Tag Archive 炎症

油炸食品通过肠道菌群影响健康,与糖尿病相关

谷禾健康

油炸是一种流行的烹饪方法,它使食物在质地和香味上更有吸引力,从而改善食物口感。

油炸食品通常被认为不健康的,因为油炸可能会增加食物的能量密度,从而增加能量摄入,并通过氧化和氢化过程使油变质,导致不饱和脂肪酸如亚油酸和亚麻酸的损失,但反式脂肪酸、油脂降解和晚期糖基化终产物的增加。

油炸食品与2型糖尿病的关联

在流行病学研究中,油炸食品的高摄入量与多种不良健康后果有关(包括2型糖尿病),虽然结果并不完全一致

可能原因:

油的类型

据报道,在主要使用橄榄油制备油炸食品的人群中,油炸食品和2型糖尿病风险之间没有关联,橄榄油比其他普通油(如玉米油)更抗氧化。

食物成分 、条件

被油炸食物的不同成分和油炸条件(温度、持续时间)也可能引发不同的结果。

混杂因素

各种混杂因素(如体重增加、高血压和高脂血症)增加了不一致观察结果的复杂性,这些因素与食用油炸食品和2型糖尿病风险相关。

综上,油炸食品和2型糖尿病之间的不良关联背后的潜在机制在很大程度上仍然未知。很多途径包括体重增加、炎症和脂质代谢等都有可能参与其中。

油炸食品与肠道微生物群

近年来,越来越多的数据表明,肠道微生物群可能在饮食因素(包括油炸食品)与宿主健康联系中发挥着关键作用。

对人类和动物模型的研究表明,油炸食品的摄入量或油炸和热加工的副产品与肠道微生物群的多样性和丰富性有关。然而,评估油炸食品对糖代谢影响的随机临床试验仍然缺乏。

近日,《糖尿病护理》杂志上,一项随机对照喂养试验旨在测试油炸肉类摄入对葡萄糖稳态的影响

该研究发现,油炸肉的摄入通过影响肠道微生物群和微生物-宿主共代谢产物,与糖代谢异常有关,增加了肠道内毒素和全身炎症水平。

研究人员将117名年龄在18-35岁的青少年超重(BMI > 24 kg/m2)的成年人随机分为两组,分别提供等热量膳食和一致的食物,交替健康饮食指数(AHEI)评分>85。干预组是油炸,对照组是煮,蒸,或用调味汁拌。

葡萄糖代谢指数变化:

在两组的干预过程中,包括胰岛素生成指数(IGI)、肌肉胰岛素抵抗指数(MIRI)和胰岛素水平在内的几项葡萄糖代谢指数均有所改善,同时能量摄入也有所减少。

与对照组相比,油炸食品组的4周干预在IGI、MIRI和胰岛素曲线下面积(AUC)方面的改善较少,并且在HbA1c、C肽和葡萄糖的曲线下面积没有差异。作者得出结论,油炸肉的摄入损害了葡萄糖稳态

肠内毒素和炎症标志物变化:

次要结果中,油炸肉干预组显示肠内毒素和全身炎症生物标志物减少较少,调节饱腹感和糖摄入的肝因子FGF21增加较少

肠道微生物群变化:

发现油炸肉组的肠道微生物群丰富度低于对照组;总体微生物结构和组成以及微生物组预测的与葡萄糖稳态相关的途径在这两组之间也是不同的

油炸组降低了Lachnospiraceae和Flavonifractor的丰度。

  •  Lachnospiraceae在肠道稳态中起重要作用,它可以预防肥胖和胰岛素抵抗。
  • √ Flavonifractor是肠道健康的重要菌群,其含量与肥胖呈负相关。

同时增加了Dialister、Dorea、Veillonella的丰度(P FDR <0.05).

  • √ Dialister是一种致病菌,其丰度的增加与体重增加有关。
  • √ Dorea丰度与肥胖呈正相关,在糖尿病前期患者中发现其丰度增加。
  • √ Veillonella 不发酵葡萄糖或任何其他碳水化合物,可分解乳酸。

干预组的厚壁菌门和拟杆菌门的比率(2型糖尿病的经典标志)高于对照组。进一步支持了油炸肉的摄入对葡萄糖平衡的影响。

粪便代谢物变化(与菌群变化相关):

Flavonifractor丰度的变化与粪中戊酸含量的变化呈正相关(r = 0.226);

Dorea丰度的变化与粪中戊酸水平的变化呈负相关(r = -0.336)。

Dialister、Dorea、Veillonella丰度的变化与粪便肉碱水平的变化呈正相关(Dialister,r = 0.218, Dorea,r = 0.395, Veillonella,r = 0.314) (P < 0.05).

  • √ Flavonifractor可以产生短链脂肪酸,Flavonifractor 参与戊酸的代谢
  • √ Dorea高丰度可以降低产短链脂肪酸菌的丰度,导致粪便中包括戊酸在内的短链脂肪酸水平降低。
  • √ Dialister和Veillonella参与宿主氨基酸代谢,通过介导肉碱的产生和代谢影响宿主TMAO水平

油炸肉干预导致粪便代谢物的显著变化,如丁酸、戊酸和3-吲哚丙酸(IPA)的减少,肉碱和甲基戊二酸的增加(P FDR <0.05)。

  • √ 丁酸对葡萄糖平衡的有益作用已经在以前的研究中得到证实
  • √ 戊酸作为一种短链脂肪酸,抑制氧化应激和神经炎症,并调节自噬途径。
  • √ IPA可以降低血浆内毒素水平,食用富含IPA的饮食可以显著降低空腹血糖水平,改善胰岛素抵抗
  • √ 肉碱可以被氧化成三甲胺氮氧化物(TMAO),高水平血浆TMAO与心血管疾病和糖尿病有关

这些粪便代谢物的变化与IGI、MIRI、肠道内毒素脂多糖、FGF21和炎症标志物TNF-a, IL-1β,IL-10的变化显著相关,暗示肠道微生物群和葡萄糖稳态之间的复合机制联系。在小鼠身上进行的实验进一步证实了这一发现。

肠道微生物群通过循环代谢物影响宿主健康


肠道微生物群在食物成分的消化中起着至关重要的作用,血液代谢组的很大一部分对食物的摄入起反应。因此,循环代谢物直接标志着宿主微生物群与饮食的相互作用。

新出现的证据表明,饮食干预可能会显著改变循环微生物代谢物,进而影响葡萄糖代谢。因此,在未来的随机临床试验中,需要对循环代谢组学进行综合分析。

还需要进一步的研究来评估各种油用于油炸的效果,某些类型的油如特级初榨橄榄油,用于油炸食物,可以改善餐后胰岛素反应。

该研究的主要优点:

随机临床试验被认为是提供因果关系证据的金标准。在该研究中,被测试的食物是经过仔细控制的(油炸过程中的温度和持续时间受到严格控制,以限制有害物质的产生),在干预组和对照组中是一致的,随机化最大限度地减少了潜在的混淆。因此,观察到的与葡萄糖稳态相关的主要结果的差异可能是由不同的食物加工方法——油炸引起的。

该研究只包括健康超重的年轻成年人,因为油炸食品在这一人群中很受欢迎,这可以确保符合这项试验,并且已经证明成年早期超重与成年晚期2型糖尿病病的发病率较高有关。

这项研究的创新之处在于将肠道微生物组与粪便样本中定量靶向细菌代谢组学相结合。这些分析为微生物群在调节饮食对葡萄糖代谢的影响方面的作用提供了新的证据。

此外,小鼠实验为这一发现提供了额外的证据。对包括肠道内毒素、全身炎症和其他生物标志物在内的广泛生物标志物的综合评估,有助于进一步理解油炸肉、肠道微生物群和葡萄糖代谢之间的复杂联系。

该研究受到潜在的限制:

鉴于干预时间相对较短,该研究无法评估油炸食品对血糖稳态和2型糖尿病风险的长期影响。值得注意的是,包括葡萄糖和HbA1c在内的主要结果在干预组和对照组之间没有差异。这可能部分是由于干预时间短,样本量相对较小

研究参与者相对年轻健康;因此,调查结果的普遍性受到限制。

结 语

在当前的饮食建议中,食品加工在很大程度上被忽视了,在高温油炸过程中,蔬菜等健康食品的有益效果可能会降低。以上研究提示,食品加工方法(如油炸)也会影响肠道微生物群,从而影响健康。未来的膳食指南不局限于营养和食品成分,也可以将健康食品加工方法纳入膳食指南。

2型糖尿病如何做到可防可控?肠道菌群发挥重要作用

谷禾健康

2型糖尿病是一种血糖水平升高(高血糖)的慢性代谢疾病,主要由胰岛素抵抗和胰岛素分泌不足引起。2型糖尿病全球患病率在不断上升。

截止到2020年,根据美国糖尿病学会评估标准,糖尿病患病率已达到12.8%。其实在我国成年人中,已经有将近一半的人存在血糖异常,未来极有可能发展为2型糖尿病。如果不加干预治疗,会引发许多不良后果。

很多研究表明,肠道菌群在宿主的代谢和疾病状态中起着重要的作用。特别是2型糖尿病,其病因复杂,包括肥胖、慢性低度炎症,受肠道微生物群和微生物代谢产物的调节。

本文将从肠道菌群的角度了解其与2型糖尿病的关系;肠道菌群及其代谢物对葡萄糖代谢、免疫系统的影响;
从影响肠道菌群变化的因素来了解各种干预措施,包括药物,饮食,益生菌/益生元,粪菌移植,间接性禁食等方式。

01 2型糖尿病

葡萄糖主要通过食用的食物和饮料进入人体。胰腺会产生一种叫做胰岛素的激素,以帮助血液中的葡萄糖进入肌肉、脂肪和肝脏,用作能量。

  • 胰岛素如何将血液中糖分控制在正常水平?

胰岛素通过血液循环进入不同组织。组织大多数细胞表面有一种结构,叫胰岛素受体。当胰岛素流过时,会附着在胰岛素受体上,就像钥匙打开锁一样,糖可以进入细胞内,细胞获得能量维持正常运作,血液中糖分就会回落到正常水平。

  • 2型糖尿病如何形成?

2型糖尿病患者身上,细胞对胰岛素没有反应,这种情况就叫胰岛素抵抗。胰岛素没有了“钥匙”的作用,不能有效开启细胞上的“锁”,或者“锁”的数量也减少了,由此,糖分就不能进入细胞有效利用,被挡在了细胞外面,只好在血液中积累,血糖就升高了。

刚开始的时候,胰腺会觉得自己使不上力,于是不甘心开始拼命工作,产生更多的胰岛素来克服这种抵抗。

随着时间的推移,胰腺开始累了,力不从心,不能产生更多的胰岛素,这时候就是2型糖尿病开始了。

02 2型糖尿病患者的微生物群

肠道微生物群可以直接或间接地影响人类健康,肠道微生物群失调可能会增加促炎疾病的患病率,如肥胖、炎症性肠病、2 型糖尿病、关节炎和癌症。

2型糖尿病人群中个体微生物群的差异

Cunningham A L et al., Gut Pathog, 2021

在2型糖尿病患者普遍具有相对高丰度的特定属:Blautia、Coprococcus、Sporobacter、Abiotrophia、Peptostreptococcus、Parasutterella、Collinsella

2型糖尿病患者中,产生丁酸菌特别缺乏,特别是梭菌目,包括:

Ruminococcus、Subdoligranulum,Eubacterium rectale、Faecali prausnitzii、Roseburia intestinalis 、

Roseburia inulinivorans

2型糖尿病患者中,其他明显较少的菌属有:

拟杆菌属、普雷沃氏菌属双歧杆菌属

  • 双歧杆菌减少

双歧杆菌属具有显著的健康益处,包括改善肠道通透性,从而降低内毒素的循环水平并减少全身炎症。这与改善宿主的糖耐量和葡萄糖诱导的胰岛素分泌,并减少炎症有关。

  • 乳杆菌属增加

来自欧洲的女性2型糖尿病患者队列显示了乳酸杆菌Lactobacillus增加,五种梭菌的丰度下降。

在另外两项研究中也有类似的结论。乳杆菌属的增加较低的空腹血糖水平改善的糖化血红蛋白(HbA1c)水平正相关。这两种菌都与BMI指数没有关系。给糖尿病啮齿动物补充丁酸梭菌可以改善循环血糖水平,降低全身胰岛素抵抗和炎症,增加线粒体代谢,显著减少肠道破坏

  • Akkermansia菌减少

Akkermansia muciniphilaFaecali prausnitzii这两种菌为2型糖尿病的发展提供了保护。

Akkermansia菌维持粘蛋白层的完整性减少炎症方面起着关键作用。粘蛋白是大型、高度糖基化的蛋白质,参与GIT的腔内保护,导致细菌移位减少,并改善脂肪储存、脂肪组织代谢和葡萄糖稳态。给啮齿动物补充低聚果糖(使Akkermansia二次增加)或直接用Akkermansia治疗可以改善它们的整体代谢状态。

  • Faecali prausnitzii 减少

2型糖尿病的Faecali prausnitzii丰度降低,2型糖尿病的治疗似乎也直接导致了Faecali prausnitzii丰度的增加、全身炎症的二次减少和胰岛素抵抗的改善。

2型糖尿病前期菌群变化

2型糖尿病前期患者在其微生物群落中也有类似的发现,包括微生物多样性降低Akkermansia菌梭状芽孢杆菌属数量的减少瘤胃球菌属链球菌增多

如果可以确定2型糖尿病的“共同”微生物群分布,就有可能在机器学习预测模型中利用微生物生物标志物和临床参数,以可靠的诊断准确性区分2型糖尿病风险患者。其次,如果该模型被证明是成功的,所选择的微生物生物标志物可以用于监测患者的血糖控制和新疗法的引入。

03 肠道菌群对葡萄糖和胰岛素代谢的影响

肠道微生物群具有通过多种机制改变宿主葡萄糖稳态的能力,包括:

  • 发酵过程中代谢物产生及其产生的次级效应;
  • 炎症级联反应的激活导致细胞因子的释放;
  • 破坏肠粘膜屏障的渗透性,允许毒素流入;
  • 通过肠促胰岛素分泌的直接信号作用。

2型糖尿病患者表现出糖的膜转运、支链氨基酸(BCAA)转运、甲烷代谢、异生素降解和代谢以及硫酸盐还原的富集。同一队列显示细菌趋化性、鞭毛装配、丁酸盐生物合成以及辅因子和维生素代谢水平降低

微生物群对葡萄糖稳态的影响

Cunningham A L et al., Gut Pathog, 2021

04 肠道微生物群代谢物

短链脂肪酸、BCAAs、琥珀酸盐、吲哚、咪唑都是肠道厌氧发酵过程中产生的微生物代谢产物,是微生物-宿主信号通路的核心成分

这些代谢物主要由微生物群产生,如Akkermansia、普雷沃氏菌属Prevotella、瘤胃球菌属Ruminococus、粪杆菌属Faecalibacterium、真细菌属Eubacterium、Roseburia、梭菌属Clostridium、拟杆菌属、乳杆菌属、链球菌属、丙酸杆菌属Propionibacterium、梭杆菌属Fusobacterium。2型糖尿病病患者体内这些特殊微生物群的大部分已经耗尽。

Huda MN, et al., Front Endocrinol (Lausanne). 2021

丁酸盐、乙酸盐和丙酸盐是膳食纤维肠道发酵产生的最丰富的短链脂肪酸。乙酸盐和丙酸盐主要由拟杆菌门产生,而丁酸盐由厚壁菌门产生。短链脂肪酸被肠粘膜细胞直接用作能量来源,或转移到体循环中,为宿主产生重要的能量来源,并具有作为信号分子的能力。

短链脂肪酸如何影响葡萄糖代谢?

短链脂肪酸通过与选定的G蛋白偶联受体的偶联作用强烈影响葡萄糖代谢。这些主要在脂肪组织、肠道和免疫细胞中表达。GPR43和GPR119刺激促进肠内分泌L细胞分泌肠促胰岛素GLP-1。GLP-1增强葡萄糖诱导的β细胞胰岛素释放,抑制胰高血糖素分泌,保护β细胞免于凋亡,促进β细胞增殖并延长肠转运时间。

丁酸盐和丙酸盐对受体GPR41的刺激具有通过两种不同的作用机制诱导肠道糖异生的能力。

  • 首先,作为GPR41激动剂,增强肠道糖异生基因表达
  • 其次,通过涉及GPR41的肠-脑神经回路

短链脂肪酸还可以直接影响肝脏葡萄糖代谢,减少糖酵解和糖异生,增加糖原合成,降低血浆脂肪酸浓度。干细胞因子具有激活副交感神经活性的能力,从而增加食欲促进葡萄糖刺激的胰岛素分泌

短链脂肪酸通过AMP激活蛋白激酶(AMPK)活性的作用,通过增加葡萄糖转运蛋白4型(GLUT4)的表达来增强外周葡萄糖摄取。其次,在骨骼肌中,短链脂肪酸具有减少糖酵解的能力,导致葡萄糖-6-磷酸的二次积累,从而导致更大的糖原合成

▇ 乙酸盐

乙酸盐是最丰富的短链脂肪酸,被肠上皮吸收,通过门静脉输送到肝脏,并最终分布到外周组织,在那里被代谢。全身性乙酸盐具有穿过血脑屏障的能力,在那里它可以激活乙酰辅酶a羧化酶,导致神经肽表达增强,从而诱导下丘脑神经元激活并抑制食欲

▇ 丁酸盐

丁酸盐是结肠细胞的主要底物和能量来源,提供结肠粘膜至少60-70%的能量需求,对其增殖和分化至关重要。丁酸盐在维持结肠上皮稳态中发挥重要作用,主要是利用其抗炎特性,从而防止氧化应激产生活性氧和氮。在口服葡萄糖耐量试验期间,大量产生丁酸盐的微生物群与改善的胰岛素反应有关(这表明β细胞功能改善)。

餐后血浆丁酸浓度升高与丁酸肠杆菌Intestinimonas butyriciproducens 、Akkermansia muciniphila的丰度增加有关。值得注意的是,通过口服葡萄糖胰岛素敏感性(OGIS)模型评估,丁酸盐浓度与餐后胰岛素敏感性直接相关。

▇ 丙酸盐

肠道产生的丙酸盐是已知的糖异生的首选前体,其中约50%以这种方式利用。丙酸盐进入三羧酸(TCA)循环,通过三个连续的反应转化为琥珀酰辅酶a,生成的琥珀酰辅酶a重新进入TCA循环,并转化为草酰乙酸,即糖异生前体。

肠道丙酸酯释放增加与β细胞功能增强和葡萄糖刺激的胰岛素分泌有关,与GLP-1水平的变化无关。丙酸盐还通过直接抑制炎性细胞因子诱导的细胞凋亡为人类胰岛提供保护。

最后,用肠道丙酸盐补充超重患者导致能量摄入减少和肥胖,并且肽YY (PYY)和GLP-1的血浆水平升高。

膳食纤维的细菌发酵产生大量琥珀酸,通过激活肠道糖异生来改善血糖控制,对于丁酸和丙酸也是如此。

▇ 必需氨基酸

据报道,包括碱性氨基酸和芳香族氨基酸在内的少量必需氨基酸增加与未来发展2型糖尿病的风险增加五倍有关。血中碱性成纤维细胞生长因子水平升高也被证明是胰岛素抵抗的特征,与两种特定的细菌相关,即普雷沃氏菌拟杆菌

胰岛素抵抗患者表现出丰富的支链氨基酸生物合成,并被发现缺乏编码这些特定氨基酸的细菌内向转运蛋白的基因。在啮齿类动物中,普雷沃氏菌可诱导胰岛素抵抗,加剧葡萄糖耐受,并增加支链氨基酸水平。

▇ 吲哚丙酸

吲哚丙酸是细菌芳香族氨基酸分解代谢产生的代谢产物,与膳食纤维摄入高度相关,似乎可以降低患2型糖尿病的风险。它提供了有效的自由基清除活性,提示它可以保护胰腺β细胞免受与代谢和氧化应激相关的损伤。它还可能通过抑制电压门控钾通道,触发GLP-1分泌,参与调节肠内分泌L细胞的肠促胰岛素分泌

由肠道微生物群降解组氨酸产生的咪唑丙酸盐,通过作为细胞内胰岛素受体信号级联的抑制剂损害了细胞正确响应胰岛素的能力。

▇ 胆汁酸

胆汁酸是类固醇羧酸,主要通过限速酶7α‐羟化酶(CYP7A1)的作用从胆固醇衍生而来,然后在分泌到胆汁中之前与甘氨酸或牛磺酸结合。超过95%在末端回肠和结肠通过肠肝循环被重吸收。

胆汁酸的主要功能是小肠内脂类和脂溶性维生素的消化和吸收

乳酸杆菌、双歧杆菌、肠杆菌、拟杆菌、梭菌是影响胆汁酸合成、修饰和信号传导的主要肠道微生物群。它们具有通过解偶联过程控制初级胆汁酸(胆酸和鹅去氧胆酸)转化为次级胆汁酸(脱氧胆酸和石胆酸)的能力,以及代谢天然存在的FXR拮抗剂牛磺β-胆酸的能力。反过来,胆汁酸由于其强大的抗微生物活性,通过抑制细菌在肠道中的定居和生长来促进肠道稳态

除了在肠道消化和吸收中的作用外,胆汁酸还具有发挥激素作用的重要代谢作用的能力。

Xie C,et al., Nutrients. 2021

胆汁酸可以利用FXR和G蛋白受体5 (TGR-5)通过受体偶联信号调节葡萄糖代谢。FXR偶联只有通过原发性胆汁酸才有可能,并且具有减少糖异生、促进肝糖原产生、抑制GLP-1释放和刺激成纤维细胞生长因子(FGF-19)从回肠分泌的能力。

FXR信号抑制糖异生基因的表达,如那些编码磷酸烯醇丙酮酸羧激酶、果糖-1,6-双磷酸酶-1和葡萄糖-6-磷酸酶的基因。FGF-19通过降低CYP7A1的表达、抑制葡萄糖产生和诱导糖原合成来调节BA的合成。TGR-5(仅通过二级BAs结合)偶联导致肠L细胞分泌GLP-1,增加葡萄糖刺激的胰岛素释放,并促进前胰高血糖素转化为GLP-1。

在骨骼肌和棕色脂肪组织中,BATGR5信号通过刺激2型碘甲状腺原氨酸脱碘酶促进甲状腺素(T4)转化为具有生物活性的三碘甲状腺原氨酸(T3),导致更大的能量消耗。两种受体的偶联促进胰腺β细胞产生胰岛素

研究表明,使用钡螯合剂操纵钡池可以改善2型糖尿病患者的血糖控制。钡螯合剂在肠内结合钡,形成不可吸收的复合物,导致肠肝循环中断。胆汁酸螯合剂降血糖作用的潜在机制知之甚少,但据信涉及胆汁酸库组成的破坏、增强肝脏葡萄糖代谢、增加肠促胰岛素激素的释放和诱导肠道微生物群组成的改变

05 菌群缺失导致胃肠屏障功能受损

肠粘膜内层作为与潜在有害物质不良相互作用的预防性屏障,在免疫系统的调节中起着不可或缺的作用。

众所周知,2型糖尿病具有显著增强的肠道通透性,允许细菌穿过肠道上皮移位,导致引发低度炎症的宿主代谢性内毒素血症。由此产生的影响可以引发β细胞破坏胰岛素抵抗

如前所述,粪杆菌属Faecalibacterium、罗氏菌属Roseburia、双歧杆菌属都被认为具有防止细菌移位降低肠道通透性的能力。众所周知,2型糖尿病患者体内这些特殊微生物群的丰度已经耗尽。

06 炎 症 应 答

2型糖尿病的特征是慢性低度炎症状态,伴有大量炎症介质的异常表达和产生。患有2型糖尿病的个体产丁酸盐菌群数量减少,导致肠道轻度炎症

肠道微生物通过脂多糖(LPS)的活性激活宿主炎症胰岛素抵抗,脂多糖是革兰氏阴性菌细胞壁的重要组成部分。细菌片段和脂多糖被先天toll样受体(TLRs)识别,特别是TLR4,触发细胞内信号通路NF-κB的激活和促炎细胞因子的释放。LPS的释放还通过与在巨噬细胞和树突状细胞上表达的NLRP3炎症体和NOD样受体(NLRs)的高亲和力偶联来刺激局部免疫反应。炎性NF-κB级联中血清激酶(Jnk和IKK)的激活诱导胰岛素受体底物丝氨酸磷酸化,恶化胰岛素抵抗。

促炎细胞因子的释放会破坏葡萄糖代谢和胰岛素信号。2型糖尿病患者表现出肿瘤坏死因子-α水平升高,这与糖耐量改变、胰岛素抵抗增强和胰岛功能障碍密切相关。肿瘤坏死因子-α具有上调细胞因子信号转导抑制因子-3 (SOCS-3)转录的能力,该抑制因子与胰岛素受体的酪氨酸-960偶联,防止胰岛素受体结合。这导致IRS-1的降解和胰岛素信号通路的破坏

白细胞介素-1 (IL-1)是白细胞介素家族的一种炎性细胞因子,具有降低IRS-1表达、抑制GLUT-4向质膜移位和减少胰岛素刺激葡萄糖摄取的潜力。最近的研究表明,IL-1受体拮抗剂(IL-1RA)和IL-1β特异性抗体治疗改善了2型糖尿病患者的糖代谢和胰岛素分泌。

IL-6已被确定为2型糖尿病的独立预测因子。它对IRS-1、GLUT4和过氧化物酶体增殖物激活受体(PPARs)的基因转录产生长期抑制作用,并显著降低胰岛素刺激的酪氨酸磷酸化和胰岛素刺激的葡萄糖转运

以上部分是微生物群的改变直接或间接影响2型糖尿病的发展,那么微生物群会受到哪些因素的影响呢?

影响肠道微生物群的因素

Huda MN, et al., Front Endocrinol (Lausanne). 2021

以上因素都会改变肠道微生物群,其中如益生元、益生菌、FMT和间歇性禁食,都被认为是2型糖尿病的潜在疗法。

一些2型糖尿病的药物改善循环血糖水平部分通过调节肠道微生物群,这进一步支持了肠道菌群作为2型糖尿病治疗的可能性。接下来我们看看它们如何调节肠道微生物群。

07 药物引起肠道微生物群变化

肠道微生物的组成在个体之间有很大的差异,并被内源性和外源性因素不断改变。地理和环境因素,如饮食、疾病、生活方式、卫生和药物都会导致变化。抗生素治疗能够在给药后几年内破坏肠道微生物群落。

在斯堪的纳维亚的2型糖尿病患者中发现的拟杆菌属、普雷沃氏菌属双歧杆菌属的数量明显较少,这表明抗生素暴露与随后的2型糖尿病发展之间存在很强的相关性。2型糖尿病的诊断与抗生素处方数量之间的关系需要进一步建立因果关系。

抗生素可能使患者更容易发展为2型糖尿病,然而,在确诊前几年,有2型糖尿病风险的患者可能更容易患病。

下面,来看看抗生素治疗对肠道微生物群的影响,以及由此对肥胖和胰岛素抵抗患者代谢参数的影响

万古霉素显著降低了微生物多样性,厚壁菌门丰度降低,变形菌数量增多,尤其是乳杆菌属,外周胰岛素敏感性下降。包括双胍类、α-葡萄糖苷酶抑制剂、肠促胰岛素类药物、胰高血糖素样肽1 (GLP-1)受体激动剂、二肽基肽酶-4抑制剂和噻唑烷二酮类在内的降糖药物都会影响肠道微生物群。

▇ 二甲双胍

二甲双胍是2型糖尿病患者最广泛使用的口服药物之一,不会有意改变肠道微生物群。

  • 二甲双胍增加有益菌

然而,越来越多的证据表明,微生物群可能会增强某些效应。二甲双胍增加了Akkermansia属、双歧杆菌属乳杆菌属的相对丰度。其他丰富的关联包括拟杆菌属、丁酸球菌属、普雷沃菌属、巨球菌属和丁酸杆菌属。这些特殊的微生物群都具有产生短链脂肪酸的能力

  • 二甲双胍改善菌群多样性

二甲双胍治疗可改善肠道微生物多样性,快速改变肠道菌群组成,通过增加短链脂肪酸的产生,促进内分泌细胞活性,调节胆红酸(BA)的周转,减少内毒素血症,改善肠道功能。

  • 二甲双胍治疗减少脆弱拟杆菌

短期二甲双胍治疗与脆弱拟杆菌的丰度显著降低相关,导致肠道中BA糖链酸水平的二次增加。GUDCA抑制肠法呢样X受体(FXR)信号传导,从而改善葡萄糖耐量。重新引入脆弱拟杆菌逆转了使用二甲双胍后葡萄糖代谢的改善。

二甲双胍治疗下的微生物转移有助于改善血糖控制和不良反应

Forslund K, et al., Nature. 2015

▇ 格列本脲

其他糖尿病药物还没有像二甲双胍治疗那样被广泛研究。格列本脲对肠道微生物群α多样性的影响很小。它增加了Paraprevotellaceae 和普氏菌属 Prevotella 的相对丰度。当与二甲双胍联合使用时,达帕利沙星或格列齐特均未显示能显著改变2型糖尿病患者的肠道微生物群。

▇ 利拉鲁肽

在高脂饮食(HFD)中,利拉鲁肽降低了肠道微生物的多样性,降低拟杆菌门、变形菌门和放线菌门的丰度。所有与肥胖相关的菌(Romboutsia,Ruminiclostridium,Erysipelotrichaceae)的相对丰度也有所下降,同时与瘦相关的菌Blautia和Coprococcus有所增加

接受GLP-1激动剂联合二甲双胍治疗的患者,Akkermansia丰度高于接受单一利拉鲁肽治疗的患者。

08 间接性禁食影响肠道菌群

间歇性禁食被定义为一种周期性的饮食限制,已被证明可以延长寿命,并降低罹患包括2型糖尿病在内的各种年龄相关疾病的风险

动物研究表明,间歇性禁食可改善机体组成、糖脂代谢、减少炎症和自噬,肠道菌群可能在这一过程中发挥关键作用。虽然大多数人类间歇性禁食研究显示了一个有益的影响,结果还不完全确定。

最近一项使用糖尿病小鼠的研究报告称,28天间歇性禁食干预通过增加气球菌Aerococcus、棒状杆菌Corynebacterium、Odoribacter、乳酸杆菌的丰度,减少链球菌、Rummeliibacillus和Candidatusarthromitu的丰度,重组了肠道微生物群,从而降低了血糖和胰岛素水平,改善能量代谢

间歇性禁食引起的细菌丰度变化与血浆次级胆汁酸浓度、绒毛长度增加、肠道渗漏减少、血浆LPS水平降低相关,提示轻度炎症改善。更重要的是,抗生素治疗抑制了间歇性禁食对2型糖尿病的影响,提示微生物群是间歇性禁食改善2型糖尿病的诱因

间歇性禁食的另一种选择是禁食模拟饮食法,它含有非常的热量和蛋白质。禁食模拟饮食法通过增加 ParabacteroidesBlautia的数量,减少普雷沃氏菌科、Alistipes、Ruminococcaceae属的数量,重建肠道微生物群,使血糖水平正常化,改善血糖高db/db小鼠的胰岛素敏感性和β细胞功能

该研究进一步强调了胰岛细胞和β细胞的缺失可以通过禁食模拟饮食法介导的改变肠道微生物群来预防,提示禁食模拟饮食法通过胰腺β细胞的功能来改善2型糖尿病。

综上,间歇性禁食可调节肠道菌群,改善2型糖尿病。然而,这些发现需要在人类队列中进行验证,使用纵向研究来确定间歇性禁食在影响2型糖尿病结果中的长期有效性。

09
益生元、益生菌和合生元

益生元、益生菌和合生元能够调节肠道微生物群组成,目的是为改善葡萄糖代谢创造环境。越来越多的文献支持临床使用添加益生元、益生菌和合生元来改善2型糖尿病患者的血糖控制。

然而,由于研究方法(研究时间、补充量、患者人口特征)之间的异质性,阻碍了研究的比较,而且研究可用性差、单个研究的规模相对较小以及明显缺乏微生物群数据,数据仍然有限,这是具有挑战性的。

▇ 益生菌

益生菌是活的微生物,当以足够的量给药时,对个体的健康有益。

证据表明,益生菌能够改善肠道微生物群,从而实现更好的2型糖尿病控制,同时增强肠道完整性、降低循环LPS、降低内质网应激和改善外周胰岛素敏感性

一项荟萃分析,重点是研究补充益生菌对2型糖尿病患者糖化血红蛋白水平、空腹血糖和胰岛素抵抗的影响。共纳入了15项随机对照试验,涉及902名患者。结果表明,益生菌可降低基线水平的糖化血红蛋白(p = 0.02)、FBG(p=0.003)和胰岛素抵抗(p < 0.00001)。

有限的研究评论了微生物群的变化。两项研究提到了添加益生菌后的微生物群分析,并报告了细菌组成的变化。嗜酸乳杆菌Lactobacillus acidophilus的丰度从干预前的接近不可检测的水平显著增加双歧杆菌属(4.5倍)和乳杆菌属(两倍)数量的显著增加

▇ 益生元

益生元是食物成分,如不易消化的多糖或纤维,通过选择性刺激一个或有限数量的肠道微生物群的生长和/或活性而有益地影响宿主。

补充益生元与改善血糖控制有关,然而,根据益生菌研究报告,方法学的异质性也很大,导致文献不确定。

迄今为止最全面的荟萃分析,包括33个随机对照试验,涉及1346名参与者,分布在健康、肥胖和2型糖尿病队列中。仅关注糖尿病前期和2型糖尿病队列,与对照组相比,补充后FBG、糖化血红蛋白水平、空腹胰岛素浓度和胰岛素敏感性的相对降低,分别为基线值的7.15、7.00、16.58和25.34%。建议每日补充剂量大于10 g,持续时间至少42天,以持续改善血糖指标。

目前尚不清楚观察到的影响是与肠道微生物群的改变有关,还是因为发酵底物的可用性更高。文献中一直缺乏微生物群分析,直接归因于葡萄糖水平的改善。

研究表明,补充益生元六周可产生显著的双歧杆菌效果,并提高粪便短链脂肪酸浓度,但未观察到对整体微生物多样性的影响。其次,补充益生元可以增加细菌多样性,如Shannon和inverse Simpson指数所评估的,并增加2型糖尿病患者的丰富度。然而,在饮食治疗12周后,没有观察到葡萄糖控制的统计学改善。

▇ 合生元

合生元:”包含活微生物和被宿主肠道微生物群选择性利用以赋予‘宿主健康益处’的底物的混合物”。

一种合生元给六十名高血压前期患者2型糖尿病(两种乳酸杆菌和双歧杆菌各一种,一种链球菌和酵母,以及300毫克低聚糖)。据报道,干预后乳酸杆菌属(32.6%)和双歧杆菌属(131.6%)均有所增加,肠道致病菌(44.6%)显著减少,空腹血糖(3.3%)和HbA1c水平(14%)也有所改善

越来越多的证据表明,添加益生元、益生菌和合生元可以改善血糖控制。需要进行详细的工作来设计稳健的方法,以确定这些积极的变化是否直接归因于肠道微生物群的改变和所涉及的复杂代谢机制。一旦这种关系被更好地理解,在2型糖尿病的管理中利用这些饮食补充的潜力就可以充分发挥。

10 粪菌移植治疗,有待深入研究

粪便微生物群移植(FMT)是将最低限度操作的预先筛选的供体粪便转移到已确定的“患病”患者的肠道中,目的是纠正异常生物状态增加整体多样性并恢复微生物群的功能。

被诊断为代谢综合征的男性受体在接受异源菌群6周后,胰岛素敏感性提高,产丁酸盐菌群(Roseburia肠胃炎种)丰度增加

其次,一项研究报告了代谢综合征患者,观察到异体粪菌移植后HbA1c水平显著降低,并与肠道微生物群组成的变化相关。异体粪菌移植之前参与者基线微生物组中基因丰富度的降低与临床结果的改善相关。

应该注意的是,这两项研究的临床益处随着时间的推移而恶化,并且存在相当大的个体差异

因此,粪菌移植治疗虽有希望,但还需进一步研究,例如:

  • 确定最佳供体微生物群特征;
  • 计算补充治疗所需的适当给药频率和阈值,以延长微生物群植入的寿命;
  • 受体宿主因子是否具有调节治疗效果的能力。

11 2型糖尿病的风险因素及预防措施

2型糖尿病是一种多因素疾病。这意味着不是仅仅停止吃糖或开始锻炼就可以来避免这种健康状况。
以下是一些可能影响患2型糖尿病风险的因素:

肥胖

肥胖或超重患2型糖尿病的风险很大

不良的饮食习惯

美国糖尿病协会(ADA)强调,吃太多不健康的食物会增加你患2型糖尿病的风险。研究表明,经常吃高热量、加工食品和饮料的饮食,而完整的、富含营养的食物却吃的少,这样的饮食习惯会显著增加患2型糖尿病的风险。

看电视时间过长

哈佛大学公共卫生学院指出,长时间看电视(和久坐)可能会增加肥胖、2型糖尿病和其他疾病的风险。

缺乏足够的锻炼

就像体脂与胰岛素和其他激素相互作用影响糖尿病的发展一样,肌肉也是如此。通过心血管运动和力量训练可以增加的肌肉量,在保护身体抵抗胰岛素抵抗和2型糖尿病方面发挥着作用。

睡眠习惯

美国国家睡眠基金会指出,睡眠障碍会增加对胰腺的需求,从而影响身体胰岛素和血糖的平衡。随着时间的推移,这会导致2型糖尿病。

多囊卵巢综合征(PCOS)

根据2017年8月发表在《临床内分泌与代谢杂志》上的一项研究,被诊断患有多囊卵巢综合征(一种激素失衡疾病)的女性比她的同龄人患2型糖尿病的风险更大。胰岛素抵抗和肥胖是这些疾病的共同特征。

45岁以上

根据ADA的说法,年龄越大,患2型糖尿病的可能性越大。但近年来,越来越多的儿童和青少年被诊断出患有前体糖尿病和2型糖尿病。

✦ 预 防

对于预防2型糖尿病,没有万无一失的方法,但是根据上述风险因素进行相应调整,保持健康的体重,遵循健康的饮食,定期锻炼,降低高胆固醇和高血压等可以帮助预防这种疾病。

▇ 饮食

因为某些食物,如碳水化合物,直接影响你的血糖,所以饮食是控制糖尿病最重要的因素之一

重要的并不是不吃,而是尽可能均衡饮食。

一种简单的标准餐盘法控制饮食:

盘子的一半:不含淀粉的蔬菜

盘子的四分之一:瘦肉蛋白

盘子的四分之一:谷物或淀粉类蔬菜

按照上述方式吃完饭,如果你还觉得饿,可以再吃一点不含淀粉的蔬菜。重要的是,一定要慢慢吃,享受食物

餐盘法可以帮助你增加纤维摄入量。富含纤维的食物可以帮助减缓血糖上升的速度。让你有饱腹感,潜在地促进减肥提高胰岛素敏感性。高纤维食物通常富含维生素和矿物质,也可以增加营养

已有研究证明,鼓励患者摄入高纤维饮食可以提高产生短链脂肪酸的菌群数量,从而通过增加GLP-1的产量来降低糖化血红蛋白水平。接受高纤维饮食的患者HbA1c水平比对照组下降更大,更高比例的患者实现了充分的血糖控制(HbA1c < 7%)。

注:糖化血红蛋白(HbA1c)是红细胞中的血红蛋白与血清中的糖类(主要指葡萄糖)通过非酶反应相结合的产物。

进一步的临床研究,摄入地中海饮食(富含纤维),也报告了高心脏代谢风险个体的葡萄糖和胰岛素敏感性的改善

因此,高纤维饮食用于控制2型糖尿病是可能的。

▇ 运动

运动对于利用胰岛素(帮助将糖分转移到细胞中)和降低血糖至关重要。通过运动,新陈代谢加快,身体就会逐渐熟练地燃烧卡路里。此外,锻炼有助于保持胆固醇含量,避免胆固醇过高和斑块的形成(这些斑块可能会阻碍血液顺利通过动脉)。

你可能会说工作生活很忙,找时间锻炼很困难,但不得不说,运动非常重要。试着让运动变得有趣,给自己足够的动力,或者把锻炼计划写在本上,比如说每周150分钟的运动量。

常见运动活动的生理成分

Andrew Williams et al., CLINICAL,2021

运动方式对2型糖尿病患者健康相关结果的影响

Andrew Williams et al., CLINICAL,2021

重要的是,要选择适合自己的运动方式,比如说肥胖的人可能会减少负重训练,从而减少与冲击相关的肌肉骨骼问题加重的风险。

有人认为,2型糖尿病患者在运动过程中发生不良事件的风险增加,但不良事件的发生率较低,定期运动的好处远远大于风险

注:不稳定型心绞痛、不稳定呼吸系统疾病、未经治疗的心力衰竭或心肌病、严重主动脉狭窄和未控制的糖尿病患者,运动需要遵医嘱

总之,运动计划必须是有目标的并且是自己感兴趣的,才能坚持下去。

▇ 肠道菌群健康检测

定期进行肠道菌群检测,了解2型糖尿病的患病风险,也是一种可行的预防措施。当发现风险较高就及时调整,不恐慌不焦虑,对自身健康状况了如指掌。

12
结 语

2型糖尿病是一种复杂的多系统疾病,如果不加以适当的识别和治疗,可能会出现并发症。特定的肠道微生物群可能通过葡萄糖代谢途径的改变来避免2型糖尿病的恶化。

随着对微生物群的了解逐渐深入,利用微生物群来识别“高危”人群以及通过微生物群靶向治疗成为可能。对于益生菌,益生元等治疗方案还需进一步研究,最终目标是在已确定的风险人群中简化早期干预,真正做到可防可控。

主要参考文献

Cunningham A L,Stephens J W,Harris D A,Gut microbiota influence in type 2 diabetes mellitus (T2DM).[J] .Gut Pathog, 2021, 13: 50.

Huda MN, Kim M, Bennett BJ. Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Front Endocrinol (Lausanne). 2021 Apr 7;12:632335. doi: 10.3389/fendo.2021.632335.

Al-Jameel SS. Association of diabetes and microbiota: An update. Saudi J Biol Sci. 2021;28(8):4446-4454. doi:10.1016/j.sjbs.2021.04.041

Muñoz-Garach A, Diaz-Perdigones C, Tinahones FJ. Gut microbiota and type 2 diabetes mellitus. Endocrinol Nutr. 2016 Dec;63(10):560-568.

Forslund K, Hildebrand F, Nielsen T, Falony G, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015 Dec 10;528(7581):262-266.

Vitale M, Giacco R, Laiola M, et al. Acute and chronic improvement in postprandial glucose metabolism by a diet resembling the traditional Mediterranean dietary pattern: can SCFAs play a role? Clin Nutr. 2021;40(2):428–37

Tao YW, Gu YL, Mao XQ, Zhang L, Pei YF . Effects of probiotics on type II diabetes mellitus: a meta-analysis. J Transl Med. 2020;18(1):30

Zhang F , Wang M, Yang J, et al. Response of gut microbiota in type 2 diabetes to hypoglycemic agents. Endocrine. 2019;66(3):485–93.

Gérard C, Vidal H. Impact of gut microbiota on host glycemic control. Front Endocrinol (Lausanne). 2019;10:29.

Xie C, Huang W, Young RL, Jones KL, Horowitz M, Rayner CK, Wu T. Role of Bile Acids in the Regulation of Food Intake, and Their Dysregulation in Metabolic Disease. Nutrients. 2021 Mar 28;13(4):1104.

为什么会餐后疲劳?

谷禾健康

热门综艺《向往的生活》第四季中,嘉宾岳云鹏的“吃了就困”,“吃了睡,睡了吃”…意外抢镜。

他说自己,吃完饭就犯困 ↓↓↓

对于 “饭后就困” 这件事,网友们表示太真实,自己也一样 ↓↓↓

生活中,我们会发现很多人吃完就会感到疲倦,想睡觉,那么,

为什么吃完饭会想睡觉?

所有人都是这样的吗?

有没有可能通过一些方法改善?

……

饭后感到疲倦的程度可能会因人而异,因为它可能取决于许多因素,包括年龄、健康状况、食物的数量和类型、一天中就餐时间等等。

本文将归纳整理“餐后疲劳”的一些原因,从而帮助预防改善餐后疲劳。

Part 1 餐后疲劳原因

关于人们饭后感到困倦的原因,科学家们有许多假设。

根据一项实验假设,困倦的原因之一与下丘脑有关。这个假设主要在动物身上进行了测试。

科学家认为几个下丘脑区域,例如视交叉上核 (SCN)、外侧下丘脑 (LH) 和下丘脑腹内侧核 (VMH),与睡眠、清醒和食物摄入的调节有关。

睡眠和进食之间有很强的双向互动。

我们知道,身体需要能量来运作和生存。人体从食物中获取能量,食物通过消化过程分解并转化为燃料或葡萄糖,然后大量营养素为身体提供能量。这个消化代谢过程触发体内的各种反应。

以下列举的每一种原因都可能与餐后疲倦有关,虽然每个原因都是不同的,但餐后疲劳可以由这些因素的任意组合引发。

01  糖和精制碳水化合物

单糖和精制碳水化合物会迅速分解成葡萄糖,这可能会引发更突然和明显的疲劳。

研究表明,高血糖抑制控制清醒的食欲素。食欲素在下丘脑中最为活跃。

这里要提到orexin/hypocretin(食欲素/下丘脑分泌素)。

食欲素是一种调节清醒和食欲的神经递质。大脑在下丘脑中包含大约 10,000 到 20,000 个神经元,但这些神经元的轴突延伸到整个大脑和脊髓,那里也有食欲素的受体

它有什么作用?

科学表明,大脑食欲素神经元刺激清醒、警觉、进食、寻求奖励和健康的葡萄糖平衡。食欲素被认为是迄今为止最重要的唤醒刺激剂

因此,将白面包等精制碳水化合物换成高纤维(低升糖指数)碳水化合物对整体健康更好。

02 炎症和食物敏感性

研究人员认为,有些人饭后感到疲倦的另一个可能原因与炎症有关。TNF和IL-1b等炎性细胞因子似乎会抑制促进清醒的食欲素

有些人对食物过敏或敏感且因膳食中的特定成分而引起炎症。有趣的是,因食物敏感而被诊断和治疗后可以解决过度的餐后炎症

当你生病的时候,身体正在产生炎症反应来对抗入侵的病原体,那么你通常会感觉疲劳,想要多睡一会。

另外,你可能听说过“肠漏”,当肠道与身体其他部位之间的天然屏障破裂时,肠道就会发生“渗漏”,从而允许潜在有害化合物通过。当患有肠漏症时,食物中的更多成分会穿过肠道屏障并导致炎症激增

食物不耐受或敏感

食物不耐受也称为食物敏感性,不是过敏反应的结果。相反,它是当免疫系统的一个或多个方面响应于摄入的食物而过度增加时产生的

免疫系统很复杂,它可以帮助抵御感染、清除毒素和治愈伤害。然而,当其活动过于频繁或时间过长时,免疫系统过于活跃也会造成损害

在易患自身免疫的人群中,免疫系统活动的增加会在身体的某些区域产生抗体。例如,如果一个人患有桥本氏症,当他食用麸质等食物时,甲状腺抗体会增加,这会导致免疫系统过度飙升

为什么不是每个人都对相同的食物敏感?

如果这么多食物化合物都如此具有破坏性,

为什么不是每个人都有食物敏感?

为什么每个人都不是一直持续有食物敏感的症状?

一个人对小麦敏感而另一个人对乳制品敏感,为什么不同的人有不同的敏感度?

其中大部分与人的免疫系统的构建方式有关。某些人的免疫系统可能更擅长抵御感染,但也更有可能受到饮食刺激

人与生俱来的倾向不是固定的。生活方式也起着重要作用。压力、锻炼和阳光照射都会改变免疫系统对潜在食物诱因的反应。

——部分原因与基因有关

有人更容易对食物过敏。某些基因,例如大麻素受体基因 ( CNR1 ),在保护肠道屏障方面发挥着惊人的作用。该基因与较弱的肠道屏障相关,允许更多的炎症化合物通过 。

乳糜泻是一种遗传性食物不耐受。人类白细胞抗原 ( HLA )是一组基因,占乳糜泻遗传成分的 30-50%。食物敏感性最重要的蛋白质称为 MHC-DQ(编码在HLA-DQB1和HLA-DQA1基因中);十分之九患有乳糜泻的欧洲人具有HLA-DQ2 单倍型

通过全基因组关联研究(GWAS),HLA和几十个其他基因和基因家族与自身免疫性疾病等乳糜泻,克罗恩病,溃疡性结肠炎,类风湿性关节炎,1型糖尿病相关

所有这些自身免疫疾病的也被链接到食品触发器,并且可以通过特殊饮食来控制。

遗传酶紊乱也会导致食物不耐受。例如,乳糖和组胺不耐受都是遗传的。

不幸的是,食物敏感性的遗传学尚未得到很好的研究。我们才刚刚开始了解DNA 与理想饮食之间的复杂联系。

——压力

当我们感到压力时,我们的大脑会产生促肾上腺皮质激素释放激素(CRH)的信号。当这个信号到达肠道时,它会导致粘液产生增加。然而,随着时间的推移,粘液会“耗尽”,并且它形成的保护屏障会减少。因此,慢性压力最终会耗尽肠道的粘液层

CRH还可以独立于粘液屏障增加肠道通透性。增加的渗透性允许 LPS 穿过紧密连接并引发炎症

肠道和大脑紧密相连,一些研究人员提出,当肠道屏障失效时,血脑屏障也会失效。“漏脑”与神经系统问题有关,从痴呆症到抑郁症。因此,这种对话是双向的:心理健康状况不佳会导致“肠漏”,而“肠漏”会恶化心理健康

——肠道菌群

生活在我们肠道中的细菌与免疫系统进行交流。一个健康的肠道菌群有助于维持Th1和Th2免疫之间的平衡。它还促进Treg细胞,从而抑制免疫反应并预防肠道炎症、自身免疫和过敏反应

不平衡的肠道菌群甚至会引发眼睛的自身免疫,这种情况称为葡萄膜炎。眼睛和大脑一样,通常受到特殊屏障的保护,保护它们免受血液中的大多数化合物和免疫细胞的侵害。在葡萄膜炎中,肠道菌群导致 T 细胞穿过该屏障并攻击眼睛。

——脂多糖

在某些情况下,人的肠道菌群会通过产生脂多糖( LPS )(有时称为内毒素)来引起炎症。这些炎症化合物会破坏紧密连接并穿过弱化的肠道屏障。

一旦它们穿过肠道屏障,LPS 就会与 Toll 样受体 4 ( TLR4 ) 结合,进而激活NF-κB。NF-κB 是最重要的炎症信号之一:它会增加炎症细胞因子的产生,直接引发全身炎症 。

产生LPS最多的肠道菌群包括Akkermansia muciniphila,脆弱拟杆菌Bacteroides fragilis

来自脆弱拟杆菌的LPS可能会加速阿尔茨海默病。A. muciniphila 是一个更复杂的案例:在多项研究中,肠道中A. muciniphila 的增加与炎症减少有关。

抗炎饮食是改善肠道屏障和维持肠道菌群健康的关键一步。 

03 酸碱平衡

有限的研究表明,食欲素可能对血液中pH值的微小变化敏感。

血液酸度暂时下降,血液或组织变得稍微偏碱性时,食欲素更容易受到抑制,从而产生疲倦感

市面上有些茶发酵饮料宣传提神醒脑,正是因为它们是微酸性的(由于其乳酸含量,以及其他化合物)。酸菜和泡菜等食物也是如此

此外,运动被认为通过轻微和暂时提高乳酸来增加食欲素。此外,定期、适度的运动有益于整体健康。

然而,人体非常擅长将血液 pH值维持在一个严格的正常范围内。目前尚不确定发酵食品和运动会在多大程度上影响餐后疲劳

04 线粒体和ATP

如前所述,食欲素被葡萄糖抑制。但一些科学家认为,当有足够的能量相关分子,包括三磷酸腺苷 (ATP) 和丙酮酸时,食欲素可能不会那么容易被抑制

线粒体控制着能量相关分子的产生。从理论上讲,这意味着线粒体问题会减少 ATP,这可能会导致疲劳。然而,尚未发现线粒体健康与餐后疲劳之间的直接联系。

05 瘦素(Leptin)

瘦素随着脂肪量增加而增加。它也会在饭后上升。因此,瘦素被称为“导致体重减轻的饱腹感荷尔蒙” 和“饥饿荷尔蒙”。

在一些研究中,长期升高的瘦素水平与肥胖、暴饮暴食和炎症相关疾病有关,包括高血压、代谢综合征和心脏病 。然而,没有确定因果关系。

碳水化合物和脂肪的膳食比高蛋白食物更能增加瘦素。这可能在一定程度上解释了为什么碳水化合物比其他常量营养素更让人疲劳。

06 低NAD+

研究表明NAD+还可以增加陈代谢并作为能量平衡的信号。根据这一理论,健康的线粒体会产生更多的 NAD+,这可能会启动其他信号以增加能量摄入和消耗。理论上,低 NAD+ 可能会产生相反的效果。然而,这仍然不确定,主要基于动物数据,需要进行人体研究。

NAD+  中文名:烟酰胺腺嘌呤二核苷酸,又叫诺加因子,是人体中的一种重要辅酶,唯一能利用的物质,参与细胞物质代谢、能量合成、细胞DNA修复等多种生理活动。

NAD+ 是我们人体内本身就存在一种物质。对于NAD+的研究已达到了百年之久。

2019年6月,华盛顿大学医学院课题组在《细胞》杂志上发文指出,给老年小鼠补充一种来自年轻小鼠体内的酶,强化其体内的NAD+前体NMN表达,结果平均剩余寿命只有2个月的小鼠的寿命延长到4.6个月,延长2.3倍。如果换算成人类寿命,则是由余生仅为6年人却活了13.8年

07 激活副交感神经系统

一些专家说,餐后困倦是由于血液从大脑流向消化器官的轻微变化引起的。饮食会激活副交感神经系统 (PNS)。

副交感神经系统调节体内的某些功能,例如减慢心率、调节血压和消化。当胃因大餐而膨胀时会触发副交感神经系统。由于副交感神经系统信号,血流更多地流向工作的消化器官,而更少地流向大脑。这种轻微的血流分流可能会使人感到困倦和疲劳。

08 自身的昼夜节律

你可能会注意到午餐后比早餐或晚餐更累

这是因为人的清醒时间是有规律的,昼夜节律系统中所谓的12 小时谐波,在下午 1 到 3 点左右,你自然会感到更累。这是一个真实的现象。

研究表明,即使一个人不吃午餐,不知道一天中的时间,午餐后也可能发生高碳水化合物午餐会使这种情况恶化,而且似乎更可能发生在极早起型的人身上。

图源:Monk TH. Clin Sports Med. 2005 

从上图可以看出,上午10点以后,睡眠冲动开始上升,在下午2点左右达到峰值。橙色/红色的波浪线显示了疲劳的昼夜节律。另一部分(睡眠需求)说明了代谢产物(如腺苷)的稳定积累,这些代谢产物会导致疲劳。

归根结底,由于生理上的原因,人们午饭后更容易感到疲倦

09 胆囊收缩素(CCK)

一些研究人员认为,胆囊收缩素(CCK)是导致餐后疲劳的重要因素。CCK 是一种肠道激素,似乎主要响应富含脂肪或凝集素的膳食而释放

长链脂肪(饱和脂肪、MUFA、PUFA)可能是有效的 CCK 诱导剂。

在动物中,高蛋白饮食也会增加CCK。动物研究通常使用橄榄油中的脂肪酸来诱导CCK释放(油酸)。CCK 可能会:

引起困倦/疲劳,因直接与下丘脑相互作用

抑制下丘脑去甲肾上腺素,这是 CCK 诱导疲劳和抑制食欲作用的合理机制

刺激结肠(通过下丘脑),可能导致气体 

遵循昼夜节律

引起肠痛过敏反应 

给大鼠服用 CCK 阻滞剂可防止餐后疲劳。

也有研究认为,CCK对食欲素神经元的激活可能与CCK对其他脑区的作用相抵消。CCK激活食欲素神经元可部分降低其致睡眠和厌食作用。当CCK水平升高时,这种机制在食物摄入后维持清醒水平方面可能是明显的。(也就是说,可能会存在这样一种情况,当CCK水平足够高的时候,综合来说,它的致清醒作用>致睡眠作用)

一项人类的研究支持上述观点,男性志愿者在吃高脂肪食物时静脉注射CCK阻滞剂,感到更加疲劳、困倦和紧张,精力更差。

因此,CCK 影响人类餐后疲劳的机理尚不清楚。需要更大规模的人体研究。

10 高色氨酸食物

身体使用色氨酸来制造血清素,这是一种参与睡眠和放松的神经递质

当色氨酸与富含碳水化合物的食物(如土豆泥)一起食用时,它很容易进入大脑并提高血清素水平。血清素是一种神经递质,可降低唤醒。因此,高色氨酸食物摄入可能会让人更容易餐后困倦。

一些高色氨酸食物的例子包括:火鸡、金枪鱼、硬奶酪、面包、鸡肉、鸡蛋、花生和巧克力

11胰岛素诱导的低钾

胰岛素使细胞外的血清钾进入细胞内。这会稍微降低餐后钾含量,这是正常的,但与疲劳有关

在健康人中,饭后钾保持相对稳定。胰岛素产生的低钾通常被认为仅对糖尿病患者和高危人群有危险。

12 2 型糖尿病

糖尿病患者一直觉得筋疲力尽,这种疲倦感无法通过进食或多睡一会儿来缓解。

根据一项 针对患有 2 型糖尿病的成年人的研究,与没有慢性病的人相比,患有2 型糖尿病的人出现疲劳的可能性大约高出 10 倍

葡萄糖是我们身体所有细胞的主要能量来源,尤其是大脑,然而,对于 2型糖尿病,葡萄糖水平很高,葡萄糖无法进入细胞,这意味着细胞的整体运作能量较少。因此,人们会感到全身疲劳。更糟的是,无论是过高的高血糖还是低血糖水平,都可以进一步刺激疲惫

注意的是,2型糖尿病的疲劳通常是多因素的,研究表明, 压力、 抑郁、体重指数 (BMI)增加、缺乏运动都是 2型糖尿病患者疲劳的重要原因。所有这些因素都可以独立降低胰岛素敏感性,使胰岛素更难将葡萄糖从血液中输送到组织中,包括心脏、大脑和肌肉中的组织。

同时,许多2型糖尿病患者也有心脏病、肾损伤、脱水等并存疾病,这些会进一步增加疲劳。 已知许多治疗高血压的药物会导致疲劳。

13 过度饮酒

酗酒会让你感觉更累,尤其在饭后可能会变得更加明显。饭前、饭中和饭后饮酒会加剧白天的困倦,并恶化夜间睡眠的质量

综上,慢性疲劳综合症等复杂疾病总是涉及多种可能的因素,包括大脑化学、环境、健康状况和遗传,这些因素可能因人而异。

此外,神经张力和大脑化学的变化不是可以通过此处列出的方法自行改变的。本文中提到的因素大多数仅得到有限的人类或动物研究的支持。因此,如果较严重的情况需要就医。

Part  2  如何对抗餐后疲劳

1)首先排除引起疲劳的医学原因

纤维肌痛、抑郁症,还有慢性疲劳综合症等疾病,也会使人 虚弱无力。

此外,疲劳是类风湿关节炎(RA)常见的重要临床症状,尽管还没有明确的定义,但RA患者的疲劳被认为与疾病活动、生理功能、认知/情感功能和社会因素有关,这些因素相互影响从而使RA相关性疲劳呈现多维度的特性。

虽然应该与医生讨论可能会改善治疗症状,但也值得考虑你自己的日常生活饮食方式。事实证明,对一些人来说,一些小的生活方式改变可以大大提高能量水平并帮助缓解类风湿性关节炎的症状。

2) 运动

定期进行适度的运动对整体健康有益。运动可以让人们感到精力充沛,一些科学家认为食欲素可能是原因之一。

有限的人类研究支持这一理论:运动能够增加人体血液中的食欲素水平

此外,运动似乎会增加大鼠、狗和猫脑脊液中的食欲素。

研究人员认为,食欲素的来源可能是从垂体直接释放到血液中,从脑脊液中泄漏,或由肠道或胰腺产生。

运动会暂时使我血液酸化(增加乳酸),据推测,这会增加食欲素神经元的放电

有趣的是,食欲素 A可能会穿过血脑屏障。理论上,如果它在运动后在血液中升高,它也可能在大脑中升高。

3)保持充足的睡眠

疲劳可能是慢性病患者生活中最困难的方面之一。“每晚七到八小时的深度睡眠是帮助补充重要神经化学物质的理想选择,如天然内啡肽(疼痛调节剂)和血清素。

此外,睡眠还可以让关节和肌肉愈合和休息,调节肠道菌群,免疫和代谢。

4)补充蛋白质

每天摄入适量的健康蛋白质食物是个对抗疲劳的好方法。

各种氨基酸影响食欲素信号,研究人员认为,氨基酸通过一些机制刺激食欲素神经元,尽管这一点在人类身上尚未得到证实。

一项动物实验将谷氨酸合成的前体支链氨基酸(BCAAs)给予脑损伤小鼠。BCAAs恢复了轻度脑损伤小鼠食欲素神经元的激活,改善了觉醒障碍。缺乏人类数据。

在实验室中,非必需氨基酸比必需氨基酸更能激活食欲素细胞

一种理论认为氨基酸可以阻止食欲素对葡萄糖的抑制,因为它们告诉神经元周围有足够的能量

在细胞中,科学家们以这种方式对它们进行排序——从最有效到最无效

甘氨酸

天冬氨酸

半胱氨酸 (NAC) 

丙氨酸

丝氨酸

天冬酰胺

脯氨酸

谷氨酰胺

然而,还没有研究表明每一种如何影响复杂生物中的食欲素活性

5)乳酸

根据一种理论,为食欲素神经元提供乳酸可以阻止葡萄糖阻断食欲素神经元。乳酸可能会解除这些食欲素神经元的抑制并使其敏感,以备将来激发。

什么是乳酸?

乳酸是由丙酮酸通过乳酸脱氢酶 (LDH) 在正常代谢和运动过程中的发酵过程中产生的。

乳酸是一种关键的能量来源,也是食欲素系统的可能调节剂。科学家认为,星形胶质细胞释放的乳酸在平衡大脑活动和能量供应方面起着不可或缺的作用。

乳酸的健康益处:

具有神经保护作用;可预防认知疾病;为我们的大脑提供替代燃料;是一种强大的线粒体增强剂;增加去甲肾上腺素;增加食欲素。

以下是一些可能含有乳酸的发酵食品

酸菜; 泡菜 ;

一些富含果糖的水果等(但果糖不宜过多食用)

研究正在调查发酵过程中是否含有其他“能量相关分子”。比如在欧美地区比较流行的康普茶,据说含有乳酸、丙酮酸、丁酸和 ATP,西方人把它称作细菌酵母培养基(SCOBY)。 

此外,某些益生菌如乳酸杆菌会产生乳酸。

另一方面,引体向上、短跑、俯卧撑等剧烈的体育锻炼期间,身体会产生乳酸并进入大脑。

6)肠道菌群

肠道菌群平衡与健康对我们人体生理,食物消化,免疫炎症,代谢转化等十分重要。

纤维肌痛 (FM) 是一种普遍存在的综合征,其特征是慢性广泛疼痛、疲劳和睡眠障碍,诊断具有挑战性且难以治疗。已有研究表明肠道微生物可能在纤维肌痛综合征 (FMS) 和慢性疲劳综合征 (CFS) 中发挥重要作用。

此外,肠道菌群紊乱会引起炎症反应,其代谢产物如短链脂肪酸、皮质醇、瘦素、脂多糖、乳酸等均可以与食欲素互相调节影响。

如果长时间餐后疲劳,建议关注肠道菌群健康状况。

7) 抗性淀粉

GLP-1 是一种肠道激素,可以激活/激发下丘脑中的食欲素神经元。

科学家认为它也可能有助于让我们感到饱足,这可能会使我们吃得更少并进一步激活食欲素

GLP-1 可能像食欲素一样起作用,有时会代替它起作用,尽管这尚未在人类中得到证实 。

抗性淀粉可能会增加GLP-1并产生丁酸盐。丁酸盐可以为肠上皮细胞提供能量。

8)生酮饮食

有人认为生酮饮食可能会刺激食欲素,他们报告说主观上感觉更清醒。

生酮饮食的定义是低碳水化合物(通常低于 50 克/天)和高脂肪摄入量,导致血液中游离脂肪酸和酮体升高。当身体没有从食物中摄取足够的碳水化合物时,它会燃烧脂肪来产生能量。这会导致产生酮或酮体。 

生酮倡导者说,如果他们进入酮症,葡萄糖水平可能会很低,这更有可能激活食欲素。不过还没得到证实。

其次,有人称酮是“能量相关分子”,会向大脑发出信号,表明没有饥荒,理论上应该激活食欲素。

第三,酮是酸性的,所以人们说这也会增加食欲素。但是没有人类数据支持。

在动物中,生酮饮食会增加胃饥饿素(ghrelin)。胃饥饿素激活食欲素 。然而,人类研究表明其不会增加胃饥饿素(ghrelin) 

注:Ghrelin 是一种刺激食欲的饥饿激素,是一种多功能激素,它也由各种组织和器官产生,包括肠道、胰腺、肾脏、生殖器官、胎盘、骨骼和大脑。

9)健康的生活习惯

许多不健康的习惯可能会破坏体内的能量平衡。例如睡眠不足、吸烟、快餐、暴饮暴食、承受很大压力,喝太多咖啡,酗酒等。从长远来看,这些行为会降低你的能量水平,让你感到筋疲力尽。

因此,有必要寻找规律的锻炼、足够的营养、睡眠并设定健康的昼夜节律。

可以少食多餐,每隔几个小时吃适量食物,以保持能量水平。

均衡饮食。与其选择加工食品和淀粉类食品,不如选择以蔬菜等自然健康食物为主的午餐,包括全谷物,瘦肉蛋白等。

如果你长时间持续性觉得餐后疲倦,而且非常严重,甚至影响日常生活,最好去看医生。医生应该会诊断和治疗导致这种症状的潜在疾病(包括食物不耐受,糖尿病,乳糜泻等),同时考虑病史和进行一些相关的实验室检查。

主要参考文献:

Minerbi A, Gonzalez E, Brereton NJB, Anjarkouchian A, Dewar K, Fitzcharles MA, Chevalier S, Shir Y. Altered microbiome composition in individuals with fibromyalgia. Pain. 2019 Nov;160(11):2589-2602. doi: 10.1097/j.pain.0000000000001640. PMID: 31219947.

Roman P, Carrillo-Trabalón F, Sánchez-Labraca N, Cañadas F, Estévez AF, Cardona D. Are probiotic treatments useful on fibromyalgia syndrome or chronic fatigue syndrome patients? A systematic review. Benef Microbes. 2018 Jun 15;9(4):603-611. doi: 10.3920/BM2017.0125. Epub 2018 Apr 26. PMID: 29695180.

Chieffi S, Messina G, Villano I, et al. Neuroprotective Effects of Physical Activity: Evidence from Human and Animal Studies. Front Neurol. 2017;8:188. Published 2017 May 22. doi:10.3389/fneur.2017.00188

Venner A, Karnani MM, Gonzalez JA, Jensen LT, Fugger L, Burdakov D. Orexin neurons as conditional glucosensors: paradoxical regulation of sugar sensing by intracellular fuels. J Physiol. 2011;589(Pt 23):5701-5708. doi:10.1113/jphysiol.2011.217000

Romon M, Lebel P, Velly C, Marecaux N, Fruchart JC, Dallongeville J. Leptin response to carbohydrate or fat meal and association with subsequent satiety and energy intake. Am J Physiol. 1999 Nov;277(5):E855-61. doi: 10.1152/ajpendo.1999.277.5.E855. PMID: 10567012.

Puya Yazdi, Nattha Wannissorn , Possible Reasons You May Feel Tired After Eating, 2020, January 5  

Massudi H, Grant R, Guillemin GJ, Braidy N. NAD+ metabolism and oxidative stress: the golden nucleotide on a crown of thorns. Redox Rep. 2012;17(1):28-46. doi: 10.1179/1351000212Y.0000000001. PMID: 22340513; PMCID: PMC6837626.

Bruinstroop E, la Fleur SE, Ackermans MT, Foppen E, Wortel J, Kooijman S, Berbée JF, Rensen PC, Fliers E, Kalsbeek A. The autonomic nervous system regulates postprandial hepatic lipid metabolism. Am J Physiol Endocrinol Metab. 2013 May 15;304(10):E1089-96. doi: 10.1152/ajpendo.00614.2012. Epub 2013 Mar 26. PMID: 23531617.

Puya Yazdi, Nattha Wannissorn, 12 Natural Factors that May Increase Orexin & Wakefulness, 2020, January 6,

Monk TH. The post-lunch dip in performance. Clin Sports Med. 2005 Apr;24(2):e15-23, xi-xii. doi: 10.1016/j.csm.2004.12.002. PMID: 15892914.

Chang CH, Chey WY, Chang TM. Cellular mechanism of sodium oleate-stimulated secretion of cholecystokinin and secretin. Am J Physiol Gastrointest Liver Physiol. 2000 Aug;279(2):G295-303. doi: 10.1152/ajpgi.2000.279.2.G295. PMID: 10915637.

Liddle RA, Green GM, Conrad CK, Williams JA. Proteins but not amino acids, carbohydrates, or fats stimulate cholecystokinin secretion in the rat. Am J Physiol. 1986 Aug;251(2 Pt 1):G243-8. doi: 10.1152/ajpgi.1986.251.2.G243. PMID: 3740265.

Weaver SA, Janal MN, Aktan N, Ottenweller JE, Natelson BH. Sex differences in plasma prolactin response to tryptophan in chronic fatigue syndrome patients with and without comorbid fibromyalgia. J Womens Health (Larchmt). 2010;19(5):951-958. doi:10.1089/jwh.2009.1697

Chakravorty S, Jackson N, Chaudhary N, et al. Daytime sleepiness: associations with alcohol use and sleep duration in americans. Sleep Disord. 2014;2014:959152. doi:10.1155/2014/959152

结直肠癌防治新策略——微生物群

谷禾健康

2020年8月的一则消息让人深感痛惜,漫威系列电影《美国队长3》中饰演黑豹的演员查德维克·博斯曼因患结肠癌去世,享年43岁。

结直肠癌 (CRC) 是全球第三大常见癌症,每年有超过 100 万新病例和 600,000 例死亡。更糟糕的是,该病有越来越年轻化的趋势,有报告称,与1950 年出生的人相比,1990 年之后出生的人患结肠癌的可能性是其两倍,患直肠癌的可能性是其四倍

科学家正在研究其原因,遗传因素在癌症发展中的作用相对较小(<10% 至 30%);而某些环境因素,例如食用大量加工食品、高脂饮食、纤维摄入不足、压力、炎症,甚至在儿童时期过度使用抗生素,这些可能是导致年轻一代结直肠癌风险显著增加的潜在原因。

以上所有因素都会改变肠道微生物群并诱导肠道微生态失调,从而导致宿主免疫系统低下进而发展为各种疾病。

肠道生态失调可分为三种类型:

有益菌的丧失

病原体或潜在有害物种的扩张

整体微生物多样性的丧失

在结直肠癌患者中这三种类型的失调都存在。

本文主要围绕肠道微生物群的改变与结直肠癌的关系展开讨论,也包含益生菌、益生元、合生元、后生元在结直肠癌中发挥的重要作用,以及结直肠癌的预防措施。

01 结直肠癌的症状

结直肠癌早期可能不容易被发现,很多情况直到晚期才引起症状。最常见的症状包括:

排便习惯的改变,例如腹泻、便秘或大便变窄,持续数天以上;

腹泻与便秘交替;

一种需要排便的感觉,但排便后也依然不能缓解这种感觉;

直肠出血,伴有鲜红色血液;

大便中带血,使粪便看起来发黑;

痉挛或腹痛;

虚弱或疲劳;

不明原因的体重减轻

02 结直肠癌中微生物群的变化

结直肠癌患者具有独特的粘膜相关微生物群。例如,结直肠癌对微生物群的影响通常以微生物多样性的增加为特征,这似乎随着癌症的发展而进展——晚期结直肠癌样本(III 期和 IV 期)通常比早期结直肠癌样本(I 期)表现出更高的丰度

黏 膜 菌 群

结直肠癌患者中,黏膜菌群变化如下:

在癌变状态出现之前,也可以观察到黏膜相关微生物群的差异。来自息肉受试者健康对照组的粘膜相关微生物群之间存在显着差异,这表明肠道微生物群从很早的阶段就参与了癌症的发展。

* 关于息肉和腺瘤:细胞的分化速度超过正常速度就会形成息肉,广义上来说,腺瘤就是息肉的恶变。

腺瘤组织的特征是变形杆菌梭杆菌的丰度增加

另一个大型队列多组学数据集表明,微生物组和代谢组的变化发生在结直肠癌发展的早期阶段,这可能具有病因学和诊断重要性。在成年早期至中期长期(≥2 个月)接触抗生素60 岁时患结直肠腺瘤的风险增加有关。在结直肠癌患者中观察到的微生物群改变不仅限于肿瘤部位;也可以在周围的健康组织中看到。

正常和腺瘤患者体内微生物群主要细菌科的分布

Aprile, F. et al., Cancers,2021  

 (箭头的长度与文献中得出的科学证据的强度有关)

粪便菌群

结直肠癌的发展通常与这些菌变化相关:

变形菌门梭杆菌门的促炎或致病物种的增加;厚壁菌门的有益菌的减少。

结直肠癌患者的粪便微生物群是动态的,在癌症进展过程中会发生特征性变化。在中国队列中,健康个体的粪便样本以拟杆菌门和厚壁菌门为主,其丰度随着息肉-腺瘤-癌的进展而减少。相比之下,变形菌门的丰度随着结肠癌的发展而增加。

特别是,厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)、毛螺菌科(Lachnospiraceae)和脱硫弧菌属(Desulfovibrio)已被证明对早期结直肠癌具有特异性。

而与恶性肿瘤相关的菌有:Solobacterium消化链球菌属Peptostreptococcus、棒杆菌属Corynebacterium、Parvimonas、奈瑟氏菌属Neisseria、卟啉单胞菌属Porphyromonas、Gemella、产碱菌科Alcaligenaceae肠杆菌科Enterobacteriaceae

肠道细菌在结直肠癌发生和进展中的影响

Torres-Maravilla, E.et al.,Microorganisms2021

03 结直肠癌是怎么发生的?

本章节从炎症,DNA损伤,短链脂肪酸,胆汁酸代谢等多角度来阐述其与结直肠癌的关系,以及肠道微生物群在其中发挥的作用

有益菌和有害菌在结直肠癌环境中的作用

Torres-Maravilla, E.et al.,Microorganisms,2021

炎症

慢性炎症是结直肠癌的既定危险因素,炎症性肠病 (IBD) 患者始终比普通人群具有更高的结直肠癌风险,相应地,在结直肠癌患者中反复报道了促炎物种的增加。

· 具核梭杆菌 Fusobacterium nucleatum

它在小鼠模型中通过激活 TLR4 信号传导至 NF-κB 来增加结直肠癌细胞的增殖和结肠肿瘤发生,从而促进浸润特定促炎性骨髓细胞亚群转化为肿瘤 。

·  结直肠癌中的具核梭杆菌起源于口腔

超过 40% 的结直肠癌患者在肿瘤和唾液样本中都显示出相同的具核梭杆菌菌株。

在结直肠癌样本中显著富集的几种口腔共生细菌和致病菌,包括梭杆菌属、卟啉单胞菌属、细小单胞菌属、胃链球菌属、Gemella、Prevotella和Solobacterium

· 大肠杆菌

其他已知的与结直肠癌相关的促炎物种有产大肠杆菌素的大肠杆菌,它能增强结直肠癌早期肿瘤中的炎症活性氧(ROS)的产生

· 脆弱拟杆菌 Bactoroides fragilis

产肠毒素的脆弱拟杆菌Bactoroides fragilis,它通过Th17反应和NF-κB活化介导炎症,从而诱导骨髓细胞依赖的远端结肠肿瘤发生

肠道微生物群引起的肠道炎症导致结直肠癌发生

Torres-Maravilla, E.et al.,Microorganisms2021

· 促炎菌增加与有益菌减少相关

在结直肠癌中观察到的促炎菌种的增加与属于有益菌属瘤胃球菌属、双歧杆菌属、毛螺菌属、Oribacterium、脱硫弧菌属、梭菌属和乳杆菌属的抗炎菌种的减少相关。

· 菌群变化与代谢物浓度变化相关

此外,在结直肠癌中观察到的微生物群组成的变化也可能转化为代谢物浓度的变化。具体而言,一项代谢组学研究检测到结直肠癌中梭菌毛螺菌科丰度显着降低与代谢物对氨基苯甲酸和共轭亚油酸数量减少之间存在直接关联,这些代谢物具有抗炎和抗癌特性。

DNA 损伤

结直肠癌微生物群的某些菌能够直接诱导结肠上皮细胞的 DNA 损伤。例如,结直肠癌相关家族肠杆菌科中的一些菌株会产生ROS和大肠杆菌素,这是一种导致宿主结肠上皮细胞致癌突变的毒素 。这种毒素在致癌作用中的关键作用得到证实:产大肠杆菌素的大肠杆菌在 Apc Min/+中促进肿瘤发生;IL10 -/-小鼠以大肠杆菌素依赖性方式。潜在的突变过程可能是过去接触带有产生大肠杆菌素的pks致病岛的细菌的直接结果。

具核梭杆菌 F. nucleatum 的分子研究发现毒力蛋白FadA 及其参与上皮细胞转化促进结肠肿瘤发生。结直肠癌粪便宏基因组的meta分析证实了产生大肠杆菌素的基因簇pks和F. nucleatum的显着富集粘附素fadA。

结直肠癌患者的脱硫弧菌属的硫酸盐还原菌数量增加,这解释了在晚期结直肠癌异化硫酸还原酶亚基A的水平升高,该基因负责产生具有遗传毒性的硫化氢。

多项代谢组学分析报告称,与健康对照相比,结直肠癌粪便样本中的多胺(如腐胺和尸胺)增加,特别是,已知多胺亚精胺会增强大肠杆菌素相关的基因毒性

表观基因组失调可能是结直肠癌相关失调促进结肠癌发生的另一种方式。

短链脂肪酸

短链脂肪酸 (SCFA) 是多糖和不易消化的碳水化合物发酵的主要终产物,肠道微生物群依然可以利用它们。丁酸盐尤其具有一系列显著的促进结肠健康和抗肿瘤的特性;作为结肠细胞的首选能量来源,它保持粘膜完整性,减少促炎细胞因子,并诱导结直肠癌细胞系凋亡

结直肠癌和晚期结直肠腺瘤患者的粪便微生物群表明产丁酸细菌的丰度显着减少,且减少取决于结直肠癌进展。

粪便宏基因组的荟萃分析证实,负责结直肠癌中 短链脂肪酸产生的碳水化合物降解基因显著减少。微生物组和宏基因组的这些变化与结直肠癌患者中丁酸盐浓度的降低相吻合。

· 结合G 蛋白偶联受体 (GPCR),减少促炎细胞因子

除了作为能源,短链脂肪酸还作为配体结合结肠细胞和免疫细胞上的特定 G 蛋白偶联受体 (GPCR) 。因此,它们可以充当信号分子,通过 GPCR 减少促炎细胞因子的产生并增加大肠中调节性 T (Treg) 细胞的总数。

与短链脂肪酸特异性结合的主要 GPCR:

GPCR43 (FFAR2)、GPCR41 (FFAR3) 和 GPCR109A 

· 表观遗传效应——短链脂肪酸阻碍结直肠癌发生

组蛋白修饰的诱导,导致在细胞中NF-κB信号传导的抑制。

MUC4 表达的调节是短链脂肪酸阻碍结直肠癌发生的一个表观遗传学例证。由 MUC 基因编码的粘蛋白介导肿瘤与免疫细胞的相互作用,促进细胞增殖和转移。丁酸盐会降低结肠癌细胞系中 HNF-4α 的表达,进而降低 MUC4 的表达

短链脂肪酸表观遗传效应的一个独特机制是丁酸盐对脾酪氨酸激酶 (Syk) 的影响,这是一种在癌症进展中起关键作用的非受体酪氨酸激酶。

短链脂肪酸还能抑制COX-2酶,从而减少前列腺素的产生。它们一起帮助增加凋亡活性,减少肿瘤细胞的增殖,同时允许正常细胞增殖。

胆汁酸代谢

· 初级胆汁酸—>次级胆汁酸

初级胆汁酸在肝脏中合成,与牛磺酸或甘氨酸结合,并在肠道中释放。到达结肠后,胆汁酸被肠道微生物群的胆汁盐水解酶解偶联,随后被 7α-脱羟基细菌转化为危险的次级胆汁酸

肝脏中初级胆汁酸的合成和肠道细菌进行胆汁酸的生物转化

Jason M. Ridlon,et al.,  Gut Microbes,2016

· 次级胆汁酸升高—>结直肠癌

代谢组学分析证实,腺瘤和/或粘膜内癌中次级胆汁酸水平升高,包括脱氧胆酸 (DCA) 。在小鼠中,已发现 DCA 诱导肠道微生物群的改变,伴随着肠道屏障受损、低度炎症和结肠肿瘤。DCA 诱导的生态失调的特点是病原菌丰度增加有益菌丰度减少,微生物群落结构的这种变化本身就足以引起疾病。

与此同时,以抗癌特性著称的次级熊去氧胆酸(UDCA) 在结直肠癌患者中的含量较少

· 高脂肪低纤维饮食—>饮食改变—>抑制次级胆汁酸

一般来说,高脂肪和低纤维饮食早已被认为是结直肠癌的危险因素。具体而言,这种饮食与较低水平的结肠短链脂肪酸较高水平的结肠次级胆汁酸和粘膜增殖性癌症风险生物标志物相关。有意思的是,定向饮食改变(从高脂肪/低纤维饮食转变为低脂肪/高纤维饮食,反之亦然)导致癌症风险的粘膜生物标志物发生显着的相互变化,糖酵解发酵丁酸生成增加抑制低脂肪/高纤维饮食组中的次级胆汁酸合成。

04 用于结直肠癌诊断的菌群生物标志物

研究表明微生物组成发生了变化,伴随着微生物基因丰度和微生物相关代谢物的变化,这些变化都与恶性程度成正比。尚不清楚这些物种和代谢物是否直接导致肿瘤发生;如果不是,罪魁祸首可能是这些结构变化所创造的微环境,然后促进炎症、增殖和癌症进展。

无论如何,确定可重复的结直肠癌微生物生物标志物可能有助于设计用于结直肠癌诊断的非侵入性工具。例如,结直肠癌患者表现出促炎F. nucleatum的富集和降低的有益菌水平——这在区分结直肠癌样本和不同人群的对照方面表现良好,因此可能具有普遍用于非侵入性结直肠癌诊断的潜力。

· 寻求普遍特征,衍生代谢物作为早筛补充标志物

即使人类在肠道微生物群落的结构方面可能有所不同,但可能存在某些与结直肠癌相关的微生物失调的普遍特征。此外,肠道微生物群衍生代谢物(如 SCFA、胆汁酸和蛋白质衍生代谢物)的水平已反复报道与结直肠癌进展相关,并已被提议作为早期筛查结直肠癌补充生物标志物

· 潜在的预后标志物

除了提供诊断标志物外,肠道微生物群的分析也可能有助于结直肠癌的预后。例如,癌组织中具核梭菌F. nucleatum的富集与较短的生存期相关,因此可能作为潜在的预后标志物。

· 潜在检测/诊断方法——代谢组学特征相关性

另一种无创检测/诊断结直肠癌的潜在方法可能依赖于粪便样本代谢组学特征的相关性。除了短链脂肪酸(乙酸和丁酸盐),代谢产物如异种生物血红素、肽/氨基酸(脯氨酸和半胱氨酸)、维生素和辅助因子在结直肠癌样本中都显示出改变。

此外,结直肠癌宏基因组分析突出了蛋白质和粘蛋白分解代谢基因的富集,以及碳水化合物降解基因胆汁酸基因的消耗,这些基因可用作结直肠癌诊断的特征。

总的来说,需要进一步的研究来确定与结直肠癌普遍相关的微生物,以用于早期无创诊断和预后。

05 结直肠癌的微生物群干预 

目前,正在广泛寻找替代疗法以帮助治疗癌症。既然微生物群的失调与癌症风险和结直肠癌的发展密切相关,那么是否可以利用微生物的调节来帮助结直肠癌的治疗和预后?

接下来,对目前已有的益生菌,益生元,合生元,后生元在结直肠癌中的作用进行逐一分析。

益生菌

益生菌被定义为“活的微生物,当给予足够的量时,可以为宿主带来健康益处”。

益生菌的潜力不仅仅是调节肠道微生物群;它们已成为包括结直肠癌在内的多种疾病的宿主微生物组调节疗法的药物

很多时候我们知道益生菌有许多好处,但它通过哪几种途径影响?怎么调控?对于这些并不清楚。

目前已有的体内或体外关于结直肠癌使用益生菌的研究

Torres-Maravilla, E.et al.,Microorganisms,2021

许多研究已经探讨了益生菌菌株影响或与致病菌相互作用的方式,这些致病菌促进结直肠癌的发展,例如幽门螺杆菌、沙门氏菌、脆弱拟杆菌、具核梭菌和一些大肠杆菌菌株, 这些病原体能够降解肠道并释放剧毒化合物,从而破坏肠道稳态的平衡

益生菌正是通过降低环境的 pH 值、产生细菌素和降低促癌酶的水平来对抗这些致病菌的增殖。

· 益生菌和致病菌竞争

发现两种罗伊氏乳杆菌菌株ATCC PTA 6475 ATCC 53608减少肠病原性大肠杆菌(EPEC) 的感染。其机制可能与竞争排斥有关,即益生菌和致病菌株之间竞争上皮表面结合位点。通过与粘液层结合,罗伊氏乳杆菌可以对 EPEC 感染形成更强的物理屏障。

· 益生菌增强先天免疫功能

结直肠癌通常与免疫系统受损有关。TNF-α、IL-6、IL-1 和趋化因子通过促进血管生成和抑制免疫介导的肿瘤消除来诱导肿瘤生长,而树突细胞 (DC) 和自然杀伤 (NK) 细胞在早期防御癌症。益生菌可以增强先天免疫功能,包括中性粒细胞的吞噬活性和NK细胞的细胞毒活性;这种能力实际上可能是其抗感染或抗癌作用的根源乳酸菌(LAB) 菌株可调节髓样 DC 的成熟

微生物群和益生菌对结直肠癌的积极影响

Torres-Maravilla, E.et al.,Microorganisms,2021

益生菌促进巨噬细胞和树突状细胞分化,增强细胞毒性T细胞和NK细胞的活化。

· 益生菌介导抗肿瘤细胞因子 IL-18作用

促炎细胞因子为结直肠肿瘤发生提供关键保护,并且已经发现益生菌介导这种作用。抗肿瘤细胞因子 IL-18 通过 CD8 +细胞毒性 T 细胞 (Tc)、NK 细胞和 Th1 驱动的巨噬细胞活化的作用促进保护性宿主免疫。对IL-18缺陷的小鼠研究发现,乳酸乳球菌Lactococcus lactis subsp. cremoris C60可以恢复小肠固有层的T细胞群,从而导致CD4+ T细胞群中IFN-γ的产生反弹。除了 LAB 种类之外,酵母还能够免疫调节 IL-18 水平。

· 嗜酸乳杆菌 减少肿瘤数量

益生菌菌株还能够通过产生衍生分子细胞包膜成分来调节宿主免疫功能。大剂量嗜酸乳杆菌裂解物的给药显着减少了结肠炎相关结直肠癌模型中可见肿瘤的数量和平均体重。嗜酸乳杆菌裂解物作为免疫佐剂激活免疫反应。

· 益生菌对结直肠癌凋亡基因的调控

通过调控与细胞增殖和凋亡有关的基因影响结直肠癌。在 AOM/葡聚糖硫酸钠 (DSS) 治疗诱导的结直肠癌模型中,miR-155(诱导对化疗药物的抗性)水平显着增加

长双歧杆菌口服给结直肠癌小鼠导致 miR-155 以及 onco-miR-21a 的升高表达显着降低;此外,在健康和结直肠癌小鼠中,用长双歧杆菌治疗增加抑制肿瘤的 miR-145 和 miR-15a 的水平。鉴于 miR-21 的表达导致细胞增殖、血管内渗入、细胞迁移和转移增强,以及细胞凋亡率下降,这些共同导致癌症增强,因此益生菌对 miR-21 的影响特别有意义。

对益生菌罗伊氏乳杆菌的一项研究证明了来自热灭活的超声益生菌的高分子量分泌分子无细胞上清液成分的抗转移和抗增殖作用嗜酸乳杆菌20079胞外多糖(EPS) 通过细胞凋亡机制、免疫反应刺激和 NF-κB 炎症途径的失活对肿瘤细胞具有直接的细胞毒性作用。从酸奶中分离出的保加利亚乳杆菌B3 对结肠癌细胞 (HT-29) 具有抗癌作用。

· 益生菌菌株不存活也可发挥有益作用

据报道,死益生菌甚至细胞成分可以有效对抗癌症。植物乳杆菌的死菌株比活细菌能更好地抑制小鼠 AOM/DSS 诱导的结肠炎相关致癌作用。这是由于炎症抑制、细胞凋亡和增强 IgA 分泌的影响。死益生菌似乎比纯活益生菌更容易被 M 细胞吸收,从而产生更强的分泌免疫反应

宿主免疫系统与益生菌细胞成分之间的相互作用

Taverniti, V.et al., Genes Nutr. 2011

· 益生菌抑制表皮生长因子通路

一些益生菌与表皮生长因子受体 (EGFR)通路的抑制有关,表皮生长因子受体 (EGFR) 通路在结直肠癌相关信号传导中起重要作用。一些研究表明,在结直肠癌期间,EGFR 和 HER-2 基因的过表达导致该途径的失调,导致细胞增殖增加、细胞存活时间延长、抗凋亡作用和转移

总的来说,益生菌预防结直肠癌的一些机制包括改善宿主免疫应答、诱导细胞凋亡和抑制酪氨酸激酶信号通路。

益生元

一种选择性发酵的成分,允许在胃肠道微生物群的组成和/或活性方面进行特定修改,从而有益于宿主的健康和健康”。

益生元的好处包括对肠道病原体的抗菌活性、调节免疫系统、减少肠道炎症和结肠炎、预防结直肠癌、肠道稳态和调节宿主能量代谢。

· 菊粉调节肠道微生物群

益生元可以通过特定细菌的代谢对结肠产生有益健康的作用。研究表明,富含菊粉的食物可以增强拟杆菌中主要的丙酸盐生产者,这主要是由于拟杆菌科、卟啉单胞菌科,尤其是普氏菌科显著增加

菊粉还有助于减少厚壁菌门,这主要是由于较少的毛螺菌科。应该指出的是,厚壁菌门/拟杆菌门的高比例主要与炎症相关疾病有关,例如肥胖或糖尿病。因此,该研究中证明的较低比例表明菊粉具有保护作用。

此外,菊粉导致促炎菌群的大量减少,例如与脱硫弧菌属嗜胆菌属相关的菌群。

· 酚类化合物调节菌群

益生元酚类化合物如花青素、鞣花酸和鞣花单宁能够通过改变厚壁菌门、拟杆菌门和变形杆菌门的丰度来恢复所有群体细菌的生物多样性。

最常见的 NDO、低聚果糖 (FOS)、低聚半乳糖 (GOS) 和低聚木糖 (XOS) 会影响微生物群的组成,导致肠道双歧杆菌乳酸菌属数量增加。源自乳果糖的低聚半乳糖导致拟杆菌双歧杆菌增加厚壁菌减少。研究还表明,其他良好的丙酸盐生产者数量更多,例如ParaprevotellaParabacteroides属,两者都与健康益处相关,包括预防促炎性肠道疾病和结直肠癌。

· 发酵代谢物的生产——短链脂肪酸

前面章节我们已经了解短链脂肪酸能够通过多种机制严重影响结肠细胞的代谢、细胞代谢、宿主免疫反应和健康、信号通路、表观遗传学和基因表达。

· 直接作用

改变盲肠、结肠和粪便中细菌细胞的基因表达;增强结肠对微量营养素的吸收;外源代谢酶的调节。

金合欢胶是一种可溶性纤维益生元,可显着降低诱发结直肠癌的小鼠的β-葡萄糖醛酸酶水平

多酚可以抑制梭菌、拟杆菌丙酸杆菌的增殖,从而提高有益双歧杆菌乳酸杆菌的丰度。约10%的酚类成分是生物可利用的,其余部分被肠道菌群裂解成其他低分子量的酚类物质,可以被微生物群调节或吸收。

菊薯(Smallanthus sonchifolius)可以增加上皮粘液的产生并保持肠道紧密连接的完整性,从而防止细菌易位。

低聚糖等益生元可以通过模仿微绒毛乙二醇偶联物与细菌受体相互作用,从而阻止病原体附着在上皮细胞上,有效抑制病原体定植

枣多糖等益生元表明,它们可以影响某些有助于宿主健康的代谢途径,例如参与代谢的关键途径、ATP 结合盒 (ABC) 和双组分系统转运蛋白,以及 ABC 转运蛋白,包括那些预计会参与的转运蛋白糖和氨基酸代谢。

· 免疫调节

通过减少细胞增殖、刺激细胞凋亡的诱导、抑制血管生成和延迟转移过程来确保免疫防御和预防疾病。

菊薯可能有直接的免疫调节作用,并增加sIgA的水平。sIgA水平升高的原因是双歧杆菌属成员在盲肠中发酵的 FOS含量。菊薯补充剂对免疫系统有显著影响,这可以通过TNF-α/IL-10比例较低证明,代表了促炎细胞因子和抗炎细胞因子之间的平衡。一般来说,免疫系统的调节可以观察到更多的抗菌防御素、sIgA和抗炎细胞因子,主要是IL-10的产生

在一项结直肠癌患者的临床研究中,补充益生元显著增加了术前IgG和IgM水平。然而,术后补充IgG、IgA、总B淋巴细胞(CD19+)和抑制/细胞毒性T细胞(CD3+CD8+)水平均有所提高。益生元的使用增加了转铁蛋白的水平,缓解了身体的炎症反应。该研究的作者得出结论,术前一周推荐服用益生元来改善结直肠癌患者的血清免疫指标。

NVPS可以在体外激活巨噬细胞抑制结直肠癌。灵芝多糖(ghanoderma lucidum, GLP)与绞股蓝(Gynostemma pentaphyllum, gp)中提取的皂苷能明显改善小鼠炎症的肠道屏障。这种作用是通过减少息肉、将结肠M1转移到M2巨噬细胞、正向恢复e -钙粘蛋白/ n -钙粘蛋白比例、下调致癌信号分子来介导的。

合生元

“合生元”一词来描述具有协同作用的益生菌和益生元的组合。

在结直肠癌中,合生元已被证明通过多种不同的机制具有保护作用,包括调节肠道微生物群和免疫反应、减少炎症、生物合成具有抗肿瘤活性的化合物以及改善抗氧化系统。

例如,在结肠炎相关致癌模型中测试了益生菌 VSL#3 和菊薯(前面提到的益生元)共同给药效果

合生元显示出许多潜在的好处:它支持肠道屏障的完整性增加短链脂肪酸的浓度,以及参与内源性抗氧化防御系统的酶,并导致肠道微生物群的总体组成发生改变

· 合生元可增加 IL-2 和 IL-4 的分泌

前者对免疫细胞的调节有影响,与肿瘤大小呈负相关,而后者与TLR4的表达同时发生,导致先天免疫反应和抗肿瘤防御能力的提高

一项在在DMH/DSS大鼠模型的研究显示发芽糙米(GBR)与嗜酸乳杆菌/动物双歧杆菌亚种组合的保护作用。它可抑制肿瘤前病变(异常隐窖灶),并降低结肠中抗氧化酶(SOD)和凋亡相关蛋白(caspase-3和Bcl-2)的活性。作者推测,由于GBR是某些结肠细菌的良好底物,因此促进了结肠内的发酵和短链脂肪酸的产生,结肠上皮细胞可能利用增加的短链脂肪酸供应来产生额外的粘蛋白。通过这种方式,合生元可以调节结肠黏液的分泌及其在结直肠癌发生过程中的改变,以防止更先进的异常隐窝灶的形成。

同样,研究发现,食用含有B. longum (BB536-y)和低聚果糖的酸奶可以提高健康人粪便样本中的短链脂肪酸含量。该组合显著抑制了脆弱拟杆菌肠毒素的检测量。

· 另一种机制是通过改善抗氧化特性

例如,姜提取物与嗜酸乳杆菌菌株 MTCC 5401一起给药,对减少肠道炎症(即降低 TNF-α 和 IL-6 水平)和降低炎症相关基因Cox-2、iNOS和c-Myc的表达有积极作用。有趣的是,单独使用生姜提取物或 LAB 处理均没有对抗氧化特性产生任何影响。它们一起导致丙二醛(MDA,诱变剂和肿瘤促进剂)水平显著下降,超氧化物 (SOD) 和过氧化氢酶 (CAT) 水平显著增加

抗氧化剂表没食子儿茶素没食子酸酯 (EGCG) 已证明可用作乳酸菌属的益生元,因为与许多细菌不同,它们具有代谢酚酸(如 EGCG)所必需的苯酚脱羧酶和诱导酸苯酚还原酶活性。

柘木叶提取物与加氏乳杆菌组合从具有抗氧化活性的 β-酪蛋白和酚类化合物中释放生物活性肽。

乳酸菌和蔓越莓的组合。蔓越莓中的酚类化合物对某些乳酸菌株没有抑制作用,甚至可能作为益生菌的生长促进因子。从益生菌生物量(嗜酸乳杆菌CL1285,干酪乳杆菌LBC80R,鼠李糖乳杆菌CLR2)中提取的浓缩蔓越莓汁和细胞壁的组合对HT-29细胞有增强的抑制作用。此外,酚类化合物和益生菌生物量刺激了醌还原酶的活性,醌还原酶是一种II期解毒酶,提供了对有毒和活性化学物种的保护。

后生元

后生元是益生菌在细胞游离上清液中分泌的代谢产物的复杂混合物,包括酶、分泌的蛋白质、短链脂肪酸、维生素、分泌的生物表面活性剂、氨基酸、肽和有机酸,这些物质直接或间接地对宿主产生有益影响。

由于后生元不含活微生物,与它们的摄入量相关的风险最小化。在概念上类似于副益生菌制剂,即益生菌的灭活微生物细胞(完整或破裂,包含肽聚糖、磷壁酸和表面蛋白等细胞成分)或粗细胞提取物(即具有复杂的化学成分)。

鼠李糖乳杆菌(LR) KCTC 12202BP,已知它通过调节信号通路抑制细胞因子介导的小鼠和人肠上皮细胞凋亡。在裂解液中,研究人员鉴定了一种lr衍生的治疗性蛋白p8,该蛋白可抑制CRC增殖。

在益生菌L. casei ATCC334的条件培养基中发现了另一种肿瘤抑制分子铁铬。铁铬是一种铁载体,是结直肠癌细菌抗肿瘤功能的中介物,通过激活c-jun n -末端激酶诱导细胞凋亡。它能抑制癌细胞生长,但不能抑制炎症等癌前病变的出现。

下一代益生菌

· Akkermansia muciniphila

Akkermansia muciniphila可能有进一步的潜力用于抗癌免疫治疗,如靶向程序性细胞死亡蛋白1 (PD-1)的治疗。

一项关于对抗pd1治疗有反应和没有反应的患者的微生物群差异的调查发现了有趣的结果。A. muciniphila被发现在有反应者的微生物群中特别富集,其重要性通过将粪便微生物群移植到无菌小鼠中得到证实。A. muciniphila本身能够提高抗pd -1封锁的效力,给小鼠注射无反应菌群。鉴于针对PD-1蛋白及其配体PD-L1(程序性死亡配体1)的癌症免疫治疗日益普及,这一发现具有特别的相关性,该疗法已显示出对各种癌症患者的益处。

· Butyricicoccus pullicaecorum

目前正在研究的另一种新一代益生菌是丁酸球菌(Butyricicoccus pullicaecorum),它可以预防坏死性肠炎并减少盲肠和回肠中的致病菌数量,在一项人体干预试验中已报道其安全性

这种细菌也与结直肠癌有关,因为在晚期结直肠癌患者的粪便中,这种细菌明显较少。B. pullicaecorum的抗癌作用似乎与其高产量的丁酸盐有关,在DMH/DSS肿瘤发生的动物模型中,丁酸盐通过上调SLC5A8和GPR43抑制CRC细胞生长。已知SLC5A8和GPR43作为肿瘤抑制因子;缺乏SLC5A8的小鼠发生结直肠癌,而GPR43的激活可以预防结肠炎症和癌症。

· 合成益生菌

近日,研究人员发现,由戊糖片球菌Pediococcus pentosaceus和P8治疗蛋白组成的有效且稳定的合成益生菌可以减少结直肠癌,合成益生菌调节肠道微生物群缓解化学诱导的生态失调。

06 结直肠癌的预防

以下分别是结肠癌复发率高和低的人群偏爱食物:

综上,预防结直肠癌建议(仅供参考):

饮食

水果和蔬菜:例如绿叶蔬菜、芒果、浆果、哈密瓜等,多吃富含叶酸的食物。德克萨斯儿童医院临床营养师认为:叶酸含量低的饮食可能会增加患结肠癌的风险,并且还会加速那些结肠癌患者的病情恶化。

全谷类:全麦面食、面包、糙米、小米等。富含纤维和营养素,可能有助于对抗结肠直肠癌。

奶制品:乳制品与结直肠癌风险降低相关,可使结直肠癌风险降低13%-19%。低脂高钙乳制品,包括牛奶、奶酪、酸奶等。

生活方式

限制饮酒:饮酒与结直肠癌风险增加有关,且具有剂量依赖性,酒精的摄入量越高,结直肠癌的风险就越大。男性每天不超过两杯,女性尽可能不超过一杯。

戒烟:吸烟是结直肠癌的危险因素,为了身体健康,尽可能少吸烟或者不吸烟。

结 语

肠道微生物生态系统通过其代谢和免疫功能对人体生理产生相当大的影响。不仅是结直肠癌,还包括许多其他疾病与肠道微生物群之间存在深刻而根本的联系,因此调节肠道微生物群代表了一种有吸引力的治疗选择。

目前,各类已发表的期刊中,围绕着肠道菌群的各类疾病深入研究仍是一大热点,受关注程度还在不断上升,微生物方向的探索对于癌症治愈是有希望的。然而,肠道菌群复杂多样,与众多环境及疾病因素息息相关,解析肠道菌群与健康的关系,更大规模的队列需要研究,更多因果关系需要探索,更多机制等着进一步阐明。

为推动肠道菌群的健康及临床应用,谷禾基于自身检测和数据分析优势设立开放基金,希望联合来自各个领域和方向的研究人员以及合作者,帮助完成大样本队列的实验和检测以及后续的深度分析。最终早日实现肠道菌群在现实生活和临床应用中的落地。

谷禾健康目前已完成超过2000例的结直肠癌和进展期腺瘤临床样本检测,并基于肠道菌群构建预测模型。模型在结直肠癌患者中具有较高的检出率,同时也可有效检出部分肠息肉样本。我们在数万例样本的实际测试表明肠道菌群可以作为结直肠癌的有效标志物,结合机器学习和大规模样本数据将来可以更好的帮助我们预防和控制结直肠。

基金主要支持方向

基于上述目的和定位,支持方向为人体肠道菌群研究,具有实际临床意义或健康检测价值的实验设计或设想。不仅限于科研人员,也面向公众、团体和机构。方向可以包括:传染病、肿瘤、慢性病、药物、营养或发育等,并不仅限于疾病或诊疗,也可包括饮食、生活方式、生长发育或认知心理等方向。

基金支持内容:

基金为长期开放,随时申请,申请通过后签订项目合同,并随时公布入选项目清单,并会同时定期公布项目进展情况。

项目会分三个阶段,根据项目进展情况逐步推进,由谷禾专家团队评议是否进入下一个阶段。

基金不直接提供资金,谷禾会免费提供包括:

1、研究方案设计   2、取样保存盒   3、样本处理测序   4、数据分析报告   5、论文图表及撰写支持   6、应用模型构建

如有需要,点此申请开放基金

主要参考文献:

Taverniti, V.; Guglielmetti, S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: Proposal of paraprobiotic concept). Genes Nutr. 2011, 6, 261–274.

Aprile, F.; Bruno, G.; Palma, R.; Mascellino, M.T.; Panetta, C.; Scalese, G.; Oliva, A.; Severi, C.; Pontone, S. Microbiota Alterations in Precancerous Colon Lesions: A Systematic Review. Cancers 2021, 13, 3061.

Jason M. Ridlon, Spencer C. Harris, Shiva Bhowmik, Dae-Joong Kang & Phillip B. Hylemon (2016) Consequences of bile salt biotransformations by intestinal bacteria, Gut Microbes, 7:1, 22-39

Mahdavi, M.; Laforest-Lapointe, I.; Massé, E. Preventing Colorectal Cancer through Prebiotics. Microorganisms 2021, 9, 1325.

Saito, S.; Kakizaki, N.; Okuno, A.; Maekawa, T.; Tsuji, N.M. Lactococcus lactis subsp. Cremoris C60 restores T Cell Population in Small Intestinal Lamina Propria in Aged Interleukin-18 Deficient Mice. Nutrients 2020, 12, 3287.

Torres-Maravilla, E.; Boucard, A.-S.; Mohseni, A.H.; Taghinezhad-S, S.; Cortes-Perez, N.G.; Bermúdez-Humarán, L.G. Role of Gut Microbiota and Probiotics in Colorectal Cancer: Onset and Progression. Microorganisms 2021, 9, 1021.

Coker, O.O.; Wu, W.K.K.; Wong, S.H.; Sung, J.J.Y.; Yu, J. Altered Gut Archaea Composition and Interaction With Bacteria Are Associated With Colorectal Cancer. Gastroenterology 2020, 159, 1459–1470.

Lin, P.-Y.; Li, S.-C.; Lin, H.-P.; Shih, C.-K. Germinated brown rice combined with Lactobacillus acidophilus and Bifidobacterium animalis subsp. lactis inhibits colorectal carcinogenesis in rats. Food Sci. Nutr. 2019, 7, 216–224

An, B.C.; Ryu, Y.; Yoon, Y.S.; Choi, O.; Park, H.J.; Kim, T.Y.; Kim, S.I.; Kim, B.K.; Chung, M.J. Colorectal Cancer Therapy Using a Pediococcus pentosaceus SL4 Drug Delivery System Secreting Lactic Acid Bacteria-Derived Protein p8. Mol. Cells 2019, 42, 755–762

真实案例 | 克罗恩病患者肠道菌群检测

谷禾健康

克罗恩病(CD)是一种慢性消化系统疾病,会引起消化道炎症和损害。

该疾病属于称为炎症性肠病(IBD)的一组病症,是一种慢性、免疫介导的肠道炎症疾病,其特征是反复发作的肠道炎症和不可逆的消化道损伤累积

据Meta分析估计 ,中国克罗恩患病率为每10万人2.29例,发病率为每10万人0.848例,在美国约有780,000人患有克罗恩氏病近年来呈快速上升趋势。目前,在临床上,克罗恩病无法治愈,需要创新的治疗方法和药物控制疾病的进展,减少并发症,提高患者生活质量

克罗恩氏病无法治愈,但有许多治疗方法可帮助治疗其症状,包括症状缓解和黏膜愈合。但是,很多患者对当前可用的治疗方案效果欠佳。克罗恩病的治疗仍存在巨大的未满足需求

克罗恩病的类型

克罗恩病有几种不同类型,按受影响的消化道面积分类。

结肠结肠炎是克罗恩病最常见的形式,它影响小肠(回肠)和大肠(结肠)的末端。

回肠炎这种克罗恩病仅影响回肠。

克罗恩氏结肠炎又称肉芽肿性结肠炎,这种疾病仅影响结肠。

胃十二指肠克罗恩氏病这种形式的疾病会影响胃部和小肠的始端(十二指肠)。

空肠回肠炎这种克罗恩氏病涉及小肠(空肠)上半部分的炎症。

克罗恩病的体征和症状

没有两个人会以完全相同的方式经历克罗恩病。

不同人的症状将取决于肠的哪些部位受到影响,疾病的进展程度以及治疗的效果如何。

大多数患有克罗恩氏病的人在小肠和大肠(结肠)都会发炎,这通常会引起腹泻,腹痛或绞痛。

其他常见的消化系统症状包括直肠出血,恶心或食欲不振,急需排便和便秘

克罗恩氏病还可能导致体重减轻,疲劳和消化系统以外的症状,例如关节痛,眼睛发红或发痒,以及皮肤发红或起伏不定。

克罗恩病的并发症

定义克罗恩病的持续炎症和肠壁损伤可导致许多并发症。这些并发症大多数会影响消化系统,但有些可能发生在身体的其他部位。

一种常见的消化系统并发症是肠梗阻,当炎症导致疤痕组织积聚并缩小肠道区域时,会发生肠梗阻。

其他消化系统并发症可能包括肛门撕裂,感染袋,营养不良,甚至结肠癌

患有克罗恩病的人罹患某些轻度肝病的风险较高,包括脂肪肝疾病,肝炎和原发性硬化性胆管炎(PSC),这种疾病的特征是肝脏的胆管系统发炎。

不太常见的克罗恩氏病会引起身体其他部位的并发症,例如口腔,关节,皮肤和眼睛问题。它也可能在怀孕期间引起问题。

克罗恩病的相关条件和病因

克罗恩氏病是肠易激症的一种形式,这是一个总括性术语,用于描述涉及消化道慢性炎症的疾病。IBD的另一种主要类型是溃疡性结肠炎,其特征在于慢性炎症和结肠和直肠内壁的溃疡

同样重要的是不要将克罗恩氏病或溃疡性结肠炎等肠易激病与肠易激综合症(IBS)混淆。这两种情况听起来相似,甚至有一些相同的症状,但有很大的不同

截止目前,克罗恩病的发病机制仍然不明。目前主流的观点认为,肠道上皮细胞,IgA以及肠道菌群为代表的 三大因素是导致克罗恩病发病的主要因素之一。例如中国科学院微生物研究所张福萍课题组发现,致病菌感染对该小鼠的影响要比野生型明显,其炎症性肠病(包括克罗恩病)的表现更加强烈,说明这一敏感基因的突变导致宿主中肠道菌群的平衡被破坏,肠道内环境的稳态发生改变。

克罗恩病如何诊断?

诊断克罗恩氏病的第一步是完整的病史,体格检查以及一系列测试以诊断克罗恩氏病并排除可能引起类似症状的其他疾病。这些包括肠易激综合症(IBS),乳糖不耐症和溃疡性结肠炎。

在体格检查期间,医生还可能会检查您的腹部是否有腹胀,肿胀以及疼痛或触痛的斑点。

诊断克罗恩氏病通常需要进行其他检查,其中包括:血液检查,粪便检查,结肠镜检查,上消化道(胃肠道)内窥镜检查,无线胶囊内窥镜检查以及X射线和CT(计算机断层扫描)扫描等影像学检查。

粘膜愈合是治疗克罗恩病的主要目标,但有些病人无法进行整个小肠的内窥镜评估。目前越来越多的科学研究表明克罗恩病与肠道菌群密切相关,且肠道菌群或可用于预测克罗恩病患者的小肠粘膜愈合

接下来我们分享一下谷禾肠健康道菌群检测在克罗恩病患者预测和治疗用药康复评估方面的案例:

男,46岁 ,   2020年确诊为克罗恩病

2003年怀疑克罗恩,未确诊,经治疗后得到改善,后持续肠镜检查未显示溃疡平时感觉良好,吃多了肚子容易不舒服。2020年因肠道出血住院,肠镜检查发现回盲瓣溃疡,病理检查确诊为克罗恩病,阿达木单抗治疗。治疗前后分别留取粪便进行肠道菌群检查。检测结果如下所示。

治疗前肠道菌群检测评估

治疗前肠道菌群健康总体状况:

总体健康评分:23分(总分100分),其中菌群,慢病和营养状况份值菌比较低

治疗前肠道菌群结果显示肠道菌群II度失调,菌种数量少,只检测124种,远低于这个年龄段人群的菌种数量(造成菌种数量少原因可能是饮食单一,用药或者长期的疾病状态),有益菌不足,有害菌过多,致病潜力高。此外多个菌群评估指标均显示欠佳。

多项病原菌超标,如:

大肠埃希氏菌Escherichia coli、血链球菌Streptococcus sanguinis和痢疾志贺氏菌Shigella dysenteriae超标。

接下来,我们逐一来看这些超标菌的作用。

1. 大肠埃希氏菌

革兰氏阴性菌,于 1885 年首次被发现。

大肠杆菌是条件致病菌,在一定条件下可以引起多种疾病,如腹泻,肠炎,尿路感染,呼吸道感染、菌血症和其他临床感染(如新生儿脑膜炎)。

致病机制

克罗恩病中,粘附侵袭性大肠杆菌对宿主细胞的侵袭作用(下图)。回肠粘膜的异常定植是由粘附侵袭性大肠杆菌与肠上皮细胞相互作用引起的。

Mirsepasi-Lauridsen HC,et al., Clin Microbiol Rev.2019

溃疡性结肠炎中,弥散粘附性大肠杆菌感染(下图)。弥散粘附性大肠杆菌通过细菌识别衰变/加速因子(DAF),癌胚抗原相关细胞黏附分子CEACAM1或CEACAM6(通过Afa / Dr CEA粘附素)来启动其与完全分化的上皮细胞的相互作用。

Mirsepasi-Lauridsen HC, et al., Clin Microbiol Rev. 2019

2. 血链球菌

属革兰氏阳性,无孢子形成的兼性厌氧菌。像其他链球菌一样,血红链球菌的细胞分裂沿单个轴发生,从而形成链球或成对链球菌。血红链球菌是一种共生细菌,广泛分布在口腔中,主要是牙齿表面,口腔粘膜的表面和人唾液。

致病机制

血链球菌最初的附着是由它的毛和粘附素促成的,葡聚糖和eDNA的产生促进血链球菌生物膜的成熟。流行病学研究表明,血链球菌可能抑制龋齿的产生。体外研究表明血链球菌和变形链球菌之间存在竞争,变形链球菌是最常见的致龋物种。

Zhu B,et al., Future Microbiol. 2018

16S rRNA测序结果表明,血链球菌可能与牙周健康有关。与患病的龈下微生物组相比,健康人的血链球菌的丰度显著增加。

然而,体外研究表明,血链球菌也可能促进后续与牙周炎相关的病原体附着。血链球菌与牙周炎相关病原体的相互作用。

这里提示我们“病从口入,牙好身体好”,并不是空话,多数的慢病患者均有口腔或牙周病问题。

3.痢疾志贺氏菌

革兰氏阴性细菌,兼性厌氧,不运动。

痢疾志贺氏菌产生志贺毒素,引起细菌性痢疾或志贺氏痢疾。接触细菌后1至2天开始出现症状。志贺菌病的症状包括:

腹泻(有时带血),发热,肚子痛,粪便稀少,含有粘液,脓液和血液。即使排空也感觉需要排便。与患者描述的症状接近。

炎症性肠炎以及肠道病毒感染在内的多项疾病风险评估显示中高风险,炎症性肠炎分值为0.83

治疗方式

阿达木单抗治疗,同时结合肠道菌群检测结果补充益生菌,调整饮食结构和生活习惯。

|修美乐(阿达木单抗注射液)是目前中国首个可以用于治疗克罗恩病的全人源抗肿瘤坏死因子(TNFi)单克隆抗体。

治疗6个月后肠道菌群检测评估

健康总体评估和肠道年龄:

治疗后肠道菌群总体情况:

治疗后病原菌检测:

治疗6个月后患者无再次出血情况,感觉良好,肠道菌群结果显示肠道菌群基本恢复平衡,有益菌虽仍偏少,但较治疗前增加有害菌数量较治疗前减少原来超标的病原降低或者消失

包括炎症性肠炎在内的多项疾病风险较之前显著下降,炎症性肠炎分值仅为0.38

其中炎症相关指标显示(治疗后):炎症指标,白介素6,钙卫蛋白和高敏C反应蛋白均恢复正常

炎症相关指标前后对比

治疗前:

治疗后:

可以看到明显改善

我们再看,这些炎症指标发挥什么作用。

白介素6

白介素6 ( IL-6) 是细胞因子网络中的重要成员,是一种功能广泛的多效性细胞因子,炎症反应发生后,IL-6率先生成,产生后诱导产生CRP和降钙素原(PCT)生成。如在发生感染、内外伤、外科手术、应激反应、脑死亡、肿瘤产生以及其他情况的急性炎症反应过程中会快速产生。IL-6参与许多疾病的发生和发展,其血液水平与炎症、病毒感染、自身免疫疾病密切相关,它的变化比高敏C反应蛋白更早。

IL-6分泌或基因表达异常往往可导致一系列疾病的发生,在病理状态下IL-6可大量分泌进入血液循环,检测IL-6对于了解病情、判断预后都有非常重要的意义。

钙卫蛋白

钙卫蛋白是钙卫蛋白是一种来自于中性粒细胞分泌的钙和锌结合蛋白,广泛分布于人体细胞、组织和体液中。

钙卫蛋白是一个相当稳定的蛋白,随着钙的出现而出现,在粪便中不易被酶降解,从而使其可能成为一个方便的肠道炎症监测指标

目前越来越多的临床和研究认可将钙卫蛋白则体现了黏膜的病变程度,肯定其在炎症性肠病的治疗中具有重要的指导作用。

此外,粪钙卫蛋白目前已经越来越多地用于预测IBD维持治疗期间的疾病复发。内镜检查可以提供客观的黏膜炎症改善结果,但内镜是一种侵入性检查,频繁进行患者难以耐受。粪钙卫蛋白是一种可以准确反映肠道黏膜炎症病变的非侵入性生标志物

但是注意对于腹泻患者而言,粪便钙卫蛋白正常不能排除药物性腹泻(例如,二甲双胍,质子泵抑制剂引起的腹泻)、胆盐吸收不良或其它腹腔疾病。轻微的结肠炎也可能使钙卫蛋白的检测值升高。

 高敏C反应蛋白 

阿达木单抗克罗恩病的获批是基于两项关键性临床研究的结果,其中包括一项2期、随机、双盲、多中心研究,评价两组阿达木单抗剂量方案在高敏C反应蛋白升高的中重度活动性克罗恩病中国受试者中的药代动力学、安全性和有效性。

有效性结果证实:与阿达木单抗80/40 mg治疗方案相比,存在中度至重度活动性克罗恩病和hs-CRP水平升高的中国受试者采用阿达木单抗160/80 mg治疗方案治疗后可更快获得临床缓解和临床应答,而且客观疾病指标(hs-CRP和粪便钙卫蛋白)的改善更快。

常见问题与解答

1.  克罗恩病的早期征兆是什么?

虽然没有两个人会以相同的方式经历克罗恩氏病,但大多数人会出现腹泻和腹痛或绞痛。其他常见症状包括直肠出血,恶心,食欲不振,急需使用洗手间和便秘。

体重减轻,疲劳,关节痛,眼睛发红或发痒以及皮肤发红或起伏也可能发生。

2.  哪些饮食变化帮助控制克罗恩病?

没有克罗恩氏病的单一饮食。但是,您可能要避免的常见诱因包括全谷类,坚果和种子,未加工的水果和蔬菜,辛辣食物,高脂或油腻食物以及含咖啡因和酒精的饮料。

在爆发期间,当症状最严重时,坚持温和,流食类的食物可能会有所帮助。

3.  如果不治疗,会发生什么?

克罗恩病伴发的持续炎症会导致许多并发症。一个常见的消化问题是肠道阻塞,当炎症导致疤痕组织积聚并缩小肠道区域时,就会发生肠道阻塞。其他并发症包括肛门撕裂,感染袋,营养不良和结肠癌。

Tips

不同克罗恩病患者之间的疾病表现和肠道微生物组均不同,治疗结果差异可能也很大,但是本案例让我们看到了菌群监测对于克罗恩病的辅助判别和治疗疗效潜在的应用价值。

肠道菌群真正应用于临床并造福病人需要扎实的临床数据和更多的临床积累。我们会积极探索和与更多临床科室合作,将谷禾多年的菌群检测与临床需求相结合,科学和精准的推进肠道微生态临床应用。 

相关阅读:

真实案例 | 一次肠镜检查前后的肠道菌群变化及菌群恢复指南

菌群结合临床干预治疗案例分析

主要参考文献:

Allocati N, Masulli M, Alexeyev MF, Di Ilio C. Escherichia coli in Europe: an overview. Int J Environ Res Public Health. 2013;10(12):6235-6254. Published 2013 Nov 25. doi:10.3390/ijerph10126235

Mirsepasi-Lauridsen HC, Vallance BA, Krogfelt KA, Petersen AM. Escherichia coli Pathobionts Associated with Inflammatory Bowel Disease. Clin Microbiol Rev. 2019;32(2):e00060-18. Published 2019 Jan 30. doi:10.1128/CMR.00060-18

Haffajee AD, Teles RP, Patel MR, Song X, Yaskell T, Socransky SS, Factors affecting human supragingival biofilm composition. II. Tooth position. J Periodontal Res. 2009 Aug; 44(4):520-8.

Zhu B, Macleod LC, Kitten T, Xu P. Streptococcus sanguinis biofilm formation & interaction with oral pathogens. Future Microbiol. 2018 Jun 1;13(8):915-932. doi: 10.2217/fmb-2018-0043. Epub 2018 Jun 8. 

 Lindsey KonkelMedically, Kareem Sassi, MD.

What Is Crohn’s Disease? Symptoms, Causes, Diagnosis, Treatment, and Prevention, 2020.5.29

修美乐®用于治疗中至重度成人克罗恩病的关键临床研

《中国大陆克罗恩病的患病率和发病率:55年研究的荟萃分析》2010;11(3):161-6.

肠道微生物群的老化及其对宿主免疫力的影响

谷禾健康

虽然每个人都会老去,但是衰老的速度却不一定相同。生理年龄是每个人的遗传,环境和生活方式的影响。

人的一生,从出生到成年到老年,微生物组在免疫系统成熟,功能和调节中起着基本作用。免疫系统和微生物组形成一种互惠关系。

随着年龄的增长,免疫系统和肠道微生物组的组成和功能都会发生重大变化,这与对传染病的易感性增加有关。

01)免疫衰老的一般标志

02)衰老和肠道微生物组

03)微生物老化的衡量指标

04)微生物老化加快免疫衰老和虚弱

05)肠道微生物组对疫苗反应的影响

06)对抗与年龄相关宿主免疫力下降的营养策略

07)恢复肠道微生物稳态、减少炎症和免疫衰老

08)健康长寿的普适方式

01 免疫衰老的一般标志 

免疫衰老

“免疫衰老”是指在老年人中观察到的功能障碍,免疫反应有缺陷或异常。

与年龄相关的免疫反应的质量和数量的变化导致触发有效抗体和细胞反应抵御感染和疫苗的能力逐渐下降。

衰老的T淋巴细胞生物学研究十分突出,但所有造血源性细胞都显示出衰老的特征,包括功能失调的抗体产生B细胞、抗原呈递细胞、自然杀伤细胞和中性粒细胞。最早的造血祖细胞中也报告了表观遗传学改变,这可能解释了观察到的年龄相关的髓样细胞偏斜。

主要淋巴器官的老化(骨髓和胸腺磨损)、慢性抗原过载(如CMV)、肠道失调或炎症是免疫衰老的驱动因素,这些因素与遗传缺陷、细胞应激和/或细胞衰竭的累积一起,会导致免疫适应度随着年龄的增长而下降。

炎症 

炎症是一种高度控制的生理过程,对对抗病原体、清除碎屑和愈合损伤至关重要。

随着年龄的增长,由于基因、环境和生活方式因素的复杂和不断变化的相互作用,促炎和抗炎之间的动态平衡下降。

慢性炎症状态是发病和死亡的一个重要危险因素。包括慢性感染、缺乏运动、内脏肥胖、饮食、心理压力、睡眠不足或肠道失调等多种因素都会引发和维持炎症。

长期暴露于应激源会加速细胞衰老和先天免疫失调,这是炎症的一个主要特征,反映在局部和全身炎症介质与白细胞介素-6(IL-6)、肿瘤坏死因子TNF-α 水平持续升高,IL-1β,C-反应蛋白(CRP)在老年人中普遍存在。

尽管先天性单核-巨噬细胞网络的失调可能是炎症的中心,但新的证据表明衰老细胞(包括T细胞和B细胞)通过其衰老相关的分泌表型参与慢性低度炎症的关键作用。

而慢性表达或暴露于炎症刺激可能使预先激活的免疫细胞对进一步的刺激难以耐受,从而导致观察到的老年人感染性疾病的频率和严重程度增加

因此,先前存在的炎症已被证明是疫苗反应性的一个重要决定因素。

此外,炎症可能通过助长年龄相关疾病(包括代谢综合征、心血管疾病、肌细胞减少症、癌症和神经退行性疾病)而产生多种健康后果,因为大多数(如果不是所有)年龄相关疾病都具有炎症特征。

尽管衰老、炎症和慢性病之间存在着共同性,但生物医学研究继续巨额花费来单独解决这些疾病状态。这就提出了一个具有挑战性的问题,即:

针对慢性低度炎症或引起炎症的机制是否可能减缓衰老及其相关疾病

虽然临床前研究表明炎症是导致年龄相关疾病和免疫反应性降低的一个因素,但证实这一假设的人类数据在很大程度上是缺失的。

而最近一项CANTOS的研究(Canakinumab Anti-inflammatory Thrombosis Outcomes Study)为老年人带来了巨大的希望。

对10000多名既往有心肌梗死史的稳定患者进行卡那单抗(Canakinumab,一种针对白细胞介素-1β的人单克隆抗体)治疗,可显著降低参与者的全身低度炎症。

重要的是,治疗方案可以预防复发性血管事件和肺癌的发生。虽然这些研究唤起了人们对有效抗衰老疗法的希望,但通过靶向阻断关键炎症介质来减少全身炎症需要在对传染病的易感性方面谨慎平衡。

这些免疫指标包括基于炎症年龄评分的iAGE、依赖于免疫球蛋白糖基化的聚糖生长或南丁格尔健康指数,其中糖蛋白乙酰化的全身炎症预测呼吸道感染、心血管疾病和全因死亡率的长期风险。

随着老龄化社会的健康管理成为一个日益增长的经济负担,这种免疫指标代表了有希望的工具,以确定风险个人的早期药物或营养干预。

02 衰老和肠道微生物组

为了应对不断变化的环境,肠道微生物通过菌种组成和代谢功能的变化动态响应。这个过程受到宿主免疫系统的严格调控,想象宿主免疫系统是一位建筑师,通过允许共生细菌生长和占据粘膜生态位,同时选择性地消除或中和有害微生物,从而塑造肠道微生物群。

随着年龄的增长,免疫适应度逐渐下降,宿主与微生物动态信号交换的监测受到损害,从而对宿主健康和免疫造成广泛的功能后果(图1)。

图1 模型:微生物老化及其对宿主免疫的相关影响

Nabil Bosco & Mario Noti,Genes & Immunity, 2021

(1) 年龄相关的肠道微生物群落变化和相关的肠道组织功能下降可能加剧炎症

(2) 由全身低度炎症引起的慢性免疫刺激、代谢组和微生物刺激的变化导致免疫衰老

(3) 免疫功能受损(如胸腺退化、造血功能改变),导致老年人感染风险增加,老年人接种疫苗反应差

在人类中,年龄相关的菌群失调(微生物老化)特征是梭状芽孢杆菌双歧杆菌数量减少变形菌门以及肠杆菌科等病原菌数量过多。

肠道微生物群落结构的组装也可能取决于宿主器官的功能。考虑到肠道的组织功能和完整性受到与年龄相关的显著变化,如再生能力、上皮屏障形成、黏液层组成和蠕动的改变,随着我们年龄的增长,粘膜生态位的变化很可能导致了失调状态。

这种肠道完整性的亚临床改变可能会促进微生物向全身部位渗出,全身性低度炎症,慢性炎症的发生和过早死亡。然而,确定人类的因果关系仍然具有挑战性,下文将进行讨论。

虽然,我们已经开始了解细菌的分类组成和多样性是如何随着年龄的变化而变化的,但我们对细菌进化和与宿主适应性相关的功能后果的了解仍然有限。有两种可能的情况:

1  肠道微生物群落结构中与年龄相关的变化是宿主衰老过程中发生的生理组织适应的简单结果

2  与年龄相关的失调是细菌进化的产物,通过使特定菌群逃避免疫监视,直接触发宿主衰老

因此,更好地了解老化的宿主微生物群,对于推进以微生物组为基础的治疗方法来对抗老化和与年龄相关的疾病至关重要。

03 微生物老化的衡量指标

我们需要先了解这样的概念。

生理年龄:指人达到某一时序年龄时生理和其功能所反映出来的水平,是从医学、生物学角度来衡量的。

肠道年龄:是基于健康人群每个年龄段样本的菌群构成使用深度神经网络模型提取特征菌属并构建的预测模型。

谷禾健康-肠道年龄预测模型图

注: 谷禾报告中的肠道年龄是基于超过6万人群队列的深度学习模型构建的,伴随年龄的变化肠道菌群也会相应的改变。对于0~2岁的儿童,肠道年龄通常偏差小于3个月,3~5岁偏差在6个月以内,6~15岁偏差在1岁左右,16~50岁人群正常肠道年龄的偏差在3岁以内,50岁以上正常偏差在5岁以内。在正常偏差内年龄差异可以理解为年轻或衰老,超出正常偏差的年龄无论是超过或低于都可能是菌群异常或健康状况不佳。

真实年龄与肠道预测年龄在范围内的差异可以反映其肠道菌群的发育和衰老状况。

以下情况可能会导致肠道预测年龄完全偏离真实年龄,包括:肠道菌群紊乱,菌群结构过于单一,近期服用包括抗生素等可能严重干扰肠道菌群的药物,病原菌感染或者处于疾病状态。

04 微生物老化加快免疫衰老和虚弱?

肠道菌群失调可以触发先天性免疫反应和慢性低度炎症,导致许多与年龄有关的退化性疾病和不健康的衰老。肠道菌群通过各种生物分子,营养素信号独立途径和表观遗传机制与宿主进行交流。与年龄有关的肠道菌群失调会干扰这些交流,从而影响宿主的健康和寿命。

与年龄相关的肠道微生物组成的改变不仅发生在人类身上,也发生在实验室模型生物身上。这些控制遗传、年龄、饮食和微生物组本身的模型系统提供了强有力的科学证据,表明宿主生理或微生物进化的内在改变足以促进一种失调状态。

这些模式生物已经证明肠道微生物群有潜力有益地调节衰老过程,以促进宿主的健康和寿命。

黑腹果蝇

对黑腹果蝇的研究(一个经常被用来研究微生物动力学、肠道生理中与年龄相关的变化和生物体健康之间相互作用的衰老模型)——已经完美地证明了肠道生态失调不仅是年龄相关肠道屏障功能障碍、系统免疫激活和机体死亡的前兆,而且还预测了这些疾病的发生。

结果表明,在整个生命过程中保持在无菌条件下的果蝇显示出较低的衰老率,这表明在这些模型设置中防止与年龄相关的菌群失调可以限制炎症,改善免疫稳态,促进健康

非洲绿松石鳉鱼

利用自然短命的脊椎动物非洲绿松石鳉鱼(Nothobranchius furzeri)进一步证实了肠道微生物群在调节衰老过程中的影响。年轻的微生物群的慢性定植在中年鱼,诱导了长期有益的系统效应,导致脊椎动物的寿命延长。将年轻的供体微生物群定植在年老的鱼,与已知产生代谢产物的关键细菌属的存在有关,这些代谢产物既能维持免疫系统健康,又有抗炎作用。

小鼠

年轻小鼠菌群 → 早衰小鼠:特定菌发挥作用

将年轻供体的粪便微生物群移植到早衰小鼠中,可改善后者的健康状况和寿命,并将疣微菌门verrucomicrobia,Akkermansia muciniphila移植到早衰小鼠中,从而充分发挥有益作用。

此外,与年龄相关的Akkermansia muciniphila缺失与肠道完整性受损和胰岛素抵抗相关——这是一个通过微生物组-单核细胞-B细胞轴介导的过程。

除了对宿主代谢的影响,Akkermansia muciniphila还参与了调节抗原特异性T细胞反应和抗体产生来调节宿主免疫功能。

小鼠菌群 → 无菌小鼠:T细胞活化增加

用年轻或年老小鼠的肠道微生物群定植无菌(GF)小鼠。将老年供体微生物组移植给年轻小鼠足以促进肠道炎症、微生物产物向循环的渗漏慢性低级别炎症的发生。作为全身低度炎症的结果,全身免疫区的T细胞活化增加

年老菌群→年轻小鼠:巨噬细胞功能失调

另一项研究报告了类似的发现,在年轻的GF接受者中,移植一种老年微生物组可促进全身低度炎症。这些情况下的炎症进一步与巨噬细胞功能失调相关,巨噬细胞是炎症细胞因子的有力来源,其细菌杀灭活性较差。此外,基因或抗体介导的肿瘤坏死因子α(低度炎症的标志性细胞因子)的减少,可以预防年龄相关的肠道失调和相关的全身低度炎症。

年龄相关肠道免疫力下降:增加M细胞可恢复

最近的一项研究强调,年龄相关肠道免疫力下降可以通过操纵肠道微生物组增加M细胞数量来恢复。年老小鼠暴露于年轻的微生物群或鞭毛蛋白刺激都足以观察到这种效应:Peyer’s补丁中的M细胞成熟恢复,增强抗原摄取,年老小鼠肠道IgA反应增加。基于微生物组干预的M细胞修复确实依赖于肠道干细胞功能的改善,这表明修复老年肠道的再生能力可能对提高肠道免疫力有额外的好处。这些发现可能与改善口服疫苗应答或预防老年人胃肠道感染有关。

年龄相关肠道菌群改变影响造血

除了局部免疫调节外,年龄相关的肠道群落结构变化也可能对造血产生直接影响。对小鼠的研究表明,肠道微生物组的改变与造血系统的多谱系改变和多能祖细胞的抑制有关。

鉴于肠道微生物群通过促进造血功能密切参与了细菌感染的控制,与年龄相关的肠道微生物群平衡和多样性的变化可能导致老年人造血功能受损、更易感染和减少疫苗接种应答。然而,为了更好地理解年龄相关的生态失调对造血系统调节的影响,还需要更多的研究来支持这一假设。

总的来说,这些临床前模型系统的发现表明,校正与年龄相关的肠道菌群失调是有益的,为基于微生物组的治疗方法改善免疫系统功能、对抗衰老及相关疾病提供了理论依据。

虽然粪便微生物群移植(FMT)在动物模型中具有抗衰老特性(见上文),并且FMT已成功用于治疗男性复发性艰难梭菌感染,但在临床环境中提出FMT作为抗衰老策略仍存在一些障碍。更好地了解健康微生物组的特征(包括病毒组和真菌组)对于确保接受者的长期安全至关重要。

05 肠道微生物组对疫苗反应的影响

尽管我们对整个生命中肠道微生物群的理解取得了很大进步,但在疫苗学上的潜力尚未实现。鉴于微生物组严格调控免疫细胞的发育和功能,它可能最终影响疫苗的疗效。因此,由环境、社会经济、营养或卫生条件引起的肠道微生物群落结构的变化可以解释疫苗应答中的地理异质性。

对微生物群如何促进疫苗应答的机制更好地理解,可能有助于制定新的策略,以减少老年人感染性死亡。

直到最近,表明肠道微生物组影响疫苗接种反应的最佳证据来自使用无菌或缺乏微生物的小鼠的临床前模型系统。

研究人员探讨不同抗生素方案对抗原特异性体液免疫应答的影响,研究了克拉霉素、强力霉素和氨苄西林对小鼠破伤风类毒素(TT)、肺炎球菌多糖疫苗(PPV)、乙型肝炎病毒表面抗原(HBsAg)疫苗和减毒沙门氏菌活疫苗(Ty21a)的一级和二级抗体应答的影响。

有趣的是,抗原和抗生素的特异性反应都受到了影响。

克拉霉素和强力霉素抑制典型的T细胞依赖性和T细胞非依赖性抗体反应,而氨苄西林的效果较差或无效果。

此外,所有三种抗生素,特别是氨苄西林增强了对Ty21a-a减毒细菌粘膜疫苗模型的体液反应。在GF小鼠中进行疫苗接种实验的进一步工作证实了这些初步发现。

到目前为止,现有的研究主要集中在细菌,以及包括病毒、真菌、原生动物和古生菌在内的微生物群的其他组成部分。然而,仍然存在两个重要问题:

(一) 微生物群参与宿主免疫反应(特别是疫苗反应)的机制是什么?

(二) 这些发现对人类的影响是什么?

迄今为止,最令人信服的数据表明,肠道微生物群提供了佐剂的天然来源,能够调节宿主的系统和黏膜疫苗反应。

这一观点最初是在Nakaya等人的系统生物学报告中提出的,他们描述了在非佐剂流感疫苗接种三价灭活疫苗(TIV)后,人类toll样受体-5 (TLR5)的早期(第3天)和瞬时基因上调。TLR5的表达与TIV诱导的血凝抑制(HAI)滴度(滴度是稀释度的倒数)呈正相关。

随后,该研究小组证实TLR5对小鼠肠道微生物分泌的鞭毛蛋白的感应与TIV介导的应答有关。虽然直接给予鞭毛蛋白或有鞭毛的细菌移植可以提供天然佐剂来改善非佐剂流感疫苗的应答,但它不能与其他佐剂或活疫苗如破伤风-白喉-百日咳(Tdap)、黄热病(YF-17D)或重组乙型肝炎抗原(Recombivax HB)配合使用。

除TLR5外,另一种模式识别受体核苷酸结合寡聚结构域2 (NOD2)的特异性贡献,人血清白蛋白(HSA)抗原和霍乱毒素(CTX)佐剂鼻内刺激诱导的粘膜疫苗应答小鼠模型。在GF小鼠、抗生素处理小鼠或基因修饰缺乏NOD2信号的突变小鼠中,HSA特异性IgG反应持续下降。当这些动物接受一种被NOD2或表达MDP的细菌识别的肽聚糖MDP(muramyl dipeptide, MDP)时,HSA特异性IgG反应恢复。

虽然尚未使用人体相关疫苗,但这第二项工作表明,常驻微生物也可以增强用于粘膜疫苗接种方案的CTX的佐剂效果。需要进一步研究揭示肠道微生物群、其细胞壁成分或代谢物作为内源性疫苗佐剂的免疫能力,以放大对特定病原体的适应性免疫应答。

临床前和临床报告均观察到膳食纤维对功能免疫参数的积极影响,包括疫苗应答(表1),进一步支持基于其组成(细菌的性质)和或活性(分泌的代谢物的性质)的肠道微生物群的重要免疫调节潜力。

表1 益生元和/或益生菌临床干预试验探讨老年人免疫相关结果

Nabil Bosco & Mario Noti,Genes & Immunity, 2021

关于纤维消化产生的短链脂肪酸(SCFAs)免疫调节活性的大量文献证明了这一点。这些代谢物在局部或全身释放,参与宿主的一般生理过程。

肠道微生物组组成和功能的动态变化也可以解释疫苗应答中观察到的地理异质性。研究人员还报道了成人和老年人接种流感疫苗后体液免疫反应的显著差异(超过100倍)。

宿主遗传、营养状况、母乳喂养习惯以及卫生条件和/或之前接触过病原体,被提出用来解释疫苗免疫原性的差异。然而,近年来研究宿主微生物群的技术进步为这一领域提供了新的思路。

粪便微生物群特征研究表明,肠道菌群组成可能影响口服脊髓灰质炎、卡介苗、破伤风类毒素和乙肝病毒的疫苗接种效果。

此外,在某些国家的儿童中,小肠细菌过度生长(SIBO)的流行率高。SIBO还可能限制疫苗的性能,因为相关的吸收不良、肠道微生物群和宿主免疫细胞之间争夺关键营养物质以及或通过渗漏的肠道系统释放微生物分子。从南非收集的样本中观察到反应迟钝的全血细胞(标准TLR刺激试验),并将来自北美和欧洲儿童的年龄匹配样本进行了比较。

上述人体研究仅存在相关性。

最近进行了三项研究,以确定婴儿和成人肠道微生物群失调和疫苗应答之间的因果关系。

在第一个大型(n = 754)和良好对照的研究中,广谱抗生素治疗(阿奇霉素)减少了致病性肠道细菌的流行,但没有改善印度婴儿的口服脊髓灰质炎疫苗接种。

接下来,Harris等人在开放标签试验中使用广谱抗生素(万古霉素)或广谱抗生素(万古霉素、环丙沙星和甲硝唑)治疗66名荷兰健康成人,并研究TT、口服轮状病毒(RV)和多糖肺炎球菌(Pneumo23)疫苗的应答。虽然RV疫苗观察到一些积极的效果,抗生素治疗没有改善TT或肺炎23价反应。

最后,Hagan和他的同事进行了一项研究,22名年轻的成年人接受广谱抗生素(万古霉素、新霉素和甲硝唑)治疗,然后接受TIV疫苗。虽然这种治疗对以前接种过流感疫苗的成年人影响有限,但在11名以前没有接触过流感(接种疫苗或自然感染)的健康个体中进行的第二次试验提供了突破性的发现。那些首次接受抗生素治疗的人的体液免疫反应,特别是对H1N1流感毒株的免疫反应大大减弱

这些数据证实了早期的小鼠研究,并证明抗生素驱动的生态失调导致了非佐剂TIV引起的疫苗应答的显著改变。用系统生物学方法进行的更深层次的分子图谱也揭示了一种特定的炎症基因特征,即与抗生素治疗相关的更活化的髓系树突状细胞。

合理设计以微生物为内源性佐剂的疫苗在疫苗学领域具有广阔前景。这些方法可能需要个性化和工程可逆性来管理脆弱个体的疗效和潜在并发症。鉴于饮食是塑造肠道微生物群的最有力因素之一,营养干预与益生菌和益生元促进多样化的微生物群来维持健康受到了相当大的关注。

06 对抗与年龄相关宿主免疫力下降的营养策略

食品的发展是为了促进健康或减少疾病风险,1980年代中期,出现了“功能食品”一词:希望支持以营养为基础的预防性方法,以提高生活质量,减少与老龄化人口相关的医疗成本。

由于肠道微生物与宿主免疫系统的密切相互作用,临床试验研究的提高老年人免疫力的功能食品主要包括益生元(如纤维)、益生菌、两者的结合(即共生)或分泌可溶性代谢物(也称为后生元,如短链脂肪酸)。

随着年龄的增长,免疫适应能力下降,老年人无力抵抗感染,无力对抗原挑战作出反应,大多数这些试验探讨了感染流行程度、严重程度和持续时间或特定的疫苗接种结果

在已确定的400项临床研究中,研究人员根据其相关性(免疫读数和目标人群为60岁的老年人)保留了31项研究,并将其总结在表1中。

这些研究是在社区居民、疗养院居民或住院患者中进行,这些患者可以服用口服补充剂或需要管饲。

大多数研究(20项研究)是随机双盲安慰剂对照组,考虑经典的混杂因素,如年龄、性别,有时还有医疗条件、营养状况、感染史或疫苗接种史

预防感染性并发症,特别是危重症或选择性手术患者中艰难梭菌相关腹泻是第二个有意思的领域。

在对老年人进行的13项研究中,6项呈阳性。它们积极的性质也可能表明,疾病预防可以通过人体免疫系统的不同方面来实现。

疫苗挑战研究通常测试适应性免疫系统的功能,但没有解决某些细菌感染中与年龄相关的先天免疫下降的后果。然而,最近在英国23家养老院进行的规模最大的研究,即“益生菌减少养老院居民感染”试验,LGG和BB12胶囊每天服用长达1年,对预防感染没有效果。在感染症状、抗生素使用、住院或死亡率方面没有发现差异

总的来说,可能有多种原因,研究之间缺乏一致性,如菌株特定差异或剂量,以及益生元性质和数量,或受试者的年龄和医疗条件。

这些研究中没有一项对干预前和干预后的患者微生物群进行了广泛的分析。虽然这些数据可能作为独立报告存在,以描述成分的特性,在未来,对干预前后的人体微生物群和免疫参数进行系统的平行评估是至关重要的,以揭示相关的相互作用或因果关系。

07 恢复肠道微生物稳态、减少炎症和免疫衰老

虽然实际年龄是不可逆转的,但随着年龄的增长,与肠道微生物群炎症免疫衰老相关的衰老变化是免疫介导的慢性疾病的共同帮凶,这可能是维持免疫和健康的目标。

当消炎药和衰老疗法选择性地消除衰老细胞(衰老抑制剂)或抑制衰老相关分泌表型(衰老表型)时,作为抗衰老疗法的临床试验正在迅速发展(图2),它们的长期使用需要谨慎地平衡对传染病的易感性和潜在的其他副作用。

为什么减少全身低度炎症可以促进疫苗应答,而疫苗学的主流观点是佐剂通过促进局部炎症来改善疫苗应答,这一悖论还需要进一步的研究来解释。

图2 恢复肠道微生物稳态、减少炎症和免疫衰老以支持老年人免疫功能的方法

Nabil Bosco & Mario Noti,Genes & Immunity, 2021

(1)益生菌或益生元或合生元、后生元(如SCFAs)等进行干预可能有助于恢复与年龄相关的肠道微生物组成和功能下降

(2) 补充维生素和矿物质有助于正常的免疫细胞功能。

(3) 消炎药或老年药可能有助于减少炎症,而老年药直接消除老化细胞,燃料炎症。

单独或联合使用可能有助于增强宿主免疫,更好地控制感染,并随着我们年龄的增长产生适当的疫苗接种反应。

鉴于肠道微生物对宿主免疫系统的影响越来越大,可以合理推测,通过个性化营养或补充恢复与年龄相关的肠道微生物丰富度和功能的下降,可能是一种对抗免疫适应性功能下降的预防措施。

在这种情况下,已在临床环境中测试了能够通过支持肠道屏障完整性或调节炎症过程来增强免疫力的益生菌、益生元、后生元或合生元(表1)。

然而,由于研究、菌株特异性差异或剂量、益生元的性质和数量受试者的年龄医疗条件之间缺乏一致性,因此很难验证这种方法在增强与年龄相关的宿主免疫适应性下降方面的有效性。

肠道微生物群是一个有待挖掘的宝藏,衰老学也不例外。正如许多临床前研究所证明的那样,恢复年轻的微生物群可以通过维持免疫和健康跨度来恢复老年宿主的活力。

因此,更好地了解肠道微生物群落结构和相关代谢组的动态变化,这些改变如何影响细胞免疫网络,以及这些通路如何被治疗靶向,将对未来加强甚至恢复老化免疫系统的策略产生广泛的影响。随着人口老龄化的加剧,迫切需要这样的解决方案来支持健康老龄化,减缓不断增长的医疗费用。

08 健康长寿的普适方式

健康饮食

Omega-3脂肪酸

随着年龄的增长,神经细胞萎缩,向大脑提供的营养丰富的血液供应减少,Omega-3脂肪酸,尤其是二十二碳六烯酸(DHA)可以促进神经细胞之间的有效电信号传递,减少炎症,甚至可以改善精神集中度并与记忆力丧失作斗争。

较小的脑体积与阿尔茨海默氏症以及正常衰老有关。研究人员发现,血液中omega-3脂肪酸EPA和DHA水平较的绝经后妇女的脑体积也更大。

富含Omega-3脂肪酸的食物:

鱼类:鲱鱼,沙丁鱼,鲭鱼,鲑鱼,大比目鱼,鳟鱼

绿叶蔬菜: 抱子甘蓝,菠菜,芝麻菜,薄荷,羽衣甘蓝和豆瓣菜

油: 亚麻籽油,正大籽油,鳕鱼肝油和磷虾油

其他:蛋、核桃等

黄酮类化合物

几乎所有的水果,蔬菜都含有类黄酮,具有许多健康益处,包括减少炎症,降低心脏病风险和湿疹症状,对衰老的大脑有益。有研究发现,食用大量浆果(类黄酮含量较高)的老年妇女将记忆力下降的时间推迟了两年以上。

类黄酮含量高的食物:

浆果: 蓝莓,草莓和黑莓

绿叶蔬菜: 菠菜,羽衣甘蓝和豆瓣菜

彩色农产品:胡桃南瓜,牛油果,李子,红葡萄

其他:咖啡,黑巧克力,红酒

维生素E

防止细胞损伤。已有几项研究发现,维生素E可以延缓轻度到中度阿尔茨海默病的进展

富含维生素E的食物:

坚果和种子:杏仁,山核桃,花生酱,花生,榛子,松子和葵花籽

油:小麦胚芽油,葵花籽油,红花油,玉米油,大豆油

绿叶蔬菜:菠菜,蒲公英嫩叶,唐莴苣,萝卜叶

运动

走楼梯:

瑞士一项研究发现,久坐不动的人把乘电梯换成走楼梯,过早死亡的风险可以降低15%。哈佛早期的研究显示,与每周爬楼梯少于10层的人相比,每周能爬35层或更多的楼梯能显著提高寿命。

骑车:

骑自行车上班是一种环保又健康的方式,在一天中挤出锻炼时间在户外,还能节省点油钱。

游泳:

一项数据发现,经常游泳的男性比久坐不动的男性死亡率低50%,游泳者的死亡率也比运动时走路或跑步的男性低。

每天锻炼15分钟:

2011年的一项研究发现,与久坐不动的人相比,每天15分钟锻炼可以平均延长3年的寿命。

保护牙齿

如果牙齿一直很敏感,那么随着年龄的增长,牙齿会越来越容易脱落,这会影响老年生活品质。请保持日常牙科护理的最佳状态,防止蛀牙。

保持良好的生活习惯

保证充足的睡眠:

NIH的数据显示,每晚持续睡眠少于7个小时的成年人患高血压,心脏病,肥胖,糖尿病和抑郁症的风险更高。另外,晚上睡不好会抑制重要激素的释放,这些激素可以修复细胞和组织,抵抗疾病和感染,睡不好会使身体无法自然康复。

尽可能避免吸烟:

戒烟可以减少许多疾病风险。

适当缓解压力:

压力容易让人变老。尝试放弃明显的压力源,适当安排休息时间,

经常锻炼记忆力

记忆就像肌肉一样可以训练;如果充分利用自己的记忆并定期使用它,记忆力可以磨练到老。比如每天尝试做一个填字游戏,以帮助建立和维护词汇量和记忆力。

《阿尔茨海默氏病杂志》上的一项研究显示,吃蓝莓可以增强记忆力和学习能力,喝苹果汁可以通过防止重要的神经递质的衰退来改善记忆力。

选择适宜的养老居住地

可以选择气候宜人的地方居住,良好的空气质量有助于保持健康,环境条件佳也有利于保持好心情。此外尽量选择拥有良好的经济和医疗体系的地方,帮助维持积极长寿的生活。

做好健康管理

定期进行肠道菌群健康检测或其他检查,及时了解自身健康状况,包括哪些风险,需要注意事项等,做好健康管理,享受健康幸福的晚年生活。

相关阅读:

解密|肠道菌群与健康长寿

认识肠道微生物及其与高血压的关系

如何更好地吸收维生素矿物质?

益生菌的简单入门指南

肠道微生物群与不健康衰老

主要参考文献:

Hägg S, Jylhävä J, Wang Y, Xu H, Metzner C, Annetorp M, et al. Age, frailty, and comorbidity as prognostic factors for short-term outcomes in patients with coronavirus disease 2019 in geriatric care. J Am Med Dir Assoc. 2020;21:1555–9.e2.

Khan SS, Singer BD, Vaughan DE. Molecular and physiological manifestations and measurement of aging in humans. Aging Cell. 2017;16:624–33.

Crooke SN, Ovsyannikova IG, Poland GA, Kennedy RB. Immunosenescence and human vaccine immune responses. Immun Ageing. 2019;16:25–16.

Butler CC, Lau M, Gillespie D, Owen-Jones E, Lown M, Wootton M, et al. Effect of probiotic use on antibiotic administration among care home residents: a randomized clinical trial. Jama. 2020;324:47–56.

Bosco Nabil,Noti Mario,The aging gut microbiome and its impact on host immunity.[J] .Genes Immun, 2021

Book: Mayo Clinic Family Health Book, 5th Edition

Wang J, Varghese M, Ono K, Yamada M, Levine S, Tzavaras N, Gong B, Hurst WJ, Blitzer RD, Pasinetti GM. Cocoa extracts reduce oligomerization of amyloid-β: implications for cognitive improvement in Alzheimer’s disease. J Alzheimers Dis. 2014;41(2):643-50.

James V. Pottala, Kristine Yaffe, Jennifer G. Robinson, Mark A. Espeland, Robert Wallace, William S. Harris Neurology Feb 2014, 82 (5) 435-442

Dysken MW, Sano M, Asthana S, et al. Effect of Vitamin E and Memantine on Functional Decline in Alzheimer Disease: The TEAM-AD VA Cooperative Randomized Trial. JAMA. 2014;311(1):33–44.

Berryman CE, West SG, Fleming JA, et al. Effects of Daily Almond Consumption on Cardiometabolic Risk and Abdominal Adiposity in Healthy Adults With Elevated LDL-Cholesterol: A Randomized Controlled Trial. Journal of the American Heart Association. January 2015.

睡眠健康与肠道健康之间的双向联系

谷禾健康

今日,两条关于睡眠问题登上热搜。

我国有超3亿人存在睡眠障碍,尤其过去这一年,人们整体入睡时间延迟2-3小时,对睡眠搜索量增长43%,看来睡眠问题正在影响越来越多人。

疫情致使整体入睡时间晚2-3小时_腾讯视频

睡眠是由人脑控制的一种复杂的生理行为过程,与免疫功能同为正常生活所必要的生理机能。睡眠是在漫长的一天之后舒缓和恢复的良好方式,睡眠可以让身体和大脑补充能量,良好的睡眠对于巩固记忆、处理信息、生长身体、修复肌肉,增强免疫,抵御疾病至关重要的。

睡眠障碍与各种疾病的发生和发展有关,例如肥胖,II型糖尿病,心血管疾病,抑郁症,癌症等。睡眠不足也会影响判断力和智力。

本文我们来详细了解下,睡眠障碍——这个大多数人都有可能遇到的难题。

首先,关于热搜第一条“睡够睡眠周期”到底什么意思呢?

01

正常生理性睡眠

要了解睡眠障碍之前,我们的先看下,正常生理性睡眠。

正常睡眠结构的特征是轻度睡眠,更深的慢波睡眠和快速眼动(REM)睡眠周期。

第一阶段睡眠(清醒和睡眠的过渡期)

第一阶段睡眠是睡眠周期的开始,被视为清醒和睡眠之间的过渡期。这段睡眠时间仅持续5-10分钟,其特征是混合频率的theta波(非常慢的脑波)。

第二阶段睡眠(体温下降,心率减慢)

第2阶段持续约20分钟,涉及混合频率的脑电波,具有快速的节奏性脑电波活动。在第2阶段,体温开始下降,心率开始减慢。

第三阶段睡眠(从轻度到深度过渡期)

第3阶段睡眠的特征是20%-50%的缓慢脑电波(称为δ波)。这是从轻度睡眠到深度睡眠的过渡时期。

第四阶段睡眠(缓慢脑电波)

阶段4的δ波大于50%,在此期间发生了缓慢的脑电波。阶段4持续约30分钟。

第五阶段睡眠(快速眼动睡眠)

睡眠的第5个阶段,即快速眼动(REM)睡眠,是大多数做梦的时候。第五阶段的特征是呼吸频率增加,大脑活动增加,体内各种代谢功能都显著增加。REM睡眠具有混合频率的EEG和theta波。成年人大约每90分钟出现一次REM睡眠。

睡眠以正常顺序开始,但随后以不规则的顺序循环进行。它开始于阶段1,然后进入阶段2、3和4。在阶段4睡眠之后,在开始REM(阶段5)睡眠之前,重复阶段3和2。REM睡眠结束后,身体通常会返回第2阶段睡眠。REM睡眠的第一个周期是入睡后约90分钟,并且只能持续很短的时间。每个周期,REM睡眠持续时间更长。

02

失眠标准及影响睡眠的因素

失眠是最普遍的睡眠障碍。判断失眠的标准:

标准一: 3个30分钟 

入睡时间 [ 入睡时间超过30分钟 ]

睡眠维持困难 [ 醒后再入睡超过30分钟 ]

早醒 [ 比平时提前醒来超过30分钟 ]

标准二:

以上情况 一周超过三天

标准三:

社会功能受损,第二天身体不适

如何判断失眠?权威专家来解答_腾讯视频

影响睡眠质量和持续时间的因素如下,多种内部和外部因素都会对其进行干扰。

Matenchuk Brittany A,et al., Sleep Med Rev, 2020

睡眠障碍与多种原因有关,通常与不良饮食以及饮食习惯、昼夜节律、压力情绪、生活方式、疼痛炎症、以及慢性疾病等有关。

引起睡眠障碍的原因有很多,但有一个容易被忽略,那就是肠道菌群。

03

肠道菌群与睡眠

人类微生物群是体内复杂,动态的生态系统。越来越多的研究表明它似乎以许多重要的方式与睡眠相互沟通,相互作用。

菌群改变与睡眠密切相关

研究表明失眠症患者和健康人群肠道微生物的组成、多样性和代谢功能发生了显著变化。随机森林结合交叉验证确定了两种标志性细菌,可用于区分失眠患者和健康人群——拟杆菌属,梭菌属

对微生物组组成的分析表明,拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)的丰度与睡眠质量呈相关,而Lachnospiraceae、棒状杆菌(Corynebacterium)、Blautia等几种菌与睡眠质量测量值呈相关。

Faecalibacterium是肠道微生物群中产丁酸菌,可能有助于双相患者减轻疾病负担和改善睡眠质量。其潜在机制可能是产生促进睡眠的丁酸盐。

高质量的睡眠与肠道菌群相关,包括Verrucomicrobia菌和Lentisphaerae菌 ,占比偏高,与认知功能改善相关。

乳酸菌数量与睡眠呈负相关。干酪乳杆菌对健康成年人的应激性睡眠障碍有有益作用。短乳杆菌对小鼠的睡眠节律有好处。

微生物组多样性(丰度,香农多样性和辛普森多样性)与睡眠质量和总睡眠时间增加呈正相关。

研究发现,睡眠不足与肠道微生物的多样性降低有关,睡眠越好,微生物组的多样性就越丰富。

一项2019年的研究发现,睡前60分钟(这是衡量睡眠量和睡眠质量的指标)与肠道微生物多样性降低26%有关。这是在控制了可能影响微生物组成的其他因素之后,包括饮食中纤维和脂肪的摄入量,体力活动和身体质量指数。

肠道微生物的多样性高有助于减轻压力和改善睡眠。除了睡眠不足之外,微生物组多样性的降低还与一系列健康问题有关,包括情绪障碍,焦虑,抑郁,免疫系统功能障碍和自身免疫性疾病。

失眠患者肠道菌群的α和β多样性发生了显著改变。睡眠时间减少可能会导致肠道菌群失调。

 肠道菌群是如何影响睡眠的呢?

可以通过肠道菌群与大脑之间的持续不断的相互作用来影响。主要有以下途径:

 · 免疫系统途径 

大脑和肠道微生物组都影响免疫细胞的活性,并依次相互影响。

肠道细菌被吞噬细胞(如巨噬细胞或中性粒细胞)吞噬并被消化;消化产物(如MPs、LPS)被释放到周围的细胞间液中。MPs和LPS反过来激活吞噬细胞(如锯齿状细胞膜所示),然后释放细胞因子。全身性细胞因子通过至少两种途径(迷走神经和血脑屏障)进入大脑。

免疫细胞在保持肠道微生物组健康方面发挥了重要作用,并且帮助免疫系统发挥最佳功能。这些细胞执行许多关键功能,包括:

帮助调控微生物组的组成

调节新陈代谢

限制炎症

保护肠道不受感染

保持肠壁坚固(并避免所谓的“漏肠”)

 ——细菌细胞壁结构成分影响睡眠

微生物细胞壁的结构成分不断刺激先天免疫系统产生细胞因子,产生一种免疫激活的基本状态,从肠粘膜表面开始,影响全身。

当细菌分裂、生长或死亡时,肽聚糖、脂多糖和其他成分被细菌酶降解或改变。宿主吞噬细胞如巨噬细胞和中性粒细胞也可以消化肽聚糖产生胞壁肽(小糖肽)。从革兰氏阳性或革兰氏阴性细菌中分离出来的肽聚糖,诱导睡眠反应,例如,非快速眼动睡眠的持续时间和强度会增强几个小时。如果给吞噬细胞喂养细菌,它们就会释放出具有生物活性的胞壁酰肽;其中一些胞壁酰肽诱导睡眠反应与完整的肽聚糖和热杀死的整个细菌所诱导的睡眠反应相似。

细菌肽诱导肠巨噬细胞和T细胞产生细胞因子白细胞介素-1β(IL-1β)和肿瘤坏死因子α(TNFα)细菌细胞壁脂多糖(LPS)诱导IL-18的合成。

IL-1β,TNFa22,IL-18是非快速眼动睡眠的诱导因子。

其他微生物,如病毒及其组分也通过内源性受体(识别病原体相关分子模式,如Toll样受体)促进细胞因子的产生,从而影响睡眠。

· 神经内分泌途径 

肠道内有20多种肠内内分泌细胞,构成最大的内分泌器官。

肠道菌群直接参与多种神经递质,细胞因子和代谢产物的产生,例如5-HT,多巴胺,γ-氨基丁酸(GABA),SCFA和褪黑激素等。

某些乳酸杆菌和双歧杆菌可以产生GABA。在失眠患者中经常观察到GABA mRNA的异常表达。

大肠杆菌产生去甲肾上腺素、5-羟色胺和多巴胺;

链球菌和肠球菌产生5-羟色胺;

芽孢杆菌产生去甲肾上腺素和多巴胺。

Vernia F,et al., Int. J. Med. Sci.2021

这些代谢物直接作用于肠神经系统和迷走神经,并影响中枢神经系统的活性。

此外,肠道菌群还影响下丘脑-垂体-肾上腺(HPA)轴

HPA轴参与稳态,参与对新刺激的反应。HPA轴是一种自适应系统,目的是在不断变化的环境中保持体内动态平衡。越来越多的研究表明,睡眠与HPA轴活动之间存在相互关系。

HPA轴亢进会对睡眠产生负面影响,导致睡眠碎片化,深度慢波睡眠减少和睡眠时间缩短。反过来,包括失眠和阻塞性睡眠呼吸暂停在内的睡眠障碍会进一步加剧HPA轴功能障碍。

干预以使HPA轴异常正常化,减少夜间CRH亢进和降低皮质醇可能对治疗失眠和其他睡眠障碍有益。详见本文后面改善睡眠章节。

说起HPA轴,就不得不提到皮质醇。它的作用不容小觑。

皮质醇如何产生?

HPA轴被激活,下丘脑促肾上腺皮质激素释放激素(CRH)的分泌,然后刺激垂体前叶释放促肾上腺皮质激素。然后促肾上腺皮质激素刺激肾上腺释放皮质醇,导致交感神经系统的各种生理反应(如肾上腺素的释放、心率加快和血压升高)。

皮质醇升高可能是睡眠障碍的主要原因

HPA轴障碍可能导致皮质醇升高,当皮质醇水平较高时,会激活糖皮质激素受体。在压力时期去甲肾上腺素和糖皮质激素受体可以优先激活,从而增加促肾上腺皮质激素释放激素。这种升高的促肾上腺皮质激素释放激素会增加睡眠脑电波频率,减少短波睡眠,并增加轻度睡眠和频繁醒来

皮质醇还与昼夜节律相关,这部分我们在下一章节昼夜节律篇讨论。

·  迷走神经途径  

肠肌层神经丛的感觉神经元通过调节肠蠕动和肠激素分泌而接触肠道菌群。肠神经系统也与迷走神经形成突触连接,迷走神经将肠道与大脑连接起来。

细胞因子通过迷走神经传入向大脑发出信号,迷走神经的动作电位进一步诱导胶质细胞和神经元在大脑中产生细胞因子。细胞因子浓度高低与睡眠有关。

低浓度的脑细胞因子能促进睡眠,而高浓度的脑细胞因子则不利于睡眠。

睡眠障碍与肠道菌群失调存在循环关系

前面我们知道,肠道菌群会通过多种途径影响睡眠。

Krueger JM,et al .,Int Rev Neurobiol. 2016

反过来睡眠也会影响肠道菌群。

睡眠不足或者其他因素如受伤、食物摄入、压力、昼夜节律和运动等,可致肠屏障损伤和细菌移位,增加感染易感性,激活HPA轴从而影响菌群。

04

昼夜节律与睡眠

大多数人(和其他哺乳动物)都存在昼夜节律–控制进食和睡眠等过程的代谢时钟。最常见的昼夜节律周期是控制睡眠的周期,科学家们已发现存在着多种控制着不同生物系统的昼夜节律。

过去的研究已表明如果昼夜节律紊乱,人们可能会遇到健康问题。比如,改变工作时间的轮班工人更容易患睡眠障碍、肥胖、糖尿病等。

  昼夜节律——皮质醇  

前面提到的皮质醇分泌就有昼夜节律。皮质醇的最低点出现在午夜左右。睡眠开始后约2-3小时,皮质醇水平开始上升,并一直持续到清晨。

早晨醒来时,皮质醇开始迅速升高,并持续升高约60分钟。皮质醇的峰值大约是上午9点。随着一天的继续,水平逐渐下降。随着睡眠的开始,皮质醇持续下降直至最低点。

此外,越来越多的研究都表明,机体的昼夜节律能够调节肠道的免疫反应。

 昼夜节律——免疫系统  

昼夜节律调节免疫系统,并随之调节炎症水平。

第3组先天淋巴细胞(ILC3s)是昼夜脑-肠信号转导的关键介质。ILC3s表达高水平的昼夜节律基因,光-暗周期的反转导致ILC3s主要的昼夜节律振荡。这种作用依赖于中枢神经系统(CNS)和下丘脑SCN中ARNTL的存在,并进一步与肠道菌群组成的变化有关,特别是变形菌门拟杆菌门丰度的改变。

注:ARNTL——芳香烃受体核转位因子样蛋白

当昼夜节律被破坏时,正常的免疫功能也会被破坏。这样的情况下,人更容易患上各种疾病。

  昼夜节律——肠道菌群  

研究发现肠道菌群的两个主要组成部分拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)的丰度从白天到晚上呈周期性变化

肠道菌群受昼夜节律信号的影响,同时也对生物钟基因的表达产生交互作用。

来自美国德克萨斯大学西南医学中心的研究人员发现小鼠小肠中的微生物参与肠道昼夜节律。该研究发现改变受试小鼠中组蛋白乙酰化的过程,即在组蛋白末端添加乙酰基的过程,细菌便可开启HDAC3在位于小肠内壁的上皮细胞中的表达。这进而导致了参与基因表达的同步振荡,这些基因表达与脂质代谢和营养物运输有关。相比之下,肠道无菌的小鼠没有表现出这种节律性调节。

肠道微生物的昼夜节律振荡导致血清代谢产物的振荡,并与周围组织的转录和表观遗传波动有关。

 昼夜节律——肠道菌群代谢产物 

短链脂肪酸影响生物钟基因表达和睡眠模式

肠道微生物代谢产物,短链脂肪酸乙酸、丙酸、丁酸在一天中会发生变化,粪便样本中的最高浓度出现得较早,并且在一天中不断降低。短链脂肪酸可能会影响生物钟基因的表达。

研究发现,肠道微生物群的缺乏,以及微生物代谢物的缺乏,导致中枢和肝脏生物钟基因表达明显受损,这表明肠道微生物群在分子水平上传播生物钟的可能性。

在体外,发现在给予乙酸钠和丁酸钠后,小鼠肝细胞中时钟基因Bmal1和Per2的表达发生了显著变化。

在不同的光照-暗期和摄食周期下,添加乙酸后Per2表达量较高,添加丁酸后Per2表达量较低;短链脂肪酸处理后Bmal1表达持续升高,尤其是丁酸处理。

在无菌小鼠体内,关灯两小时后用丁酸盐治疗5天(小鼠处于活跃期),导致肝细胞中Per2:Bmal1 mRNA比值显著增加。此外,同样的处理也导致了中基底下丘脑细胞中Per2:Bmal1 mRNA比值的非显著增加(p=0.053)。Bmal1和Per2等时钟基因在分子水平上调控昼夜节律;它们的比率是肝脏代谢调节网络的标志。

丁酸盐在肠道菌群与大脑产生睡眠的机制之间提供重要联系。

进一步的研究表明,门静脉注射丁酸盐可导致小鼠非快速眼动睡眠增加70%;全身皮下和腹腔注射丁酸盐对睡眠无影响。这些结果表明,丁酸盐的睡眠诱导作用是由肝脏感觉机制介导的。

 昼夜节律——肠上皮屏障  

肠道菌群通过肠上皮细胞昼夜节律因子调节。

肠上皮细胞协调消化、免疫和神经内分泌功能,是人体最重要的屏障之一。胞壁肽(MPs)或脂多糖(LPS),通过肠上皮屏障转运。

通过受损的伪反应调节器(PRR)信号,导致过氧化物酶体增殖物激活受体α(PPARα)的永久表达,肠道微生物群的消失会破坏肠上皮细胞中Bmal1和Cry1时钟基因的表达,导致肠上皮细胞活动的完全丧失。

此外,肠道菌群也受饮食周期调控,我们将在下一章节详细了解它们之间的关联。

05

饮食,菌群,昼夜节律与睡眠障碍

睡眠与昼夜节律、食物摄入、运动和压力源密切相关;这些变量还相互影响,使它们在睡眠中的行为复杂化。饮食、进餐时间和睡眠之间的联系是相互的,因为昼夜节律驱动着代谢模式的变化,而代谢和营养状况的改变则影响着昼夜节律。

我们常听说健康的饮食,生活方式以及合理的饮食习惯有助于心理和身体健康。

辛辣食物、兴奋剂和不良食物反应(不耐受和食物过敏)影响睡眠可以理解。然而,为什么说不吃饭,吃得太快或吃得过饱,吃饭时间不规律,食物质量差,这些也都是导致睡眠障碍的饮食原因?

从本质上讲,饮食摄入与肠道菌群组成有关,因为我们摄入的食物是微生物生长的主要基质。我们饮食的改变可以在几天内导致我们肠道菌群重塑。

摄食节律和昼夜节律的破坏会导致肠道细菌的时间特异性变化。昼夜节律紊乱也会增加肠上皮屏障的通透性。

Vernia F,et al., Int. J. Med. Sci.2021

饮食行为影响人类睡眠的时间和质量。睡眠时间短和高能量摄入之间有一致联系。

食物中营养物质影响睡眠 

营养物质影响激素的产生,包括生长激素、催乳素、睾酮、褪黑素和血清素,所有这些都在调节生物钟中发挥作用。

食物中存在的氨基酸,如苯丙氨酸、组胺和酪氨酸,促进肾上腺素、去甲肾上腺素和其他刺激性神经递质的产生和释放,可能损害睡眠。

影响色氨酸供应或血清素和褪黑素合成的食物则促进睡眠。一些维生素(B1和B6)也能诱导褪黑素和血清素的产生和释放。

饮食习惯影响睡眠

进餐的时间,特别是零食的频率,使昼夜节律失去同步,影响新陈代谢,并促进肥胖。这与生物钟在调节激素和神经递质释放中的作用是一致的。

不吃饭、或者晚餐十分丰盛的现象越来越普遍。然而将主要热量摄入转移到一天结束时会对消化产生不利影响,并使睡眠困难;如果膳食丰富且脂肪丰富,则更是如此。

相反,碳水化合物对睡眠模式的作用仍有争议,碳水化合物的重量与热量负荷的关系也有争议。

为什么很想吃垃圾食品?

压力在影响饮食模式方面很重要,可能是通过改变下丘脑-垂体-肾上腺轴,让人对垃圾食品(高脂肪和精制糖)产生强烈的渴望。

久坐的生活方式,睡眠时间短同样会让人想吃高能量食物。

为什么睡眠不足与想吃高能量食物有关?

下丘脑外侧神经元通过不同的回路表达神经肽,如黑色素浓缩激素和食欲素/下视黄醇,在调节食物摄取、觉醒、运动行为和自主神经功能方面发挥重要作用。 

睡眠限制与饱食因子瘦素浓度降低、促饥饿激素ghrelin浓度增加有关,从而改变了它们发出正确热量需求信号的能力。于是又会促进代谢综合征和肥胖,并再次对生物钟产生不利影响。

注:Ghrelin是一种神经肽,参与睡眠-觉醒调节。

此外,食欲素Orexins在能量稳态和警觉状态之间提供联系,并参与多巴胺能奖赏系统。在动物模型中,产生食欲素的基因突变导致了睡眠表型的改变。有假设说,在清醒时,产生食欲素的细胞的高活性,而在睡眠时几乎没有这种活性,也会影响睡眠。

越来越多的证据也表明睡眠会影响饮食选择。睡眠较少的人更可能喜欢高能量的食物(如脂肪和精制碳水化合物),吃较少的蔬菜,并选择不规律的饮食模式。

糖摄入与睡眠

糖会对肠道健康产生特定作用。有大量证据表明,标准的西方饮食(加工糖和高脂)会导致肠道微生物群的组成发生变化。

上一小节提到的多巴胺奖赏系统与糖摄入也有关系。研究表明,糖是一种有力的触发剂,含糖的食物足以刺激大脑的奖赏系统,从而对食物产生更多的渴望,

糖还有其他间接影响我们肠道健康的方法。高糖饮食会加剧慢性炎症,而炎症则会损害肠道菌群的多样性和功能。经常食用添加糖的饮食可能导致体重增加。

另外添加糖还会升高胆固醇,这与炎症增加有关。关于炎症和睡眠的关系将在下一章节详述。

所有含糖食物(例如水果)都会影响睡眠吗?

不是的。水果之类的天然含糖的食物提升人血糖的速度,远没有含添加糖的食物快。天然食品中纤维含量很高,人体吸收糖的速度变慢,阻止血糖水平飙升。

06

炎症与睡眠

炎症和睡眠障碍也是双向联系的。

炎症是免疫系统的一种天然的,保护性的生物反应,可以抵抗有害的外来病原体(细菌,病毒,毒素),并帮助身体从受伤中恢复健康。急性炎症的症状包括肿胀和发红,发烧,发冷,疼痛和僵硬以及疲劳,这些迹象表明人体的免疫系统处于“战斗模式”。

睡眠障碍会加剧慢性低度炎症,这是导致疾病的重要因素。不需要几年或者几个月,哪怕只是一晚上的完全睡眠不足就足以提高促炎生物标志物、肿瘤坏死因子α(TNFα)和C反应蛋白(CRP)的循环水平;血清CRP水平随着4天的完全睡眠不足而逐渐升高。

有研究发现,一晚上完全睡眠不足,白细胞介素(IL-6)细胞因子升高,一周失眠不足(每晚4-6小时),IL-6和TNFα的24小时分泌量也会增加。

全身性炎症也会破坏健康的睡眠。通过触发生理和心理变化,让人难以获得良好的睡眠。

细胞因子升高与睡眠困难有关。炎症会在体内造成疼痛和僵硬,使人难以入睡。身体上的疼痛是失眠和其他睡眠问题的常见因素。关于慢性疼痛将在下一章节详细介绍。

炎症涉及较高水平的皮质醇,皮质醇前面了解过,可刺激机敏并导致心理压力。压力是健康睡眠的最重要的常见障碍之一。

07

其他疾病与睡眠

7.1  压力,抑郁与睡眠障碍

压力与睡眠

2017年进行的一项研究,压力对大鼠睡眠和肠道健康的影响。通过对小鼠尾部冲击睡眠模式中断。结果发现肠道菌群失去了多样性。少数菌群控制着肠道微生物,失去平衡是不健康的。当他们给小鼠服用益生元时,肠道菌群变得更加多样化,并包含了更多有益菌,如鼠李糖乳杆菌,睡眠变得更好,包括REM和非REM睡眠

昼夜节律引发情绪波动和睡眠障碍

临床经验表明,扰乱昼夜节律挑起时差综合征或减少睡眠可以触发情绪波动和睡眠障碍

核心时钟基因突变会引起肠道菌群失调。多种时钟基因变异易患精神疾病,例如重度抑郁症(MDD),双相情感障碍(BD),注意力缺陷多动障碍(ADHD),精神分裂症等。

微生物GABA产生(这是中枢神经系统的主要抑制性神经递质,已证实GABA受体的激活有利于睡眠)对抑郁症和肠道微生物多巴胺代谢物的能力的潜在贡献。

3,4-二羟基苯乙酸(一种主要包含在浆果、水果和蔬菜中的膳食多酚)的合成,与较高的心理生活质量感知相关。

7.2 慢性疼痛与睡眠障碍

慢性疼痛可以对睡眠有不同的影响并取决于疼痛的性质。

疼痛可能在夜间无法缓解,导致睡眠不足。除了缩短总体睡眠时间外,最常见的,慢性疼痛还会导致夜间频繁起床。我们会在轻度睡眠,慢波睡眠和快速眼动(REM)睡眠之间循环。破坏该周期会干扰睡眠阶段的进展,并导致睡眠不足和第二天的疲倦

疼痛带来的情绪不佳

疼痛也可能伴有焦虑,压力或抑郁。据估计,三分之一的慢性疼痛患者也符合临床抑郁症。这些状况本身会导致睡眠问题。

慢性疼痛间接影响睡眠

患有慢性疼痛的人白天可能会感到疲劳。那么他们不太能做到锻炼或遵循健康饮食,然而这两者对于获得良好的睡眠很重要。

慢性疼痛导致的不稳定睡眠也会打扰夫妻同床,对他们的睡眠质量和健康产生相应的影响。

 睡眠对疼痛的影响 

新的研究表明,睡眠对疼痛的影响甚至可能比疼痛对睡眠的影响还要强。

睡眠不好导致对疼痛敏感性增强

研究人员发现,睡眠时间短,睡眠分散和睡眠质量差等问题通常会导致第二天对疼痛的敏感性增强,诸如类风湿关节炎。患有睡眠问题的人似乎更有可能最终患上诸如肌痛和偏头痛等疾病。当失眠引起的疼痛加剧时,女性比男性更敏感,年轻人比老年人更有弹性。

慢性疼痛与睡眠障碍的不良循环

患有慢性疼痛的人可能患有自我延续的周期,疼痛,失眠,抑郁或焦虑。例如,遭受痛苦的人在无法入睡时可能会感到焦虑,睡眠不好,醒来时会感到沮丧,这增加了他们对疼痛的敏感性。第二天晚上又开始疼痛,无法入睡,周期一直循环。久而久之,状况可能更加恶化。

前面提到的褪黑素,除了它在调节昼夜节律中的作用,新的研究开始发现褪黑激素在我们对疼痛的感知中产生作用。维生素D、多巴胺也似乎在睡眠和疼痛中都起着作用。

7.3 消化系统疾病与睡眠障碍

胃食管反流性疾病

胃食管反流病以病理性酸或非酸反流为特征,并与多种可能影响上消化道(反流、烧心、疼痛)和/或诱发呼吸道症状(声音嘶哑、发音困难、慢性喉炎、咳嗽、哮喘和慢性支气管炎)的紊乱有关。

有强有力的证据表明胃食管反流病与睡眠障碍之间存在双向关系,因为胃食管反流病的症状会导致入睡困难、睡眠分裂和清晨醒来,而睡眠障碍又会诱发食管痛觉过敏

因此,有睡眠障碍的胃食管反流病患者比没有睡眠障碍的患者有更严重的症状和更差的生活质量。据报道,在这些患者中,焦虑和抑郁的患病率很高,在某种程度上是由睡眠障碍直接介导的

IBS

IBS患者的睡眠障碍是有据可查的,入睡困难、睡眠时间短、频繁觉醒等。最近的一项荟萃分析有63620名参与者,结果显示IBS患者睡眠障碍的患病率为37.6%。

IBD

前面章节我们已经知道,炎性细胞因子如肿瘤坏死因子-α(TNF-α)、IL-1和IL-6可引起睡眠障碍,而睡眠障碍可上调细胞因子,尤其是IL-1和TNF-α。(IL-1参与生理性睡眠调节和睡眠对微生物的反应)

临床研究发现睡眠障碍、亚临床炎症和IBD复发风险之间存在关联。最近的一项研究报道,使用匹兹堡睡眠质量指数评估睡眠质量差与粘膜愈合不良有关(P<0.05)。

7.4 肝病与睡眠障碍

睡眠障碍可能发生在急性和慢性肝炎,但更常见于肝硬化患者。相当一部分肝硬化和急慢性肝衰竭患者患有失眠、睡眠延迟和白天过度嗜睡

肝硬化

最近一项对341名病毒性肝硬化患者的研究证实了这种关联,报告称匹兹堡睡眠质量指数显著升高。多导睡眠图异常也存在。

肝性脑病

睡眠障碍通常是肝性脑病的早期症状,导致日常嗜睡,增加受伤风险,降低生活质量。

肝脏和大脑之间的神经和体液通讯途径尚不完全清楚,但炎症细胞因子如TNF-α、IL-1和IL-6发挥了作用,它们改变了中枢神经递质(血清素和促肾上腺皮质激素释放激素)的浓度。

60%的慢性丙型肝炎患者存在睡眠障碍。

脂肪性肝炎

脂肪性肝炎患者的睡眠障碍可能与肝细胞活性受损和多余脂质处理受损有关。酒精对肝脏和中枢神经系统有直接毒性作用。

最近的分析(2272名参与者)表明,阻塞性睡眠呼吸暂停与脂肪变性、小叶炎症、气球样变性和纤维化显著相关

瘙痒在慢性肝病患者中很常见,在原发性胆管炎等胆汁淤积性肝病患者中更常见。随之而来的往往是睡眠障碍和生活质量低下。

肝病中瘙痒的患病率从慢性丙型肝炎的5%到原发性胆汁性肝硬化的70%不等。胆汁盐、组胺、5-羟色胺、孕酮代谢物浓度的增加可能与此有关。

7.5 肥胖与睡眠障碍

前面饮食章节我们已经知道,睡眠不足会使身体发出错误信号导致饮食过量,对高热量食物难以抗拒,吃过多自然容易肥胖。

当然,肥胖也会导致睡眠障碍。

超重和肥胖通过胃食管反流病和非酒精性脂肪肝以及阻塞性睡眠呼吸暂停患病率的增加而导致睡眠障碍。

肥胖与阻塞性睡眠呼吸暂停综合征之间存在着相互关系。阻塞性睡眠呼吸暂停会促进行为、代谢和/或激素的变化,促使体重增加和/或减肥困难。阻塞性睡眠呼吸暂停综合征(OSA)与激素水平有关,其特点是瘦素和胃饥饿素水平高,进而促使能量摄入过高。

体重增加10%与患阻塞性睡眠呼吸暂停综合征的概率增加50%有关。当然,体重减轻会减少严重的阻塞性睡眠呼吸暂停,改善睡眠,进一步减轻体重

因此,阻塞性睡眠呼吸暂停、睡眠时间短和体重增加之间存在关系。一些证据表明,嗜睡与肥胖有关,在没有睡眠呼吸暂停的情况下也是如此。

08

改善睡眠

 营养物质改善睡眠 

 维生素B6 

在失眠研究中分析失眠患者中肠道菌群中的维生素B6分解代谢(ko00750)显着增强,导致宿主体内维生素B6缺乏。据报道,维生素B6是失眠症的一种常见治疗方法,维生素B6缺乏会导致疲劳和抑郁。因此,补充维生素B6可以改善失眠症状。

维生素B6食物来源:麦麸、葵花子、大豆、糙米、香蕉、动物肝脏及肾脏、鱼类、瘦肉、坚果等。

 叶 酸  

叶酸参与髓鞘的形成,在脑脊液和细胞外液中分布较多,可缓解因抑郁导致的失眠,对于人体精神和情绪方面的健康起到重要性的作用。

叶酸食物来源:芦笋,西兰花,胡萝卜,燕麦,奇异果等。

 镁 

镁补充剂有时用于治疗睡眠障碍,改善睡眠质量并减少睡眠潜伏期(即入睡时间)。一项研究发现,每天服用500mg可以改善老年人的失眠症状。

同时,补充镁也有助于减轻抑郁症症状。

镁食物来源:南瓜子,煮熟的菠菜,黑豆,藜麦,杏仁,腰果,鳄梨,三文鱼等。

除了镁,锌也有促进睡眠的作用,可以改善大脑神经细胞的代谢,平时可以适当多吃一些海鲜、坚果类食物以及全谷类食物,都有助于为身体补充锌元素。

  L-茶氨酸  

L-茶氨酸:一种氨基酸,L-茶氨酸可以改善放松和睡眠。

益生菌干预

益生菌是一种活的微生物,当其存在的量足够时,可以为宿主带来健康益处,例如发酵食品,如酸奶,开菲尔,豆豉,泡菜,康普茶等。

很少有研究测试通过控制肠道微生物群来改善睡眠的有效性。在一项32名医科学生参加的临床试验中,发现益生菌加氏乳酸杆菌CP2305能显著改善睡眠质量,这可以通过PSQI评分的变化来衡量。在服用了益生菌的男性参与者中,这种改善更为明显,在床上入睡时间的减少。

注:匹兹堡睡眠质量指数(Pittsburgh sleep quality index,PSQI)是美国匹兹堡大学精神科医生Buysse博士等人于1989年编制的。该量表适用于睡眠障碍患者、精神障碍患者评价睡眠质量,同时也适用于一般人睡眠质量的评估。

同时,15种肠道微生物的相对丰度在对照组和益生菌组之间有所不同,包括Bact. Vulgatus的减少,在使用益生菌后增加了Dorea Longicatena.

额外的双盲随机对照试验发现,补充益生菌混合物(含Lactobacillus fermentum LF16, L.rhamnosus LR06, L.plantarum LP01,长双歧杆菌 Bifidobacterium longum BL04 ),在年轻健康的参与者中,随着时间的推移,导致PSQI得分下降。

注:PSQI得分越高,表示睡眠质量越差。

高皮质醇诱发的睡眠问题的替代方法

解决慢性皮质醇水平升高的有效方法是确保肾上腺得到适当的营养支持。维生素B6,维生素B5(泛酸)和维生素C通常会由于肾上腺活动时间过长和皮质醇的产生而耗尽。这些营养物质在肾上腺的最佳功能和肾上腺激素的最佳制造中起关键作用。在压力时期,这些营养素的水平可以降低 。

改善睡眠的另一种方法是针对GABA(γ-氨基丁酸)活性。增加GABA活性将降低蓝斑,下丘脑室旁核和HPA轴活性。支持GABA功能的一种方法是减少谷氨酸信号。谷氨酸和GABA活性彼此相反。因此,降低谷氨酸的活性将支持健康的HPA轴活性。

Tips

1  不要在深夜吃东西,破坏微生物生物钟,还会促进胃反流。

2  多吃纤维。纤维有助于有益菌生长。纤维食物包括朝鲜蓟,芦笋,洋葱,豆类,绿叶蔬菜和大多数非淀粉类蔬菜。

3  尝试睡前禁食,禁食会使身体处于“待机”状态,可以自我修复。身体在睡眠过程中会继续燃烧卡路里。睡前禁食,早晨更有可能感到饥饿。可能会促使早起。 

4  如果一定要吃,尽量吃易消化食物。消化过程让人清醒睡不着,因此最好在睡前避免食用难消化的食物。包括:脂肪或油炸食品、辛辣食物、酸性食品、碳酸饮料等。

5  多吃各种食物,有益于维持人体健康的微生物群。均衡饮食,食物中的营养素在产生褪黑素以及其他有助于调节睡眠的重要神经递质中起着巨大作用。

6  尝试补充益生元。已显示许多益生元可在人类受试者中发挥作用。如低聚果糖和低聚半乳糖等。

7  创建理想睡眠环境。

关闭电子产品(就寝前30分钟至1小时),保持卧室适宜温度(在16至19°C之间)等

8  调整灯光。晚上关掉灯或调暗灯,黑暗下人体会分泌更多褪黑素,有助于睡眠,当然,早上拉开窗帘享受阳光,可以帮你清醒。

9  舒适的床是最佳睡眠环境。旧的床垫和枕头会引起疼痛和酸痛,难以获得优质的睡眠。通常,专家建议每10年更换一次床垫,每两年更换一次枕头。当然也取决于床垫枕头质量。

10  保持规律作息。最好每天在同一时间上床睡觉,早上同一时间起床,确保人体昼夜节律时钟正常运作。即使在周末或休息日最好也是如此。

11  避免白天睡过多。如果已经出现睡眠障碍,那么白天尽量不要睡觉。如果有午睡习惯,尽量控制在30分钟之内,且在下午3点之前完成。

12  睡前放松,可以进行温水浴,泡脚,深呼吸,做些伸展运动,适量阅读,听听舒缓的音乐等,这些准备工作都有助于良好的睡眠。当有压力或焦虑时,身体会产生更多的皮质醇,皮质醇过高可能导致夜间频繁醒来。

13  如果实在在20分钟或更长时间内无法入睡,请起床并做一些容易累的事情。最重要的是离开床。

14  运动是帮助睡眠的良好方式,如果可以的话,每天至少20-30分钟锻炼,每周五次左右,但不要在睡前剧烈运动。

15  随着年龄的增长,褪黑素水平会下降。可以购买褪黑激素补充剂,该补充剂已被证明可以帮助55岁以上的人们更快入睡和更长的睡眠。睡前一个小时服用。褪黑激素还可以增强肠道微生物的健康多样性。如长期服用需咨询医生。

【附录】  

需要多少睡眠时间取决于年龄,并且因人而异。大多数成年人每晚至少需要七个或七个以上的睡眠时间。

新生儿(0到3个月):睡眠14到17个小时

婴儿(4至11个月):睡眠12至15小时

幼儿(1至2岁):睡眠11至14小时

学龄前儿童(3至5岁):睡眠10至13小时

学龄儿童(6至13岁):睡眠9至11小时

青少年(14至17岁):睡眠8至10小时

年轻人(18至25岁):睡眠7至9小时

成人(26至64岁):睡眠7至9小时

老年人(65岁或以上):睡眠7至8小时

当然以上只是参考,并不是所有人必须达到的标准,少数人的需要的睡眠时间本来就不多,且没有睡眠困扰或不适症状,则无需参考以上标准。

相关阅读:

自闭症,抑郁症等与维生素缺乏有关

饮食与抑郁症密不可分,一文涵盖多种生物学机制

深度解析 | 炎症,肠道菌群以及抗炎饮食

益生菌的简单入门指南

主要参考文献:

Vernia F, Di Ruscio M, Ciccone A, Viscido A, Frieri G, Stefanelli G, Latella G. Sleep disorders related to nutrition and digestive diseases: a neglected clinical condition. Int J Med Sci. 2021 Jan 1;18(3):593-603. doi: 10.7150/ijms.45512. 

Krueger JM, Opp MR. Sleep and Microbes. Int Rev Neurobiol. 2016;131:207-225. doi: 10.1016/bs.irn.2016.07.003. Epub 2016 Aug 31. 

Matenchuk Brittany A,Mandhane Piush J,Kozyrskyj Anita L,Sleep, circadian rhythm, and gut microbiota.[J] .Sleep Med Rev, 2020, 53: 101340.

Hertenstein E., Feige B., Gmeiner T., Kienzler C., Spiegelhalder K., Johann A., Jansson-Frojmark M., Palagini L., Rucker G., Riemann D., et al. Insomnia as a Predictor of Mental Disorders: A Systematic Review and Meta-Analysis. Sleep Med. Rev. 2019;43:96–105.

Poroyko V.A., Carreras A., Khalyfa A., Khalyfa A.A., Leone V., Peris E., Almendros I., Gileles-Hillel A., Qiao Z., Hubert N., et al. Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice. Sci. Rep. 2016;6:35405.

Kinnucan J.A., Rubin D.T., Ali T. Sleep and Inflammatory Bowel Disease: Exploring the Relationship between Sleep Disturbances and Inflammation. Gastroenterol. Hepatol. (N.Y.) 2013;9:718–727.

Bowers S.J., Vargas F., Gonzalez A., He S., Jiang P., Dorrestein P.C., Knight R., Wright K.P., Jr., Lowry C.A., Fleshner M., et al. Repeated Sleep Disruption in Mice Leads to Persistent Shifts in the Fecal Microbiome and Metabolome. PLoS ONE. 2020;15

Smith R.P., Easson C., Lyle S.M., Kapoor R., Donnelly C.P., Davidson E.J., Parikh E., Lopez J.V., Tartar J.L. Gut Microbiome Diversity is Associated with Sleep Physiology in Humans. PLoS ONE. 2019;14:e0222394. 

Durgan DJ. Obstructive sleep apnea-induced hypertension: role of the gutmicrobiota. Curr Hypertens Rep. 2017; 19: 35

Reynolds AC, Paterson JL, Ferguson SA, Stanley D, Wright KP Jr, Dawson D.The shift work and health research agenda: considering changes in gutmicrobiota as a pathway linking shift work, sleep loss and circadianmisalignment, and metabolic disease. Sleep Med Rev. 2016; 34: 3-9.

Parisi P, Pietropaoli N, Ferretti A, Nenna R, Mastrogiorgio G, Del Pozzo M, etal. Role of the gluten-free diet on neurological-EEG findings and sleepdisordered breathing in children with celiac disease. Seizure. 2015; 25: 181-183

Michalopoulos G, Vrakas S, Makris K, Tzathas C. Association of sleep qualityand mucosal healing in patients with inflammatory bowel disease in clinicalremission. Ann Gastroenterol. 2018; 31: 211-216.

Wang B, Duan R, Duan L. Prevalence of sleep disorder in irritable bowelsyndrome: A systematic review with meta-analysis. Saudi J Gastroenterol.2018; 24: 141-150.

慢性疾病是可控的!肠道健康如何影响疾病风险

谷禾健康

现在经济飞速发展,随着生活条件改善,人们的寿命开始变长,对健康长寿的研究也逐渐开始增多。

点击查看关于健康长寿的研究

然而寿命变长却不一定健康,越来越多人开始患上各种慢性疾病。

慢性疾病怎么来的?

首先从炎症开始。炎症其实是身体在与自身有害的物质(例如感染,毒素)作斗争来自愈的过程。当细胞要被破坏时,身体就会释放化学物质,从而触发免疫系统的反应。

当这种反应持续存在时,就会发生慢性炎症,身体处于持续的警觉状态。随着时间的流逝,慢性炎症可能会对组织和器官造成负面影响。于是各种疾病就开始了。

那慢性疾病为什么与肠道健康有关呢?

01 许多疾病始于肠道

看过我们文章的朋友,大概已经开始有了这样的概念:许多疾病始于肠道。

因为免疫系统有很大一部分在肠道,具体来讲,这要涉及到肠道通透性的问题。

来自麻省总医院儿童医院腹腔研究和治疗中心主任Fasano博士和他的团队发现了zonulin蛋白(连蛋白),这为研究肠道通透性功能的新方法打开了大门,不仅因为它影响肠道,而且还影响了整个过程中炎症和自身免疫的作用。

除了基因组成和暴露于环境诱因外,还有三个引起慢性炎症性疾病的额外因素:

肠道通透性的不适当增加(可能受肠道菌群组成的影响);

负责耐受性免疫应答平衡的“超好战”免疫系统;

肠道菌群的组成及其对免疫系统的表观遗传影响宿主基因组的表达。

近十年来,人们开始越来越多关注到人类遗传学、肠道微生物组学和蛋白质组学,表明粘膜屏障功能的丧失,特别是胃肠道粘膜屏障功能的丧失,可能会严重影响抗原的运输,最终影响肠道微生物组和免疫系统之间密切的双向相互作用

这种相互作用对宿主肠道免疫系统功能的形成有很大影响,并最终将遗传易感性转化为临床结果。这一观察导致了对慢性炎症性疾病流行的可能原因的重新审视,表明肠道通透性的关键致病作用

临床前和临床研究表明,连蛋白家族是调节肠通透性的一组蛋白质,与多种慢性炎症性疾病有关,包括自身免疫性,感染性,代谢性和肿瘤性疾病。这些数据为多种慢性炎症性疾病提供了新的治疗靶点,其中连蛋白途径与它们的发病机理有关。

02 细菌影响你的健康

Fasano指出,根本没有足够的基因来解释众多慢性疾病,基因也不能解释疾病发作的时间。他说,要解决这些谜团,我们必须关注微生物组,因为“决定个人临床命运的是个体之间的相互作用和我们所生活的环境。”

除了微生物本身,肠粘膜的状况也起着重要作用。Fasano解释说:“尽管这种巨大的粘膜界面(200 m2)看不见,但它通过与周围环境中各种因素的动态相互作用而起着关键作用,这些因素包括微生物,营养素,污染物和其他物质。”

虽然过去人们认为细胞内紧密连接是静态且不可渗透的,但我们现在知道并非如此。正如Fasano所解释的,连蛋白是肠道渗透性的强大调节剂。然而,尽管连蛋白是肠道通透性的生物标志物,并在许多慢性炎性疾病中起着致病作用,但并非所有慢性炎症性疾病都是由肠道渗漏引起的。

03 导致慢性炎症性疾病的连锁反应

在他的综述中,一篇题为“Zonulin,一种上皮和内皮屏障功能的调节因子,及其在慢性炎症疾病中的作用”的文章,详细描述了“导致慢性炎症疾病的连锁反应”。

在正常情况下,你的肠道会保持健康的内稳态,当遇到抗原时,不会发生过度的免疫反应。在图中第2点,肠道菌群失调(即肠道菌群的数量和多样性不平衡)正在形成,导致连蛋白的过量生产,从而使肠道内壁更容易渗透。

Sturgeon C et al., Tissue Barriers, 2016

两个最强大的触发连蛋白释放是细菌过度生长和谷蛋白。连蛋白是对坏细菌的反应产生的——它通过打开紧密连接帮助细菌排出体外,所以细菌过度生长是有意义的。但是为什么它对谷蛋白有反应呢?

有趣的是,连蛋白途径将谷蛋白误解为微生物的潜在有害成分。这就是为什么谷蛋白会触发连蛋白的释放。虽然Fasano没有提到,除草剂草甘膦也触发连蛋白,而且是谷蛋白10倍的效力!

随后的通透性允许微生物群衍生的抗原和内毒素从管腔迁移到固有层(肠粘膜的结缔组织),从而引发炎症。

随着过程的继续恶化(上图中第3阶段),适应性免疫反应开始,触发促炎性细胞因子的产生,包括干扰素γ(IFN-γ)和肿瘤坏死因子α(TNF-α)。这些细胞因子使通透性进一步恶化,从而形成恶性循环。

最终(第4阶段),粘膜耐受性被完全破坏,导致慢性炎症性疾病的发作。

04慢性炎症性疾病与肠道渗漏有关

最终出现的特定的慢性炎症性疾病,部分取决于你的基因组成,部分取决于你所接触的类型以及部分取决于肠道菌群组成。

除了遗传易感性和环境触发因素外,各种慢性炎症性疾病的发病机理还涉及到相互影响的肠道通透性/ Ag转运,免疫激活以及肠道菌群的组成/功能的变化。

连蛋白是上皮和内皮屏障功能的调节剂,肠营养不良可能导致连蛋白的释放,从而导致腔内物质穿过上皮屏障的释放,导致促炎性细胞因子的释放,而促炎性细胞因子本身会导致通透性增加,形成恶性循环,从而导致大量的饮食和微生物Ag大量涌入,触发了T细胞的活化。

根据宿主的遗传组成,活化的T细胞可能保留在胃肠道内,导致肠道慢性炎症性疾病或迁移到几个不同的器官以引起全身性慢性炎症性疾病。”

与zonulin通路失调相关的慢性炎症疾病包括:

自身免疫性疾病如腹腔疾病、1型糖尿病、炎症性肠病、多发性硬化症和强直性脊柱炎

代谢紊乱如肥胖、胰岛素抵抗、非酒精性脂肪肝、妊娠期糖尿病、高脂血症和2型糖尿病

肠道疾病如肠易激综合征、非腹腔麸质敏感性和环境肠道功能障碍

神经炎症性疾病如自闭症谱系障碍、精神分裂症、重度抑郁症和慢性疲劳/肌痛性脑脊髓炎

癌症脑癌和肝癌

05 肠道菌群影响基因并可能影响癌症风险

2018年,发现的肠道菌群实际控制肝脏中的抗肿瘤免疫应答,并且抗生素可以改变免疫细胞的组成在肝脏中触发肿瘤生长。

哈佛医学院的研究人员已经确定了肠道微生物的特定种群,可以调节局部和系统的免疫反应来抵御病毒入侵。

某些肠道细菌也会促进炎症,炎症是几乎所有癌症的潜在因素,而其他细菌则会抑制炎症。某些肠道细菌的存在甚至可以增强患者对抗癌药物的反应。

肠道菌群提高癌症治疗效果的一种方法:

激活你的免疫系统,让它更有效地发挥作用。

研究人员发现,当这些特定的微生物缺失时,某些抗癌药物可能根本不起作用。

06 肠道菌群是抗病毒防御的一部分

最近的研究表明,肠道细菌也参与了抗病毒防御。

哈佛医学院的研究人员第一次确定了特定的肠道微生物群,这些菌群调节局部和全身免疫反应,抵御病毒侵略者。这项工作确定了一组肠道微生物,以及其中的一个特定物种,它能使免疫细胞释放出抗病毒化学物质——1型干扰素。

研究人员进一步确定了许多肠道细菌共有的确切分子,它开启了免疫保护级联反应。研究人员指出,这种分子并不难分离,可能成为增强人类抗病毒免疫的药物的基础。”

虽然这些发现还需要重复和证实,但它们指出了一种可能性:你也许可以通过在肠道中重新播种脆弱拟杆菌和拟杆菌科的其他细菌,来增强你的抗病毒免疫。

这些细菌启动一个信号级联,诱导干扰素的释放,通过刺激免疫细胞攻击病毒,并导致病毒感染的细胞自我毁灭来保护免受病毒入侵

具体来说,驻留在细菌表面的一个分子通过激活所谓的TLR4-TRIF信号通路触发干扰素的释放,这种细菌分子刺激免疫信号通路,该通路由9种toll样受体(TLR)之一启动,TLR是先天免疫系统的一部分。

07 维生素D的作用

最近的研究还强调了维生素D在肠道健康和全身自身免疫中的作用。一篇综述文章发表于《免疫学前沿》中:

自身免疫性疾病往往会导致维生素D缺乏症,这会改变微生物组和肠道上皮屏障的完整性

这篇综述总结了肠道细菌对免疫系统的影响,探讨了自身免疫疾病研究中出现的微生物模式,并讨论了维生素D缺乏症如何通过其对肠道屏障功能,菌群组成的影响而有助于自身免疫,和/或对免疫反应的直接影响。

维生素D对免疫系统具有多种直接和间接的调节作用,包括促进调节性T细胞(Tregs),抑制Th1和Th17细胞的分化,损害B细胞的发育和功能,减少单核细胞的活化和刺激来自免疫细胞的抗菌肽。

也就是说,维生素D自身免疫之间的关系很复杂。除了免疫抑制,维生素D还通过影响菌群组成肠道屏障的方式改善自身免疫性疾病。

该文章引用了一些研究,这些研究表明维生素D会改变肠道微生物组的组成。一般而言,维生素D缺乏倾向于增加拟杆菌和变形杆菌,而更高的维生素D摄入量则倾向于增加普氏杆菌并减少某些类型的变形杆菌和厚壁菌。

虽然关于维生素D对肠道细菌的影响的研究仍很薄弱,尤其是在患有自身免疫性疾病的患者中,但已知维生素D缺乏症和自身免疫性疾病是合并症,通常建议这些患者补充维生素D。

08 维持紧密连接所需的维生素D

众所周知,维生素D支持肠道和免疫细胞的防御。维生素D是维持紧密连接所需的关键成分之一

肠上皮与外部环境不断相互作用。上皮表面适当的屏障完整性和抗菌功能对于维持内稳态和防止特定微生物物种的入侵或过度定殖至关重要。

健康的肠上皮和完整的粘液层对于防止病原性生物入侵至关重要,而维生素D有助于维持这种屏障功能。多项研究发现,维生素D3 / VDR信号调节紧密连接蛋白的数量和分布。

作为一种可使离子进入肠腔的“泄漏”蛋白,在功能性维生素D缺乏症的情况下,claudin-2表达可能会导致结肠炎。

维生素D上调抗菌肽的mRNA和蛋白质表达,包括抗菌肽,防御素和溶菌酶。

抗菌肽主要由肠道Paneth细胞分泌,是微生物组组成的重要介质。

防御素由上皮细胞,Paneth细胞和免疫细胞分泌,并且是肠道固有免疫反应的重要组成部分。

09 维生素D如何导致自身免疫性疾病

维生素D缺乏症可能通过以下方式影响微生物组和免疫系统,从而导致自身免疫疾病:

维生素D缺乏或补充会改变微生物组,细菌丰度或组成的操纵会影响疾病的表现。

由于饮食不足而缺乏维生素D信号传导会损害肠道的物理和功能屏障完整性,从而使细菌之间的相互作用刺激或抑制免疫反应。

如果缺乏维生素D,先天免疫防御能力可能会受到损害。

Yamamoto Erin A et al.,Front Immunol, 2019

10 如何优化肠道微生物组

以上所有,我们可以看到,优化肠道菌群和维生素D水平对于保持健康至关重要。通过肠道菌群检测,查看自己的肠道菌群的构成,适当补充益生菌,维生素D将有助于避免肠道泄漏。

对肠道微生物组产生重大影响的最简单,最有效和最便宜的方法:定期食用发酵食品

健康的选择包括酸奶,纳豆和各种发酵蔬菜。

避免破坏或杀死微生物组,其中包括:

如果可以的话,尽量避免抗生素。抗生素杀菌一视同仁,不管好坏。

尽量少吃常规饲养的肉类和其他动物产品,因为这些可能会被喂食低剂量的抗生素。

尽量避免经基因工程处理和/或草甘膦处理的谷物。

少吃加工食品(由于过量的糖会滋生病原菌)

相关阅读:

维生素D与肠道菌群的互作

炎症性肠病中宿主与微生物群的相互作用

20种有效改善肠道健康的科学方法

深度解析 | 炎症,肠道菌群以及抗炎饮食

参考文献:

Krautkramer KA, Kreznar JH, Romano KA, Vivas EI, Barrett-Wilt GA, Rabaglia ME, Keller MP, Attie AD, Rey FE, Denu JM. Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Mol Cell. 2016 Dec 1;64(5):982-992. doi: 10.1016/j.molcel.2016.10.025. Epub 2016 Nov 23. PMID: 27889451; PMCID: PMC5227652.

Guglielmi Giorgia,How gut microbes are joining the fight against cancer.[J] .Nature, 2018, 557: 482-484.

Larsen Nadja,Vogensen Finn K,van den Berg Frans W J et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults.[J] .PLoS One, 2010, 5: e9085. 

Sturgeon Craig,Fasano Alessio,Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases.[J] .Tissue Barriers, 2016, 4: e1251384. 

Yamamoto Erin A,Jørgensen Trine N,Relationships Between Vitamin D, Gut Microbiome, and Systemic Autoimmunity.[J] .Front Immunol, 2019, 10: 3141. 

肺癌最新研究进展,与微生物息息相关

谷禾健康

关于肺癌,可能有以下误解:

你对肺癌了解吗?

肺癌是第三大常见癌症(占所有癌症的11.6%)。2018年全球诊断209万例以上,死亡170万人。

肺 癌 类 型 

肺癌中最常见的类型是非小细胞肺癌(NSCLC),约占所有病例的80%—85%。

小细胞肺癌(SCLC)约占肺癌的15%—20%。SCLC的增长和传播速度比NSCLC快。

它的可怕之处在于大多数患者被诊断时为晚期,死亡率高。在没有有效治疗的情况下,治疗前后多器官转移和复发是死亡的关键原因。

肺部微生物群和癌症之间的相互作用: 

肺癌的发生、驱动因素和治疗

Martins D,et al., Pathobiology. 2020

肺癌是由宿主和环境因素之间的相互作用引起的复杂疾病。在各种环境风险因素中,微生物在维持微生态平衡和调节宿主对多种治疗的免疫反应中起着至关重要的作用。

01

肺部微生物组

肺部是人体表面积最大的黏膜部位,也是与外部环境的主要接触面。肺里面藏有多种微生物。

肺微生物群由细菌,真菌和病毒组成,这些细菌是由吸入粘膜分泌物,鼻咽,口咽和环境空气交换而产生的。和肠道、皮肤等微生物组不同。

在健康的肺中,普雷沃氏菌(Prevotella),链球菌(Streptococcus), 韦荣氏球菌属(Veillonella), 奈瑟菌属(Neisseria),嗜血杆菌属 (Haemophilus),梭杆菌属(Fusobacterium)是最丰富的细菌属。与真菌曲霉菌(Aspergillus), 青霉菌(Penicillium), 念珠菌(Candida)等真菌共存,不会引起健康人肺的感染。

而在在慢性阻塞性肺疾病(COPD)和囊性纤维化等肺部疾病中,肺微生物群处于失调状态。

02

不同部位微生物组动态联系

正常情况下,人体是动态平衡的,并且各个身体部位的微生物可以直接相互作用,或者通过系统循环中的炎性物质,细胞因子和代谢物间接相互作用,如下图所示。

Liu NN,et al., NPJ Precis Oncol.2020 

口腔微生物组可能是肺微生物组的主要来源。 呼吸道和肠道可以通过包括微抽吸和吸入在内的生物学过程相互交流。

人类呼吸道和胃肠道中微生物群的早期形成和免疫环境可能源自皮肤和外部环境。

尽管肠道和肺生物群的微观解剖特征,组成和种群动态存在明显差异,但这两个器官具有相似的体内平衡和某些生理特征,例如微生物群成熟过程,粘膜免疫系统,共同进化以及与免疫细胞的沟通和持续不断暴露于外部环境。

胃肠道疾病患者更容易出现多种肺部疾病

肠道菌群已被证实可导致慢性阻塞性肺疾病,哮喘的进展以及急性肺损伤的恶化。

肠道和肺中特定微生物代谢产物通过循环的联系和调节作用。 例如,与健康对照相比,观察到支气管哮喘患者粪便中的微生物代谢产物(包括脂肪酸,乙酸盐,丁酸和丙酸以及异酸)显着减少。

普氏栖粪杆菌(Faecalibacterium prausnitzii)克曼氏菌(Akkermansia muciniphila)可通过诱导抗炎细胞因子IL-10并抑制促炎细胞因子(如IL-1247)的分泌来抑制小儿过敏性哮喘的炎症反应。

肠道菌群可诱导小鼠肺部对细菌性肺炎的炎症反应,并通过TLR4增强中性粒细胞浸润。

复杂的介入性生态系统调节各种病理过程,维持肠道和肺的生理平衡。因此,科学家基于在大量长期流行病学观察的基础上建立的多样而复杂的肠-肺微生物群网络,提出了“微生物群-肠-肺轴”。

03

肺微生物组与宿主代谢

新陈代谢在许多病理和生理过程中对维持人体内环境稳定至关重要。有新的研究探讨了与宿主代谢相关的肺部微生物群。

与细菌生物体相关的特定代谢谱与甘油磷脂亚油酸盐途径相关,它们在HIV感染者的肺炎发病中起重要作用。还发现铜绿假单胞菌利用粘菌Rothia mucilaginosa产生的底物分泌的主要代谢物在其囊性纤维化进展的发病机制中起作用。

说起代谢产物,不得不说的是短链脂肪酸(SCFA)。它是由大量共生微生物产生的,并在宿主细胞中起着至关重要的信号分子的作用。

肠道中缺乏短链脂肪酸的小鼠容易受更多的细菌负荷,如金黄色葡萄球菌,这可能受肺Th17免疫力调节。饮食中添加短链脂肪酸(SCFA)可以通过调节小鼠T细胞和树突状细胞的活性来改善哮喘易感性。

临床前模型中肠道微生物组的调节可以改变宿主的免疫反应和对肺部感染因子的敏感性。

肠-骨髓-肺轴

​短链脂肪酸可调节骨髓细胞的分化并维持宿主免疫稳态。在某些情况下,SCFA可以调节肠道微生物组的组成并诱导骨髓生成,从而在呼吸道中产生抗炎环境。

04

肺微生物组和宿主免疫

微生物组通过介导宿主对各种致病因素和治疗结果的敏感性,直接或间接调节宿主的免疫活性。微生物组与免疫系统之间的动态相互作用,让宿主能够识别并预防细菌或真菌的入侵和感染。 

在临床前研究中,缺乏肠道微生物组的无菌(GF)小鼠表现出严重的免疫发育不良,具有不完整的粘液层,免疫球蛋白分泌障碍以及淋巴结大小和数量减少

特殊亚群CD4+ Th17细胞在微生物相互作用粘膜免疫功能和宿主对肠道、肺和皮肤炎症性疾病的反应中起重要作用。

肠道菌群可以刺激Th17反应并调节IL-17的产生,这与某些病原体的消除有关。IL-17途径还参与了多种肺部疾病的发病机制,包括哮喘,结节病,闭塞性细支气管炎和与骨髓移植有关的肺炎

驻留在肺中的细菌调节某些先天免疫基因的表达,包括IL-5,IL-10和IFN,而CD11bC 树突状细胞和FoxP3+CD25+Treg细胞上PD-L1的表达水平较高。 微生物相关的代谢产物脱氨基酪氨酸(DAT)通过增强I型IFN刺激和降低肺癌的免疫病理学来保护宿主免于流行性感冒。

共生菌群可以通过炎症小体调节呼吸道粘膜的免疫力,并提供稳定的免疫激活信号。

可发酵纤维菊粉能改变肠道菌群结构和相关代谢产物

例如短链脂肪酸,最终通过抑制中性粒细胞诱导的损伤和增强抗病毒CD8+ T细胞反应来改善小鼠对流感病毒感染的反应。

发现口腔分类群中肺微生物群的富集与Th17炎症相关,其中TLR4反应受肺微生物群组成的影响。 此外,共生菌被证明可促进肺癌中Vg6 +Vd1 + T细胞的增殖和活化。 然而,对于健康或有益的肺部微生物菌群并没有一致的定义,部分原因是由于对肺部微生物群与宿主免疫之间的关联了解有限。

05

微生物组与癌症

在人体内有越来越多的共生微生物和致病微生物被报道具有致癌特性,并且大多数微生物在流行病学上与癌变密切相关。 

癌症通常是一个多因素的病理过程,正常细胞开始以非程序化的方式增殖,导致细胞凋亡、自噬、炎症和DNA损伤。

如何诱发癌症?

表面边界肿瘤的发生通常与宿主粘膜免疫屏障破坏有关。当粘膜表面受损时,如果无法及时修复损伤,将重建原始组织和共生微生物组的微环境。否则,这种损害将继续加剧并导致反复发作的炎症,最终可能诱发癌症。

位于表面结合的肿瘤或肿瘤内的微生物组有可能利用肿瘤来源的碳源和其他营养物质在长期共存的情况下与肿瘤免疫微环境相互作用。

 发 病 机 制 

肿瘤内微生物与癌症发展之间的联系,并已证明了三种主要机制是潜在的作用方式:

(1)直接通过增加诱变来促进肿瘤发生

(2)调节癌基因或致癌途径

(3)通过调节宿主免疫系统来降低或增强肿瘤进展

微生物与肿瘤细胞之间的相互作用

Wong-Rolle A,et al., Protein Cell.2020

许多微生物已经进化为产生可导致DNA损伤,细胞周期停滞和遗传不稳定的化合物。产生此类化合物的细菌的存在会直接增加所占组织的诱变作用。 

06

微生物组与肺癌

肺微生物群可改变免疫微环境以促进肿瘤进展,慢性炎症与癌症息息相关。细胞因子,趋化因子和其他促炎因子可以促进肿瘤的生长和扩散。肺由于广泛暴露于外部环境,是免疫-微生物群落相互作用的关键部位。

先前的研究已经发现微生物组与肺部炎症和组织结构之间的某些相关性,包括COPD(慢性肺部疾病),IPF(特发性纤维化),哮喘,CF(囊性纤维化)和非CF支气管扩张等。

微生物失调可能会引起宿主生理机能失调,并加剧慢性肺部疾病的恶化

慢性阻塞性肺疾病(COPD)患者的呼吸标本中鉴定出呼吸道病毒39–56%,而在临床基线为6–19%。

病情加重期间病原菌存在于51-70%的患者中,而最初的稳定临床基线中则存在25-48%。

一项大型队列研究称,CXCL8/IL-8与肺微生物组多样性和群落结构显著相关。在某些受试者中,COPD加重期间CXCL8/IL-8可以介导宿主炎症反应。

特发性纤维化(IPF),已证实其具有不同于健康肺部状况的微生物组,一项随机试验报告说抗生素治疗可能有益于IPF患者的生存。

此外,包括细菌或病毒感染在内的肺微生物组可能会侵入气道上皮细胞,从而诱导宿主免疫反应或触发慢性病原性刺激中伤口愈合的级联反应

与肺癌相关的微生物群

从全球角度来看,假单胞菌、链球菌、葡萄球菌、韦荣球菌属和莫拉克斯氏菌属经常被报道为与肺癌最相关的微生物群。

Liu NN,et al., NPJ Precis Oncol.2020 

在不同的条件下,肺微生物群在促进致癌和维持体内平衡方面起着双重作用。

Liu NN,et al., NPJ Precis Oncol.2020 

肺部微生物群可以直接影响肺癌细胞的生长。在上一小节提到过微生物在癌症进展中作用的三个主要机制中,局部免疫环境的调节和致癌途径与肺癌有关。

肺微生物群落的失调可能通过特定的微生物成分促进致癌途径的改变。

研究人员在一个原位小鼠模型中证明了微生物群-免疫相互作用在促进炎症和肺癌发展中的重要性。发现与健康肺相比,某些细菌科如草螺菌属Herbaspirillum鞘脂单胞菌科Sphingomonadaceae在含肿瘤的肺组织中富集,而其他分类群包括Aggregatibacter乳杆菌属在健康肺中富集。

增加的局部细菌负担和改变的肺微生物群的组成刺激myd88依赖的IL-1β和IL-23从骨髓细胞产生。这些细胞因子诱导Vy6+Vδ1+γδT细胞的激活和增殖,产生IL-17,促进炎症和中性粒细胞浸润。此外,这些γδ T细胞产生白细胞介素-22和其他促进肿瘤细胞增殖的效应分子。

无菌(绿色荧光)小鼠或经抗生素处理的小鼠显著降低了肺部肿瘤的生长,证明共生细菌显著促进了肺癌的发展。

利用雾化抗生素证明,细菌生物量的减少与通过T细胞和NK细胞活化增强抗肿瘤免疫反应和减少免疫抑制调节性T细胞有关。

此外,发现益生菌鼠李糖乳杆菌能够克服免疫抑制并抑制肺肿瘤植入,并且在抗生素和益生菌条件下肿瘤转移减少。

总之,这些发现支持了微生物群通过调节局部免疫反应和靶向肿瘤相关微生物群在肺癌发展中起关键作用的观点,为肺癌的预防和治疗提供了潜在的新途径。

研究人员发现成年小鼠的过敏性气道炎症显著减弱,这是由于HDM(室内尘螨)治疗后,表面配体PD-L1、PD-L2和CD40的表达增加。

目前的知识不能详细说明伴随疾病进展的肺微生物群变化的因果关系,因为大多数研究是基于长期观察和队列研究。更有可能的是,肺微生物群可能在维持身体稳定性和促进癌症方面发挥双重作用。

07

微生物对肺癌的治疗作用

当前,肺癌的传统疗法可分为手术切除,放射疗法,化学疗法和免疫疗法。 即使是现在,在诊断时(III / IV期),仍有近75%的肺癌患者已进入晚期。

因此,对肺癌的早期发现和改善的治疗变得越来越紧迫。目前对微生物临床应用的探索仍处于早期阶段,包括临床前模型中的益生菌,饮食干预和FMT(粪便微生物群移植)。

了解人类微生物群,尤其是肠道微生物群与肺癌之间的关系,可能会为肺癌的诊断和治疗开辟新的窗口。

微生物标志物

目前,临床上广泛使用和有效的肺癌诊断工具是胸部X光CT。然而,由于CT的检查成本高且不便,因此仍不能完全普及。

肺癌筛查的最佳选择是检查具有高危疾病特征的人群,包括年龄,性别,长期吸烟和职业接触。更好地探索肠道菌群与肺癌之间的相互作用,并尝试找到与肺癌密切相关的微生物改变和特定微生物,从而可以提供更好的目标来选择高危人群,包括胸部X线和CT高危人群。

有许多长期观察和流行病学研究,根据各种样本来源检测出微生物群与肺癌之间的显著相关性。确定并建立了特定的肠道微生物特征来预测早期肺癌将具有重要意义。

肺癌患者唾液中的奈瑟氏球菌,链球菌和卟啉单胞菌明显更高,这可能是疾病检测/分类的潜在生物标志物。 肺组织中大量的拟杆菌科,毛螺菌科和瘤胃菌科与无复发(RFS)和无病生存(DFS)的风险降低显著相关。当然,进一步的临床研究是必要的,以建立用于预测未来肺癌的微生物标记。

放疗和化疗

晚期肺癌的放疗已成为临床实践中的常规治疗方法,虽然有副作用,例如免疫损伤和辐射诱发的毒性。 

最近的一项研究表明,小鼠粪便微生物群移植可以减少辐射诱发的损害,而不会促进体内癌细胞的增殖和迁移。此外,在放疗后的小鼠模型组织中观察到与原始微生物相比,具有增强的IL-1β,IL-6和TNF-α表达的独特微生物特征。 将对辐射高度敏感的微生物鉴定为可改善治疗效果的预测性生物靶标是有希望的。

微生物群可能是减少放射线引起的毒性并改善放射治疗后肺癌患者预后的一种治疗策略。

​肠道微生物组在yao物代谢,化疗诱导的毒性和宿主反应敏感性方面起着至关重要的作用。 肠道菌群可以通过微生物和微生物酶直接调节yao物的吸收和代谢。 此外,肠道菌群还可以通过调节基因表达,局部粘膜屏障反应和远处器官的生理状况来间接影响口服和全身给yao的代谢率。

体内和体外实验表明,化学治疗剂与人类微生物群之间存在复杂且多层次的干预关系。 

目前,大多数微生物组和化学治疗的研究仍处于动物实验阶段,很少有研究直接探讨肺癌化疗后患者肠道菌群的改变和功能。 仍需要进行其他临床试验,以研究肠道菌群的调节模型是否可以成为一种有效的临床方法,以辅助化疗治肺癌并使yao物诱导的毒性降至最低。

免疫治疗

先前有报道称肠道菌群失调可能影响对癌症的免疫治疗效果。 

例如,法国研究小组检查了接受PD-1免疫治疗的249名癌症患者的微生物组。 其中,有69名患者在治疗开始时因其他疾病而接受了抗生素治疗,这将破坏肠道菌群。 接受抗生素治疗的患者比未接受抗生素治疗的患者癌症复发时间和生存时间更短,这表明抗生素的使用会大大降低免疫疗法的有效性

一项后续研究比较了两组患者的肠道菌群,并从康复患者的粪便中分离了阿克曼菌(Akkermansia muciniphila).[一种益生菌,曾被证明可以有效预防肥胖和糖尿病]

这项研究证明了其有助于癌症免疫疗法。此外,研究人员将恢复患者的粪便植入无菌小鼠中,接受“有效”粪便的人对PD-1抑制剂反应迅速。口服阿克曼菌也可以恢复相同的免疫治疗效果。

一个可能的原因是,更高的微生物群多样性可能与T细胞活性呈正相关,这反过来又导致癌细胞被更彻底地杀死。相反,患有“坏细菌”的患者具有更多的调节性T细胞,可以抑制宿主的免疫反应。

一项对晚期非小细胞肺癌患者进行免疫检查点抑制剂PD-1治疗的最新研究表明,肠道菌群多样性较高的患者对抗PD-1免疫检查点抑制剂的反应更好。

益生菌,益生元和靶向微生物

目前,益生菌,益生元和合生元,它们在不同的临床实践中普遍显示出安全性。 

临床数据不断增加所揭示的一般效果包括促进胃肠道的稳态和完整性,通过产生短链脂肪酸(SCFA)和维生素或次级胆汁盐来调节代谢,参与消化活动以及中和炎症和致癌物。

益生菌、益生元作用:

但是,当前有关有益菌和分子机制的有限研究和知识尚不能提供剖析宿主微生物组的最佳方法。 微生物的变化是否会引起意想不到的局部稳态失调,炎症反应或什至是癌前病变尚不清楚。 最近,FDA就使用FMT发出安全警告,警告由于致病性生物的传播而造成严重不良事件的风险,需要注意和谨慎。

08

结  语

宿主,微生物组和环境之间的三重相互作用在健康功能中维持了肺稳态。 

Liu NN,et al., NPJ Precis Oncol.2020 

此外,微生物组在促进传统的肺癌治疗包括放射疗法,化学疗法,手术切除和免疫疗法方面可能具有不可估量的治疗策略。

尽管微生物组的巨大潜力为肺癌的预防和治疗画出了广阔的前景,但普遍认为,这一领域的发展需要更多的多学科和深入的探索。 更好地了解癌症发生过程中的微生物组以及对多种治疗方法的不同反应可能会为促进肺癌患者的诊断和预后提供巨大的机会。

肺癌的饮食建议

有胃口就吃饭。

如果胃口不大,请尝试全天少食。

如果需要增加体重,请补充低糖,高热量的食物和饮料。

如果胃很容易不适或有口疮,请避免食用香料并坚持清淡的食物。

如果出现便秘问题,可多吃高纤维食物。

虽然说没有明确哪种饮食可以治愈癌症,但均衡饮食有助于抵抗副作用,感觉舒适。

相关阅读:

最新研究进展|肠道微生物组在改善抗癌治疗效果方面的强大作用

解密|肠道菌群与健康长寿

深度解析 | 肠道菌群与慢性肝病,肝癌

维生素D与肠道菌群的互作

菌群左右下的免疫力天平——免疫失衡疾病背后的新机制

参考文献:

Liu NN, Ma Q, Ge Y, Yi CX, Wei LQ, Tan JC, Chu Q, Li JQ, Zhang P, Wang H. Microbiome dysbiosis in lung cancer: from composition to therapy. NPJ Precis Oncol. 2020 Dec 10;4(1):33. 

doi: 10.1038/s41698-020-00138-z. 

Tsay, J. A.-O. et al. Airway microbiota is associated with upregulation of the PI3K pathway in lung cancer. Am. J. Respir. Crit. Care Med. 198, 1188–1198 (2018) 

Huang, D. et al. The characterization of lung microbiome in lung cancer patients with different clinicopathology. Am. J. Cancer Res. 9, 2047–2063 (2019).

Wong-Rolle A, Wei HK, Zhao C, Jin C. Unexpected guests in the tumor microenvironment: microbiome in cancer. Protein Cell. 2020 Dec 9. doi: 10.1007/s13238-020-00813-8. Epub ahead of print. PMID: 33296049. 

Liu, Y. et al. Lung tissue microbial profile in lung cancer is distinct from emphysema. Am. J. Cancer Res. 8, 1775–1787 (2018).

Martins D, Mendes F, Schmitt F. Microbiome: A Supportive or a Leading Actor in Lung Cancer? Pathobiology. 2020 Dec 22:1-10. doi: 10.1159/000511556. Epub ahead of print. PMID: 33352574. 

Peters, B. A. et al. The microbiome in lung cancer tissue and recurrence-free survival. Cancer Epidemiol. Biomark. Prev. 28, 731–740 (2019).

解密|肠道菌群与长寿【跨年礼】

谷禾健康

过完今天,这个魔幻的2020就要过去了。面临工作、学习、出行等方方面面一而再地按下暂停键,很多人都希望这一年能够重启。

这一年发生了太多故事

每一个都足以让人痛惜

“活着”、“健康”这样的字眼在这一年显得尤为珍贵。简单的道理往往在经历重大的事件后才会尤为深刻。

古有求仙药,今有各种医疗技术的不断革新,大家对于长寿有着一致的追求。当基本的生活有了一定的保障后,人们不仅想要活得长久,还要健健康康地活着。

我们可以看到,人类的预期寿命已开始延长,并且仍在继续提高。“健康长寿”不再停留于一句祝福语,而是可行的人生目标。

01 关于长寿的研究

长寿是多种变量复杂组合的结果。由于不同地区自然环境、社会制度、社会经济发展状况和人口构成等因素千差万别。

根据相关研究,影响人类寿命的因素至少包括:

遗传因素如线粒体状态、染色体稳定性、端粒长短、疾病、干细胞活性;

环境因素如肠道微生物、饮食、运动、空气质量以及生活环境;

其他因素如情绪压力、社交爱情、目标成就、投入预防等等。

人们在迈向健康长寿的过程中处于不同的阶段和水平。若干年后,也许有相当多的人进入百岁人生。

在2020年的最后一天,我们就来聊聊肠道菌群和长寿的故事。

伊卡里亚岛

伊卡里亚岛

该岛位于萨摩斯岛西南约10海里,这是爱琴海的一个小岛,是世界上寿命最长的地区之一。他们是90岁以上人群中世界上人口最多的国家,百岁老人在岛上已有400多年的历史了。科学家将那里长寿的机会与空气,水,社区精神,饮食习惯和遗传倾向等因素相关联。

意大利

提起意大利,你想到的是足球还是意大利面,其实这个国家还盛产长寿老人,根据欧盟统计,意大利为欧洲第一长寿国,女性平均寿命为84岁,男性平均寿命为78.3岁。

研究发现100岁意大利老人的肠道菌群种类分布与30岁意大利人相比,出现了较明显的变化,厚壁菌门中的拟杆菌XIVa明显减少,而芽孢杆菌上升,身体的炎症反应状况高,因此科学家得出长寿的关键因素:菌群种类的改变,更好的应对和调节炎症反应。

中国 新疆和田,广西巴马,四川都江堰青城山等

中国新疆和田,广西巴马以及四川都江堰市青城山等地区都很大比例的长寿健康老人。动物遗传育种研究所李英团队在《Current Biology》发表的一项关于寿老人和年轻人群肠道菌群研究发现长寿老人肠道菌群多样性和菌群丰度显著高于年轻组,这一结论在意大利相应人群中也得到了证实,提示更多有益菌群以及更丰富的菌群多样性可能是人类健康长寿的重要原因之一。

02 长寿老人肠道微生物群特征

对长寿的研究可能有助于我们理解人类是如何延缓衰老,如何战胜与年龄相关的疾病。

肠道微生物群被认为是监测和可能支持健康衰老的变量之一。事实上,宿主-肠道微生物体内平衡的破坏与炎症和肠道通透性以及骨骼和认知健康的普遍下降有关。肠道微生物群作为健康衰老可能的介质,通过对抗炎症、肠道通透性以及认知和骨骼健康的恶化来保持宿主环境的稳态。

健康老年人的肠道菌群如何定义?

考虑到大多数老年人都患有肠道相关合并症,因此在该人群中定义健康的肠道微生物组极具挑战性。肠道环境的变化,例如炎症,肠道渗漏,活性氧的产生以及药物的使用,都可能影响肠道微生物组。在这方面,健康百岁老人一直被用作健康老龄化的典范,因为他们有能力推迟或避免慢性疾病。因此,该队列中的肠道微生物组可用于定义健康的肠道微生物组。

长寿者肠道菌群多样性水平高

一般认为,随着年龄增长时,肠道微生物多样性通常会降低。可能是由于生理,饮食,药物和生活方式的变化所致。

是不是所有老人的肠道菌群多样性都会降低?

研究人员检测了一群健康的长寿老人的肠道微生物组,来自中国四川都江堰市的长寿老人,包括“90-99岁”和“≥100岁”两个年龄段。

他们发现长寿人群的肠道菌群比年轻成年人的肠道菌群更多样化,这与传统观点相矛盾。


Kong F,et al., 2018; Gut Microbes

他们还发现了产短链脂肪酸菌在长寿老人中开始增加,例如梭状芽胞杆菌XIVa。

国内外研究结果一致

为了验证他们的发现,他们分析了来自一个意大利小组的独立数据集。


Kong F,et al., 2018; Gut Microbes

出现一致的结果:长寿的意大利人也比年轻的人群的肠道菌群多样化水平更高 。

庆幸的是,谷禾肠道菌群数据库中也有比较长寿的老人肠道菌群数据。

我们抽取其中一例相对较为健康的长寿老人的数据:

编号:083*****97 ,98岁(谷禾肠道菌群数据库)

谷禾健康数据库

可以看到肠道菌群多样性水平也是明显增高,与文献报道相符。大部分指标都处于正常水平。

长寿者产短链脂肪酸菌增多

结合意大利和中国的数据集,发现尽管肠道微生物群结构存在显著差异(可能是由于饮食、基因和环境的差异),但区分长寿个体和年轻群体的前50种细菌特征中,有11种特征是相同的。同样,这些特征包括肠道菌群多样性水平更高和几个产短链脂肪酸菌丰度更高


Kong F,et al., 2018; Gut Microbes

一项后续研究中,另外两个独立的队列中也观察到了长寿人群中更大的肠道微生物组多样性:一个来自中国江苏省,另一个来自日本。

以上这些研究都清楚地表明,健康长寿的人存在更多样化且平衡的肠道菌群,而在患有不同合并症的老年人中观察到肠道菌群紊乱。

因此,研究人员假设调节肠道微生物组(如通过饮食、益生菌)来维持健康的肠道微生物组将有利于健康地衰老。

进一步假设,在患有慢性疾病的老年人中,将紊乱的肠道菌群调节为健康的肠道菌群将减轻他们的症状,提高他们的生活质量。

肠道微生物组和健康衰老的有效假设


Deng et al., 2019; Aging

该假设背后的一个基本原理是慢性炎症,即老年人中慢性低度炎症的增加,这与不同的慢性疾病有关。

短链脂肪酸对维持肠道止血很重要。短链脂肪酸为结肠上皮细胞提供主要能量,并具有抗炎特性。这些产短链脂肪酸菌在长寿老人中的富集表明,这些细菌可能会减轻炎症及由此造成的损害,这可能是他们能够健康衰老的原因。

以上我们知道长寿老人的产短链脂肪酸菌增多,那么其他菌群会有什么样的变化?

在门类水平上,大多数研究都证明了变形菌丰度的增加。

 长寿者菌群变化,潜在有益菌较多 

· 不同地区比较:

一项研究分析并比较了长寿村庄中百岁老人与同一地区和城市化城镇中的老年人和成年人的肠道菌群。采集长寿村的百岁老人、老年人和年轻人的粪便样本,以及来自韩国城市城镇的老年人和年轻人的公共数据库获得肠道菌群数据。

与城镇化老年人相比,长寿村老人:

康复医院百岁老人的肠道菌群也不同于居家。这些差异可能是由于饮食方式生活环境的差异。

· 不同年龄比较:

我们来看一项研究,对62个人的粪便微生物组进行宏基因组测序,年龄从22岁至109岁不等。

下图可以看到,随着年龄的增长,肠道微生物群发生了变化。


Rampelli et al., 2020; mSystems

注:4个年龄组的肠道微生物组:

11个年轻人 (22 – 48岁,young); 

中年13人 (65 – 75岁,elderly);

15名百岁老人 (99至104岁, centenarian);

23名半超百岁(105至109岁,semisupercentenarian)

研究人员发现与年轻人相比,长寿者菌群变化如下:

编号:083*****97 ,98岁(谷禾肠道菌群数据库)

我们发现同样,变形菌门增加,另外有益菌如阿克曼菌增多。

03 长寿者肠道菌群代谢相关变化

长寿者碳水化合物代谢相关基因减少

有趣的是,当研究人员将分析集中在功能规模上时,发现与碳水化合物代谢有关的基因减少。


Rampelli et al., 2020; mSystems

这种功能重塑在百岁老人和半超百岁老人的肠道微生物组中更为明显,研究人员观察到淀粉和蔗糖(KEGG途径编号ko00500),磷酸戊糖(ko00030)以及氨基糖和核苷酸糖(ko00520)途径的贡献减少

异种生物降解有关的基因数量增加

同时,研究人员发现了和甲苯(ko00623),乙苯(ko00642),己内酰胺(ko00930)以及氯环己烷和氯苯(ko00361)降解途径的随之增加

乙苯,氯苯,氯环己烷,甲苯是主要来源于工业生产和城市排放的普遍化学物质,由于其毒性作用,是世界各地监测的主要环境污染物之一。这些分子的主要人造来源实际上是汽车和废气汽车的排放,以及香烟烟雾。

此外,众所周知,它们是在加工精制石油产品(如塑料)的过程中产生的,并包含在普通消费产品(如油漆和漆、稀释剂和橡胶产品)中。

己内酰胺是尼龙的原料,用于生产合成纤维、树脂、合成皮革、增塑剂等多种室内产品。先前的研究表明,这些分子在室内的负担比在室外环境中更高,并强调了室内暴露对人类健康的特殊重要性。

生活在强人为下的环境中,例如意大利的艾米利亚-罗马涅区(工业发达),导致持续不断地暴露于这些普遍的异生物质中,促进它们在身体组织(包括肠道)中的维持和累积。

研究人员认为,这可以为人类宿主创造合适的条件,以选择能够解毒此类化合物的肠道微生物组成分,就微生物组和宿主在人类环境中的适应性而言互惠互利。

百岁和半百岁的人都是长寿的人,他们接触异生生物刺激的时间更长,他们的微生物群更适合降解这些异生生物。

脂质代谢基因变化

除了异物降解基因和糖代谢相关基因外,我们还发现了其他代谢途径中与年龄相关的差异,包括与脂质代谢有关的差异。

百岁老人和半超百岁老人显示出更多的α-亚油酸(KEGG途径编号ko00592)和甘油脂(ko00561)代谢的信息。另一方面,年轻人显示鞘脂(ko00600)和甘油磷脂(ko00564)代谢相关基因的贡献更大。

鉴于已知甘油磷脂和鞘脂在动物源性食品中更为丰富,而α-亚油酸主要来自植物源食物,这些特征可能与饮食习惯有关,特别是长寿者的植物源性脂肪摄入量高于年轻人的动物脂肪摄入量。

氨基酸代谢基因变化

此外,涉及氨基酸代谢的功能途径:

色氨酸(ko00380),酪氨酸(ko00350),甘氨酸,丝氨酸和苏氨酸(ko00260)的代谢基因随着年龄的增长而逐渐增加。

另一方面,发现年轻人中丙氨酸,天冬氨酸和谷氨酸代谢的基因(ko00250)更为丰富。色氨酸和酪氨酸的代谢被认为是蛋白水解代谢增强的指标。

此外,血清中色氨酸的生物利用度降低,以及尿液中酪氨酸代谢引起的酚类代谢产物水平升高

慢性炎症水平低

研究人员发现随着衰老,脂多糖生物合成基因(ko00540)逐渐增加,这可能与病原菌(即肠杆菌科的成员)的存在和慢性炎症的水平低有关。

04 健康长寿和不健康老人的菌群差异

然而,更长的寿命并不一定等于健康的衰老。随着年龄的增长,人们更有可能患上各种疾病,如心脏病、中风、高血压、认知障碍、癌症等。

前面章节有一项研究(长寿村老人与城镇化老人肠道菌群)提到,来自不同地区的老人,虽然都是长寿,但菌群情况不尽相同

因此,我们想更具体地了解,同样是长寿老人,健康长寿和不健康长寿具体到个人,在哪些方面会有区别。我们抽取谷禾肠道菌群数据库中两例报告来进行直接比较分析。

05 健康长寿的预测

以上只是数据库中的两个案例,在经过谷禾肠道菌群数据库筛查后,我们总结了一些关于长寿老人(90岁以上)的肠道菌群的趋势,分享关于报告中的一些指标判断,供大家参考。

 健康总分 

健康总分能很好的反映一个人的总体健康水平,有慢病或其他问题的老人一般低于55分。

 菌群多样性

菌群多样性健康长寿老人的菌群多样性水平最好能高于50,菌种数量在1000~1800左右较好,超过2000则可能会伴有病原菌感染的情况。

 慢病情况

主要是心脑血管及糖尿病和部分消化道疾病,涉及慢性炎症和代谢疾病。

 病原菌

病原菌感染是老人中最常出现的问题,包括呼吸道和肠道病原菌,随着衰老,肠杆菌科的部分机会致病菌比例会上升,需要注意饮食健康,以及呼吸道健康和口腔健康。

 肠道屏障及炎症水平

长寿老年人中Akk菌水平普遍较中年人群较高,Akk菌有助于降低肥胖等代谢疾病,但是Akk菌丰度过高会导致肠粘膜黏蛋白降解,破坏肠道屏障,也是需要注意的指标。

 短链脂肪酸水平 

短链脂肪酸生成的菌的水平与短链脂肪酸和炎症水平密切相关,短链脂肪酸缺乏通常是慢性炎症的推手。

 益生菌水平 

在谷禾检测的90岁以上人群中,益生菌水平普遍较高,基本超过人群平均水平。

06 长寿者避雷专区——谣言粉碎机

信息爆炸的时代,我们可以轻易获得大量关于营养保健的信息,然而其中大多数可能是不正确或者过时的观念。

1. 减肥仅靠控制热量?

我们都知道,减肥需要燃烧比摄入更多的能量,但这不是唯一。那些遵循“卡路里摄入,卡路里消耗”方法的人通常只专注于食物的卡路里值,而不是其营养价值。这对于整体健康而言,并非最佳选择。

如果出现体内激素失调,甲状腺功能低下,代谢状况,药物使用等健康问题,可能即使在严格饮食下也难以减轻体重。

2. 高脂食物不健康?

许多人仍然担心高脂肪的食物并遵循低脂肪的饮食习惯,认为减少脂肪的摄入有益于整体健康。

膳食脂肪对于保持最佳健康至关重要。另外,低脂饮食与包括代谢综合征在内的健康风险更高有关,并且可能导致胰岛素抵抗和甘油三酸酯水平升高,这是已知的心脏病危险因素。

而且,在鼓励减肥方面,高脂肪饮食已被证明比低脂肪饮食有效(甚至更高)。

当然,无论是低脂还是高脂饮食,任何一种极端情况都可能危害健康。尽可能遵循“中庸之道”。

3.非营养性甜味剂是健康的?

市场上出现越来越多的非营养性甜味剂(NNS)的产品有所增加。显然,高糖饮食会大大增加疾病的风险,但摄入NNS也会导致不良的健康后果。

例如,摄入NNS可能会引起肠道菌群产生负面变化并促进血糖失调,从而增加2型糖尿病的发病率。

该领域的研究仍正在进行中,未来需要高质量研究来确认这些潜在的联系。

4. 你必须很瘦才能健康?

我们知道,肥胖与许多健康状况相关,包括2型糖尿病,心脏病,抑郁症,某些癌症等。

尽管如此,降低疾病风险并不是说要你必须要达到模特身材。最重要的是营养饮食并保持积极的生活方式,因为这些行为通常会改善体重和体内脂肪百分比。

5. 所有食物都用低脂和减肥食品来代替?

去超市你会发现各种标有“清淡”,“低脂”,“无脂”的产品。虽然这些产品对那些想要减少体内多余脂肪的人来说很诱人,但它们通常是不健康的选择。

研究表明,许多低脂和减肥食品所含的糖和盐要比普通脂肪食品多得多。最好不要经常食用这些产品,有时候也可以享受一下正常食物,例如全脂酸奶,奶酪和坚果黄油。

6. 钙补充剂对骨骼健康必不可少?

很多人听说添加钙补充剂以保持骨骼系统健康。但是,目前的研究表明,补充钙可能弊大于利。

例如,一些研究已将钙补充剂与心脏病风险增加联系起来。此外,研究表明,它们不会降低骨折或骨质疏松症的风险。

当然,如果你担心缺钙,最好注意下钙的饮食来源,例如全脂酸奶,沙丁鱼,豆类和种子食物等。

7.所有果汁和果汁都是健康的 ?

某些果汁营养丰富。例如,主要由非淀粉类蔬菜制成的新鲜果汁可以是增加维生素,矿物质和抗氧化剂摄入量的好方法。

然而,要知道外面买到的大多数果汁中都含有糖和卡路里。如果过量食用,会促进体重增加和其他健康问题,例如蛀牙和血糖失调。

8. 每个人都需要补充益生菌?

益生菌的概念现在越来越火。但是,研究表明,不是所有人补充益生菌都有用,搞不好有副作用。

某些人的消化系统对益生菌的定殖有抵抗力,而且通过补充剂引入益生菌可能会导致肠道细菌产生负面变化。另外,与益生菌使用相关的小肠细菌过度生长会导致腹胀,气体和其他不良副作用。

益生菌不应作为千篇一律的补充剂,而应更加个性化,最好在做完肠道菌群检测之后再确定是否需要补充益生菌,补充哪一类益生菌,这样才能真正让身体恢复健康。

9. 减肥很容易?

你可能看过很多生动的减肥前后的图片,甚至还有传奇的故事,几乎不费吹灰之力就可以迅速减肥的故事,不要随意相信。

减肥其实并不容易。它需要坚持不懈,自律,努力和耐心。另外,由于遗传或其他药物因素使某些人的减肥困难很大,我们需要正视这一切,面对它,慢慢来,给自己多一点耐心,找到一种对你有效的可持续的模式最重要。

10. 纤维补充剂是高纤维食品的良好替代品?

许多人缺乏足够的膳食纤维,这就是为什么纤维补充剂如此受欢迎的原因。尽管纤维补充剂可以改善肠蠕动和血糖控制,从而有益于健康,但它们不应代替真正的食物。

高纤维全食(例如蔬菜,豆类和水果)包含营养物质和植物化合物,它们可以协同工作以促进您的健康,并且不能完全由纤维补充剂替代。

 LONGEVITY

随着时代的不断发展,旧的观念也在不断更新。曾经的认知也许是“七十古来稀”,而现如今更多的是百岁人生。

我们的追求也会越来越高,不仅是长寿,更是健康的长寿。可以预见,长寿时代将促使健康产业结构升级。

是的,微生物产业作为健康领域的其中一块,发展迅速。值得庆幸的是,在应对突如其来的疫情下,肠道微生态也在被应用于治疗,技术的革新为提高健康水平提供有力支撑,各个制度完善也在为健康领域的可持续发展构建强大保障,人类命运共同体正彰显其感召力。

谷禾健康作为微生物产业的一员,自2012年创立起,对于科研事业一直贡献着自己的力量,与此同时,这么多年来,谷禾一直希望将科研真正服务于大众,将科研成果带给每一个人,这是我们的使命。

现如今,我们也已经看到阶段性硕果。曾经,“肠道菌群”还只是一个概念,谷禾健康从肠道菌群的研究构思,到取样专利的落地,肠道菌群检测报告逐步完善,再到样品运输的细节管理,我们都在经历从0到1的过程,勇于创新,不断摸索,在微生物产业的道路上,迈着坚定的步伐。

令我们感到欣慰的是,“肠道菌群”现已逐渐从研究过渡到临床甚至普通人群,并且从模糊的健康概念走向精准检测甚至个性化辅助治疗。

2021寄语

愿你所有努力都有回报

所有的美好都如期而至

参考文献:

Kong F, Deng F, Li Y, Zhao J. Identification of gut microbiome signatures associated with longevity provides a promising modulation target for healthy aging. Gut Microbes. 

2019;10(2):210-215. doi: 10.1080/19490976.2018.1494102. Epub 2018 Aug 24. PMID: 30142010; PMCID: PMC6546316.

Rampelli S, Soverini M, D’Amico F, Barone M, Tavella T, Monti D, Capri M, Astolfi A, Brigidi P, Biagi E, Franceschi C, Turroni S, Candela M. Shotgun Metagenomics of Gut Microbiota in Humans with up to Extreme Longevity and the Increasing Role of Xenobiotic Degradation. mSystems. 2020 Mar 24;5(2):e00124-20. doi: 10.1128/mSystems.00124-20. PMID: 32209716; PMCID: PMC7093822.

Deng F, Li Y, Zhao J. The gut microbiome of healthy long-living people. Aging (Albany NY). 2019 Jan 15;11(2):289-290. doi: 10.18632/aging.101771. PMID: 30648974; PMCID: PMC6366966.

Kim BS, Choi CW, Shin H, Jin SP, Bae JS, Han M, Seo EY, Chun J, Chung JH. Comparison of the Gut Microbiota of Centenarians in Longevity Villages of South Korea with Those of Other Age Groups. J Microbiol Biotechnol. 2019 Mar 28;29(3):429-440. doi: 10.4014/jmb.1811.11023. PMID: 30661321.

12