相互作用的所有复杂性和挑战。

上位性(epistasis)是指某一基因受不同位点上别的基因抑制而不能表达的现象。现也将在群体遗传学和数量遗传学中非等位基因的遗传效应为非相加性时统称之为上位性。也就是位于不同座位上的基因间的非相加性相互作用。

与基因组不同,肠道微生物群是由单个实体或信息群(在这种情况下,是微生物群中的组成类群)之间的相互作用所定义的复杂系统。因此,科学家会预测微生物群中的生物群之间的更高阶相互作用可能是微生物群相关生物表型的基础

例如一项研究了多物种相互作用对确定群落功能(即淀粉酶表达)的贡献。在存在更高阶的交互作用时,加性无效模型(没有交互作用)在预测社区功能方面的预测能力会降低。但是,通过将行为和人口动力学效应都计入其无效模型,高阶交互确实为社区功能提供了良好的预测

最近发表的一篇关于此研究的文章,作者利用一种简单的数学方法——Hadamard-Walsh变换,研究了昆虫肠道菌群中的高阶相互作用。以此说明不同环境下肠道菌群之间的高阶相互作用是如何影响宿主表型的。希望能打破仅关注群落水平或两两互作关系的局限性,更多关注三阶、四阶以至多阶的分类群之间的互作关系。

一个由五个核心类群组成的肠道群落中。发现根据宿主特征,三向,四向和五向相互作用占所有可能病例的13-44%。然而,低阶相互作用(2对)仍然占系统中所有观察到的表型的至少一半。Sanchez-Gorostiage等人的工作研究了多物种相互作用对确定群落功能(即淀粉酶表达)的贡献。在存在更高阶的交互作用时,加性无效模型(没有交互作用)在预测社区功能方面的预测能力会降低。但是,通过将行为和人口动力学效应都计入其无效模型,高阶交互确实为社区功能提供了良好的预测。前述研究提供了可如何测量高阶相互作用的示例,并表明它们与理解微生物分类群如何影响某些表型有关。尽管多样性和主体互动的重要性很明显,但据我们所知,还没有研究试图明确区分环境环境中高阶互动的影响。

文章中对于Hadamard-Walsh变换的利用

Hadamard-Walsh沃尔什-阿达玛变换使人们能够量化潜在相互作用的物体或地块之间相互作用的显著程度。它的主要输出是沃尔什系数(Walsh coefficient),该系数传达给定交互的大小(交互有多大)和符号(正交互或负方向)。

该方法以向量的形式实现表型(本研究中指宿主感染风险)值,然后将其重新格式化为Hadamard矩阵(然后通过对角线矩阵进行缩放)。输出的是与分类群之间相互作用的强度相对应的系数的集合。

作者将沃尔什系数以二进制形式重新编码,例如: *B*DE  被编码为  01011

“*”表示不存在的分类群,在这个示例中存在BDE三个分类群,并将这三者之间的相互作用贴上“三阶相互作用”的标签,以此类推零阶即为*****或00000,五阶即为ABCD或11111。对于一个庞大的微生物群落,可以计算三阶相互作用的强度,并将它们与四阶相互作用的强度进行比较。

案例研究

作者构建了一个昆虫肠道菌群的理论环境。用于研究饮食中不同品质的营养对宿主肠道菌群中寄生虫的易感性的影响。

利用从优质饲料(食物培养基中不含甲基纤维素)到低品质饲料(用甲基纤维素取代食物培养基的10%、20%、30%、40%、50%、60%、70%、80%、90%)的不同资源水平,对不同营养环境对鳞翅目害虫抗寄生性的影响进行了实证研究。

0%的饮食相当于极低质量的营养饮食,而100%的饮食相当于由昆虫的标准食物量组成的高质量饮食。

数据集来自用于生成理论上的适应度地形(fitness landscapes,遗传学算法中的名词,指由一系列基因型组成的三维的地形图)的原始数据。

这些原始数据由5位字符串组成。这些数据集可用于研究群体遗传学的高级课题,比如高阶上位性。数据被定义为字符串(例如,01011或11001),每个字符串具有对应的“表现型”( phenotype)值。由此组成了含161个微生物群的昆虫肠道环境。如下图:

图一

图二

数据集是5个分类群(A-D)的存在和缺失(+或-)的组合。这种组合的可能性相当于四种不同昆虫环境中2的5次方=32个分类群的理论组合。

图一表示营养含量的消耗(x轴)与寄生虫含量(y轴)之间的反应关系。

结果显示与其他昆虫微生物区系组合相比,对应于00000(不含分类群) 和11111(存在各种分类群)的两个昆虫肠道最易感染寄生虫。相比之下所有其他昆虫微生物群组合(包括组合00100;11011;11101),感染的寄生虫含量显著较低。

图二说明了阶级变化与相互作用强度是相关的,比如低阶的如零一二三,它们的相互作用强度也较低,相反,高阶的较高。以及营养含量对相互作用模式的影响,比如营养含量为20%时,可以明显看见五阶分类群的相互作用强度开始上升,四阶的下降。

图三

图四

上图结果表明,高阶微生物群的相互作用限制了寄生虫在营养环境中的入侵。肠道菌群的营养状况宿主健康起着重要作用。

使用高阶建模方法能够捕捉到来自复杂生态相互作用的丰富信息,将这些方法应用于实验数据的分析,将会推动微生物群动力学研究。

相关阅读:

测序组学助力新的酶发现

Science|180种动物肠道菌群测序结果有哪些信息值得我们关注

气候变化通过影响饮食塑造微生物决定人类进化?

参考文献

Deconstructing taxa x taxa x environment interactions in the microbiota: A theoretical examination 

Senay Yitbarek, John Guittar, Sarah A. Knutie, C. Brandon Ogbunugafor

bioRxiv 647156; doi: https://doi.org/10.1101/647156

12