Tag Archive 蛋白酶

正确认识肠道内脆弱拟杆菌——其在健康的阴暗面和光明面

谷禾健康

弱拟杆菌(Bacteroides fragilis)是拟杆菌门拟杆菌属的重要成员。事实上,脆弱拟杆菌因其免疫调节功能而成为该属中研究最多的共生微生物。它是革兰氏阴性不形成孢子杆状专性厌氧菌。在人类健康中扮演着复杂而双面的角色。

这种革兰氏阴性专性厌氧菌常见于人类肠道菌群中,但也在口腔上呼吸道女性生殖道中检测到。第一个发现的脆弱拟杆菌菌株是从感染患者体内作为病原体分离出来的,随后的研究表明,该物种经常在患有各种炎症性疾病的患者中检测到,例如腹部、皮肤和软组织、骨和关节、女性生殖道、中枢神经系统和下呼吸道感染以及炎症性肠道感染疾病、心内膜炎、菌血症和败血症

脆弱拟杆菌也通常定植于各种哺乳动物的下胃肠道粘膜表面,包括人类、新生羔羊、牛犊、幼兔和小猪。据报道,这种细菌物种可以代谢饮食宿主来源的多糖作为碳和能量来源,并且能够耐受氧气暴露

人类脆弱拟杆菌生态位具有物种特异性,使得单一菌株能够占据主导地位并经历适应性多样化。根据合成和分泌脆弱拟杆菌毒素(BFT)的能力分为产肠毒素脆弱拟杆菌(ETBF)和不产肠毒素脆弱拟杆菌(NTBF)。 ETBF 已被确定为临床感染中常见的机会致病菌,可促进慢性炎,从而导致结肠炎阿尔兹海默症甚至是结直肠癌

★ 脆弱拟杆菌的危害

从人类中分离出的脆弱拟杆菌菌株中有10%至20%编码脆弱拟杆菌毒素(BFT),这是一种锌依赖性金属蛋白酶,可通过E-钙粘蛋白裂解损害结肠上皮屏障。BFT是脆弱拟杆菌研究最多的毒力因子之一,目前的证据表明这种毒素可能是慢性结肠炎结直肠癌的驱动因素。

含毒素菌株或产肠毒素脆弱拟杆菌(ETBF)还会引起儿童和成人的急性和慢性肠道疾病。BFT通过诱导小带粘附蛋白E-钙粘蛋白裂解并启动以炎症和c-Myc依赖性促癌过度增殖为特征的细胞信号传导反应来损害结肠上皮屏障。因此,携带易患结肠炎症或肿瘤形成的基因突变的宿主特别容易受到毒素介导的损伤。最近在具有结肠癌易感位点的人类结肠活检中观察到带有ETBF的生物膜,强烈表明ETBF是结直肠癌的驱动因素。

★ 脆弱拟杆菌的益处

尽管与疾病存在关联,但大约20%的人群似乎是无症状的ETBF携带者不产肠毒素脆弱拟杆菌(NTBF)对结肠上皮细胞有有益作用增强屏障作用,降低膜通透性,抑制其他病原菌定植,优先占据结肠生态位,维持肠道菌群稳态

此外,脆弱拟杆菌具有多种代谢潜力,与多糖利用相关的各种基因通过调节肠道微生物群的组成和促进肠道内短链脂肪酸的产生来影响宿主生理机能。

脆弱拟杆菌的功效很大一部分是由于荚膜多糖的合成。据报道,脆弱拟杆菌可产生八种荚膜多糖,考虑到大多数细菌只能合成一种荚膜多糖(如果它们能合成的话),这是一个惊人的数字 。脆弱拟杆菌荚膜多糖A(PSA)由于其免疫调节功能被广泛描述,这种共生细菌产生由抗原呈递细胞处理的独特荚膜多糖,并激活CD4+ T细胞调节炎症细胞因子的平衡。

脆弱拟杆菌/多糖A已被证明可以减少脓肿、细菌感染,预防结肠炎、结直肠癌、改善中枢神经系统疾病、肺部炎症等

Sun F,et al.Food Res Int.2019

★ 脆弱拟杆菌耐药性很强

多项研究进一步揭示,与胃肠道中的其他厌氧菌相比,脆弱拟杆菌表现出最高的抗生素耐药性最多的抗生素耐药机制。这不仅使得治疗脆弱拟杆菌引起的感染变得困难,而且有可能成为抗生素抗性基因的储存库,导致它们通过整合转座子、整合遗传元件转移到其他正常细菌菌群中。

甲硝唑只是针对所有脆弱拟杆菌分离株的体外活性最强的药物,应被视为经验性治疗脆弱拟杆菌感染的一线抗生素。但是持续监测不同地理区域脆弱拟杆菌的抗生素耐药性模式对于提供合适的治疗方案和更准确地预防感染至关重要。

人们对脆弱拟杆菌的研究不仅要关注其对肠道健康的积极影响,还应关注其潜在的病原性。了解脆弱拟杆菌的特性对于未来的人群的健康至关重要。

脆弱拟杆菌在肠道的定植和竞争

脆弱拟杆菌(B. fragilis)普遍存在于人体内,但随着越来越多的研究和对人体样本的测序,我们发现脆弱拟杆菌不同人群中存在很大的差异(丰度、菌种组成)。

Sun F,et al.Food Res Int.2019

究竟是什么造成了如此显著的差异,主要总结为:宿主因素菌群自身的特殊结构以及细菌间的竞争机制


影响脆弱拟杆菌定植的宿主因素

研究发现,多种因素,包括饮食身体状况药物摄入生活习惯,都会影响肠道中脆弱拟杆菌的丰度

★ 饮食对脆弱拟杆菌的丰度有重要影响

其中,饮食对脆弱拟杆菌肠道丰度的影响最大。对蒙古人群饮食干预的研究表明,从含有高水平蛋白质和脂肪的传统饮食转向富含碳水化合物的饮食导致脆弱拟杆菌丰度发生显著变化

在泰国,对来自两个饮食偏好不同地区的60名健康儿童的肠道微生物群落进行分析发现,来自肉类和碳水化合物占饮食比例较高地区的儿童中脆弱拟杆菌的丰度较高

此外,在六名患有2型糖尿病或高血压的肥胖受试者中,严格的素食饮食被证明可以增加共生微生物的丰度,例如脆弱拟杆菌。另一项对913名婴儿(1个月)进行的研究显示,母体补充维生素D和婴儿直接补充维生素D与脆弱拟杆菌丰度正相关

★ 不同年龄的人脆弱拟杆菌存在差异

不同年龄段的人肠道中脆弱拟杆菌存在差异。脆弱拟杆菌在宿主体内的丰度在出生时会丰富弱的粘膜选择性使得多种脆弱拟杆菌菌株能够在婴儿宿主体内共存。

脆弱拟杆菌的持久性在4个月至1-2岁之间增加,这与适应性免疫系统的发育相对应。随着人类肠道微生物群的成熟,脆弱拟杆菌的特定菌株更有可能在肠道定殖。研究表明,随着时间的推移(即数十年),拟杆菌门的成员在宿主肠道内构成最稳定的细菌成分,并且单一菌株通常在该物种中占主导地位。

★ 生活方式和健康状态影响脆弱拟杆菌丰度

与健康人相比,患有真菌性角膜炎急性阑尾炎炎症性肠病家族性腺瘤性息肉病结直肠癌等疾病的患者肠道细菌微生物组中脆弱拟杆菌丰度通常会增加

此外,同一疾病中不同年龄段患者的脆弱拟杆菌丰度也不同,儿童脊柱关节炎患者的脆弱拟杆菌丰度增加,而成人患者则出现相反的现象。

对短期二甲双胍治疗后从2型糖尿病患者收集的粪便样本进行的分析显示,脆弱拟杆菌的丰度有所减少。然而,抗结核治疗导致脆弱拟杆菌的丰度显著增加

腹泻患者产肠毒素脆弱拟杆菌感染率较高

已在健康个体腹泻患者的粪便样本中鉴定出产肠毒素脆弱拟杆菌(ETBF)。注意,腹泻患者中ETBF的患病率(20-30%)大约是健康个体(10-20%)的两倍

来自不同城市和地理位置的报告显示,1岁以上腹泻儿童的ETBF定植百分比高于年龄匹配的对照组

有趣的是,一岁以下的儿童,患病率在一般人群中最低,并且与腹泻无关,这表明发育轨迹对于腹泻相关性的发生很重要。

肥胖人群的脆弱拟杆菌丰度较高

宿主的生活方式生理状态也会影响肠道脆弱拟杆菌的丰度。例如,缺乏运动可能会导致脆弱拟杆菌和其他拟杆菌属物种显著富集

以往的研究表明,脆弱拟杆菌与肥胖呈正相关,肥胖儿童中脆弱拟杆菌的丰度高于瘦儿童。

★ 抗生素和药物的使用减少脆弱拟杆菌

抗生素可以显著改变肠道微生物群的组成,可能导致脆弱拟杆菌数量减少。除了抗生素,其他药物如抗酸药非甾体抗炎药等也会对脆弱拟杆菌的丰度产生影响。

此外,宿主的遗传背景不同地理位置也可能影响肠道中脆弱拟杆菌的丰度和组成

★ 一部分以毒性依赖的方式定植

由于不产毒素脆弱拟杆菌(NTBF)很容易在人类结肠中定殖,并且在小鼠模型中进行的研究表明其有利于宿主T细胞反应的发展

一种特定的 ETBF 菌株(43859)可以以毒素依赖性方式定植先前被NTBF(TM4000) 占据的生态位。然而,毒素的存在并不是腔内生态位获取或竞争的普遍决定因素,这也部分依赖于脆弱拟杆菌VI型分泌系统(T6SS)和其他遗传决定因素。

中毒促进ETBF的传播。如前所述,在1至5岁儿童中,腹泻患者的ETBF计数会增加。毒素的产生和相关的腹泻可能是病原体通过增加粪口污染在人与人之间传播的关键策略

霍乱弧菌肠沙门氏菌等人类肠道病原体利用腹泻作为在人类宿主之间传播感染的手段,因此产肠毒素脆弱拟杆菌也可能属于这种情况。


脆弱拟杆菌定植人体会有哪些危害?

• 造成多组织感染甚至菌血症

适量的脆弱拟杆菌定植于肠道可能不会引起任何症状,然而,脆弱拟杆菌表现出侵入体内多个组织部位的能力。当这种细菌逃离肠道并进入血液或其他组织时,可能造成感染甚至菌血症

如果脆弱拟杆菌逃逸到腹腔血液或其他无菌环境,它可能导致感染,如腹膜炎、菌血症、败血症、脑膜炎、肺炎、皮肤和软组织感染等。

脆弱拟杆菌毒素(BFT)已被证明对肺上皮细胞以及内皮细胞具有体外毒性,表明其在肠外感染中具有潜在作用 。尽管定植的其他遗传决定因素(包括荚膜多糖)与肠外感染脓肿形成有关,但BFT的这种作用尚未明确定义。

ETBF 在血流分离株和阴道感染样本中可能更具代表性 。

• 与慢性肠道疾病存在关联

产肠毒素脆弱拟杆菌(ETBF)与慢性肠道疾病的关联已经建立了二十多年,首次报道是在炎症性肠病患者中。ETBF还与溃疡性结肠炎结肠肿瘤呈正相关。

结直肠癌患者中ETBF的相关性包括散发病例和家族病例,表明这种疾病无论何时起病,都具有生理学共性。人群中ETBF的高无症状携带率与 ETBF 相关炎症性肠病散发性结直肠癌病例数低之间的差异表明,致病性不是随机的,而是取决于未知的宿主易感性决定因素

• 造成抗生素耐药性

脆弱拟杆菌是已知的可以携带抗生素耐药基因的细菌,这使得感染难以治疗,并且可能导致耐药性在细菌之间传播

拓展:脆弱拟杆菌毒素的发现

1984年首次报道了脆弱拟杆菌的肠道毒性,描述了羔羊腹泻。当时,产肠毒素菌株和非产肠毒素菌株之间存在明显区别,但腹泻的病因尚不清楚

1992年,首次证明肠毒素菌株培养物上清液中的一种成分导致了先前在向羔羊回肠环(LIL)注射细菌时观察到的分泌表型。开发了一种使用结肠癌HT29细胞系进行脆弱拟杆菌毒素(BFT)细胞损伤的体外测定方法,允许同时筛选多种产肠毒素菌株。该毒素最初从培养物上清液中纯化为20-KDa蛋白质,并在LIL和HT29模型中分别具有肠毒性和细胞毒性。

该毒素的部分克隆和表达表明它是一种不耐热的金属蛋白酶。还开发了用于检测毒素的诊断方法,从而可以确认患有ETBF相关腹泻的人中分离出的ETBF菌株中存在肠毒素

克隆了BFT基因的完整序列,氨基酸序列的表征和生化分析表明,BFT是作为原毒素产生的,经过处理后将活性C末端结构域释放到细胞外环境中 。进一步的研究表明,原毒素的裂解不依赖于金属蛋白酶结构域的锌结合基序,并且整个C末端结构域对于毒素活性至关重要。

详细的结构分析确定,N端前结构域可能参与原毒素通过细胞被膜的分泌以及细菌细胞内毒素活性的抑制。有趣的是,N端结构域包含代表独特折叠的脂蛋白信号肽,而C端金属蛋白酶结构域是真核A解整合素和金属蛋白酶(ADAM)蛋白酶的异种同源物,表明脆弱拟杆菌水平获取BFT。

如下图所示,原毒素的裂解可通过来自肠腔的宿主蛋白酶在体内发生。有趣的是,在血液中,BFT只能被单一的内源性细菌半胱氨酸蛋白酶激活命名为fragipain (Fpn) 。当静脉注射细菌时, ETBF fpn突变菌株无法导致小鼠死亡,这表明 Fpn 在 ETBF 介导的脓毒症中的重要性。fpn基因存在于大多数 NTBF 和 ETBF 菌株中,表明 Fpn 除了 BFT 激活之外还有其他作用

控制脆弱拟杆菌毒素分泌的已知分子机制

Valguarnera E,et al.J Mol Biol.2020


毒素-宿主的相互作用

自从发现脆弱拟杆菌毒素(BFT)以来,控制宿主细胞损伤的分子机制已经被描述。当建立HT29细胞模型(结肠癌HT29细胞)时,观察到BFT引起细胞变圆和脱落,推测是由于细胞间连接损伤所致

经BFT处理的HT29细胞的形态变化被发现是F-和 G-肌动蛋白重排的产物。BFT以蛋白酶依赖性方式与未识别的细胞受体结合,并诱导小带粘附蛋白E-钙粘蛋白的胞外结构域裂解;这种裂解事件仅发生在完整细胞的情况下。

鉴于BFT与ADAM10的相似性,BFT可能直接促进E-钙粘蛋白裂解。由于尚无证据表明BFT可以直接处理细胞E-钙粘蛋白,因此另一种假设是,BFT对其受体或另一种宿主蛋白的活性可能触发导致E-钙粘蛋白丢失的信号传导途径(下图)。

脆弱拟杆菌毒素-宿主细胞相互作用

Valguarnera E,et al.J Mol Biol.2020

BFT通过未知受体与结肠上皮细胞(CEC)结合,并触发 E-钙粘蛋白的裂解

BFT:脆弱拟杆菌毒素;ETBF:产肠毒素脆弱拟杆菌。

• 增加了白细胞介素-8的分泌

BFT介导的E-钙粘蛋白裂解促进β-连环蛋白迁移至细胞核。此外,BFT对E-钙粘蛋白的切割会触发丝裂原激活蛋白激酶(MAPK)和NF-κB通路的诱导,从而增加白细胞介素-8(一种吸引多形核细胞的趋化因子)的分泌。

NF-κB 激活通过诱导 COX2 和增加前列腺素 E2控制肠细胞的液体分泌水平。BFT诱导COX2和血红素加氧酶1 与肠上皮细胞凋亡延迟有关。

• 诱导宿主防御机制,影响疾病进展

BFT还可以诱导宿主防御机制,例如β-防御素2和铁载体结合抗菌蛋白 lipocalin-2 的表达,并且还可以通过 MAPK、AP-1增加人脐静脉内皮细胞的自噬

受毒素影响的信号通路导致HT29细胞中基因表达差异表观遗传变化。当毒素刺激取消时,宿主细胞转录谱和表观遗传标记的变化就会消失,这表明ETBF持续分泌毒素可能是疾病进展的一个组成部分


影响脆弱拟杆菌定植的细菌因素

拟杆菌属的物种在生命早期获得,常见于下胃肠道。给定菌株能否在其生态位中建立成功,有许多潜在的决定因素,包括宿主饮食、发育、抗生素的使用以及与微生物群其他成员的相互作用

尽管外部因素(例如上述因素)对于定植至关重要,但脆弱拟杆菌携带定植的遗传决定因素,通过与宿主和微生物竞争者相互作用,有助于占据生态位

• 荚膜多糖

在20世纪70年代的研究中描述了脆弱拟杆菌的荚膜,认为这是该生物体相对于拟杆菌属其他物种的显著特征。这些观察结果,再加上脆弱拟杆菌是人类厌氧感染中最常见的拟杆菌属,尽管其在微生物组中的相对丰度较低,因此得出了脆弱拟杆菌荚膜与疾病发病机制有关的假设

荚膜多糖利于脆弱拟杆菌在宿主体内生存

事实上,研究表明脆弱拟杆菌减少了免疫细胞的吞噬作用,从而增加了结肠腔外的细菌适应性。与这一发现一致,荚膜多糖是脆弱拟杆菌形成肠外脓肿的主要因素

脆弱拟杆菌(B.fragilis)拥有8个不同的基因组位点,每个基因座都编码合成特定荚膜多糖变体所需的酶。这些基因座的表达是通过启动子倒位为“开”或“关”构型来调节的。

当脆弱拟杆菌经过动物传代时,荚膜多糖水平会增加,表明其在宿主体内的生存中发挥着关键作用。无菌小鼠的单定植实验表明,任何荚膜多糖都足以建立生态位;然而,这一发现并不表明所有荚膜变体在宿主内具有免疫等效性,或者单个荚膜变体足以在复杂的生态系统中定植。

荚膜多糖会影响免疫,使脆弱拟杆菌更耐受

B. fragilis荚膜多糖由两性离子聚糖的重复单元组成。与大多数聚糖抗原不同,多糖A(PSA)可以在MHCII抗原呈递细胞的背景下呈递,诱导调节性T细胞的形成,从而有助于对脆弱拟杆菌的免疫耐受

PSA通过Toll样受体(TLR)2 途径诱导IL-10产生,并抑制无菌小鼠中IL-17的产生,从而促进低炎症环境 。然而,缺乏PSA不会降低不产肠毒素脆弱拟杆菌(NTBF)定植的小鼠中的 IL-10。对于产肠毒素脆弱拟杆菌(ETBF),最近使用人类结肠组织活检的速冻样本进行的研究表明,PSA表达与脆弱拟杆菌毒素基因携带之间呈负相关这表明可能会加剧炎症

总之,这些研究表明可能存在菌株和环境依赖性调节元件来调节宿主对脆弱拟杆菌多糖的反应

• 多糖利用位点

多糖利用位点(PUL)是专门负责复杂聚糖分解和同化的特殊位点;这些构成了一些拟杆菌属物种基因组含量的近20%

加工不同的膳食多糖增加了生存机会

不同的PUL可以加工不同的多糖,使拟杆菌能够加工膳食聚糖和宿主聚糖。营养物质利用的多功能性增加了宿主饮食变化期间的生存机会;因此,拟杆菌属物种内的PUL多样性是生态位获取和稳定生态位占有的关键。

通过基因筛查发现了“共生定植因子”(ccf)操纵子,ccf操纵子的结构类似于拟杆菌属的典型多糖利用位点(PUL)。与大多数PUL类似,ccf操纵子由控制基因表达的转录调节因子sigma/antisigma因子对(ccfA和ccfB)组成。ccfA/B的下游是TonB依赖性受体,它将分解产物转运到细胞周质(ccfC)和SusD样辅助脂蛋白 (ccfD),这是控制ccfC营养转运所需的。

最近的一项研究表明,ccf基因座控制荚膜变异抑制PSA并诱导多糖C(PSC)表达。ccf功能允许响应PSC建立IgA依赖性生态位,使脆弱拟杆菌细胞能够定位到更靠近肠道上皮的位置

• 脆弱拟杆菌溶血素

许多革兰氏阴性和革兰氏阳性细菌分泌裂解红细胞的酶,称为溶血素脆弱拟杆菌也不例外,因为许多菌株携带溶血素直系同源基因。溶血素A和B(分别为HlyA和HlyB)已被证明在体外对红细胞具有酶活性。

缺乏溶血素A和B的脆弱拟杆菌适应性较低

缺乏hlyA/B基因的脆弱拟杆菌突变株在体外和体内表现出适应性降低,表明溶血素可能参与定植。但目前尚无明确证据表明溶血素脆弱拟杆菌引起的疾病发病机制中具有特定作用。

• 神经氨酸酶

细菌糖苷酶无处不在,被许多生物体用来降解复杂的多糖,以达到营养和生态目的。而脆弱拟杆菌和其他拟杆菌属可以通过分泌神经氨酸酶将唾液酸从宿主糖蛋白上裂解下来。

神经氨酸酶有助于脆弱拟杆菌利用更多的营养物质,从而帮助定植

唾液酸通常存在于宿主糖蛋白上。研究最多的来自脆弱拟杆菌的神经氨酸酶是由nanH基因编码的。nanH的缺失会产生突变株。

宿主糖蛋白的唾液酸释放和利用可能作为营养多样性的额外衡量标准,这对肠道共生至关重要。神经氨酸酶似乎还通过释放唾液酸和发现其他聚糖部分来增加脆弱拟杆菌与哺乳动物上皮细胞的结合。nanH基因的存在也被用作附加分类信息的手段,用于对感染部位和粪便样本中分离的脆弱拟杆菌进行分类

• 蛋白酶

脆弱拟杆菌已被证明可产生除脆弱拟杆菌毒素和脆杆蛋白酶以外的其他蛋白酶。在脆弱拟杆菌菌株的基因组中发现了C10家族(BFP)的半胱氨酸蛋白酶子集

蛋白酶有助于适应环境变化

BFP基因表达,特别是BFP4,在体外随着氧气浓度的增加而被诱导,这表明BFP在适应环境变化中具有一定的作用。

BFP基因在感染部位的细菌分离物和健康捐赠者的粪便样本中均被发现;然而,尚未对同基因BFP缺失菌株进行评估,以评估BFP在致病性中的作用。

在脆弱拟杆菌中也发现了一种纤维蛋白原降解蛋白酶,尽管其在毒力中的作用尚不清楚。

• 粘附分子

细菌细胞通过粘附素粘附到基质上,粘附素是特异性结合宿主细胞受体的蛋白质。许多粘附素表达为菌毛或菌毛的一部分。

在拟杆菌等共生肠道细菌中,与肠道粘液和上皮细胞的结合有利于稳定的肠道生态位定植。在人类中,绒毛菌株更常见于脓肿和健康粪便样本,而非绒毛菌株则富含血液感染的分离株。

细胞粘附性丧失会促进肠外传播和免疫逃避

粘附的毛状拟杆菌更容易被中性粒细胞吞噬;因此,细胞粘附性的丧失可以促进肠外传播和免疫逃避

血液分离物中比在脓肿或健康粪便分离物中更频繁地观察到与红细胞的特异性结合或血凝作用。

结合蛋白有助于脆弱拟杆菌在肠外存活

脆弱拟杆菌还呈现细胞外基质(ECM)结合蛋白,表明其在肠外存活中发挥作用。与ECM中最丰富的蛋白质纤连蛋白的结合是由类似于TonB依赖性受体BF1991的蛋白质介导的。

令人惊讶的是,缺乏BF1991的突变菌株比野生型菌株对纤连蛋白的粘附性更强,这表明存在多余的纤连蛋白结合蛋白。BF1991突变体在体外更容易被巨噬细胞吞噬

脆弱拟杆菌与层粘连蛋白-1和胶原蛋白-1的结合也有报道。与其他人类病原体类似,脆弱拟杆菌可以与凝血相关的血浆蛋白相互作用。BF-FBP是一种54-KDa的蛋白质,可结合纤维蛋白原,纤维蛋白原是纤维蛋白脓肿形成的主要成分。

其他蛋白质可以结合纤溶酶原高分子激肽原,但在脆弱拟杆菌操纵宿主凝血过程中的作用尚不清楚。脆弱拟杆菌可能结合的宿主靶标的多样性使我们能够假设体内可能会诱导不同的结合模式作为对环境和宿主线索的反应。

• 氧化应激反应

由于肠腔内的氧气浓度梯度,肠道细菌暴露于宿主外部和肠腔内的氧气。拟杆菌临床分离株比非临床分离株具有更高的耐氧性,表明这种适应在发病机制中发挥着作用

含氧量会影响脆弱拟杆菌的感染率

氧化应激反应(OSR)机制在肠外感染的情况下可能特别具有保护作用,因为肠外感染时组织的含氧量比肠腔的含氧量更高

厌氧/需氧通量可以改变基因表达谱,潜在地改变生物体的致病性及其与腹部和腹膜感染的关联。尽管脆弱拟杆菌可以在低摩尔氧浓度下生长,但暴露于较高浓度的氧气会阻止其生长;因此,需要OSR来避免细胞氧化损伤

注:OSR是通过大量具有不同功能的蛋白质来实现的,包括超氧化物歧化酶、过氧化氢酶、过氧化物酶、铁储存蛋白和硫氧还蛋白。转录因子OxyR负责诱导OSR途径中的许多基因。据报道,另一种转录因子bmoR是OSR的组成部分,可诱导维持细胞内氧化还原状态所需的基因。

• 其他环境刺激,例如胆汁酸

脆弱拟杆菌已被证明对胆汁盐的存在有反应,在体外增加细胞粘附和聚集

没有证据表明拟杆菌属的胆汁盐耐受性是一种致病性状,而不是环境应激反应的一部分。mar系统等转录调节因子介导对抗菌药物和其他环境压力源的耐药性。


细菌间的竞争机制

• 拟杆菌中的T6SS

栖息在肠道中的细菌大量存在,并且在这种环境中争夺稳定位置的情况通常存在有毒蛋白的分泌是一种常见的竞争机制,最近多项研究表明T6SS在拟杆菌生态位建立中的重要性以及更广泛的肠道内细菌间竞争。

六型分泌系统(T6SS)是病原菌中高度保守的蛋白质分泌系统,可分泌效应蛋白作用于真核宿主或其他细菌,从而促进其生存及感染

T6SS类似于反向噬菌体,序列和结构分析表明这些系统之间存在同源性。T6SS通过以接触依赖性方式将效应物(毒素)直接从细菌细胞的细胞质分泌到另一个细胞中来发挥作用。

细菌细胞分泌T6SS效应子时会合成特定的免疫蛋白,从而抵抗姐妹细胞的攻击。每个效应蛋白都包含一个同源免疫蛋白,通常由邻近基因编码。尽管已经表明某些细菌可以利用T6SS将毒素注入真核细胞,但大多数物种使用T6SS作为细菌间杀伤机制

在拟杆菌目的物种中,编码T6SS的基因可以存在于被称为基因组结构(GA)、GA1、GA2和GA3的三种不同遗传排列中。虽然GA1和GA2存在于拟杆菌目的许多物种中,但GA3仅限于脆弱拟杆菌。对脆弱拟杆菌GA3限制的进化解释是,GA1和GA2可以通过遗传元件在细菌细胞之间动员,但GA3不包含这种传播特征。

携带T6SS的脆弱拟杆菌有助于竞争中占据优势

根据人类微生物组的序列分析,存在于高达75%的人群中。携带T6SS的拟杆菌在人类中的高流行表明该基因在结肠生态位建立的竞争中发挥着重要作用。

大多数成年人宿主都被单一脆弱拟杆菌菌株定殖;T6SS是幼儿期初始利基获得的关键特征。同一项研究表明,携带T6SS的脆弱拟杆菌与同一生态系统中其他拟杆菌属的增加之间存在关联,这表明GA3效应子-免疫对在体内主要用于脆弱拟杆菌菌株之间的竞争。这可能是由于其他拟杆菌属物种在结肠内占据不同的地理位,限制了脆弱拟杆菌的T6SS的负面影响

 拟杆菌中的抗菌蛋白

除了接触依赖性杀伤作用外,拟杆菌还能分泌可溶性毒素。拟杆菌基因组携带编码毒素的基因,这些毒素属于拟杆菌目分泌的抗菌蛋白(BSAP)

抗菌蛋白对于体内外菌株竞争非常重要

BSAP是含有膜攻击复合物/穿孔素(MACPF)结构域的蛋白质的直系同源物,已被证明对于拟杆菌属物种之间的体外和体内菌株竞争非常重要。

• 拟杆菌分泌的类泛素蛋白

拟杆菌属物种还可以分泌一种类泛素蛋白,介导细菌间杀伤作用。用于细菌竞争的各种各样的接触依赖性和非接触依赖性机制和效应分子强化了这样的概念:单一遗传决定因素不足以在给定生态位中击败许多不同的生物体;多种遗传因素可能控制脆弱拟杆菌占据的生态位。

因此,菌株之间的基因组多样性降低了单一菌株用作通用益生菌以取代肠道生态系统中的ETBF的可能性。目前来看,基因功能的管理仍然是理解脆弱拟杆菌基因组15-20%菌株特异性部分在定植中的作用的主要瓶颈之一。

不产肠毒素脆弱拟杆菌(NTBF)的健康益处

当我们说脆弱拟杆菌是条件致病菌时,意思是在正常情况下,它可能是无害的,但在特定条件下(如免疫力低下),它可以引起疾病。这种菌在特定的环境或宿主状态下,具有潜在的致病能力。而在一般情况下,其可能有一定的健康益处

迄今为止,共生不产肠毒素脆弱拟杆菌(NTBF)菌株已被证明可以抑制不同器官的炎症,包括腹膜、肠道、大脑和肺。这些菌株还可以抑制病原菌感染支持癌症治疗

多糖A(PSA)已被确定为脆弱拟杆菌NCTC 9343产生的主要功能分子。这种多糖具有由重复寡糖单元组成的两性离子结构,该重复寡糖单元包含具有游离氨基和羧基的组成糖,并且对于菌株的有利生物活性至关重要。

此外,脆弱拟杆菌产生的两性离子PSA已被确定为一种免疫调节分子,在免疫系统成熟中发挥作用。T 辅助细胞1(TH1)和TH2细胞是效应CD4+ T细胞群的亚型。在之前的一项研究中,脆弱拟杆菌NCTC 9343或多糖A(PSA)都可以纠正无菌小鼠中的TH1/TH2细胞失衡并增强调节性T细胞(Treg)功能。

最近的研究揭示了脆弱拟杆菌NCTC 9343以及相关PSA在不同疾病中使用的免疫调节机制。新发现的菌株B. fragilis ZY-312 也已被证实对宿主发挥有益的免疫调节作用

此外,源自涉及碳水化合物发酵(包括脆弱拟杆菌)的肠道微生物群的短链脂肪酸,例如主要是乙酸盐、丙酸盐和丁酸盐,具有有益的功能,包括为结肠粘膜提供能量和维持结肠稳态

例如,口服脆弱拟杆菌可以显著增加沙门氏菌感染大鼠肠道内容物中的短链脂肪酸浓度,这可能会进一步减少炎症恢复肠道屏障的完整性

脆弱拟杆菌的免疫调节作用

Sun F,et al.Food Res Int.2019


防止脓肿

经过二十年的研究,脆弱拟杆菌荚膜多糖免疫调节特性已被阐明。研究表明,皮下注射脆弱拟杆菌NCTC 9343 (ATCC 25285) 和 ATCC 23745 荚膜复合物(包含多糖A和多糖B(PSB)),可以防止脓毒症形成的腹腔内脓肿

尽管这种保护活性可能不符合抗原特异性的传统标准,但它可能专门针对多糖上带相反电荷基团的基序。因此,观察到的保护将是T细胞依赖性的

• 通过介导T细胞产生细胞因子减轻脓肿

随后的研究还表明,脆弱拟杆菌产生的两性离子多糖介导CD4 + T细胞反应。观察到的反应需要抗原呈递细胞(APC)内化PSA,然后抗原呈递细胞将 PSA 抗原呈递到主要组织相容性复合物(MHC)II类分子上 。CD4+ T 细胞通过产生白细胞介素-2干扰素-γ和IL-10等细胞因子,进一步提供针对病原菌引起的脓肿的保护

特别地,IL-2被鉴定为脓肿形成的重要抑制剂

下面还将讲述其他研究报道了脆弱拟杆菌相关疾病与具体免疫机制的关联,包括脆弱拟杆菌NCTC 9343 PSA免疫调节机制的典型例子。


对结肠炎的治疗

对小鼠的研究表明,脆弱拟杆菌(B.fragilis NCTC 9343)释放的多糖A(PSA)对结肠炎的治疗具有显著影响,并且可以防止体重减轻和炎症

• 多糖A具有抗炎作用,并有效抑制促炎细胞因子产生

作为一种有用的抗炎分子,PSA被证明可以通过扩大产生IL-10的CD4+CD45Blow T细胞的数量和抑制促炎性IL-17的产生来介导健康的免疫反应并预防小鼠中肝螺杆菌诱导的结肠炎。

在无菌小鼠中,脆弱拟杆菌定殖需要TLR2信号来诱导CD4+Foxp3+T调节细胞的发育,并通过产生IL-10来增强炎症抑制能力。值得注意的是,PSA在动物模型中不仅可以预防结肠炎,还可以治愈结肠炎

外膜囊泡(OMV)中包装的PSA可改善动物结肠炎,类似于口服纯化PSA的效果。此外,最近的一项研究证明了一种相互作用机制,其中脆弱拟杆菌OMV 可以激活非典型宿主自噬途径,从而预防 2,4-二硝基苯磺酸 (DNBS) 诱导的结肠炎。该机制同时需要宿主炎症性肠病相关基因ATG16L1和NOD2的表达。

• 脆弱拟杆菌对适应性免疫与先天免疫都有益

ZY-312 是一种从健康婴儿粪便中分离出来的新型非肠毒素脆弱拟杆菌菌株,最近被证实是拟杆菌门的潜在下一代益生菌候选者。研究报告称,除了对适应性免疫的影响外,脆弱拟杆菌还与先天免疫系统有关。B. fragilis ZY-312 可增强巨噬细胞的吞噬活性并诱导极化至M1表型。

• B.fragilis ZY-312 未来可能成为重要益生菌

进一步的研究表明,B. fragilis ZY-312 可以缓解抗生素相关性腹泻(AAD)大鼠模型中的腹泻并增加微生物丰度。所有这些作用都促进了肠道屏障的恢复和肠上皮细胞的再生,这些机制可能解释了 AAD 治疗的策略。

脆弱拟杆菌产生的短链脂肪酸还可以增加结肠 Tregs 的数量并预防结肠炎。一项体外研究还表明,源自脆弱拟杆菌的短链脂肪酸可以抑制可能导致患者腹泻的产气荚膜梭菌的孢子形成。


改善中枢神经系统疾病

据报道,脆弱拟杆菌对宿主具有间接影响,这归因于其独特的免疫调节功能。脆弱拟杆菌分泌的多糖A(PSA)是中枢神经系统脱髓鞘疾病的有效调节剂和抑制剂

• 预防和改善抗生素引起的肠道细菌变化

在一项实验性自身免疫性脑脊髓炎(EAE)小鼠模型研究中,纯化的脆弱拟杆菌PSA被证明可以预防和治疗口服抗生素治疗引起的肠道细菌变化和疾病发展。人们发现这种保护机制依赖于IL-10的产生。

进一步研究表明,脆弱拟杆菌PSA可能通过TLR2介导的CD39信号传导预防 EAE,并且CD4+细胞上 CD39 的表达可能与分泌IL-17的Th17和分泌IL-10的Tregs之间的平衡有关。

• 改善神经发育障碍和胃肠道异常

上述发现表明肠粘膜组织大脑脊髓之间存在复杂的相互作用。与此同时,在怀孕期间腹腔注射 20 mg/kg Poly(I:C) 诱导母体免疫激活 (MIA) 的小鼠后代中也发现了肠道-微生物组-大脑的联系。

这些后代表现出自闭症谱系障碍(ASD)的特征,伴有社交障碍胃肠道屏障缺陷。然而,口服脆弱拟杆菌可以改善这些缺陷后代的神经发育障碍胃肠道异常

脆弱拟杆菌与人体之间相互作用的潜在免疫机制

Sun F,et al.Food Res Int.2019


抑制气道炎症

最近的研究表明,脆弱拟杆菌PSA可以通过诱导 CD4+ T 细胞的扩增和IL-10的产生来预防气道炎症和实验性哮喘。与免疫的系统性本质一致,研究证实PSA激活的效应/记忆T细胞可以与肺组织中的FoxP3 + Tregs协同预防肺部炎症

首先,PSA抗原被内化并呈递在APC表面表达的MHC II类分子上,促进肠道中CD4+ T细胞的激活。接下来,效应T细胞与肺部常驻FoxP3 + Tregs之间的通讯会增强Tr1细胞的抑制能力,最终导致抗炎细胞因子IL-10的释放并预防肺部炎症

如上所述,脆弱拟杆菌的荚膜多糖通过依赖于CD4+ T细胞激活和随后T细胞驱动的 IL-10 产生的机制抑制气道炎症


减少细菌感染

研究发现,脆弱芽孢杆菌NCTC 9343 可预防多种病原体,包括肝螺杆菌汉氏巴尔通体。最近的一项研究发现,新型脆弱拟杆菌菌株ZY-312分泌的某些物质可以预防副溶血性弧菌感染。另一项研究表明,根据T6SS竞争机制,共生NTBF可以限制致病性ETBF的定植并预防结肠炎

如上所述,BSAP-1是影响微生物群菌株水平组成的重要竞争因子。因此,我们推测脆弱拟杆菌在种间竞争中既使用了已知的竞争机制,也可能与病原体竞争


癌症

B.fragilis NCTC 9343 还有效促进抗癌免疫监视。口服脆弱拟杆菌或多糖可以逆转 CTLA-4 阻断抗癌疗法的无反应性。然而,许多患者不能很好地耐受多种副作用,特别是促炎作用

幸运的是,最近的一项小鼠研究发现脆弱拟杆菌减轻了广泛使用的抗癌免疫抑制剂甲氨蝶呤(MTX)引起的不良反应。PSA 在体外诱导 IL-8 的产生,这可能会抑制结直肠癌细胞的增殖限制上皮间质转化

在体内,脆弱拟杆菌可以预防结肠癌的发展。AOM/DSS 诱导的结肠炎相关结肠癌小鼠模型在施用脆弱拟杆菌后表现出肿瘤发生减少

产肠毒素脆弱拟杆菌(ETBF)与人类疾病的关联

ETBF菌株与多种涉及肠道和肠外感染的病症有关,包括炎症性肠病、菌血症、全身炎症神经系统疾病

Sun F,et al.Food Res Int.2019

然而,无症状ETBF定植在成人中也很常见。事实上,ETBF和NTBF都可以长期定植于人体等宿主,尽管只有前者可以触发致癌的多步炎症反应

在儿童中,ETBF相关腹泻通常发生在1至5岁之间。在成人中,ETBF相关腹泻的发生率可能随着年龄的增长而逐渐增加

一项针对台北市513名肠胃炎患者的研究显示,ETBF感染多发生于老年人寒冷干燥的冬季。此外,ETBF相关腹泻因地理位置而异。

接下来我们重点讲述两种ETBF会引起的疾病。


结肠炎和结直肠癌

结肠炎结直肠癌携带产肠毒素脆弱拟杆菌(ETBF)之间的关联产生了这样的假设:由于其组织损伤性毒素,该菌株是结直肠癌的致病因子

• 感染ETBF可能导致结直肠癌

ETBF可以释放复杂的毒素。一个值得注意的ETBF 毒力因子是脆弱拟杆菌毒素(BFT),一种锌依赖性金属蛋白酶,具有三种不同的分子亚型(BFT-1、-2和-3)。

最近的一项研究表明,BFT可能被fragipain激活。此外,与外膜成分发生疏水和静电相互作用的BFT可能在囊泡形成过程中分泌。

ETBF的暂时扩张会破坏肠粘膜毒素调节系统 RprXY,从而诱发炎症性肠病结直肠癌。ETBF被认为是结直肠癌的危险因素,因为它增加肠上皮细胞的通透性并促进细胞增殖,这与结肠炎和结直肠肿瘤的发生有关。此外,还发现ETBF比例与结直肠癌发生之间存在显著关联

• 感染ETBF会诱导结肠炎的产生

研究表明,口服接种ETBF可以引发肠上皮中细胞间粘附蛋白 E-钙粘蛋白的严重裂解,导致无特定病原体小鼠出现持续性亚临床结肠炎,但在无菌小鼠中迅速导致致命性结肠炎

进一步的报告显示,ETBF产生的BFT可能与假定的结肠上皮受体结合,在γ分泌酶调节的过程中刺激β-肌动蛋白-T细胞因子核信号传导。这种结合会诱导 E-钙粘蛋白的裂解,从而促进原癌蛋白 c-Myc 的表达,并最终促进细胞增殖

此外,在被结肠上皮受体识别后,BFT被证明可以激活 Wnt 和 NF-κB 信号通路,导致 ETBF 诱导的结肠炎小鼠模型中免疫细胞中的Stat3持续激活和粘膜 Th17 免疫反应。

研究发现,家族性腺瘤性息肉病(FAP)患者的结肠粘膜中脆弱拟杆菌毒素基因高度富集。超过一半的FAP患者同时被ETBF和携带基因毒性pks基因岛的大肠杆菌菌株共同定殖,从而产生协同致癌作用

ETBF可以降解粘膜,以促进大肠杆菌pks+E对粘膜组织的再定植。因此,活性氧和IL-17的产生会增加结肠上皮细胞的DNA损伤,导致癌变


阿尔兹海默病

ETBF可能因肠道菌群失调屏障功能障碍而进入血流。最近的研究表明,极度促炎的脆弱拟杆菌脂多糖(BF-LPS)通过胃肠道裂口渗漏到血液中,是导致宿主发生全身炎症的主要因素。BF-LPS还可能穿过血脑屏障,逐渐促进阿尔茨海默病的发展。

• 可能导致促炎性退行性神经疾病的发生

一旦被小胶质细胞上的TLR2、TLR4 CD14识别,BF-LPS可以引发NF-kB 复合物(一种炎症转录因子)以及促炎性 microRNA 的表达。

这些事件抑制 miRNA 结合 mRNA 的表达并触发骨髓/小胶质细胞中的受体,与大脑中散发性阿尔茨海默病的观察结果一致。

因此,我们认为与人类胃肠道微生物组相关的神经毒素,例如 BF-LPS,可能是促炎性退行性神经病理学的驱动因素。


ETBF对肠道健康的影响

除此之外,产肠毒素脆弱拟杆菌(ETBF)对肠道健康具有重要影响。

• ETBF与肠道稳态紧密相关

研究发现,经口灌胃产肠毒素脆弱拟杆菌(ETBF)后,约4周出现结肠疾病。BFT驱动的APC突变小鼠结肠细胞损伤以Stat3和IL-17依赖性方式触发过度增殖反应炎症级联反应

IL-8和其他CXC趋化因子的分泌会招募未成熟的多形核细胞,导致炎症和细胞损伤加剧。这些实验表明,ETBF可以在易患模型生物体中彻底重塑结肠上皮,使其进入疾病状态

最近,来自健康个体和结肠癌患者的粘膜细菌群落被证明可以在三种Apc模型中诱导肿瘤肠道上皮稳态的主要扰动似乎伴随着更严重的产肠毒素脆弱拟杆菌依赖性表型

脆弱拟杆菌毒素对免疫反应的影响

Valguarnera E,et al.J Mol Biol.2020

细胞损伤炎症需要激活β-catenin/Wnt、STAT3 和NF-κβ通路。固有层内的巨噬细胞分泌促炎细胞因子,促进Th17细胞表型。结肠上皮细胞分泌CXC 趋化因子,例如IL-8,促进骨髓细胞募集到损伤部位

• 肠道稳态期间毒素可能被消除

每个个体对结肠炎症生态失调的内在倾向可能决定ETBF是否表现出与无症状定植或严重结肠疾病一致的表型。宿主对ETBF的易感性由哺乳动物宿主细胞本身和共生微生物的状态决定,它们共同形成复杂且动态的生态系统

在肠道稳态期间,毒素的产生可以被消除,或者在具有健康粘液层和共生微生物组的宿主中变得无害肠道环境的扰动可能引发ETBF的致病性,导致炎症和生态失调

调节ETBF共生性或致病性程度的宿主和微生物因素

Valguarnera E,et al.J Mol Biol.2020

由于脆弱拟杆菌毒素(BFT)的分泌和细胞损伤,ETBF携带可能导致结肠疾病的风险,但宿主易感性是ETBF疾病的关键。不允许ETBF定植的健康稳态微生物群落应包含与ETBF竞争结肠生态位的NTBF细菌

NTBF要求胶囊定植并通过T6SS和BSAP建立竞争。

• ETBF感染影响益生菌干预的效果

益生菌干预可能是一种非常有价值的工具,可以延缓易感人群由 ETBF 引起的疾病进展。但最近的研究表明,在小鼠中,将 NTBF和 ETBF联合接种,或在 ETBF 定植后接种 NTBF,并不能挽救慢性结肠炎和结直肠癌的进展

因此,ETBF之前的生态位占据大大降低了益生菌 NTBF菌株定植的成功率。在这项研究中,ETBF 相对于 NTBF 的主导地位部分是由MACPF非 T6SS 毒素的分泌来解释的,这突显了益生菌干预在临床环境中的潜在复杂性,临床环境中遗传多样性很高,而且大多数利基获得决定因素仍未被探索。

拓展:脆弱拟杆菌的耐药性

传统抗生素,如甲硝唑碳青霉烯类药物头孢西丁,通常有效地用于治疗脆弱拟杆菌感染

• 脆弱拟杆菌适应性很强,极易产生耐药性

然而,这种细菌对周围环境的适应性很强,很容易产生抗生素耐药性,抗生素的不当使用进一步助长了耐药性。因此,抗生素耐药性已成为脆弱双歧杆菌感染治疗的主要障碍

这种抗性在很大程度上归因于脆弱拟杆菌的遗传可塑性,即反转、复制、水平基因转移和大规模染色体转移。根据文献,脆弱拟杆菌携带四个CRISPR-Cas系统。其中三个涉及与1类IB型、1类IIIB型和2类IIC型紧密匹配的相邻cas基因。相反,从血液中分离的CRISPR-Cas系统是一个非典型的IIIB型系统,缺乏相邻的Cas基因。此外,脆弱芽孢杆菌的CRISPR-Cas系统可能调节与共生体和病原体转化相关的内源性基因

此外,脆弱拟杆菌具有多药外排泵转运系统,可以将有毒的抗菌底物输出到外部环境,并可能导致对多种抗生素产生耐药性

甲硝唑只是针对所有脆弱拟杆菌分离株体外活性最强的药物,应被视为经验性治疗脆弱拟杆菌感染的一线抗生素。但是持续监测不同地理区域脆弱拟杆菌的抗生素耐药性模式对于提供合适的治疗方案更准确地预防感染至关重要。


下面再分享一些关于脆弱拟杆菌的重要研究

单一脆弱拟杆菌菌株可保护肠道完整性并降低移植物抗宿主病

移植物抗宿主病(GVHD)是一种由供体T细胞引发的促炎综合征,也是同种异体造血细胞移植(allo-HCT)后的主要并发症。

GVHD有两种形式:急性(aGVHD)和慢性(cGVHD)。aGVHD主要由T细胞诱导,通常以1型 T细胞反应为特征,而cGVHD由T细胞和B细胞诱导,具有与自身免疫性疾病相似的表现。

在急性期,GVHD通常针对一组有限的器官,包括皮肤、肺、肝脏和胃肠道。在这些组织部位中,胃肠道在GVHD发病机制中尤为重要,因为肠道损伤在全身GVHD的引发和放大中发挥着关键作用。其结果可归因于粘膜屏障的破坏,这是由于细菌产物(例如内毒素)和驻留在宿主胃肠道中的免疫细胞之间相互作用而导致全身性促炎细胞因子的产生增加。

在临床上,肠道损伤本身和随后的感染并发症可能会危及患者的生命

该研究证明了脆弱拟杆菌可降低急性和慢性移植物抗宿主病。GVHD的降低与诱导的T细胞和B细胞同种异体反应的一些变化有关。脆弱拟杆菌(B.fragilis)通过PSA依赖性方式短链脂肪酸介导的机制稳定肠道环境来调节这些反应。因此,受体肠道完整性得以维持,部分归因于通过IL-22 GRP43实现肠隐窝再生,最终将免疫反应转向减少炎症,从而产生GVHD保护。

这项研究为使用单一菌株(如脆弱拟杆菌)作为安全有效的干预措施提供了强有力的理由和手段,这将有利于临床上的移植患者。

脆弱拟杆菌菌株可增强肠道紧密连接蛋白并表现出肠道抗炎作用

脆弱拟杆菌介导的保护机制很复杂,但来自脆弱拟杆菌的细胞外囊泡及其外膜PSA对 NF-κB 介导的炎症也有效,这种炎症不仅限于结肠疾病

此外,脆弱拟杆菌定植诱导的肠道代谢物(短链脂肪酸)在体内和体外调节免疫细胞发育(Treg)和肠道通透性

研究发现单独使用脆弱拟杆菌处理是无害的,并且对细胞活力或细胞凋亡没有影响。虽然TNF-α可以预见地降低了细胞活力并增加了细胞凋亡,但脆弱拟杆菌却减弱了这种恶化。

TNF-α激活的NF-κB通路以及炎症细胞因子IL-6和IL-1β也被脆弱拟杆菌阻断。值得注意的是,脆弱拟杆菌的代谢上清液还具有抗炎作用

动物研究表明,活体脆弱拟杆菌(而非死亡菌株)可改善 DSS 诱发的结肠炎,体重减轻、结肠长度缩短和屏障功能增强即可证明这一点。

施用脆弱拟杆菌后,结肠组织炎症细胞因子(TNF-α、IL-1β、IL-6)水平降低抗炎细胞因子IL-10水平增加。

总之,脆弱拟杆菌ATCC 25285无论在体内还是体外都表现出抗炎作用,它可能是一种潜在的改善结肠炎的益生菌剂。

脆弱拟杆菌调节宿主对病毒感染和治疗的反应

脆弱拟杆菌及其荚膜多糖A调节 I 型干扰素的组成水平以预防病毒感染

I型干扰素 (IFN-Is) 是一类专门的细胞因子,可协调宿主对病毒的免疫反应。IFN-Is 调节宿主机制,最终杀死受感染的细胞以限制病毒传播。然而,它们还参与免疫细胞的增殖和激活,这对于控制其他细胞内感染、抗肿瘤和抗炎反应至关重要。

哺乳动物中最明确的IFN-Is是干扰素-α干扰素-β。先前的文献表明,肠道微生物群的耗竭降低了肠道和脾脏干扰素刺激的表达基因(ISG)。

在这项研究中,单独给无菌小鼠灌胃脆弱拟杆菌可增加IFN-β基因的表达。正如预期的那样,来自脆弱拟杆菌的多糖A还显著增加了ISG的体外和体内表达以及 IFN-β的分泌。

PSA/脆弱拟杆菌的免疫保护机制

编辑​

脆弱拟杆菌多糖A的双重性——炎症特性

事实上,来自脆弱拟杆菌的PSA因其细胞因子诱导特性而被广泛研究,并被证明可以协调炎症过程的抑制,以预防实验性自身免疫性疾病(EAE) 、炎症性肠病等疾病。相反,来自脆弱拟杆菌的PSA也可以促进炎症作用,从而诱发例如脓肿

在最近的一项研究中,描述了PSA反应的这种双重性。在这里,来自脆弱拟杆菌的PSA上调了许多干扰素相关基因的表达,并诱导肿瘤坏死因子-α (TNF-α)、IL-6、IFN-γ和趋化因子配体(CXCL)-10 的分泌。

肠道脆弱拟杆菌可改善肾纤维化

大约10%的普通人群患有慢性肾病(CKD)。肾纤维化不可避免地导致CKD进展,其特征是成纤维细胞和肌成纤维细胞的增殖。肌成纤维细胞的特点是产生α-平滑肌肌动蛋白(α-SMA)纤维、胶原蛋白和细胞外基质(ECM)蛋白。

持续的ECM产生会导致肾小球滤过率降低肾损伤。完全停止疾病进展或诱导肾纤维化消退可以缓解CKD。肾纤维化是进行性慢性肾脏病(CKD)各种表现的必然结果。因此,对针对肾纤维化的有效治疗方案的需求怎么强调都不为过。在这篇研究里,展示了脆弱拟杆菌(B.fragilis)对小鼠肾纤维化的保护作用

脆弱拟杆菌通过降低脂多糖水平来减轻肾纤维化。由于血液中1,5-脱水葡萄糖醇 (1,5-AG) 水平增加,它还能抑制Nrf2/Keap1和TGF-β/Smad信号通路。发现 1,5-AG 是钠-葡萄糖协同转运蛋白 2 (SGLT2) 的底物。B. fragilis恢复了 UUO 和腺嘌呤模型肾脏中 SGLT2 表达的降低。因此,调节肠道中脆弱拟杆菌的丰度可能是治疗慢性肾病的一种策略

脆弱拟杆菌通过代谢调节参与甲氨蝶呤对关节炎的治疗作用

甲氨蝶呤(MTX)是治疗类风湿性关节炎(RA)的首选缓解病情抗风湿药物。然而,MTX的毒性低效限制了其临床应用。肠道微生物群与MTX的副作用和功效有关。

脆弱拟杆菌有助于提高甲氨蝶呤对类风湿性关节炎的疗效

在这项研究中,对RA患者肠道微生物群的分析表明,MTX治疗后肠道脆弱拟杆菌的丰度有所降低。还观察到,在没有脆弱拟杆菌的情况下,MTX没有明显的治疗作用,而脆弱拟杆菌的移植在抗生素预处理的胶原诱导性关节炎(CIA)小鼠中恢复了MTX的功效

此外,强饲脆弱拟杆菌还伴随着丁酸盐的增加。补充丁酸盐可以恢复肠道微生物群缺陷小鼠对 MTX 的反应,达到与脆弱拟杆菌灌胃相似的水平。这些结果表明,肠道微生物群调节的丁酸盐在甲氨蝶呤的疗效中发挥着重要作用,这将为提高甲氨蝶呤在类风湿性关节炎治疗中的有效性提供新的策略。

脆弱拟杆菌衍生代谢物可降低沙门氏菌的毒力

大量研究表明,肠道微生物群含有分泌代谢物的健康细菌,有助于对抗肠道和其他器官的疾病。肠道微生物群产生的代谢物包括叶酸、吲哚、γ-氨基丁酸、血清素、次级胆汁酸、脱氨基酪氨酸短链脂肪酸

多项研究表明,这些存在于无细胞上清液中的微生物群衍生代谢物可能成为对抗大肠杆菌沙门氏菌等病原体的抗生素的替代品。

在这项研究中,在接受脆弱拟杆菌和沙门氏菌生物活性组分的小鼠中,与单独接受沙门氏菌相比,结肠中 cldn-1和occludin的表达显著增加,表明肠道屏障得到改善。在单独存在生物活性组分的情况下,仅cldn-1被上调。

已有报道称,脆弱拟杆菌NTBF ZY-312 会诱导患有抗生素相关性腹泻(AAD)的小鼠中occludin过度表达。B. fragilis NTCC 9343增加了结肠中紧密连接蛋白ZO-1、occludin和claudin-1的表达,以对抗 DSS 诱导的溃疡性结肠炎,而B. fragilis菌株FJSWX11BF没有起到保护作用。然而,在这两项研究中,由于仅使用活细菌,因此并未鉴定出与该调节有关的细菌化合物。

然而,这项研究有一些局限性。实验是在实验室条件下进行的,这并不能完全反映人类肠道的复杂性以及共生细菌可能发挥其有益作用的环境。此外,需要对含有 20%血清的完整 DMEM 进行更多研究,以了解脆弱拟杆菌影响的具体机制

总结

脆弱拟杆菌(Bacteroides fragilis)是人类肠道中的一种共生菌,对于健康有着重要的影响。以前经常将脆弱拟杆菌认为是一种条件致病菌,然而,越来越多的研究发现其有作为益生菌的潜力

脆弱拟杆菌菌株可分为两种亚型:不产毒脆弱拟杆菌(NTBF)菌株,不携带或分泌脆弱拟杆菌毒素 (BFT),以及产肠毒素脆弱拟杆菌(ETBF)菌株,携带BFT基因并编码脆弱拟杆菌毒素

ETBF菌株具有致病性,可能诱发能量代谢功能障碍影响肠道稳态,产生的毒素能导致结肠炎阿尔兹海默病甚至是结直肠癌

相比之下,NTBF菌株通常被认为是有益的共生微生物,可能通过种间竞争对抗ETBF。它还参与调节免疫系统保护肠道屏障以及代谢关键营养物质。这些有益菌株通过释放某些有利分子来促进肠道健康,其中一种已被明确鉴定为多糖A

通过深入理解脆弱拟杆菌与宿主之间的微妙平衡,我们可以更好地利用这种微生物来促进人类健康,并开发新的治疗策略来对抗相关疾病。

主要参考文献:

Sofi MH, Wu Y, Ticer T, Schutt S, Bastian D, Choi HJ, Tian L, Mealer C, Liu C, Westwater C, Armeson KE, Alekseyenko AV, Yu XZ. A single strain of Bacteroides fragilis protects gut integrity and reduces GVHD. JCI Insight. 2021 Feb 8;6(3):e136841.

He Q, Niu M, Bi J, Du N, Liu S, Yang K, Li H, Yao J, Du Y, Duan Y. Protective effects of a new generation of probiotic Bacteroides fragilis against colitis in vivo and in vitro. Sci Rep. 2023 Sep 22;13(1):15842.

Xia Y, Xiao Y, Wang ZH, Liu X, Alam AM, Haran JP, McCormick BA, Shu X, Wang X, Ye K. Bacteroides Fragilis in the gut microbiomes of Alzheimer’s disease activates microglia and triggers pathogenesis in neuronal C/EBPβ transgenic mice. Nat Commun.

Eribo OA, du Plessis N, Chegou NN. The Intestinal Commensal, Bacteroides fragilis, Modulates Host Responses to Viral Infection and Therapy: Lessons for Exploration during Mycobacterium tuberculosis Infection. Infect Immun. 2022 Jan 25;90(1):e0032121.

Hu, J., Chen, J., Xu, X. et al. Gut microbiota-derived 3-phenylpropionic acid promotes intestinal epithelial barrier function via AhR signaling. Microbiome 11, 102 (2023).

Zhou, W., Wu, Wh., Si, Zl. et al. The gut microbe Bacteroides fragilis ameliorates renal fibrosis in mice. Nat Commun 13, 6081 (2022).

Jiang K, Li W, Tong M, Xu J, Chen Z, Yang Y, Zang Y, Jiao X, Liu C, Lim B, Jiang X, Wang J, Wu D, Wang M, Liu SJ, Shao F, Gao X. Bacteroides fragilis ubiquitin homologue drives intraspecies bacterial competition in the gut microbiome. Nat Microbiol. 2024 Jan;9(1):70-84.

Nakajima A, Sasaki T, Itoh K, Kitahara T, Takema Y, Hiramatsu K, Ishikawa D, Shibuya T, Kobayashi O, Osada T, Watanabe S, Nagahara A. A Soluble Fiber Diet Increases Bacteroides fragilis Group Abundance and Immunoglobulin A Production in the Gut. Appl Environ Microbiol. 2020 Jun 17;86(13):e00405-20.

Wieland Brown LC, Penaranda C, Kashyap PC, Williams BB, Clardy J, Kronenberg M, Sonnenburg JL, Comstock LE, Bluestone JA, Fischbach MA. Production of α-galactosylceramide by a prominent member of the human gut microbiota. PLoS Biol. 2013 Jul;11(7):e1001610.

Zhou Q, Shen B, Huang R, Liu H, Zhang W, Song M, Liu K, Lin X, Chen S, Liu Y, Wang Y, Zhi F. Bacteroides fragilis strain ZY-312 promotes intestinal barrier integrity via upregulating the STAT3 pathway in a radiation-induced intestinal injury mouse model. Front Nutr. 2022 Dec 15;9:1063699.

Sun L, Zhang Y, Cai J, Rimal B, Rocha ER, Coleman JP, Zhang C, Nichols RG, Luo Y, Kim B, Chen Y, Krausz KW, Harris CC, Patterson AD, Zhang Z, Takahashi S, Gonzalez FJ. Bile salt hydrolase in non-enterotoxigenic Bacteroides potentiates colorectal cancer. Nat Commun. 2023 Feb 10;14(1):755.

Valguarnera E, Wardenburg JB. Good Gone Bad: One Toxin Away From Disease for Bacteroides fragilis. J Mol Biol. 2020 Feb 14;432(4):765-785. 

肠道菌群与蛋白质代谢

谷禾健康

↑出现以上症状,可能是身体缺乏蛋白质的信号

★ 蛋白质有多重要?

蛋白质不仅是构建人体组织的主要原料,而且对新陈代谢至关重要膳食蛋白质及其代谢产物氨基酸是人类的必需营养素

蛋白质提供能量,调节代谢;我们的皮肤、骨骼、毛发都有它的参与;当然免疫系统也少不了它。

 肠道菌群参与蛋白质代谢

肠道微生物群介导蛋白质代谢宿主免疫反应之间的相互作用,在代谢过程中发挥重要作用。

小肠细菌能代谢部分氨基酸,进而影响宿主整体氨基酸的代谢。大肠拥有更丰富的菌群和更长的蠕动时间。

一方面,进入大肠的氮营养素影响大肠菌群的代谢和群落结构;另一方面,大肠菌群也能广泛参与氮营养素的代谢与利用,生成许多代谢产物,进而影响人体健康

因此,本文详细讨论蛋白质对人体的影响,肠道菌群与蛋白质的相互作用,肠道微生物群代谢产物的影响,文末有人体对蛋白质的需求量及相关食物补充说明。

我们先来看一下蛋白质的消化分解过程。

蛋白质的消化分解

小肠上皮细胞消化膳食蛋白质,然后吸收氨基酸和肽是一个高效的过程。高可消化的蛋白质可能部分逃脱小肠的消化,大量的含氮物质可能从小肠转移到大肠。未消化的蛋白质和多肽通过肠道微生物和残留的胰腺蛋白酶进行蛋白水解,产生大量的微生物代谢物。

胃肠道中的蛋白质分解代谢物

Zhao J, et al., Curr Protein Pept Sci. 2019

这些微生物代谢物中有些是中间产物,有些是最终产物。大量的最终产物主要是短链脂肪酸、氨、多胺、硫化氢、酚类和吲哚类化合物

这些细菌代谢物中的一些可以被运输到结肠细胞,并根据其在腔内的浓度对这些上皮细胞产生有益或有害的影响。一些细菌代谢产物被输送到门脉血,对肝脏和周围器官组织产生各种生理作用(这些代谢物在健康中发挥的作用详见本文后面章节)。

肠道微生物群在膳食蛋白质分解代谢中作用

宿主饮食对肠道微生物群的分布和活性有很大影响。膳食蛋白质或氨基酸调节可作为调节发酵细菌的一种方法。

在研究不同动物蛋白质来源(牛肉、鸡肉和鱼类)对人类粪便微生物群的影响的研究中,与牛肉蛋白孵育2天后,产气荚膜梭菌的数量显著增加双歧杆菌的数量显著减少

微生物分泌的酶直接降解分解蛋白

肠道微生物群在促进氨基酸调节以及氨基酸消化和吸收过程中的分泌方面起着至关重要的作用。

蛋白质的转换主要发生在肠道中,结肠细菌降解内源性或外源性蛋白质的效率较高

拟杆菌属(Bacteroides)、梭状芽胞杆菌属(Clostridium)、丙酸杆菌属(Propionibacterium)、梭杆菌属(Fusobacterium)、乳酸杆菌属(Lactobacillus)和链球菌属(Streptococcus)在蛋白质水解过程中发挥着重要作用。

粪便微生物群与结肠微生物群具有不同的蛋白水解活性。粪便微生物的活性仅在球状蛋白质的蛋白质水解方面较

发酵过程中,复杂蛋白质首先被各种细菌肽酶、蛋白酶和内肽酶切割,释放出游离氨基酸和短肽。氨基酸和短肽然后进行发酵。蛋白质发酵产生支链脂肪酸(2-甲基丁酸酯、异丁酸酯、异戊酸酯)、有机酸、气体(H2和CO2)以及微量酚、胺、吲哚和氨。

Yadav M, et al., Arch Microbiol. 2018

肠道微生物参与氨基酸代谢

一些菌群可能在肠道中的氨基酸代谢中发挥重要作用,例如梭杆菌属、拟杆菌属和韦荣球菌,Megasphaera elsdeniiSelenomonas ruminantium.

肠道内的梭菌属细菌(赖氨酸或脯氨酸利用的基础细菌)是氨基酸发酵的关键驱动因素,而消化链球菌属细菌是谷氨酸或色氨酸利用的关键驱动因素。

其他例如瘤胃细菌,Selenomonas ruminantium, Megasphaera elsdenii, Prevotella ruminicola, Misuokella multiacidas, Butyrivibrio fibrisolvens, Streptococcus bovis等含有极为活跃的二肽基肽酶和二肽酶。

微生物从头合成氨基酸

肠道微生物群产生氨基酸方面也起着关键作用,这包括从头生物合成

例如,一些体外研究项目表明,瘤胃细菌种类,如Streptococcus bovis,Selenomonas ruminantium, Prevotella bryantii,在生理肽浓度存在的情况下参与氨基酸的从头合成

Lin R, et al., Amino Acids. 2017

体内研究还表明,微生物衍生的赖氨酸(一种必需氨基酸)被吸收并并入宿主蛋白质。在无菌和常规化大鼠体内,将15NH4CL中的15N并入赖氨酸的比较表明,检测到的所有15N赖氨酸均来自微生物来源。在后续研究中,这些研究人员确定约75%的微生物15N标记的赖氨酸被小肠吸收

此外,其他体内研究项目表明,微生物衍生的赖氨酸被吸收并整合到宿主蛋白质中。与动物研究相一致,六名健康男性的样本以15NH4Cl的形式口服15N与标记肠道微生物来源的微生物蛋白和苏氨酸有关,这些微生物来源存在于活体门静脉血流中。

对18岁以上的人样本进行了检查,这些人被提供了氮充足的饮食,并发现微生物衍生的赖氨酸和苏氨酸游离血浆赖氨酸和苏氨酸库有显著贡献。

此外,Gill等人报告说,大肠中微生物群的富集是通过与必需氨基酸(EAA)生物合成相关的基因进行的,该生物合成基于人血浆池产生的前体。

蛋白质或氨基酸摄入对肠道微生物的影响

膳食蛋白质是均衡饮食重要组成部分。人类无法合成多种氨基酸,因此这些氨基酸必须从食物中获取以维持健康。胃肠道微生物群组成和功能的差异可能是由于膳食蛋白质的变化。

进入结肠的蛋白质量和尿液中检测到的发酵代谢物量取决于蛋白质的消化率,蛋白质消化由蛋白质水平来源共同作用决定。

当进展到结肠的远端部分时,碳水化合物被消耗,pH值增加,蛋白质发酵变得更加有效。在消化过程中,蛋白质摄入量增加总是与消化率相对降低有关,通常会导致更多可发酵的大量营养物质进入结肠。

不同形式蛋白对肠道微生物群影响不同

蛋白质来源主要来自植物动物来源,每种类型都具有独特的消化率不同的降解模式,具体取决于所涉及的微生物。结肠中的细菌属参与蛋白质代谢,主要包括可能致病的拟杆菌属、大肠杆菌属和梭菌属抑制这些潜在病原体通常与通过减少肠毒素有害微生物代谢物的释放来恢复微生态系统平衡有关。

考虑到蛋白质来源在消化中的作用,动物来源的蛋白质,如乳品和动物蛋白的消化率普遍高于植物蛋白。然而,酪蛋白的热分解显著降低了蛋白质的消化率,增加了蛋白质的发酵程度。下面就详细来看蛋白质来源如何调节肠道微生物群。

植物蛋白

与动物蛋白相比,植物蛋白通常具有较低的蛋白质消化率,因为植物细胞壁不能消化。大豆和花生蛋白都在调节肠道有益细菌组成方面有积极的作用。

添加20%花生蛋白的饲粮改变了大鼠肠道菌群多样性,增加了双歧杆菌,降低了肠杆菌和产气荚膜梭菌的数量。增加的双歧杆菌有助于产生更多的微生物代谢物,包括乙酸和乳酸,导致肠道pH值降低抑制有毒代谢物,如胺和苯并吡咯。

大豆已被广泛应用于人类和动物,它可以改变肠道微生物的组成,增加了埃希氏杆菌属和丙酸杆菌。系统发育分析显示,埃希氏杆菌属与志贺菌的同源性最高,两者都能在不损害肠道黏膜的情况下调节盐和水的代谢。但大豆中含有的抗营养因子会对生产性能产生负面影响,限制了其在非反刍动物中的应用。

植物蛋白被用于动物饲料行业,因为它的价格普遍低于动物蛋白,并且在食品安全方面具有一些优势。

动物蛋白

与植物蛋白相比,动物蛋白对于牲畜来说是高度易消化的酪蛋白、脱脂奶粉和鱼粉通常用作猪的饲料,它们可以被消化成丰富的蛋白质底物并在到达大肠之前被吸收。这些动物蛋白的代谢特性有利于宿主健康,特别是,对环境应激导致仔猪断奶后腹泻预防作用及一些植物蛋白中的抗营养因子。

酪蛋白可以近端肠道中的宿主酶消化,从而减少大肠中细菌的降解。具体而言,酪蛋白可以增加乳杆菌和双歧杆菌,并减少粪便中葡萄球菌、大肠菌群和链球菌的数量。此外,酪蛋白可以调节直肠真杆菌和Marvinbryantia formatexigens的减少。

补充脱脂干牛奶可以增加总厌氧菌和需氧菌,而膳食鱼粉可以减少需氧菌,包括大肠菌群,并增加厌氧菌的数量,如乳酸杆菌属。

此外,动物蛋白的特点是 短链脂肪酸减少,肠道 pH 值和氨浓度增加

显然,蛋白质来源对肠道微生物群的影响并不一致,需要更多的研究来评估不同蛋白质类型对蛋白质消化率和代谢以及肠道微生物群组成的影响。

蛋白质摄入量与肠道菌群

膳食蛋白质的浓度是影响蛋白质发酵和肠道微生物组成的主要因素。

更高的水平和未消化的蛋白质会导致致病微生物的增加,从而增加代谢疾病的风险。

Zhao J, et al., Curr Protein Pept Sci. 2019

未被小肠吸收的残留含氮化合物将被转移到远端肠道,并被该位置微生物代谢。微生物代谢物的数量和种类均受膳食蛋白质摄入量的影响

有些微生物代谢物是有毒的,例如硫化氢、氨和吲哚化合物,并可能对宿主健康产生负面影响。有些代谢物是参与宿主各种生理过程的生物活性分子。

此外,由于肠道微生态系统的稳态破坏和有益菌的减少,高浓度的蛋白质补充会导致潜在病原体数量增加。膳食蛋白质改变的肠道微生物群,通过调节肠道屏障功能、肠道运动和免疫系统来影响宿主代谢。

结肠中过量蛋白质发酵影响肠道微生物群变化

未消化蛋白质的增加与蛋白质摄入水平高、蛋白质消化率相对降低和氨基酸组成不平衡有关。结肠中多余蛋白质的降解始于细菌蛋白酶和肽酶将蛋白质水解成较小的肽和氨基酸。这些含氮化合物会影响肠道微生物群,尤其是结肠。

稍低蛋白浓度有助于减少大肠杆菌,但蛋白浓度过低会增加潜在致病菌

相对低浓度的膳食蛋白质会减少致病菌增殖的底物量。例如,人类饮食中低浓度的蛋白质导致粘膜表面的大肠杆菌群落减少。在较低蛋白质条件下肠道微生物的变化会产生毒性较小的含氮细菌代谢物,例如多胺。

然而,当饮食中蛋白质的浓度过低不能满足宿主的基本需要时,就会增加潜在病原体的丰度,减少有益菌的数量。

具体来看一项关于蛋白浓度变化对肠道菌群影响的研究。

断奶动物

蛋白水平适量:

断奶动物饲喂100-200g/kg的膳食蛋白质时,粪便中需氧菌和厌氧菌的数量会增加,这些蛋白质水平会导致肠道中乳酸杆菌的增加以及大肠菌群和葡萄球菌减少

蛋白水平过高:

然而,当膳食蛋白质水平大于 200 g/kg 时,致病菌数量会增加,例如大肠菌群、链球菌和芽孢杆菌。

蛋白水平过低:

低浓度的膳食蛋白质会减少产丁酸菌(这些菌群是抗癌和其他肠道疾病的抗炎剂),包括乳酸杆菌、双歧杆菌、saccharolytic(糖酵解菌)。

成年动物

成年动物中,在蛋白质水平的微小变化下,肠道微生物群相对稳健。例如,当成年动物分别用 190 g/kg 和 150 g/kg 蛋白质喂养时,粪便样本中的细菌数量几乎没有差异

在成年动物中,只有当蛋白质水平发生重大变化时,才能观察到微生物群的变化。

低蛋白饮食还与低浓度的氨血浆尿素氮和回肠食糜中的短链脂肪酸含量有关。肠道中的不是来自宿主脲酶活性,而是来自蛋白水解和微生物活动。因此,回肠食糜中低浓度的氨可能表明蛋白质代谢降低

蛋白质发酵产物对肠道微生物的影响

大部分膳食蛋白质在小肠中消化,但蛋白质摄入过多会导致结肠输入量增加。结肠中多余蛋白质的降解始于蛋白质被细菌蛋白酶和肽酶水解成更小的肽和AA,这些蛋白酶和肽酶在中性至碱性pH下更为活跃。这些残余蛋白质不仅提高了肠道pH值,而且还可供结肠微生物进一步代谢。

然而,碱性pH有利于病原体增殖,对肠道健康不利。此外,由于向肠道微生物群过量供应膳食蛋白质而导致的蛋白质发酵也被视为肠道疾病发展的一个因素。

虽然有报道称结肠蛋白输注过多会产生有害影响,仍有一些争议,但似乎较低量的蛋白到达远端肠道可能会降低腹泻的发生率,并抑制病原菌的增殖,特别是在应激情况下,如感染高压。

蛋白质的发酵通常与蛋白质发酵细菌以及潜在致病菌的生长有关。通过培养基分析,至少拟杆菌属和丙酸杆菌以及各种杆菌被鉴定为蛋白水解细菌,其中一些细菌的基因组中携带丝氨酸和其他蛋白酶的基因。

氨基酸为细菌提供代谢底物

饮食和内源性来源的蛋白质和氨基酸对于肠道微生物群的生长和存活是必要。

蛋白质水解后,释放的肽和氨基酸被宿主和胃肠道中的细菌用于各种代谢活动,虽然一些细菌缺乏使用细胞外氨基酸的特定转运体。

胃肠道中许多细菌的理想氮源氨基酸和NH3,可能是因为它们缺乏必要的肽转运蛋白。然而,如瘤胃前置杆菌等细菌利用肽作为氮的唯一来源。这些肽最初被输送到瘤胃前置杆菌的细胞中,然后直接使用或水解成FAAs。通常,肽、氨基酸和NH3可用于细菌细胞成分的生产或通过各种途径分解代谢。这些过程可能对身体产生有利或不利的影响。

蛋白质摄入与肠道屏障

肠道是一个具有高度蛋白水解活性的部位,主要由微生物群介导。这些蛋白水解代谢物以及肠道微生物(可通过蛋白质水平改变)通过调节紧密连接蛋白Zonulin在调节肠粘膜屏障中发挥重要作用。

Ma N, et al., Curr Protein Pept Sci. 2017

肠道微生物通过调节紧密连接蛋白ZO-1和ZO-2的表达来影响肠道上皮屏障。研究表明,在高蛋白饮食(HPD)中增加双歧杆菌可有效缓解结肠上皮细胞膜屈曲,上调ZO-1表达,有利于紧密连接修复。

相反,低蛋白饮食(low-protein diet, LPD)或正常蛋白饲粮(normalprotein diet, NPD)通过降低肠上皮通透性,降低大肠杆菌水平,从而上调ZO-1的表达。抑制大肠杆菌生长也可上调ZO-2的表达,从而保护肠上皮细胞,修复上皮屏障

连蛋白Zonulin是唯一已知的细胞间紧密连接生理调节剂,可能是微生物群和紧密连接蛋白之间的一种可能的调节剂。

Zonulin可逆且快速地调节肠道通透性,其在遗传易感个体中的上调可能导致免疫介导的疾病。其释放将由细菌数量的变化触发。

在上皮细胞中结合其受体后,该复合物导致紧密连接的开放并增加肠道通透性。

研究人员选择了4种细菌菌株作为兴奋剂,包括3种大肠杆菌菌株和1种沙门氏菌菌株,它们都是病原体,HPD增加。它们都释放了Zonulin并改变了细胞旁通透性。同时,观察到ZO-1从紧密连接复合物重新分布到细胞单层。

此外,不同的细菌会导致不同水平的Zonulin分泌,这会在不同程度上改变肠道屏障功能,反映微生物和肠道之间的急性调节。

氨基酸不均衡会诱发肠道问题

膳食蛋白质中的氨基酸可通过调节肠道微生物群组成间接影响肠道形态。此前有研究报道,低赖氨酸玉米蛋白会导致肠道绒毛高度降低,隐窝深度加深,提示肠道黏膜的损伤是由于饲粮中氨基酸比例失衡所致。

小肠上皮细胞可将氨基酸和其他营养物质吸收到血液和器官中,营养不良对肠道微生物群的干扰和影响可能导致肠道形态受损

断奶时观察到的腹泻可以通过低蛋白质水平和平衡氨基酸组成来缓解。然而,饮食中氨基酸的不平衡可能损害肠道形态,增加腹泻风险。因此,饮食中氨基酸失衡会抑制蛋白质吸收,导致肠上皮增生。

注意蛋白过敏或不耐受诱发的肠道问题

大豆中的粗蛋白质相对较高,约为40%,主要由球蛋白组成,球蛋白由伴大豆球蛋白和大豆球蛋白组成。这些球蛋白具有免疫原性热稳定性

大豆蛋白补充剂中抗原复合物的形成,如大豆球蛋白、β-伴大豆球蛋白和免疫球蛋白抗体,可能是刺激过敏反应和腹泻的原因。大部分膳食蛋白质在消化后降解肽和氨基酸

然而,还有一种可能性是,其他分子如一种抗营养因子,可以通过肠上皮细胞进入血液和淋巴。大豆中具有抗原活性的抗营养因子可刺激宿主的免疫应答。

免疫反应由具有IgE分泌的T淋巴细胞介导,其对肠道形态具有负面影响,导致绒毛损伤隐窝细胞增殖

此外,上皮细胞中消化酶活性的降低可能与吸收功能失调和肠道微生物群组成多样性减少有关。

由于其抗原性,膳食大豆蛋白可能有利于病原体增殖,这些抗原也可能是对粪便微生物群一致性产生不利影响的因素。

对大豆蛋白的超敏反应可能导致对病原体过度生长更高易感性,主要包括蛋白质代谢细菌以及肠致病性大肠杆菌。

大豆蛋白和其他植物蛋白通常含有抗营养因子,包括可溶性非淀粉多糖含量升高,可能增加断奶仔猪腹泻的发生率。

在大豆蛋白质代谢过程中,会产生各种毒素,如组胺、尸碱和腐胺,这些毒素会破坏肠壁增加肠上皮细胞的通透性。当病原体在管腔内定植时,可能发生肠道微生态失调

大豆蛋白被认为是一种相对健康的蛋白质来源。大豆经加工处理后,抗原活性有所降低,抗营养因子显著降低。Pepsin-hydrolysate conglycinin (PTC)是一种治疗后从球蛋白中提取的小肽,具有降低高血压、抗氧化和免疫刺激等药理和生理活性。

伴大豆球蛋白是大豆贮藏蛋白的组分之一,经消化和酶处理后以PTC的形式发挥作用。PTC可以抑制病理性大肠杆菌的生长,无时间依赖性,并且在 大肠杆菌E. coli O138激发后也被激活以预防疾病。

伴胰球蛋白-胃蛋白酶水解物参与调节肠道微生物群落平衡维持肠道完整性。当肠道微生态系统的稳态受到干扰时,生物活性肽可在预防与肠道疾病相关的疾病中发挥重要作用。PTC还通过产生胃蛋白酶介导的双歧杆菌生长刺激肽促进双歧杆菌的生长。然而,PTC对E. coli O138的抑制作用的潜在机制尚不清楚,需要进一步的研究来阐明。

酪蛋白与肠道微生物群

酪蛋白具有特殊的氨基酸组成,可以诱导肠道氨基酸转运蛋白基因的转录水平。肠道微生物群的组成和功能也受到氨基酸平衡改变的影响。

CAT1

阳离子氨基酸转运蛋白(CAT1)参与赖氨酸和精氨酸的转运。研究表明,对十二指肠和回肠中的CAT1没有显著影响。相反,与空肠中的膳食玉米醇溶蛋白相比,补充酪蛋白的CAT1表达水平更高。

因此,可以合理地得出结论,酪蛋白可促进赖氨酸和精氨酸的积累,这与补充酪蛋白的赖氨酸含量高于膳食玉米醇溶蛋白的报告一致。

肠道中赖氨酸和精氨酸的变化可能有助于酪蛋白对肠道微生物群的影响。CAT1的表达随着饮食中赖氨酸水平的增加而上调

EAAC1

兴奋性氨基酸载体1(EAAC1)参与天冬氨酸和谷氨酸的转运,其作用类似于CAT1。EAAC1在十二指肠中的表达水平被膳食玉米醇溶蛋白下调,而在空肠和回肠中,补充酪蛋白的EAAC1表达水平高于玉米醇溶蛋白或大豆蛋白。

PePT1

此外,肽转运蛋白1(PePT1)的表达也受到不同蛋白质来源的调控。与植物蛋白相比,膳食酪蛋白在所有肠段都有更高的PepT1表达。

因此,具有平衡氨基酸组成的膳食酪蛋白可以促进氨基酸和肽转运蛋白的表达。这种表达可以加速功能性氨基酸在肠道环境中的运输

赖氨酸、天冬氨酸和谷氨酸在管腔中的浓度受不同蛋白质来源的不同处理的影响。这些变化可以影响特定代谢物的衍生和转化途径,改变生理功能,改变肠道内的微生态平衡。

氨基酸还通过合成细菌蛋白质以及与肠道微生物群的相互作用对微生物组成起重要作用。

菌群发酵蛋白质主要副产物

短链脂肪酸

短链脂肪酸(SCFA)是细菌在大肠内代谢的最终产物,主要成分为乙酸、丁酸和丙酸。短链脂肪酸的基质主要来自膳食纤维抗性淀粉

然而,未消化的蛋白质也是短链脂肪酸产物的底物。膳食蛋白质在大肠中释放的几种氨基酸是短链脂肪酸合成的前体。肠道微生物可以从甘氨酸、丙氨酸、苏氨酸、谷氨酸、赖氨酸和天冬氨酸中产生乙酸盐。

谷氨酸和赖氨酸可以合成丁酸,丙氨酸和苏氨酸可以合成丙酸

短链脂肪酸产物的数量和形态主要取决于营养物质的底物可得性、肠道菌群组成和肠道传递时间。短链脂肪酸是已知的氧化和使用作为燃料的结肠上皮。

此外,SCFA可以靶向游离脂肪酸受体(FFAR)配体转运到结肠肠细胞,FFAR代谢感知的激活在调节肠道脂肪沉积和营养物质吸收中发挥重要作用。

短链脂肪酸与肠道血流相互作用,促进5-羟色胺的释放,这可能受到肠道-脑内分泌轴的调节。这有助于增加肠道运动和离子转运,从而改变肠道菌群组成和免疫防御

SCFA参与多种生理过程,在维持肠道完整性、葡萄糖稳态和食欲调节中发挥重要作用。除了为结肠细胞提供能量外,丁酸盐也是SLC5A8的底物。该蛋白编码基因抑制组蛋白去乙酰化酶的活性,而组蛋白去乙酰化酶是一种表观遗传调节因子,在多种肿瘤中诱导细胞凋亡。丁酸可以通过上调宿主防御肽的表达来刺激中性粒细胞群体,有利于破坏病原体,增强抗病能力。

氨在大肠中以毫摩尔浓度存在。与远端结肠相比,近端结肠的特点是pH值低,碳水化合物含量高。因此,从升结肠到降结肠,氨浓度升高,这与远端结肠的蛋白质代谢率高于近端结肠是一致的。

大肠中的氨浓度主要是与氨基酸脱氨尿素水解有关的微生物代谢物。肠道菌群可利用氨,氨可被上皮细胞吸收。尿素在肠道内的水解是通过细菌脲酶活性进行的。

虽然幽门螺杆菌的脲酶活性已经得到了充分的研究,但关于其他大肠微生物的脲酶活性的信息却很少。最近的一项研究报道,部分氨被谷氨酰胺合成酶的活性与l -谷氨酸缩合,使谷氨酰胺合成。这是一种可能的机制,以控制氨细胞内浓度在结肠细胞。

硫化氢 (H2S)

硫化氢(H2S)是蛋氨酸、半胱氨酸等含硫氨基酸发酵产生的一种微生物代谢物。H2S也来源于无机硫酸盐和亚硫酸盐添加剂的还原,以及肠道磺胺类物质的分解代谢。

肠道微生物能够通过脱硫酶从半胱氨酸碳链中获得能量。甲硫氨酸可转化为α-酮丁酸酯、氨和甲硫醇。这些代谢物归因于一个特定的分类组的细菌,包括大肠杆菌、肠沙门氏菌、梭菌和产气肠杆菌,通常在大肠中发现。

肠杆菌、肠球菌、肠链球菌、梭杆菌和真细菌能够发酵含硫氨基酸。

多胺

多胺是由精氨酸、鸟氨酸和蛋氨酸等氨基酸前体的结肠细胞产生的聚阳离子分子。从结肠癌中分离出来的结肠上皮具有高的多胺合成能力,这可能是由于肿瘤细胞持续有丝分裂需要高的多胺。

肠道微生物可鸟氨酸、精氨酸、赖氨酸、酪氨酸和组氨酸等氨基酸前体产生腐胺、胍胺、尸胺、酪胺和组胺等多种多胺

多胺参与细菌细胞的生长、增殖、分泌和运输活动。大肠生态系统中能够产生多胺的大肠细菌有多种,包括拟杆菌属(Bacteroides)、乳杆菌属(Lactobacillus)、Veillonella、双歧杆菌属(Bifidobacterium)和梭状芽胞杆菌属(Clostridium)。因此,肠道菌群组成影响结肠多胺分布和分配的因素之一。

苯酚和吲哚

结肠中苯丙氨酸、酪氨酸和色氨酸等芳香族氨基酸可被特定的肠道微生物代谢为酚类和吲哚类化合物。

然而,芳香氨基酸的代谢与结肠微生物群的特定组分之间的相互作用还没有充分的研究。一些代谢产物如酚和吲哚,被怀疑为共致癌物和结肠癌促进剂

已知发酵芳香氨基酸的厌氧菌包括大肠中的拟杆菌、乳酸菌、双歧杆菌、梭状芽胞杆菌和胃链球菌。与结肠中的其他氨基酸相比,芳香氨基酸在细菌中代谢缓慢。它们可以生产一系列的酚类和吲哚类化合物作为最终产品,如对甲酚、吲哚、酚和粪臭酚。

据报道,酪氨酸可产生苯酚和对甲酚,而苯乙酸和色氨酸在人体浆发酵过程中分解为吲哚乙酸盐和吲哚

在一项研究中,远端结肠中的酚类化合物浓度增加,表明大肠远端区域的氨基酸代谢较高。吲哚和酚类代谢物的浓度取决于细菌产生率和结肠吸收率之间的平衡。酚类化合物似乎大部分被结肠内容物吸收。它们在从管腔转移到血液和肝脏的过程中部分代谢,最后通过尿液排出。

对无菌和常规小鼠血浆代谢物的对比分析表明,无菌小鼠的色氨酸和酪氨酸水平至少增加了1.5倍。涉及这些芳香族氨基酸的细菌代谢产物包括硫酸吲哚氧基、硫酸苯酯、硫酸对甲酚和苯丙酰甘氨酸,仅在常规小鼠中发现。

关于酚类和吲哚类化合物对结肠上皮细胞的影响知之甚少。体外实验表明,苯酚会降低屏障功能的完整性。需要注意的是,当苯酚浓度高于1.25 mM时,它会损害结肠上皮细胞。

如果蛋白质摄入过量,或者肠道里消化蛋白质的菌群构成不理想,那么蛋白质发酵发生的胺,硫化氢,苯酚等肠道毒素过量积累,会诱发肠道炎症,便秘,腹胀等问题,因此正确摄入适量优质蛋白对于维持肠道菌群和身体健康很重要。

蛋白质摄入要因人而异

实际上,我们摄入的一些蛋白质可以转化为葡萄糖,特别是当蛋白质的消化速度快且人体糖原储存量低时,有些蛋白质可以被微生物群发酵,特别是当蛋白质的消化速度慢时。

每个人对蛋白质的需求量各不相同,比如经常运动人群和久坐人群对蛋白质的需求量不一样,孕妇、老人、儿童、肥胖等群体都有各自不同的需求。当然,每个人的不同状态对蛋白质的需求量也都不同,比如爬山的一天,和在家刷剧的一天,也是不一样的。

因此,我们说最佳每日蛋白质摄入量取决于你的身高体重、健康状况、目标、身体活动水平。

素食主义者对蛋白质的需求较高,因为植物蛋白在生物利用度上通常不如动物蛋白。植物蛋白消化率为 60-80%,而动物蛋白消化率超过90%.

注意植物蛋白的较难消化吸收

因为植物含有抑制蛋白质消化和吸收的抗营养物质,如胰蛋白酶抑制剂、植酸盐和单宁。虽然烧熟后确实降低了抗营养物质的浓度,但并不能完全消除它们。

另外,植物性蛋白质也含有限制性氨基酸,这些氨基酸是必须氨基酸但数量太少,以至于不够蛋白质的合成所需。

注:限制性氨基酸是指食物所含必需氨基酸的量与动物所需的蛋白质必需氨基酸的量相比,比值偏低的氨基酸。比如说一种食物里特别缺少某一种氨基酸,即使其它的氨基酸含量很高,因为这个氨基酸导致它的各个氨基酸比例不平衡。人体对这种食物的吸收依然不理想,这种氨基酸就叫限制性氨基酸。

结合不同的植物性蛋白质可以帮助弥补它们各自的不足。

摄入蛋白注意其氨基酸构成

比如说,赖氨酸是最常见的限制性氨基酸,特别是在谷类中,如小麦和水稻坚果往往也含有赖氨酸作为限制性氨基酸。另一方面,豆类含有足够的赖氨酸,可以弥补,但缺乏硫氨基酸,如蛋氨酸和半胱氨酸。

蛋白质能否被人体吸收利用,还应该考虑蛋白质的氨基酸组成

因此,了解一下评估蛋白质的另一个标准:氨基酸的组成。

氨基酸组成

蛋白质由氨基酸组成,身体可以合成其中一些氨基酸,而另一些则不能。

需要但不能合成、需要从食物中摄取的九种氨基酸被称为必需氨基酸(EAA)。

氨基酸:成人的需求和不同食物的含量

World Health Organization. Protein and Amino Acid Requirements in Human Nutrition

人群范围蛋白质摄入量如何?

使用谷禾检测人群,基于肠道菌群分析营养膳食摄入构成,图中给出了蛋白质占总能量摄入的占比,正常比例在10~20%范围。可以看出0~3岁蛋白质占比较高,3~15岁蛋白质占比较低,80~100岁比例又进一步下降。

<谷禾健康肠道菌群检测数据库>

结 语

蛋白质代谢与肠道菌群密切相关。膳食蛋白质在小肠中被蛋白酶和众多肽酶代谢,膳食蛋白质释放的氨基酸可用于肠道微生物合成蛋白质。这反过来又促进了饮食、微生物群和宿主之间的氮循环和利用。

不同的细菌有不同的代谢能力,依靠我们摄入的营养物质繁殖生存,其中拟杆菌属(Bacteroides)、梭状芽胞杆菌属(Clostridium)、丙酸杆菌属(Propionibacterium)、梭杆菌属(Fusobacterium)、乳酸杆菌属(Lactobacillus)和链球菌属(Streptococcus)在蛋白质水解过程中发挥着重要作用。通过肠道菌群检测评估的蛋白质摄入水平显示不同人蛋白质摄入及营养占比差异很大,过高或者过低均伴随肠道菌群问题,包括过低导致潜在病原体数量增加,有益菌减少,同时导致部分氨基酸缺乏,过高又导致例如大肠菌群、链球菌和芽孢杆菌增殖,蛋白质发酵产生的副产物如,腐胺,苯酚,硫化氢等增诱发便秘,腹痛等健康问题。

除了蛋白质的摄入量,不同的蛋白形式,如植物蛋白,乳蛋白、动物蛋白以及蛋白质与其他营养摄入的相对比例构成,如膳食纤维、抗性淀粉、脂肪、微量元素等的比例都会影响肠道菌群进而反过来影响其消化降解,改变氨基酸的合成和代谢,最终影响宿主营养代谢健康。

总之,我们提倡膳食平衡,没有特殊情况不建议盲目补充蛋白粉等,建议从膳食结构调整保证营养均衡,从而使各种营养都能达到生长发育和身体健康的生理需要量,这同时要关注肠道菌群状况,因为他们是相辅相生。

常见食物中氨基酸含量见附录。

附录

供人类食用的植物性食品中总氨基酸的含量

(肽结合氨基酸加上游离氨基酸) mg/g

Amino Acids in Nutrition and Health, 2021

人类动物性食品中总氨基酸的含量

(肽结合氨基酸加上游离氨基酸)mg/g

Amino Acids in Nutrition and Health, 2021


主要参考文献:

向上滑动阅览

Abdallah A, Elemba E, Zhong Q, Sun Z. Gastrointestinal Interaction between Dietary Amino Acids and Gut Microbiota: With Special Emphasis on Host Nutrition. Curr Protein Pept Sci. 2020;21(8):785-798.

doi: 10.2174/1389203721666200212095503. PMID: 32048965.

Ma N, Tian Y, Wu Y, Ma X. Contributions of the Interaction Between Dietary Protein and Gut Microbiota to Intestinal Health. Curr Protein Pept Sci. 2017;18(8):795-808.

Yadav M, Verma MK, Chauhan NS. A review of metabolic potential of human gut microbiome in human nutrition. Arch Microbiol. 2018 Mar;200(2):203-217. doi: 10.1007/s00203-017-1459-x. Epub 2017 Nov 29. PMID: 29188341.

Zhao J, Zhang X, Liu H, Brown MA, Qiao S. Dietary Protein and Gut Microbiota Composition and Function. Curr Protein Pept Sci. 2019;20(2):145-154.

Lin R, Liu W, Piao M, Zhu H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids. 2017 Dec;49(12):2083-2090. doi: 10.1007/s00726-017-2493-3. Epub 2017 Sep 20. PMID: 28932911.

消化酶的类型、功能以及食物来源

谷禾健康

消化酶分解脂肪、蛋白质和碳水化合物,便于身体吸收营养。大部分消化酶由胰腺产生,其次是小肠、胃和口腔。

本文主要介绍不同酶的工作原理、酶水平背后的遗传因素和消化系统疾病以及自然促进消化的方法。

01 什么是消化酶?

消化酶是一组广泛的酶,可将脂肪、蛋白质和碳水化合物等大营养素分解成更容易被身体吸收的较小营养素。人体在胰腺中自然产生大部分酶,而胃、小肠和口腔中产生少量酶。

以下酶可以帮助人体从特定的食物中吸收营养:

▪ 蛋白酶把蛋白质分解成氨基酸

▪ 脂肪酶把脂肪分解成脂肪酸

▪ 淀粉酶将碳水化合物分解成单糖,如葡萄糖

它们的主要作用是帮助消化,这些酶在你体内的数量和活性取决于一系列复杂的因素。初步研究表明,消化酶可能有助于缓解各种消化疾病、减轻炎症、肠道感染等。

02 为什么消化酶水平低?

消化酶水平低表明胰腺不能正常工作难以产生重要的消化化合物。

在严重的时候,这种情况被称为外分泌胰腺功能不全(EPI)。这时,胰腺中产生消化酶的细胞会随着时间的推移而被破坏

当然,EPI不是唯一的原因,各种因素都会导致消化酶水平降低:

03 消化酶——各有千秋

消化酶主要分三大类:脂肪酶、淀粉酶、蛋白酶

脂肪酶

脂肪酶是分解脂肪的酶,帮助维持胆囊功能正常。它们在胰腺中产生,但也可以从植物、动物和真菌中提取,并且足够稳定。

各种类型的脂肪酶参与不同的过程,例如脂肪代谢、运输、细胞信号传导、炎症等。

✓ 用于肠易激综合征(IBS)患者

含有脂肪酶和其他胰酶的补充剂可以帮助减少餐后的腹胀、胀气和饱腹感,尤其是脂肪含量高的食物。这些症状通常与消化问题有关,如肠易激综合征(IBS)。研究还表明,一些肠易激综合征患者可能存在胰腺外分泌功能不全,即由于胰腺产生的消化酶缺乏而无法正确消化食物。

1
客服