技术

什么是16S rRNA,rDNA, 菌群研究为什么用16S测序,细菌如何命名分类?

谷禾健康

当谈到肠道菌群研究时,16S测序是一种常用的方法,它在了解微生物组成和多样性方面非常重要且实用。

16S rRNA是细菌和古细菌中的一个高度保守的基因片段,同时具有一定的变异性。通过对16S rRNA基因进行测序,可以确定微生物群落中存在的不同菌属和菌种,并评估它们的相对丰度

针对肠道菌群16s测序概括起来可以了解以下内容:

揭示微生物组成:通过16S rRNA测序,可以获得关于肠道菌群中存在的不同菌属和菌种的信息。这有助于了解菌群的组成,包括有益菌、有害菌和其他微生物的相对丰度。

探索微生物多样性:16S rRNA测序可以评估微生物群落的多样性水平。通过分析不同样本中的菌群组成和多样性指标,可以比较不同个体、不同健康状态或不同治疗干预对微生物多样性的影响。

鉴定潜在病原菌:通过16S rRNA测序,可以鉴定肠道中存在的潜在病原菌。这有助于了解潜在的疾病风险,并为相关疾病的预防和治疗提供指导。

监测治疗效果:在临床研究中,通过定期进行16S rRNA测序,可以监测治疗干预对肠道菌群的影响。这有助于评估治疗效果,并为个体化治疗提供依据。

指导个体化营养干预:通过16S rRNA测序,可以了解个体的肠道菌群状态,进而指导个体化的营养干预。根据菌群组成和功能,可以制定相应的饮食方案,促进肠道健康和营养吸收

以上总结了16s对于了解肠道菌群的重要价值,今天本文主要分享和介绍16s测序相关的定义和术语,以及菌群命名的规则等。

01
什么是16S rRNA 和16S rDNA ?

正确的说法是16S rRNA(不是16s rRNA或16s rDNA)。

16S rRNA 代表16S核糖体核糖核酸 (rRNA),其中S(Svedberg) 是测量单位(沉降率)。该rRNA是原核核糖体小亚基(SSU)以及线粒体叶绿体的重要组成部分。

下图显示了16S rRNA(简称16S)如何参与原核核糖体。

•16S rRNA在原核生物中发挥重要功能

16S rRNA是一种细菌古细菌中常见的核糖体RNA分子。它在细胞中起着重要的功能,包括参与蛋白质合成的核糖体组装识别启动子序列的功能。

由于16S rRNA在细菌和古细菌中具有高度保守的序列区域和变异的序列区域,因此它被广泛用于细菌分类进化研究中。

相比之下,16S rDNA这个术语并不常用。rDNA是指编码核糖体RNA的DNA序列,因此16S rDNA可以理解为指代编码16S rRNA的DNA序列。

•科研中通常使用16S rRNA

在科研文献和学术讨论中,通常更常见地使用16S rRNA测序或16S ribosomal RNA测序。这种测序通常针对编码16S rRNA的DNA序列进行扩增测序,用来研究微生物的多样性和进化关系,特别是细菌和古细菌。

通过对16S rRNA基因进行测序,可以对微生物群落的组成和结构进行分析。这项技术在微生物学、生态学、医学农业等领域有广泛的应用。

02
为什么选择16S rRNA作为分类学和生态学的DNA条形码分子?

要用作DNA条形码,基因应具有以下特征:

•已知的细菌和古细菌都具有16S rRNA

它应该无处不在。否则,我们不能包括所有生物。已知细菌和古细菌的所有成员都具有16S基因

它应该包含足够的系统发育信息。16S大约有1500bp长,不算太短也不算太长。

原核生物中发现的16S基因内的遗传变异足以用于广泛分类范围的系统发育分析。它成功地用于推断门之间的系统发育关系,同时也用于同一属的物种之间的比较。

•容易通过PCR扩增

它应该很容易通过PCR扩增。16S基因有多个保守区域可以作为引发位点。这成为基于NGS的短读长测序的一个显著优势

经过多年的国内外研究和检测积累,我们拥有几乎所有已知细菌和古菌物种的16S序列数据库。通过在这些数据库中搜索16S序列,即使没有严格的分类学知识,也可以识别新分离的菌

03
16S的可变区和该选择什么样的PCR

引物用于扩增

已知细菌16S之间的序列变异分布不均匀。在细菌中鉴定出9个高变区,分别命名为V1至V9。

从长度来看,全长16S长度为1.5kb左右,单菌落的16S全长sanger一代测序仍然是菌种鉴定的主要手段,纳米孔和Pacbio的三代测序可以高通量的获得全长序列,对于希望高分辨率的分析菌种的研究有一定优势。

•三代测序建库成本较高,测序深度较低

三代的测序准确度目前逐渐改进,直接测序准确度可以在90%以上,纠错后可以提高到97~99%以上,已足够提供高精度的分类。三代目前主要问题在于建库成本相对较高,通过使用barcode可以降低部分但仍然偏高,此外普遍测序深度相对于二代测序要低许多

•二代测序由于读长限制需要引物进行扩增

由于二代测序读长限制,无法使用高通量测序技术对16S rRNA整个基因全长进行测序,因此必须针对基因的某一片段设计引物进行扩增测序

注:虽然有大量的文献研究不同片段的优缺点,但由于采用的样本类型区域引物以及分析角度的不同,尚没有针对所有样本的最佳可变区片段的共识。

基于大量项目经验和文献调研, 目前最主要的可变区选择是V4区和V3V4区,V4区长度为256bp左右,加上两侧引物长度为290bp左右,使用双端2x250bp或2x150bp可以测通,此外如454、life、Illumina Hiseq 4000, Illumina Novaseq 6000的测序平台读长也可以主要涵盖该区段读长。

•16S V4 引物通用性是所有可变区中最高的

传统的认知中,普遍认为测序片段越长,测到物种数据就越多,故倾向选择16S V3V4。然而16S V4(515-806)引物通用性相对是所有可变区中最高的。且在大规模菌群调查研究中,如人体菌群研究HMP,地球微生物计划EMP,欧洲的FGFP、美国肠道计划AGP以及全球土壤菌群调查,都采用V4区作为检测区域。16S V4目前仍然是国际研究中使用最广泛和认可的检测区域。

04
细菌名称的控制

细菌的命名法和命名受《国际原核生物命名法典》 (简称《原核生物法典》)的约束 ,但实际物种的分类则不然。例如,大肠杆菌(Escherichia coli)这个名称受《原核生物守则》的规范,但物种本身的特性和分类学分类不受规范。这意味着没有官方分类法,只有名称受到控制

因此,“有效物种”、“正式物种”或“官方物种”等术语没有意义。只能验证名称,因此可以使用 “具有有效发布名称的物种”。

05
物种名称是如何形成的?

物种名称应由二项式系统的两部分组成:

(1)通用名称和(2)特定词缀

如下示例:

该组合代表“物种名称”,并且在命名系统中应该是唯一的。所有分类群的学名必须被视为拉丁文;物种等级以上的属群名称是单个词

•生物分类按照不同等级

名称被组织成一个层次系统。

门(Phylum):门是细菌分类的最高级别之一,代表着细菌的大类别。细菌门包括了多个相关的纲和目。

纲(Class):纲是细菌分类的次级别,比门更具体。同一纲的细菌通常具有一些共同的特征和特性

目(Order):目是细菌分类的更具体级别,比纲更详细。同一目的细菌通常具有更相似的形态、生理特征和生态习性。

科(Family):科是细菌分类的更具体级别,比目更详细。同一科的细菌通常具有更相似的基因组组成和代谢途径。

属(Genus):属是细菌分类的更具体级别,比科更详细。同一属的细菌通常具有相似的形态生理特征和基因组组成。

种(Species):种是细菌分类的基本单位,代表着具有相似形态和生理特征的细菌群体。

亚种(Subspecies):亚种是种的更具体级别,用于进一步划分具有细微差异的细菌

目前,门等级不受原核代码控制。提议将“门”纳入守则,但该提案尚未得到控制原核生物守则的机构国际原核生物系统学委员会(ICSP)的讨论和批准。

在细菌分类中,门、纲、目、科、属、种和亚种的命名规则和方法遵循国际细菌命名法。

以下是一些要注意的事项:

命名规则:细菌的命名应该是拉丁化的,以便在全球范围内使用和理解。通常使用斜体字体或以斜体书写。

门、纲、目、科、属、种和亚种的命名:这些分类级别的名称通常是基于拉丁词根、描述性词语、地名、科学家的名字或其他相关特征来命名的。例如,属名可以以科学家的姓氏命名,种名可以以形容词或名词来描述特定的特征。

•每个细菌分类级别的名称是唯一的

命名的唯一性:为了避免混淆,每个细菌分类级别的名称必须是唯一的。这意味着同一级别下的不同分类单元不能有相同的名称

命名的正式发表:细菌分类的名称需要通过正式的科学出版物发表,以确保其被广泛认可和接受。这有助于维护分类的一致性和准确性。

命名的修订和更新:随着科学研究的进展和新的发现,细菌分类可能需要进行修订和更新。新的分类单元可能会被提出或已有的分类单元可能会被重新归类。这些修订和更新需要经过科学界的讨论和认可

例如下面是假单胞菌菌名称和分类:

这些名称是由提出物种并将其分配给属的科学家给出的。例如, Thermacanus属已被提出,但并未将其归属于已知科。在NCBI分类学中,它属于芽孢杆菌目的暂定科“ Bacillales Family X. Incertae Sedis ” 。

EzBioCloud数据库将每个物种分配在完整的等级系统下,Thermicanus 被分配在暂定创建的家族“ Thermicanus_f ”下(请注意,这是一个无效名称,并且不是斜体)。当然,任何人都可以通过发表提案来提出Thermacanaceae家族的建议。

06
如何验证名称(有效发布)?

如前所述,名称由原核代码控制。要验证名称,该名称应包含在下述列表之一中。

▸ 批准的细菌名称列表

该论文由Skerman、McGowan 和 Sneath于1980年发表 ,标志着原核生物命名法的新开始。

此列表中的任何后续更改均由《国际系统与进化微生物学杂志》(IJSEM)(前身为《国际系统细菌学杂志》(IJSB))发布。

IJSEM中发布了两种类型的更新列表,即“通知列表”和“验证列表”。

▸ 通知列表

IJSEM国际原核生物系统学委员会(ICSP)和国际微生物学会联盟(IUMS)细菌学和应用微生物学部的官方期刊。这意味着IJSEM是原核生物命名法的官方期刊。但是注意,没有官方的细菌分类法

任何包含在IJSEM中发布的名称更改(新分类群或名称更改)的分类提案都将自动由IJSEM的列表编辑进行审核。如果论文符合《原核生物守则》的要求,则拟议的更改将被列入“通知列表”并被正式“验证”。

▸ 验证列表

原核代码还允许科学家有效验证在IJSEM以外的期刊上发表的名称。一旦名称被公布,就被称为“有效公布”。

任何关心科学的人都应该确保任何有效发布的名称都得到验证,方法是将出版物PDF发送给 IJSEM,并证明(对于物种和亚种)指定的类型菌株可以不受限制地从位于不同地区的至少两个公共培养物种保藏中心获得。

这可以由包括作者在内的任何人来完成。不这样做的带来的后果可能是有害的,因为该名称“有效发布”但从未“验证”。如果满足原核生物守则的所有要求(对于新物种和亚种,特别是规则27和30),IJSEM 的列表编辑将在验证列表中添加名称。

▸ 无效名称

不幸的是,在某些情况下名称无法验证。例如:

•一个名称在1980年之前被广泛使用,但在1980年没有被列入批准的细菌名称列表。

•一个名字在IJSEM之外发布,但从未被验证。

•没有人将PDF和进一步所需的文档发送给 IJSEM 进行验证。

•该出版物不符合准则的最低要求。

注:未有效公布的名称要用引号括起来,例如“Selenomonas Massiliensis”以区别于有效公布的名称。

•验证新物种的最低且唯一要求

根据原核生物守则, 验证新物种和亚种名称的最低且唯一的要求是:

必须指定类型菌株。有时,描述新物种的论文不会提及哪个菌株是模式菌株。在这种情况下,名称无法验证。

•模式菌株应保藏于两个不同国家的两个培养物保藏中心。这确保了典型菌株仍然可用,例如当培养物保藏中心停止其活动或丢失菌株时。

•模式菌株必须通过培养物保藏中心可供任何人使用。专利菌株不能作为模式菌株。如果您想为某个菌株申请专利并限制其分布,则它不能作为物种或亚种的命名类型。

小结

以上总结起来如下:

确认命名规范:首先,确保您了解国际微生物学命名规范,如IJSEM国际原核生物系统学委员会。这些规范包括命名原则、命名要求和规则,以确保新细菌名称的准确性和一致性

检查已有命名:在确定您的新细菌名称之前,进行一次详细的文献调研,以确保该名称没有被其他研究人员使用或已经被正式命名。搜索相关数据库和文献,如国际细菌命名索引(International Journal of Systematic and Evolutionary Microbiology)和PubMed,以避免重复命名

提交命名申请:一旦您确认您的新细菌名称符合命名规范并且尚未被使用,您可以准备提交命名申请。通常情况下,命名申请需要包括详细的描述、分类学特征、基因序列数据等相关信息。您可以向国际微生物学协会或相关的命名委员会(前面说的IJSEM)提交命名申请。

合作与审查:在提交命名申请之前,建议与其他研究人员、领域专家或命名委员会进行合作和讨论。这样确保命名申请符合规范。

审核和正式发布:一旦命名申请被提交,相关的命名委员会将对其进行审查。如果您的命名申请符合规范,经过审核后,新细菌名称将被正式发布,并被纳入相应的细菌命名索引和数据库中。

07
为什么使用正确的名称和庞大菌群

数据很重要?

细菌名称的设计或命名是为了科学地组织,以提供基于系统发育的生物学见解;使用分层分类系统可以实现这一点。

•正确的名称对于解释微生物与其他数据的关联非常重要

例如,我们认为大肠杆菌与其他大肠杆菌物种比与芽孢杆菌物种有更多的表型特征。因此,使用正确的名称对于解释微生物组和其他类型的数据至关重要。

不幸的是,在当前的命名法中仍然有许多名称位于错误的位置。例如,Clostridium scindens因其在人类肠道菌群胆汁酸代谢中的重要作用而闻名,并且仍然保留着Clostridium的名称。然而,它甚至与梭状芽胞杆菌属并不接近 ,应归类为毛螺菌科的一个新属

真正的梭菌属(Clostridium)属于梭菌科(Clostridiaceae)。例如Ruminococcus Sp(梭状芽胞杆菌

梭状芽胞杆菌簇XIVa和IV 是已知在人类微生物组发挥主要作用的细菌群。这些细菌簇在1994年才进入16S rRNA系统发育。

然而梭菌簇XIVa和IV 不代表正式命名法,也不表示单个分类群,例如属或科。自1994年以来,许多最初指定的属于梭状芽胞杆菌簇XIVa和IV的物种已被重新分类为新属

•一些细菌存在错误的命名和分类

然而,这些簇中仍然存在错误分类的梭菌属物种,从而保留了旧名称。比如:Faecalibacterium prausnitzii(普拉梭菌),革兰氏阴性,对氧极度敏感,属于梭菌科,厚壁菌门。

该物种就是属于Clostridium clusterIV分组的Clostridium leptum group柔嫩梭菌类群,是该类群的最优势菌种。一般中文翻译柔嫩梭菌指的就是这个类群,其代表物种就是普氏栖粪杆菌,又名普拉梭菌。

以下是当前EzBioCloud数据库中对应于梭状芽胞杆菌簇XIVa和IV的分类群。

Candidatus“是一个拉丁语词汇,通常用于微生物学中。它表示对一种微生物的命名,表示该微生物是一个新发现的候选物种,尚未被正式分类或命名。在中文中,”Candidatus“通常被翻译为”候选物种”或”候选菌种”。这个术语用于描述那些已经被发现但尚未被完全分类的微生物,通常是由于它们的特殊性质或难以培养。

总结来说,使用正确的细菌名称可以确保科学研究准确性和一致性。细菌命名规范旨在为每个细菌物种提供唯一的、明确的名称,以避免混淆和误解。通过使用正确的名称,研究人员可以准确地标识和描述细菌物种,使得研究结果具有可比性,并促进科学交流和合作。

使用庞大的菌群的数据库,便于数据整合和共享。通过将新细菌与已知的细菌物种进行比对,可以确定其在分类学上的位置和相关信息。这有助于构建细菌分类树、建立物种间的关系,并为进一步的研究提供基础数据。

此外,正确的细菌命名和细菌样本数据库的比对可以促进研究进展和新的发现。通过对新细菌进行分类和命名,研究人员可以更好地理解细菌的多样性、生态学角色和潜在的应用价值

人体肠道菌群健康检测需要依托本地化人群菌群样本检测的大数据库,区分菌群的组成和功能个体间存在差异,并且与本地人体的生理状态、生化代谢、免疫炎症以及疾病风险等建立关联。通过建立大数据库,可以收集大量的菌群样本和相关数据,进行统计学分析和模式识别,从而揭示不同菌群组成与人体健康之间的关联。

总之,使用正确的细菌名称和拥有庞大的细菌样本数据库进行比对是确保科学研究准确性、促进数据整合和共享、推动研究进展和发现的关键步骤。

08
候选物种

在某些情况下,即使一个物种是真实的并且具有科学重要性,也无法满足原核生物守则的基本要求

根据正式命名法,这些物种的名字永远不会得到有效的公布。因此,分类学家创造了“Candidatus”一词来支持暂定命名。

对于Candidatus名称,没有纯培养物或分离株,因此没有典型菌株。由于Candidatus不属于正式命名法,因此不受原核法典管辖。

一个典型的例子是Candidatus Pelagibacter ubique该物种含有来自海洋的未培养或培养的细菌,可能是地球上最丰富的物种,因此它一定非常重要。

它从未得到验证的原因是该物种可以培养,但不能以培养物保藏所可用于长期储存的方式或规模进行培养。因此,无法满足该准则的最低要求。此外,特定的加词(ubique)格式错误。

并非所有Candidatus类群都得到了很好的表征,因为Candidatus的等级不受原核生物守则的规定

•一般Candidatus的最低标准:

•提供全长高质量16S 序列,因为该基因是细菌和古细菌分类学的框架。

未受污染且相当完整的基因组序列的可用性(通过域级核心基因的存在进行检查)。

•应提供最低限度的生态和代谢特征

09
如何命名一个新的分类单元?

名称最好能代表该物种的典型特征。例如, Plasticicumulans这个名字的意思是“积累的塑料”。该属因积累生物塑料聚羟基脂肪酸酯而得名。

命名新分类单元的另一种流行方式是以人的名字命名。这个人应该有对科学做出贡献,尤其在微生物方面。著名的埃希氏菌(Escherich)和沙门氏菌(Salmon是以微生物学家埃舍里奇(Theodor Escherich)和萨蒙(Salmon, D.E.)的名字命名的。

此外,以地理位置命名也很流行,但一般不鼓励。

用MiCoNE工具对16S序列数据进行共现网络分析

谷禾健康

微生物群通常由数百个物种组成的群落,这些物种之间存在复杂的相互作用。绘制微生物群落中不同物种之间的相互关系,对于理解和控制其结构和功能非常重要。

微生物群高通量测序的激增导致创建了数千个包含微生物丰度信息的数据集。这些丰度可以转化为共现网络,让我们了解微生物组内的关联。

然而,处理这些数据集以获得共现信息依赖于几个复杂的步骤,每个步骤都涉及大量工具相应参数的选择

本文给大家介绍一个标准化流程——MiCoNE,该流程可以从微生物群落的16S序列数据中生成稳健且可重复的共现网络,并使用户能够交互式地探索在每个步骤中使用不同的替代工具和参数时网络会如何变化。

MiCoNE推理出的共现网络结果可以导出为json格式,也可以通过Python包导出为Cytoscape、GML或其他常见的格式。

MiCoNE模块化式的构建使它可以分步骤运行,用户可以随时停止,也可以随时从任一步骤开始。文中使用了真实的实验数据、模拟微生物群数据以及合成的微生物相互作用数据,对MiCoNE的性能表现进行了一些测试和评估。

方 法

下图为MiCoNE的工作流程介绍。

该流程主要由五个模块组成,分别为:

  • SP(数据预处理)
  • DC(去噪和聚类)
  • TA(物种分类)
  • OP(OTU和ESV处理)
  • NI(网络推理)

每个模块下的方框都告知了该模块下包含的进程,以及执行该进程可选的工具或方法

SP模块中主要执行对序列的质检修剪,在MiCoNE中提交单个或多个样本混合的序列都可。

DC模块主要执行去噪和聚类,然后检查并移除序列中存在的嵌合体,该模块的输出是一个计数矩阵,它描述了每个样本(矩阵的列)中存在的特定OTU或ESV(矩阵的行)的读取次数

TA模块主要执行物种分类。可选的参考数据库有:

  • Greengenes13_8 (截至2013年5月)
  • Silva 138 (截至2020年8月)
  • NCBI的16S RefSeq数据库(截至2021年10月)

这些数据库是使用RESERT QIIME2插件下载和构建的。

在分配过程中,代表序列可能会被分配给一个“unknown”属,原因有两个:

一是数据库中与该序列相关联的分类标识符中没有包含给定的属信息

第二个更可能的原因是,数据库包含多个与查询(代表)序列非常相似的序列,而Consensus算法(来自QIIME2)无法以所需的置信度指定一个特定的属信息,也就是说如果数据库中没有该属信息,或者数据库中有多个与查询序列非常相似的序列,那么该代表性序列可能被标记为“unknown”属。

OP模块主要执行OTU或ESV计数矩阵的归一化、过滤和数据转换。默认情况下:

如果一个样本中的总读数少于500,那么过滤掉该样本

如果特征的相对丰度小于1%,则过滤掉该特征

如果特征在所有样本中的出现频率(含有该特征的样本百分比)小于5%,并且所有样本中该特征的计数总和小于100,则过滤掉该特征

换句话说,如果一个样本的数据量太小或者一个特征在样本中的出现频率、丰度都很低,那么它们都将被过滤掉。

NI模块主要执行网络推理,该模块包括四种基于相关性的方法和六种基于直接关联的方法,可以自由组合,对于计算显著性水平P值,根据关联强度和p值过滤后,应用研究人员开发出的共识算法,最终生成共现网络。

MiCoNE中包含的工具和方法在测试集中的表现和差异比较

1. 在DC模块中发现不同的去噪和聚类方法在识别丰度较低的序列方面有差异

使用五种方法处理了FMT研究的16S数据,分别为:

  • OR(open-reference clustering)
  • CR(closed-reference clustering)
  • DN(denovo clustering)
  • D2(DADA2)
  • DB(Deblur)

前三种方法来自QIIME2的vsearch插件OR和CR方法使用的参考数据库为Greengenes

通过计算所有样本的平均UniFrac距离,并在不同方法中进行比较,发现除了Deblur之外,其它方法产生的代表性序列在按其丰度加权时彼此相似差异主要在于分配较低丰度序列时。

哪个工具最能准确地概括样本中的参考序列?

使用相同的步骤处理了模拟数据集(mock4、mock12、mock16),并将预测的代表性序列与真实序列及其分布进行比较

结果如图CD,预测的序列分布与预期的完全不同。数据集之间的差异表明数据集本身在方法性能中有着很大的影响力

总体而言:

DADA2似乎是最可靠的,如图AB,它的加权UniFrac值在所有模拟数据集上都有更高的表现。

其次是Deblur,因为比较而言,OR和DN方法返回的OTU数量要多很多,如果不执行严格的过滤,将影响NI步骤的准确性。

但如果需要对不同16S区域进行测序的研究进行比较CR和OR方法可能是更好的选择。

去噪后,要对序列进行嵌合体检查,在MiCoNE中应用了两种检查方法,uchime-Denovoremove-bimera,经测试这两种方法之间没有显著差异

图AB用于分析的数据来自FMT研究,图CD中用于分析的数据来自模拟数据的mock 4、mock 12和mock 16数据集。基于以上结果,DC模块中的默认方法是DADA2+remove-bimera。

2. 在TA模块中发现参考数据库在分配目水平以下的分类水平时有较大差异

MiCoNE使用的16S分类参考数据库分别是:

  • Silva
  • Greengenes(GG)
  • (NCBI)RefSeq

对于GGSilva数据库,使用QIIME2的“naive Bayes”分类器,对于NCBI数据库,使用作为QIIME2插件的“BLAST”工具。

这些工具都经过了很好的量化和优化,因此都使用的默认参数

结果如下图所示:

图A展示了三个不同的参考数据库对前50个具有代表性的序列进行的属水平的物种注释,说明了相同的序列是如何被分配到不同数据库中的不同属中的。在GreengenesNCBI数据库中,代表序列的很大一部分被归入一个“unknown”。

图B比较了不同参考数据库之间分配给同一水平的代表性序列的数目(总和是前100个代表性序列),在较高的分类水平上,不匹配较少,但即使在目水平上,也存在超过51%的不匹配,这表明不同数据库的物种注释结果一致性较差

图C比较了模拟数据中不同数据库预测的物种和已知物种之间的Bray-Curtis距离,差异结果表明对于每个数据集,不存在唯一的最佳数据库选择,因为所有的数据库都表现出相似的性能。但由于Greengenes数据库的主流性,它被选为MiCoNE的TA步骤的默认参考数据库

3. 在NI模块中发现不同的网络推理方法生成的网络在边密度和连接性方面表现出显著差异

图A, 对来自FMT研究的健康人群数据使用不同网络推断方法生成了九个网络。每个网络的节点(代表物种)在圆形布局中排列,可以直接可视化比较它们之间的连接差异绿色的连线表示正相关橙色的连线表示负相关

这些网络看起来不同,并且在连接性方面差异很大,值得注意的是基于相关性的方法通常会产生具有更高边缘密度的网络。

而在本文中基于相关性的方法有sparcc、propr、spearman和pearson,设置了0.3的阈值;基于直接关联的方法有flashweave、spieceasi、cozine、harmonies和spring,设置了0.01的阈值。

为了量化网络之间的差异,如图B,使用Upset图展示所有网络中有很大比例的共享或单一节点的分布(68个里有33个是共享的)。

图C边缘重叠Upset图显示,这些连接中的一小部分实际上是共享的(202条里有8条是共享的)。

4. 在基准数据集中,scaled-sum(SS)方法表现出很高的精确度

研究人员开发了两种方法来生成共识网络(consensus network),分别为:

  • scaled-sum(SS)
  • simple voting(SV)

它们将基于相关性直接关联方法计算并过滤后的网络进行组合。基准数据集是计算机合成的相互作用数据,用于比较基于MiCoNE流程中的每种关联方法生成的预测关联的精确度和灵敏度。结果如下图:

图AC精确度的结果,图BD灵敏度的结果。总体而言,θ=0.333的SS方法表现最佳,灵敏度和精确度处在良好的平衡上,因此在MiCoNE工具中默认使用SS方法

5. 不同处理方法对共现网络的影响力比较,其中TA模块最甚

为了分析不同的处理方法对推理的共现网络的影响(在共识估计之前),研究人员使用MiCoNE中所有的方法组合生成网络,并量化每种选择导致的可变性,结果如下图:

图A为在线性模型上使用方差分析(ANOVA)计算MiCoNE流程中的DC、CC、TA、OP和NI步骤所贡献的网络方差百分比(从FMT数据集生成)。

图BPCA图每个点表示使用MiCoNE流程中可用的工具参数的不同组合推理的网络。点的颜色对应于流程中每一步骤(DC、TA、OP和NI)。

数据显示TA步骤对网络方差的影响最大,这意味着参考数据库的变化将导致截然不同的网络,其次是OP步骤的过滤水平和所使用的NI算法。

MiCoNE流程中的默认参数设置

经过上面的测试和分析,研究人员发现工具和参数的选择对最终呈现的网络有很大的影响,因此提供了一组默认设置,如下表,灰色突出显示的工具是MiCoNE的默认工具,这些工具是基于模拟和合成数据集的基准测试推荐的。

使用上面的默认工具和参数从FMT数据集中分别对自闭症人群(ASD)和健康对照(Healthy)生成的网络进行比较,结果如下图,对照样本的网络中有22个独有的连接,自闭症样本的网络中有12个独有的连接,两个网络之间有7个共同的边。

研究人员认为尽管这些独有的关联并不意味着实际的相互作用,但它们仍然可以作为文献调查和进一步探索菌群失调机制的起点。

结 论

MiCoNE工作流程提供了一个平台,可以轻松评估任何其他感兴趣的数据集在每个工作流程步骤的准确性、方差和其他属性。虽然MiCoNE内包含的工具方法较多,但研究人员基于测试结果也提供了一套默认参数,公开的测试结果也提高了可信度

目前而言,MiCoNE的网络分析主要以属水平为基础,节点的最低分辨率是属水平,如果无法确定到属水平,就会使用上一层分类级别(例如,科水平)。不过,研究人员表示会持续更新和扩大MiCoNE的工作范围。

该项目的github地址

GitHub – segrelab/MiCoNE: The Microbial Co-occurrence Network Explorer

https://github.com/segrelab/MiCoNE

参考文献:

Kishore D, Birzu G, Hu Z, DeLisi C, Korolev KS, Segrè D. Inferring microbial co-occurrence networks from amplicon data: a systematic evaluation. mSystems. 2023 Jun 20:e0096122. doi: 10.1128/msystems.00961-22. Epub ahead of print. PMID: 37338270.

肠道菌群检测在临床感染中的应用

谷禾健康



感染是人类面临的健康威胁之一。各种病原体,如细菌、病毒、真菌、寄生虫等,存在于我们日常接触的环境、物品、食物等中。一些常见的感染病例包括感冒、流感、腹泻、组织器官或血液感染等,在全球范围内广泛传播。这些疾病的传播方式多样,可能通过空气、水源、接触和食物等途径传播。

感染的症状包括发热、头痛、咳嗽、呕吐、腹泻等,严重感染可能导致器官衰竭、败血症等并发症。感染的原因包括接触感染源、免疫力下降、不良生活习惯等,易感人群有免疫力低下者、老年人、慢性疾病患者等。

研究发现,肠道菌群与感染也有密切关系。肠道菌群有助于消化、吸收营养物质,同时还调节人体免疫系统的功能。但如果肠道菌群失衡,会导致多种疾病,包括感染

本文我们来了解一下关于感染的种类,症状,致病途径,易感因素,免疫系统应对病原体的三大防线,肠道菌群失衡与免疫系统的关联,以及肠道菌群检测在临床感染案例中的应用。

01
关于“感染”

感染分为哪几种类型?

感染可以按多种不同方式分类。

按影响部位分为局部和全身的:

  • 局部(影响身体的特定部位)
  • 全身性(影响整个身体)

按影响持续时间分为急性和慢性的:

  • 急性(以快速发作和消退为特征)
  • 慢性(以炎症过程对组织的持续性和渐进性破坏为特征)

按病原体类型划分:

病毒、细菌、真菌、寄生虫等都是导致感染的不同类型的病原体。

► 细菌感染

细菌感染是由体内过量的有害细菌引起的。正常情况下,人体的免疫系统能够通过白细胞和吞噬细胞等机制对抗细菌感染。但如果人体的免疫系统出现异常或受到外界因素干扰,细菌就可能趁虚而入,导致细菌感染的发生。

常见的细菌感染包括:肺炎、腹泻、皮肤感染、脑膜炎、膀胱炎、中耳炎等。

► 真菌感染

真菌感染多为继发性感染,由机会致病性真菌引起,特别是深部真菌感染多是由于各种诱因使机体免疫功能显著下降所致。

真菌是一类与细菌和病毒不同的微生物,它们包括霉菌、酵母菌等,常见的真菌感染有白色念珠菌感染、曲霉菌感染等。

► 病毒感染

病毒感染与细菌感染不同,因为病毒本身并不能独立存在,只有当它侵入人体细胞后才能产生病毒性病变。当病毒进入细胞时,它会留下迫使细胞复制的遗传物质。

当细胞死亡时,它会释放新的病毒感染其他细胞。并非所有的病毒都会破坏细胞——有些病毒会改变细胞的功能。

病毒会导致多种疾病,包括普通感冒、流感、登革热、水痘、艾滋病等。

► 寄生虫感染

寄生虫是需要以其他生物为食才能生存的生物。有些寄生虫不会对人产生明显影响,而有些寄生虫会生长、复制并侵入器官系统

常见的寄生虫感染有阿米巴病、血吸虫病、肠道蠕虫感染等。

感染的症状是什么?

无论何时发生感染,身体的一线反应都是炎症性的。

炎症是身体抵御疾病的方式,同时促进受影响组织的愈合。炎症的主要症状:红、肿、热、痛组织功能的暂时丧失

在感染期间,由于潜在的炎症反应,人们通常会出现非特异性的全身症状。症状和严重程度可能因受影响的器官系统而异,但可能包括:

  • 发烧
  • 发冷
  • 头痛
  • 疲劳
  • 肌肉疼痛
  • 关节疼痛
  • 淋巴结肿大

判别感染的临床诊断方式有哪些?

 病史采集

询问患者或病人家属发病情况、既往病史、服药史、过敏史、流行病学史等。

 体格检查

体温、呼吸、心率、血压、身体部位肿胀、红肿、局域性压痛、淋巴结肿大等都是感染体征,可以作为诊断和判断感染病情严重程度的参考指标

 实验室检查(抽血、尿检等)

通过血液、尿液、呼吸道分泌物、伤口分泌物等样本的化验检查可以更直接地确定病原体的种类和数量,以及感染程度的严重程度

 影像学检查(做CT等)

如X射线、CT、MRI等技术,可以帮助医生了解感染的程度以及可能受影响的部位,从而确定感染的类型和严重程度。影像学检查为临床医生在明确诊断之前的经验性治疗提供线索。

 快速诊断测试(做核酸等)

如血清学检测、ELISA试剂盒、PCR技术等,可以在短时间内快速准确地检测出患者血清中的病原体抗体、抗原以及核酸等,提供对感染病原体的敏感性和特异性的快速诊断。

病原体通过哪些途径进入人体?

呼 吸 道

普通感冒的另一个名称是上呼吸道感染鼻病毒是引起感冒的最常见病毒。其他通过空气传播的传染病也以这种方式感染。

感冒和流感通常不会直接影响肺部,但它们可能会导致继发性细菌感染——肺炎。

消 化 道

如果不小心吃了被细菌或病毒感染的食物、饮料或水、或是农产品在种植或运输过程中接触了污染物,或者过期变质的食物等,病原体也一并被吞入,感染胃部或肠道,有时表现为腹泻和/或呕吐。一个常见的例子是细菌性肠胃炎,也称为食物中毒。

泌尿生殖系统

病原体也可以通过泌尿系统进入人体,如尿路感染,或生殖系统,如性传播疾病。传染源可能停留在局部,也可能进入血液。例如,性传播疾病最常感染生殖器,而艾滋病毒通过体液携带,也可以通过唾液、精液或血液传播。

皮 肤 接 触

皮肤的功能之一是充当抵御感染的屏障。但如果有割伤、抓伤、虫咬或任何类型的开放性伤口,皮肤阻挡不住,病原体可能会进入血液。如:蜂窝组织炎、脓疱疮等都是通过皮肤接触开始的常见感染。

什么情况下会发生感染?

  • 接触患有传染病的人,或患者的体液、唾液或粪便等分泌物
  • 接触感染病原体的物体,例如体表、衣服、洗手间、餐具等
  • 短暂接触空气中的病原体(例如咳嗽、打喷嚏)
  • 吃没洗干净(病原体污染)的食物或水
  • 生活条件不良,例如不干净的住房、缺乏卫生条件等
  • 破损的皮肤和黏膜

无论来源如何,任何人都可能感染。但有些人更容易感染,或感染并发症风险增加,例如:

  • 儿童、老年人、孕妇
  • 免疫系统功能低下的人,例如患有艾滋病、白血病、器官移植患者等
  • 长期服用免疫抑制剂的人,例如肾脏移植和骨髓移植患者
  • 患有慢性疾病的人,例如糖尿病、心脏病、哮喘、肺疾病、肝脏疾病等
  • 医务工作者,接触感染的机会更多
  • 住在学校、医院、养老院、监狱等集体环境中的人。
  • 旅行者,更容易接触到其他地区的病原体
  • 亚健康人群 / 肠道菌群失调人群

以上我们可以看到,那些免疫系统功能低下的人更容易发生感染。那么当病原体入侵时,免疫系统正常运作会发生什么呢?

下一章节我们来了解一下,默默帮助我们抵抗病原体的——免疫系统。

02
免疫系统对病原体的防御

前面章节我们知道感染是微生物进入人体并造成伤害的结果。引起感染的生物体很多,包括病毒、细菌、真菌、寄生虫等。

当它们试图攻击的时候,免疫系统是如何运作的?

第一道防线——物理屏障

正常情况下,皮肤、呼吸道等组成的物理屏障在保护你,一般只有水分、气体等小分子物质进出,细菌、病毒难以入侵

然而,也许你只是摔了一跤擦破了皮,也许只是水果刀不小心划伤了…皮肤作为免疫系统的第一道防线破了

这时候细菌就开始争先恐后进入体内,不断繁殖,增强武力值。

第二道防线——先天性免疫防线

(广泛执行任务)

巨噬细胞——以吞制敌

巨噬细胞开始介入这场搏斗,它往往通过吞噬的方式以一敌百,不管三七二十一先吞下将其困在膜泡里,利用酶等物质分解杀敌,如果细菌还来不及生长繁殖就被吞完了,这场搏斗也就随之终止了。该过程可能引发局部的炎症,表现为红,肿,痛,热等。

但如果一直持续下去,巨噬细胞也可能累了,它开始发出紧急信号,召集后援团…

中性粒细胞——不分敌我直接干

中性粒细胞出现了,它离开了原本在血液中巡逻的路线,第一时间冲过来加入,武力值开始飙升,健康细胞也会被它误杀,它也会给细菌设置障碍,从而困住细菌将其干掉。

它们也会“适可而止、功成身退”,几天后自杀,不带来更多伤害。

如果这还不足以击退,发出的求救信号越来越多,当中枢神经检测到,下丘脑便会开始调节体温上升,也就是发烧。较高的体温可以抑制病原体的活性与繁殖。

以上就是人体免疫系统的第二道防线,也就是先天性免疫(非特异性免疫)。

如果第二道防线没有阻止入侵者呢?

最终对抗会发生在第三道防线,也就是后天性免疫

第三道防线——后天性免疫防线

(形成记忆,长期保护)

后天性免疫系统是一个成长、学习和经验的累积,学习和记忆着病原体的模式,进而识别并产生特异性的免疫应答。具有极强的打击和防守能力,可以持续有效地保护我们的身体。

这时候,树突状细胞登场了。

树突状细胞——先天性免疫和后天性免疫之间的桥梁

树突状细胞开始手撕敌军,把病原体碎片暴露在自己的细胞膜上,带着病原体的信息去淋巴结,这里有很多T细胞待激活,当T细胞出生时会经过一个训练,之后会配备一个装备。

树突状细胞要寻找的正是可以和病原体表面特征蛋白结合的那个T细胞

T细胞——等待激活,加入战斗

找到后该T细胞会被瞬间激活,然后开始分裂复制,并分化出三种T细胞,分别为:

  • 杀伤T细胞(赶往前线助阵,杀死感染细胞)
  • 辅助T细胞(释放信息,寻找B细胞去激活)
  • 记忆T细胞(留在淋巴结内)

B细胞——产生抗体,继续奋斗

当辅助T细胞过去找到B细胞识别结合之后,B细胞瞬间激活,大量复制,产生抗体。

抗体的出现意味着胜利的曙光,抗体表面有多个结合点,可以把多个病原体结合在一起,病原体捆在一起行动不便,失去活力。其他免疫细胞过来可以轻松把它们干掉。

抗体还可以拉着病原体连接杀伤细胞,将其消灭。

记忆T细胞和B细胞——学会对付,默默守护

在清除病原体后,分化出来的大量免疫细胞完成任务,会程序性自杀,防止继续占用资源。会有一小部分留下来,也就是记忆T细胞和记忆B细胞,等待病原体下次来的时候直接杀敌。

以上就是免疫系统的三大防线,它们的存在为人体提供了多重保护。正是因为它们的不懈努力,在感染发生后我们也会挺过来。

研究发现肠道菌群与人体免疫功能以及许多疾病的发生密切相关。

肠道菌群失衡如何与感染相关?肠道菌群与免疫系统之间存在怎样的关联?

下一章节我们继续来看。

03
肠道菌群在免疫系统中的作用

➤ 肠道菌群可以直接抑制或促进免疫反应

肠道菌群中某些微生物和宿主的免疫系统之间存在相互作用,肠道菌群能够影响和调节上述第三大防线中B细胞和T细胞的活性,通过调节免疫细胞的行为,促进抗原递呈细胞的活化和作用,影响细胞因子及其受体的表达等。

➤ 肠道菌群代谢产物调节免疫系统

肠道微生物代谢产物能够影响免疫平衡。例如,肠道菌群可以通过代谢产生短链脂肪酸、色氨酸胆汁酸等代谢产物,这些代谢产物能够通过激活特定的神经元和免疫细胞来调节免疫反应,从而维持肠道黏膜的免疫稳态。

短链脂肪酸可能具有抗炎和免疫调节作用,当然短链脂肪酸只是一部分,因为除了产生的酶和其他代谢物之外,细菌本身的成分,包括脂多糖、细胞囊碳水化合物和其他内毒素,也可能被释放并对宿主产生二次影响。

肠道微生物群衍生的代谢物丙酸盐(一种短链脂肪酸)水平降低可能导致 Th17/Treg 细胞分化的病理失衡

一些菌群代谢物,如 4-甲基苯甲酸、3,4-二甲基苯甲酸、己酸和庚酸等,已被证明会加剧结肠上皮细胞的损伤,从而影响免疫。

在肠道菌群失调的情况下,某些有益菌可能会缺乏消化酶等必要的代谢产物和物质,使机体免疫系统无法及时有效地对病原体进行攻击。

➤ 通过肠道屏障影响免疫系统

许多致病菌肠道屏障的特定元素相互作用。一些有益的菌群可以激活上皮细胞,加强它们的黏附能力和抗病原性,从而提高肠黏膜的免疫防御能力。

致病菌和抗生素的使用可能会通过增强黏液降解,或抑制正常的共生黏液生成触发器来扰乱肠道黏液层,从而破坏肠道屏障,也就是我们常说的“肠漏”。

肠道屏障的破坏也会诱发体内炎症:与微生物相关的代谢物离开肠道并进入血液。作为回应,身体会产生细胞因子和其他介质,有效地启动炎症反应。

肠道上皮组织内的细胞将细菌代谢物传递给免疫细胞,从而在局部和全身范围内促进炎症。这种情况的持续存在可能导致亚急性慢性炎症,随后可能会导致炎症性肠病、糖尿病或心血管疾病等疾病的发展。

doi.org/10.3390/biomedicines11020294

➤ 炎症标志物

C 反应蛋白 (CRP) 是一种下游炎症标志物,可以通过特定肠道微生物的抗炎代谢产物的作用下调。当巨噬细胞和 T 细胞分泌白细胞介素 IL-6 时,该分子随后以高水平释放到循环中。我们在肠道菌群检测报告中也可以用CRP来辅助判断炎症状况。

炎症标志物是复杂的双向调节机制的组成部分,并且参与多个重叠过程,与感染和体内稳态的维持有关。

由此,肠道菌群变化对于免疫功能强弱具有重要指示作用,那么我们可以结合肠道菌群检测中的实际案例,来了解更多关于肠道菌群和感染的关联。

案例分享

在谷禾肠道菌群健康检测中,有许多关于感染的病例,我们选取一例来详细看一下。

年初,一名7岁女孩入院,经诊断后发现患有:

  • 中性粒细胞功能低下及菌血症
  • 粪便培养见真菌感染
  • 合并存在体重降低、低血糖及睡眠障碍

菌血症是一种严重的感染症状,通常由细菌或真菌等微生物感染引起。菌血症分为原发性和继发性。

只有大约20%病例是原发性菌血症,也就是说病原体最初进入血液系统并引起血流感染,例如创伤、手术、注射等导致血管受损直接感染。

其余大多数都是继发性菌血症,也就是在其他部位先感染,未能及时处理,致使病原菌进入血液系统引起继发性菌血症。

常见的菌血症类型包括葡萄球菌菌血症,肺炎链球菌菌血症,鲍曼不动杆菌菌血症,克雷伯菌菌血症,真菌菌血症等,都是相应的致病菌感染引起的。

入ICU后,出现腹胀问题,且愈发严重 ⇊

► 入院后干预措施

  • 针对腹胀等问题,进行了组合抗生素注射治疗1周,但未见好转。
  • 同时,菌血症提示有严重感染的存在,因此考虑进行了肠道菌群健康检测。

肠道菌群检测结果显示:

1. 患儿肠道菌群严重失调

<来源:谷禾健康肠道菌群检测数据库>

显然,该患者的肠道菌群失调,多项指标均显示异常

从报告的肠道菌群总体状况这部分,我们可以看到,菌群多样性下降,其中革兰氏阳性菌明显偏高,革兰氏阳性菌包括葡萄球菌,链球菌,梭菌等,可能与多种感染相关。同时报告中致病潜力这项指标也是大幅上升

2. 存在艰难梭菌携带超标、酵母菌感染、不动杆菌超标严重(感染)情况

<来源:谷禾健康肠道菌群检测数据库>

艰难梭菌超标 ↑

艰难梭菌是一种常见的肠道病原菌。它可以引起广泛感染,症状最常见的是腹泻,伴随着腹部疼痛,刺痛,腹胀等不适,有些人还可能会出现发热,发冷,胃部压痛或疼痛,恶心呕吐的症状。

更严重的可能出现水样腹泻,心跳加快、体温升高、腹部绞痛、体重下降、腹部肿胀、肾功能衰竭等。

这与患儿的某些症状相符,从肠道菌群检测中可以发现艰难梭菌感染

艰难梭菌感染与免疫功能有怎样的关联?

艰难梭菌毒素通过炎症小体和TLR4、TLR5和含有核苷酸结合寡聚结构域的蛋白1(NOD1)信号通路刺激先天免疫细胞,随后产生大量促炎细胞因子(如IL-12、IL-1β、IL-18、IFN-γ和TNFα)和趋化因子(MIP-1a、MIP-2、IL-8),导致粘膜通透性增加、肥大细胞脱颗粒、上皮细胞死亡和中性粒细胞浸润,引发免疫功能低下。

这与患者一开始诊断中中性粒细胞功能低下相符。

艰难梭菌感染通常与抗生素使用相关

通过某些抗生素,特别是克林霉素,可能会去除大量肠道中的有益细菌,使艰难梭菌得以繁殖,导致结肠炎和随后的腹泻。

真菌——酵母菌感染 ↑

报告中可以看到酵母菌超标,存在感染。这与入院时的粪便培养中的真菌感染相吻合。

真菌感染可能通过影响肠道微生物群和免疫反应,促进病原体的定殖和发展

<来源:谷禾健康肠道菌群检测数据库>

不动杆菌属(75.709%)占比过多 ↑

从报告中的菌群详细构成这部分可以看到,不动杆菌属的丰度竟然超过75%,严重超标

这种情况下,不动杆菌属严重挤压了其他肠道核心菌属的生存空间,有益菌生长受限,菌群多样性下降,肠道菌群整体失调

不动杆菌属Acinetobacter是一类革兰氏阴性菌,该菌属于常见的医院感染病原体之一。不动杆菌属感染常见的病症包括呼吸道感染、泌尿道感染、创伤感染等,严重情况下还可能导致败血症。

不动杆菌属对常见抗生素经常会产生抗药性。这里不动杆菌属丰度较高可能与抗生素使用较多相关。

结合该患者的情况,一开始入院时的组合抗生素一周未见好转,可能与不动杆菌属占比过多相关,对许多常见的抗生素已经产生耐药性,且免疫功能低下,因此难以好转。

► 结合肠道菌群检测报告后的治疗方案

针对上述情况,临床考虑口服抗生素,针对消化道微生物进行抗感染治疗

初步选定:口服利福昔明 + 甲硝唑治疗。2天未见明显改善。

后改为:口服万古霉素 + 阿莫西林治疗。当天腹胀症状明显缓解3天治疗腹胀明显改善

同时辅助康复新液+B族维生素+谷氨酰胺治疗。

用药两周后,患儿整体情况平稳,仍存在轻微腹胀⇊

肠道菌群复查提示菌群结构基本恢复正常

<来源:谷禾健康肠道菌群检测数据库>

一年后随访,该儿童身体已经好转,生活正常。

备注:临床中还有其它治疗药物等没有全部分享,主要分享了与菌群相关的治疗,仅做交流,不能作为治疗参考。

结 语

宿主感染与肠道菌群之间存在复杂的相互作用,免疫系统有两个分支,即先天性适应性,它们协同工作以保护身体免受外部和内部威胁。这两个免疫系统分支都受到严格调节,肠道微生物群是其中的一个重要因素。

要揭开这其中的机制关联可能需要依靠营养学、流行病学、医学、免疫学和微生物学等多学科研究人员的共同努力。

不过从以上案例我们可以看到,肠道菌群健康检测在感染治疗中发挥重要价值。

辅助判别

在传统诊断中得知患者存在菌血症,真菌感染,但通过肠道菌群健康检测可以了解更多具体的感染信息,比如说艰难梭菌感染可能引起的腹胀等问题,不动杆菌属占比过大形成的抗生素耐药性。

除了致病菌超标等直观的信息之外,我们还可以判断整个肠道微生态的健康状况。肠道微生物群的失调可能导致肠道易感性增加,使得易感性疾病如艰难梭菌感染更容易发生。

辅助用药 

针对这些具体信息可以使用药更加精确,而不是直接使用常见的组合抗生素。

用对抗生素对于恢复速度有很大提升,同时也避免了患者因使用不必要的抗生素产生耐药性。

一种新的算法模型,填补微生物组纵向研究数据中的缺失值

谷禾健康

微生物组的纵向研究是一种长期跟踪微生物组变化的研究方法。在这类研究中,样本从同一人群或个人中多次采集,通过检测样本中微生物群落丰度的变化(如不同菌群的比例和种类),来了解微生物组随时间的变化趋势和特征。

根据微生物组不同菌群的变化,可以发现一些与健康或疾病相关的特征,从而为疾病预防和治疗提供参考。

但是,由于不同研究对象在纵向时间轴上的时间点分布不均匀且数量不同,难以进行有效的综合分析,一些时间点上的样本缺失导致大量数据无法利用。

为此,研究人员提出了一种名为DeepMicroGen的双向循环神经网络-生成对抗网络(GAN)模型,该模型根据观测值之间的时间关系进行训练,从而在时间序列数据中填补缺失值

本文介绍了DeepMicroGen模型的算法、并在性能评估上使用模拟和真实数据集与几种标准基线方法进行了比较,结果都表示DeepMicroGen模型无疑是优秀的

DeepMicroGen模型训练方法概述

如图中所示,DeepMicroGen模型主要分为两部分,生成器(Generator)和判别器(Discriminator)。

•生成器

生成器的目标是产生更真实的伪造数据,用于填补缺失值

•辨别器

判别器的目标是辨别真实的数据和伪造的数据,促使生成器不断地生成更加真实的虚假数据。

两者通过反复训练来相互对抗和优化,最终达到生成器生成的数据足以欺骗判别器的效果,从而提高模型的生成和预测能力

在进入模型训练前,要对输入的微生物组数据进行预处理,使用clr方法进行了归一化,同时,为了避免某些物种在所有样本中完全缺失的情况,即数据中不会出现零值,计算了伪计数(最小相对丰度除以2)。

▷DeepMicroGen模型中的生成器(Generator)训练

先判断每个时间点上是否存在该物种,0表示数据缺失1表示数据存在

然后计算出时间差δf,一个向量,用于表示前一个观测值与当前时间点之间的时间差。δb,与δf定义类似,但计算方向相反,这反映了下一个观测值的时间与当前时间点之间的差异。

这些变量的计算有助于更准确地捕捉时间序列数据中的时间相关性

接着将x(观测值)、e、δf和δb变量值输入至DeepMicroGen模型的生成器中,使用CNN模块提取捕捉系统发育关系的特征。

计算门水平的OTUs之间的Spearman相关性,得到相关性系数矩阵(一个p×p矩阵,其中p个OTUs在一个聚类中),利用下面的公式将矩阵中的每一行简化为相关系数的几何平均值,其中ρOTUjp是OTUj和OTUp之间的Spearman相关性。

然后OTUs按照几何平均值从大到小进行排序,进一步强化门水平OTU之间的关联。之后,将CNN模块分别应用于每个聚类并提取特征,该模块由两个1D-CNN层组成,卷积核大小为3,分别具有16和8个滤波器,每个滤波器后接一个Leaky ReLU激活函数和一个max-pooling层。

从每个聚类中提取的特征被连接并传递到biRNN模块。通过这种方式,DeepMicroGen模型可以同时利用门聚类和时间序列数据的相关性,提高对微生物组数据中缺失值的填充精度

为了训练模型,需要捕捉时间序列之间的关系,以便填充缺失值。因此,在模型中增加了一层具有tanh激活函数的单层biRNN模块,用于捕捉正向和反向的时间关系。

RNN(循环神经网络)单元的定义如下:其中,Wh是权重矩阵,bh是bias,hi−1是前一个时间点的隐藏状态(hidden state)

在biRNN 模块中的生成器应用中,前向(forward)和反向(backward)RNN单元都会产生一个生成的输出,分别用 x˜f和x˜b指示。

然后,每个生成的输出将与其对应的权重系数λf和λb相乘,λf和λb是根据时间差分计算出来的,bias向量bλf和bλb是模型通过训练学习得到的参数,最终的插补值 ˜x是由输入数据和生成数据按一定比例加权组合而成,如果输入数据中存在真实值,那么生成值就会被真实值替代。

其中,1是一个全1矩阵,xe是一个矩阵,其中第i列是x乘以一个单位向量ei(即只有第i个位置是x,其他位置均为0)。

▷ DeepMicroGen模型中的判别器与生成器之间的对抗训练

判别器由一个带有LSTM单元的一层RNN模块构成,判别器的训练过程旨在最小化两个不同的损失函数lossD和lossT,以此优化判别器的性能,从而提供准确的反馈信息给生成器,改进生成器的生成结果。

其中,lossD用于评估判别器的鉴别能力,即判断一个样本是真实值还是生成值的能力;lossT用于评估判别器对时间点的预测准确性

在生成器的训练过程中,会分别计算lossG、lossR和lossC。使得生成器产生更准确一致且真实的填充值。

lossG表示生成器的损失函数(Generator Loss),表示生成器在生成伪造数据过程中的误差;lossR表示真实数据损失函数(Real Data Loss),表示判别器对真实数据分类的误差;lossC表示伪造数据损失函数(Fake Data Loss),表示判别器对伪造数据分类的误差

最终,通过相互对抗和共同优化,判别器和生成器可以同时得到优化,并且生成器可以生成具有真实样本类似但又与数据集不完全相同的新数据。

DeepMicroGen是基于Tensorflow库(v1.8.0)构建的。在训练中使用了Adam优化算法,Adam的学习率被设置为0.001。

每一轮训练,生成器会在判别器经过5次迭代之后进行一次训练。当生成器的损失函数连续1000轮训练没有降低时,训练就会被结束。同时使用了Dropout(CNN层中的0.7比率)来缓解过拟合的问题。

下图为训练过程的损失函数曲线:

DeepMicroGen模型的性能评估

实验设计

使用的测试数据集包括1个模拟数据集2个真实数据集(DIABIMMUNE和BONUS-CF数据集)。

DIABIMMUNE数据集内含从三个国家(芬兰、爱沙尼亚和俄罗斯)招募的婴儿粪便样本,这些国家在1型糖尿病过敏的发病率方面存在很大差异。

根据16s rRNA扩增子测序,选择了133名受试者的1064份粪便样本(时间点为第4、7、10、13、16、19、22和28个月),其中包含115个种水平的OTUs。BONUS-CF数据集内含231个婴儿的粪便样本,这些婴儿中,有一部分存在囊性纤维化(CF)或高风险发展成囊性纤维化的情况。

研究人员选择了113名受试者的452份在5个月、6个月、8个月和10个月时的粪便样本,使用WGS测序。模拟数据是基于DIABIMMUNE数据集模拟了200名受试者。

使用了三种不同类型的缺失值填补方法进行性能评估。采用简单的方法(平均值和中位数)进行插补,然后比较了线性曲线拟合三次曲线拟合和基于移动窗口(window-size = 3)的缺失值填补方法。

还使用了广泛用于纵向数据集的缺失值填补方法:基于链式方程的多重插补(MICE)和最后一次观测值向前插补(LOCF)。使用平均绝对误差(MAE)来衡量不同缺失值填补方法的性能。

★ 实验结果表明DeepMicroGen模型优于其他方法

DeepMicroGen模型在模拟数据集上的MAE为1.866,优于其他方法,其中MICE的表现次之,为1.942。其他方法的MAE分别为:三次曲线拟合(1.943)、线性曲线拟合(1.990)、Median(2.277)、Mean(2.298)、Moving window(2.452)、LOCF(2.698)。DeepMicroGen在真实数据集上也取得了最好的成绩,MAE分别为1.6090.486

DeepMicroGen模型利用GAN与CNN结合提取OTU特征来推算微生物组数据。研究人员为了观察不同组件对imputation性能的影响,通过移除或改变模型中的组件设计了四种变体DeepMicroGen模型。然后分别使用DIABIMMUNE数据集进行10倍交叉验证,并计算MAE进行性能评估。

如下图所示,与所有四种变体模型相比,DeepMicroGen表现出最佳性能

评估DeepMicroGen模型在不同数据缺失率下的表现。随机(MAR)或非随机(MNAR)删除10%到80%的数据,使用DeepMicroGen模型进行缺失值填补,实验重复5次,计算MAE。结果表示除MNAR缺失率为40%外,DeepMicroGen模型在大多数情况下的MAE仍然是最低的。

评估DeepMicroGen模型生成的插补值是否能够与原始数据保持相似性。研究人员随机丢弃10%-80%的数据,并使用DeepMicroGen和其他方法进行填补。

对于每种方法,分别比较了Shannon指数结果,NMDS分析结果。还计算量真实值和插补值分别与这两者间的pearson相关系数。

结果表示mean、median、MICE、linear和cubic方法的插补值与真实值的alpha多样性存在显著差异(P<0.05)。

MW和LOCF方法进行插补得到的数据,其alpha多样性与真实数据较为接近,但它们与真实数据的相关性较低

★ DeepMicroGen模型的到的插补值与真实数据相似,相关性最高

而通过DeepMicroGen模型得到的插补值,其alpha多样性与真实数据相似,并且相关性最高。在比较beta多样性时,还可以看到DeepMicroGen模型生成的插补值与真实数据之间有重叠,而其他方法却几乎没有重叠。

此外,研究人员还测试了是否能够识别真实数据中相对丰度值(RA)为0的,并准确预测。准备了两个数据集合,分别是{true zero RAs}和{predicting zero RAs},分别表示真实数据集中RA=0的OTU集合和生成插补值数据集中RA=0的OTU集合。依次比较这两个集合之间的对称差,预测准确率和MAE值

★ 能够有效保留原始数据特征,利于下游分析

这些结果都表明DeepMicroGen模型生成的插补值能够有效地保留原始数据的特征有助于下游分析

评估DeepMicroGen模型是否可以提高疾病预测能力。在DIABIMMUNE数据集中,141名婴儿有鸡蛋、牛奶和花生过敏结果的临床信息,其中117名婴儿有8个时间点的所有样本,而其他25名受试者没有样本。

研究人员利用LSTM神经网络分类器对蛋、牛奶和花生过敏等疾病进行了预测,使用clr转换后的相对丰度数据作为DeepMicroGen模型数据输入,比较经重复5次5-fold交叉验证计算 的平均AUC值,与其他插补值生成方法相比,DeepMicroGen模型在所有过敏疾病的预测表现中实现了最高的改善效果,其中花生过敏的预测表现提高了19.5%

编辑​

DeepMicroGen模型的局限性

由于DeepMicroGen模型较好的结果表现是假定样本是在相同的时间间隔下生成的,如果样本的时间间隔不规律,那么DeepMicroGen模型的表现可能不太好。

因此,最好有一定数量的样本在每个时间点上。当然,对于这类数据,DeepMicroGen模型也能训练并生成插补值,只是精确度可能会降低

结论

DeepMicroGen 模型为微生物组数据缺失值填补提供了一种有效的方法,并且在实验中表现出了良好的性能,在疾病预测方面的潜力也不逊色。

据文中介绍,基于深度学习的纵向数据填补方法已经被用于特定的研究领域,如用于阿尔茨海默病进展的MRI特征插补,患者管理的电子健康记录插补,以及肺癌风险评估的CT图像插补。

这为利用不完整的纵向数据集进行微生物组研究的科学家们提供了支持。

参考文献

Choi JM, Ji M, Watson LT, Zhang L. DeepMicroGen: a generative adversarial network based method for longitudinal microbiome data imputation. Bioinformatics. 2023 Apr 26:btad286. 

微生物常见统计检验方法比较及选择

谷禾健康

微生物组经由二代测序分析得到庞大数据结果,其中包括OTU/ASV表物种丰度表,alpha多样性、beta多样性指数,代谢功能预测丰度表等,这些数据构成了微生物组的变量,大量数据构成了高纬度数据信息

针对不同的微生物数据,和研究目的的不同,数据分析时需要用到不同的统计分析方法,例如降维、聚类、机器学习等。

本文将介绍和比较微生物测序数据统计方法和分析工具,以及微生物组数据分析结果展示原则。旨在帮助谷禾合作方或客户更好地理解和解读微生物组数据分析结果

✦ 假设检验

假设检验是根据一定的假设条件,由样本推断总体的一种方法。

假设检验的基本思想是小概率反证法思想,小概率思想认为小概率事件在一次试验中基本上不可能发生,在这个方法下,我们首先对总体作出一个假设,这个假设大概率会成立,如果在一次试验中,试验结果和原假设相背离,也就是小概率事件竟然发生了,那我们就有理由怀疑原假设的真实性,从而拒绝这一假设。

根据微生物组研究目的的不同,可以将数据检验方法分为:

1)组间差异检验

2)微生物组与临床或实验数据之间的相关性检验

✦ 组间差异分析

组间差异分析或者叫组间差异显著性检验,差异显著性检验是微生物数据分析时用到的最多的统计学方法。

通常我们需要比较两组或多组数据之间是否有显著差异性,同时还要根据显著性检验识别出不同分组之间的差异变量。这需要用到统计学上的假设检验方法,检验分组之间是否有差异性,并且计算其差异程度

注:所有的差异检验都基于一个假设:组间没有差异,及变量之间没有关系(即原假设,H0)。

假设检验方法

在统计学上,假设检验方法可分为两大类,参数检验非参数检验

➦ 参数检验

参数检验(Parameter test)是基于样本的观测数据对总体参数(比如总体均值、方差)及总体参数差异性的检验

•参数检验需要具备一定的条件

参数检验要求总体具备一定条件才能适用,例如总体需呈正态分布、涉及两个总体时两总体必须满足方差同质性(即方差相等)。t检验、F检验(方差分析),都属于参数检验方法。

➦ 非参数检验

在实际分析过程中,数据会经常遇到不满足参数检验前提条件的情况,比如总体不服从正态分布,或者总体分布未知,这时就不能使用参数检验方法,不然得到的检验结果会不准确。在参数检验方法不适用的情况,就需要采用非参数检验方法进行统计检验。

•总体分布情况未知可使用非参数检验

非参数检验(Non-parametric test)是在总体分布未知或者知之甚少的情况下,通过样本数据对总体分布形态等特征进行推断的统计检验方法。

由于此种检验方法在由样本数据推断总体的过程中不涉及总体分布的参数,不要求总体分布满足某些条件,使用条件较为宽松,因此被称为非参数检验。

参数检验与非参数检验的一些区别

★ 微生物组数据的特点

微生物组数据具有以下特点:

1.多样性高:微生物组数据通常包含大量的微生物种类,且种类之间的相对丰度差异较大。

2.维度高:微生物组数据通常包含大量的特征,例如16S rRNA基因序列或基因组序列,每个特征都可以看作是一个维度。

3.数据稀疏:微生物组数据通常是稀疏的,即大部分微生物种类的相对丰度很低,只有少数微生物种类的相对丰度较高。

4.非正态分布:微生物组数据通常不满足正态分布假设,且方差通常与均值相关。

5.数据复杂性高:微生物组数据中存在许多复杂的相互作用和关系,例如共生、拮抗和协同作用等。

考虑到微生物数据的以上特点,我们更推荐采用非参数假设检验的算法,在报告中我们大部分也采用的是非参数检验方法对组间差异进行检验。

差异显著性检验的方法有很多种,需要根据不同的情况,选择适合自身实验情况的方法进行分析。接下来对几种常见的统计检验方法进行介绍。

参数检验

1

T 检验

Student t检验(Student’s t test),亦称T检验,是用t分布理论来推论差异发生的概率,从而比较小样本量两组间的差异是否显著,主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布数据

注:Welch T检验(Welch’s t test)在两组数目方差不相等时可选择该检验。

•T检验的步骤:

第一步:建立虚无假设H0:μ1=μ2,即先假定两个总体平均数之间没有显著差异

第二步:计算统计量T值,对于不同类型的问题选用不同的统计量计算方法。

2

U 检验

U检验又称Z检验,一般用于大样本(即样本容量大于30)平均值差异性检验的方法(总体的方差已知)。

它是用标准正态分布的理论来推断差异发生的概率,从而比较打样板量两组间的差异是否显著

•U检验的步骤:

第一步:建立虚无假设H0:μ1=μ2,即先假定两个平均数之间没有显著差异;

第二步:计算统计量Z值,对于不同类型的问题选用不同的统计量计算方法。

3

方差检验

方差分析(ANOVA)又称“变异数分析”或“F检验”。用于正态分布方差齐性的多组间(两个及两个以上样本均数)差别的显著性检验。

当自变项的因子中包含等于或超过三个类别情况下,检定其各类别间平均数是否相等的统计模式。方差分析首先是比较的多组间整体是否有差异再进行组间两两比较

•方差检验的步骤:

第一步:建立检验假设;

H0:多个样本总体均值相等;

H1:多个样本总体均值不相等或不全等。

注:检验水准为0.05。

第二步:计算检验统计量F值;

第三步:确定P值并作出推断结果。

4

Tukey检验

Tukey检验也称为Tukey HSD(Honestly Significant Difference)检验,用于比较多个样本均值的两组之间的差异性

Tukey检验的假设条件是各组数据的方差相等且服从正态分布。Tukey检验的原理是计算每两组之间的平均差异,然后根据方差和样本量的大小来计算显著性水平。Tukey检验通常用于方差分析的后续多重比较

非参数检验

1

Wilcoxon秩和检验

Wilcoxon秩和检验又叫Mann-Whitney U 检验,Wilcoxon秩和检验,是两组独立样本非参数检验的一种方法。

其原假设为两组独立样本来自的两总体分布无显著差异,通过对两组样本平均秩的研究来实现判断两总体的分布是否存在差异,该分析可以对两组样品的物种进行显著性差异分析,并对p值计算假发现率(FDR)q值。

2

Kruskal-Wallis H检验

K-W检验的全称为,Kruskal-Wallis检验,它是用于正态分布条件不满足情况下,多组独立样本方差分析的替代。我们可以把它理解为“非参数检验的方差分析”。

基于矩阵的检验方法

微生物高纬度数据的多个变量根据不同的距离算法求取距离矩阵,然后根据距离矩阵进行相应的检验。所谓基于距离也就是检验的是群落差异而不是具体的某个物种。

以上这些检验方法,可以得到分组之间是否有显著差异(即简单的理解为差异的有无),如果想进一步知道这些差异的程度(可以理解为多少),就需要用到Anosim检验Adonis检验

这些方法不但可以输出检验显著性结果(p值),还有程度结果(R值),R值可以用来判断分组贡献度大小。Anosim、Adonis这些可用于多元统计检验的模型就非常适合了。

例如肠道微生物受到A、B等多种因素影响,如果一个项目里有3个分组分别是A处理、B处理和对照组,如果A处理和B处理相对于对照组都显著差异(P<0.05),想知道A处理、B处理哪个更为重要,就需要比较R值的大小了。

1

Anosim检验

Anosim(Analysis of similarities)是一种非参数检验方法。它首先通过变量计算样本间关系(或者说相似性),然后计算关系排名,最后通过排名进行置换检验判断组间差异是否显著不同于组内差异

相似性分析ANOSIM检验用来检验组间(两组或多组)的差异是否显著大于组内差异,从而判断分组是否有意义

这个检验有两个重要的数值,一个是p值,可以判断这种组间与组内的比较是否显著;一个是R值,可以得出组间与组内比较的差异程度

R值范围实际范围是(-1,1),但一般介于(0,1)之间,R>0,说明组间存在差异,一般R>0.75:大差异;R>0.5:中等差异,R>0.25:小差异。R等于0或在0附近,说明组间没有差异。R偶尔也会<0,这种情况是组内差异显著大于组间差异,这就说明我们的采样或者分组出现大问题,可以认为是无效数据

2

Adonis检验

Adonis,其实就是PERMANOVA。它与Anosim的用途其实差不多,也能够给出不同分组因素对样品差异的解释度(R值)与分组显著性(P值)。

Adonis又称置换多因素方差分析(permutationalMANOSVA)或非参数多因素方差分析(nonparametricMANOVA)。它利用半度量(如Bray-Curtis)或度量距离矩阵(如Euclidean)对总方差进行分解,分析不同分组因素对样品差异的解释度,并使用置换检验对划分的统计学意义进行显著性分析。

不同点是应用的检验模型不同,ADONIS本质是基于F统计量的方差分析,所以很多细节与上述方差分析类似。

图表解释

Group:表示分组;

Df:表示自由度;

SumsOfSqs:总方差,又称离差平方和;

MeanSqs:平均方差,即SumsOfSqs/Df;

F.Model:F检验值;

R2:表示不同分组对样品差异的解释度,即分组方差与总方差的比值,即分组所能解释的原始数据中差异的比例,R2越大表示分组对差异的解释度越高

Pr(>F):通过置换检验获得的P值,P值越小,表明组间差异显著性越强

Lefse分析——筛选组间差异标记物

LEfSe(LDA EffectSize)是用于发现生物标识和揭示基因组特征的软件。以上分析我们找出了分组的差异显著性。

而Lefse的作用就是找出各分组的微生物标记物,即biomarker的筛选,以及这些特征对组间差异的影响程度,用于发现不同分组样本中最能解释组间差异的特征

√ 分析步骤

A)软件首先使用Kruskal-Wallis (KW) (非参数因子克鲁斯卡尔—沃利斯秩和验检)检测多分组间具有显著丰度差异特征

B)找出与丰度有显著性差异的物种后进一步使用Wilcoxon 秩和检验进行组间差异分析

C)最后Lefse采用线性判别分析(LDA)估计每个分组的差异特征对差异效果的影响大小(即LDA score值)。

LEfSe结果包含两张图一张表,即(LDA值分布柱状图、 进化分支图特征表)。

✦ LDA值分布柱状图

LDA值分布柱状图中展示了LDA Score大于设定值(默认设置为2)的差异物种,即组间具有统计学差异的Biomarker。

展示了不同组中丰度差异显著的物种,柱状图的颜色代表各自的组别,柱状图的长度代表差异物种的影响大小(即为 LDA Score),即不同组间显著差异物种的影响程度。

✦ 进化分支图

进化分支图中,由内至外辐射的圆圈代表了由门至属的分类级别。在不同分类级别上的每一个小圆圈代表该水平下的一个分类,小圆圈直径大小与相对丰度大小呈正比

着色原则:无显著差异的物种统一着色为黄色,差异物种Biomarker跟随组进行着色,红色节点表示在红色组别中起到重要作用的微生物类群,绿色节点表示在绿色组别中起到重要作用的微生物类群。

注:图中英文字母表示的物种名称在右侧图例中进行展示。(为了美观,右侧默认只显示门到科的差异物种)。

✦ 特征表解读:

第一列:Biomarker名称;

第二列:各组分丰度平均值中最大值的log10,如果平均丰度小于10的按照10来计算;

第三列:差异基因或物种富集的组名;

第四列:LDA值;

第五列:P值,若不是Biomarker用“-”表示。

机器学习应用于微生物组数据的分类和预测

基于微生物组数据的高维度、稀疏性,传统的统计方法不一定能很好的适用于微生物数据统计分析,机器学习面对复杂的数据结构逐渐成为更优的选择。

机器学习(machine learning,ML)就是计算机能够自主“学习” (拟合训练数据),通过神经网络、决策树等算法,从数据中自动分析寻找规律,从而生成经验模型,用于新数据的预测或分类

➤ 随机森林

随机森林(Random Forest)是一种基于决策树(Decisiontree)的机器学习算法。属于非线性分类器

通过对对象和变量进行抽样构建预测模型,即生成多个决策树,并依次对对象进行分类。最后将各决策树的分类结果汇总,得出随机森林最终预测的分类结果。

•随机森林可以对样本进行分类和预测

随机森林可以对样本进行分类和预测。16S测序数据通过RandomForest随机森林可以找出与分组有关的关键物种/功能

微生物数据通过RandomForest随机森林可以找出与分组有关的关键物种/功能

图中展示了分类器中对分类效果起主要作用的特征,按重要性从大到小排列。Error rate :表示使用下方的特征进行随机森林方法预测分类的错误率,数值越高表示基于特征分类准确度不高,可能分组之间特征不明显。分值越低证明分组效果比较好

➤ ROC曲线

根据随机森林方法筛选出的最佳模型,绘制ROC曲线,ROC是一种常用的统计学分析方法,在医学研究中主要用于评价诊断试验的效能用来评判分类、检测结果的好坏

根据曲线位置,把整个图划分成了两部分,曲线下方部分的面积被称为AUC,用来表示预测准确性

AUC值越高,也就是曲线下方面积越大,说明预测准确率越高。曲线越接近左上角(X越小,Y越大),预测准确率越高。

ROC曲线下的面积值在1.0和0.5之间。在 AUC>0.5 的情况下,AUC越接近于1,说明诊断效果越好

•AUC值不同时的准确性:

AUC在0.5~0.7时有较低准确性,AUC在0.7~0.9时有一定准确性,AUC 在0.9以上时有较高准确性。AUC=0.5 时,说明诊断方法完全不起作用,无诊断价值。AUC<0.5 不符合真实情况,在实际中极少出现。

组间差异分析的图像化展示

微生物高维度数据信息进过统计检验得到庞大的检验结果。如何将这些结果进行可视化展示,也是微生物数据分析过程中的重要组成部分,常见的可视化方法有箱型图柱状图散点图等。接下来是对这些图的详细介绍。

▷箱型图

箱型图(boxplot)又叫盒图,箱型图由5点组成:最小值(min),下四分位数(Q1),中位数(median),上四分位数(Q3),最大值(max)。

•便于多组间形态比较

箱型图可以直观的识别出异常数据,判断数据的侧重方法,方便多组间比较形态比较。其他类似变形的还有柱状图,小提琴图等就不做详细赘述。

▷散点图

散点图(Scatter plot)是数据点在直角坐标系平面上的分布图,散点图表示因变量随自变量而变化的大致趋势,据此可以选择合适的函数对数据点进行拟合。比如PCA、PCoA、NMDS、回归分析、火山图等。

➤ 相关性分析

相关性是两个变量之间统计学相关关系的度量,可以预测变量间的相关关系。相关性的原始之间存在一定的联系或者相关性。

用相关系数来描述两个变量之间的相关程度。相关性分析常用的分析方法:

(1)pearson相关系数

(2)spearman相关系数

• pearson相关系数

皮尔逊相关系数(r),是衡量两个变量之间线性相关性的统计量。皮尔逊相关性只能评估两个连续变量之间的线性相关(仅当一个变量的变化与另一个变量的比例变化相关时,关系才是线性的)。

当两个变量都是正态连续变量,且两者之间呈线性关系时,则可以用Pearson来计算相关系数。取值范围[-1,1]

• spearman相关系数

Spearman相关系数是排序相关性(ranked values)的非参数度量

使用单调函数描述两个变量之间的关系的程度。Spearman相关性可以评估两个变量之间的单调关系

问答环节

接下来是对微生物统计检验分析中经常会遇到的一些问题进行汇总和解答

➤ 参数检验和非参数检验有什么区别?

参数检验是对参数做假设检验,非参数检验是对总体分布情况做的假设。

•是否利于总体的信息

参数检验利用总体的信息(总体分布、总体的参数特征如方差等),以总体分布和样本信息对总体参数作出推断;非参数检验不需要利用总体的信息(总体分布、总体的一些参数特征如方差),以样本信息对总体分布作出推断。

➤ T检验和U检验有什么区别?

T检验和U检验都是常用的参数检验方法,都是用于检验两个样本的均值是否存在显著差异。

•样本量的大小不同

它们的区别在于,T检验主要用于小样本量(例如n<30)的正态分布数据,而U检验主要用于大样本量(即样本容量大于30)平均值差异性检验的方法。T检验的检验统计量是t值,U检验的检验统计量是U值。

➤ 什么是T值,什么是F值?为什么在报告中没有找到?

T值和F值都是统计学中常用的指标,用于检验假设是否成立。T值是T检验的统计量,用于检验两个样本均值是否有显著差异的指标

•T值的计算公式

它的计算公式为:T = (x1 – x2) / (s * sqrt(1/n1 + 1/n2)),其中x1和x2分别是两个样本的均值,s是两个样本的标准差的合并估计值,n1和n2分别是两个样本的样本量。

T值越大,说明两个样本的均值差异越显著

•F值的计算公式

F值F检验,即方差分析的检验量。是用于检验多个样本均值是否有显著差异的指标。

它的计算公式为:F = (SSB / (k – 1)) / (SSE / (n – k)),其中SSB是组间平方和,SSE是组内平方和,k是组数,n是总样本量。F值越大,说明组间差异越显著,即均值之间的差异不是由于随机误差造成的。在方差分析中,F值用于检验多组间平均数是否相等。

这两个指标均来自参数检验的统计量,由于微生物数据具有高纬度,多样性高,数据稀释复杂等特点,而参数检验对数据分布要求比较严格,微生物数据一般都呈现非正态分布,报告中大部分都采用非参数的检验方法进行检验计算。所以报告中没有直接给出T值和F值。

➤ Pearson相关系数和Spearman 相关系数有什么区别?

Pearson适用于两个变量之间呈线性关系,而Spearman适用于单调关系

Pearson分析要求数据符合正态分布;线性相关;并且数据为连续值。如果不满足,则使用Spearman相关系数。

Pearson 处理变量的数据原始值,而Spearman处理数据排序值(需要先做变换,transform)。

➤ 报告中给出了几种检验方法得出的差异结果,该如何选择?

报告中分别使用了非参数检验、Tukey检验、Lefse分析、metagenomeSeq 差异分析。

•不同统计方法的结果略有不同

不同的统计方法对数据的处理方式和假设条件不同,所以不同的统计方法可能给出的差异结果略有不同

•统计方法可能存在一定的偏差和误差

此外,不同的统计方法还可能存在偏差和误差,例如样本量不足、数据分布不符合假设条件、测量误差等因素都可能影响统计结果的准确性。

因此,在进行统计分析时,需要根据实际情况选择合适的统计方法,并结合实际情况进行综合分析和判断。这里建议选择其他一种方法的检验结果就可以。或者用到不同的检验方法的时候,在文章中加以说明。

➤ 报告中给出的多组间差异的P值只有一个吗?是哪两组之间的P值呢?

非参数检验多组间差异分析时就用到的是Kruskal-Wallis H检验,检验多组间是否有差异,所以只有1个P值

例如该图是属水平多组间非参数检验的差异结果:

路径:

Groups\diff_analysis\UnivarTestGenus\figure\barplot

对应P值:

Groups\diff_analysis\UnivarTestGenus\ UnivarTest_sign.txt

如果想看在多个分组的统计检验过程中,具体哪两组间之间有差异,可以看:

Groups\diff_analysis\UnivarTestGenus\figure\single_plot

图上方的P值0.006是多组间非参数检验的P值,图中展示的是任意两组间差异显著的结果,例如P=0.017是M组和CA组之间的结果。P=0.017是CA组和N组之间的P值。如果任意两组间有差异,则在图中显示对应P值

PCoa基于Bray距离的Adonis检验得到的P值=0.001右下角,也是多组间统计检验的结果

想看任意两组间Adonis检验是否差异显著,可以看下表:

Groups\betadiv\pcoa_bray_analysis\ PERMANOVA_paired_result.csv

表中展示了任意两组间Adonis检验的P值和R值

编辑​

附 录

1

热 图

热图是一种常用的展示方法,可以将微生物组数据转化为颜色矩阵,从而直观地显示不同样本或物种之间的相似性和差异性。可以使用热图来展示微生物组数据的OTU/ASV表、物种丰度表等。

2

柱 状 图

柱状图是一种常用的展示方法,可以将微生物组数据转化为柱状图,从而直观地显示不同样本或物种的相对丰度。可以使用柱状图来展示微生物组数据的物种丰度表等。

3

散 点 图

散点图是一种常用的展示方法,可以将微生物组数据转化为散点图,从而直观地显示不同样本或OTU/ASV之间的关系。可以使用散点图来展示微生物组数据的beta多样性、代谢功能预测丰度表等。

4

网 络 图

网络图是一种常用的展示方法,可以将微生物组数据转化为网络图,从而直观地显示不同微生物组物种之间的相互作用关系。可以使用网络图来展示微生物组数据的共生关系、代谢通路等。

5

生 态 图

生态图是一种常用的展示方法,可以将微生物组数据转化为生态图,从而直观地显示不同微生物组物种之间的生态关系和生态功能。可以使用生态图来展示微生物组数据的生态功能、物种丰度表等。

6

积 柱 状 图

积柱状图是一种常用的展示方法,可以将微生物组数据转化为堆积柱状图,从而直观地显示不同样本或物种的相对丰度,并且可以分别显示不同分类水平的物种。可以使用堆积柱状图来展示微生物组数据的物种丰度表等。

7

饼 图

饼图是一种常用的展示方法,可以将微生物组数据转化为饼图,从而直观地显示不同物种的相对丰度。可以使用饼图来展示微生物组数据的物种丰度表等。

8

箱 线 图

箱线图是一种常用的展示方法,可以将微生物组数据转化为箱线图,从而直观地显示不同样本或物种的分布情况。可以使用箱线图来展示微生物组数据的alpha多样性、代谢物浓度等。

9

简 单 线 图

简单线图是一种常用的展示方法,可以将微生物组数据转化为简单线图,从而直观地显示不同样本或物种的变化趋势。可以使用简单线图来展示微生物组数据的时间序列数据、代谢物浓度等。

总的来说,展示微生物组数据分析结果需要选择合适的展示方法,并且需要根据研究目的和数据类型进行选择。以上展示方法是常见的方法,并不是唯一的方法,实际应用中需要根据具体情况选择合适的方法。

用于CAZyme研究领域的数据库——dbCAN-seq数据库更新

谷禾健康

什么是CAZymes?

CAZymes(碳水化合物活性EnZymes)是一种,主要以糖苷键为目标,降解、合成或修饰地球上的所有碳水化合物。CAZymes在植物和植物相关微生物中非常丰富。

例如,人体肠道是富含碳水化合物的环境,碳水化合物降解细菌的多样性非常高。肠道微生物组的CAZyme组合组成了数以万计的附加基因。

CAZymes对人类健康营养肠道微生物组、生物能源、植物疾病和全球碳循环的研究极为重要。

在过去的5年里,大量的微生物组测序,来自各种生态环境的数十万个宏基因组组装基因组 (MAGs) 现在可以在公共数据库中获得。

例如欧洲生物信息学研究所的MGnify数据库和 IMG/M联合基因组研究所数据库。目前,没有数据库从微生物组MAG中收集CAZymesCAZyme基因簇(CGC)并在网络上提供它们。

✦CAZyme研究对人体健康非常重要

与此同时,CAZyme生物信息学领域继续发展。现在可以推断CAZymes和CGCs的碳水化合物底物,这对应用微生物组非常有兴趣。例如,基于微生物组的个性化营养旨在使用个性化饮食干预策略来调节人体肠道微生物组,以改善人体健康

预测患者肠道微生物组可能对哪些益生元聚糖做出反应的能力将对营养师和营养学家提出个性化饮食建议非常有用。

✦最新更新了dbCAN-seq数据库

最近在内布拉斯加大学的团队在Nucleic Acids Research发表的题为:“dbCAN-seq update: CAZyme gene clusters and substrates in microbiomes”的文章,更新了dbCAN-seq数据库 ( https://bcb.unl.edu/dbCAN_seq)

包括以下新数据和特征:

(i)来自四种生态(人类肠道、人类口腔、牛瘤胃和海洋)环境的9421个MAG~498000个CAZyme和~169000个CAZyme基因簇(CGC);

(ii) 通过两种新方法(dbCAN-PUL 同源搜索和 eCAMI 亚家族多数表决)推断的41447(24.54%) 个CGC的聚糖底物(这两种方法就4183个CGC的底物分配达成一致);

(iii) 重新设计的CGC页面,包括CGC基因组成的图形显示、查询 CGC 和 dbCAN-PUL 的主题PUL(多糖利用位点)的比对,以及支持预测底物的 eCAMI 亚家族表;

(iv) 一个统计页面,用于根据底物和分类门组织所有数据,以便于CGC访问;

(v) 批量下载页面

总之,这个更新的dbCAN-seq数据库突出显示了预测来自微生物组的CGC的聚糖底物

文章简介

dbCAN-seq数据库于2018年发布,提供了5349株细菌分离株基因组的CAZyme和CGC (CAZyme基因簇)序列及注释数据。

CGC是研究人员定义的一个术语,用于描述微生物基因组中含有CAZyme的基因簇

PUL指多糖利用位点,是一个更流行的术语,描述利用复杂碳水化合物底物的基因簇,例如XUL(木聚糖利用位点),ChiUL(几丁质利用位点)和XyGUL(木聚糖利用位点)。随着CAZyme在生物信息学领域的发展,dbCAN-seq也紧跟步伐,推出了新的版本。

在dbCAN-seq数据库的更新中,主要取得了两个重要的进展:

(i) dbCAN-seq现在提供了四个生态环境(人类肠道,人类口腔,牛瘤胃,海洋)的微生物组的全面的CAZyme和CGC目录。

(ii) dbCAN-seq使用了两种新的方法来预测微生物组CGCs的底物,并提供了底物查阅功能,允许搜索针对不同微生物组中预测的特定底物的CGCs

更新内容

1
新增人类肠道、人类口腔、牛瘤胃和海洋生物组的CAZyme及CGCs

对EBI MGnify数据库中的4个MAG数据集,选取其中质量最好的代表性基因组,如下表,一共9421个基因组,使用dbCAN2的run_dbcan程序进行注释,可见有近50万个蛋白质被注释为CAZymes。

人类肠道MAG中CGCs的CAZymes比例最高(55.87%),而牛瘤胃中CGCs的CAZymes比例最低(45.45%)。

2
预测CGCs的碳水化合物底物

在预测出CGCs之后,研究人员开发了两种计算方法来推断它们的糖基底物,如下图。

第一种方法

使用BLAST比对CGCs的蛋白质序列(图A)与dbCAN-PUL的612个PULs的蛋白质序列(图B),选择BLAST总评分最高的最佳命中且至少有一个CAZyme与至少一个来自其它特征基因类别,如TC、TF等相匹配(例如图C),然后通过表S1,PUL→底物的映射文件,获知对应的底物;

第二种方法

使用eCAMI工具对CAZyme亚家族进行注释(图D),确定了CAZyme蛋白的eCAMI亚家族和EC数量后,根据eCAMI亚家族和EC编号建立的CAZyme亚家族→EC→底物的映射文件(表S2),使用简单的多数投票规则来推断CGC中的底物分配。

通过以上两种方法,目前dbCAN-seq数据库中新增的预测底物的CGC计数如下图:

图A为用dbCAN-PUL方法和eCAMI亚族方法注释CGCs的韦恩图。

图B各数据集中丰度top20的底物。

3
网页设计

dbCAN-seq的官网为:

如下图,网站也新增了版块:

图A可选五个数据集。

图B可按目录浏览。

图C和D分别为支持通过eCAMI或dbCAN-PUL预测的底物查询对应的CGCs

dbCAN-seq数据库未来的发展

研究人员计划每年更新dbCAN-seq数据库,以包含更多生态环境的MAG数据集,例如来自小鼠、猪、山羊的肠道MAG,以及来自土壤和地球微生物组项目的MAG。

也会继续探索用于底物预测的方法,比如无监督机器学习方法,以预测自然界中未知的底物的新型CGCs。

TaxiBGC ——分类学指导下的生物合成基因簇鉴定流程

谷禾健康

当前合成基因簇预测限制较大

微生物基因组中的生物合成基因簇 (BGC) 编码具有生物活性的次级代谢物 (SM),它可以在微生物-微生物宿主-微生物相互作用中发挥重要作用。

鉴于次级代谢物的生物学意义和当前对微生物组代谢功能的深刻兴趣,从高通量宏基因组数据中无偏见地鉴定生物合成基因簇可以为微生物群的复杂化学生态提供新的见解。

目前可用于从鸟枪法宏基因组预测生物合成基因簇的工具有几个局限性,包括需要计算要求高的读取组装、预测范围窄,以及不提供次级代谢物产品。

为了克服这些限制,最近发在mSystems的一篇技术文章:

《TaxiBGC: a Taxonomy-Guided Approach for Profiling Experimentally Characterized Microbial Biosynthetic Gene Clusters and Secondary Metabolite Production Potential in Metagenomes》

介绍了他们的研发成果,他们开发了生物合成基因簇(TaxiBGC)的分类指导识别,这是一种命令行工具,用于通过首先精确定位可能存在合成基因簇的微生物物种来预测宏基因组中实验特征化的合成基因簇(并推断其已知的次级代谢物)。

并在各种模拟宏基因组上对TaxiBGC进行了基准测试,表明与通过将测序读数映射到BGC基因上来直接识别BGC(平均F1得分,0.49;平均PPV得分,0.41)相比,该分类法指导的方法可以预测BGC,其性能大大提高(平均F1分数,0.56;平均PPV得分,0.80)。

接下来,通过将TaxiBGC应用于人类微生物组项目的2650个宏基因组和各种病例对照肠道微生物组研究,我们能够将BGC(及其SM)与不同的人体部位多种疾病(包括克罗恩病和肝硬化)相关联

总之,TaxiBGC提供了一个计算机平台来预测实验表征的生物合成基因簇及其在宏基因组数据中的次级代谢物生产潜力,同时展示了优于现有技术的重要优势。

文章简介

TaxiBGC (Taxonomy-guided Identification of biosynthesis Gene Clusters),用于从鸟枪法宏基因组测序数据中预测实验表征的生物合成基因簇(BGCs)及其已知的次生代谢物(SMs)(也称为天然产物)。

SMs是一组低分子量、结构多样、具有生物活性的化合物,这些化合物包括细菌真菌细胞间的信号分子、色素、细菌素和铁载体,已知它们主要介导了微生物生态系统中的关键相互作用

此外,微生物次生代谢物是抗生素、抗真菌药、抗癌药、免疫抑制剂和其他药物的重要来源。例如,生物碱被发现对人类癌细胞系具有细胞毒性活性,并抑制耐甲氧西林金黄色葡萄球菌(MRSA)和耐万古霉素肠球菌(VRE)的生物膜形成。而微生物中主要负责合成、修饰和输出次生代谢物的基因通常存在于生物合成基因簇中。

TaxiBGC的计算流程

TaxiBGC计算流程主要有三个步骤,如下图。

第一步使用Metaphan3对宏基因组进行物种注释

第二步通过查询TaxiBGC参考数据库中的这些物种(第一步中得到的)来进行BGCs的初步预测

第三步使用BBMap基于序列比对来对初步预测的结果进一步确认

TaxiBGC参考数据库内容

TaxiBGC参考数据库提供了实验表征的生物合成基因簇、相应的次级代谢物以及来源物种(种水平或菌株)三者的映射关系

如下图,数据库内包含390个独特的携带BGCs的微生物物种,953个独特的实验表征的BGCs,以及总共1169个SMs。一个物种可携带的BGCs数量差异很大,在所有物种中,有217种(55.6%)只携带一个BGC(图B)。

BGC中的基因数量也有很大差异,953个BGCs中的大多数只有不到25个生物合成基因(图C),但大多数BGCs只产生1种SM(图E)。

TaxiBGC预测BGCs的性能

在TaxiBGC中,确定宏基因组中是否存在BGCs主要取决于以下两条标准:

  • BGC基因存在阈值,即被宏基因组读长覆盖的BGC基因的最小百分比长度;
  • BGC覆盖阈值,即在宏基因组中发现的BGC基因总数的比例。

为了确定这两个阈值,研究人员在125个模拟宏基因组上测试了400对BGC基因存在的阈值(以5%的增量,5%~100%区间)和BGC覆盖率(以5%的增量,5%~100%区间)。将预测的BGCs与实际BGCs进行比较,计算出F1分值。

如图A,当BGC基因存在阈值为5%且BGC覆盖阈值为10%时,TaxiBGC在所有模拟宏基因组中预测BGC的性能最佳(mean F1 score=0.56)。

图BCD分别为在最佳阈值下,不同数量的宏基因组样本、文库大小、携带BGC的物种的相对丰度状态下对TaxiBGC预测准确性的影响,结果推荐在至少1000万读长的宏基因组上使用TaxiBGC。

TaxiBGC的优势与不足

★ 优势

1. 可以直接用于宏基因组,无需基因组装;

2. 预测模拟宏基因组中BGCs的能力优于直接检测BGCs的方法;

3. TaxiBGC已经应用于以下9项已发表的病例对照研究中的1433个肠道微生物组(即粪便宏基因组)样本:

  • 3项克罗恩病(CD)研究
  • 4项结直肠癌(CRC)研究
  • 针对类风湿关节炎(RA)和肝硬化的各一项研究

在这些研究中都发现了与疾病相关的BGCs。

✦不足

1.当metaphan3无法识别所有携带BGCs的物种时,TaxiBGC将无法准确地预测整个BGCs的范围;

2.关于BGCs物种来源的预测需要谨慎解读,原因是在宏基因组的“mixed bag of genes”背景下,一个特定BGC的基因元件可能来自其它BGCs和多个物种;

3.虽然极力减少了假阳率,但可能出现假阴性

4.TaxiBGC只提供少数SM产物的化学家族,而不提供特定的分子结构,如糖肽脂和胞外多糖;

5.TaxiBGC目前只用于预测已知的BGCs,其预测不能扩展未经验证的BGCs。

参考文献

Approach for Profiling Experimentally Characterized Microbial Biosynthetic Gene Clusters and Secondary Metabolite Production Potential in Metagenomes. mSystems. 2022 Nov 15:e0092522. doi: 10.1128/msystems.00925-22. Epub ahead of print. PMID: 36378489.

16s科研报告结果从这几个方面入手,快速获取关键信息

谷禾健康

16S科研项目是一个完整的闭环,前期的课题项目设计方案、取样和重复实验设置决定了后期分析报告的数据完整性项目类型

想要拿到一手有利用价值的科研报告和项目数据,前期的实验方案设计和后续的分析都起着关键性的作用。

然而有时候拿到报告不知道如何去解读,这里为大家梳理一下16s科研项目的全过程,帮助大家更好的了解报告内容,快速获取关键信息。

NO.1
实验方案设计

实验方案设计就像一个总工程的设计图纸,决定了未来科研分析报告的类型走向,并且前期的分组设计的越详细,各种理化指标、生化指标、代谢物等信息准备越充分,后续报告的完整度越高

明确项目课题类型

第一步要做的就是明确项目课题类型:

最常见的就是多分组之间差异分析比较:例如,要比较对照组、模型组、实验组,之间的差异结果。

还有多分组中,任意两组之间比较:例如某实验设计了正常组、疾病组、用药组服用奥氮平、阿立哌唑、氨磺必利、利培酮,像比较不同的用药组和疾病组之间的菌群的差异结果,就用到了分组之间两两差异比较

✦举个例子

图中1组与3组、4组、6组 组间差异显著

还有随时间的变化比较菌群之间的变化规律:例如在用药不同时间段包括3天,5天,2周,1个月,2个月,观察菌群的变化情况。如下图所示:

收集理化指标非常重要

如果前期搜集好每个样本的相关理化指标,还可以计算这些指标与菌群之间是否具有相关性

✦举个例子

例如该项目比较自闭症儿童与正常儿童的菌群差异。客户在样本信息单里还详细搜集了母孕期的各种详细指标,例如孕期天数、出生体重、白细胞介素6、肿瘤坏死因子a、五羟色氨等数值型理化指标

还搜集了是否顺产、是否妊娠高血压、是否孕期感染、是否妊娠糖尿病、是否先兆流产等因子型理化指标。其中0代表否,1代表是:

根据这些理化指标与菌群数据做相关性分析,从因子型的结果可以看出,自闭症(ASD)与正常儿童之间的分组与菌群之间相关性极显著**,其次是否有先兆流产的分组与菌群之间有显著相关性*,其他的包括是否喝牛奶、孕期是否感染、妊娠高血压都与菌群有相关性

在数值型理化指标中,孕期的天数与菌群之间相关性显著*,其次是白细胞介素6与菌群之间有相关性

小结

因此,前期搜集相关资料越详细充分,对分析报告的完整性也会有帮助,分析人员也会根据您的样本信息单提供的相关内容,做出个性化的分析和售后指导建议

NO. 2
取 样

首先基于样本类型,最常见的环境样本来源是人体、动物、土壤、水体等。而人体中的肠道菌群样本是目前研究最广泛,可鉴定的物种也最为丰富,谷禾在肠道菌群与人体健康方面有深入研究,目前已完成超20万例临床肠道菌群样本检测,并构建了超过60万各类人群粪便样本数据库。

其他样本类型还包括人体/动物唾液样本、组织样本、尿液样本等。

▸ 粪便样本

目前粪便样本从采样到提取数据分析技术较为成熟、应用较为广泛,谷禾最早在15年就开发了针对粪便样本的取样管,也是最早致力于研发粪菌取样盒的公司,方便实验室、个人日常取样需求,实现了粪菌样本的常温运输

谷禾取样管常温保存,取样也较为方便卫生,在家就可以轻松完成,相较于传统取样方法都有所升级。并且该取样管也有专利证书。该取样方法被大量客户采用并接纳,大大降低了采集粪便样本的难度,缩短了搜集样本的时间周期。

取样示意图

▸ 其他样本

土壤样本也相对较为容易提取出DNA,但需要注意的是土壤样本的菌群特征容易受植物腐殖质基因的影响和干扰,所以提取时要进行纯化

而口腔、组织、尿液等样本,由于DNA含量较少,在实验阶段提取相对较为困难,所以提前准备样本时,尽量多取一些,并且可以多取几个重复,尽量避免扩增不出来的情况。

并且这些样还很容易受到环境样的污染,所以在实验阶段,可以取空白样本,和阳性样本ST做对照,数据分析时可以用来纯化样本,排除来自环境的干扰序列

✦组间差异分析需重复取样

要做组间差异分析时,每组要重复取样,才能做组与组之间的统计检验。理论上,每个组至少3个样就满足基本的统计差异分析需求。所以在重复取样时,每个分组至少取3个样。取样时要保证每个分组内部的样本一致性,如果组内样本之间的个体差异性较大,则会影响后期组间差异结果分析。

✦举个例子

例如从该图可以看出,分组之间组间差异较大,并且组内的样本之间较为接近和相似。

但从该图可以看出,Control组中Control3样本明显与组内的其他样本差异较大,与DSS组内的样本较为相近,这样就对后期组间差异分析的时候会产生影响,需要将该样本去除。

又例如在该图中,TA200组中的TA3样本的Anaeroplasmatales物种丰度含量非常高,该样本与组内的其他样本明显差异较大,该样本可能受到环境污染等其他因素干扰,这样就没有办法保证组内样本的均一性,也会影响分组之间的差异分析统计结果,再后期分析的时候建议把该样本去掉重新分析。

建议

为了便于后期数据整理修改,每个分组需要保留一定量的重复样本,假如每个分组只取了3次重复,假如其中有一个样本质量不好需要去除,该分组只剩2个样本,则不满足每组至少3个样的分组条件,整体就没有办法做组间差异分析统计

所以这里建议每个分组至少取5个样做重复,一般6到10个样就能分析出比较完善的结果。具体分组和组内的重复取样数量视具体的实验设计方案而定。

在经费允许的情况下,建议多取一些重复。假设每组取50到100个重复或者以上,得到的分析结果就基本可以涵盖该分组情况所有的菌群构成情况,可以较为全面的研究分组之间的菌群构成差异情况。

NO. 3
科研分析报告

当拿到16S科研分析报告以后,面对纷繁复杂,各式各样的图表分析结果犯了难,不知道如何从这么多的图表中入手,快速找到报告中需要的图表结果。

这里对16S科研分析结果抽丝剥茧,概括出报告中的主要几大内容板块。

•16S科研分析究竟是在做什么?

16S rDNA 是一种对特定环境样品中所有的细菌进行高通量测序,以研究环境样品中微生物群体的组成,解读微生物群体的多样性丰富度群体结构,探究微生物与环境或宿主之间的关系的技术。

16S分析流程

主要是对原始数据进行拼接过滤得到的优化序列,降噪方法得到ASV,再对ASV进行物种注释,注释到门、纲、目、科、属、种各层次上的分类结果。

通过ASV表计算Alpha多样性,样本内的多样性指数,Beta多样性,样本间相似性的指标。

对ASV表进行功能预测,例如Picrust2功能预测分析、Bugbase菌群表型特征分析,FAPROTAX生态功能预测等。

得到的每个样的数据结果,根据客户提供的分组情况和理化指标,进一步做组间差异分析,以及和环境理化指标之间做关联分析,相关性分析,比较分组之间是否有差异,差异是否显著,来验证分组是否合理,和环境宿主之间是否有关联性

原始数据处理

Illumina NovaSeq测序平台测序得到的双端数据Raw PE,经过拼接和质控,根据一定的标准过滤掉低质量数据、接头或PCR错误,得到Raw Tags。再经过去重复序列,去singleton序列,过滤嵌合体,得到可用于后续分析的有效数据 Effective Tags。

OTU(ASV) 表生成

微生物多样性分析中最重要的就是OTU特征表,一切后续分析都围绕OTU表来进行。生成OTU除了传统的聚类的方法(一般按照97%的相似度进行聚类),现在最新用到的技术的是降噪的方法得到ASV。

简单来讲ASV就是在去除了错误序列之后,将Identity的标准设为100%进行聚类,常见的有DADA2、Deblur、Unoise三种降噪方法。项目里用到的是UNOISE2降噪方法获得ASV数据。

物种的分类与注释

采用QIIME2训练分类器方法对ASVs代表序列进行分类学注释,默认选用SILVA138数据库进行物种注释。并在各个分类水平上:domain(域),phylum(门),class(纲),order (目),family(科),genus(属),species(种)对每个样本的群落组成统计。

alpha多样性

Alpha多样性主要反映样本内多样性。对ASV表进行计算可以获得每个样本的simpson,ace,shannon,chao1以及goods_coverage等指数,alpha多样性指数用来来评估样本菌群物种的丰富度(richness)和多样性(diversity)

beta多样性

Beta多样性反映的是样本间多样性,Beta多样性是衡量个体间微生物组成相似性的一个指标。通过计算样本间距离可以获得β多样性矩阵,基于OTU的群落比较方法报告中给出了,欧式距离、bray curtis距离、Unweighted UniFrac距离和Weighted UniFrac距离等。

功能预测

得到群落的微生物组成之后,也可以对群落功能组成进行预测,常用的16S功能预测的相关软件有PICRUSt2、FAPROTAX、BugBase。

PICRUSt2用来预测功能,通常指的是基因家族,PICRUSt2支持基于多个基因家族数据库的预测,报告中包括了KEGG同源基因,KO直系同源物,EC酶分类编号,MetaCyc途径的丰度,CAZy碳水化合物活性酶数据库,GMM是肠道代谢模块和GBM是肠脑模块。

FAPROTAX是原核的微生物注释代谢或其他生态相关的功能(例如硝化,反硝化,发酵)的一个数据库和软件。FAPROTAX预测的功能主要集中在海洋、湖泊环境样本微生物的功能,特别是硫、碳、氢、氮的循环功能。

BugBase能进行表型预测,其中表型类型包括革兰氏阳性(Gram Positive)、革兰氏阴性(Gram Negative)、生物膜形成(Biofilm Forming)、致病性(Pathogenic)、移动元件(Mobile Element Containing)、氧需求(Oxygen Utilizing,包括Aerobic、Anaerobic、facultatively anaerobic)及氧化胁迫耐受(Oxidative Stress Tolerant)等7类。

以上这些部分,我们通过数据处理分析,得到了每个样本相关的大量数据结果,包括每个样本的序列统计、ASVs表格、物种分类注释统计、alpha多样性指数、beta多样性指数、功能预测等。这些数据主要集中在报告里的这些内容:

▸ 科研分析报告结果文件夹

01_pick_otu/ 文件夹主要是对样本ASV表格统计

02_sequence_statistic/ 文件夹是对样本序列数据的统计

03_diversity-metrics / 文件夹是对样本的alpha多样性指数、beta多样性指数的统计

04_Taxonomic/ 文件夹是对物种分类注释的统计(门到种水平)

Picurst2/ 文件夹是Picrust2功能预测得到的每个样本的相关功能预测数据

Groups/ 文件夹下是对组间差异分析结果

红框是样本个体的相关数据统计,Group是分组比较

根据以上常规分析得到的相关数据进行作图,其路径也在对应文件夹下,可以打开 分析报告.html 有相关分析的图表和对应文件的详细介绍路径说明。

★拿到样本后需要进行统计分析

当我们拿到这些样本大量的数据结果,之后关键的一步就是做对这些数据进行处理,做统计分析,比较分组之间的差异结果,找出菌群和环境之间的关联性等,对数据进一步做研究,找出课题方案对应的结果。

差异分析

不同的数据用到的统计检验方法也不太一样,接下来我们对报告中的不同的分析结果对应的统计差异分析方法进行介绍说明。

▸ alpha多样性

alpha多样性指数组间差异统计分析用到的检验方法是:单因素方差分析(如果只有两个分组,用Wilcoxon秩和检验,3个及以上的分组用Kruskal-Wallis 检验),图上方显示P值

▸ beta多样性

beta多样性指数的统计检验方法有ANOSIM相似性分析和Adonis多元方差分析,这两种都是基于距离矩阵的检验方法。

✦Anosim相似性分析

Anosim分析是一种非参数检验,用来检验组间的差异是否显著大于组内差异,从而判断分组是否有意义

报告中给出了加权距离和非加权距离的Anosim结果图,图中给出了R值和P值。

R值用于比较不同组间是否存在差异,R-value 介于(-1,1)之间,R-value > 0,说明组间差异大于组内差异。R-value < 0,说明组间差异小于组内差异。R只是组间是否有差异的数值表示,并不提供显著性说明。

统计分析的可信度用 P-value 表示,P< 0.05 表示统计具有显著性

图中能看出R>0,说明组间差异大于组内差异,P<0.05 ,说明差异显著,证明该分组情况效果较好。

✦Adonis多元方差分析

Adonis多元方差分析,其实就是PERMANOVA,亦可称为非参数多元方差分析。

其原理是利用距离矩阵(比如基于Bray-Curtis距离、Euclidean距离)对总方差进行分解,分析不同分组因素对样品差异的解释度,并使用置换检验对其统计学意义进行显著性分析。

它与Anosim的用途相似,也能够给出不同分组因素对样品差异的解释度(R值)与分组显著性(P值)。

报告中PCoA bray距离、PCoA weighted_unifrac距离、PCoA unweighted_unifrac距离的图片右下角有给出PERMANOVA检验的P值和R值。

图中看出PCoa bray距离得到的检验P<0.05 组间差异显著,并且分组之间区分较为明显。

PCoa bray距离的PERMANOVA检验结果路径:

多组间检验结果:

Groups/betadiv/pcoa_bray_analysis/PERMANOVA.result_all.csv

两组间检验结果:

Groups/betadiv/pcoa_bray_analysis/ PERMANOVA_paired_result.csv

不同分类水平下的检验方法

在很多分析报告当中,例如在不同疾病的肠道菌群分组中,本身样本个体之间肠道菌群的物种多样性,丰富度差异并不大,alpha多样性组间差异并不显著,beta多样性分组间区分不是很明显,这样就需要进一步找出分组之间的差异物种或者差异功能来进行分析。

对于不同分类水平的物种功能预测结果用到以下几种检验方法:

Tukey检验

Tukey主要应用于3组或以上的多重比较,适合于各组例数相等的每两两分组之间比较。

Tukey检验的一个重要的优点是非常简单,而且所需实验样本相对较少

其检验结果的可信度达到95%的置信水平时,最少的情况下只需6个样本进行验证(改善前3个样本、改善后3个样本)。

•举个例子

图中的字母代表显著性差异的字母表示法,只要含有相同的字母,就表明两组之间没有显著性差异

例如a和ab含有相同字母“a”,表示两组之间没有显著性差异。ab中的“b”表示这一组和其他含有字母b的组(比如bc)没有显著性差异,但是a和bc就有显著性差异了。

图中只展示Tukey检验差异显著的物种或功能,如果数量较多,则只展示前10个。

路径:Groups/diff_analysis/TukeyHSD/

图中显示的都是Tukey检验组间差异显著的物种,依次按照丰度从高到底排列,如果差异结果较大,则显示前10个物种。例如在该图中,Tukey检验结果,门水平物种Actinobacteriota在BB与MG1组、BB与MG2、BF与GG组、BF与MG1组、BF与MG2组,这些分组之间组间差异显著。

组间差异箱型图

组间差异箱型图用到的检验方法是通过单因素方差检验(只有两个分组,用的是Wilcoxon秩和检验,3个及以上的分组用的是Kruskal-Wallis 检验),Var检验和one-way相结合,筛选出组间差异性物种。

路径:Groups/diff_analysis/TaxaMarkers

图中每一个箱型图代表一个组间差异显著的物种

图中显示的都是统计方法得到的差异显著的物种,图中能看出这3个物种分组之间差异显著。

命名格式是,例如:Cen_Nitrosopumilus 指的是,当前分类水平(属水平)的名字 g__Nitrosopu 加上一级分类水平(科水平)的名字 f__Cenarchaeaceae 的前 3 个字母简写Cen,如果当前水平没有注释到名字则以全称的名字表示。

统计结果表:Groups/diff_analysis/TaxaMarkers/ xxx.Groups.sig.meanTests.csv

例如这是一个表格的截图

红框 mean_ 是分组组间的平均值

蓝框 sd_ 代表组间的标准差

粉色 .test 代表不同统计检验结果的P-value P值,这里有var检验 T 检验 Wilcoxon检验(或Kruskal-Wallis 检验)

绿色 _BH 例如Wilcoxon.test_BH代表Wilcoxon.test检验BH矫正的Q-value,Q值

UnivarTest检验(单因素方差分析)

单因素方差分析是指如果只有两个分组,用Wilcoxon秩和检验,3个及以上的分组用Kruskal-Wallis 检验。

路径:Groups/diff_analysis/UnivarTestXXX

Groups\diff_analysis\UnivarTestKEGG\figure 文件夹下有做成柱状图、箱型图和单个物种之间的图,其中有横着排列和竖着排列的,有用原始值计算的,还有对原始值取log后进行统计的。图中只展示Univar 检验组间差异显著的物种/功能。

统计结果表:Groups/diff_analysis/UnivarTestXXX/ UnivarTest_sign.txt

•举个例子

图中显示的是该统计检验差异显著的物种的柱状图或箱型图,按照丰度从高到低排列,如果差异物种/功能较大,则只显示前10个。例如该图中Therobifida、Staphylococcus、Streptomyces等物种用Kruskal-Wallis 检验得到的组间显著差异物种。

该图展示了Bacillus物种Kruskal-Wallis 检验差异结果,所有分组中P<0,001 多组间差异显著,两组间BB与GG、BB与MG1、BB与MG2、BF与GG、BF与MG1、BF与MG2,组间差异显著

LEfse分析

LEfse分析即LDA Effect Size分析,是一种用于发现和解释高维度数据生物标识(基因、通路和分类单元等)的分析工具,可以进行两个或多个分组的比较,它强调统计意义生物相关性,能够在组与组之间寻找具有统计学差异的生物标识(Biomarker)。

LEfSe用到的统计分析方法是将线性判别分析与非参数的Kruskal-Wallis以及Wilcoxon秩和检验相结合。

LEfse分析结果中一般会出现两个图一张表( LDA值分布柱状图、进化分支图以及特征表)。

LDA值分布柱状图

这个条形图主要为我们展示了LDA score大于预设值的显著差异物种,即具有统计学差异的Biomaker,默认值为2.0(看横坐标,只有LDA值的绝对值大于2才会显示在图中);柱状图的颜色代表各自的分组,长短代表的是LDA score,即不同组间显著差异物种的影响程度

路径:

Group/Lefse_Analysis/out_formant.cladogram.png

图中展示了不同分组特有的Lefse组间差异标记物,例如BB组的标记物是目水平的Bacillales和科水平的Bacillaceae,不同的分组标记物也不同,图中如果只展示了部分分组,则代表只有部分分组通过Lefse分析筛选出组间差异标记物。

进化分支图

小圆圈: 图中由内至外辐射的圆圈代表了由门至属的分类级别(最里面的那个黄圈圈是界)。不同分类级别上的每一个小圆圈代表该水平下的一个分类,小圆圈的直径大小代表了相对丰度的大小。

颜色: 无显著差异的物种统一着色为黄色,差异显著的物种Biomarker跟随组别进行着色,红色节点表示在红色组别中起到重要作用的微生物类群,蓝色节点表示在蓝色组别中起到重要作用的微生物类群。

未能在图中显示的Biomarker对应的物种名会展示在右侧,字母编号与图中对应(为了美观,右侧默认只显示门到科的差异物种)。

路径:Group/Lefse_Analysis/out_formant.png

图中右侧展示了分支图中的字母对应的物种信息,例如a 代表GG组的标记物目水平的Microtrichales ,b代表GG组的标记物刚水平的Acidimicrobiia。在分支图的最外层显示的是各分组门水平物种的标记物,例如BF组的是Actinobacteriota、MG1组的是Proteobacteria、

MG2组的是Cyanobacteria

特征表

路径:Group/Lefse_Analysis/out_formant.res.csv

第一列是样本中从门到属水平所有分类单位的列表

Lefse会逐一判断这些分类单位的在分组之间是否具有统计学显著性差异。

第二列:各组分丰度平均值中最大值的log10,如果平均丰度小于10的按照10来计算;如果该分类单位未体现出显著组间差异,则后三列为空。

对于具有统计学差异的分类单位:

第三列:差异基因或物种富集平均丰度最高的分组组名;

第四列:LDA差异分析的对数得分值;

第五列:Kruskal-Wallis秩和检验的p值,若不是Biomarker用“-”表示。

默认LDA>2,P<0.05

通常根据第4列的LDA差异分析对数得分值和第五列的P值,可以描述组间具有显著差异的分类单位统计学效力强弱。

metagenomeSeq

metagenomeSeq是用R开发的一个包,metagenomeSeq的基本思想,用normalization实现分类注释时的biases处理,同时用零膨胀高斯分布(zero-flated Gaussian distribution)处理了测序深度所带来的影响,在此基础上,利用线性模型找到存在的差异所在。

路径:Groups/diff_analysis/ metagenomeRXXX

metagenomeSeq 差异显著物种/功能 热图

图中颜色越深相关性越小,颜色越接近黄色相关性越大,从图中能看出Actinobacteria物种与BB组和BF组相关性较大。

metagenomeSeq差异菌属于功能代谢关联分析

图中红色代表正相关,蓝色代表负相关,颜色越深,圆圈越大,相关性也越大,例如图中能看出MGB049余MF0025 之间成正相关,且相关性较大。

随机森林模型

一种非线性分类器,随机森林属于集成类型的机器学习算法,挖掘变量之间复杂非线性相互依赖关系。通过随机森林重要性点图,可以找出分组间差异关键物种/功能

反映了分类器中对分类效果起主要作用的特征,按重要性从大到小排列。

Error rate:表示使用下方的特征进行随机森林方法预测分类的错误率,数值越高表示基于特征分类准确度不高,可能分组之间特征不明显。分值越低证明分组效果比较好

•举个例子

图中按照随机森林模型效果筛选出的对分组效果有重要性作用的物种,按照重要性从高到低进行排列,例如图中最终要的是a,依次往下是b、c等。错误率较小,表明该分组效果较好。

ROC曲线

ROC曲线分析是一种常用的统计学分析方法,在医学研究中主要用于评价诊断试验的效能。在16S测序报告中,我们通过绘制ROC曲线,并计算ROC曲线下面积(AUC),来确定分组对于菌群是否有诊断价值

ROC曲线图是反映敏感性特异性之间关系的曲线。ROC曲线下的面积值在1.0和0.5之间。在 AUC>0.5的情况下,AUC越接近于1,说明诊断效果越好

AUC在0.5~0.7时有较低准确性,AUC在0.7~0.9时有一定准确性,AUC在0.9以上时有较高准确性。AUC=0.5时,说明诊断方法完全不起作用,无诊断价值。AUC<0.5不符合真实情况,在实际中极少出现。

•举个例子

从图中能看出各分组的AUC都大于大于0.9,各分组的分组效果较好,BF组AUC等于1,该分组效果最好,可能样本之间较为相近,并且跟其他分组组间差异也比较大。

以上是组间统计差异的方法介绍,其他的还包括关联分析

例如客户提供了每个样的相关理化指标数据,想计算这些指标与均属之间有什么相关性,就可以做一下分析。

关联性分析

✦相关性热图

图中X轴代表属水平物种,Y轴代表代谢指标,红色代表正相关,蓝色代表负相关,**代表相关极显著P<0.01,* 代表相关性显著P<0.05相关性具有统计学意义。

例如从该图中能看出6与n物种成正相关,并且相关性极显著**,7与b物种成负相关,并且相关性极显著**

可以得到表格:任意菌属和代谢的相关性的值和P值

✦CCA图

可以分析样本、菌群、理化指标之间的关联关系。图中使用点代表不同的样本,从原点发出的箭头代表不同的环境因子

箭头的长度越长,表示环境因子的影响越大;夹角越小,代表相关性越高。样本点与箭头距离越近,该环境因子对样本的作用越强

图像中坐标轴标签中的数值,代表了坐标轴所代表的环境因子组合对物种群落变化的解释比例。

例如从图中能看出pH 、NO2N、02与 Acinetobacter、Weissella等物种成正相关,与T3D0、T1D0、T4D0等D0组的样本成正相关

✦RDA 冗余分析

例如从图中能看出pH与Helicobacer物种成正相关,相关性较大,pH与NC组有一定的相关性

✦Envfit分析

回归拟合分析结果:

图中能看出ASD与正常儿童之间的分组与菌群之间相关性极显著**,其次是否有先兆流产的分组与菌群之间有显著相关性*,其他的包括是否喝牛奶、孕期是否感染、妊娠高血压都与菌群有相关性

环境因子与功能/物种的相关性线形图P<0.05显著,图中红色点代表正相关,绿色点代表负相关,灰色相关性不显著

图中能看出pH 与Candidatus Rhabdochlamydia 之间成正相关,且相关性显著,pH 与Sinorhizobium、Euzebya 之间成负相关,切相关性显著。

Network网络分析

还可以做菌属之间的网络分析关联图,共发生网络图为研究复杂微生物环境的群落结构功能提供了新的视角。

由于不同环境下微生物的共发生关系截然不同,通过物种共发生网络图,可以直观看出不同环境因素对微生物适应性的影响,以及某个环境下占互作主导地位的优势物种、互作紧密的物种群,这些优势物种以及物种群往往对维持该环境的微生物群落结构和功能稳定发挥着独特以及重要的作用

•举个例子

图中展示了相关性的物种,例如Bacteroidota、Actinobacteriota、Proteobacteria 这些物种与其他物种相关较大,图中这些物种与其他物种连线较多,字体比较大也代表相关性较强,例如Actinobacteriota与Deinococcota连线是绿色的代表这两个物种是负相关。

这两个图类似的物种相关性的图,用同一个数据做出来的,图中能看出Bacillales、Desulfovibrionales、Selenomonadales与其他物种相关性较强

结 语

报告中已经基本都涵盖了16S科研数据分析所需要的图表差异统计,以及相关性分析结果。如果在几种不同类型的统计方法对比之下有略微的差异结果,选取其中一组差异结果即可。

报告里涵盖了大部分16S所需要的图片,不过也有个别个性化的图需要单独用到软件去做,可以单独完成个性化图表生成。

随着16s分析报告的不断升级,报告中的图表以及相应的解读也会越来越精细完善,谷禾也将尽可能为大家的科研之路带来更多便利。

自学 R 语言的十条干货技巧分享

谷禾健康

统计和科学编程已迅速成为科学中的一项必要技能,而这一般都需要用到——R语言

R语言以其简单易学、免费开源的特性,正在各个领域发挥着越来越重要的作用。

由于其强大的统计计算数据可视化两大功能,可以说在生信领域, R语言是干活的法宝。

  • 精确绘制各种非常漂亮的图
  • 各种各样的数据运算、清洗、汇总等工作
  • 编写新的统计方法
  • 轻松读取多种来源的数据格式
  • 多平台应用
  • ……
  • 最重要的是它免费!

本文分享的是来自一些自学R语言的研究人员认为有用的技巧,希望能为已经上路的R语言的自学者,看不到清晰道路的R语言小白、以及广大想要学习R语言的生物科研人员提供一些帮助。

注意:

这10条技巧并不是提供使用 R 的技术指导,而是提供了构建或磨练 R 编程技能的实用策略

01
做好准备:可能面临陡峭的学习过程

学习 R 就是学习一门新语言,包括词汇、语法、句法,甚至可能是一种新的思维方式,打开一个新的世界。

可以这样说,学习 R 语言很困难,因为它涉及经常报错,所以这个学习的过程要做好准备,识别这些错误,并最终学习如何修复

▸不怕犯错,永远没有完美

即使是最有经验的人,仍然会犯错误、忘记函数参数,或转向互联网搜索以刷新他们可能已完成多次的任务。

R 语言的流畅度不是永远不会收到错误消息,而是当你收到错误消息时感觉有能力修复它们(图 1)。当然,有些 bug 的发生并不是因为输入错误的代码,而是因为对函数参数或输出的误解

虽然避免错误消息是很好的第一步,但确保脚本完成预期任务的最佳方法是:

仔细阅读文档,一次运行一行代码。

02
花点时间看书

学习正确的编程实践的一个好方法是看书。书的一个优点是它们通常代表专家的声音社区的技能,或两者兼而有之。大多数学习 R 编程的好书都包含代码示例,你可以使用这些示例来提高技能

▸不管哪本书,都要运行代码示例并检查输出,积极分享

当书本后面没有答案时,开始或加入阅读小组会很有帮助,而且更有趣(后面第八条会讲到加入 R 社区)。与同事一起尝试练习,并利用彼此作为网络来提出问题比较方法并通过复杂的任务进行集体思考

教科书解决方案也定期在个人博客或网站上在线共享。在线发布自己的解决方案可以让你能够获得反馈,使整个 R 社区受益(参见第9条)。

▸专业书籍可以成为提升特定领域技能的绝佳资源

R 用户其实很幸运,你们已经拥有大量高质量的已出版书籍作为学习资源,其中包括:

RStudio 网站

( https://www.rstudio.com/resources/books/ ) 上精选的十多种书籍,以及无数其他作者由知识渊博的 R 贡献者提供。

比较推荐的 R 一些书籍包括“R for Data Science”和“Advanced R”,它们通过tidyverse介绍了 R 的现代方法(参见第5条关于风格)。

▸确立目标,按需去学

根据你学习 R 的目的,去看涵盖与你兴趣相符的,更具体主题的书可能会有所帮助。

例如,如果你打算将 R 用于高级统计,可以去看这类书,如《使用 R 的生态学中的混合效应模型和扩展》或《广义相加模型:R 简介》,每个都鼓励对核心编程统计技能的深刻理解。

如果你想用 R 来画出高质量的 Web 图形,从而传达结果,可能会需要看《Interactive web-based data visualization with R, plotly, and shiny》,其中涵盖了先进的基于 Web 的数据可视化技术的介绍。

那么到底应该买多少本书?

应该选修哪些编程的课程?

是不是需要很大的金钱成本?

……

别担心,下一章节我们提供一些免费资源供参考。

03
使用免费资源

幸运的是,许多高质量的R资源在线免费提供,涵盖了你可能所需的一切。

▸电子书,网站

例如,许多电子书在线免费提供,包括RStudio网站上的电子书。为了更快地参考,RStudio还提供了几个单页备忘单,每个备忘单都涵盖了一个特定包或编程任务的基本知识,可以作为很好的提醒。

如果你觉得看书枯燥,不容易看懂,那么也可以参考一些别的形式:

▸互动教程、视频课程、博客等

Coursera、edXfreeCodeCamp等网站上也有许多关于R、统计和数据科学的免费课程The Carpentries的免费培训材料,甚至YouTube和Twitch等网站上的免费视频教程。

一些地区和全球R团体,如R-Ladies和ROpenSci(更多信息请参见第8条),提供多种语言的博客文章研讨会资源。此处维护了R-Ladies博客列表(https://github.com/rladies/awesome-rladies-blogs); 包括Julia Silge和Danielle Navarro等。

其他精选的免费资源列表可以在inSileco博客r-directory网站上找到。

无论是通过博客、互动教程还是视频课程,如果有一种在线方式你觉得最适合的,那么很可能会有这种方式的R资源,只需要搜索一点就可以找到。

▸对于R技术领域的更多具体培训,许多机构提供免费教程、研讨会和在线课程。

例如,魁北克生物多样性科学中心(QCBS)R研讨会系列以英语和法语提供了关于数据可视化、线性模型、多元分析等的介绍性和高级研讨会,并在其网站上免费提供PPT、代码和配套书籍。

爱丁堡大学的编程俱乐部为生态学家和环境科学家提供广泛的课程,从数据处理和统计地理空间分析机器学习

EcoDataScience是一个以加州大学圣巴巴拉分校为中心的组织,提供一系列生态相关研究技术的技能分享和培训

以上这些只是高质量学习小组的几个例子;可以与你所在的机构、公司或同事联系讨论,获得最相关或最方便的建议。

04
在低压力的项目中培养技能

▸用“只是为了好玩”的项目来练习

如果你有时间和灵活性,一个很好的培养技能的方法就是通过“只是为了好玩”的项目来练习R。

– 想学习如何使用ShapeFile进行映射吗?

尝试制作一张你最喜欢的城市的海报,作为墙壁艺术印刷。

– 通过API抓取数据?

尝试在Spotify上找出最受欢迎的艺术家的共同品质。

– 文本分析?

尝试使用R的文本挖掘包来比较你喜爱的书籍或电视节目的情感关联。

– 定制数据可视化?

尝试使用ggplot形状和美学来复制你最喜爱的艺术作品(参见Twitter上的#RecreationThurday)。

▸ 低风险环境更解压

仅仅为了好玩,项目可以成为培养关键技能的非常有价值的环境。

低风险的环境会减轻你成功的压力,但当你成功时,会给你新的产品和工作代码,供你下次尝试类似的任务时参考。

▸ 用各种活动,趣味竞赛的方式边玩边学

参与有趣的社区活动、Twitter挑战或R编码竞赛(更多信息,请第8和9条)将帮你建立坚实的基础,为你的编程道路打开大门,同时选择你喜欢的项目

如果你更愿意让你的R学习更多的“任务”工作,你可以对现有的项目进行低压力的增加,从而获得新的技能。

尝试通过向现有图添加自定义文本注释来练习HTML呈现,或者通过创建用于交互式数据探索的闪亮应用程序,升级日常工作流程

在改进现有工作的同时,寻找扩大技能的机会将有助于你成为更全面的R用户。

05
采用良好的实践并保持一致

培养和维护项目的编程方法和组织系统有助于你和他人的代码清晰一致

▸ 在开始编程项目时,需要考虑你的心态

如果在开始新任务时对所有未来步骤都进行了精心规划,那么你就可能会从使用虚拟程序代码开始项目中获益。

*虚拟程序代码是计划完成的操作的简单语言描述列表,在文档中写出,然后逐行翻译为代码。

这种方法的一个好处是,它允许你从头到尾对项目进行概念化,并为你将要编写的每一行代码提供一个离散的目标

如果说,你更喜欢边做边学,可能更喜欢直接编写代码,观察每一行的输出,并在文本中注释最后一行完成的内容,以较小的增量达到最终目标。

在这两种情况下,对代码进行注释是很重要的,确保将来能够理解当前的想法。

▸ 接下来,需要决定在编码时使用什么样式

在本文中,编程风格是编写代码时使用的特定函数、包语法策略的集合。如果你认为R是一种语言,可能会认为你的风格是一种方言;两种风格看起来可能不同,但它们的含义是相同的。

在R中,主要的样式划分通常围绕着:你是使基本R的典型样式,还是采用R的管道方法以及其他tidyverse原则。

3 种代码样式的示例

虽然这些样式并不相互排斥,但它们包含不同的函数集,通常适合不同的语法策略来构造代码。根据你的背景,你可能更喜欢其中一种语法。

例如,如果有在C++Java等程序中编写代码的经验,则顺序或嵌套语法可能会让你熟悉,而管道函数可能会使代码读起来更类似于用英语编写的句子

(请参阅tidyverse样式指南:https://style.tidyverse.org/)

在大多数情况下,只要适合你的,什么样式都可以。

当然,匹配协作者中最常见的代码风格或规程中的标准,对阅读、共享和排除代码故障很有帮助。

有时,可能需要切换样式,以便于最好地完成某项任务,但选择尽可能保持样式一致将有助于确保你和其他人可以解释代码

▸ 最后,将文件放入严格的目录结构中非常重要

R生态系统提供了许多工具来促进项目组织。大多数集成开发环境(IDE)都有“项目目录”的概念;这对于领先的R IDE、RStudio和大多数其他(例如,VScode和Atom)都是如此。

还可以使用包来简化项目目录中的文件路径命名方案。根据你所在的领域,文件夹组织结构可能会有所不同,但随着项目列表的增长,对系统进行批判性思考将简化生活。

此外,保持适当的项目组织将有助于你学习“版本控制”的实践,这是一种跟踪更改和备份代码的系统,正在成为跨科学领域的专业标准

06
使用CRAN的任务视图

R的大多数功能都捆绑在特定于任务的包中,但很难知道哪些包存在哪些包最适用于某些任务。

在R中,用户开发包的主要存储库是CRAN,即the Comprehensive R Archive Network,综合R存档网络。

虽然软件包也可以来自其他来源,但CRAN软件包具有通过R’s install.packages功能轻松访问,确保软件包已在多个平台上测试的优势。

当搜索完成特定任务所需的新包时,最好从CRAN的任务视图开始(https://cran.r-project.org/web/views/).

任务视图允许用户按主题浏览已发布的包,包括多元统计、时空分析、元分析等。任务视图浏览器列出每个主题的相关包,并提供指向每个特色包的扩展文档的链接。

该资源对于R初学者以及正在寻找应对新挑战的方法的更有经验的R用户非常有用。

07
寻求帮助,并帮助他人

自学R时,你可能会遇到自己还不知道如何解决的问题

在这些情况下,寻求帮助可能会为你节省大量时间,缓解头痛。

知道如何以有针对性的方式寻求帮助,这样你就能够查明问题的根源,并且在理想情况下,帮你避免将来出现类似问题。

▸ 如何以有针对性的方式寻求帮助?

当你第一次遇到问题时,复制和粘贴遇到的错误到搜索引擎中,可能会让你访问Stack Overflow、GitHub或R-bloggers等网站。

-通常情况下,有人会遇到与你相同的问题,并且可能会找到你可以使用的解决方案。

-如果没有的话,你可能需要发布自己的求助。

在这种情况下,有一些指导原则可以使帖子更高效:

在寻求帮助时,可复制的示例至关重要。你的目标应该是尽可能少地展示你的问题,并且在发布你的问题之前需要花一些时间隔离有问题的代码。

最有用的方法是在示例中生成一个玩具数据集,或者使用内置于R中的数据集(请参阅R中的data),并逐步删除代码中与要解决的问题无关的部分

还应该在最小可复制示例中附带有关R会话和相关包版本的信息。所有这些步骤都可以通过reprex软件包实现。

▸ 水平提高后,帮助他人

随着技能的提高,你可能会发现自己处于一个可以帮助他人的位置

在Twitter或Stack Overflow这样的地方回答问题是回馈R社区的好方法。

你甚至可以回过头来回答你自己过去问过的问题,这样你的帖子标记为“已解决”,并为下一个遇到同样问题的人留下一个有效的解决方案,帮助自己的同时也能给他人带来便利。

08
加入R社区

建立R语言流利性的最佳方法之一是与他人一起学习

R社区充满活力,为学习R技能举办了会议、聚会和定期在线活动。

一个很好的起点是寻找你所在的区域的R用户或建立兴趣小组,经常举办技能分享、讲座、编程实践会议

当然,你也可以虚拟加入R社区。The R for Data Science(R4DS)社区为学习者和导师提供了分享研究技能和协作的空间。R4DS Slack频道拥有超过10000名成员,成员可以通过讨论频道寻求帮助、分享胜利、网络等。

如果你不属于任何特定群体,R社区在许多社交网络上也很活跃。

R通常在Twitter上与#RStats标签讨论如下图。

一些常见科学编程语言的Twitter讨论流行度

社区的一个很好的切入点可能是以下帐户:

@rstudio、@Rbloggers、@icymi_r、@RLadiesGlobal、@R4DS、@rOpenSci

在Facebook和Reddit等网站上也存在一般特定领域的R组。你甚至可以参加在线活动,如Twitch上的数据科学节目“切片”,观看专家们在R编程挑战(以及其他语言)中的竞争。

关注多产的R博客也是了解R的好方法;一些推荐的R博客作者包括Maëlle Salmon、Jacqueline Nolis、Miles McBain。

在线找到社区都是了解新功能、了解最新软件包、遇到其他地方可能看不到的提示和技巧的好方法。

最重要的是,保持积极性,继续编写代码。

09
阅读别人的代码,分享你的代码

R的开源文化为代码共享提供了丰富的资源。

▸ 阅读和运行来自公开来源的代码,对于发现新函数、优化处理速度和向专家学习非常有价值

一些R项目,如#TidyTuesday R社交数据可视化项目,鼓励在线代码共享,以帮助用户获得和磨练技能。

其他活动,如每年一度的RStudio Shiny竞赛,为用户制造的R产品提供了一个友好竞争的渠道,最终免费提供代码,允许用户阅读、下载和复制获奖应用程序。

如果你发现一个特别好的R产品提供了代码,请自己逐行运行代码,以了解每一行或函数的确切意思,具体起到什么作用。你可能会学到一个新的功能,可以应用于自己的项目,或者有许多方法可以完成相同的任务。

▸ 已发表的论文提供了另一个R代码源代码,以实现更多以研究为中心的目的

现在,许多学术期刊要求出版物中包含公开可用的数据和代码,其中许多(尤其是自然科学领域)都是用R编写的。通过从已发表的文献中下载材料,你可以了解所在领域的专家如何进行分析使用哪些软件包,以及他们如何组织代码

▸ 学会分享:在线共享你的R代码

当然,代码共享是双向的;除了从其他人那里获取公开可用的材料,您还分享您自己的材料。

代码共享的通用平台包括GitHub、GitLab和开放科学框架(OSF)。

在线共享你的R代码将进一步增强R社区的开放性,并帮助你成为一名更加专注的代码编写者。

发布代码可能会让人感到害怕,但请记住,对科学界来说,可用代码总是比不可用代码更有价值

如果你的代码没有完全优化或完全干净,不要过分在意。如果它能运行起来,可能会教给别人一些新的东西,是值得分享的。

10
接受各种可能性

R是一个非常棒的工具,可以用于统计、数据操作、可视化等,但它不一定是编程旅程的终点。

▸ 流利的R语言帮你获得未来适用于其他程序、语言或领域的技能

例如,为Shiny Applications设计用户界面(ui)将帮助你建立前端web开发的基础,R的各种文本插件(例如ggtext包)将帮助你练习HTML语法,R的向量操作(apply和purrr::map函数族)将构建概念框架以转移到其他编程语言,如Julia或Python。

▸ 这是双向的:如果你已经掌握了其他编程语言的技能,它们也会帮助你学习R语言

当你继续将编程技能应用于更广泛的任务时,你可能会发现对于某些任务,不同的工具会更有效或更合适。

在这些情况下,你在学习R时建立的信心和技能可能是下一次编程努力的有用跳板

通过学习R获得的知识,以及你通过自学获得的经验,将使你受益远远超过你手头的任务。

结 语

学习R语言,可能是一个充满挫折、自我怀疑和缺乏继续动力的过程。在这里列出的10条是帮助你克服挑战、掌握新技术的最佳策略,甚至可能在这一过程中获得一些乐趣。

也希望可以帮助初学者,无论是研究生、业余爱好者还是渴望学习新工具的研究人员。

当然也不需要一次尝试所有这些规则,也不局限于这十条,你只需要找到最适合你的方法即可。

主要参考文献:

Lawlor J, Banville F, Forero-Muñoz N-R, Hébert K, Martínez-Lanfranco JA, Rogy P, et al. (2022) Ten simple rules for teaching yourself R. PLoS Comput Biol 18(9): e1010372. https://doi.org/10.1371/journal.pcbi.1010372

一套用于建立和管理微生物相互作用数据库的体系

谷禾健康

在过去的几十年里,生物技术和计算技术的巨大进步彻底改变了我们对微生物群落的理解。特别是,基于16S rRNA宏基因组测序的研究进一步验证了一个事实,即微生物群不是静态的实体,而是动态的生态系统,身在其中的组成成员之间,以及成员与环境之间,都在以各种方式进行相互作用

在这些研究过程中产生了大量的关于微生物相互作用的机制和环境依赖性的数据,也出现了许多专门储存单一类型或进行了部分分类整合的数据库。但由于是以不同的标准去整理的数据,所以很难共享。

//

本文研究人员提出了一套体系,用于微生物组数据管理,简称FAIR (findable, accessible, interoperable, and reusable),即可查询、可访问、可交互和可重复使用。这些原则于2016年首次正式提出。

FAIR体系之findable和accessible

首先基于可查询可访问的原则,需要数据库,它能存储现有数据也能继续转化新的数据。这个平台可以是自己从零开始设计,可以是使用现成的数据库构建工具作为辅助(比如mako软件),也可以是直接使用已有的数据库,比如GloBI

关于数据获取,文中列出了一些资源,都是目前广泛使用或者比较独特的,如下表:

FAIR体系之interoperable和reusable

其次基于交互性可重复使用的原则,需要将大数据拆分为一个个子集,每一个子集都应该是能满足大量用户的第一需求或者说是第一想了解的信息点。基于此,研究人员提出了四类元数据作为起点:

  • 微生物实体 (microbial entities)
  • 相互作用的推理方法 (interaction inference methods)
  • 相互作用的上下文语境 (interaction context)
  • 属性 (attributes)

1. 微生物实体

应提供参与相互作用的每种微生物的物种(和菌株,如果相关)名称

示例:

2. 相互作用的推理方法

使用不同的方法来指示高度相关的元数据。

示例:

3. 相互作用的上下文语境

一些环境背景,如生物群落(例如,宿主相关的、合成的)。

示例:

4. 属性,用于定义互作关系的类型

如合作、对抗、关联、成对或高阶等。

示例:

利用FAIR体系进行研究的思路

最后,文章中给出了依照FAIR体系研究微生物互作关系的可拓展性

如下图,通过研究微生物相互作用和相关性(A部分)而产生的多种类型的元数据(B部分),这些元数据(DT),例如真菌细菌或噬菌体细菌的培养实验数据(DT1),扩增子序列或OTU计数的相关性(DT2),两个或两个以上物种基因组尺度代谢网络的通量平衡模型(DT3),直接比对到特定数据库(DT4)。

遵循FAIR里的四个原则解析微生物互作内容(C部分),解析结果如D部分,得到一个可能的相互作用网络关系图谱。

同时,C部分的内容可以横跨不同领域,为不同领域的专家提供信息,例如E部分,建模者可以更容易确定具体的互作以便真实的模拟生态动力学,而实验人员可以评估是否有新的互作在其他宿主或上下文中被报告。

总结及展望

以上内容,是研究人员基于自身经验归纳总结的,研究人员也指出在此概述的实践、标准和示例并不是详尽无遗的,文章旨在促进进一步讨论如何改进微生物相互作用及其属性数据的访问和可用性。希望能进一步的激励各位科学家,共同创建一个共享开放的,拥有统一标准的微生物相互作用资源站。

参考文献:

Pacheco AR, Pauvert C, Kishore D, Segrè D. Toward FAIR Representations of Microbial Interactions. mSystems. 2022 Aug 25:e0065922. doi: 10.1128/msystems.00659-22. Epub ahead of print. PMID: 36005399.

客服