Tag Archive 肿瘤

肠道微生物组的个体化诊·疗正在来临

谷禾健康

疾病表现、进展和治疗反应的可变性一直是医学的核心挑战。尽管宿主因素和遗传学的变异性很重要,但很明显,在迈向个性化治疗的过程中,必须考虑肠道微生物组具有巨大的遗传和代谢多样性

疾病表现、治疗反应和治疗不良反应个体差异是有效管理疾病和患者安全的主要挑战。这种认知是精准医学的基础,其最简单的形式可以这么说,用个性化方法为合适的患者确定合适的治疗方法,无需反复试验。

将肠道微生物组与人类遗传学区分开来的一个方面是它代表了我们健康的动态组成部分,通过复杂的网络不断与宿主和环境因素相互作用。虽然存在潜在挑战,肠道微生物组的可塑性也提供了一个独特的机会,使其成为精准医学的一个有吸引力的目标。

本文支持使用肠道微生物组作为精准医学工具的当前证据,并建议未来需要将微生物组作为个体化治疗或干预工具的工作。

该研究团队选择了六个广泛的疾病组,这些组具有相对较强的证据表明肠道微生物组的作用。 尽管每个疾病组都有不错的发展,但在考虑临床影响时,不同疾病组的前景和成熟度各不相同(下图)。

01 传染病(艰难梭菌感染)

抗生素诱导的肠道微生物组破坏会促进机会性和医院感染的机制。最常见的院内腹泻感染艰难梭菌为例,强调可能解释临床结果的个体差异的微生物组和病原体特异性特征。

复发性艰难梭菌感染 (CDI) 一直是微生物组研究的中心焦点。CDI 出现最常见的原因是使用抗生素,但矛盾的是,CDI 的一线治疗也包括抗生素。

抗生素对一般人相当有效,但为什么部分患者出现治疗失败,或是成功治疗后复发

这可能与宿主特征(例如高龄)或药物的使用(例如质子泵抑制剂)有关, 以及肠道微生物组中特定病原体的特征有关。

除了宿主因素外,肠道微生物群的破坏也是 CDI 的关键因素。

· 与健康对照个体相比,CDI患者的肠球菌、韦永氏菌、乳杆菌、γ-变形菌属的相对丰度较,而拟杆菌属、毛螺菌科、瘤胃球菌科的含量较

· 在无菌小鼠中建模时,由一系列宿主因素驱动的肠道微生物组的改变增加了对 CDI 的易感性,这是由于氨基酸可用性升高,这是艰难梭菌的有利营养生态位

· 其他小鼠研究已经确定了 CDI 中微生物群衍生抑制因子的丧失以及开放营养位的增加,其中包括短链脂肪酸(特别是戊酸)和次级胆汁酸脱氧胆酸的水平降低,而有机酸琥珀酸、唾液酸和氨基酸的水平增加。这些增加对 CDI 易感性的微生物组驱动因素因人而异,不是每个 CDI 患者都表现出所有这些异常。

除了肠道微生物组,艰难梭菌的菌株变异性,例如毒素产生、代谢和生物膜形成能力的变化,可能会导致不同的结果。

· 一项对约 400 个CDI 患者临床分离株进行全基因组测序的研究发现,大多数疾病复发是由与初始感染相同的菌株引起的,这表明能够在肠道中持续存在的菌株特异性特征可能是相关的。

· 艰难梭菌组织成多细胞生物膜增加了持久性,因为生物膜可以提供针对抗生素的物理屏障,并可以干扰胃肠道的清除。因此,在考虑个体化治疗方法时,将全基因组测序与肠道代谢环境和特定微生物分类群相结合的诊断测试可能会提供更大的分辨力。

▌ 多次复发性CDI的治疗方式之——粪菌移植

目前治疗多次复发性 CDI 或治疗失败的方法包括粪菌移植,其治疗复发性CDI 非常有效(预测粪菌移植失败的主要特征是继续使用抗生素)

长期安全性问题

一个问题是,粪菌移植的长期安全性,目前正在长期注册研究中对其进行调查。

供体粪便的筛查

筛查是否应该使用宏基因组学或病原体全基因组测序来确定抗生素耐药性特征,或者基于培养或 PCR 的病原体筛查是否足够?

两项临床试验说明了基于全基因组测序的方法的有用性,这些试验涉及与供体粪便相关的产超广谱 β-内酰胺酶的大肠杆菌的菌血症病例。粪菌移植的这种安全问题与免疫功能低下的患者尤其相关。

▌ 肠道微生物组——预测CDI治疗结果

除了粪菌移植,还发现肠道微生物组可以预测 CDI 的治疗结果。

在分类水平上,Ruminococcaceae, Rikenellaceae, Bacteroides,Faecalibacterium处理前的丰度与CDI中抗生素的阳性反应有关;在一项包括88例CDI患者的研究中,梭菌科Clostridiaceae, 毛螺菌科Lachnospiraceae, Blautia,粪球菌属Coprococcus, 链球菌Streptococcus, 双歧杆菌Bifidobacterium瘤胃球菌,放线菌与无应答相关。

其中一些菌群还预测了复发感染的风险,而另一些菌群则与艰难梭菌无法在肠道定植有关(图 2)。

肠道微生物组与药物治疗之间的关系

▌ 基于微生物群的其他CDI诊疗方法

对 CDI 的微生物组驱动机制和肠道微生物组在治疗结果中的预后作用的更多了解,加上粪菌移植长期风险的不确定性,导致基于微生物群的 CDI 诊断和治疗方法激增。其中最先进的是复合微生物,它在 II 期临床试验中显示出前景,据报道在 III 期临床试验中取得了成功。

此外,还有几种利用特定细菌和/或代谢物、益生元和噬菌体的方法,这些方法都处于研究的早期阶段。 这些小范围的治疗方式可能会允许基于宿主和宿主微生物组特征的更个性化的治疗方法,从而有可能进一步提高疗效并降低 CDI 治疗的风险

这一进展为 CDI 中未来更精确的基于微生物群的治疗策略的发展带来了希望(表 1)。

表1 肠道微生物在疾病中的研究现状与展望

02 癌 症

肠道微生物组可以从四个不同的角度为个性化癌症生物学领域提供信息:抑制癌症发展、识别新疗法、优化现有疗法和癌症诊断

现有治疗的优化涉及减少不良反应和对癌症疗法反应的预测,从化学疗法和放射疗法到新的免疫疗法。在这里,肠道微生物组在代谢药物以及影响免疫细胞和细胞因子水平中的作用可能导致治疗反应的变化和不良反应的发展

微生物组与癌症有关

可以探索肠道微生物组—免疫系统轴的机制,以阻止癌症的发展并确定新的治疗方法。癌症的发展和疾病进展可以通过微生物及其产物的致癌效应的影响,调节可能促进或抑制肿瘤生长的循环代谢物水平,并诱导炎性和免疫抑制作用。

已经确定微生物群的局部改变与涉及包含共生生物的器官(结肠直肠、宫颈、肺、头和颈部)癌症的发展进展程度相关。

▌ 微生物群与癌症的联系在结直肠癌中最明显

菌群及代谢产物导致炎症 —> 癌症:

微生物及其代谢物与肠道黏膜之间的复杂关系可导致黏膜通透性发生变化,从而增加局部暴露于多种潜在致癌化合物的风险,并可能导致慢性炎症状态。

菌群预测 —> 癌症风险:

另一个机制联系的例子是携带致病岛pks 的大肠杆菌菌株的存在,它编码基因以合成具有遗传毒性的次级代谢物大肠杆菌素,可用于预测结肠癌风险

菌群结构和功能 <—> 癌症:

除了确定的机制特征外,肠道微生物组成和功能属性的差异与较少直接接触器官的恶性肿瘤有关。

如,一项涉及68名胰腺癌患者的研究,与预后较差患者比,肿瘤组织中大量假黄单胞菌Pseudoxanthomonas、Saccharopolyspora、链霉菌Streptomyces 与手术切除后的长期生存率相关。

微生物组和癌症治疗

化学疗法和免疫疗法的反应会受到肠道微生物群在疗效和毒性方面的影响。这种关系可能是由于抗原呈递、炎症反应的诱导和药物化学修饰协同作用。例如,环磷酰胺是一种广泛使用的诱导 DNA 交联的烷化剂,通过调节与特定 T 辅助 17 (TH17) 反应的产生相关的免疫途径部分地发挥其抗肿瘤作用

 肠道微生物群在化疗药物的有效性中发挥重要作用

在一项关于 1 型免疫反应诱导 CpG 寡脱氧核苷酸和 DNA 交联剂奥沙利铂的小鼠研究中,抗生素存在时治疗效果降低,这归因于肿瘤相关骨髓细胞产生的肿瘤坏死因子 (TNF) 减少。这种抗生素诱导的奥沙利铂疗效降低可能是多因素的,因为其治疗效果部分是由肠道微生物群产生的活性氧产生的。

吉西他滨在细菌胞苷脱氨酶作用下的微生物代谢产生2′,2′-二氟脱氧尿苷可降低其治疗效果。

肠道微生物群在决定癌症免疫治疗的有效性发挥重要作用

在人类中,无进展生存期和总生存期的降低在多种癌症类型(非小细胞肺癌、肾细胞癌和尿路上皮癌)中使用抗生素和免疫疗法有关。

  • 特定菌群丰度增加,CTLA4抑制剂疗效改善

使用动物模型进一步研究了这一发现,表明免疫介导机制在抗生素的这些负面影响中发挥作用。 当脆弱拟杆菌属B.thetaiotaomicron、伯克霍尔德氏菌属Burkholderiales丰度增加时,CTLA4 抑制剂易普利姆玛在小鼠中的疗效得到改善,这与IL-12依赖性 TH1 免疫反应的上调有关。

在结肠癌的小鼠模型中,在有长双歧杆菌存在的情况下,CTLA4的阻断效果增强,这是由于治疗导致的黏膜屏障功能下降,促进了肌苷易位增加的免疫激活

  • IL-12在细胞募集中发挥作用,与AKK菌有关

还发现 IL-12 在 CCR9+CXCR3+CD4+ 细胞募集到小鼠上皮肿瘤中发挥作用,这反过来又与人类肠道微生物组中 Akkermansia muciniphila 的丰度升高有关。

  • PD1抑制剂在特定菌群下效果增强

PD1 和 PDL1 检查点抑制剂对黑色素瘤的作用可以在双歧杆菌物种丰度增加的小鼠中增强。

有趣的是,双歧杆菌甚至可能在没有常规治疗的情况下具有抗黑色素瘤作用,因为它在同一小鼠群体中的丰度预处理与肿瘤生长抑制有关。这种效应被认为与突细胞功能的上调有关,导致肿瘤微环境中 CD8+ T 细胞的活性和积累增强。

在一项对 42 名转移性疾病患者的研究中,PD1 抑制剂治疗黑色素瘤的功效在长双歧杆菌、产气柯林氏菌、屎肠球菌的丰度更高的情况下也得到了增强。而在 43 名黑色素瘤患者的独立人类队列中,PD1 抑制剂的疗效增加了微生物组多样性与 PDL1 和 PD1 治疗后癌症存活率的提高有关。

与无反应的患者相比,有反应的患者富含瘤胃球菌科Ruminococcaceae、厚壁菌门、真杆菌Eubacterium 、梭状芽孢杆菌Clostridia、梭菌目Clostridiales、Faecalibacterium prausnitzii .

▲ 肠道微生物群通过多种方式改变药物代谢

化学治疗剂的毒性可能是决定其使用能力的主要因素。肠道微生物群可以通过多种方式改变药物代谢,包括竞争性抑制、肠道微生物的直接代谢作用以及代谢途径相关基因的宿主表达改变,如无菌小鼠中异生物质解毒基因的下调所见。

具体而言,5-氟尿嘧啶 (5-FU)、伊立替康和索拉非尼等抗癌药物的毒性归因于肠道微生物代谢。

  • 5-氟尿嘧啶 (5-FU)

在大鼠模型中,DNA 复制子 5-FU 与病毒 DNA 聚合酶抑制剂索立夫定共同给药时的毒性是由于索立夫定转化的微生物产物溴乙烯基尿嘧啶 (BVU)诱导的 5-FU 代谢降低所致。了解导致 BVU 形成的特定生化途径可以帮助预测这种毒性,为替代治疗方案或 BVU 形成的特定抑制剂的开发提供信息。

  • 拓扑异构酶抑制剂

拓扑异构酶抑制剂伊立替康的给药通常会受到严重腹泻的阻碍,这与细菌 β-葡萄糖醛酸酶介导的无活性伊立替康代谢物的再激活有关; 抗生素治疗已被证明可减少体外活性伊立替康代谢物的产生,服用降低 β-葡萄糖醛酸酶活性的益生菌混合物可改善结肠癌患者的腹泻,而葡萄糖醛酸酶的小分子抑制剂已在临床前小鼠模型中显示出前景。

  • 酪氨酸激酶抑制剂

酪氨酸激酶抑制剂索拉非尼其毒性可能与肠道微生物活动有关,因为肝细胞癌患者服用索拉非尼后的腹泻和手足综合征都与特定的微生物群有关(图 2)。

具体而言,大量的韦荣氏菌、芽孢杆菌、肠杆菌、粪杆菌、毛螺旋体、Dialister 和厌氧菌对手足综合征具有保护作用,大量的丁酸单胞菌和较低水平的柠檬酸杆菌、消化链球菌、葡萄球菌较少的腹泻发展相关。这种作用的潜在机制可能会因药物及其代谢物的肠肝循环而减弱。

一项对接受其他酪氨酸激酶抑制剂帕唑帕尼和舒尼替尼)治疗的转移性肾细胞癌患者的研究表明,与安慰剂相比,健康供体的粪菌移植治疗引起的治疗性腹泻有所改善,进一步表明微生物组的这些改变与这种不良反应有关

▲ 整合微生物群的新疗法

开发基于活性的蛋白质探针来识别负责异生物质代谢的特定微生物途径,有望作为一种诊断工具,并可能使治疗更好分层。

新疗法可以使用细菌菌株或纯化的病原体相关分子模式,作为 Toll 样受体 (TLR) 激动剂来触发低水平 TLR 刺激患者的局部免疫反应 。此外,可影响肿瘤生长的粪便和循环微生物代谢物(短链脂肪酸、次级胆汁酸、维生素和多胺)的水平可用于评估治疗前的代谢健康状况,进而影响下一代生物治疗药物,也许在结合饮食干预

一系列免疫细胞亚群(TH17 细胞、T 调节 (Treg) 1 型细胞、细胞毒性 T 淋巴细胞、CD4+ 细胞、CD8+ 细胞)和细胞因子丰度(TNF、IL-12、IL-22 通过芳烃受体 (AHR) 信号传导 ) 受肠道微生物群变化的影响,并可能被调节以影响癌症免疫监测

此类标志物的测量还可导致对患者免疫健康的评估并提供干预目标。 这些方法需要对大型队列进行详细的个性化多组学研究,然后才能在临床中使用。

迄今为止的研究为肠道微生物群在癌症表型的异质性和对癌症治疗的反应中的作用提供了强有力的支持。 然而,来自人类研究的数据在很大程度上具有关联性,仍然需要跨队列复制。尽管存在这些担忧,但前景仍然乐观,将微生物组整合为癌症治疗策略的一个组成部分似乎是不可避免的(表 1)。

03 肥 胖

超重或肥胖的儿童和成人的数量正在增加。解决肥胖问题的一个主要挑战是由遗传、肠道微生物组、饮食和环境相互作用导致的机制的复杂性,这些机制会导致导致肥胖的生理变化。

微生物组与肥胖有关

2016年发表的一项针对人类微生物组研究的荟萃分析发现,肥胖与样本内丰富度和均匀度较低的α多样性之间存在微小但具有统计学意义的关联。除了 α 多样性之外,在小鼠模型和人体研究的早期微生物群研究中,已经报道了肥胖中厚壁菌门 拟杆菌门的比率升高,但在该研究中没有重复。

▪ 微生物组在传播肥胖表型中很重要

尽管缺乏强有力的组成标记,肠道微生物组在肥胖中的作用得到了菌群移植实验的支持,该实验表明,被与肥胖不一致的同卵双胞胎的粪便定植的无菌小鼠表现出供体的代谢表型

这个前提是进一步加强观察,高脂饮食引起的体重增加的人源化小鼠(用健康人粪便定植的无菌小鼠)可以传播到无菌小鼠,而无需继续喂养高脂饮食。这一发现表明微生物组在传播肥胖表型方面很重要

▪ 肥胖的驱动因素

肥胖几种机制已被归因于肠道微生物,如从饮食能量提取的增加的效率,影响饱腹感和能量摄入,全身性炎症和胰岛素抵抗

肥胖症缺乏一致的成分标志物表明存在大量的功能冗余。事实上,功能水平上的冗余较少,因为几种不同微生物群结构的变化可以驱动一系列生物活性因子的产生变化,如短链脂肪酸、胆汁酸和脂多糖 (LPS),所有这些都与肥胖有关。短链脂肪酸在激素信号传导中发挥作用,例如 5-羟色胺和肽 YY 的释放,它们在饱腹感中发挥作用,表明肠-脑轴参与导致肥胖

虽然在理解肥胖的微生物组驱动机制方面取得了重大进展,但我们还没有足够的分辨力来根据潜在的基于微生物组的机制对肥胖个体进行分层。随着该领域证据的积累,人们可以轻松地设想基于微生物组的个体分层将成为未来肥胖管理个性化策略的一部分。

▪ 益生菌益生元治疗肥胖功效喜忧参半

已经在动物模型中提出了益生菌作为肥胖治疗方案的功效,但人体临床试验的结果喜忧参半,而且鉴于所用益生菌制剂缺乏一致性,目前它们的作用仍不清楚。关于益生元在治疗上的使用,动物模型中再次出现了不错的发现,但就持久减肥而言,在临床试验中还没有任何明确的交叉作用到人类身上。

微生物组和肥胖疗法

肥胖管理的主要治疗方法是饮食、药物(如胰高血糖素样肽 1 (GLP1) 激动剂、奥利司他和芬特明)和减肥手术

饮食可以在短期和长期影响肠道微生物群,随着饮食的短暂变化而发生改变。 更重要的是,饮食的治疗效果还取决于个人的微生物组

将无菌小鼠的肠道微生物组简化为 10 种微生物菌株,证明饮食变化会改变肠道的定植模式及其发酵能力。肥胖患者饮食调整的一种方法是增加水果、蔬菜和低能量密度食物的摄入量,同时减少高营养密度食物的摄入量; 然而,对这种干预的反应是相当多变的。

▪ 饮食干预中基线肠道微生物群的重要性

一项针对 26 名超重或肥胖个体的初步研究发现,在进行此类饮食干预之前,肠道微生物群中糖苷水解酶的高预测丰度与容量饮食干预后体重减轻 <5% 相关,这表明基线肠道微生物群在预测结果方面具有潜在作用。这些发现与餐后血糖反应和脂血的个体差异一致,这归因于肠道微生物群

▪ 减少摄入热量增加通过菌群发挥作用

在 21 名健康个体的人群中,卡路里摄入量的增加与 3 天内人类肠道微生物组的快速改变有关,其中包括正常(>18.5 和 <25)和高 (≥30) BMI 的个体,显示相对增加的相对丰度的厚壁菌和减少的拟杆菌。这些变化与能量收集的增加有关,粪便热量含量降低就是最好的证明。因此,减少热量摄入可能会通过改变肥胖者的微生物群来发挥有益作用。

▪ 不同饮食干预引起微生物可塑性增加

在78名肥胖症患者中,肠道细菌的相对丰度,如反刍真杆菌Eubacterium ruminantium Clostridium felsineum,也与多种不同饮食干预措施引起的微生物组可塑性增加有关。

总之,这些研究表明,某些食物对每个人都“健康”的概念过于简单化,基于肠道微生物组指标的饮食选择可能对体重管理有益

 药物和手术下肠道微生物群的变化

很少有研究在药物和手术治疗肥胖症的背景下检查肠道微生物组。 然而,发现 GLP1 激动剂利拉鲁肽在血糖水平升高的情况下增加胰岛素释放并延迟胃排空,被发现会增加大鼠的厚壁菌门拟杆菌门比率,因此可能至少部分通过继发性变化来推动体重减轻

之前接受过 Roux-en-Y 胃绕道手术(一种用于管理生活方式改变和药物治疗失败的患者的减肥手术)与厚壁菌门相对丰度降低兼性厌氧菌(如变形杆菌)水升高有关,这些变化可能在减肥中发挥作用。

另一种手术——袖状胃切除术,有效减少炎症,并使 23 名术前肥胖患者的肠道微生物组更接近用作对照的健康个体,微生物测定的血浆谷氨酸水平相应恢复,作为肥胖的生物标志物 。

虽然大多数研究结果需要在更大的队列中进行验证并在模型中进行测试,但这些研究强调了微生物组分析在评估当前可用肥胖疗法的功效方面的效用。

 微生物疗法

在基于微生物组的疗法方面A. muciniphila是治疗代谢综合征和肥胖症的有希望的候选者。由于外膜蛋白引起的 TLR 信号传导激活,A. muciniphila 的摄入可改善肠道屏障功能、减少内毒素血症和改善葡萄糖耐量,从而防止小鼠体重增加。32 人的试点数据表明 A. muciniphila 的安全性和有效性,在 3 个月内可适度减轻体重并改善实验室肥胖指标。

同样,被认为是最具遗传性的微生物群之一,特别与人类瘦弱相关的 Christensenella minuta 也被发现可有效治疗动物模型中的肥胖症,并且计划很快开始一项人类随机对照试验 。

虽然强调了一些针对微生物组以减少肠道炎症信号的持续努力,但营养信号的改变和肠脑轴的调节也被证明是有效的策略。这些针对微生物-宿主相互作用的新方法可能是预防和治疗肥胖症的重要组成部分(表 1)。

04 糖尿病

由于对循环代谢物和免疫状态的影响,胃肠道和相关的肠道微生物组可以被视为类似于内分泌器官。因此,它通过影响胰岛素信号参与葡萄糖代谢

微生物组与改变的血糖控制有关

几项研究提供了糖尿病肠道微生物组的横断面分类学变化,导致产丁酸菌丰度和整体微生物多样性降低,但研究结果并不一致。

与来自 Roux-en-Y 胃旁路手术的粪菌移植相比,来自代谢综合征供体的粪菌移植阐明了肠道微生物群与胰岛素抵抗之间的明确关系,导致无菌小鼠的胰岛素敏感性降低。这在另一项人体研究中得到了进一步支持,其中肥胖个体的胰岛素敏感性在干预前从瘦肉供体进行粪菌移植后得到改善。

这突出了微生物群导向疗法在患者中的潜在治疗益处,对这些患者而言,肠道微生物的变化可能会带来更实质性的临床益处

一项人类随机临床试验表明,膳食纤维促进的一组选定的短链脂肪酸产生菌的多样性和丰度增加导致血红蛋白 A1c 水平的改善,这归因于胰高血糖素样肽的增加。

然而,其他潜在的短链脂肪酸生产者减少或不变,这表明并非所有短链脂肪酸生产者都是一样的,更有针对性地恢复特定微生物可能更有益

像这样的未来研究将有助于识别特定的菌群,这些细菌不仅能够发挥功能,而且实际上协同工作以恢复关键功能。总之,这些研究支持肠道微生物组与糖尿病之间的联系,并强调了使用肠道微生物组优化治疗的前景(表 1)。

 微生物群衍生的循环代谢物如何驱动糖尿病的发病机制?

肠道微生物组在胰岛素抵抗或 2 型糖尿病 (T2DM) 中的作用机制与肥胖的机制重叠,例如轻度炎症、胃肠道通透性改变可能导致内毒素血症,以及短链脂肪酸产生和吸收减少,这是符合代谢综合征的概念。短链脂肪酸的变化反过来又会影响各种代谢激素的产生,例如 GLP1 和肽 YY,它们在胰岛素分泌中起作用。

此外,由于微生物 BCAA 生物合成和 BCAA 降解的比例改变而导致的支链氨基酸 (BCAA) 水平升高与人类研究中的早期胰岛素抵抗有关,并且可能是由普氏菌普通拟杆菌驱动的。

在常规小鼠模型中,P. copri 的定植也与胰岛素抵抗相关。另一种微生物代谢物,丙酸咪唑,被发现在 2型糖尿病患者中升高,可直接损害葡萄糖耐量和胰岛素信号传导

▌ 2型糖尿病的治疗方案

2型糖尿病患者主要通过饮食和药物(如二甲双胍、磺脲类和 GLP1 激动剂)进行管理,尽管他们最终可能需要胰岛素替代疗法和/或手术。目前的方法是按顺序尝试治疗方案,尽管个体对每种治疗的反应存在很大差异,并且一些患者可能对饮食或药物没有反应。 微生物组为优化确定治疗策略是否更适合个人提供了重要途径。

▪ 基于微生物组的个体化饮食研究

以色列的一项针对 800 名非糖尿病患者的开创性研究,概述了基于机器学习方法开发个性化饮食建议的潜力,该方法使用测量组合,包括微生物组和宿主特征以及血糖对不同饮食的反应(图 1)。

随后的一项研究在美国中西部 327 名没有糖尿病的人群中验证了这种方法,并证实个人的微生物组可以预测不同膳食后血糖的变化。有趣的是,碳水化合物作为一个整体仍然与增加的血糖反应有关,但这种方法在个体水平上确定了碳水化合物中的主要危害因素,允许他们限制特定的碳水化合物,而不是“一刀切”低碳水化合物饮食。

另一项研究发现,个体的微生物组不仅可以预测血糖变化,还可以预测甘油三酯对不同膳食的反应。

微生物组与糖尿病治疗

治疗糖尿病最常用的药物之一是二甲双胍,它可以抑制肝脏葡萄糖的产生,增加胰岛素敏感性,并增强肌肉和肝脏对葡萄糖的摄取。 二甲双胍的功效似乎至少部分取决于微生物组

 二甲双胍通过菌群改变发挥作用

在动物和人类研究中使用二甲双胍会导致嗜粘蛋白菌以及与短链脂肪酸产生相关的几种细菌种类(例如 Blautia 和 Butyricicoccus)的丰度增加。

A. muciniphila 可以通过肠杯状细胞增殖、胃肠通透性降低和内毒素血症降低以及 TLR 信号传导的刺激来改善血糖控制,如小鼠模型中所见。

丁酸盐通过其对骨骼肌、棕色脂肪组织和胰腺 β 细胞的有益作用,与改善啮齿动物的能量代谢有关。此外,丙酸盐在啮齿动物模型中抑制肝脏糖异生并降低食欲和体重。

二甲双胍与胃肠道不良反应

二甲双胍最常见的副作用与胃肠道不适有关,如疼痛、腹胀和恶心。 一项包括 27 名没有糖尿病的健康男性的研究发现,在开始使用二甲双胍之前,粪便中大量特定属(Sutterella、Allisonella、Bacteroides 和 Paraprevotella)与胃肠道不良反应的发生有关(图 2)。 这一发现表明,除了在二甲双胍疗效中起作用外,肠道微生物群也可能导致其胃肠道不耐受

因此,基于微生物组的分层可以选择可能有良好反应并耐受治疗剂量的患者。支持肠道微生物组在其他糖尿病治疗中发挥作用的数据很少,但在小鼠中施用 GLP1 激动剂利拉鲁肽后,厚壁菌门丰度的减少与血糖控制的改善有关。

鉴于支持二甲双胍给药与 A. muciniphila 和产丁酸盐微生物丰度增加之间存在关联的数据,一项多中心、双盲、随机安慰剂对照试验研究了 76 名2型糖尿病患者以益生菌形式给药这些微生物。与安慰剂相比,接受联合治疗合生元(A. muciniphila、拜氏梭菌、酪酸梭菌、婴儿双歧杆菌、Anaerobutyricum Hallii 和菊粉)的患者有更好的血糖控制趋势,尽管人群少且随访时间短(12 周)尚不清楚这种方法是否对2型糖尿病患者长期有益。扩展这一发现的试验和使用类似的靶向微生物组方法进行糖尿病管理的研究应该有助于在未来进一步推动这种疾病的治疗进入精准医学

05 非酒精性脂肪肝

非酒精性脂肪性肝病 (NAFLD) 是一种与代谢综合征相关的相当严重的发病率,如果不加以控制会进展为肝硬化和终末期肝病。肠道微生物组通过肠-肝轴与肝脏密切相关,微生物产物的解毒是肝脏的一项重要功能。

微生物组与NAFLD

NAFLD还报道了代谢综合征中观察到的肠道微生物群改变及其后果,例如厚壁菌门拟杆菌门的比率升高、能量收集能力增加、肠道通透性增加和低度炎症。NAFLD人类供体粪便转移后,在无菌小鼠中发生脂肪变性,表明微生物组在 NAFLD 中起作用。

与 NAFLD 相关的其他微生物组介导机制包括微生物胆汁酸修饰和对肝脏法尼醇 X 受体 (FXR) 信号传导、内毒素血症和尿毒症毒素(如甲胺和对甲苯基硫酸盐)的产生的相关影响 。

▪ 考虑内源性产酒精

尽管根据定义,NAFLD与饮酒无关,但目前的定义并未考虑乙醇的内源性生产。

来自变形菌门的大肠杆菌和其他肠杆菌科能够内源性地产生乙醇; 因此,这些微生物在肠道中的高代谢活性可能会导致乙醇水平升高,从而导致被认为患有 NAFLD 的患者脂肪变性。虽然说极端情况(称为自动酿酒综合症)很少见,但微生物生产中长期低水平的乙醇可能仍然是一个促成因素。

微生物组和 NAFLD 疗法

二甲双胍通常用于治疗2型糖尿病,但也用于管理NAFLD,动物研究支持二甲双胍在这种情况下的疗效 和人类数据显示肝功能测试有所改善,但组织学反应没有改善。如前所述,对二甲双胍的成功反应似乎至少部分是由肠道微生物组驱动的

粪菌移植

NAFLD 与肠道微生物组之间的机制联系已经导致研究探索潜在的基于微生物群的疗法。粪菌移植在动物研究中显示出前景,初步的人体数据也表明粪菌移植后肝脏脂肪变性和肠道通透性异常的改善。正在进行的临床试验将更好地阐明这些程序的有效性和安全性。

益生菌

益生菌给药在改善脂肪变性和肝脏炎症标志物方面也显示出一些希望。然而,这些益生菌制剂的成分各不相同,这使他们目前的临床建议复杂化 。

一项在无菌小鼠中进行的研究表明,这些小鼠的粪便来自两名溶细胞素阳性的酒精性肝炎患者,表明靶向溶细胞性粪肠球菌的噬菌体具有治疗效果,类似的方法是否也适用于 NAFLD 仍有待观察。其他专注于减轻来自微生物群的肝毒性来源的新型微生物组疗法似乎很有前景,但仍处于早期阶段(表 1)。

06 心血管疾病

心血管疾病 (CVD) 是逐渐上升为主要死亡原因,并且在全球范围内持续上升,2005 年至 2015 年间增长了 12.5%。据估计,通过改善生活方式和饮食可以预防 90% 的心血管疾病。心血管疾病一再与内毒素血症、肠道通透性增加和低度炎症有关,所有这些都可以由肠道微生物组驱动。

微生物组与心血管疾病相关

肠道微生物组研究领域的一项早期进展是确定代谢物三甲胺-N-氧化物 (TMAO) 的血浆水平升高是心血管疾病的危险因素。

▌ 为什么TMAO是心血管疾病的驱动因素?

TMAO 是通过黄素单加氧酶 3 的作用在肝脏中产生的,使用细菌代谢物三甲胺 (TMA) 作为底物。TMA 源自胆碱、磷脂酰胆碱或左旋肉碱的细菌转化。基于动物研究的 TMAO 的机制作用表明,它可能是动脉粥样硬化斑块的主要驱动因素,只有当 TMAO 水平同时增加时,高血浆左旋肉碱水平才与心血管事件的无事件生存率降低相关,这表明 TMAO 可能是人类心血管风险的驱动因素

TMAO 导致心血管疾病的机制

TMAO 导致心血管疾病的机制包括其对泡沫细胞(形成脂肪堆积)和内皮细胞、血管炎症、动脉粥样硬化病变、纤维化以及血小板聚集和血栓形成增强的影响。 已知特定的肠道微生物,包括奇异变形杆菌、变形杆菌、埃希氏菌,可以在体外和动物模型中产生TMA。 然而,由于相当大的菌株间多样性,人类肠道微生物组中负责 TMA 产生的基因的丰度,即 cutC/D 或 cntA,可能比特定分类群的水平具有更大的预测前景。

 不同类型的心血管疾病相关菌群

此外,人类动脉粥样硬化还与肠道微生物群的微生物发酵功能降低以及细菌分类群肠杆菌科和链球菌的丰度增加有关

与降低血压相关的其他微生物群衍生代谢物是乙酸盐和丁酸盐。

产短链脂肪酸者的丰度减少,例如直肠真杆菌、多利亚长链球菌、梭状芽孢杆菌和普氏梭菌,与人类心力衰竭的发生有关。

 饮食是预防和治疗心血管疾病的主要手段之一

由于饮食成分的微生物代谢在心血管疾病发病机制中具有机械作用,肠道微生物组可能是饮食干预有效性的部分原因。

地中海饮食和高纤维饮食

地中海饮食和高纤维饮食似乎都可以预防心血管疾病,一项针对 396 名心肌梗死 (MI) 患者和 843 名作为对照的健康人的病例对照研究发现,不存在P. copri 与降低 18% 地中海饮食后 MI 的风险,而携带 P. copri 与地中海饮食后 MI 的非显著增加相关。

坚持地中海饮食还与一些已知可代谢纤维并产生短链脂肪酸的肠道微生物的丰度增加有关,例如 F. prausnitzii、Eubacterium eligens 、Bacteroides cellulosilyticus

纤维消耗量增加的好处可能与纤维降解微生物或其相互作用伙伴产乙酸盐产量增加有关。乙酸盐参与转录因子 Egr1 的调节,Egr1 反过来调节小鼠的心脏炎症、纤维化和肥大。此外,在进行各种饮食干预之前,产丁酸菌Clostridium sphenoides 的丰度升高与肥胖个体胆固醇水平的更大降低有关,也可能与心血管疾病相关。

西方饮食

与地中海饮食和高纤维饮食相比,西方饮食(大量摄入脂肪和/或加工肉类、饱和脂肪、盐、糖和精制谷物)与心血管疾病风险增加有关,这可能与 双歧杆菌和真杆菌 等肠道微生物的丰度减少。有趣的是,TMAO 前体胆碱、磷脂酰胆碱和左旋肉碱在动物蛋白中普遍存在,这是西方饮食的特征成分。然而,食用红肉等动物蛋白可能仅对携带可产生 TMA 或其他代谢物的微生物一部分个体有害

微生物组和心血管疾病疗法

几种针对心血管疾病的药物治疗的功效和毒性与肠道微生物组有关。

▌ 肠道微生物组的化学多样性如何与人类设计的药物的代谢产生串扰?

这方面的一个关键例子是Eggerthella lenta 菌中存在强心苷还原酶基因,该基因使地高辛失活,地高辛是治疗心律失常的重要药物,通过抑制心肌中的 Na+/K+/ATPase 起作用(图 2)。 这种细菌酶活性很可能是由于底物混杂造成的,而不是由于地高辛暴露于环境而进化出的过程。

由于地高辛的治疗窗很窄,因此在开始治疗之前确定这种细菌代谢途径的存在可以实现更准确的剂量并最大限度地减少不良反应。有趣的是,在小鼠模型中,在大量精氨酸氨基酸和高蛋白饮食减少地高辛失活的情况下,导致地高辛失活的基因受到抑制。

 对他汀类药物不同反应源于肠道微生物群

他汀类药物通过竞争性抑制 HMG-CoA 还原酶起作用,是治疗心血管疾病相关高脂血症最常用的药物,近一半的 40 至 75 岁美国人口有使用指征。有趣的是,通过 LDL 胆固醇水平的不同降低来衡量,对他汀类药物的反应存在显着的个体间差异。这种可变性可能源于肠道微生物组,因为在具有更高肠道微生物多样性的个体和动物模型中观察到更强烈的治疗反应。

此外,在一项针对 100 名总胆固醇水平为 160–400 mg/dl 的个体的研究中,变形菌水平升高与辛伐他汀疗效降低有关,显示出不同的 LDL 反应。 在 64 名高脂血症患者中,如果存在较高水平的CyanobacteriaLentisphaerae,同时存在较低水平的厚壁菌门梭杆菌,另一种他汀类药物瑞舒伐他汀的疗效也会降低。

这些研究表明,可以根据个人的肠道微生物组预测他汀类药物的治疗反应。2020 年发表的一项研究发现,与肥胖相关的拟杆菌 2 (Bact2) 肠型在接受他汀类药物治疗的患者中不那么普遍,这表明他汀类药物具有微生物组塑造作用。 这一发现是否可用于预测未来的治疗结果和直接治疗选择还有待观察。

▌ 益生菌在心血管疾病中的作用

鉴于越来越多的证据支持肠道微生物组在心血管疾病发病机制中的作用,有几项正在进行的临床试验研究益生菌在心血管疾病中的作用。

两个例子包括抗菌利福昔明和益生菌布拉氏酵母菌 的比较以及嗜酸乳杆菌对心力衰竭患者炎症的影响。 这种干预性试验提供了一个宝贵的机会,可以根据从治疗后从患者身上收集的肠道微生物组的纵向信息来研究潜在有益的微生物组重排。

▌ 下一代微生物疗法

基于其中一些突出的发现,下一代微生物疗法似乎有一席之地,可以驱动特定的功能,如乙酸盐的产生或改善屏障功能

另一种方法是开发特定微生物途径的小分子抑制剂,例如最近描述的 TMA 产生酶抑制剂。这些抑制剂可能能够实现更精确的治疗干预,并且可以专门针对具有高 TMAO 水平和功能基因水平的患者,这些患者表明 TMAO 生产能力高

总的来说,认识到肠道微生物组在心血管疾病发病机制和治疗中发挥作用是一项重要进展,为疾病识别、分层和治疗开辟了新途径(表 1)。

07 自身免疫性疾病(类风湿关节炎)

类风湿性关节炎 (RA) 是一种自身免疫性疾病,会导致关节慢性炎症。 几项研究描述了 RA 患者肠道微生物群的改变,这些改变随着疾病的阶段而变化。

微生物组与类风湿性关节炎

目前发现是普雷沃氏菌属的成员与疾病改善相关,强调同一属内的不同物种和/或菌株可以对宿主生理有不同的影响。因此,重要的是解决物种或菌株水平的分类差异,而不是通常将整个属标记为有益或有害

普雷沃氏菌属在类风湿性关节炎发病机制中的潜在作用是基于人类和啮齿动物研究的结果。在体外研究和小鼠中,普雷沃氏菌属已被证明会增加 TH17 反应,这反过来又与关节炎骨侵蚀增加有关。

在人类中,已在受类风湿性关节炎影响的关节的滑液中发现了普雷沃氏菌属。 尽管普雷沃氏菌属似乎是类风湿性关节炎的一个重要决定因素,但据报道其水平在健康个体中随时间变化很大; 因此,需要纵向研究结合宿主表型的评估来更好地了解其在类风湿性关节炎中的作用。

除了肠道微生物群,特定的牙周细菌和牙周病与人类和关节炎小鼠模型中类风湿性关节炎的风险增加有关。 牙龈卟啉单胞菌和聚集放线菌都与针对瓜氨酸肽的自身抗体增加有关,并可能促进类风湿性关节炎的自身免疫。

微生物组和类风湿性关节炎疗法

除了在发病机制中发挥作用外,肠道微生物群也可能在决定对类风湿性关节炎常用药物的反应方面发挥作用。 这些包括疾病调节剂,例如甲氨蝶呤和羟氯喹,以及抗炎剂,例如柳氮磺胺吡啶和非甾体抗炎药 (NSAID)。

▌ 甲氨蝶呤治疗

宿主因素和遗传学未能提供甲氨蝶呤反应的预测模型,但更高的肠道微生物多样性与甲氨蝶呤治疗相关。

一项针对 26 名未接受药物治疗的新发的类风湿性关节炎患者的研究发现,甲氨蝶呤应答者和非应答者存在不同的微生物分类群及其基因。使用机器学习技术开发的基于微生物组的模型预测了在 21 名患者的验证队列中对甲氨蝶呤缺乏反应的高度准确度 (AUC 0.84)。

这一发现归因于肠道微生物群对甲氨蝶呤的直接代谢,因为将药物与患者远端肠道微生物群孵育后的甲氨蝶呤水平可预测临床反应

在另一项研究中,甲氨蝶呤治疗对小鼠模型中特定微生物分类群和通路的影响导致免疫激活降低,从而降低疾病活动性。

这些研究表明,肠道微生物群对甲氨蝶呤的微生物代谢可能在药物疗效中发挥作用,而甲氨蝶呤降低疾病活动的作用本身是由肠道微生物群的调节驱动的。

甲氨蝶呤通过竞争性抑制二氢叶酸还原酶来抑制免疫功能,与肠杆菌的丰度降低有关,但尚不清楚这一发现是否对药物反应有任何影响。 然而,它确实进一步表明甲氨蝶呤影响肠道微生物组结构,并且可以进一步探索微生物组对甲氨蝶呤反应的预测以指导治疗。

甲氨蝶呤本身的不同肠道微生物代谢为细菌细胞内残留的非活性或不可接近的形式,这是肠道微生物组改变甲氨蝶呤功效的可能机制。

肠道微生物也在甲氨蝶呤的毒性中起作用; 已发现脆弱拟杆菌灌胃可预防肠道粘膜炎,在小鼠中使用甲氨蝶呤治疗后,约三分之一接受甲氨蝶呤给药的患者出现了不良反应

羟氯喹

羟氯喹通过减少 TLR 信号传导和 CD154 表达来抑制免疫激活 的功效与肠道微生物 α 多样性相关,具有更高的预处理多样性有利于更大的功效,但尚不清楚是否仅仅是更高的微生物多样性或 导致这种效应的特定细菌的丰度增加

依那西普

与甲氨蝶呤一样,与 TNF 抑制剂依那西普相关的肠道微生物组发生了变化,但在目前的研究中与疗效没有明确的关系。

柳氮磺胺吡啶

5-氨基水杨酸前药柳氮磺胺吡啶在乙酰化后通过肠道微生物群的酶促作用转化为其活性代谢物,因此,其功效取决于肠道微生物群。

非甾体抗炎药和扑热息痛

非甾体抗炎药和扑热息痛相关的不良事件可能与肠道微生物群有关。细菌 β-葡萄糖醛酸酶的活性可导致非甾体抗炎药的毒性,该酶的抑制剂可减少非甾体抗炎药诱导的小鼠肠病。原则上,β-葡萄糖醛酸酶活性的测量可以帮助识别应该避免使用非甾体抗炎药或适合与特定的 β-葡萄糖醛酸酶小分子抑制剂联合治疗的个体。某些细菌可以产生对甲酚它与扑热息痛在肝脏中竞争酶结合,并导致产生肝毒性化合物 NAPQI(图 2)。 因此,对甲酚水平可用于指导扑热息痛剂量,以避免肝毒性副作用

▌ 益生菌治疗

肠道微生物对类风湿性关节炎发病机制的潜在贡献导致了益生菌作为潜在治疗选择的探索。这些努力主要集中在调节免疫系统以抵消类风湿性关节炎中所见的变化,而不是潜在地替代缺失的微生物或机制的策略。

P. histicola 通过抑制抗原特异性 TH17 反应和刺激增加的 IL-10 转录来降低易感 HLA-DQ8 小鼠关节炎的发生率和严重程度。在胶原诱导的小鼠模型中,

干酪乳杆菌的给药与 CD4+ T 细胞减少的促炎分子(IL-1β、IL-2、IL-6、IL-12、IL-17、IFNγ、TNF 和 COX2)有关。 关节炎 。

在45 名成人研究中,凝结芽孢杆菌已被研究作为类风湿性关节炎的潜在辅助治疗选择,与安慰剂相比,给药可改善疼痛和残疾的自我评估并降低炎症标志物

微生物种类对免疫系统的不同影响表明,基于免疫标记的类风湿性关节炎亚型可以帮助选择最有可能对基于特定微生物群的疗法产生反应的患者(表 1)。

08 炎症性肠病

炎症性肠病 (IBD) 是一种慢性炎症,包括克罗恩病和溃疡性结肠炎。IBD 亚型在疾病表型、易感性、进展和对治疗的反应方面的异质性激发了尝试将它们分型而不只是临床表现。 重点一直放在宿主基因和免疫反应上,但暴露组和微生物组越来越被认为是 IBD 个体间变异的重要决定因素。

微生物组与 IBD有关

肠道微生物群在 IBD 中的核心作用是基于观察结果,例如粪便转移后疾病缓解、细菌水平升高的胃肠道区域疾病负担加重、抗生素治疗后患者亚群的改善以及 IBD 特异性的改变肠道微生物群的组成和功能。 此外,在 IBD 患者粪便定植小鼠后观察到与 IBD 相关的炎症通路增强,如 IL-17,突出了其在疾病中的作用。

▪ 克罗恩病和溃疡性结肠炎肠杆菌科增加,产丁酸菌减少

克罗恩病和溃疡性结肠炎的特点是微生物群落结构发生了巨大变化,最一致的发现是变形杆菌门,特别是肠杆菌科的相对丰度增加。特定菌群的丰富性与克罗恩病(大肠杆菌、弯曲杆菌属和鸟分枝杆菌)相关,而特定产丁酸菌的消耗与克罗恩病和溃疡性结肠炎的发病机制有关 。

在克罗恩病患者的回肠黏膜中也发现了粘附侵袭性大肠杆菌,并伴有 TNF 分泌增加,但目前尚不清楚这种细菌是诱发疾病还是其存在是潜在疾病因素的结果。

总体而言,这些菌群变化代表兼性厌氧菌(如变形杆菌)的增加,而牺牲了专性厌氧菌。 这里概述的大多数研究都集中在管腔微生物组上,虽然它在 IBD 发病机制中很重要,但在识别 IBD方面,其鉴别力低于粘膜相关微生物组。

▪ IBD中肠杆菌科增殖与什么有关?

肠杆菌科 在 IBD 中的总体扩张可能是由于肠道营养状况的变化,例如宿主产生的 N-乙酰乙醇胺信号脂质的增加,这可以被肠杆菌科利用。此外,细菌氮代谢与肠杆菌科细菌的增殖有关,通过尿素酶的产生和炎症环境中硝酸盐的可用性,可以促进肠杆菌科的厌氧呼吸。

▪ IBD中变形菌门增殖与什么有关?

变形菌门丰度的增加可能不一定是 IBD 的诱因,可能是宿主遗传易感性以及饮食和环境暴露的综合结果。 然而,变形菌确实含有高免疫原性 LPS,它本身可以引发炎症反应。这种前馈机制可能有助于使炎症持续存在并允许变形菌茁壮成长,同时排除细菌,如 F. prausnitzii,后者在炎症环境中表现不佳。

这一假设部分得到了观察结果的支持,即使用 TNF 抑制剂治疗 IBD 与克罗恩病儿科患者更多样化的肠道微生物组的恢复相关。除了 LPS,其他几种细菌成分和代谢物也与 IBD 相关,例如较高水平的多胺和 ATP 以及较低水平的二级胆汁酸和丁酸盐。

微生物组和 IBD 疗法

肠道微生物组也在预测对现有 IBD 治疗的反应方面发挥作用。更高的治疗前肠道微生物 α 多样性与使用抗整合素疗法维多珠单抗(α4β7 拮抗剂)治疗后更高的缓解可能性相关,这表明微生物代谢在决定疗效方面具有潜在作用。同样,在停止抗 TNF 治疗英夫利昔单抗后,特定的肠道微生物组特征与疾病复发相关。

由于目前的临床实践通常是在达到缓解后很长时间继续生物治疗,因此此类特征可能允许选择可以停止治疗的患者。鉴于对生物药物反应的可变性以及所涉及的成本和发病率,通过微生物组分析预测反应和持续缓解的能力可以简化 IBD 的管理。

这些观察结果推动了基于微生物群的IBD疗法的发展,范围从益生菌和粪菌移植到特定的细菌化合物或代谢物。

F. prausnitzii 是可能的益生菌的一个例子,因为克罗恩病患者术后标本中 F. prausnitzii 丰度的降低与切除后疾病复发的增加有关。F. prausnitzii 已被证明可以通过减少炎性细胞因子的分泌来预防急性结肠炎,这表明它具有抗炎作用,这可能是由于其产生丁酸盐的能力或通过对免疫系统的独立作用。 未来,微生物组的术后分析可以识别可能受益于治疗策略(如 F. prausnitzii )的个体。

同样,粪菌移植在 IBD 中的疗效与供体微生物组的特定特征有关。 毛螺菌科瘤胃球菌属的丰富度与反应相关,表明特定微生物分类群或代谢物在确定反应方面的作用,并为迄今为止在其他粪菌移植试验中观察到的反应变异性提供了可能的解释。

随着更多地了解肠道微生物组在 IBD 中的作用,基于肠道微生物组的亚表型可能会在预测进展以及对特定治疗的反应方面更好地对患者进行分层,并可能导致个性化治疗策略的发展靶向肠道微生物组(表 1)。

09 过敏和特应性疾病

肠道微生物群在免疫教育中的关键作用使其成为过敏和特应性疾病的重要参与者。 微生物群在生命的早期阶段最脆弱,这段时间的变化会对免疫系统产生长期影响。

因此,大多数过敏和特应性疾病微生物组研究都集中在早期生命,目的是确定新生儿的饮食、过敏原暴露和微生物组组成如何驱动过敏性疾病,并确定可以调节以预防这些疾病的特定目标

观察到生命早期的特应性是食物过敏发展的危险因素,并最终在以后的生活中引发哮喘,这表明了这种潜在的干预窗口。 这种联系表明了一个共同的潜在机制,经典地与 CD4 TH2 过度活化结合树突状细胞诱导的 Treg 细胞水平降低有关,所有这些都受到微生物组的影响。 虽然该领域仍处于起步阶段,但强调了一些可能与个性化微生物组变化相关的领域。

食物过敏

食物过敏很可能是由遗传、饮食和共生微生物群之间复杂的相互作用驱动的。 在人类中,在对鸡蛋、花生、大豆、小麦和牛奶等不同类型食物过敏的人群中,已经报道了不同的肠道微生物群变化。 然而,研究之间缺乏一致性使得解释这些变化具有挑战性。

肠道微生物群的作用得到以下观察结果的支持:无菌小鼠对食物的过敏反应敏感,抗生素增加过敏原致敏性,从健康婴儿移植肠道微生物群可以防止小鼠发生食物过敏。

在一项粪菌移植研究中,发现Anerostipes caccae 可以防止对牛奶的食物过敏反应。 另一项粪菌移植研究发现,用 Subdoligranulum variabile 拟杆菌属菌株进行的细菌疗法对小鼠的花生过敏具有保护作用。

具体而言,Treg 细胞通路 MyD88-RORγt 被发现在防止小鼠食物过敏方面很重要,并且被确定在患有食物过敏的婴儿中存在缺陷。Treg 细胞亚群由微生物代谢物丁酸盐诱导,但未发现丁酸盐与本研究中观察到的效应有关。

除了免疫教育,微生物组还可以通过产生或降解来影响过敏原的有效剂量。 特定的牛奶发酵益生菌菌株,如鼠李糖乳杆菌,提高了对牛奶的耐受性,支持在过敏原降解中发挥潜在作用。

因此,通过评估微生物群降解食物的能力,可能能够预测过敏的自发消退或识别可能从基于微生物群的疗法中受益的个体

过敏和哮喘

生命早期肠道微生物群的破坏,例如与剖腹产和在微生物暴露减少的“清洁”环境中长大有关的破坏,与发生特应性和哮喘的风险增加有关。尽管没有一致的人类微生物群特征与特应性和哮喘相关,但微生物代谢物可能直接参与疾病的发展。

发现源自肠道的 SCFA 丙酸盐的循环水平以依赖于游离脂肪酸受体 3(FFAR3)和小鼠树突细胞功能的方式减少肺部炎症。微生物代谢物可能特别参与 TH2 重编程和过度活化,即使并非所有哮喘患者的 TH2 水平都升高

▪ 微生物代谢物——12,13-diHOME

通过一系列代谢组学和微生物遗传学研究确定了一种参与哮喘发展的微生物代谢物,即亚油酸衍生物 12,13-diHOME。发现哮喘风险升高的出生队列中 12,13-diHOME 的粪便水平增加,这与肺部抗炎细胞因子和 Treg 细胞水平降低有关,表明免疫耐受受到阻碍。负责产生 12,13-diHOME 的细菌环氧化物羟化酶可能被抑制作为酶水平升高患者亚组的治疗策略。

已经尝试用特定菌株或群落补充母乳或配方奶,目的是降低日后发生特应性或哮喘的风险

▪ 鼠李糖杆菌

其中一个例子是鼠李糖乳杆菌 GG 的使用,这导致微生物种类增加,这些微生物种类被认为可以促进哮喘高危婴儿的免疫耐受性,尽管在以后的生活中发展为哮喘的进展和疾病的严重程度的评估尚不清楚。

▪ Acinetobacter lwoffii乳酸乳球菌

此外,从农场牛棚中分离出的Acinetobacter lwoffii乳酸乳球菌菌株对小鼠具有很强的过敏保护特性,可以在人类队列中进行研究。

为了更好地了解肠道微生物群在过敏和特应性疾病发展中的作用的时间机制,跟踪临床结果的纵向出生队列是必要的。 总体而言,这些研究可以为未来基于肠道微生物组的过敏性疾病个性化治疗策略提供信息(表 1)。

10 未来寄语

在考虑健康和疾病中的微生物组时,人们非常关注因果关系,但很明显,即使肠道微生物组不是诱发因素,它也会导致疾病。

▪ 需要在多背景下加以考虑

事实上,肠道微生物群很少是疾病的唯一驱动因素,需要在涉及宿主遗传学、宿主生理反应和环境的系统生物学背景下加以考虑

我们需要了解肠道微生物组在使个体易患疾病状态的复杂调控框架中的位置。尽管肠道微生物组与许多疾病有关,但与宿主(表观)遗传学、蛋白质组或转录组等其他变量相比,很难量化这种贡献的相对数量

▪ 需要对易混淆的因素加以研究

描述不同宿主和微生物组因素的贡献的一个主要挑战是难以将宿主和环境因素对微生物组的影响它们对独立于微生物组的宿主生物学的影响区分开来。

由于巨大的个体差异,生活方式、生理和饮食因素等因素可能会与微生物组因素混淆,需要更多这方面的研究。这样不仅有助于进一步了解与健康和疾病相关的微生物组,而且有助于如何提高未来工作的质量,以更好地了解微生物组在精准医学和个性化治疗中的力量

未来对大量表型良好的患者进行的研究将需要多维,包括宿主和微生物多组学以及暴露组,以更好地了解肠道微生物组和其他数据水平对疾病状态或治疗效果的相对贡献。

▪ 纵向分析用于减少变异,建立因果

这些研究还应通过使用纵向抽样来封装时间和人际变化。与横断面研究相比,纵向数据分析已被证明可以减少变异,并可用于建立因果关系。例如,可以通过对初治队列的纵向监测来确定治疗反应背后的变异,以确定可能导致治疗变异的相关微生物组和宿主因素。

▪ 多方法结合识别治疗反应新因素

这种方法与智能体外和离体方法相结合,可以识别导致治疗反应、不良反应和药物代谢的新因素。此类研究还将能够确定肠道微生物组是否可以作为其他宿主相关因素的解读,例如饮食、遗传、年龄和生活方式,并可能简化用于疾病分类和治疗分层的机器学习算法(图 3) 

随着研究数量的增加,可以看到该领域的持续强劲势头我们需要意识到现在仍处于调查的早期阶段,在将微生物组的知识转化为可用于临床以造福患者的可行措施之前,仍然存在重大挑战需要解决。包括缺乏大型临床队列中基于微生物组的标志物的验证、微生物组数据的处理和分析缺乏标准化,以及缺乏对不同疾病状态下微生物组相关机制的个性化理解。

管存在这些缺点和挑战,该领域的快速步伐和过去十年取得的进展令人乐观地认为微生物组迟早会成为临床实践的一部分

随着目前我们正在做的肠道微生物检测日渐明朗,可以开始设想如何将微生物组纳入个性化治疗策略,为每位患者选择最佳策略

主要参考文献:

Schupack DA, Mars RAT, Voelker DH, Abeykoon JP, Kashyap PC. The promise of the gut microbiome as part of individualized treatment strategies. Nat Rev Gastroenterol Hepatol. 2021 Aug 27. doi: 10.1038/s41575-021-00499-1.

Wang DD, Nguyen LH, Li Y, Yan Y, Ma W, Rinott E, Ivey KL, Shai I, Willett WC, Hu FB, Rimm EB, Stampfer MJ, Chan AT, Huttenhower C. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat Med. 2021 Feb;27(2):333-343. doi: 10.1038/s41591-020-01223-3.

Kelly, C, R. et al. Fecal microbiota transplant is highly effective in real- world practice: initial results from the FMT National Registry. Gastroenterology 160, 183–192.e3 (2021).

Yamamoto K, Kuzuya T, Honda T, Ito T, Ishizu Y,et al., Relationship Between Adverse Events and Microbiomes in Advanced Hepatocellular Carcinoma Patients Treated With Sorafenib. Anticancer Res. 2020 Feb;40(2):665-676. doi: 10.21873/anticanres.13996.

McDonald, J. A. K. et al. Inhibiting growth of Clostridioides difficile by restoring valerate, produced by the intestinal microbiota. Gastroenterology 155, 1495–1507.e15 (2018)

Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020 Mar;16(3):155-166. doi: 10.1038/s41584-020-0372-x.

Liu R, Hong J, Xu X, et al., Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017 Jul;23(7):859-868. doi: 10.1038/nm.4358. Epub 2017 Jun 19.

肠道微生物群与五种癌症的相互作用:致癌 -> 治疗 -> 预后

谷禾健康

肠道微生物群在癌症中发挥免疫调节和抗肿瘤作用,肠道微生物失调可诱导有毒代谢物的释放,并在宿主体内表现出促肿瘤作用。肠道微生物群也能调节标准化疗药物和天然抗癌药物的疗效

本文列举5种常见的癌症(结直肠癌、肺癌、乳腺癌、前列腺癌、胃癌),以及肠道微生物群在癌症中的复杂作用。

肠道微生物群与癌症发病的关系概览

K. Jaye et al. Critical Reviews in Oncology / Hematology,2021

在进入具体的5种癌症章节之前,我们先来了解一下,微生物群与癌症的关系。有研究人员将微生物群和癌症之间的关系分为三个层次: 一级、二级和三级相互作用

01 微生物群与肿瘤微环境的一级、二级和三级相互作用

K. Jaye et al. Critical Reviews in Oncology / Hematology,2021

一级相互作用(主要)

主要的相互作用考虑了肿瘤微环境和微生物群之间的直接联系。几项体内和体外研究主要从两个方面支持了这种关系:

a) 肠道微生物群可通过生物失调导致致癌

b) 肠道微生物可通过调节肿瘤活性干扰化疗药物的疗效

二级相互作用(次要)

次要的相互作用考虑了组织或器官系统的微生物群和同一大体分区内的肿瘤之间的联系。这种相互作用水平有助于识别用于筛选不同癌症类型的潜在生物标志物。特别地,来自局部组织或器官环境的次级微生物群可包含来自肿瘤微环境和初级微生物群落的痕迹,其可用作癌症的生物标志物;但这些诊断过程往往很复杂。

三级相互作用

肠道微生物群和肿瘤之间的三级相互作用解释了位于体内不同部位的肿瘤上的微生物群的影响。对这种相互作用水平的研究对于确定生理上遥远的微生物种类和感兴趣的肿瘤之间的关系具有重要意义,这对于确定癌症患者中潜在治疗选择的功效也具有临床相关性。

这些三级相互作用可以通过以下方式影响癌症:

  • 调节化疗的功效和毒性
  • 修饰免疫系统
  • 产生调节激素或宿主代谢的代谢物(所述代谢物可以影响癌症表型和/或结果 )

肠道微生物群可以通过启动代谢过程(包括水解和还原)来调节口服药物代谢,这直接影响药物毒性,并可以增强或抑制药物活性。微生物群与肿瘤之间的三级相互作用也可以帮助诊断不同类型的癌症。

肠道微生物群的促肿瘤、抗肿瘤和免疫调节作用

K. Jaye et al. Critical Reviews in Oncology / Hematology,2021

了解这些相互作用便于后面章节所述癌症的理解。接下来列举的是5种常见癌症,以及它们与微生物群之间的关系。

02
五种常见癌症及其与微生物群的关系

1

结直肠癌

在与肠道微生物群相关的各种癌症中,迄今为止对结肠直肠癌的研究最为广泛,肠道微生物群与疾病进展之间存在很强的相互关系。

菌群失调和致癌

在结直肠癌患者中存在菌群失调,这意味着其在结直肠癌发生发展中的潜在作用。结肠直肠癌与饮食因素和生活方式直接相关,饮食因素和生活方式改变了人类独特的肠道菌群。

结肠直肠癌的发生通过多种机制发生,如炎症、致癌物的激活、致瘤途径以及宿主DNA的改变/破坏

对结直肠癌有致癌作用的菌

已经确定了肠道微生物群中的几种菌,这些细菌除了它们的致病性之外,还被假设对结肠直肠癌具有致癌作用(主要是通过初级相互作用),包括幽门螺杆菌、肝螺杆菌Helicobacter hepaticus、牛链球菌Streptococcus bovis、大肠杆菌、脆弱拟杆菌B. fragilis、败血梭菌Clostridium septicum、粪肠球菌Enterococcus faecalis、具核梭杆菌F. nucleatum、厌氧消化球菌Peptostreptococcus anaerobius和牙龈卟啉单胞菌Porphyromonas gingivalis,所有这些细菌都显示出潜在的致癌作用

这些菌如何诱导结直肠癌?

这些细菌可通过激活STAT3、NF-κB、Wnt和SREBP-2途径、诱导COX-2表达、与TRL2和TRL4相互作用、刺激促炎细胞因子(IL-1β、IL-6、IL-8、IL-17、TNF-α和IFN-γ)产生、调节NLRP3炎症体活性,通过氧化应激活性氧(ROS)和活性氮(RNS)DNA损伤来诱导结直肠癌的发生。

“司机-乘客”理论

肠道细菌(驱动菌,就好比司机)通过破坏上皮DNA导致肿瘤发生,进而促进细菌(乘客)增殖,使其在肿瘤微环境中具有生长优势,从而诱导结直肠癌。

肿瘤微环境由基因改变的癌细胞、非肿瘤细胞和多种微生物组成。

在结直肠癌的肿瘤微环境中,梭杆菌富集,拟杆菌门和厚壁菌门减少,产丁酸菌显著减少,导致致病菌增加。

产丁酸菌在肠内形成功能团,并在肠上皮细胞的粘膜层上定居后表现出厌氧和氧敏感活性,这增加了丁酸盐的生物利用度。这一菌群通过保存肠道上皮功能和释放免疫调节和抗炎剂来促进肠道稳态。

致病因素对结直肠癌病因和进展的贡献与肠道微生物代谢物的累积效应有关,而不是单一菌种的作用。

结直肠癌早期代谢物的变化

肠道内的微生物代谢组以及特定细菌和真菌病原体的促致癌功能都可以催化致癌。

结肠直肠腺瘤(结肠直肠癌的前体)患者的肠道代谢物如生物活性脂质(包括多不饱和脂肪酸、次级胆汁酸和鞘脂)升高,突出了结肠直肠癌发病机制中潜在的早期驱动代谢物。且与男性相比,在女性中观察到更强的肠道微生物组-代谢组关联。

肠道微生物群在结肠癌抗癌治疗中的作用

粪菌移植

粪便微生物群移植在结直肠癌治疗中的功效,是通过免疫治疗功效的调节、胆汁酸代谢的改善和肠道微生物多样性的恢复来介导。该方式的安全性和有效性仍需谨慎评估。

益生菌、益生元

益生元如菊粉、β(1–4)低聚半乳糖、低聚果糖、乳果糖、抗性淀粉、麦麸在结直肠癌中发挥有益作用。

一项体外实验研究了乳酸菌产生的一类重要代谢产物——细菌素对不同菌株幽门螺杆菌的抑菌活性,发现乳酸菌素A164和乳酸菌素BH5对幽门螺杆菌具有显著的抑菌活性。

该研究还表明,由益生菌菌株-嗜酸乳杆菌P38、长双歧杆菌P29和乳酸乳球菌M92产生的乳酸可以抑制幽门螺杆菌的生长,表明益生菌在幽门螺杆菌相关溃疡和癌症中的潜在治疗应用。

女性通过雌激素抑制结直肠癌

在世界范围内,结直肠癌男性比女性更常见。雌激素会影响肠道微生物群的组成。

两项研究证明,17β-雌二醇(一种雌激素)通过上调用氧化偶氮甲烷/硫酸葡聚糖钠处理的雄性ICR小鼠的Nrf2,改变肠道微生物群抑制结肠直肠癌的诱导

由于文献中的大多数研究是在体外和体内进行的,在制定基于益生元的结直肠癌策略之前,有必要进行更多的临床研究,这些研究将遗传、环境因素、年龄、性别、种族、文化、饮食和地理位置考虑在内。总的来说,这些临床发现对以肠道微生物群为中心的结直肠癌的诊断、预防和潜在治疗策略有积极的贡献。

2

肺 癌

肺癌是常见的恶性肿瘤之一,迫切需要制定有效的肺癌治疗策略。研究表明,肠道和肺部微生物群之间通过淋巴和血液循环系统在双向轴上存在复杂的联系。肠-肺轴是最近的科学认识,可能是肺癌治疗的潜在未来方向。

肠道菌群在肺癌的抗癌治疗中的免疫调节

特定的微生物群,其功能是调节针对肿瘤发生的免疫反应并增加针对癌症的免疫疗法的功效(三级相互作用)。

K. Jaye et al. Critical Reviews in Oncology / Hematology,2021

肠道微生物群产生代谢物和信号分子,包括SCFAs、肌苷、脂多糖(LPS)和IFN-γ,它们调节T细胞、B细胞、NK细胞、树突状细胞和巨噬细胞对抗肿瘤微环境的活性。

针对肠道微生物群,CD8 + T细胞、自然杀伤细胞和巨噬细胞产生穿孔素、颗粒酶、白细胞介素-12、白细胞介素-1β和肿瘤坏死因子来抑制肿瘤。

肠-肺轴一个部分的改变可能会影响另一个部分,这可能与肠和肺微生物群组成或免疫系统功能的变化直接相关。肠道微生物群在肺癌抗癌反应中的重要性已被癌症免疫周期所考虑。

抗癌免疫是如何发生的?

癌症免疫周期承认,抗癌反应是由释放促炎细胞因子构成的,该细胞因子来源于肠道微生物群的代谢物,这进一步导致针对癌症特异性抗原的效应T细胞的激活。效应T细胞的激活导致肿瘤细胞床的侵袭,与特定的肿瘤抗原结合,有效地破坏恶性肺癌细胞

肠道菌群在其中的作用

肠道微生物组对B和T细胞的引发和成熟通过抗体的作用增强了粘膜保护,因为它始于肠粘膜层,并通过淋巴和血液循环系统沿其他粘膜表面传播。这启动了远离起源部位的免疫反应

肠道菌群对ICIs癌症治疗中疗效影响显著

肠道微生物群已被证明对免疫检查点抑制剂(ICIs)在癌症治疗中的疗效有显著影响。例如,施用抗生素抑制了ICIs靶向患者和小鼠非小细胞肺癌的PD-1/PD-L1。

注:PD-1,程序性细胞死亡1;PD-L1,程序性细胞死亡1配体1

对患者粪便样本的宏基因组分析发现,Akkermansia muciniphila(回肠微生物群中最丰富的细菌之一)的相对丰度非小细胞肺癌患者对ICIs的良好临床反应相关,然而,免疫调节作用的机制仍不清楚。

肠道菌群失调降低疗效

另有研究也表明抗生素相关的肠道微生物失调降低了ICIs在非小细胞肺癌患者中的临床疗效,并且无论肿瘤部位如何,都需要完整的肠道微生物群来动员免疫系统。

一项回顾性研究报告了抗生素对中国109例晚期非小细胞肺癌患者抗PD-1 ICIs临床结局的不利影响。通过上调肺癌小鼠模型中VEGFA表达下调BAX和CDKN1B表达来促进肿瘤生长和降低生存率,也证明了抗生素相关性肠道微生物失调对标准化疗(如顺铂)疗效的不利作用

嗜酸乳杆菌Lactobacillus acidophilus联合顺铂治疗的小鼠表现出增强的抗肿瘤反应,上调了IFN-γ、颗粒酶B和穿孔素1的表达。

抗生素联合气溶胶疗法

一项有趣的研究表明,抗生素和益生菌气溶胶疗法改变肺部微生物群,可以预防黑色素瘤B16肺转移,并增强雌性C57BL/6小鼠对化疗的应答。

他们实施了万古霉素/新霉素气雾剂疗法,以减少调节性T细胞并增加T细胞和NK细胞的激活,这导致细菌载量的减少和黑色素瘤B16肺转移显著减少

该研究还发现,鼠李糖乳杆菌GG双歧双歧杆菌MIMBb23sg的气溶胶疗法显著增加标准化疗药物抗肿瘤作用。此外,鼠李糖乳杆菌GG通过增加NK细胞和T细胞中CD69的表达,强烈促进了对B16转移肿瘤的免疫力

总之,这些发现强调了肠道微生物群的重要影响,尤其是在肺癌的治疗和预后方面。然而,需要更多的研究来阐明肠道微生物群免疫调节作用的分子机制,以及它们在开发有效的肺癌治疗策略中的相关性。

3

乳腺癌

乳腺癌是常见的癌症之一,也是全球女性癌症相关死亡的主要原因。目前,对肠道微生物群理解的不断深入,肠道微生物群与乳腺癌关系也得到了进一步研究。除了遗传学,肠道微生物群可能在乳腺癌的发病机制中起重要作用。

菌群失调和致癌

一项关于绝经后妇女的研究调查了乳腺癌肠道代谢组学改变的相互关系。发现健康对照受试者和绝经后乳腺癌患者的肠道微生物组的组成生物活性存在差异,其中绝经后乳腺癌患者的肠道宏基因组具有编码β-氧化、铁复合物转运系统和脂多糖生物合成的基因。

体外研究提供了支持肠道微生物群与乳腺癌转移进展之间联系的功能证据,其中微生物代谢物可以通过血液传播,影响乳腺癌细胞和免疫细胞的功能。

此外,已经确定肠道微生物群中预先存在的干扰增加了乳腺癌细胞转移,然而,需要进一步的研究来确定这些发现在临床环境中的相关性。

肠道微生物群和激素调节之间的联系

另有研究报告了肠道微生物群对乳腺癌的多因素影响的几个有趣方面,这些影响是通过调节类固醇激素代谢以及粘膜和全身免疫反应介导的。例如,肠道微生物群可能通过介导类固醇激素的代谢模拟雌激素的生物活性代谢物的合成,在乳腺癌的发展中发挥重要作用。

下图描述由宿主中激素释放活性障碍引起的生理效应,包括代谢过程的变化和肠道内炎症和癌症的调节。

K. Jaye et al. Critical Reviews in Oncology / Hematology,2021

肠道微生物群和激素调节之间的相互联系是确定乳腺癌精确疗法的一个有前途的研究领域。

现有研究为肠道菌群贡献和乳腺癌风险提供评估

虽然肠道微生物群与乳腺癌之间的相关性和因果关系尚未明确,但乳腺癌的风险肠道和乳腺微生物群组成和功能以及接触有害环境污染物(如可能导致生物失调的内分泌干扰物)有关。尽管病例对照临床研究目前正在进行中(NCT03885648),但它对肠道微生物群(细菌、古细菌、病毒和真菌)的贡献以及环境压力对乳腺癌相关风险的改变提供了潜在的首次评估,这可能有助于理解风险因素、改善预后和定义乳腺癌的新干预措施。

肠道微生物群在乳腺癌抗癌治疗中的作用

最近的两篇综述探讨了肠道微生物群在乳腺癌中的作用。他们回顾了几项临床前和临床研究,这些研究涉及益生菌如罗伊乳酸杆菌、瑞士乳杆菌R389、副干酪乳杆菌、嗜酸乳杆菌双歧杆菌,及其对乳腺癌的潜在治疗效果的机制:

直接机制:抑制早期癌变、诱导乳腺癌细胞凋亡和抑制肿瘤生长

间接机制:通过升高IL-10降低IL-6水平进行免疫调节

两项在clinicaltrials上注册的正在进行的临床试验(NCT03358511和NCT03760653),也在研究益生菌对乳腺癌的治疗效果。

总的来说,需要更多的研究来了解益生菌在乳腺癌治疗中的功效。此外,未来的研究侧重于全面了解肠道微生物群对抗乳腺癌的直接和间接作用机制,以及益生菌如何影响乳腺癌标准和辅助化疗的疗效

4

前列腺癌

前列腺癌是男性人群中常见的癌症,虽然很普遍,但其危险因素还没有得到很好的确定或研究。

菌群失调和致癌

越来越多证据支持菌群失调和前列腺癌之间的生物学关系。恶性肿瘤和炎症之间的联系已经成为许多现有研究中的重要考虑因素,强调了炎症刺激(三级相互作用)在前列腺癌的发展和进展中的可能意义。

前列腺癌的肠道菌群变化

早期该研究的相关信息非常有限。2018年,对20名高加索血统的参与者进行的病例对照研究发现,良性对照受试者和前列腺癌男性的肠道微生物组的组成有很大不同,这可能适应前列腺癌的发病机制和对其危险因素的进一步研究。特别是,与对照组相比,前列腺癌病例中Bacteroides massiliensis的相对丰度较高,而对照组中普氏栖粪杆菌 Faecalibacterium prausnitzii 直肠真杆菌Eubacterium rectalie的相对丰度较。该试点研究还报告了相关基因、途径和酶丰度的生物学显著差异

肿瘤组织微生物群变化

另有研究报告了前列腺癌中促炎拟杆菌链球菌丰度的显著差异,叶酸和精氨酸途径显著改变。对前列腺肿瘤微环境的分析显示,与非肿瘤组织相比,肿瘤/肿瘤周围组织中的葡萄球菌 Staphylococcus明显,而丙酸菌属Propionibacterium 在所有测试的肿瘤/肿瘤周围和非肿瘤组织中最为丰富

肠道微生物群在前列腺癌抗癌治疗中的作用

类似于结直肠癌和乳腺癌,雌激素调节肠道微生物群与前列腺癌的相互关系也被认为是可能的。

对30例患者进行的横断面研究进一步验证了肠道微生物群、激素调节癌症治疗疗效之间的相互作用。作者发现,口服雄激素受体轴靶向治疗的男性,其肠道菌群组成存在显著差异

该研究发现了大量的Akkermansia muciniphilaRuminococcaceae菌,这两种菌曾被认为与抗PD -1免疫治疗反应有关。

5

胃 癌

作为全球范围内癌症相关死亡的第三大原因,胃癌已经在风险因素和预防方面进行了广泛研究。

菌群失调和致癌

胃癌最重要和已知的风险因素是由幽门螺杆菌引起的感染,幽门螺杆菌是一种革兰氏阴性微需氧细菌,导致癌前病变的形成,包括异型增生,这可能进一步导致胃肠癌。国际癌症研究中心、世卫组织将幽门螺杆菌视为腺癌和粘膜相关淋巴组织淋巴瘤的一类致癌物。

肠道微生物群与胃癌之间的联系可进一步分为幽门螺杆菌和非幽门螺杆菌微生物群,作为菌群失调和癌症发病的致病菌。

与幽门螺杆菌阳性个体相比,幽门螺杆菌阴性个体拥有更复杂和高度多样化的微生物群,主要由5个优势门组成:变形菌门、厚壁菌门、放线菌门、拟杆菌门和梭杆菌门。明确地说,胃癌被认为是炎症相关的(间接机制),因为幽门螺杆菌可以启动炎症反应并诱导异型增生,从而改变胃肠道内许多信号通路的调节。

来源于螺杆菌属的强毒蛋白,如外膜磷脂酶蛋白,有助于细菌在胃肠道粘膜层定居,从而引发胃炎发作,并因此增加胃内肿瘤发生的风险。

此外,胃中幽门螺杆菌产生高水平的活性氧和随之而来的DNA损伤也与致癌作用(主要相互作用)有关。幽门螺杆菌还会减少胃酸分泌,而胃酸减少的环境对许多细菌来说慢慢变得可以生存,从而导致胃酸缺乏症和胃微生物群的改变。

几项研究表明,胃癌中非幽门螺杆菌细菌,如乳酸菌Lactobacillus、毛螺菌科Lachnospiraceae、Escherichia-Shigella、硝化螺旋菌门Nitrospirae伯克氏菌属Burkholderia的丰度增加

肠道微生物群在胃癌抗癌治疗中的作用

越来越多的证据支持益生菌和益生元的治疗用途,它们在体外和体内对胃肠道恶性肿瘤具有显著的抗癌作用。已经确定将益生菌引入肠道上皮可以减少肿瘤的进展和复发,增强化疗药物的疗效。

对益生菌功能的进一步研究可能允许基于个体共生微生物组成进行给药。尽管已经在肠道微生物群和胃肠癌的发展之间得出了有希望的结论,但进一步的研究对于阐明这些生物过程的潜在机制至关重要。

03
肠道微生物群与标准抗癌药物的互作

肠道微生物群与化疗之间的关联通常是双向的。

1

肠道微生物群—>标准抗癌药物

肠道微生物群与宿主之间的生物相互作用可能会干扰抗癌药物的药代动力学。例如,许多研究表明,常驻肠道微生物群可以调节抗癌药物和治疗剂的活性,以及调节宿主对这些治疗方案的应答。

肠道微生物群可以通过三种主要临床结果介导宿主对化疗的应答:

1) 提高药物疗效

2) 破坏和损害抗癌效果

3) 调节毒性

这些研究证明了肠道细菌种类与化疗免疫治疗的药理作用之间的密切联系。

除了改善总体健康降低代谢紊乱慢性炎症的风险,肠道菌群如A.muciniphila, 脆弱拟杆菌B.fragilis, Bifidobacterium, Faecalibacterium,已被证明有助于动物模型和人类的抗癌免疫反应。

有趣的是,某些肠道细菌,如链霉菌WAC04685,通过体外去糖基化机制灭活抗癌药物。微生物群落代谢化疗药物以产生有毒的次级代谢物,这将直接干扰宿主对化疗代谢的免疫反应,同时改变宿主肠道微生物群结构。

2

标准抗癌药物—>肠道微生物群

铂类化疗,已被证实可能通过显示细胞损伤效应和改变DNA结构来干扰肠道微生物群。

化疗药物带来的炎症反应

研究表明,化疗药物会损害肠上皮和粘膜屏障,每一种都会极大地改变肠道微生物群,增加感染和疾病的概率。特别是,癌症患者的化疗已被证明通过ROS诱导的DNA损伤和细胞因子信号分子(NFκB途径、IL-1β、TNF- α和IL-12)导致肠上皮炎症和粘膜炎

当粘膜屏障受损时,致病菌共生菌共存,受损上皮细胞和致病菌分别释放的损伤相关分子模式(DAMPs)和病原体相关分子模式(PAMPs)反过来被Toll样受体(TLRs)识别,最终导致炎症

这些调节活动的机制框架包括易位、免疫调节、代谢、酶降解以及多样性和变异减少,并被科学地认为是“定时器”框架。

研究人员确定肠道微生物组和免疫系统之间的生物相互作用是由化疗后诱导的细菌易位构成的,该易位发生在淋巴器官内腔内

化疗患者的菌群变化

对接受化疗的癌症患者的人类粪便微生物群进行的16S rRNA测序显示,双歧杆菌属、乳杆菌属、韦荣球菌属 Veillonella和粪肠球菌属 Faecalibacterium prausnitzii 的数量减少,同时出现致病性和炎症性艰难梭菌Clostridium difficile粪肠球菌Enterococcus faecium

一项针对乳腺癌幸存者的研究发现,独特肠道微生物群的组成与癌症复发恐惧(FCR)之间存在直接关联,这意味着化疗药物诱导的微生物群变化可能是影响FCR的原因。

生活方式和抗生素改变菌群

除了化疗药物之外,生活方式因素(包括宿主环境和饮食)的中断已被证明会干扰肠道微生物群的组成。生活方式因素可以通过改变微生物群落结构来破坏肠道微生物群和宿主之间的共生关系,从而导致不利的化疗效果和结果。

此外,抗生素给药还被证明会破坏肠道微生物群,导致对抗癌化疗和免疫疗法的反应减弱。因此,这些发现为未来的研究提供了一个利基领域,以了解标准化疗对肠道微生物群的影响,定义精确的抗癌方案,并确定不同癌症类型的临床结果。

04
免疫疗法和天然抗癌物与菌群互作

1

癌症免疫疗法和肠道菌群

当前的癌症免疫疗法集中于利用特异性抗体自我调节癌症免疫周期,这确保了应答的传播而没有生物中断。

微生态的改变会中断和削弱化学信号,导致致病状态,包括与炎症相关的疾病和癌症。

无菌小鼠的免疫系统存在缺陷,包括先天免疫系统和适应性免疫系统。这种免疫是通过为模式识别而设计的受体通过PAMPs调节的,其中信号通路可以通过肠道微生物代谢物增强

肠道微生物群对抗癌免疫反应的调节活性也与通过微生物群影响PD-L1和CTLA-4抑制剂的疗效有关。当与双歧杆菌的口服给药相结合时,PD-L1特异性抗体疗法的给药可以显著调节肿瘤的发展,但在小鼠模型中肿瘤的生长几乎被消除。

阻断剂疗效取决于拟杆菌的存在

同样,CTLA-4阻断的疗效取决于肠道微生物群中拟杆菌的存在脆弱拟杆菌B. fragilis多形拟杆菌B. thetaiotaomicron的特异性T细胞免疫应答与CTLA-4阻断剂的疗效相关,在没有这些微生物群落的情况下,肿瘤进展对阻断剂具有抵抗力。

小鼠的一项研究确定了ICI功效与肠道菌群之间的联系,其中CTLA-4和PD-1抑制剂仅能够在共生细菌拟杆菌和双歧杆菌存在的情况下减少肿瘤生长。进一步的发现确定,除非用免疫治疗方法治疗,否则小鼠模型中的肿瘤生长对CTLA-4抑制剂阻断有抵抗性,这通过激活T细胞反应提高了这些抑制剂的功效。

2

天然抗癌化合物和肠道菌群

前面我们知道,癌症化疗/免疫疗法与肠道微生物群之间存在密切关系,而通过天然药物预防癌症是肿瘤学中一种很有前景的方法。天然药物包括膳食多酚、纤维、植物雌激素和维生素D等。

膳食多酚和肠道菌群互作

膳食多酚在几项临床前和临床研究中显示出显著的抗癌活性。肠道微生物群和膳食多酚之间的联系是双向的。例如,肠道微生物群能够生物转化膳食多酚,增加其生物利用度,膳食多酚可以通过抑制“坏”细菌的增殖和刺激“好”细菌来调节肠道微生物的组成和功能。

多酚改变肠道微生物的组成和功能,肠道微生物群产生多酚代谢物,这可能共同有助于对结直肠癌的保护作用。

表没食子儿茶素辅助治疗乳腺癌

另一项针对乳腺癌的研究表明,茶多酚-表没食子儿茶素-3没食子酸酯(EGCG)可显著降低血清中血管内皮生长因子(VEGF)、肝细胞生长因子(HGF)、EGCG加放疗组与单纯放疗组相比,金属蛋白酶-9 (MMP9)、金属蛋白酶-2 (MMP2)活性降低,提示EGCG对乳腺癌辅助治疗作用。

补充膳食多酚增加有益菌抑制结直肠癌

一些临床和动物研究已经证实,当补充膳食多酚(姜黄素、白藜芦醇、橙皮苷、绿茶多酚、花青素、异甘草素和黑树莓花青素提取物)时,有益菌(产丁酸菌和益生菌)如乳酸杆菌和双歧杆菌的丰度增加,这可能抑制结直肠癌。这些发现表明,肠道微生物群可以被靶向并用于潜在地改善几种天然抗癌疗法的药代动力学反应。然而,进一步的机理研究对于阐明潜在的分子相互作用至关重要。

05
病毒与肠道微生物群的互作

1911年,人们在鸡身上首次发现了病毒和癌症之间的联系。此后发现了几种致癌病毒,包括:

  • 卡波西肉瘤疱疹病毒(引起卡波西肉瘤和原发性渗出性淋巴瘤);
  • 人嗜T淋巴细胞病毒1(引起成人T细胞白血病和淋巴瘤);
  • 艾普斯登-巴尔病毒(引起伯基特淋巴瘤、免疫抑制相关非霍奇金淋巴瘤、结外NK/T细胞淋巴瘤、霍奇金淋巴瘤和鼻咽癌);
  • 丙型肝炎病毒(引起肝细胞癌和非霍奇金淋巴瘤);
  • 乙型肝炎病毒(引起肝细胞癌);
  • 默克尔细胞多瘤病毒;
  • 人巨细胞病毒。

病毒促癌机制

病毒可以通过不同的机制促癌作用:

a) 直接通过诱导病毒癌蛋白或通过调节病毒DNA整合位点的宿主细胞蛋白质的表达

b) 间接通过抑制免疫系统或通过修饰宿主细胞基因组而不持续病毒DNA

致瘤病毒以单克隆形式位于肿瘤细胞内,而间接作用的病毒存在于肿瘤外部

病毒还可以引发氧化应激损害局部组织,引起慢性炎症

因此,病毒致癌的直接和间接机制不一定作为单独的途径发生,包括肝癌和胃癌在内的某些肿瘤依赖于这两种机制。例如,已经观察到乙型和丙型肝炎病毒需要两种机制来诱导人类肝细胞癌。

最近一项研究报告了全球分布在人类肠道微生物群中的142809个非冗余肠道病毒(噬菌体)基因组,证实了病毒在肠道微生物群中的重要性以及进一步研究的必要性,以认识到它们与共生微生物群的相互作用。

由于大多数感染了癌病毒的人从来不会发展成癌症,因此,微生物群被认为是影响病毒感染促进癌症发生能力增加或降低的关键因素。

尽管病毒在癌症和肠道微生物群中具有相关性,但大多数微生物群研究忽略了病毒,而更多地强调肠道菌群。这可能归因于使用当前宏基因组学和生物信息学平台发现新病毒的挑战,可以通过开发新的病毒鉴定方法来缓解。还应进一步强调实施针对宿主中病毒相互作用(病毒-病毒、病毒-宿主、病毒-肿瘤和病毒-肠道微生物群)的抗癌疗法。

06
结 语

肠道微生物群在预防感染和维持健康中发挥重要而复杂的作用。本文重在帮助理解肠道微生物群在癌症发生、癌症治疗和预后中的直接和间接作用方面。

当然,癌症中肠道微生物群的相关性和因果关系尚未得到充分理解,需要进一步的系统生物学、体内和临床研究来阐明所涉及的复杂分子途径。精确定义什么是“好的”和“坏的”肠道微生物的研究也是至关重要的。

未来的临床试验(随机、双盲、安慰剂对照设计)在研究肠道微生物群在癌症中的作用时,还应考虑到因年龄、性别、种族、文化和饮食以及地理位置而发生的变化。

总之,肠道微生物群在癌症的发展、治疗和临床结果中的相关性是转化研究的一个新兴领域,可以为癌症治疗开辟新的途径。

主要参考文献:

Baffy, G., 2020. Gut Microbiota and cancer of the host: colliding interests. Tumor Microenviron. 93–107.

Camarillo-Guerrero, L.F., et al., 2021. Massive expansion of human gut bacteriophage diversity. Cell 184 (4), 1098–1109 e9.

Tao, J., et al., 2020. Targeting gut microbiota with dietary components on cancer: effects and potential mechanisms of action. Crit. Rev. Food Sci. Nutr. 60 (6), 1025–1037.

Eslami-S, Z., et al., 2020. Microbiome and breast cancer: new role for an ancient population. Front. Oncol. 10, 120

Jaye Kayla,Li Chun Guang,Bhuyan Deep Jyoti,The complex interplay of gut microbiota with the five most common cancer types: From carcinogenesis to therapeutics to prognoses.[J] .Crit Rev Oncol Hematol, 2021, 165: 103429.

Vivarelli, S., et al., 2019. Gut microbiota and cancer: from pathogenesis to therapy. Cancers 11 (1), 38.

Qiu, Q., et al., 2021. Exploring the emerging role of the gut microbiota and tumor microenvironment in cancer immunotherapy. Front. Immunol. 11 (3399).

Meng, C., et al., 2018. Human gut microbiota and gastrointestinal cancer. Genomics Proteomics Bioinformatics 16 (1), 33–49.

Wong, S.H., Yu, J., 2019. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16 (11), 690–704.

乳腺癌和妇科恶性肿瘤辅助化疗后的肠道微生物组成

谷禾健康

辅助化疗可导致约三分之一的女性体重增加,葡萄糖耐量下降和高血压。这些事件的潜在机制尚未定义。这项研究评估了乳腺癌和妇科癌症辅助化疗患者的微生物组与体重增加之间的关联。近日发表在《BMC Medicine》上题为“The intestinal microbiome, weight, and metabolic changes in women treated by adjuvant chemotherapy for breast and gynecological malignancies”的一项小样本研究评估了乳腺癌和妇科癌症辅助化疗患者的微生物组与体重增加之间的关联。

方法:在开始辅助治疗之前招募患者。前瞻性收集有关肿瘤治疗,更年期状态和抗生素使用的数据。如果在研究期间接受抗生素治疗,则将患者排除在外。在治疗前和治疗结束后4-6周测量体重和身高。体重增加定义为体重增加3%或更多。治疗前收集粪便样本。并进行16S rRNA基因可变V4区扩增测序。数据使用QIIME 2进行处理和分析,并使用DADA2通过q2-dada2对读取进行了去噪和聚类。每个样品的读数均> 9300。使用Swiss Webster无菌小鼠进行了患者的粪便移植实验。

结果:招募了33名患者;其中9人增加了基线体重的3.5–10.6%。在治疗后体重增加的妇女的治疗前微生物组的多样性和分类学与对照妇女明显不同。与使用对照妇女的粪便样本进行移植的小鼠相比,从体重增加的患者的样本中进行粪便微生物菌群的移植诱导了无菌小鼠的代谢变化。

结论:肠道化学组的组成及其多样性与乳腺癌和妇科恶性肿瘤辅助化疗后体重增加有关。小鼠FMT实验表明,微生物组介导了化学疗法的不良代谢作用。值得进一步研究微生物组的预测价值,以及其对化疗后体重和代谢变化的作用机理。

 图一:化疗后体重增重的妇女的肠道微生物组与对照组妇女的肠道微生物组成不同 

图二:对GF小鼠使用化疗后体重会增加的妇女的预处理样本进行FMT,与不会增加体重的妇女的FMT相比,FMT会引起显著体重等指标的变化。

  图三 对GF小鼠使用化疗后体重会增加的女性预处理样本的FMT,与不会增加体重的女性(对照)相比,会引起显著的微生物变化。

参考文献:Uzan-Yulzari, A., Morr, M., Tareef-Nabwani, H. et al. The intestinal microbiome, weight, and metabolic changes in women treated by adjuvant chemotherapy for breast and gynecological malignancies. BMC Med 18, 281 (2020). https://doi.org/10.1186/s12916-020-01751-2

1