Tag Archive 丁酸

肠道重要菌属——颤螺菌属 (Oscillospira),它为什么如此神秘?

谷禾健康

颤螺菌属 Oscillospira

Oscillospira,颤螺菌属,是一种神秘的细菌属,从未培养过,但通过人类微生物组的 16S rRNA 基因调查不断检测到,是人类肠道菌群的谜一样的组件,广泛存在于动物和人类肠道中。大人群水平上, 其与肥胖,消瘦,和胆结石和慢性便秘等相关,并显示出与其病程中的积极或消极变化有一定的相关性。能够产生丁酸盐等短链脂肪酸(SCFAs)的菌属,由于丁酸盐是筛选“下一代益生菌”的重要参考指标,该菌也被列为下一代益生菌的候选者

颤螺菌属(Oscillospira)是梭菌群中的一个未被充分研究的厌氧细菌属,属于厚壁菌门,瘤胃球菌科

发现Oscillospira

一个世纪前,Chatton 和 Pérard在豚鼠盲肠内容物中发现了Oscillospira guilliermondii这是Oscillospira属中唯一已知的物种,这才第一次出现了有关Oscillospira 的记录。然而,由于尚未获得纯培养物,因此对其在肠道中的生态作用和生理特性知之甚少。

由于O. guilliermondii 体型大且形态独特,便于其 DNA 分离和 16S rRNA 基因扩增和测序,因此基于流式细胞术对Oscillospira进行分类,并通过 16S rRNA 系统发育分析确定为Ruminococcaceae瘤胃球菌科)的成员。

Oscillospira属的通常是杆状或椭圆形,细胞非常大(大约5-7微米的宽度,70 毫米长),在透射电子显微镜下可以看到细胞内紧密间隔的横向隔膜。一些颤螺菌属有内生孢子(2.5×4 μm),呈棒状纵向排列,具折射性,数量可变,通常含有大量多糖,遇碘呈淡红色或淡紫色。

由于在颤螺菌中观察到孢子样结构,推测这组微生物可能含有孢子相关基因。一些Oscillospira成员基因水平的分析揭示了小酸溶孢子蛋白的存在,孢子成熟蛋白A和B,六种III阶段孢子形成蛋白,以及孢子形成转录调节SpoIIID 和 SpoVT。

然而,一些没有SpoVT 和其他相关的孢子蛋白,表明孢子形成可能是Oscillibacter进化枝中的零星分布特征。有趣的是,产孢基因也存在于一些非产孢菌中,例如Oscillibacter valericigenes,它含有产孢基因但不产生孢子,而这些产孢基因可能起其他作用,如调控基因

图源:by Takahiro Kanagawa

Oscillospira 简介

Oscillospira是一种革兰氏阳性细菌,其 G + C 含量低,序列与从肉鸡盲肠和奶牛瘤胃内容物中获得的梭菌簇 IV(柯林斯命名法)内的未培养细菌克隆的序列接近。有趣的是,来自人类粪便样本的克隆序列也属于这一簇,这表明该簇中的微生物不仅广泛存在于草食动物的消化道中,而且还广泛存在于杂食动物的消化道中

从宏基因组和代谢特征的发现该生物体具有酸激酶介导的通路,从而它被推断Oscillospira是丁酸生产者,并且至少其中的一些物种可以利用葡萄糖酸盐,这是一种常见的动物源性糖,既由人类宿主产生,又由宿主通过富含动物产品的饮食摄入。

另一方面,进一步证明了颤螺菌可以发酵复杂的植物碳水化合物。特定的碳源对其生长也是必不可少的,例如颤螺菌在含有葡萄糖、乙醇和乳酸的培养基中生长良好,尤其是葡萄糖显著促进其生长

已经表明,颤螺菌难以培养且生长缓慢,这可能与较长的结肠转运时间有关。快速的结肠运输时间选择快速生长的微生物,同样,较慢的运输条件允许较慢的微生物留在管腔中并避免被洗脱,缓慢生长的颤螺菌的特性很合适

另一方面,基因组中 tRNA 基因的数量可以作为微生物世代的强预测因子。绝大多数快速生长的微生物在其基因组中都有更多的 tRNA 基因拷贝,反之亦然。先前的研究已经表明,有少于40个tRNA基因Oscillospira,和相对于其他快速增长的肠微生物如脆弱拟杆菌(72-73 tRNA基因,产生时间0.63 h)比,Oscillospira是一种生长非常缓慢的生物。

近年来,基于人体肠道菌群的多个16S rRNA扩增子测序数据表明,颤螺菌是人体肠道和粪便菌群的丰富成分,其基因序列量有时占整个肠道菌群的10%以上,同时,Oscillospira可以产生丁酸盐,表明这种生物可能在人体功能和健康的各个方面发挥重要作用。

为了深入了解Oscillospira与人体相关健康状况,广东肠道微生物组计划 (GGMP) 分析了来自中国广东省 14 个区的6000多名参与者,并记录调查了这些参与者的社会人口学和人体测量学参数、饮食、药物、疾病和生活方式的详细信息。发现Oscillospira与人类健康密切相关,因为它的丰度与微生物多样性、高密度脂蛋白和睡眠时间呈正相关

影响Oscillospira的因素

多种因素影响着颤螺菌的丰度,主要是外源性因素。从一系列文献中得知,饮食、益生菌益生元、重金属、天然活性产品、药理干预、运动和饮食以及其他因素都会影响肠道中Oscillospira的丰度。

益生菌

养殖家禽,益生菌芽孢杆菌通常与饲料混合,以达到保证个人健康和获得高品质的肉的最终目标。

研究发现枯草芽孢杆菌29784显著提高肉鸡增重,提高他们的肠道健康状况,同时增加了肠道中Oscillospira丰度。添加枯草芽孢杆菌对母鸡的饮食,这是能够提高生长性能和肠道功能,诱导Oscillospira逐渐成为在肠道中的优势种。

同样,在新生肉鸡饲养过程中,添加益生菌制剂(解淀粉芽孢杆菌加枯草芽孢杆菌)增加Oscillospira丰度和显著减少致病的大肠杆菌水平传输,并减轻感染的严重程度。

凝结芽孢杆菌添加可以减轻环磷酰胺诱导的小鼠肠损伤和显着增加有益的丰度如Oscillospira

短双歧杆菌ATCC 15700 (BB) 治疗酒精性肝病 (ALD) 后,症状得到缓解,并显着增加Oscillospira的丰度。

Leuconostoc pseudomesenteroides XG5 (XG5-EPS) 中分离出的胞外多糖显着增加了小鼠盲肠微生物群的丰富度,尤其是增加Oscillospira的相对丰度。

乳酸菌和酵母共同发酵的西藏开菲尔奶 (TKM) 对喂食含有人源菌群相关 (HFA) 的高脂肪饮食的大鼠脂肪沉积的影响,发现TKM减少腹部脂肪沉积和通过调节血清中甘油三酯(TG)水平,同时增加Oscillospira丰度。

然而,并非所有益生菌都可以直接或间接增加颤螺菌的丰度。

研究指出长期补充鼠李糖乳杆菌降低了雌性 Sprague Dawley 大鼠的体重,改善了血清细胞因子,降低了血清脂蛋白谱,而它们的肠道颤螺旋体丰度显着下调。同样,丁酸梭菌能够产生丁酸,丁酸已被证明可以限制肝脏中的脂质沉积,恢复肠道屏障功能,并改善肝脏炎症,并具有益生菌潜力。丁酸梭菌缓解了结肠炎小鼠肠道炎症并伴随Oscillospira丰度降低。

益生元

除了益生菌,益生元对肠道菌群也有重要影响。

低聚果糖(FOS)显著增加的丰度Oscillospira在小鼠肠,特别是当FOS与益生菌组合的进一步能够抑制许多有害肠道微生物

褐藻糖胶 (FUC) 和低聚半乳糖 (GOS) 改善了高脂饮食大鼠的血清血脂异常、胆盐水解酶 (BSH) 活性和胆汁酸相关代谢水平,并促进了Oscillospira guilliermondii的丰度。

人乳寡糖非常重要,具有独特多样的结构,可以通过不同的机制影响婴幼儿肠道菌群的发育和组成。使用婴儿粪便移植的人类小鼠模型来研究岩藻糖基-α1,3-GlcNAc (3FN)、岩藻糖基-α1,6-GlcNAc、乳-N-二糖 (LNB) 和半乳-N-二糖的作用。关于粪便微生物群和宿主-细菌相互作用,发现所有这些二糖都显着上调了颤螺菌的丰度。

发现豌豆纤维改善了超重个体的健康状况并增加了他们的肠道颤螺菌丰度,同时他们发现增加的Oscillospira与降低的脱氧胆酸(DCA)和粪便中的石胆酸(ISO-LCA)显著关联

马铃薯纤维是淀粉生产的副产品,富含果胶、纤维素、半纤维素和抗性淀粉等膳食纤维,可被肠道微生物群利用和代谢以产生短链脂肪酸

其中一个代表产品是 FiberBind 400,是一种市售的马铃薯纤维产品。在胃肠模型(TIM)-2结肠模型测定中,FiberBind 400的摄取增加外源性的肠内存活发酵乳杆菌PCC®,鼠李糖乳杆菌LGG®,罗伊氏乳杆菌RC-14®,副干酪乳杆菌F-19®和也被发现促进肠道的生长Oscillospira

然而,也有研究发现燕麦 β-葡聚糖 (OG)、燕麦抗性淀粉 (ORS) 和全燕麦食品 (WO) 显着改善了 II 型糖尿病大鼠的症状并降低了它们的肠道颤螺菌丰度。海洋动物来源的Cereus sinensis多糖 (CSP-1) 显着增加了小鼠胸腺、脾脏指数和总 SCFAs 的产生,并降低Oscillopira丰度,他们假设 CSP-1 可能是一种潜在的益生元。

总之,益生菌和益生元通常在家禽养殖以及特定疾病相关的动物模型中表现出促进健康的作用,其中绝大多数益生菌或益生元摄入可以直接或间接增加宿主肠道中颤螺菌的丰度,而少数人则相反,颤螺菌丰度的上调或下调似乎与特定菌株或特定益生元有关。

重金属

越来越多的流行病学证据表明,重金属可能促成和影响各种代谢疾病的进展,这些疾病的病因和进展部分是由于重金属引起的肠道微生物群紊乱。

通过对不同剂量的对肠道菌群和肠屏障在小鼠,发现随着剂量的增加,对小鼠结肠组织的损害增加CoprococcusOscillostira的相对丰度呈线性下降

铅和镉 (Cd) 暴露可以通过改变产生 SCFA 的相关微生物的丰度来影响 SCFA 的浓度,例如瘤胃球菌、拟杆菌、颤螺菌。

一项研究表明,Oscillospira产生丁酸盐和丙酸盐,增加杯状细胞和粘液的产生,保持肠上皮的完整性,减少铅的吸收,从而减少结肠组织的损伤和炎症。

4周龄C57BL / 6雌性小鼠摄取含有100ppb的砷(As)的饮用水13周显示出在一个显著下降Oscillospira丰度,但这是伴随着增加Akkermansia和双歧杆菌丰度。该结果在其他小鼠研究中一致。

此外,Oscillospira似乎对其他重金属同样敏感,例如铜和银,这些重金属可以显着影响大鼠肠道中颤螺菌的比例。然而,也有一些重金属与颤螺菌丰度呈正相关,例如汞暴露会导致小鼠肠道损伤并增加其肠道颤螺菌丰度,这一现象在另一项研究中得到进一步证实。

值得注意的是,研究表明,儿童自闭症谱系障碍 (ASD) 人群中较高浓度的铅、砷、铜、锌、汞、钙和镁,尤其是砷和汞浓度,与肠道中的颤螺菌丰度高度相关。

不同重金属对肠道中颤螺菌丰度的影响各不相同。仅颤螺菌丰度的上调或下调似乎并不能表明特定重金属对宿主健康是否具有积极或消极影响。因此,不同重金属暴露下的颤螺菌丰度模式有待进一步探索,该属也有可能作为评估重金属污染程度的指标之一。

天然产物

天然产物对肠道微生物群的影响已被更频繁地研究。其中,多酚似乎能够对宿主微生物群发挥重要作用。

从谷壳中提取的小米壳多酚(MSP)在体外具有抗动脉粥样硬化作用。以高脂饮食的 ApoE-/- 小鼠为实验对象,研究 MSPs在体内的抗动脉粥样硬化活性发现MSPs有效抑制动脉粥样硬化斑块的发展,降低相关炎症因子的水平,并显着上调紧密连接蛋白(ocludin、zona occludens-1和claudin 1),肠道菌群中Oscillospira瘤胃球菌进行显著富集。

一种富含多酚的植物提取物,可对高脂饮食 (HFD) 小鼠的体重和胰岛素抵抗产生有益影响。将高强度间歇训练 (HIIT) 和 富含多酚的植物提取物的组合应用于西方饮食诱导的肥胖大鼠模型,发现这种组合方式显着制了大鼠的体重增加并改善了血糖水平,而它们的颤螺菌丰度也显着增加

绿茶多酚(GTP),也可以提高雌性SD大鼠的肠道内Oscillospira。然而,多酚也并非都与颤螺菌呈正相关。

研究表明,青砖茶(QZT)具有显着的抗肥胖、清除自由基、抗氧化、抑制脂肪细胞增殖等保健作用。发现QZT提取物改善肠道微生物介导的在高脂肪小鼠代谢紊乱并降低的丰度Oscillospira,其显著正与代谢综合征关联。

除了多酚,其他一些活性产品也有类似的效果。

辣椒素 (CAP) 是辣椒中的一种活性成分,具有多种药理活性和对精神疾病的潜在影响。

发现 CAP 可改善脂多糖 (LPS) 诱导的抑郁样行为小鼠的抑郁和血清 5-羟色胺 (5-HT) 和肿瘤坏死因子-α (TNF-α) 水平,并显着上调小鼠的Oscillospira相对丰度。

蔓越莓渣 (CBP) 富含多酚、复合碳水化合物、纤维和营养矿物质。肉鸡饲养过程中持续增加CBP的最终显著促进了鸡肠道内的Oscillospira丰度。

蓝莓二甲花翠素-3-半乳糖苷(蓝莓M3G)也增加了在小鼠中的肠道微生物的多样性和显著增加的丰度Oscillospira和瘤胃球菌。

多糖是从葛根(PPL)衍生不仅减少了异戊酸浓度在正常小鼠,也显著增加Oscillospira丰度和最终减轻抗生素相关性腹泻(AAD)诱导的结肠病理状况和小鼠肠道菌群的生态失调。

肠道微生物群在改善认知和塑造行为方面也发挥着重要作用。发现 5% 的果胶与 5% 的纤维素混合可改善小鼠的学习和记忆力,并显着增加其肠道颤螺菌的丰度。

同样,肠道微生物群在食物过敏中起着至关重要的作用。在小麦依赖性运动诱发过敏反应(WDEIA)在肠道菌群的变化的患者的研究中,Oscillospira与ω-5醇溶蛋白-特异性免疫球蛋白E(IgE)呈正相关,而双歧杆菌与总 IgE 水平呈显著负相关。

然而,一些天然产物与颤螺菌之间存在负相关关系

苦豆子(豆科)衍生的生物碱改善抑郁样在慢性应激行为和抑郁有关的指标(CUMS)诱导的抑郁症模型小鼠和降低Oscillospira丰度。

发现用亚麻籽多糖(FSP)处理的高脂肪饮食喂养的小鼠已经显著降低他们的血清空腹血糖,总甘油三酯和总胆固醇水平和显著增加有益的比例Akkermansia和双歧杆菌比,同时降低的比例Oscillospira。

芥末粉显着改善了饮食诱导的肥胖大鼠的健康状况,并下调了它们的肠道Oscillospira丰度。

综上所述,以多酚、纤维为代表的天然产物能够显著改善特定疾病动物模型的健康状况,尤其是高脂饮食引起的肥胖等代谢性疾病,并伴随肠道颤螺菌丰度的显著上调。此外,其他天然活性产品总体上表现出对宿主健康的有益作用,但不同产品作用下的颤螺菌丰度差异很大。

药理干预

药物干预对肠道菌群有重要影响。年龄相关性黄斑变性 (AMD) 是老年人视力障碍的主要原因。AMD小鼠艾替伏辛etifoxine治疗后肠道内的Oscillospira显著降低

53羟氯喹 (HCQ) 是一种广泛使用的抗疟疾药物,推荐用于治疗 COVID-19。对小鼠进行短期高剂量 HCQ 刺激会改变其肠道微生物群的结构,尤其是Oscillospira的丰度,但不会影响其肠道完整性和免疫反应。

发现杀菌剂福美双使鸡的肠道菌群紊乱,引起脂质代谢的破坏和显著减少Oscillospira

然而,一些药物的干预可以增加颤螺菌的相对丰度。例如,三氟甲磺酸(TFMS)处理的小鼠显示增加的丰度Oscillospira

在药物干预过程中,肠道和肠道菌群是药物代谢和药效的中心部位,不同药物的代谢过程可能有不同肠道微生物的参与,而颤螺菌的丰度也可能因药物而异。

运动和饮食

饮食结构和运动模式已被证明会影响宿主健康和肠道微生物组成。

发现高强度间歇训练 (HIIT) 对 Wistar 大鼠的肠道微生物多样性有显著影响,单独的 HIIT 仅对其体脂肪量有显著影响,但当 HIIT 与亚麻籽油 (LO) 结合使用时,α亚麻酸(ALA),以二十二碳六烯酸(DHA)转化率增加,同时结肠菌群的Oscillospira显著增加

值得注意的是,单独使用 HIIT 和 LO 都不会导致肠粘膜相关菌群发生显着变化,但当联合使用时,它会显着增加Oscillospira丰度。该研究的结果与之前的研究结果相似,因为颤螺菌与体重指数 (BMI) 呈负相关,与瘦度呈正相关。

其他研究也指出显著增加运动后小鼠的Oscillospira上升,伴随短链脂肪酸的水平显著上升。

两项动物实验表明,Oscillospira丰度、乳酸水平和运动强度之间存在很强的相关性

在一项基于人群的试验中发现,肥胖的人坚持一年的地中海饮食后,普雷沃氏菌减少,而Oscillospira增加。因此,Oscillospira被认为是一种可能的用于减肥和减脂的下一代益生菌候选物

在一项随机对照试验中,短期食用杏仁也增加了健康成年人的颤螺菌丰度。

高脂肪饮食被认为是不健康的饮食。高脂肪饮食会增加大鼠肠道中的颤螺菌丰度,然而,在 另一项动物试验中看到了相反的结果。发现高脂肪饮食的雌性小鼠肠道中的颤螺菌丰度显着降低,并且尚不清楚这是否是由于物种差异造成的。此外,该研究发现禁食会降低人体肠道中颤螺菌的相对丰度,这表明热量限制可能对颤螺菌具有负面调节作用

总体而言,适当的运动模式和适度的运动水平似乎增加了颤螺菌的相对丰度在人类和动物中,虽然公认的健康饮食结构也正向调节Oscillopira丰度的增加。

Oscillospira的健康特性

在肠道菌群及其相关疾病的研究中,颤螺菌经常出现在高通量测序数据中,尤其值得注意的是,在某些特定疾病中,颤螺菌的丰度波动较大。在这里,我们总结了与颤螺菌正相关或负相关的疾病。

Oscillospira呈正相关的疾病

2 型糖尿病

2 型糖尿病 (T2DM) 大鼠肠道中的颤螺菌丰度与糖尿病和炎症的发展呈正相关

神经障碍或退化

中枢神经和退行性疾病与颤螺菌之间也存在密切关联。帕金森病 (PD) 患者也有高丰度的颤螺菌,但这一结果在另一项研究中显示出相反的趋势。

测序和分析自闭症儿童的肠道菌群,发现Oscillospira显着增加

在另一项研究中CUMS诱发抑郁症小鼠,CUMS感应造成的大量增加Oscillospira治疗后该属下降

胆病

可以确定的是,Oscillospira与胆结石直接相关,这种生物可用作有症状胆结石形成的生物标志物。胆结石患者有较高的总粪便胆汁酸(BAS)的浓度,微生物多样性降低,伴有的Oscillospira丰度增加, 进一步分析发现与次级 BA 呈正相关,与初级 BA 呈负相关。

便秘

肠道菌群失调被认为是便秘症状的原因之一。发现Oscillospira可能是便秘的生物指标。一个可能的原因是颤螺菌生长缓慢,并参与结肠运输。在广东6000多人队列和 1126 名成年欧洲人的研究中,Oscillospira与胆结石有关,慢运输是已知的危险因素。

此外,埃希氏菌属和克雷伯氏菌属被认为是快速生长的细菌,它们占据空间并消耗营养。从另一个角度来看,Oscillospira被推断能够产生丁酸盐,一种短链脂肪酸。动物研究表明,短链脂肪酸抑制平滑肌收缩性和由此产生的结肠中的液体转运,从而导致便秘的发展。因此,颤螺可能起到加重便秘的作用。然而,这一假设需要通过代谢组学研究进一步验证,因为 SCFA 在结肠转运中的作用存在争议。

因此,颤螺菌与便秘呈正相关,特别是在慢性便秘的女性人群中,这种相关性非常强

体重

最近的几项研究发现,Oscillospira与儿童和成人的瘦身或较低体重指数(BMI)相关,包括最近的两项双胞胎研究。

最值得注意的是,其中一项研究表明,Oscillospira菌属的成员具有高度遗传性,在瘦人中富集,并且与促进瘦肉型细菌物种Christensenella minuta高度正相关

肠道微生物群的组成由长期饮食习惯决定,但短期营养干预会迅速影响肠道微生物群

在一项研究中,志愿者(21-33岁,体重指数19-32)被转换为植物性饮食(平均纤维含量比基线高出近三倍,脂肪和蛋白质含量比基线低约30%)或动物性饮食。随着转向以动物为基础的饮食Oscillospira相对丰度大大增加,而在以植物为基础的饮食中,Oscillospira的相对丰度减少(更温和)。因此,Oscillospira物种可能具有双抗性

此外,这项研究表明,Oscillospira不太可能是复杂的纤维降解物,而是依赖于其他物种分泌的发酵产物,例如在转向动物饮食期间也增加的拟杆菌成员,或者依赖于从宿主粘蛋白释放的糖。

在该研究中,Oscillospira是鸟类、鱼类和哺乳动物(小鼠)禁食期间盲肠中唯一增加的属,所以推测Oscillospira也能够降解宿主聚糖(如岩藻糖、唾液酸和葡萄糖醛酸)。这可以部分解释为什么颤螺菌与瘦身有关,因为宿主不得不花费代谢能量来再生降解的糖蛋白,这些糖蛋白包括如肠粘蛋白。

肠炎

炎症性肠病中的颤螺菌大量减少。对炎症性肠病(主要影响肠道、引起疼痛、腹泻和其他表现的免疫失调疾病)患者的五项微生物群研究的荟萃分析表明,克罗恩病患者中的颤螺菌显著减少

鉴于没有在培养基中培养出颤螺菌分离物(尽管最近可能使用一种新的培养方法获得了一个分离物),并且没有可用的参考基因组,因此很容易理解为什么它仍然是肠道微生物群研究中的一个难题。

如上所述,Oscillospira可能利用哺乳动物衍生的聚糖,来源于宿主或富含动物糖蛋白的饮食。根据Oscillospira分泌的代谢物,基于其与炎症性疾病和BMI的负相关性,我们推测,与其他表现出类似趋势的属(如RoseburiaFaecalibacterium)类似。

Oscillospira呈负相关的疾病

目前,多项研究表明炎症与颤螺菌密切相关,且大多呈负相关

肠炎和肠病

Oscillospira丰度与溃疡性结肠炎(UC)患者的疾病严重程度呈负相关

在患有炎症性肠病 (IBD) 的儿童的肠道中发现了较低丰度的颤螺菌。显著低丰度Oscillospira也在克罗恩病(CD)患者和儿童非酒精性脂肪性肝病(NALD)患者的肠道中发现。

衰老

衰老是一种以炎症介质循环水平升高为特征的低度慢性炎症。老年人的许多炎症标志物和介质的循环浓度高于青年人。

越来越多的文献表明,与年龄相关的肠道微生物群失调会导致老年人的整体炎症状态。其中,Oscillospira促炎性单核细胞趋化蛋白 1 (MCP-1) 呈强负相关

肥胖

发现超重儿童肠道中颤螺菌的丰度显着减少。同样,发现肥胖相关糖尿病患者肠道中的Oscillopira丰度显著降低,而患有局部和全身炎症的肥胖患者的O.guillermondii显着降低

脆性 X 综合征 (FXS)

是一种神经发育障碍,被认为是遗传性智力障碍的最常见原因,也是自闭症的主要诱发因素之一。发现在 FXS 小鼠模型的肠道中,Oscillospira丰度显着下调

抑郁症

颤螺菌与几个抑郁症相关指标之间的强相关性先前也在另一项试验中得到证实。这种关系似乎得到了基于人群的实验数据的进一步支持,发现,社交能力(参与者的外向性,社交能力,沟通能力,综合衡量)呈高度正相关Akkermansia,乳酸和Oscillospira,其中,Oscillospira在社会性得分较高的个体中更为丰富。

肝病

临床上,Oscillospira丰度也与肝脏脂肪呈负相关;Oscillospira丰度在非酒精性脂肪肝病(NAFLD)和非酒精性脂肪性肝炎(NASH)的患者中减少。目前,减少的颤螺菌伴随着增加的 2-丁酮已被确定为 NAFLD 发病的肠道微生物群特征。

肺癌

肺癌发病伴随着在Oscillospira丰度显著下降,在两者之间存在负相关

粪便硬度

一项关于欧洲成年人肠道微生物群和粪便软/硬的研究表明,颤螺菌的丰度与较硬的粪便呈正相关,与稀便呈负相关。

Oscillospira 的潜在应用

Oscillospira目前纯培养物没有获得,因此,实际的生物学功能和特定的作用与人体健康机理还没有完全确定。

目前对颤螺菌的描述主要体现在其在不同环境中的丰度变化。通过多项研究总结发现颤螺菌与肥胖和肥胖相关的慢性炎症和代谢疾病高度相关,并且在这类疾病中,颤螺菌的丰度显着降低

此外,一些研究已经证实,Oscillospira与消瘦强相关,并显示出较低的体重指数高度的遗传性。大量证据表明,Oscillospira丰度在与人类肥胖相关的代谢活动中起重要作用。颤螺菌可能是具有减肥、降脂、缓解代谢综合征等作用的下一代益生菌候选物,具有巨大的健康应用潜力。

此外,Oscillospira与中枢神经系统疾病和退行性疾病之间存在关联,但由于证据稀缺且因果关系尚未得到证实,还需要更多的研究来揭示其潜在机制。

外部干预措施,如益生菌,益生元,多酚类物质,饮食和运动,可以显著影响Oscillospira在肠道的丰度,有助于治疗特定肠道菌群介导的如肥胖和肥胖相关的糖尿病。未来,以颤螺菌为核心的微生态制剂可能为食用或药用的食品、保健品和生物制药带来新的选择。

未来,还需要更多的临床前和临床研究来证实颤螺菌在不同疾病中的疗效,那时如果能够攻克这种生物的纯培养技术,将大大加快其开发和应用进程。

主要参考文献:

Konikoff T, Gophna U. Oscillospira: a Central, Enigmatic Component of the Human Gut Microbiota. Trends Microbiol. 2016 Jul;24(7):523-524. doi: 10.1016/j.tim.2016.02.015. Epub 2016 Mar 17. PMID: 26996766.

Feng W, Liu J, Ao H, Yue S, Peng C. Targeting gut microbiota for precision medicine: Focusing on the efficacy and toxicity of drugs. Theranostics. 2020;10(24):11278-11301. Published 2020 Sep 14. doi:10.7150/thno.47289

如何通过喂养菌群产生丁酸调节人体健康

谷禾健康

我们知道肠道菌群代谢产生短链脂肪酸,丁酸是短链脂肪酸之一,它支持消化系统健康和疾病预防,地位不容小觑

丁酸作为一种有效的调节因子,是宿主-微生物串扰的关键介体。本文整理了丁酸盐的特性,探讨其健康益处及改善健康的潜力

01
丁酸盐

肠道菌群消化膳食纤维,并将它们转化为多种有机化合物,这些化合物对人体健康有益,包括氨基酸、短链脂肪酸等。内源性丁酸主要是肠道内产丁酸细菌利用糖类发酵产生一类短链脂肪酸

丁酸在体内可以通过脂肪酸氧化为机体供应能量,是肠道上皮细胞的主要供能物质。丁酸与机体健康密切相关,对调节肠道健康、抑制炎症及癌症等病症意义重大。在养殖业中常添加丁酸盐保护动物健康生长,如预防断奶仔猪腹泻、调节鸡肠道菌群并增强其免疫力等。

02
健康益处

1、 为肠道细胞提供燃料

丁酸盐是结肠细胞的主要能量来源,结肠细胞是构成肠道内壁的细胞。

与身体中使用糖(葡萄糖)作为主要能量来源的大多数其他细胞不同,肠道内壁细胞(结肠细胞)主要使用丁酸盐。如果没有丁酸盐,这些细胞就无法正确执行其功能

厚壁菌属的成员以产生丁酸盐而闻名,像Roseburia,Faecalibacterium prausnitzii直肠真杆菌 E.rectale 等。

这种关系是相互的。丁酸盐为结肠细胞提供燃料,作为回报,这些细胞有助于提供一个无氧环境有益的肠道微生物在其中茁壮成长。这可以控制炎症,保持肠道细胞健康,并使肠道细菌保持健康。

2、 促进肠道运动

丁酸盐还可以穿过上皮屏障通过连接胃肠道、脾脏和肝脏的肝门静脉进入循环肝脏似乎是内脏产生的SCFA的主要库,它们可能通过β-氧化代谢,用于合成酮体或转化为AcCoA。

最近的研究发现,外周血短链脂肪酸水平与膳食中溴的摄入量相关,这表明丁酸盐是通过循环运输的,其他器官可能会受到丁酸盐浓度变化的影响。

短链脂肪酸转运体的表达受到短链脂肪酸存在的调控,未在结肠中代谢的短链脂肪酸通过门静脉进入肝脏,作为肝细胞的能量底物,因此在体循环中只留下极少的丁酸。

实验室研究表明,丁酸盐通过作为SCFA受体的配体和激活剂,诱导肠道激素肽YY24或介导肠嗜铬细胞释放5-羟色胺促进肠道运动

★ 增强电解质吸收

丁酸盐通过上调Na+-H+交换器和诱导ATPase离子交换器基因来增强水和电解质的吸收。并且可能有益于预防某些类型的腹泻

3、 激活AMPK

丁酸盐激活AMPK (AMP-activated protein kinase, AMPK)。AMPK的作用是促进细胞内的平衡。它在我们的新陈代谢功能中也扮演着重要的角色。一些科学家把减肥归功于AMPK的激活。

在有和没有NAFLD的小鼠中,当AMPK被激活时,肝脏中的脂肪水平下降,也就是说,新的脂肪产生减慢,现有的脂肪被代谢。此外,在喂食高脂肪食物的小鼠中当AMPK被激活时,小鼠的体重增加和肥胖缓解,肝脏炎症的迹象也更少。

AMPK对食欲调节至关重要。它在减肥方面也有重要作用。

刺激AMPK促进自噬。这个自然过程是细胞破坏和消耗老细胞。最后,肠道内的细胞变得更强壮。由于激活AMPK,丁酸盐帮助结肠细胞维持其4 – 5天的生命周期。有了健康细胞的存在,小肠的紧密连接变得更加强健

反过来,来自器官的颗粒和毒素不会渗透导致肠漏的问题。因此,丁酸盐可以帮助修复肠道内壁。

4、 抗氧化能力

丁酸盐保护细胞免受有害物质的侵害,以维持肠道健康。

说起抗氧化,我们先了解一下自由基。它基本上是体内化学反应产生的废物。另一方面,抗氧化剂是身体抵御它们的防御措施。大量自由基会造成损害并压倒身体的修复系统。我们称之为氧化应激。氧化应激被认为是导致衰老和疾病的一个重要因素。

丁酸增加谷胱甘肽,可以中和自由基

结肠或大肠是身体产生的废物储存容器。较高的丁酸盐水平已被证明会增加谷胱甘肽的水平,谷胱甘肽是一种在人体细胞中产生的抗氧化剂,可以中和肠道中的自由基(自由基与炎症和许多疾病有关)。

5、 防止肠漏

肠道内壁需要丁酸盐来保持健康和正常运作。

肠道内壁是肠道屏障。它促进绒毛的生长,微小的手指状挤压物排列在肠道内,并增加粘蛋白的产生,粘蛋白是一种覆盖肠道内部的凝胶状物质。它选择性地让维生素和矿物质等物质离开肠道,进入血液,并到达需要它们的地方。同样,它可以阻止毒素、病原体和食物化合物进入血液。

当屏障健康时,称为紧密连接的小孔会放松,让水和营养物质通过。

一些习惯,比如频繁吃零食,会阻止这些紧密连接在两餐之间的关闭,因此细菌和不需要的物质会进入血液,于是肠漏就发生了。

肠道微生物从膳食纤维中产生的丁酸盐提供了肠道内壁细胞所需的燃料。通过这样做,它可以保持肠道内壁的完整性防止发生肠漏。

6、 抗炎、抗癌特性

丁酸盐对肠道具有抗炎和抗癌功能。

肠道内壁会保持低水平的炎症,以防与微生物群接触的粘膜表面发生任何变化。低水平的炎症受到严格控制,但如果它被破坏会导致氧化损伤,并在很长一段时间内导致癌症。

丁酸盐会阻止体内的一些促炎物质发挥作用。丁酸盐的抗炎作用可减少氧化应激并控制自由基造成的损害。

丁酸盐的抗炎特性,部分原因是其抑制转录因子核因子-κB (NF-κB)的激活,通过下调NF-κB信号通路,丁酸盐可以调节促炎细胞因子的产生。

丁酸盐对免疫功能的调节作用

前面我们知道,丁酸盐通过直接诱导上皮中的紧密连接蛋白来增强肠粘膜屏障。此外,丁酸盐诱导ILC3细胞分泌IL-22进一步增强了这种作用。通过与GPCR 43和41的相互作用,丁酸抑制中性粒细胞的促炎细胞因子分泌。丁酸通过GPCR直接作用于巨噬细胞和树突状细胞,并通过增加Foxp3 T细胞调节T细胞功能,同时抑制产生IFN-ɣ的T细胞。丁酸增加5-羟色胺的产生,也是HDAC的抑制剂。它通过这些途径调节B细胞功能,增加抗炎细胞因子IL-10,同时降低IL-17。丁酸盐通过增加B细胞的IgA和IgG抗体反应,增强特异性免疫和抑制自身免疫。

抗炎 -> 抗癌

丁酸盐也是一种组蛋白脱乙酰酶(HDAC)抑制剂。组蛋白脱乙酰酶是大多数癌症中产生的酶。因为丁酸盐是一种抑制剂,它实际上会改变基因表达,抑制细胞增殖,诱导细胞分化或凋亡。因此,它可以阻止癌细胞的发展。

03
参与调控疾病发生发展

炎症性肠病

炎症性肠病(IBD)是一种慢性肠道炎症性疾病,有两种主要亚型:克罗恩病溃疡性结肠炎

虽然IBD的确切发病机制尚不完全清楚,但IBD涉及遗传、肠道微生物群和粘膜免疫等多种影响因素之间的复杂相互作用,包括先天性和适应性免疫反应。

据报道,在这两种IBD亚型中,产生丁酸的肠道微生物减少。丁酸对肠道防御机制具有多阶段调节作用,包括通过促进肠上皮中的紧密连接蛋白保护肠粘膜屏障,支持先天性和适应性免疫反应,以及通过降低环氧合酶-2(COX-2)水平抑制氧化应激,并通过诱导过氧化氢酶,改善过氧化氢(H2O2)的解毒作用。

肠粘膜溃疡是IBD的主要表现之一,丁酸对肠上皮细胞生长和细胞死亡过程的影响已被充分证明。

根据整体稳态条件,丁酸酯已被证明对人类结肠上皮细胞具有生长刺激或凋亡特性。此外,在人和大鼠来源的结肠细胞培养物中,丁酸已被证明能减少氧化应激引起的DNA损伤

母乳通过丁酸保护宝宝的抗炎环境

据报道,母乳喂养等早期接触对IBD的发展和发病机制具有保护作用。母乳通过其代谢物丁酸诱导紧密连接蛋白和粘液产生基因的表达,从而诱导新生儿胃肠道的抗炎环境。

前面章节我们了解到,当肠道屏障完整时,炎性体具有保护作用,但一旦屏障被肠道失调破坏,炎性体的激活和免疫细胞的募集与粘膜炎症相关——这是IBD持续炎症的另一个主要病理生理机制。

在肠炎症的体外共培养模型中,丁酸已被证明可调节促炎症信号并抑制几种核苷酸结合寡聚化结构域样受体-3(NLRP3)炎症体标记物。

丁酸盐结合其他疗法

一项研究报告称,当IL-1β被其他IBD疗法(如5-ASA)抑制时,丁酸盐显著降低IL-8分泌,从而降低IL-8介导的趋化性,突出了单独丁酸盐不一致临床反应背后的机制,以及丁酸盐与IBD其他治疗方式相结合的可能性。

通过添加产丁酸菌改善屏障完整性

通过添加产丁酸菌(prausnitzii杆菌、白痢丁酸球菌和六种丁酸产生菌的混合物)来增加克罗恩病患者的微生物群中的产丁酸菌,从而改善体外上皮屏障完整性

丁酸治疗潜力

由于丁酸治疗的反应不一致,可能在某种程度上由于剂量、持续时间和配方标准化的变化,目前丁酸在IBD中的适用性最多被视为补充治疗。

丁酸盐显示出更一致有效性的一个领域是转移性结肠炎,这是一种术后表现,当结肠的一部分失去连续性时,丁酸盐消耗被认为是导致炎症的主要因素。虽然手术治疗或结肠再连接或切除转移是一种更确切的治疗方法,但在考虑医疗管理时,丁酸灌肠已被证明具有治疗价值。

癌症

丁酸盐使肠道环境保持稳定,并且是膳食纤维对某些癌症的保护作用的一部分。

肠癌,是西方世界的主要健康负担,主要归咎于饮食。膳食纤维含量低的饮食会影响肠道中的细菌。结肠细胞需要丁酸盐作为能量,如果它们没有能量,就无法工作。

低膳食纤维 -> 丁酸盐↓ -> 肠癌

丁酸盐是由肠道细菌从植物性食物中的益生元纤维中产生的。如果肠道内的细胞无法工作,与肿瘤进展相关的细胞就会茁壮成长,接着会发出炎症信号并导致肿瘤发展。因此,低膳食纤维会使丁酸盐的产生减少,是肠癌的危险因素。

结直肠癌

据报道,结直肠癌患者包括丁酸盐在内的短链脂肪酸水平较

丁酸盐对肠上皮细胞的增殖具有双面作用,一方面支持健康细胞处于稳态,但另一方面抑制癌症诱导的过度增殖。丁酸钠已被证明以p-53非依赖性途径诱导人结肠癌细胞系凋亡。丁酸盐还可以防止氧化应激和DNA损伤。

据报道,丁酸盐还通过多种途径具有癌症保护作用,包括抑制神经纤毛蛋白-1(NRP-1)、抑制丝裂原活化蛋白激酶(MAPK)信号通路、差异调节Wnt-β-连环蛋白信号通路、上调microRNA miR-203和促进细胞凋亡,和促增殖miR-92a的抑制

由于饮食模式在结直肠癌发病中的作用已得到充分证实,大多数人体试验研究了通过改变膳食纤维摄入量进行干预的方法,并报告了结直肠癌复发风险的降低

代谢相关疾病

越来越多的证据表明饮食、肠道微生物群和代谢紊乱之间存在复杂的相互作用。

★ 肥胖

对人类的研究表明,肥胖人群的肠道细菌存在差异,微生物多样性的减少胰岛素抵抗血脂异常有关。

包括丁酸盐在内的SCFA可通过激活肠细胞内的FFAR来降低食欲和体重。这促进胰高血糖素样肽1(GLP-1)和肽YY(PYY)的释放,前者促进胰岛素分泌并抑制胰高血糖素分泌,后者降低食欲减缓胃排空

SCFA还能减少所谓的“饥饿激素”——ghrelin的分泌;FFAR2存在于ghrelin分泌细胞上,包括乙酸盐和丙酸盐在内的FFAR2激动剂可减少ghrelin分泌。

也有证据表明短链脂肪酸作用于交感神经系统,交感神经节中FFAR3的激活导致能量消耗增加

然而,关于丁酸盐对食物摄入的影响,有相互矛盾的结果报道。

食物摄入量减少 -> 抗肥胖

有研究发现,丁酸盐在9天内使喂食HFD的小鼠的食物摄入量减少了22%。这与直接服用丁酸后GLP-1和PYY分泌增加有关。FFAR3基因敲除小鼠减少了丁酸刺激的GLP-1分泌,尽管丁酸减少了体重增加和食物摄入的程度与野生型小鼠相似,这表明FFAR3和GLP-1对于丁酸的抗肥胖作用不是必需的。

另一研究发现类似的结果,在HFD喂养的小鼠中,急性口服(而非静脉注射)丁酸盐在24小时内减少了21%的食物摄入量,而丁酸盐的慢性补充在9周内减少了相似量的摄入量。

在迷走神经切断术后,丁酸盐并没有改变小鼠的食物摄入量,因此作者认为丁酸盐通过肠-脑神经回路诱导饱腹感。这可能与GLP-1有关,因为GLP-1作用于迷走神经。

食物摄入量增加,体重不变 -> 抗肥胖

相反,有研究表明,在1-10周的四个测量时间点,补充丁酸盐可增加HFD喂养小鼠的食物摄入量。尽管增加了食物摄入量,但补充丁酸盐的小鼠体重并未显著增加,而对照组小鼠的平均体重增加了17克。相反,补充丁酸盐的小鼠在暴露于低温时,其能量消耗增加,产热增加,这一点可以从较高的体温中看出。

在小鼠中,丁酸增加棕色脂肪组织(UCP1)和骨骼肌(UCP2和UCP3)中解偶联蛋白、促进热量生成的线粒体蛋白的表达。在丁酸盐处理的小鼠骨骼肌中Ucp2和Ucp3基因的启动子处发现组蛋白乙酰化增加,这表明丁酸盐可能通过HDAC抑制增加解偶联蛋白表达来增加产热,从而增加能量消耗

★ 糖尿病

研究发现,糖尿病患者和糖尿病前期受试者中丁酸盐水平降低

丁酸盐通过多种途径影响糖代谢的调节

Arora T,et al., Front Endocrinol (Lausanne). 2021

膳食纤维经肠道菌群发酵产生短链脂肪酸,包括丁酸盐。丁酸盐介导的PPAR-γ的激活,诱导β-氧化和氧的消耗,从而促进厌氧条件的建立,这是几种厌氧肠道共生体生长和功能所需的条件。

丁酸在肠内分泌细胞(EEC)中游离脂肪酸受体(FFAR) FFAR2和FFAR3结合调节肠道激素释放,如胰高血糖素样肽 1 (GLP-1) 和肽 YY (PYY)。

S.C. Bridgeman et al. Pharmacological Research,2020

GLP-1 增加胰岛素的产生并减少胰腺中胰高血糖素的产生。

PYY 会增加肌肉和脂肪组织对葡萄糖的吸收。

这些激素共同作用以保持血糖水平稳定。当血糖过高时,胰岛素会告诉身体的肌肉和脂肪细胞吸收多余的葡萄糖,所以说这些激素对肥胖和糖尿病很重要。丁酸盐增加这些肠道激素的释放,表明对控制血糖水平和防止体重增加有潜在的好处。

丁酸还可作为组蛋白去乙酰酶(HDAC)抑制剂,调节EEC和肠上皮细胞的基因表达。残余丁酸被结肠细胞吸收利用后,排入门静脉循环,排入外周体循环。在体循环中,丁酸可能调节棕色脂肪组织的产热和胰腺β细胞的功能

增加丁酸水平的临床研究

一项随机临床研究中,对T2D患者补充混合膳食纤维可改善血糖参数,同时增加产生乙酸和丁酸细菌丰度,并增加粪便中乙酸和丁酸水平

在另一项研究中,将产丁酸菌E.hallii,Clostridium beijerinckii,C.butyricum)与其他肠道细菌A.muciniphila,婴儿双歧杆菌)和菊粉作为可发酵纤维混合,适度增加了T2D患者的丁酸水平,改善了口服葡萄糖耐量和糖化血红蛋白水平。

最后,添加菊粉丁酸钠胶囊45天可改善T2D个体的空腹血糖和腰臀比。

这些研究清楚地表明,膳食纤维本身或与ngp或丁酸盐联合可以改善T2D的葡萄糖控制

然而,维持患者依从性的策略和对这些补充剂的长期影响的调查仍然是值得的。此外,显然基线肠道菌群是饮食干预、益生菌注射和微生物移植成功的一个强有力的预测因素基于微生物群对个体进行T2D分层可能有助于实现更好的代谢结果。

神经系统疾病

除了在肠道中的作用外,丁酸盐还具有支持大脑健康的巨大潜力。

由结肠中的细菌产生的丁酸盐具有一系列生物学功能。这些功能还与神经保护作用有关(有益于大脑和中枢神经系统)。

丁酸盐也是一种大脑助推器,因为它对大脑和中枢神经系统有保护作用。例如,它与许多与帕金森氏症、阿尔茨海默氏症甚至中风等疾病相关的通路有关。

丁酸盐对宿主生理和脑功能影响的示意图

R.M. Stilling et al. / Neurochemistry International, 2016

由于抑郁症和其他神经精神疾病具有促炎症表型,反之亦然,丁酸盐在这些情况下也可能活跃。重要的是,丁酸盐的抗炎特性也对宿主(大脑)衰老具有根本意义,特别是考虑到许多组织(包括大脑)都会发生炎症衰老的慢性炎症状态。具体而言,丁酸盐通过减少NF-kB信号传导诱导凋亡,从而促进神经保护,在脑内巨噬细胞(小胶质细胞)中显示出抗炎作用。

因此,丁酸盐会影响大脑健康,而饮食可能是改善疾病结果的一种简单方法。

压力、焦虑、抑郁等情绪都涉及肠道微生物群。

通过饮食提高丁酸盐的产量既简单又风险低。研究发现在加速老化的SAMP8小鼠模型中,长期喂养益生元纤维可改善认知能力下降,并具有抗炎、延缓衰老的作用。

未来有一天,它甚至可能成为脑部疾病潜在治疗选择

睡眠

新证据表明,肠道微生物群是促进睡眠信号的来源。细菌代谢产物和细菌细胞壁的成分可能在肠道共生菌群和大脑中的睡眠生成机制之间提供重要联系。

丁酸是一种短链脂肪酸,由肠道细菌通过不易消化的多糖发酵产生。研究人员验证了丁酸可能作为细菌源性促睡眠信号的假设。经口灌胃给予丁酸酯前药三丁酸甘油酯,在治疗后4小时内使小鼠非快速眼动睡眠(NREMS)增加近50%

类似地,门脉内注射丁酸盐导致大鼠NREMS迅速而强劲地增加。在丁酸盐注射后6小时内,NREMS增加了70%。口服和门静脉注射丁酸盐都会导致体温显著下降。全身皮下或腹腔注射丁酸对睡眠或体温没有任何显著影响。

结果表明,丁酸盐的睡眠诱导作用是由位于肝脏和/或门静脉壁的感觉机制介导的。肝门丁酸盐敏感机制可能在肠道微生物群的睡眠调节中发挥作用。

扩展阅读:睡眠与肠道菌群

社交行为

微生物群可能会影响你的社交行为,虽然听起来可能有点夸张。

简而言之,丁酸盐很臭。

“butyrate”这个词实际上源自拉丁语butyrum,意思是黄油。你可能熟悉牛奶变质或变质黄油的气味,丁酸盐就是那个味儿。丁酸是哺乳动物最强烈的气味之一,人类可以通过嗅觉受体OR51E1检测到它的浓度约为亿分之240。

哺乳动物鼻子对丁酸酯气味敏感的一个合理原因是,丁酸酯是一种仅在厌氧条件下发生的细菌产物,如生物分解、腐败或发酵,也可能产生有害毒素。对丁酸盐高度敏感的另一种非互斥解释可能是其存在于体味中。

因此,它可以作为一种社会线索携带有关微生物群组成和活动的信息,从而间接承载宿主免疫系统特征,类似于主要组织相容性复合体(MHC)中遗传变异性的公认社会信号功能。

存在于尿液和汗液中的MHC分子的肽配体被认为是携带遗传相关性和个体性信息的社会识别信号,并且可以被嗅觉上皮或犁鼻器官中的专门嗅觉受体神经元感知

“气味相投”——可能是ta的气味在“撩”你

对包括人类在内的许多脊椎动物的研究表明,MHC基因座的变异影响社会行为,最显著的是配偶选择,但也影响社会群体的合作行为。也有人认为MHC依赖的嗅觉信号并不是携带个体和遗传变异信息的唯一线索,“嗅觉指纹”更为复杂。

化学通讯的发酵假说

一些科学家认为,它也是体味的一个组成部分。我们会使用丁酸盐等有气味的短链脂肪酸来(无意识地)相互交流。

事实上,这些微生物群是由产生挥发性脂肪酸、酯类、醇类和醛类的发酵厚壁菌门细菌主导的,这一事实促使作者提出了“化学通讯的发酵假说”,即共生细菌的变异驱动了物种、性别和个体特定气味的变化,从而促进了社会交流。

在雄性叉角羚(Antilocapra americana)的耳下气味中也发现了异戊酸和丁酸酯,用于标记其领地。此外,戊酸的潜意识气味已被证明能够引导社会偏好,例如降低人类受试者的面部受欢迎程度。

因此,丁酸盐和其他微生物发酵挥发性产物等短链脂肪酸似乎有可能不仅存在于专门的气味腺中,而且也存在于其他栖息地,如人类的腋窝,可能有助于化学交流,并传递有关微生物群组成的信息,从而也将遗传信息传递给感兴趣的接受者。

04
产丁酸的肠道菌

除食源性丁酸,动物体内丁酸主要是由盲肠和结肠的厌氧型细菌发酵产生,而由胃和小肠产生的丁酸含量极低。大肠产丁酸的菌种主要是梭菌属XIVa和IV族,以及真杆菌属和梭杆菌属。盲肠和结肠中丁酸的产生速度和数量主要取决于肠道微生物组成、日常膳食中可利用发酵成分组成等。

其中厚壁菌门的成员以其产生丁酸盐的能力而闻名。

在结肠中特别流行的产丁酸的细菌包括:

粪杆菌直肠真杆菌E.rectaleRoseburia

双歧杆菌等常见益生菌配方中的微生物与丁酸盐生产者之间的交叉喂养相互作用已被证明是可以产丁酸盐的。

在消化道中发现的已知丁酸盐生产者中,大多数似乎属于毛螺菌科瘤胃球菌科

Faecalibacterium prausnitzii (FP) 是瘤胃球菌科的一部分,值得特别一提,因为它是消化道中最丰富的微生物之一,也是主要的丁酸盐生产者之一。FP 的特征包括通过丁酸盐产生和其他复杂途径的抗微生物活性和抗炎/免疫调节活性。

关于FP菌,详见:肠道核心菌属——普拉梭菌(Faecalibacterium Prausnitzii),预防炎症的下一代益生菌

Anerostipes、Roseburia Coprococcus都是属于毛螺菌科,它们也是人类肠道中的主要丁酸盐生产者。

产生丁酸盐的细菌被认为在生命的第一年内定植于宿主,并且在成年时占总细菌群落的 20% 以上。

然而各种疾病状态都表明产生丁酸盐的肠道细菌相对缺乏。

有趣的是,现如今益生菌补充剂中常用的细菌菌株很多都不是丁酸盐生产者,因为丁酸盐生产者很多是高度厌氧的,这意味着它们在氧气存在的情况下会很快死亡,所以要补充产丁酸菌就比较具有挑战性

或许我们可以转换个思路来考虑,既然不能直接补充菌,那是不是可以补充产菌的食物呢?

所以哪些食物可以喂养产丁酸菌?

05
增加丁酸产量的食物

饮食对人体微生物组有显著影响,通过饮食干预可显著改变细菌数量并增加微生物多样性。

富含纤维的饮食对丁酸盐的产生特别有益,因为它可以滋养产生丁酸盐的细菌。

网上还有很多关于如何增加肠道丁酸盐的建议,比如多吃黄油或服用丁酸盐补充剂。然而,补充丁酸盐不一定对肠道有益,因为如果摄入丁酸盐,它会被胃吸收,也就是说它不会到达肠道为其细胞提供燃料。

记住,丁酸盐是微生物群产生的代谢物。

益生元是直接滋养微生物群的食物,包括蔬菜、水果、豆类和全谷物。它们含有膳食纤维,可被肠道细菌发酵成丁酸盐等有机化合物。通过食物增强微生物群是促进消化系统健康和丁酸盐生成的有效且安全的方法

肠道细菌以膳食纤维为食,而不是动物蛋白。因此,优化丁酸盐产量的最佳方法是通过高纤维饮食。

蛋白、脂肪、碳水化合物的饮食已被证明会破坏微生物组中丁酸盐的产生。在一项研究中,研究人员分析了短期饮食限制碳水化合物摄入量的肥胖参与者的微生物组,从而限制了他们对植物性膳食纤维的消耗。

在低碳水化合物饮食(每天 24 克)和中等碳水化合物饮食(每天 164 克)4 周后,短链脂肪酸的浓度低于高碳水化合物饮食(每天 399 克)。具体来说,当碳水化合物摄入量减少时,丁酸盐浓度会降低。同一项研究还发现,厚壁菌门细菌种类 Roseburia 和 E. Rectale 的密度与丁酸盐浓度之间存在联系,两者都随着碳水化合物摄入量的减少而降低

然而,以上所谓的“膳食纤维”并不能完全解决这个问题,为什么呢?

理解以下几点很重要:

1、即使是来自同一物种的细菌菌株,对不同底物的反应也非常不同,甚至是属于同一类碳水化合物的底物。

2、某些细菌能够消化果聚糖,有些则不能。而那些可以消化的里面又有不一样的情况,其中一些能够消化短链的果聚糖,但不能消化更长链菊糖的果聚糖。

3、以上只是细菌消化不同底物能力的一个例子。由于这种变化的存在,不能一概而论

而我们最需要的,更应该是寻找特定类型的纤维。

一项研究表明,不同类型碳水化合物的SCFA产量(单位:kJ)如下所示:

Bourassa MW, et al., Neurosci Lett. 2016

在该研究中,低聚果糖(FOS)的类型是洋葱、芦笋和香蕉等食物,而抗性淀粉(RS)则是全谷物和豆类

另一项研究表明,补充特定猕猴桃中发现的低聚果糖可在4周内使F.prausnitzii菌增加100%。这是一项重大发现,因为目前有大量研究报告,F.prausnitzii 的相对缺乏与几种主要肠道疾病有关——最显著的是炎症性肠病、溃疡性结肠炎和克罗恩病。

抗性淀粉2型和3型,哪种更好?

这项研究表明,从生马铃薯和高直链淀粉玉米淀粉以及全谷物中发现的阿拉伯木聚糖中提取的2型抗性淀粉含量高的日粮中丁酸产量显著增加

在174名健康年轻人的饮食中添加马铃薯抗性淀粉后丁酸盐产量增加。玉米、菊苣和玉米中的抗性淀粉也进行了测试,但只有当食用土豆中的抗性淀粉时,粪便中的丁酸总量才会显著增加

在该研究中,使用的是Bob’s Red Mill(品牌)未改性马铃薯淀粉。对于这种类型的抗性淀粉(RS2)是否对人类“有益”存在不同的观点,有多个来源表明RS3是一种更好的来源,因为RS2似乎可以喂养有害细菌,而RS3可以喂养有益细菌。

此外,鳄梨增加了能够产生短链脂肪酸的微生物数量,以及产生的总短链脂肪酸

果聚糖(菊粉)

许多研究表明,菊粉可以增加短链脂肪酸的产量,包括丁酸盐。这可能解释了香蕉在溃疡性结肠炎和克罗恩病患者的饮食中如此有效的原因之一。然而,链长较短的果聚糖通常比链长的果聚糖(如菊粉)更容易喂养产丁酸菌

补充菊粉虽然能够改变宿主的微生物群,但不会增加粪便丁酸水平。尽管这一结果似乎与谷物相反,但许多研究证明了补充菊粉在增加肠道短链脂肪酸生成方面的功效。

也就说,抗性淀粉和果聚糖(短链低聚果糖 和长链菊粉在肠道中发酵时会产生丁酸盐

对于抗性淀粉,似乎大多数研究都集中在 RS2 上。然而,在许多情况下,据报道 RS3 会产生更水平的丁酸盐,对人类更健康。

抗性淀粉

煮熟后冷却:土豆、红薯、米饭、意大利面、燕麦、豆类、豆类、全谷物。

原料:青香蕉、马铃薯、马铃薯淀粉、青香蕉粉。

果聚糖

洋葱、菊苣、香蕉、朝鲜蓟、芦笋、大蒜、韭菜、西兰花、开心果和各种提取物。

由于人与人之间的常驻微生物存在显著差异,并且它们消化某些底物的能力不同,因此比较明智的选择是食用包含多种抗性淀粉和果聚糖的饮食。例如以马铃薯抗性淀粉、燕麦麸皮纤维或车前草种子或短链低聚半乳糖、长链低聚果糖和谷氨酰胺的混合物的形式短期补充,增加丁酸盐水平。

丁酸是不是越多越好?

丁酸并不总是越多越好,低浓度丁酸促进细胞增殖和生长,高浓度丁酸反而抑制细胞增殖和生长,增加肠道的通透性

胃肠道不同部位对丁酸的耐受阈值也存在一定差异,胃和小肠对丁酸的耐受阈值低,结肠和盲肠耐受阈值高。

添加普通丁酸钠制剂(主要在肠道前端被吸收利用),反而造成肠道炎症菌群失调

更有意思的是,轻微炎症或者轻度溃疡部位添加丁酸盐可以促进肠道损伤的修复,在严重溃疡肠道部位添加,不利于溃疡的恢复,甚至加剧整个溃疡。

有学者发现溃疡部位的粘膜组织对丁酸的代谢降低,甚至只有正常粘膜组织的一半,主要是由于其转运载体和氧化相关的酶活降低

p.s. 进行干预之前需要了解现有肠道丁酸盐的水平状况,可以更好地进行干预治疗前后对比

Tips

如果你正在被一些肠道疾病困扰,需要注意其中几种食物的凝集素含量:土豆、燕麦、豆类、豆类和全谷物。如果你打算吃这些食物,建议先浸泡和加压烹饪,然后从很少量开始。也可以排除生食。

如果你患有自身免疫性疾病,不推荐豆类和大多数全谷物。

此外,许多患有肠道疾病和/或自身免疫性疾病的人难以食用果糖,这可能是果糖不耐受的迹象。症状包括胀气、腹胀等。

相关阅读:

肠道菌群健康检测报告——常见问题解析

主要参考文献:

Arora T, Tremaroli V. Therapeutic Potential of Butyrate for Treatment of Type 2 Diabetes. Front Endocrinol (Lausanne). 2021;12:761834. Published 2021 Oct 19. doi:10.3389/fendo.2021.761834

Siddiqui MT, Cresci GAM. The Immunomodulatory Functions of Butyrate. J Inflamm Res. 2021 Nov 18;14:6025-6041. doi: 10.2147/JIR.S300989. PMID: 34819742; PMCID: PMC8608412.

Bourassa MW, Alim I, Bultman SJ, Ratan RR. Butyrate, neuroepigenetics and the gut microbiome: Can a high fiber diet improve brain health?. Neurosci Lett. 2016;625:56-63. doi:10.1016/j.neulet.2016.02.009

Hu Liu, Ji Wang, Ting He, Sage Becker, Guolong Zhang, Defa Li, Xi Ma, Butyrate: A Double-Edged Sword for Health?, Advances in Nutrition, Volume 9, Issue 1, January 2018

Bridgeman SC, Northrop W, Melton PE, Ellison GC, Newsholme P, Mamotte CDS. Butyrate generated by gut microbiota and its therapeutic role in metabolic syndrome. Pharmacol Res. 2020 Oct;160:105174. doi: 10.1016/j.phrs.2020.105174. Epub 2020 Aug 27. PMID: 32860943.

Rivière, A., Selak, M., Lantin, D., Leroy, F., & De Vuyst, L. (2016). Bifidobacteria and Butyrate-Producing Colon Bacteria: Importance and Strategies for Their Stimulation in the Human Gut. Frontiers in microbiology, 7, 979.

LeBlanc JG, Chain F, Martín R, Bermúdez-Humarán LG, Courau S, Langella P. Beneficial effects on host energy metabolism of short-chain fatty acids and vitamins produced by commensal and probiotic bacteria. Microb Cell Fact. 2017 May 8;16(1):79. doi: 10.1186/s12934-017-0691-z. PMID: 28482838; PMCID: PMC5423028.

Stilling RM, van de Wouw M, Clarke G, Stanton C, Dinan TG, Cryan JF. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem Int. 2016 Oct;99:110-132. doi: 10.1016/j.neuint.2016.06.011. Epub 2016 Jun 23. PMID: 27346602.

Szentirmai É, Millican NS, Massie AR, Kapás L. Butyrate, a metabolite of intestinal bacteria, enhances sleep. Sci Rep. 2019 May 7;9(1):7035. doi: 10.1038/s41598-019-43502-1. PMID: 31065013; PMCID: PMC6504874.

肠道重要基石菌属——罗氏菌属(Roseburia)

谷禾健康

罗氏菌属是共生细菌的一部分,在世界各地的人群中都有代表,占健康肠道细菌总数的 2-31%(谷禾数据库)。产生短链脂肪酸,特别是丁酸,影响结肠运动,具抗炎特性。

罗氏菌属 の 基本特性

罗氏菌属(Roseburia),专性革兰氏阳性厌氧菌, 轻微弯曲,杆状,并通过多个亚末端鞭毛运动。

罗氏菌属包括5种:

  • Roseburia intestinalis、 R.hominis、 R.inulinivorans、 R.faecis、 R.cecicola

罗氏菌属代谢膳食成分,刺激其增殖和代谢活动。

罗氏菌属可以分泌各种分子,与宿主和消化道的其他细菌相互作用。

罗氏菌属可以改善肠道生物多样性,提高葡萄糖耐受性,帮助减肥,使结肠细胞恢复活力

罗氏菌属的失调(过少)可能影响多种代谢途径,并与多种疾病相关(包括肠易激综合征、肥胖、2型糖尿病、神经系统疾病、过敏、肝病等)。

Roseburia也可以作为症状性病理(如胆石形成)的生物标志物,或作为益生菌修复有益菌群。

罗氏菌属 の 定植

研究人员利用16S rRNA测序技术研究早产儿肠道菌群的多样性,并对早期肠道定植模式进行了监测。在新生儿中没有发现Roseburia,但在母乳中发现了,可能通过食用母乳获得。

Roseburia在老年人中降低,提示衰老可能导致肠道菌群的改变。 相反,与较年轻的老年人相比,百岁老人的肠道菌群中有更丰富的Roseburia

罗氏菌属 ——丁酸生产者

罗氏菌产生短链脂肪酸(乙酸,丙酸,丁酸),分解不可消化的碳水化合物。短链脂肪酸在碳水化合物和脂肪等重要营养素的代谢中发挥重要作用。

典型的Roseburia菌株特别喜欢生产高水平的丁酸盐。这些化合物通常参与能量产生,可以保护肠道免受病原体和疾病的侵害。

目前,发现只有Roseburia inulinivorans产生丙酸,但不是从葡萄糖中产生的。在Roseburia中,乙酸辅酶a转移酶是进行丁酸合成最后一步的主要酶。丁酸盐的形成可通过底物水平的磷酸化和质子梯度导致肠上皮能量产生和细胞反应调节。丁酸是罗氏菌属与寄主相互作用的关键因子

罗氏菌属是一种抗炎因子

前面小节我们知道,Roseburia从可发酵的膳食碳水化合物中产生了大量的丁酸盐。R. intestinalis主要寄生在粘蛋白层,并确保丁酸盐的生成。Roseburia作为一种高产丁酸菌,可能对控制炎症过程,尤其是肠道炎症过程具有重要作用。

认识肠道微生物及其与高血压的关系

谷禾健康

肠道的内部环境作为外部环境和宿主之间的接口,不断受到宿主的消费习惯的挑战。在管腔一侧,微生物能够附着并定植于该空间,而在宿主一侧,胃肠道充当体内免疫细胞的最大隔室。

从解剖学上讲,肠道由不同的部分组成。十二指肠,空肠和回肠代表小肠(SI),它比由结肠和直肠组成的大肠(LI)占据更多的物理空间。与人类相比,啮齿动物的盲肠增大,盲肠囊是连接小肠和大肠的盲端囊。在小鼠中,盲肠充当了共生微生物的大贮藏库,这些微生物参与了无法通过其他方式裂解的纤维的发酵。  盲肠在小鼠中的作用很重要,因为它是短链脂肪酸(SCFA)产生的主要途径,去除盲肠会导致胃肠道远端部位炎症的增加 在人类中,该部位微生物的体积远小于小鼠,但该隔室在兼性厌氧发酵中仍起着重要作用。

值得注意的是,共生微生物的组成和丰度在不同的胃肠道区域是不同的,例如,成年小肠中的微生物丰度低(<105个微生物/ mL),在结肠中则增加到1012。小肠和大肠具有独特的生理功能。 虽然十二指肠和空肠参与消化,营养吸收和运动过程,但大肠具有三个主要功能:吸收水和电解质,产生和吸收维生素以及形成和运输排泄的粪便。肠道不断暴露在食物颗粒和食物抗原,生理或机会性微生物群衍生的代谢产物以及其他免疫调节刺激。 胃肠道内的免疫细胞不仅对肠道内的抗原刺激作出反应,而且还显示出扩散到全身的远端器官,表明它们在全系统炎症稳态中的重要性。

微生物无处不在。 他们自我组织,在原本无法居住的生态环境中创建了复杂的生态系统,迅速适应了他们的环境。宿主依赖微生物组实现几种基本的共生功能,例如启动免疫系统和生产必需的维生素,以及从食物中获取能量。 肠道微生物群(定义为人类体内的微生物分类群)现在被认为是内分泌器官,可产生可在宿主中充当效应子的代谢产物,从而触发局部微环境或远端的靶器官系统(如心脏,肾脏,脉管系统)的反应和大脑。

肠腔内壁衬里是抵抗细菌感染的生理屏障,可以与毒素结合。此外,粘液是细菌的营养来源,因此会影响具有在粘液层中生存和扩展能力的微生物的定殖。Akkermansia muciniphila(AKK菌) Citrobacter rodentium (柠檬酸杆菌)能够降解粘蛋白,而后者在纤维缺乏期间会增殖。结肠粘液层完整性的丧失会增加宿主对病原体的敏感性。 在健康条件下,紧密的上皮层可防止病原微生物的入侵,而某些刺激物(如炎症性疾病或西餐)可导致肠道通透性和所谓的肠道渗漏综合征的发展。

随着高通量测序技术和代谢组学的建立以及高性能计算和人工智能的发展,人们逐渐破译生活方式饮食,药物治疗和肠道微生物组之间的相互关系。每个人肠道微生物组随时间推移相对稳定,并与周围环境平衡共存。但是诸如抗生素,肠道感染以及饮食或生活方式变化等扰动都会引起短暂或持续的变化

01 肠道免疫与高血压

在过去的几十年中,实验和临床研究表明,先天性和适应性免疫系统的细胞在高血压,靶器官损害和心血管疾病(CVD)的发病机理中起着关键作用。促炎性效应记忆T细胞和 T辅助细胞亚型T辅助细胞17(Th17;产生IL-17)和1型辅助细胞(产生IFN-γ)促进高血压和心血管靶器官损伤,而调节性T细胞(Tregs)通常产生大量的抗炎性IL-10可以减轻血管,心脏和肾脏的损害

此外,γδT细胞和髓样来源的抑制细胞在高血压的发病机理中也起着重要作用。 已经证明可以改变几种T细胞亚型激活状态的树突状细胞会增加盐反应性高血压,并提示其在菌群失调与血压(BP)之间的相互作用中发挥作用。

细菌可以直接或通过其产生的代谢产物与参与心血管的不同免疫细胞发生反应。例如,分段丝状细菌或Bifidobacterium adolescentis(青春双歧杆菌)可诱导Th17细胞,而Lactobacillus murinus(鼠乳杆菌)及其色氨酸代谢产物吲哚3乳酸则可抑制Th17细胞。 和SCFA丁酸盐是结肠中Treg的杰出诱导剂。

图  肠道微生物与宿主免疫相互作用

在宿主和微生物组方面均可发现肠道空间变异性。内腔和组织相关内容的相对水平在此处进行了说明,表明这两种功能的区域专业化。 已知肠道中的内腔含量在微生物负荷,微生物种群以及所产生的微生物产生的代谢产物方面有显着差异。尽管在整个胃肠道中的种群和区域规格都受到微生物的影响, 根据管腔内物质含量的变化,宿主免疫系统同样具有区域特异性。

这里显示的是免疫细胞,这些细胞在免疫稳态过程中表现出空间动态。  

02 肠道菌群与高血压

高血压的发病机制涉及多种因素,包括遗传、环境、激素、血液动力学和炎症等。越来越多的证据表明,肠道微生物群在高血压的发生和发病机制中起着重要作用。胃肠道是人体内最大的免疫细胞库,代表着环境和宿主的交汇点。因此,生活方式因素的形成和调节的微生物组,影响着高血压疾病形成和发生的风险。一个被广泛研究的例子是膳食纤维的消耗,能导致短链脂肪酸的产生,并有助于抗炎免疫细胞的扩张,从而防止高血压的进展。饮食干预如禁食也被证明通过微生物群影响高血压

图 血压与肠道菌群的关系

摄入的食物被肠道微生物群转化为小的代谢物。食物抗原、微生物产生的代谢物以及微生物本身都有助于免疫稳态。干扰宿主和微生物群之间的共生关系可通过免疫系统直接或间接导致血压变化和相关的心脏、血管或肾脏损害。

在过去的十年中,许多关于肠道微生物组和高血压的作用的证据已积累起来。多项针对人体的横断面研究表明,肠道微生物组与血压或高血压之间存在关联。高血压患者或血压较高的患者,α多样性降低,肥胖,高胰岛素血症和血脂异常也已观察到。 许多人类肠道微生物组研究报告了革兰氏阴性菌群较高的菌群之间的相关性,包括克雷伯菌,副细菌,脱硫弧菌和普氏菌,尽管并非所有研究都能确定这种模式。

来自HELIUS队列研究(城市环境中的健康生活)的研究表明,克雷伯菌属和链球菌属与血压呈正相关。此外,与高血压小鼠相比,从高血压人类供体接受粪菌移植的GF小鼠出现了与其供体相似的肠道菌群,以及8周后收缩压和舒张压升高。它从2个血压正常的供体那里接受了粪菌移植。

此外,还有几种有价值的啮齿动物高血压模型分析了肠道微生物组和血压的作用。自发性高血压大鼠存在失调,与正常血压WKY(Wistar-Kyoto)对照大鼠的微生物群存在显著差异。自发性高血压大鼠的肠道通透性和菌群失调也可能可通过使用降压药治疗大鼠来补救。

肠道微生物组与高血压之间的联系不是物种特异性的。 例如,在小鼠和人类中高盐处理都会减少乳酸杆菌属。  值得注意的是,未治疗的高血压患者中盐的适度降低能够降低血压并改善动脉顺应性。改善的临床结果伴随着8种循环SCFA的增加(包括2-甲基丁酸、丁酸、己酸、异戊酸和戊酸 )。此外,已证明益生菌乳酸菌处理可通过恢复吲哚3乳酸水平(抑制微生物色氨酸代谢)抑制Th17细胞并减轻盐敏感性高血压

已显示,Lactobacillus coryniformis可以改善血管功能和胰岛素敏感性。Lactobacillus(乳杆菌)治疗不仅可以改善心血管疾病,还可以改善实验性自身免疫性疾病的结局。 对益生菌对高血压的作用进行调查的随机对照试验的系统评价表明,如果以足够高的剂量使用至少8周,含乳酸杆菌的益生菌是有效的。

03 饮食方式影响肠道菌群

在人类中,肠道中的核心微生物群落是稳定的,并且仅在响应诸如肠道感染,整体旅行或药物治疗等主要扰动时才发生变化,从而导致肠道微生物组发生短暂或持续的变化。 肠道菌群不仅对某些饮食刺激的比例具有反应性,而且还可能在时空环境中做出反应。

目前,我们对特定饮食变化影响炎症,自身免疫和心血管疾病易感性的确切机制的理解还很模糊。 使用经过微生物组组成和功能训练的机器学习算法可提供令人兴奋的机会,以促进更好地预测对营养刺激的反应。

新兴的研究表明,饮食因素(高盐或高纤维)和生活方式干预盐分限制或热量限制)会影响微生物群落的结构和功能,这对免疫细胞活化和血压具有重要意义。西方人的生活方式通常涉及每天进食几顿主餐,并导致细菌多样性下降,某些食物喂养细菌的过度生长,以及随之而来的其他食物为底物的细菌的抑制。因此,菌群产生的代谢产物发生了转移,从而促进了炎症,最终可能导致肥胖症和动脉粥样硬化等疾病的发展。

从历史上看,餐食通常是新鲜烹制的,但如今,人们更经常食用通常含盐量更高加工食品。这种生活方式通常会导致较高的盐摄入量 而不是医学指南或专家的建议。为减少心脏代谢疾病的风险,通常应节食健康的饮食和运动。 大多数建议的重点是将富含饱和脂肪,糖,盐和卡路里但纤维含量低的西方饮食改变为更健康的地中海式阻止高血压饮食方法,以实现最佳营养,平衡和降低盐摄入量,尽管合规性是一个重大挑战。

04 微生物群衍生短链脂肪酸

SCFA是最典型的微生物群代谢产物之一,它是在不易消化的纤维发酵过程中产生的。 乙酸,丙酸和丁酸是3种高丰度的SCFA。 膳食纤维是由≥3种单体组成的膳食碳水化合物的统称,如非淀粉多糖,抗性淀粉,菊粉,果胶,β-葡聚糖和低聚糖。 这些纤维状化合物中的大多数都被拟杆菌、厚壁菌和放线菌门微生物消化。Bifidobacterium adolescentis, Eubacterium rectale, Eubacterium hallii, Faecalibacterium prausnitzii ,Ruminococcus bromii 通常在大肠中定居,并具有消化纤维以生产SCFA的

大肠的丙酸和丁酸水平比小肠高约4倍。SCFA在结肠中迅速吸收,而丁酸在很大程度上被用作向结肠上皮细胞提供能量的燃料。肠道SCFAs与门静脉血相比要高得多,而门静脉SCFAs较高,其次是肝脏血液,外周血最少,这表明SCFAs基本上被肝脏吸收。肝中丙酸的摄取是糖异生,脂肪生成的前体,以及蛋白质合成,而乙酸盐进入循环系统并被多个组织代谢,并且是胆固醇合成的底物。

SCFA可以与G蛋白偶联受体Gpr41(G蛋白偶联受体41),Gpr43( 小鼠中的G蛋白偶联受体43),Gpr109a(G蛋白偶联受体109 A),Olfr558(嗅觉受体558)和Olfr78(嗅觉受体78),也称为FFARs(游离脂肪酸受体)。FFARs存在于各种组织中,包括血管和肾脏,并参与调节丙酸、乙酸和丁酸的血管反应性。

Gpr41和Olfr78似乎都参与了血压的调节,尽管它们似乎促进了相反的作用。Olfr78激活后会诱导肾素分泌。与此相符的是,Gpr41敲除小鼠为高血压,有趣的是,醋酸盐以前曾用于血液透析缓冲液,但由于其降压作用而被大量废弃,这与SCFA在大多数情况下降低血压的观点一致。

纤维本身已被建议在一定程度上塑造微生物组成

关于血压,纤维的刺激作用增加了SCFA生产者Faecalibacterium prausnitziiEubacterium rectale以及乳杆菌属的丰度。一项具有里程碑意义的研究表明,与传统上纤维含量高的未加工饮食的非洲儿童相比,食用西方饮食的欧洲儿童SCFA水平显着降低FirmicutesBacteroidetes(F/B)比率高。自该研究以来,高F/B比率通常被用作肠道生态失调的替代指标,虽然也已知一些Firmicutes细菌产生有助于健康微生物组的微生物代谢物。

同样,实验工作通常依赖于F/B比作为疾病标志物。自发性高血压大鼠和易中风的自发性高血压大鼠显示F/B比率增加,这支持了这可以作为肠道生态失调的标志物的概念。

05 血压和短链脂肪酸

各种实验或临床研究已证明益生元高级纤维或后生SCFA治疗对血压的影响。研究报道丙酸在麻醉小鼠中诱导了急性的剂量依赖性降血压反应,这是由Gpr41介导的。益生元纤维不仅可以预防心血管疾病,而且这些营养素的缺乏可能是导致高血压和心血管疾病的危险因素。 还发现在低纤维饮食中添加益生元乙酸盐,丙酸盐或丁酸盐可改善血压并减少靶器官损害

此外,GF小鼠的粪菌移植表明,与抗性淀粉相比,饮食中的肠道微生物组缺乏抗性淀粉。高纤维情况不仅在血管紧张素II攻击后导致较高的血压,而且还导致了心脏和肾脏损害的发病机制。

德国一项研究测试了在有和没有动脉粥样硬化的高血压小鼠中口服丙酸治疗的特性。在这两种模型中,丙酸治疗均能降低全身和局部炎症反应,血压以及心脏损害。丙酸的治疗作用是由Treg细胞介导的。但是该研究指出丙酸的降血压作用不是急性的,而是随着时间的推移而发生,提示SCFA的抗炎特性间接促进了血管表型的改善。Th17细胞和Th17与Treg的平衡介导SCFA在血压调节中的作用。

关于SCFA在血压中的作用的人类研究非常少见。对微生物群组成和高血压的一些研究表明,SCFA的生产者为Ruminococcaceae spp,RothiaRoseburia spp. 与较低的血压相关。

在一项小型干预试验中,生物素丁酸酯(600 mg / d),益生素菊粉(10 g / d)以及这两者的组合均降低了代谢综合征患者的舒张压。在HELIUS队列中,将机器学习算法应用于微生物组数据可确定Roseburia spp解释对血压的最大绝对影响,甚至在调整混杂因素(包括使用药物)后,丰度也使收缩压降低4.1 mmHg

相反,血压较高的患者的粪便SCFA水平较高。这种正相关与以前的研究一致,但似乎与血压与胃肠道内微生物SCFA生产者之间的负相关性相矛盾。 但是,粪便中的SCFA含量不一定反映肠道内的SCFA含量,而是反映肠道中产生的SCFA含量而宿主无法吸收的

自发性高血压大鼠的实验工作支持了这一观点,表明实验性高血压会减少结肠丁酸对宿主的吸收。此外,AT1(血管紧张素II型1型)受体阻滞剂坎地沙坦(一种经常用于治疗高血压的药物) 已发现自发性高血压大鼠可以增加乳杆菌的丰度和粪便SCFA水平,改善肠道完整性并降低血压。

坎地沙坦治疗改善了重度肥胖受试者肠道中丁酸生成基因的缺失。总之,在HELIUS队列中,基于肠道微生物群组成的机器学习模型分别解释了收缩压和舒张压变异性的4.4%和4.3%。

纤维来源的SCFAs不仅影响血压,而且在其他心血管疾病和自身免疫中也起着关键作用。例如,用醋酸盐,丙酸盐或丁酸盐进行生物后处理可改善急性肾损伤。肾脏保护与局部和全身炎症反应减少,氧化性细胞应激和细胞凋亡。在多发性硬化症动物模型中,T细胞介导的中枢神经系统炎症性疾病丙酸盐增加了肠道和脾脏中抗炎Tregs的频率,这伴随着临床症状的改善。

高纤维摄入量和增加的SCFA浓度也被证明可以保护中枢神经系统。值得注意的是,多发性硬化症患者可以从丙酸盐治疗中获益。短期丙酸盐治疗导致显着和持续的富集功能正常的Tregs,同时1型辅助细胞和Th17细胞同时消耗。此外,补充SCFA或高纤维摄入对类风湿性关节炎(一种关节慢性炎症性疾病)的预后有积极影响。丙酸酯可增加骨量,并且发现SCFA通过增加Treg的数量刺激骨形成。

06 SCFA与免疫系统相互作用

从机制上讲,SCFA可以影响不同的免疫细胞群。 例如,发现丙酸和丁酸处理后中性粒细胞产生的炎性细胞因子较少。丁酸还可以减少氧化应激和吞噬能力。

SCFA通过减少树突状细胞成熟并抑制CD4和CD8T细胞增殖来调节炎症过程。与乙酸盐相反,丁酸盐或丙酸盐通过HDAC(组蛋白脱乙酰基酶)抑制作用影响骨髓前体细胞的树突状细胞成熟。此外,丁酸可促使M1巨噬细胞分泌更少的炎性细胞因子,增加抗炎细胞因子IL-10的分泌。

SCFAs还引起人单核细胞和T细胞中抗炎标记的表达。 例如,丁酸抑制金黄色葡萄球菌刺激的人单核细胞中IL-12的产生并增强IL-10的分泌。

最近,研究证明了丙酸会降低Th17细胞分化的速率。还发现丁酸盐还通过Gpr43增加1型辅助细胞分化细胞中IL-10的分泌,由SCFA驱动的IL-10诱导激活STAT3(信号转导子和转录激活子3)和mTOR(雷帕霉素的机械靶标),从而上调转录因子B淋巴细胞诱导的表达成熟蛋白。

此外,SCFA最深入研究的特性之一是它们在诱导抗炎Treg中的作用。丁酸和丙酸可增加鼠和人Treg的分化并增强其抑制能力。除丁酸外,丙酸(而非乙酸)通过HDAC诱导外周新生Treg细胞形成。值得注意的是,Clostridia梭菌)是共生微生物的主要类别,它介导了诱导性结肠Tregs,这与Clostridium butyricum酪酸梭状芽胞杆菌)诱导Tregs并减少Th17细胞从而减轻实验性自身免疫的症状的发现是一致的

07 禁食:新的血压控制策略

越来越多的证据表明,禁食是控制代谢性疾病和炎性疾病的有效工具。热量限制会影响微生物组的基本原理令人兴奋。 然而,仍然缺乏关于人类的可靠数据。

一项研究关于10天定期禁食对15名健康男性的粪便微生物群的影响。禁食导致LachnospiraceaeRuminococcaceae菌减少。一项小型的人体试验研究表明,斋月禁食影响了健康受试者的微生物组,丰富了一些SCFA生产者

在一项临床研究中,35名代谢综合征患者接受了5天的禁食,然后进行了3周的DASH饮食,也被译为「得舒饮食」,字面意思是防止高血压的饮食方法饮食。

对照组仅接受DASH饮食。禁食后接着DASH饮食降低血压,需要抗高血压药物和干预后3个月的体重,并改变影响SCFA生产者的肠道微生物群。队列对血压反应性的分层显示,空腹组中存在的免疫细胞变化在血压反应者中比在无反应者中更明显。

此外,禁食组的免疫移位与DASH组观察到的变化根本不同。观察到干预后禁食组中血压响应者特异性微生物组的变化(F.prausnitzii,拟杆菌和厚壁菌的富集;放线菌的消耗)。值得注意的是,丁酸盐生产者F.prausnitzii的富集甚至在禁食后3个月仍然存在。血压反应者和无反应者不仅对禁食反应不同,而且在基线时的丙酸合成能力不同。

将机器学习算法应用于基线免疫组或16S微生物组数据,预测模型通过重新分析调查禁食和血压影响队列(Mesnage数据集)证实,队列中显着的长期血压下降预计准确率约为70%,进一步支持这些发现可能是普遍化的想法。重要的是要强调,上述研究建立了微生物组和血压之间的关联,以应对禁食。禁食对许多患者来说是一项艰巨的挑战。能够操纵负责响应禁食的血压变化的机制将具有高临床效用。

禁食是热量限制的一种极端形式,在不同的文化和宗教习俗中起着重要的作用。 大量的热量限制不仅影响宿主的健康和生理,还降低了血压。生活方式和饮食引起的微生物群及其代谢产物的扰动可直接影响上皮细胞和免疫细胞的稳态。但是我们对营养,微生物群和微生物产物,免疫系统与宿主健康或疾病之间的联系仍处于‘婴儿期’。

08

小鼠与人类的差异障碍和转化

宿主-微生物组相互作用对人类健康和疾病显然有影响。模型系统经常用于基础和临床前高血压研究,以研究疾病的发病机制和进展。小鼠和大鼠模型非常有用,可以提供人类队列研究无法获得的信息。然而,在模型系统中研究人-宿主-微生物组相互作用存在许多障碍。

差 异 

01 胃肠生理学和形态学有许多方面,这在人类和啮齿动物物种之间是截然不同的。盲肠可能是人类和啮齿动物不同物种形成的最明显的例子,以及小鼠结肠粘液层的薄度。

02 小鼠和人类对炎症应激物的基因组反应是明显不同的,这可能与宿主特异性或微生物组特异性特征或两者的组合有关。

03 居住在胃肠道的微生物在小鼠和人类之间通常也是不同的。人和小鼠只有约15%的细菌谱系。虽然它们在属或门的水平上可能具有可比性,但物种特异性变化通常在高血压中具有临床重要性。

04 已知在每个微生物进化枝内,成员物种之间共享功能特性的程度例如,厚壁菌作为进化枝特别代谢不一致,当考虑到普遍使用F/B比率作为生态失调的标志物时,这再次提出了一个问题。

05 由于人类微生物组随时间的相对稳定性,实验室小鼠在这方面与人类不同。

06 小鼠和人体免疫组成和建立不同,人类免疫系统的强劲发展,需要接触各种真菌,病毒,微生物等,而GF小鼠与人或大鼠微生物的定殖不会诱导免疫成熟,只有小鼠特异性微生物能够诱导完全的免疫能力。

07 啮齿动物模型的嗜食性已被认为对微生物组具有独特的影响,这可以通过使用单一住房策略来避免,尽管这会诱发小鼠的应激反应,增加一个额外的混杂因素。

许多研究人员试图通过使用人类微生物定殖小鼠或野外捕获的小鼠来规避物种比较问题。这提出了两个重要的挑战,应该加以考虑。

一,存在宿主与其微生物之间相互作用的相互排斥的问题。事实上,这种相互作用的重要性在最近的一项研究中得到了证实,该研究表明GF小鼠与人或大鼠微生物的定殖不会诱导免疫成熟,只有小鼠特异性微生物能够诱导完全的免疫能力。有几点差异在小鼠和人体免疫组成之间注意到,这可能与免疫微生物组轴有关,例如,与小鼠(10%–25%)相比,外周血中性粒细胞的比例约为人类的两倍(50%–70%)。此外,CD8+T细胞在成年人非淋巴组织中的分布远高于无特定病原体的小鼠,这可能对细胞内感染或癌症的进展有影响。

二,尽管野外捕获的小鼠比实验室培养的无特定病原体的小鼠更准确地概括人体生理,可能与临床试验结果的一致性更高,对疾病的抵抗力更强。但是在科研研究和临床上应用大规模野外捕获老鼠的可能性会受到限制。

因此,在未来动物研究中,整个领域的程序标准化,例如使用同窝对照和可能影响微生物组的条件的稳健记录是必不可少的。要注意笼养,用品和饮食等因素可能会对结果产生重大影响。此外,采样时间,地点也尽量一致。

值得注意的是除了不同胃肠道区域的空间动态外,从粘膜和管腔空间取样的微生物组在小鼠和人类中是独特的。由于胃肠道是免疫细胞极化和微生物产生的代谢物吸收的作用部位,许多人质疑粪便取样是否正确研究宿主-微生物组界面的途径。粪便代表该系统的排泄产物。

然而,粪便取样是检查微生物组的最常见和实际适用的方法,特别是对于需要非侵入性方法的纵向研究。粪便的收集无疑有助于我们理解宿主-微生物组的相互作用。尽管怀疑局部产生的微生物副产物的相关性是重要的,特别是影响代谢物对循环的摄取并影响胃肠免疫细胞的活性,但是该隔室的测量是不发达的。在间质液中的作用部位鉴定微生物产生的化合物的能力可能提供对宿主-微生物组动力学的不同观点。

总之,尽管在解释微生物组数据时需要谨慎,但是,高血压中微生物组-宿主界面的研究是一个有前途且正在迅猛加速的研究领域。随着各种技术的进一步发展,针对微生物组领域的以药理学和辅助诊断方式为中心的方案可能会在不久的将来出现。

相关阅读:

大样本人群揭示肠道菌群与血压之间的关系

肠道微生物群在冠心病中的作用

解密|肠道菌群与健康长寿

最新研究速递 | 肠道真菌与健康和疾病有关

参考文献:

Schluter J, Peled JU, Taylor BP, Markey KA, Smith M, Taur Y, Niehus R, Staffas A, Dai A, Fontana E, et al.. The gut microbiota is associated with immune cell dynamics in humans.Nature. 2020; 588:303–307.

Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, et al.; Million Veteran Program. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.Nat Genet. 2018; 50:1412–1425.

Ellen G. Avery. CirculationResearch. The Gut Microbiome in Hypertension, Volume: 128, Issue: 7, Pages:934-950

Tierney BT, Yang Z, Luber JM, Beaudin M, Wibowo MC, Baek C, Mehlenbacher E, Patel CJ, Kostic AD. The landscape of genetic content in the gut and oral human microbiome.Cell Host Microbe. 2019; 26:283–295

Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, et al.; MetaHIT Consortium. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota.Nature. 2015; 528:262–266.

Verger EO, Armstrong P, Nielsen T, Chakaroun R, Aron-Wisnewsky J, Gøbel RJ, Schütz T, Delaere F, Gausseres N, Clément K, et al.; MetaCardis Consortium. Dietary assessment in the metacardis study: development and relative validity of an online food frequency questionnaire.J Acad Nutr Diet. 2017; 117:878–888. 

1