Tag Archive 免疫

膳食多酚与肠道微生物群的互作对人体健康的影响

谷禾健康

在过去的 20 年中,膳食(多)酚类化合物作为具有预防慢性疾病的抗氧化剂受到了关注。而临床试验中证据很弱,主要因为个体间的差异很大。多酚的生物利用度低(5%–10% 被小肠吸收)。这些化合物的生物利用度严格取决于肠道微生物的酶促机制

最近,鉴定参与肠道多酚转化的细菌越来越受到关注。已经表征了几种催化酚类物质代谢的菌群及其分解代谢途径。大多数描述的参与多酚转化的属是双歧杆菌、拟杆菌和厚壁菌。微生物会受到外部因素(例如饮食、药物和体育锻炼)、宿主的地理分布和个体差异的影响。肠道微生物群组成的年龄相关变化可能会影响某些营养素的生物利用度,包括其代谢活性介质。

特定的代谢型会产生对健康影响的生物活性代谢物代谢型还可以反映肠道微生物群的组成和代谢状态,并且可能是通过肠道微生物群介导的潜在多酚健康影响的生物标志物。

基于最近的研究成果,本文将综合介绍膳食多酚以及其生物利用转化与肠道菌群的互作对人体健康的影响,为我们如何结合肠道微生物群选择和摄入膳食多酚提供一些视野。

01 膳食多酚及其有益作用

膳食多酚是一组生物活性植物化学物质,主要存在于各种水果、蔬菜、种子、草药和饮料(啤酒、葡萄酒、果汁、咖啡、茶和巧克力)中,少量存在于干豆类和谷物中。食物中,这些化合物具有多种生态作用,从抵御生物和非生物压力因素到界内交流

基于中心吡喃环的氧化态将黄铜类细分为几个亚类

类黄酮类黄酮主要是黄烷醇、黄酮、花色素、黄烷酮、黄酮醇和异黄酮

非类黄酮

非黄酮类化合物主要类别是酚酸,可细分为苯甲酸衍生物,例如没食子酸和原儿茶酸,肉桂酸衍生物,包括香豆酸、咖啡酸、阿魏酸

第二个主要组主要由芪类组成,白藜芦醇是主要代表,以顺式和反式异构形式存在。另一个重要的非黄酮类化合物是由两个苯丙烷单元氧化二聚产生的木脂素

黄烷醇是食物中最常见的类黄酮形式,其最丰富的来源是洋葱、西兰花、茶、苹果、红酒、蓝莓、杏仁和开心果

黄烷酮丰富的食物包括橘类水果,如柠檬、葡萄柚和橙子

花青素是存在于红色水果和蔬菜(例如覆盆子、接骨木莓、草莓、石榴、卷心菜、红洋葱)中的水溶性黄酮类化合物。黄酮来源的有针叶樱桃、杏、橄榄油、蜂蜜、苹果、木瓜和芒果

异黄酮是主要存在于豆科植物中的生物活性化合物,少量(浓度低于 0.1 毫克/千克)存在于杏、干枣、醋栗、芒果、李子、新鲜椰子和芝麻,而发现二苯乙烯存在于葡萄、红酒和浆果中。

红色、深色水果和蔬菜,如草莓和黑莓、黑萝卜、洋葱和茶,是也是酚酸的重要来源。

红葡萄酒中常含有芪,豆制品中常含有异黄酮。 亚麻籽和芸苔属蔬菜中含有大量木脂素; 其他,如松脂醇、落叶松脂醇通常也存在于许多食物中。

Davinelli S &Scapagnini G. Biofactors. 2021

多酚是有效的抗氧化化合物,能够抗氧化应激和慢性炎症。许多研究都集中在它们的有益抗炎、镇痛活性和抗菌、血管舒张、抗过敏和抗癌作用。最近的研究表明,有益作用还与多酚与主要细胞信号传导和基因调控途径相互作用以及调节肠道微生物群的能力有关。例如,多酚可以通过抑制特定细菌种类的生长来影响F/B比。事实上,已经通过体外、离体和动物试验证明了不同酚类化合物(尤其是黄酮类化合物)的一系列药理作用然而,这些化合物的健康影响取决于它们的生物利用度,以及它们被吸收、代谢和从体内清除也很重要。

02 膳食多酚的摄入量、生物利用度和稳定性

2.1 摄入量

众所周知,测量膳食摄入量是困难的,单一的方法无法完美地估计膳食摄入量,尤其是在关注微量营养素和生物活性化合物(如多酚)时。对此,最近的一项研究估计整个人群(包括北美和南美、欧洲、亚洲和澳大利亚)的总多酚摄入量约为 900 毫克/天;该值因受试者目标群体的差异而异。此外,发现膳食多酚的主要来源水果和蔬菜、咖啡、茶和红酒

多酚摄入量可能受到其他几个因素的影响,例如饮食习惯、人口特征(例如性别、年龄和文化因素)和地理区域。总体而言,与男性相比,女性摄入量更高,这首先是在考虑能量标准化时。在这方面,与男性相比,女性是水果和蔬菜的消费意愿更强烈,而男性是饮料和咖啡的更高消费者。

2.2 利用度

在了解其生物利用度之前,我们先看下膳食多酚的代谢过程。

由于其复杂的结构和高分子量,只有5-10% 摄入的膳食多酚可在小肠中直接吸收。

而大部分(90-95%)是以其完整形式到达结肠,并依次进行肠道发酵

产生的多酚代谢物在吸收后将通过门静脉到达肝脏并进一步经历广泛降解形成活性代谢产物(甲基化、葡萄苷酸化和硫酸化)。

此后,代谢产物将进入系统循环并到达目标组织和细胞,剩余和未使用的代谢产物通过尿液排泄。

膳食多酚的代谢

Vemana Gowd, et al.,Trends in Food Science & Technology, 2019

多酚摄入量生物可及性和生物利用度密切相关。在这方面,胃肠消化过程中食物基质中多酚的释放,即生物可及性,将对生物利用度产生重大影响,即酚类化合物的潜在吸收可用于随后的代谢途径。事实上,在植物性食物中,多酚等生物活性化合物被包裹在由膳食纤维形成的复杂大分子网络中,通常在胃肠道消化不同阶段释放。通过这种方式,它们可以在小肠和/或大肠中被吸收,从而发挥其真正的生物效应

根据与其他食物基质成分发生的分子相互作用,可以增强或减弱多酚的生物可及性和生物利用度。因此,为了评估多酚的生物利用度,一些研究论文深化了对纤维与这些植物化学物质之间可能相互作用的研究。膳食纤维可能作为一种“控制机制”,用于监测消化道不同部位(下部或上部)生物可及的多酚部分

大多数黄酮类物质在小肠中吸收较差,在大肠中代谢率较高。异黄酮似乎是吸收最好的膳食类黄酮;儿茶素、黄烷酮和黄酮醇糖苷是中间体,而原花青素、黄烷-3-醇没食子酸酯和花青素的吸收最差。

膳食多酚的生物利用度主要取决于肠道微生物群的组成

Westfall S, et al., Front Neurosci. 2019

膳食多酚与肠道微生物群的调节有关,这些微生物将多酚转化为活性和生物可利用的代谢物;因此,肠道微生物群的变化会影响多酚活性

肠道细菌显示出不同的去糖基化活性,因此释放的苷元可能在较小程度上被吸收,更有可能降解为更简单的酚类衍生物 。结肠微生物群对黄酮苷元的降解涉及 C 环裂解和影响官能团的反应,如脱羟基、脱甲基或脱羧

很明显,膳食多酚的有益作用似乎更多是由于在胃肠道中形成的酚类代谢物,主要来自肠道细菌的作用而不是食物中发现的原始形式

结肠微生物群主要负责将母体酚结构分解成一系列低分子量的代谢物。这些微生物衍生的酚类物质比食物中发现的原始化合物更易吸收,对个体健康更有益。

2.3 稳定性

膳食多酚及其肠道微生物群代谢物通常被归类为抗氧化剂。然而,它们与酶、转录因子和受体相互作用的能力强烈表明它们可能充当信号分子,并在细胞和分子水平上发挥其有益作用。已发现这些化合物与血管疾病和神经变性,以及血脂、眼部疾病和血压的改善有关。

肠道微生物群通过多酶促反应影响膳食多酚的稳定性,包括去糖基化、硫酸化、葡糖醛酸化、苯并-γ-吡喃酮系统的 C环裂解、脱羟基、脱羧和氢化。

首先,大多数O-糖苷被转移到苷元,进一步结合到O-葡萄糖醛酸和/或O-硫酸盐形式。然后肠道微生物进行分解代谢转化,如芳环的碳碳分离、烯烃部分的脱羧、氢化和脱羟基。例如,槲皮素 3-O-葡萄糖苷被肠道细菌转化为间苯三酚、2,4,6-三羟基苯甲酸和原儿茶酸。花青素经常被肠道微生物群代谢形成 2,4,6-三羟基苯乙酸和原儿茶酸姜黄素被分解代谢为氢化物,O-葡萄糖醛酸、去甲基和O-硫酸盐形式。肠道微生物群通过脱羟基和分子内缩合将鞣花酸转化为尿石素。花青素葡萄糖苷主要在人结肠中转化为 3,4-二羟基苯甲酸

03 肠道微生物对多酚的生物转化

多酚产生健康益处的能力可能至少部分是由于与肠道微生物群的双向串扰。与肠道微生物群的相互作用导致母体化合物的生化转化为更具生物利用度的代谢物

肠道微生物群进行的三个主要分解代谢过程是水解、裂解和还原反应。 在这些分解代谢反应之后,释放的苷元可能进行 II 期代谢并被肠道微生物群转化为简单的酚类衍生物,从而促进身体吸收

下面,我们将简要讨论由肠道微生物群介导的多酚的主要分解代谢反应。

3.1 水解作用

由于它们以糖苷的形式存在,多酚的生物利用度是有限的,尤其是鼠李糖苷它不能被人体肠道酶水解。因此,这些多酚在吸收前需要被肠道微生物酶水解。 一些研究报道了乳杆菌和双歧杆菌菌株从黄酮类鼠李糖苷中释放鼠李糖。

然而,其他肠道细菌,如拟杆菌、肠球菌和肠杆菌,也显示出这种活性。例如,芦丁和地奥司明被肠球菌、拟杆菌、厚壁菌和布劳特氏菌水解,导致槲皮素和地奥司米丁以其苷元形式释放。 尽管开环异落叶松树脂二葡糖苷(一种常见的亚麻籽木脂素)在胃肠道、乳杆菌和双歧杆菌可以增强其水解,提高生物利用度。另一个很好的例子是动物双歧杆菌,它参与绿原酸水解释放咖啡酸。鞣花单宁(Ellagitannins),一个典型的例子,可水解的单宁,在上消化道消化过程中自发水解成鞣花酸。

3.2 裂解作用

肠道微生物群对多酚的关键分解代谢活动是碳环的打开C C键的断裂和甲基醚的去除。这些反应是由肠道细菌(例如梭状芽孢杆菌)和 Coriobacteriaceae的成员进行的。 在类黄酮的情况下,水解后释放的苷元通过 C 环裂解被分解代谢。 例如,类黄酮 C 环裂解将异黄酮黄豆苷元转化为 O-desmethylangolensin 和雌马酚。

【注:O-Desmethylangolensin 是大豆异黄酮经过肠道微生物代谢的代谢物,具有抗氧化活性。】

黄豆苷元生物转化为雌马酚(一种具有植物雌激素样活性的代谢物)严格依赖于肠道微生物群的组成。

Eggerthella菌和一些 Slackia属的细菌是产雌马酚的细菌。涉及 Cring 打开和 CC 键断裂的微生物分解代谢活动也与不可吸收的低聚黄酮类化合物转化为更具生物利用度的酚类代谢物高度相关。大多数到达结肠的绿原酸,水解发生时,环裂解导致咖啡酸奎宁酸的释放。鞣花酸转化为尿石素M5,一种鞣花单宁的微生物代谢物,涉及内酯开环和脱羧反应。这些反应由属于Gordonibacter 属的菌株催化

3.3 还原反应

多酚的不同还原反应,如双键加氢、羰基还原和脱羟基,也由道微生物催化。这些微生物还原的主要多酚底物包括鞣花酸、咖啡酸和异黄酮。已经确定了许多负责这些反应的肠道微生物。例如,黄豆苷元的苷元被称为 MRG-1 的 Coprobacillus 菌株还原为二氢黄豆苷元。然后,二氢黄豆苷元被 Eggerthella 菌株氢化成雌马酚。肠道细菌可以以非常特殊的方式从酚类分子中去除羟基,这一特征已在鞣花酸的分解代谢中得到深入研究,其中涉及用于生产不同的尿石素谱。在人类中,有特定的代谢型负责合成尿石素,并且已经表征了参与这种代谢转化的细菌种类。

Gordonibacter urolithinfaciens 和 Gordonibacter pamelaeae 能够提供尿石素,而最近发现的Ellagibacter isourolithinifaciens可以产生异尿石素, 肠道细菌,例如梭状芽孢杆菌属的成员,对于催化二羟基反应和转化也是必不可少的,将木脂素转化为肠木脂素(例如,肠二醇和肠内酯)。

04 膳食多酚对宿主肠道微生物群的调节

对菌群构成影响

一般来说,口服多酚在上消化道的吸收相对较低;很大一部分多酚积聚在结肠中,影响和改变肠道微生物群的组成。摄入多酚可能通过促进有益细菌的生长和/或抑制有害细菌的生长来调节肠道微生物群,从而使宿主受益。随机,双盲,安慰剂对照的人类试验表明,经口摄入没食子儿茶素-3-没食子酸酯和白藜芦醇,持续12周显著降低超重男性拟杆菌的粪便丰度和趋向于降低Faecalibacterium prausnitzii 的丰度。

在高脂饮食中补充膳食葡萄多酚导致肠道微生物群落结构发生显著变化,包括厚壁菌门与拟杆菌门的比例降低以及AKK菌的大量繁殖。膳食多酚促进肠道细菌Akkermansia muciniphila 的生长并减轻高脂饮食诱导的代谢综合征。

Vemana Gowd, et al.,Trends in Food Science & Technology, 2019

槲皮素膳食给药(30毫克/千克体重/天)中,通过降低厚壁菌/拟杆菌比率和降低肥胖关联细菌。除了纯多酚外,富含多酚的食物/提取物的给药也改变了肠道微生物群的组成。犬类摄入绿茶多酚提取物 18 周可抑制拟杆菌和梭杆菌的丰度,并增加厚壁菌门 。

用偶氮甲烷/DSS 治疗小鼠 12 周后,来自黑树莓的膳食花青素(饮食中 3.5 和 7.0 μmol/g,相当于饮食中 5% 和 10% 冻干黑树莓粉中的花青素含量)增加了粪便中有益菌丰度,如Faecalibacterium prausnitzii、乳酸杆菌和直肠真杆菌,并减少病原体的丰度,如脱硫弧菌属和肠球菌属

同样,在最近的一项研究中,将野生蓝莓多酚提取物和从蓝莓中分离的部分(包括聚合度小于四个酚酸和黄酮醇的低聚原花青素)给药于高脂肪高蔗糖饮食诱导的肥胖小鼠促进了多酚降解细菌Adlercreutzia equilifaciens的生长,表明将这些细菌纳入多酚代谢可能通过产生参与这些过程的生物活性分子来改善肥胖和糖尿病的代谢紊乱

人类试验中多酚和富含多酚的食物对菌群失调的调节

Molinari R,et al., Biofactors. 2021

短链脂肪酸

肠道微生物群可以利用未消化的食物产生短链脂肪酸,如乙酸盐、丙酸盐和丁酸盐,这些短链脂肪酸在维持人类健康方面发挥着重要作用。补充多酚可以通过改变肠道微生物群的组成和功能来改变短链脂肪酸的产生。绿原酸、咖啡酸、芦丁和槲皮素的体外发酵显著增加了丙酸和丁酸的产量,咖啡酸发酵显示丁酸和丙酸的产量增加最高。相反,在人类中使用波森莓饮料和在高脂肪饮食治疗的大鼠中使用反式白藜芦醇对短链脂肪酸的产生没有造成显著差异。

不同类型的多酚、实验模型和肠道微生物群的复杂性可能是造成差异的潜在原因

  • 橙皮苷 v.s. 橙皮素

在另一项研究中,评估了橙皮苷(饮食中 1%)及其苷元橙皮素(饮食中 0.5%)对大鼠肠道微生物群产生短链脂肪酸的影响。已经发现,橙皮素的摄入显着提高了盲肠总短链脂肪酸(乙酸、丙酸和丁酸),而橙皮苷与对照饮食相比没有显着影响,这归因于它们对生产和活性的可能不同影响微生物酶

  • 不同苹果品种及苹果制品

短链脂肪酸的生产受到来自两个苹果品种(Marie Ménard 和 Avrolles 品种)的不同冻干苹果制品(水果、酶解水果、分离的细胞壁、分离的原花青素或苹果酒)的原花青素的影响。与其他制剂相比,未消化的冻干苹果显示出更高的短链脂肪酸产量。此外,发现长链原花青素的存在能够抑制短链脂肪酸的产生,这很可能取决于对细胞壁降解微生物酶的抑制

  • 绿茶提取物 v.s. 红茶提取物

2018年日本的一项研究发现喂食脱咖啡因绿茶或红茶提取物的 Wistar 大鼠的盲肠中短链脂肪酸的水平已以不同的方式受两种提取物的影响。

与对照饮食相比,施用 10g/kg 的绿茶提取物限制了短链脂肪酸的产生,而饲喂 10 g/kg 的红茶提取物不会显着影响盲肠食糜中的短链脂肪酸水平。值得注意的是,含有绿茶提取物的饮食导致大部分未消化的淀粉从粪便中排出,这表明红茶提取物可能对胰腺α-淀粉酶有抑制作用,导致盲肠中有更多的淀粉可用于生产短链脂肪酸

粘液产生和腔内含氧量

结肠粘液是抵抗肠道病原体的第一道屏障,这可能归因于粘蛋白和糖蛋白的凝胶形成特性。黏液屏障的耗竭会导致大量病原体侵蚀,导致结肠炎症,因此黏液屏障的完整性对结肠健康至关重要。

发现多酚能够促进粘液的分泌。蔓越莓原花青素通过增加白细胞介素IL-4和IL-13促进粘液分泌,刺激杯状细胞增殖和 MUC2 产生。多酚处理可以促进特定细菌的生长,例如Akkermansia ,这些降解粘蛋白的细菌刺激了粘蛋白的产生。此外,多酚可通过抑制粘液腐蚀细菌的生长来防止粘液腐蚀。例如,石榴皮提取物抑制了柠檬酸杆菌(一种可以降解粘液的病原体)的过度生长,从而减少了柠檬酸杆菌感染小鼠的结肠。

多酚可能会促进肠道微生物群组成的整体平衡,以保持粘液的完整性,尽管多酚可能不会抑制特定的粘蛋白降解细菌。例如,槲皮素的给药改变了肠道微生物群组成的平衡,并维持了结肠炎小鼠粘液的完整性,尽管槲皮素并没有显着抑制啮齿类柠檬酸杆菌的生长。总的来说,这些发现表明多酚可以通过刺激粘蛋白的分泌、抑制粘液降解细菌的生长、改善肠道微生物群组成的平衡从而减少粘液的损伤来维持粘液的完整性。

氧化还原稳态对于维持正常的细胞代谢和功能很重要。活性氧 (ROS) 的过度产生导致氧化应激,这与炎症有关。抑制大肠中 ROS 的过度产生对结肠健康具有重要意义。重要的是,氧化还原状态可以改变肠道微生物群的组成。具有较高的ROS产生在小鼠的小肠相关联的多种氧化还原状态显示较低的香农的多样性。在衰老模型中,小鼠年龄越大,ROS 产生越多,香农多样性降低,梭菌减少,拟杆菌门S24-7菌增加。

N-乙酰半胱氨酸对小鼠ROS 的消除增加了与S24-7减少和厚壁菌门增加相关的香农多样性。多酚可直接与 ROS 反应并清除ROS维持全身氧化还原稳态,最终改善肠道微生物群的平衡。例如,柿子醋多酚抑制 HepG2 细胞(肝癌细胞)中 ROS 的过度产生。β-胡萝卜素和葡萄多酚提取物降低肠道中的 ROS 水平,绿茶多酚减少了 Pb 诱导的 ROS 生成。此外,共生细菌和肠上皮细胞之间的相互作用可以触发 ROS 的产生。

鼠李糖乳杆菌刺激肠上皮细胞局部 ROS 的产生,导致 Ubc12 等关键酶的氧化,从而抑制 NF-κB 活化并随后减少炎症反应。因此,多酚对乳酸杆菌的富集或其对上皮细胞的粘附能力增加,例如田菁花提取物和苹果皮提取物,显示调节 ROS 生成和炎症反应的潜力。

肠道免疫系统和炎症

肠道免疫系统具有多种细胞类型。肠道免疫可以分为由上皮细胞和抗原呈递细胞 (APC) 组成的先天成分,以及由淋巴细胞组成的适应性成分。自适应成分本身可以分为响应的诱导和效应位点。诱导位点基本上是派尔斑,即孤立的淋巴滤泡。效应位点是遍布整个粘膜高度的免疫细胞。

适应性免疫系统由高度特化的全身细胞和消除或抑制病原体生长的过程组成。适应性免疫细胞最初是通过树突状细胞 (DC) 的交叉引发来刺激的。适应性免疫系统的细胞涉及各种细胞类型,例如淋巴细胞的主要类型 T 细胞和 B 细胞

在肠道中,即使没有感染,也会在基础水平激活 T 淋巴细胞。这种激活在很大程度上依赖于肠道细菌,并在维持肠道稳态方面发挥作用。特别是,Th17 和 Treg 之间存在良好的平衡。当这种平衡被打破时,就会导致不受控制的肠道炎症,例如克罗恩病。

【温馨提示:接下来几段内容涉及一些关于免疫的专业名词缩写,如不熟悉可先查阅了解,此处不详述】

多酚在适应性免疫系统/微生物群中的作用

肠道慢性炎症综合征和肠道微生物群之间的关系与免疫系统功能障碍和各种促炎细胞因子的产生密切相关。因此,通过饮食化合物(如多酚)单独或与益生菌联合调节免疫细胞可能是对抗这些疾病的好策略。

2018 年一项研究表明,含有一种富含多种不同多酚的工程番茄果实的饮食能够改变健康小鼠的肠道微生物组成,并部分限制宿主炎症反应

非常有趣的是,多酚干预 2 周后小鼠的黄杆菌Oscillospira的相对数量下降。作者强调了粘膜能量代谢的下调、微生物特征的变化和肠道炎症的减弱,这些事件可能是云莓喂养小鼠与越橘喂养小鼠相比腺瘤尺寸较小的原因。

更具体地说,云莓饮食降低了上皮内与总粘膜 CD3+的比例T 淋巴细胞,非常有趣的是,浆果喂养改变了盲肠内容物中的主要细菌多样性,其中越橘喂养的小鼠的微生物特征被确定比其他治疗更加多样化。尤其毛螺菌科,毛螺菌科通常被认为是共生菌或有益菌。此外,云莓喂养小鼠的微生物特征与较小的腺瘤大小相关并聚集在一起,表明肠道微生物群受到云莓喂养的调节,腺瘤的生长减慢

此外,其他研究表明,即使存在其他营养物质(如蛋白质和碳水化合物),flavan-3-ol 单体(黄烷-3-醇)(如表儿茶素和儿茶素)也可能影响肠道微生物群。据观察,儿茶素显着阻碍了溶组织梭菌的生长,并加强了大肠杆菌球状梭菌以及直肠真杆菌组成员的生长,而双歧杆菌和乳杆菌属的生长则受到了抑制。

肠道微生物群产生耐受性反应,影响肠道 DCs 并抑制 Th17 细胞抗炎途径,可以通过能够调节肠道微生物群并随后减弱炎症途径的多酚来改善。多酚可以直接改变 CD4+ T 细胞的活化和极化。例如,当用姜黄素处理小鼠时,观察到粘膜 CD4+ T 细胞和 B 细胞增加,腺瘤形成减少。

此外,白藜芦醇和姜黄素能够改变 B 细胞的活性,这可以通过显着抑制淋巴因子分泌、抗体产生和增殖来证明 。分子机制似乎包括几种转录因子,例如信号转导和转录激活因子 (STAT) 和核因子-κB (NFκB) 的成员及细胞表面受体表达的调节(如CD28/CTLA-4).

事实上,白藜芦醇和姜黄素可以降低 CD28 和 CD80 的表达,同时增加 CTLA-4 和 IL-10 的产生。这种调节很重要,因为可以通过改变 CD28/CTLA-4 的表达来减少或增强 T 细胞受体信号,已知 IL-10 会限制免疫反应。核因子也包括在内,因为激活的CD4+T细胞中的NF-κB p65 核易位在姜黄素饮食中受到抑制。

姜黄素调节人 CD4+ T 细胞中的STAT4 激活并降低它们在 Th1 细胞中的分化能力。Th17 的极化似乎也受苹果多酚的调节。它们减少了与鼠硫酸葡聚糖诱导的结肠炎相关的 T 细胞 IL-17 的产生。此外,关于实验性自身免疫性脑炎,白藜芦醇增加了IL-17 + /IL-10 + /Th17 细胞的产生

因此,从这些数据可以推断,多酚可能通过对 T 细胞的直接和间接作用来减轻 Th1 和 Th17 炎症过程,而人类白细胞抗原 (HLA) II 类介导的恶性 B 细胞免疫识别可以增强。此外,在另一个背景下显示白藜芦醇可以改变 Th17 分化过程。事实上,白藜芦醇使转录因子 STAT3 脱乙酰化,该因子无法产生视黄酸相关孤儿受体-γt(RORγt),这是淋巴细胞分化过程中必不可少的转录核因子。这样,白藜芦醇和其他多酚可以通过阻断白介素相关的 Th17 和破坏 Th17 极化来作用于各种炎症性疾病。通过免疫反应状态的作用,多酚在一定程度上决定了患有各种疾病的患者的治疗结果,尤其是炎症成分起主要作用的疾病。

多酚在肠道适应性免疫反应中的另一个潜在作用可能是它们对 Treg 细胞的作用,Treg 细胞在保持免疫耐受和抑制自身免疫方面发挥关键作用。Treg 细胞有助于逃避免疫监视,抑制 CD4 +、CD8 + T 细胞、DC、成骨细胞、巨噬细胞、B 细胞、NK 细胞和肥大细胞等细胞群,从而避免免疫病理、过敏或自身免疫性疾病,并有助于发展对器官移植的免疫耐受性。生化分析表明 TGFβ 和 FoxP3 存在于多酚作用中,TGFβ 的产生被白藜芦醇下调 、姜黄素和染料木素,诱导Treg 细胞活性的抑制。姜黄素下调 CD4+ CD25+ Treg细胞中FoxP3抑制功能和表达。

有趣的是,在小鼠肠道中,姜黄素处理的 DC 诱导幼稚 CD4 + T 细胞分化为类似 Treg 细胞,包括产生 IL-10 的细菌抗原特异性 Tr1 细胞和 CD4 + CD25 + FoxP3 + Treg。

事实上,在 TGFβ 存在的情况下,CD4+ CD25 – T 细胞可以通过 T 细胞受体 (TCR) 刺激转化为 CD25 + Treg ,并且在高剂量的 IL-10 存在下,抗原特异性 Tr1 细胞可以由抗原诱导。这种调节性T细胞抑制抗原特异性T细胞活化的体外和抑制由于抗原特异性致病性T细胞的结肠炎体内

相反,在非肿瘤环境中,表没食子儿茶素-没食子酸酯 (EGCG) 可以作为 DNA 甲基转移酶 (DNMT) 抑制剂并诱导 FoxP3 表达以及增加体内Treg 数量。此外,IL-10 在染料木素和姜黄素的存在时被下调,随后,效应 T 细胞破坏癌细胞的能力增强,针对肿瘤的 2 型免疫反应增强。另一个例子,当在C57BL/6 小鼠大脑中动脉闭塞发病后立即应用 3 天时,白藜芦醇提供了 Th1 和 Th2 之间的平衡,朝向 Th2 极化,并使 Treg 和 Th17 之间的平衡向 Treg 倾斜。

小肠固有层,并通过在缺血后 3 天改变肠道菌群来减弱小肠促炎细胞因子的表达 

多酚在先天免疫系统/微生物群中的作用

先天免疫系统,也称为非特异性免疫系统和二级防线,涉及以非特异性方式保护宿主免受其他生物体感染的细胞和机制。

当先天免疫系统感知到有关肠道微生物群落代谢状态的信息时,先天免疫系统会发送信号以在组织水平上适应宿主生理机能。此外,肠道微生物组的组成和功能可能受先天免疫系统的调节。基于人类和小鼠研究的遗传发现表明,先天免疫系统显着调节微生物群的组成和个体间差异。已证明 TLR、Nod 样受体和 C 型凝集素等先天免疫途径在宿主-微生物群共生中发挥重要作用。例如,在先天免疫缺陷小鼠模型中,例如没有 NOD2、NLRP6 或 TLR5 的小鼠,已经报道了微生物组成的改变,也称为生态失调。相应地,先天免疫系统可能通过促进有益微生物的生长来维持稳定的肠道微生物群落。

尽管有大量关于巨噬细胞和多酚的研究涉及癌症、自身免疫性疾病、炎症和冠心病等不同领域,但很少有研究关注多酚对巨噬细胞与肠道微生物群的影响。例如,山茶科山茶属Camellia sinensis(乌龙茶、白茶、黄色茶、绿色茶、黑茶和红茶)和山苍子(鹰茶)显著减少促炎细胞因子(肿瘤坏死因子-α、IL-6 和 IL-12) 并增加脂多糖刺激的 RAW 264.7 巨噬细胞和 DSS 诱导的结肠炎小鼠模型中的抗炎细胞因子 (IL-10)。

这些茶提取物对肠道微生物群起到益生元的作用,因为它们增加了潜在有益细菌(如双歧杆菌和粪杆菌)的数量,并减少了潜在有害细菌(如粘螺菌和拟杆菌)的数量。

绿原酸通过抑制活性 NF 显着抑制 IFNγ、肿瘤坏死因子 α (TNFα) 和 IL-6 的分泌以及 CD177+ 中性粒细胞、CD3+ T 细胞和 F4/80⁺ 巨噬细胞的结肠浸润-κB 信号通路。同样,芦荟代谢产物衍生物,一种含有多酚类蒽醌的芦荟叶,可减少小鼠腹腔巨噬细胞产生的一氧化氮 (NO)、TNFα 和 IL-12。此外,芦荟的给药显着降低了巨噬细胞产生的 NO 水平,并在 脂多糖诱导的败血症小鼠中表现出对败血症相关死亡的保护作用。

在先天反应中发挥重要作用的其他免疫细胞是 DC。最近的一项研究表明,用姜黄素纳米颗粒处理会增加粪便中的丁酸水平和产生丁酸的细菌的数量。这与结肠粘膜中 CD4 + Foxp3 +调节性 T 细胞和 CD103 + CD8α 调节性 DC 的扩增增加有关,因此可以成为治疗炎症性疾病的有希望的治疗选择。这一点很重要,因为 DC 的可塑性可能使它们能够根据肠道微环境中接收到的信号调整其功能,特别是通过微生物群 。

生化分析揭示了涉及转录因子 STAT 和 NF-κB、激酶、环加氧酶 (COX) 的常见机制。事实上,多酚会阻碍 COX-2 表达、前列腺素 E2 (PGE2) 的产生、激活以及 STAT1 与干扰素调节因子 1 (IRF-1) 启动子响应 IFNγ 的 DNA 结合。多酚的作用可由激酶等不同因素提供,因为多酚预处理的 DC 抑制脂多糖 诱导的 MAPK,如 p38、JNK、ERK1/2 和 NF-κB p65 易位。

这些数据共同表明,多酚可以通过破坏 T 细胞分化、限制 DC 成熟或抑制巨噬细胞,以及随后产生促炎细胞因子的能力作用于免疫细胞。这些事件可能会促进耐受性状态,并可能限制各种病理生理障碍中的炎症过程

肠道老化和衰老

老龄化是一个生理过程,只要人口老龄化和寿命更长,它就会对社会构成巨大挑战。营养与衰老密切相关,因此良好的饮食习惯可以使衰老过程更健康。在这方面的突出点是肠道微生物群的组成随着衰老和相关疾病结果发生显著变化。肠道微生物群组成的年龄相关变化导致微生物群多样性降低,亚优势种、某些变形菌和蛋白水解菌的丰度增加,而糖分解菌的减少、优势种的丰度、厚壁菌门与硬壁菌门的比例增加。

尽管生活方式、地域和个体间存在差异,但老年人、年轻人和中年人的肠道微生物群组成差异很大。 在老年人中,随着促炎细菌的积累和有益微生物水平的降低,肠道微生物群的组成的多样性显著下降。 此外,老年人的成分变化通常与衰老相关病理的发生同时发生。肠道微生物群和饮食之间的相互作用是衰老和营养研究的一个非常有趣的领域,也是创新治疗工具的潜在目标。

Davinelli S &Scapagnini G. Biofactors. 2021

多酚在衰老中的作用已被广泛记录服用富含多酚的食物或富含这些化合物的提取物可能会降低与年龄相关疾病相关的风险因素。 多酚是潜在的抗衰老剂,因为它们能够调节许多衰老标志,包括端粒磨损、细胞衰老、自噬、氧化损伤和炎症。 尽管多酚与老化肠道微生物群之间相互作用的证据仍然有限,但越来越多的研究表明,多酚对肠道常驻菌群发挥调节作用,促进衰老过程中的肠道健康。

膳食多酚对老化肠道微生物群的潜在调节作用

肠道微生物群在衰老通常会破坏的各种生理过程中起着关键的稳态作用。

尽管关于衰老肠道的数据有限,但越来越多的临床前研究证据表明,膳食多酚治疗可以调节微生物群落的组成并预防与衰老相关的肠道菌群失调。 例如,在柠檬和芒果中发现的几种多酚已被确定为促进属于不同属的促进健康的细菌的生长,如双歧杆菌、乳杆菌、阿克曼氏菌和克里斯滕菌科

  • 柠檬多酚

据报道,长期摄入柠檬多酚可将寿命延长 3 周,并改善肠道微生物群与衰老相关的变化。 这些抗衰老作用拟杆菌属、乳杆菌属普氏菌属的积极变化有关。 他们还发现 F/B 比率有所改善,正如所讨论的,这表明肠道菌群失调与衰老相关。 据报道,越橘花青素提取物的摄入有效地调节了衰老大鼠的肠道组成,包括调节 F/B 比。食用越橘花青素后,属于乳酸杆菌属、拟杆菌属和异芽孢杆菌属的有益肠道细菌的生长被诱导。 同样的提取物还抑制了对肠道有害的细菌生长,例如 Euryarchaeota 组中的物种。因此,越橘花青素提取物成功应用于调节衰老大鼠的肠道微生物群。

  • 葡萄中酚类成分

在另一项研究长期(14 个月)摄入葡萄渣中的酚类成分对大鼠肠道微生物群的影响中发现,这种长期给药选择性地将肠道微生物群调节为更健康的表型益生菌的比例更高,梭状芽孢杆菌含量更低。因此,长期食用酚类化合物可以减少肠道细菌数量与年龄相关的变化

  • 儿茶素、花青素

多项动物研究还表明,服用儿茶素、花青素和原花青素可促进乳杆菌、双歧杆菌、阿克曼氏菌、罗斯布里亚菌和粪杆菌属的生长。在许多情况下,这些益生元效应伴随着短链脂肪酸(例如丁酸盐)产量增加和炎症介质浓度的降低。其他酚类化合物,例如木脂素和芪,在动物模型中增加了乳杆菌双歧杆菌的丰度。

  • 白藜芦醇

食用白藜芦醇可减轻结肠炎小鼠模型中的炎症状态并恢复微生物群多样性。新的证据表明,红酒中的白藜芦醇能通过支持短链脂肪酸的产生来预防阿尔茨海默病 (AD),短链脂肪酸会干扰有毒的 β-淀粉样蛋白聚集体形成。在AD背景下,白藜芦醇的消耗与较高比例的有益菌有关,例如 F. prausnitziiAkkermansia 物种和具有脑抗炎特性的产丁酸盐细菌。

  • 姜黄素

姜黄素是一种从姜黄(姜黄)根茎中分离出来的著名多酚化合物,近年来因其调节肠道微生物群组成的能力而备受关注。

在阿尔茨海默病的动物模型中,发现姜黄素治疗通过减少海马中淀粉样斑块的负担来改善认知能力。同样,姜黄素水平显着降低了拟杆菌科、普氏菌科和乳杆菌科的存在,这些菌与阿尔茨海默病发展有关。 在去卵巢的大鼠(即更年期模型)中,姜黄素能够部分逆转多样性的变化 肠道微生物群,增加 F/B 比并降低 Anaerotruncus 和 Helicobacter 属的丰度。

癌症可以被认为是一种与年龄有关的疾病,因为大多数癌症的发病率随着年龄的增长而增加。已经清楚地证明,姜黄素治疗降低了在癌症患者中发现的与癌症相关的分类群的微生物丰度(例如普氏菌属、冠状杆菌属和瘤胃球菌属)。

  • 其他多酚

此外,其他多酚已表现出作为化学预防剂的潜力。 在转基因小鼠模型中观察到,新橙皮苷是一种源自柑橘类水果的黄酮类化合物,可通过调节肠道微生物群来预防结直肠肿瘤的发生

在人类中,多酚的不同排泄特征可能与肠道微生物群组成的年龄相关变化有关。研究年龄是否影响膳食多酚的代谢,这可能与预防慢性病有关。年轻(23-43 岁)和年长(51-76 岁)的受试者遵循 3 天低多酚饮食和 3 天高多酚饮食。作者发现与年长的人相比年轻的人在摄入低多酚和高多酚饮食后,尿液中酚类物质的浓度更高。

一些饮食中含有大量的多酚,例如地中海饮食植物性饮食(例如 鱼素食、半素食 和 蛋奶素)膳食多酚对与年龄相关的肠道菌群失调的影响是有限的,多酚或富含多酚的饮食的益处可能是由肠道微生物群反应介导的,这种反应可以减少与年龄相关的功能衰退的影响并改善肠道微生物群的改变

最近一项针对 20 名 65 岁以上肥胖女性的小型干预研究显示,坚持地中海饮食可显著抵消在肥胖受试者中观察到的较低水平的 AkkermansiaParabacteroides 和 短链脂肪酸产生菌。该干预措施还降低了通常与肥胖相关的柯林斯氏菌的丰度。

在一项通过多酚进行微生物组操作以管理老年人的肠漏的随机、对照、交叉试验中,富含多酚的饮食模式显着改善了 60 岁以上受试者的肠道通透性和血清 zonulin 水平。同样,纤维发酵显著增加干预后观察到产生丁酸盐的细菌。瘤胃球菌科成员和粪杆菌属细菌受饮食干预的影响最大。在一项临床试验中,39 名 60 岁以上的绝经后妇女连续 2 年每天摄入 100 毫克膳食异黄酮。补充剂增加了球状梭菌,直肠真杆菌、乳酸杆菌,肠球菌群和双歧杆菌属。

综上所述,这些结果表明多酚可以调节老年受试者的肠道微生物群,从而有助于维持肠道稳态并改善人类衰老

05 通过膳食多酚靶向肠道微生物促进宿主健康

Vemana Gowd, et al.,Trends in Food Science & Technology, 2019

糖尿病

糖尿病是21世纪全球关注的健康问题之一,并且还在快速增长。2019 年,全球糖尿病患者人数估计为 4.63 亿,预计到 2045 年这一数字将达到 7 亿。

胰岛素是负责血糖调节的关键激素,在正常情况下,胰岛 β 细胞分泌的胰岛素会减少肝脏的葡萄糖输出,并增加骨骼肌和脂肪组织的葡萄糖摄取。这种状态被称为正常血糖——胰岛素作用和胰岛素分泌之间的平衡。

然而,如果肝脏、骨骼肌或脂肪组织的胰腺 β 细胞功能障碍和/或胰岛素抵抗,全身葡萄糖浓度会增加(高血糖)。

  • 糖尿病患者的菌群变化

最近的证据表明,糖尿病人和非糖尿病人的肠道微生物群的数量和组成存在差异。中国 2 型糖尿病成人的粪便微生物群组成结果表明,血糖水平与拟杆菌:硬壁菌的比例以及拟杆菌-普氏菌、球状梭菌-直肠真细菌的比例呈显著正相关。同样,与非糖尿病志愿者相比,发现糖尿病志愿者中的β 变形菌属丰富,血浆葡萄糖水平之间呈正相关。此外,厚壁菌门和梭菌纲的比例在糖尿病组明显减少

另一项对欧洲 2 型糖尿病女性进行的类似研究表明,条件致病性梭状芽孢杆菌的数量增加,而丁酸盐形成细菌Roseburia的数量减少,这导致患有糖尿病的个体的胰岛素敏感性得到改善。

  • 多酚改善糖尿病

蔓越莓提取物:

根据主要在啮齿动物模型中的临床前实验推测,多酚可能直接取决于其吸收率或间接(即通过调节肠道微生物群)表现出抗糖尿病活性口服富含多酚的蔓越莓提取物(200 毫克/千克/天)8 周显着改善了代谢综合征相关的适应症,包括高脂高糖喂养小鼠的胰岛素敏感性,获得的有益效果归因于肠道中Akkermansia spp的比例增加。

石斛:

石斛富含多酚提取物通过几种可能的机制改善小鼠糖尿病的症状和并发症,一是通过减少炎症和氧化应激,二是增强肠道微生物群平衡

黄芩素:

在另一项体外研究中,来自两个小鼠组的肠道微生物群都将黄芩素(主要的黄酮糖苷)转化为(黄芩素)去糖基化。有趣的是,与健康粪便样品相比,黄芩苷的代谢物具有更好的吸收率,有助于治疗 2 型糖尿病

黑莓:

由于微生物发酵过程中产生的代谢物具有更高的生物活性,因此发现黑莓的人体肠道微生物代谢物具有更高的抗糖尿病活性。通过这种方式,加入黑莓后,HepG2 细胞中的葡萄糖消耗和糖原含量显着增加

癌症

多酚在癌症中的积极作用已被广泛报道。从癌症的角度来看,几种分子、富含多酚的食物,甚至饮食模式都可能令人感兴趣姜黄素是这些富含多酚的食物之一。姜黄素对减少结肠肿瘤负荷的化学预防作用与保持高微生物多样性有关。另一方面,姜黄素通过靶向癌症干细胞亚群增强对基于 5-FU 的化疗的化学敏感性的有趣作用。

  • 前列腺癌

癌症中一些最有趣的证据来自前列腺癌。前列腺癌是男性第二大常见癌症,其外部因素包括营养,严重影响前列腺癌风险。已经证明,食用大量 flavan-3-ol 和富含鞣花单宁的产品,如绿茶和石榴制剂,似乎可以降低患前列腺癌的风险

在动物研究中,经口摄入其中一些产品已被证明可以抑制前列腺癌的发展,并且有流行病学证据。尽管如此,石榴提取物在前列腺癌患者中的临床试验并未提供明确的结果。缺乏积极影响的原因可能是体内活性浓度较低或多酚与微生物群的相互作用。从这个意义上说,鞣花单宁和绿茶 flavan-3-ols 都被肠道微生物群分解代谢,其中主要的生物可利用产物是尿石素 A (uroA) 和 (聚) 羟苯基-γ-戊内酯 (M4)。

  • 结直肠癌

结直肠癌(CRC)已被记录为常见的癌症类型之一。CRC的常规治疗包括手术和化疗。不幸的是,化疗会引起细胞毒性作用、耐药性和不良反应。

大量科学证据已将西方饮食模式与 CRC 风险增加联系起来,而地中海饮食和素食与 CRC 风险较低相关。地中海饮食中广泛存在的一些酚类化合物是阿魏酸(来自全谷物)、儿茶素(来自核桃和苹果)、羟基酪醇(来自橄榄油)和柚皮素(来自西红柿)。

饮食中存在的特定饮食成分,如姜黄素、表没食子儿茶素没食子酸酯、白藜芦醇和羟基酪醇已被提议作为化学预防剂,能够通过调节在 CRC 发病中起关键作用的生物学机制来延缓 CRC 的发展。

白藜芦醇(一种从中草药虎杖中提取的多酚),已被证明对结直肠癌具有凋亡和抗增殖作用,影响 MALAT1 (转移相关肺腺癌转录本1) 表达抑制侵袭和转移。表没食子儿茶素没食子酸酯已在结肠癌细胞系中进行了研究,它通过抑制 Akt、p38MAPK、细胞周期蛋白 D1 以及下调 ErbB2、ErbB3 和 EGFR 来诱导生长抑制。葡萄籽提取物诱导细胞凋亡并抑制 CaCo-2 细胞的活力。

黑树莓干预(饮食中含有 10% 的黑树莓)对肠道荷瘤小鼠的影响。已经表明,黑树莓给药改变了健康小鼠和荷瘤小鼠的肠道微生物组成,这可能对结直肠癌的发生和进展具有保护作用。

肥胖

体重指数 (BMI) 等于或大于 30 变得越来越普遍,特别是在发达国家,由于人们采用了少动的现代生活方式且饮食不健康,会导致体内获得和消耗的能量不平衡,因此多余的能量会导致体内脂肪储存过多。然而,不应只将肥胖视为影响某些人的美容问题,更重要的是肥胖与多种健康问题(如 2 型糖尿病、冠心病、某些类型的癌症和睡眠呼吸)之间存在关联。肥胖的发生是由影响能量摄入和消耗的环境、遗传和生理因素的相互作用决定的。

肠道微生物群是参与肥胖发展的环境因素之一。先前的研究表明,肠道微生物群在脂肪量的形成和能量稳态的改变中起着重要作用。

对无菌小鼠(在没有任何微生物的情况下生长的无菌小鼠)进行的几项研究表明,无菌小鼠比肠道中含有微生物群的小鼠更瘦。此外,发现肥胖微生物组从饮食中获取能量的能力更高,最重要的是,当将肥胖小鼠的肠道微生物群移植到无菌小鼠时,这会导致比瘦小鼠移植时更高的脂肪沉积。

人体研究还表明,肠道微生物组成会因肥胖而发生变化。与瘦人相比,肥胖者的厚壁菌:拟杆菌比率增加,并且该比率随着个人通过两种低热量饮食减轻体重而降低。然而,这在其他研究中并没有被观察到。

几个研究小组研究了酚类化合物对肥胖肠道微生物群的调节,以解释酚类化合物与肠道微生物群之间的相互作用。很明显,膳食多酚及其代谢物通过刺激有益细菌的生长改变肠道微生物组成,同时抑制病原体细菌,从而对促进肠道健康产生积极影响乌龙茶、红茶和绿茶中的多酚已被证明通过增加双歧杆菌属、乳杆菌属来显著影响微生物组成属和肠球菌属。同时增加短链脂肪酸的产生,减少普氏菌、拟杆菌的产生。

李子中的酚类化合物与肠道微生物群的调节(例如,粪杆菌属、乳杆菌属和拟杆菌属的增加)一起限制体重增加,并减少肥胖大鼠的粪便短链脂肪酸,槲皮素类似。

另一方面,肥胖通常被认为是一种慢性低度炎症。这种情况涉及炎症细胞因子(如 TNF-α、IL-1β 和 CCL2)在脂肪组织中的积累,以及巨噬细胞、肥大细胞和自然杀伤 T 细胞的增加。发现肥胖小鼠的炎症通过产生胰高血糖素样肽 2 被下调,胰高血糖素样肽 2 降低了肠道通透性,从而减少了脂多糖的易位,同时改变了肠道微生物群。因此,肥胖的炎症标志物可以通过多酚的结肠发酵来抑制,多酚已被证明可以促进双歧杆菌的生长

心血管疾病

世界卫生组织建议一项重要的生活方式改变就是增加水果、蔬菜和纤维的摄入量,以降低患心血管疾病等非传染性疾病的风险心血管疾病,包括中风、心力衰竭和高血压,是发达国家最常见的死亡原因。目前的研究强调了多酚在预防此类疾病方面的新兴作用,作为人类饮食的一部分,并将摄入多酚含量高的食物(即可可、茶、酒、水果和蔬菜)与减少心血管疾病相关联。据报道,高多酚摄入量,尤其是芪和木脂素,与死亡率降低相关。

食用羟基肉桂酸和类黄酮的食物来源可降低高血压,这是心血管疾病的主要危险因素之一。同样,对巴西人口咖啡消费量的分析显示,与高血压呈负相关咖啡是影响酚酸摄入量的主要食物。最近的研究报告称,摄入 flavan-3-ol 含量高的食物(如茶、坚果、可可、葡萄和豆类)对血压和胆固醇水平有积极影响。从 1975 年到 2010 年,对 953 名参与者进行了一项关于食用黑巧克力和可可对心血管有益的研究。巧克力摄入量与 2 型糖尿病呈负相关,可降低发生中风或缺血性心脏病的可能性。

心血管疾病风险相关的因素之一是三甲胺 N-氧化物 (TMAO),这是一种由结肠微生物群(如变形杆菌、空气杆菌、梭状芽孢杆菌和志贺氏菌)代谢左旋肉碱和胆碱产生的氧化胺。几种含有大量左旋肉碱、卵磷脂和胆碱的食物,如红肉、鸡蛋和咸水鱼,已被认为是 TMAO 的膳食来源。通过定期摄入抗氧化剂和抗菌食物(如多酚)来改变肠道微生物群,是降低心血管疾病风险的目标之一。例如,白藜芦醇抑制变形杆菌毒力因子的表达。鞣花单宁是悬钩子属和草莓属果实中的主要酚类化合物,对选定的革兰氏阴性肠道细菌(如梭状芽孢杆菌)的生长显示出参与 TMAO 代谢。一个在体内对小鼠模型的研究表明白藜芦醇在TMAO水平的降低的能力,修改菌群组合物与在增加乳杆菌属和双歧杆菌生长。研究表明,富含多酚(特别是白藜芦醇)的葡萄渣的新型营养制剂,能够重塑微生物群并降低健康受试者的 TMAO 水平以及心血管疾病的风险。

多酚摄入对局部的有益影响

来自体外和体内研究、临床试验和荟萃分析的新证据表明,定期摄入多酚可以改善人类健康并降低慢性和炎症性疾病的风险炎症过程在许多病理状况的发展和进展中起着核心作用,例如炎症性肠病 (IBD)。IBD 的全球发病率和流行率使其成为全球疾病。在 IBD 中,慢性炎症会导致粘膜破坏以及 ROS 的大量产生,并可能导致癌症的发生、进展和转移扩散。多酚是有效的抗炎化合物,可以为 IBD 管理提供一个有趣的替代候选者。对草莓花青素进行的研究强调了它们的抗 IBD 作用,主要归因于它们的自由基清除和抗炎特性

浆果和苹果对结肠癌的保护作用已在小鼠模型中得到证实,特别是绿茶多酚被发现可增强抗氧化反应,减少炎症标志物(IL-6、TNF-α 和血清淀粉样蛋白 A),以类似于柳氮磺胺吡啶( IBD 治疗中使用的常规药物)的流行病学、临床前和临床研究一直强调肠道微生物群、大肠炎症和结肠直肠之间的重要关系

浆果以其原花青素含量高为特征,因其促进健康,主要针对高血压、出血和一般氧化作用。柿子中存在的黄酮类化合物漆黄素也通过降低结肠炎结肠组织中 COX-2 和 iNOS 的表达降低结肠炎的严重程度。结肠炎是结直肠癌的诱发因素之一,食用柿子作为黄酮类化合物的来源对于预防它很重要。

多酚提取物的发酵对菌群的影响

de los Reyes-Gavilán CG,et al., Biomed Res Int. 2015

06 响应多酚消耗的个体间差异:寻找造成影响的推定驱动因素

对药物给药的临床反应因人而异。同样,越来越多的证据表明某些膳食(多)酚的代谢存在个体差异,例如异黄酮、黄烷酮、茶儿茶素、鞣花单宁等。与此同时,由于获得的结果的标准偏差很大,其他研究也开始对观察到的效果的统计显着性提出争议

在这方面,广泛的(多)酚结构被认为是影响其代谢的关键因素,并且可能是对 CVD 风险生物标志物影响的广泛可变性背后的原因。然而,尽管膳食(多)酚在结构上不同,但许多具有相同的多目标作用机制

多酚消耗的反应存在显着的个体差异。总的来说,这避免了声称多酚对整个人群产生健康影响的说法,这可能是欧洲食品安全局拒绝多酚的许多健康声明的原因。相反,许多特定变量的参与导致我们提出个性化的饮食建议,这些建议考虑个人条件(性别、年龄、基因组成、生活方式、生理状态和肠道微生物群)和其他方面(食物基质和加工、饮食模式等)。似乎并非所有这些条件和方面都必须同等贡献。然而,每个贡献者的可能重要性权重是未知的

在过去的十年中,多酚与肠道微生物群之间的双向相互作用由多酚调节微生物群和由微生物群代谢多酚作为解决肠道菌群问题的新部分引起了人们的关注。 在寻找参与最终(多)苯酚健康影响的主要参与者时,越来越多的证据已经确定其衍生的微生物代谢物可能与建立(多)苯酚的生物活性有关。然而,肠道微生物群和膳食(多)酚之间的双向相互作用也是检测到的个体差异的主要驱动因素

除了摄入的(多)酚和/或其衍生微生物衍生物可能发挥的生物活性外,每个人的肠道微生物群,包括参与(多)酚代谢的微生物群,也与解释最终影响有关。例如,黄豆苷元衍生的代谢物雌马酚被认为比其黄豆苷元前体更具生物活性,并且似乎在一些能够产生雌马酚的个体(即“雌马酚生产者”)中占主导地位。同样,血液中存在尿石素最初被认为是食用含有非生物可利用的尿石素前体鞣花单宁的食物后观察到的影响背后的合理解释。然而,并非所有个体都会产生相同的尿石素,也并非具有相同的相关肠道微生物群。虽然已经全面确定了影响个人对多酚消费反应的决定因素,作用与摄入多酚和/或其衍生代谢物之间的关系尚无定论。

将观察到的活动与循环(或排泄)酚类代谢物或其微生物衍生物同时存在联系起来的研究可能受到许多变量的影响,这些变量阻止了既定的因果关系。在这方面,虽然局部影响可能对系统水平产生影响,并且反之亦然,摄入的(多)酚作用的可能部位,即胃肠道或全身,可能是寻找可能的因果关系的第一个标准。

07 总结

多酚的摄入量和生物利用度决定了它们对健康的影响。尽管我们的饮食中含有大量多酚,但这些单个多酚分子的血浆浓度很少超过微摩尔水平。然而,关于血浆抗氧化能力的研究表明,血浆中仍然存在大量酚类化合物,主要以代谢物的形式存在,可能在组织中产生或通过肠道微生物群的作用产生。迄今为止,已经进行了几项研究,以了解结肠微生物群对多酚的生物转化并确定相关微生物。另一方面,还评估了酚类化合物对肠道微生物群组成的调节,以呈现酚类物质和肠道微生物群之间的相互作用。

基于这些研究,很明显,膳食多酚及其代谢物通过像益生元一样发挥作用并以积极的方式调节肠道微生物组成,从而促进肠道健康,其中有益微生物的生长受到刺激,而病原体受到抑制。多酚存在于多种健康食品中,包括蔬菜、水果等。临床前和临床研究的证据表明益生元对多酚有影响。富含多酚的植物、它们的提取物,甚至单个化合物对肠道健康的积极影响,可用作预防或治疗与氧化应激和炎症相关的各种疾病的替代方法。鉴于多酚在消化和吸收过程中可能会发生显着变化,并且变化的形式可能具有不同的生物学特性和作用力,因此未来的研究还应考虑其肠道菌群及其代谢行为,这可能会影响健康和疾病的改善治疗结果。

主要参考文献

Davinelli S, Scapagnini G. Interactions between dietary polyphenols and aging gut microbiota: A review. Biofactors. 2021 Sep 24. doi: 10.1002/biof.1785. Epub ahead of print. PMID: 34559427.

Gizem Catalkaya,Koen Venema,Luigi Lucini,et al., Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food frontiers. 2020 June 22

Iglesias-Aguirre CE, Cortés-Martín A, Ávila-Gálvez MÁ, Giménez-Bastida JA, Selma MV, González-Sarrías A, Espín JC. Main drivers of (poly)phenol effects on human health: metabolite production and/or gut microbiota-associated metabotypes? Food Funct. 2021 Sep 24. doi: 10.1039/d1fo02033a. Epub ahead of print. PMID: 34558584.

Westfall S, Pasinetti GM. The Gut Microbiota Links Dietary Polyphenols With Management of Psychiatric Mood Disorders. Front Neurosci. 2019;13:1196.

Vg A , Nk A , Mris A , et al. Dietary polyphenols to combat the metabolic diseases via altering gut microbiota[J]. Trends in Food Science & Technology, 2019, 93:81-93.

Jamar G, Estadella D, Pisani LP. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. Biofactors. 2017 Jul 8;43(4):507-516.

Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, Raskin I. Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet-Induced Metabolic Syndrome. Diabetes. 2015 Aug;64(8):2847-58. doi: 10.2337/db14-1916.

Molinari R, Merendino N, Costantini L. Polyphenols as modulators of pre-established gut microbiota dysbiosis: State-of-the-art. Biofactors. 2021 Aug 16.


肠道-甲状腺轴如何影响健康

谷禾健康

现如今,甲状腺疾病的发病率逐年递增,而女性更是甲状腺疾病的重灾区,据统计,每八名女性中就有一人患有甲状腺疾病。而甲状腺问题和肠道问题往往是齐头并进的。

本文我们将探讨肠道与甲状腺联系背后的科学事实,并提供有用的干预措施,助你走上改善肠道和甲状腺健康的道路。

01 甲状腺及其功能

甲状腺是位于颈部底部的一个小而重要的内分泌腺。

甲状腺如何参与调节新陈代谢?

甲状腺的工作是确保体内的细胞正常工作,通过激素来发送信息到每一个细胞。它生产两种重要的激素,分别是T4和T3(具体意思见本节末“名词小讲堂”),激素的工作是指导体内的细胞工作,何时该消耗氧气养分,从而维持体内新陈代谢的过程。

人体内的每个细胞都有这些激素的受体,甲状腺的作用包括:

同时呢,甲状腺也是受约束的,它何时发送信息是脑部的垂体监控着的,垂体会感受血液中的激素含量高低,以促甲状腺激素(TSH)的形式发出指示。可以看到,这是一个精密运作的系统。

然而,甲状腺激素的产生、转化和摄取过程非常复杂,如果任何一步出错,就会出现甲状腺功异常的症状。

甲状腺过度活跃——甲亢

甲状腺过度活跃,发出太多激素时,就会出现甲亢,新陈代谢就会加快,表现为心率过快,持续饥饿,体重下降,出汗,焦虑,难以入睡

甲状腺活动不足——甲状腺功能减退症

甲状腺活动不足时,就会出现甲状腺功能减退症,也就是甲状腺发出激素太少,没有足够的量去唤醒体内细胞,新陈代谢减慢,表现为体重增长,怕冷,关节肿大,感觉忧郁

名词小讲堂:
促甲状腺激素释放激素 (TRH):这种激素在下丘脑中产生,它向垂体发出信号以产生多少促甲状腺激素 (TSH)。
促甲状腺激素(TSH):由垂体产生,TSH 刺激甲状腺产生甲状腺激素 T4 和 T3。TSH 水平升高可能表明甲状腺功能低下。需要注意的是,并非所有甲状腺功能减退症患者都符合这种模式。如果甲状腺激素水平低,TSH 水平低也可能表明存在问题。
甲状腺素 (T4) 和三碘甲状腺原氨酸 (T3):统称为“甲状腺激素”,T4 和 T3 由甲状腺产生。T4 是甲状腺激素的非活性形式,必须先转化为 T3,然后身体才能使用它。
总 T4 和 T3:它们与蛋白质载体结合,可以在血液中循环
游离 T4 和 T3:它们与载体分离,可以与细胞受体结合并发挥其功能 。
甲状腺结合球蛋白 (TBG): TBG 是与 T4 和 T3 结合并通过血液运输这些激素的蛋白质载体。过多的 TBG 会导致游离 T4 和 T3 水平降低。
甲状腺抗体:在自身免疫的情况下,这些抗体会攻击并损害甲状腺。我查看甲状腺过氧化物酶 (TPO) 抗体 (Ab)和甲状腺球蛋白 (Tg) Ab。这些抗体可以在临床甲状腺功能减退症发生前数年出现,因此及早发现它们尤为重要。

02 肠道影响甲状腺

目前研究表明,良好的甲状腺健康始于肠道。随着我们对肠道微生物群的了解不断加深,可以看到研究表明,生活在人体内的微生物群在甲状腺功能减退症和自身免疫性甲状腺疾病中发挥着重要作用。

甲状腺疾病,例如桥本甲状腺炎或甲状腺功能减退症,通常与不孕症、荷尔蒙失衡、体重增加、疲劳或焦虑等症状有关。

甲状腺功能障碍的胃肠道症状很多,包括吞咽困难、胃灼热、消化不良、产酸减少、恶心或呕吐、胆囊不适、腹部不适、胀气、腹胀、腹泻、便秘和一般消化道不适,包括肠易激综合征 (IBS)。

肠道对甲状腺的影响

█ 始 于 炎 症

导致自身免疫性疾病的最常见炎症来源之一是肠道通透性过高或“肠漏”。这就是肠道-甲状腺有关联的地方。

桥本氏病是一种器官特异性自身免疫性疾病。就其核心而言,桥本氏病的根源在于炎症,在大量病例中,炎症可能始于甲状腺之外。

肠黏膜在过境点充当“海关”的角色。肠黏膜(肠内层)允许食物中的营养物质进入粘膜下层,从而利于我们吸收营养物质,同时将食物中潜在的有害物质和细菌的碎片排除在粘膜下层之外,那里会引发炎症和免疫反应。

炎症如何引发桥本氏病?

同样,促甲状腺激素释放激素 (TRH) 和促甲状腺激素 (TSH) 都会影响肠相关淋巴组织的发展。T4可防止肠道上皮内淋巴细胞 (IEL) 的过度表达,从而导致肠道炎症。

随着时间的推移,粘膜下层持续暴露于炎症和免疫诱因会导致身体产生抗体。抗体是识别和对抗病毒和细菌的特殊蛋白质。这些抗体还可以开始识别和攻击宿主的身体组织,包括甲状腺组织,并破坏甲状腺产生或使用甲状腺激素的能力,从而导致桥本氏病。

而肠道微生物群通过抑制促炎细胞因子(如 IL-6、TNF-α、NFK-b)和促进抗炎细胞因子(如 IL-10)来调节炎症。

█ 助攻—甲状腺营养素

甲状腺需要特定的营养才能正常运作;缺乏或过量摄入其中任何一项都可能导致甲状腺功能障碍。

△ 肠道菌群影响营养的吸收,包括微量元素

肠道菌群可以加工和分解食物,以便更好地吸收营养。与此同时,肠道菌群本身也需要营养来维持生命。某些菌以糖和碳水化合物为生,而其他细菌则以脂肪和其他矿物质为生,当这些微生物不平衡时,会影响营养获取。

△ 微量营养素对于健康的甲状腺至关重要

肠道微生物群的组成会影响身体吸收关键微量营养素的能力,例如碘、硒、锌、铁、B族维生素、维生素 A、酪氨酸等,所有这些微量元素对健康的甲状腺功能都是必不可少的。

△ 自身免疫性甲状腺疾病患者通常缺乏微量营养素

其中与甲状腺相关的特别重要的营养素是硒,碘,锌。如果体内有炎症、菌群失调等,那么这些营养素的吸收可能会被影响。

:充足的碘对健康的甲状腺功能至关重要;然而,太少或太多都会将甲状腺推向甲状腺功能减退或甲状腺功能亢进。在世界范围内,碘缺乏是甲状腺功能减退症的最常见原因。推荐的每日碘摄入量(150 微克/天)。

★ :硒是参与健康甲状腺功能的几种抗氧化酶的重要辅助因子。硒需要将 T4 转换为 T3

低硒可能会降低甲状腺中的抗氧化保护机制,增加甲状腺对氧化应激的敏感性,从而增加甲状腺自身免疫病的风险,包括格雷夫斯病。缺硒会加剧因碘摄入不足而引起的疾病。

★ :甲状腺激素的合成需要锌,缺锌会导致甲状腺功能减退。

碘、硒和甲状腺之间有着独特的关系。
一方面,碘摄入量的增加可能会加剧对甲状腺的免疫攻击,因此对于桥本氏病患者来说,补充碘并不是一件好事儿。
另一方面,当碘与硒一起服用时,不会发生同样的自身免疫性发作。通过平衡碘和硒的摄入量,可以避免那些负面的免疫影响。

这个过程的成功在很大程度上也取决于胆囊中初级胆汁酸的产生。这些初级胆汁酸在消耗脂肪后从胆囊分泌到小肠中,在那里肠道细菌将它们代谢成所谓的“次级胆汁酸”,从而增加脱碘酶的活性。更重要的是,这些胆汁酸依赖于上述矿物质硒,肠道和甲状腺健康问题患者通常会耗尽硒。

参与甲状腺激素代谢的最重要的初级和二级胆汁酸的组成

甲状腺功能减退症也会阻碍胆囊流出胆汁,从而进一步影响 T4/T3 转换。这种胆汁也具有天然抗菌作用,这可能进一步解释了甲状腺疾病与特定细菌性肠道感染(如SIBO)之间的联系。

█ 执行—免疫响应

肠道的另一个重要功能是承载体内 70% 的免疫组织。免疫系统的这部分统称为肠道相关淋巴组织。肠道相关淋巴组织包括几种类型的淋巴组织,这些组织储存免疫细胞,例如 T 和 B 淋巴细胞,它们进行攻击并产生针对抗原的抗体,抗原是免疫系统识别为潜在威胁的分子。

当肠道的这些保护功能中的任何一个受到损害时,就会出现问题。当肠道屏障变得可渗透时(即“肠漏综合征”),大的蛋白质分子会逃逸到血液中。由于这些蛋白质不属于肠道之外,身体会产生免疫反应并攻击它们。研究表明,这些攻击在桥本等自身免疫性疾病的发展中发挥作用。

健康的肠道微生物群会影响免疫系统,并且对甲状腺功能也有重要影响,特别是对桥本甲状腺炎和格雷夫斯等自身免疫性甲状腺疾病。

  • 自身免疫性甲状腺病与消化道疾病的关联

桥本甲状腺炎和格雷夫斯病通常与特定的消化系统疾病共存,包括腹腔疾病和非腹腔小麦敏感性。研究表明,患有自身免疫性甲状腺疾病的人患乳糜泻的可能性是一般人群的 4-5 倍。这可以(至少部分地)通过肠道屏障功能受损来解释,这使得抗原更容易通过并在遗传易感个体中引发自身免疫性疾病。

最常见的自身免疫性甲状腺疾病是桥本氏症,约占甲状腺自身免疫性疾病的 90%。这意味着甲状腺正受到自身免疫系统的攻击。这与肠漏分子模拟有关,它们会诱使身体攻击你自身的甲状腺。

研究表明,肠道微生物群的失调,会影响整体甲状腺健康,甚至导致和加剧桥本氏症。2007 年的一项研究发现,在有自身免疫性甲状腺功能减退症病史的人群中,54% 的人的 SIBO(小肠细菌过度生长)呼气测试呈阳性,而对照组的这一比例为 5%。

  • 分子模拟

每当身体暴露在危险的外部入侵者面前时,免疫系统都会记住它的结构,特别是它的蛋白质序列,以便它可以对该病原体形成完美的防御并在未来识别它。

但是,免疫系统的识别系统并不完美。只要一个分子的结构和蛋白质序列足够相似,免疫系统就会被弄混,攻击身体组织的类似分子,从而导致自身免疫性疾病。

不幸的是,甲状腺有两种常见的分身,使其面临自身免疫攻击的风险:麸质酪蛋白(一种在乳制品中发现的蛋白质),由于肠道渗漏,这两种物质很可能在血液中泛滥。

█ 质变—不活跃 T4 –> 活跃 T3

甲状腺激素强烈影响胃和小肠的紧密连接。这些紧密连接是两个细胞的紧密相关区域,它们的膜结合在一起形成肠道的不可渗透屏障

T3 和 T4可以保护肠粘膜内层免受压力引起的溃疡形成。在另一项研究中,胃溃疡的内镜检查发现低 T3、低 T4 和逆T3 水平异常。

与甲状腺健康相关的最常被忽略的因素之一可能是 T4 到 T3 的转换

甲状腺主要产生不活跃的 T4。它需要其他组织,例如肠道,才能将其转化为活性激素 T3,而 T3 负责能量、新陈代谢、体温等等。

  • 肠道菌群帮助T4转化为T3

大约 20% 的 T4 在胃肠道中以 T3 硫酸盐 (T3S) 和三碘甲腺乙酸 (T3AC) 的形式转化为 T3。T3S 和 T3AC 转化为活性 T3 需要一种叫做肠道硫酸酯酶的酶。

肠道硫酸酯酶从何而来? 健康的肠道菌群。

肠道菌群失调,显著降低了 T3S 和 T3AC 向 T3 的转化。这就是肠道功能不佳的人可能有甲状腺症状但实验室结果正常的原因之一。

碘甲状腺原氨酸脱碘酶在 T4 向其活性形式 T3 的转化中起核心作用。据推测,肠道和肠道微生物群会影响这些酶的活性

但可能还不止这些,因为在肠壁中发现了脱碘酶活性,并且至少一项动物研究表明肠道菌群具有结合甲状腺激素的能力

█ 加剧—其他病征

胃酸过少或胃酸过低会增加肠道通透性、炎症和感染。研究表明,萎缩性胃炎(一种与胃酸过少有关的疾病)与自身免疫性甲状腺疾病之间存在很强的关联。

  • 肠道功能对于甲状腺激素至关重要的例子

便秘损害激素清除并导致雌激素升高,从而提高甲状腺结合球蛋白 (TBG) 水平并减少身体可用的游离甲状腺激素的量。

另一方面,甲状腺功能低下会减慢转运时间,导致便秘并增加炎症、感染和吸收不良。

循环中甲状腺激素水平低会导致肠道运动受损和便秘,从而使激素失衡的循环持续下去。

03 甲状腺影响肠道

➤ 甲状腺如何影响肠道/消化系统

口腔中产生富含酶的唾液开始分解食物,特别是淀粉。然而,研究表明,大量患有自身免疫性甲状腺疾病(如桥本氏病)的人缺乏足够的唾液并出现“口干”。

这部分是由于促炎细胞因子的过度产生,阻碍了唾液的正常产生。

甲状腺在胃酸的产生中也起着非常重要的作用,这会导致胃酸、营养缺乏等症状,以及其他消化系统疾病,如SIBO(小肠细菌过度生长)和 SIFO(小肠真菌过度生长)。

研究还表明,甲状腺功能减退症通过显著降低胃食管活动,导致胃肠功能障碍,因此,建议消化不良患者检查甲状腺功能。萎缩性胃炎与自身免疫性甲状腺疾病之间存在联系。

还有其他器官在适当吸收、分解大量和微量营养素方面发挥着至关重要的作用,这些过程也受到甲状腺健康的影响。

  • 甲状腺影响肝脏

研究表明,肝脏是受甲状腺功能亢进症和甲状腺功能减退症影响最大的器官。如果肝脏功能不正常,消化就会停止。但如果没有健康的甲状腺,肝脏就无法发挥最佳功能。不健康的甲状腺会导致不健康的肝脏,这会影响胆囊并阻碍消化、营养吸收和 T4/T3 转换的过程。

➤ 甲状腺如何影响便秘

食物进入嘴巴,然后从另一端出来所需的时间,我们称之为转运时间。便秘患者通常转运时间较长,缓慢的转运会在雌激素清除方面造成一些问题。肝脏负责结合雌激素,然后将其释放到肠道中,以便在大便时将其排出体外。

问题在于,当这些结合雌激素在肠道中停留的时间过长时,某些生物体就能够取消肝脏所做的工作并将雌激素释放回循环中。

本质上,不是去消除雌激素,而是将其回收利用,而雌激素水平会继续上升。雌激素的升高会增加一种叫做 TBG(甲状腺结合球蛋白)的物质。这种过量的 TBG 会与活性 T3 激素结合,使其无法用于提供能量。

更糟糕的是,随着 T3 被 TBG 包裹,它会减慢肝脏的速度。肝脏可以处理较少的雌激素,而已经升高的雌激素会变得更高。这也是为什么以激素替代疗法或避孕药的形式添加雌激素通常会导致体重增加。

04 甲状腺功能异常的几大常见原因

  1. 自身免疫反应

自身免疫性甲状腺炎,或称桥本氏病,是一种身份识别错误的案例。

免疫系统将甲状腺误认为是外来病原体,并产生甲状腺抗体来攻击它,逐渐破坏甲状腺组织。这会显著损害甲状腺的功能,导致甲状腺激素水平低下,且导致甲状腺功能减退。

✦ 在美国每100人中约有5人患该病

自身免疫性甲状腺炎,女性发病率至少是男性的8倍。迄今为止,自身免疫是西方男性和女性甲状腺功能减退症的最常见原因,约占成人甲状腺功能减退症的 90%

在西方,桥本氏病也是甲状腺肿的常见原因(而在世界其他地区,碘缺乏症常常是罪魁祸首)。

✦ 幽门螺杆菌感染与桥本氏病之间可能存在联系

在桥本氏病患者中发现了一种特别毒力的幽门螺杆菌菌株,治疗感染可降低甲状腺自身抗体

这种幽门螺杆菌菌株可以引发甲状腺自身免疫,因为它和参与甲状腺激素合成的酶具有非常相似的基因序列。这种相似性可能会导致与甲状腺组织的破坏性交叉反应和随后的自身免疫

2. 接触环境毒素

越来越多的研究表明,人类活动(如工业和农业)释放的人为污染物或毒素会干扰甲状腺功能

甲状腺非常容易受到环境毒素的损害,并且很容易积累重金属和毒素(模拟甲状腺激素结构或含有卤素的毒素)。

✦ 重金属

镉、铅、汞和铝可以通过多种机制影响甲状腺。接触汞可能会干扰脱碘酶(脱碘酶在甲状腺激素的激活和失活中很重要),从而破坏甲状腺功能。汞接触的常见来源包括鱼类和贝类、牙科用汞合金、来自工业的空气中汞蒸气。

其中许多毒素会对甲状腺造成直接或间接损害:

  • 干扰T4和T3的生产
  • 减少可用的甲状腺受体
  • 阻碍 T4 向 T3 的转化
  • 在生产、转化和再吸收过程中引起其他问题

工业化学品

高氯酸盐、多氯联苯 (PCB) 和二恶英是常见的工业污染物,已被发现会破坏甲状腺功能。

✦ 杀虫剂和除草剂

杀虫剂和除草剂可以通过抑制甲状腺激素基因表达阻碍甲状腺对碘的吸收、与甲状腺激素转运蛋白结合、减少细胞对甲状腺激素的吸收以及增加甲状腺激素从体内的清除来干扰甲状腺

日常用品中的毒素

以下也会伤害到甲状腺的物质:

阻燃剂(存在于电脑和电视屏幕、家具、地毯衬垫等中);

增塑剂(双酚 A 和邻苯二甲酸盐等);

三氯生(洗手液中的一种抗菌化学物质);

全氟辛酸(来自不粘炊具和防污织物的 PFOA)

3. 肠道菌群失调

肠道与甲状腺之间的关系既深刻又复杂;肠道健康会影响甲状腺功能,反之亦然。

甲状腺疾病发展和治疗中重要因素之间的相互作用

(1)碘可能对微生物群有毒,微生物群影响碘的摄取。

(2)自身免疫性甲状腺疾病(AITD)患者改变了微生物群。另一方面,由细菌过度生长引起的漏肠综合征增加了AITD的患病率。

(3)菌群进行雌激素循环,男女菌群组成不同。

(4)肥胖导致菌群改变

✦ 肠道菌群在格雷夫斯病的发展中起着关键作用

格雷夫斯病患者的肠道微生物多样性较低普氏菌副流感嗜血杆菌的丰度较,而Alistipes粪杆菌的丰度较

肠道微生物可能通过以下几种机制影响自身免疫性甲状腺功能亢进症的进展:

  • 患有格雷夫斯病的人表现出,参与产T细胞的肠道细菌的丰度较低,这有助于预防甲状腺自身免疫。
  • 在大鼠研究中,肠道细菌可以调节肠道碘摄取、甲状腺激素降解和甲状腺激素的肠肝再循环,从而导致体内甲状腺激素水平的升高或降低。类似的过程很可能发生在人类身上。
  • 格雷夫斯病患者表现出针对肠道病原体Yersinia enterocoliticaHelicobacter pylori的高水平抗体,这表明慢性肠道感染和随之而来的免疫失调可能促进甲状腺功能亢进的发病机制。

总之,这些发现表明肠道微生态失调可能是自身免疫性甲状腺功能亢进症发展的关键节点。

4. 血糖失衡

甲状腺功能亢进引起的新陈代谢增加,导致身体组织对葡萄糖的需求增加,通过肌肉中的糖原分解和肝脏中的糖异生增加内源性葡萄糖的产生。

在一些甲亢患者中,胰岛素抵抗的存在会影响多余葡萄糖的处理,这种现象是身体细胞对激素胰岛素反应不佳,不能轻易从血液中吸收葡萄糖。胰岛素抵抗和甲状腺功能亢进之间的联系机制尚未得到充分解释,但可能与甲状腺功能亢进中炎症信号分子的循环水平较高有关,这会损害胰岛素敏感性

✦ 甲状腺和血糖之间相互影响

甲状腺会影响血糖代谢,如果甲状腺功能不正常,血糖平衡可能会失控,但血糖也会影响甲状腺

研究表明,胰岛素抵抗(在长期高血糖人群中很常见)会增加桥本氏病患者甲状腺的破坏。

低血糖(低血糖)也会通过抑制垂体的功能来损害甲状腺健康(垂体产生 TSH,刺激甲状腺产生 T4 和 T3)。

如果患有代谢综合征,甲状腺功能也可能会受到影响。

饮食和生活方式的改变可以显著提高胰岛素敏感性,为甲状腺功能亢进症的功能医学治疗提供辅助支持。

5. 食物不耐受

麸质不耐症似乎与桥本氏病密切相关。许多患有桥本氏病的人还患有乳糜泻(一种自身免疫性疾病),而无麸质饮食可以改善甲状腺健康。

一项针对 280 名格雷夫斯病患者和 120 名桥本病患者的研究发现,5.5% 的患者抗麦胶蛋白抗体 (AGA) 呈阳性。这是一项具有统计学意义的发现,当然AGA 只是麸质敏感性的一个标志物,需要进一步研究。

格雷夫斯病患者也表现出抗谷氨酸脱羧酶抗体,这表明对麸质敏感。研究人员指出,乳糜泻和自身免疫性甲状腺疾病具有共同的免疫机制

✦ 为什么它们之间有关联?

麦胶蛋白是麸质的蛋白质部分,由于其分子结构与甲状腺组织相似,因此可能引发格雷夫斯病。当肠道屏障受损时(由于肠道菌群失调和抗生素的使用等因素),麦胶蛋白会逃离肠道进入血液。在体循环中,免疫系统将麦胶蛋白标记为一种威胁,标志着它将被破坏;然而,在这个过程中,它也会不经意地“标记”甲状腺组织,并开始攻击甲状腺

✦ 为什么建议甲状腺患者进行无麸质饮食?

乳糜泻影响 1% – 5% 的美国人,但许多人没有明显症状,并且可能不知道自己患有乳糜泻。

即使在非自身免疫性引起的甲状腺疾病患者中,分子模拟现象仍然会影响甲状腺功能。

食用麸质后,对麸质的免疫反应可持续长达六个月

✦ 促甲状腺肿食物也会给甲状腺功能低下者带来问题

所谓“促甲状腺肿食物”是通过干扰甲状腺对碘的吸收而引起甲状腺肿大的食物。在低浓度时,可以通过补充碘来抵消致甲状腺肿的影响;但是大量的摄入会对甲状腺产生负面影响。

部分致甲状腺肿的食物包括:

  • 十字花科蔬菜:如西兰花、花椰菜、卷心菜、白菜等
  • 蔷薇科水果:如樱桃、桃子、覆盆子、草莓、杏等
  • 其他食物,如红薯、竹笋、大豆和尤卡等

6. 下丘脑-垂体-肾上腺轴功能障碍和压力

甲状腺与 HPA 轴紧密相连。下丘脑产生 TRH,它刺激垂体产生 TSH,向甲状腺发出信号以产生 T4 和 T3。下丘脑和/或垂体的中断会干扰这一过程并影响甲状腺。

下丘脑-垂体-肾上腺轴(HPA 轴)是身体的中枢应激反应系统。HPA 轴协调皮质醇的释放,皮质醇是一种激素,可以让我们的身体对直接威胁做出快速反应。然而,慢性压力会破坏这一过程并导致 HPA 轴功能障碍。

✦ 慢性压力

慢性压力会促进炎性细胞因子的释放,从而降低下丘脑和垂体(进而降低甲状腺)的功能,抑制甲状腺激素的转换,导致甲状腺激素抵抗,并影响其他对正常甲状腺功能重要的激素。

细胞因子产生的改变也可能与自身免疫有关,如果你患有桥本氏病,就需要考虑HPA轴功能障碍和应激因素。

✦ 过度运动

需要注意的是,过度运动也会破坏 HPA 轴并可能加剧甲状腺功能减退症。过度、剧烈的运动会给你的身体带来压力,并可能对甲状腺健康产生负面影响。

7. 营养缺乏

鉴于麸质免疫系统甲状腺功能之间存在复杂的相互作用,因此甲状腺功能亢进症患者必须避免麸质。 然而,仅仅是无麸质饮食可能不足以纠正与甲状腺功能亢进相关的肠道菌群失调慢性炎症和营养缺乏;这涉及到了我们接下来要讲的“AIP饮食”。

AIP饮食是指通过去除常见有问题的食物来治愈肠漏,从而减少体内炎症并治愈自身免疫性疾病。

✩ AIP饮食实践指南:

  • 将水果限制在每天 1-2 份,并确保它们的升糖指数(碳水化合物消化速度的排名)较低;
  • 每天包括 6-8 份蔬菜;
  • 每顿饭的目标是 80% 的蔬菜和 20% 的肉或鱼;
  • 专注于酱汁、蘸酱和肉汤;
  • 加入大量油脂(椰子油、鸭油、牛油、鳄梨油、橄榄油),在适当的温度下煮熟;
  • 不要在跑步时进食,并确保彻底咀嚼食物;
  • 自己发酵蔬菜;
  • 多喝过滤水;
  • 检查食物标签,以确保是合规成分。

甲状腺需要特定的营养素才能正常运作;缺乏其中任何一项都可能导致甲状腺功能减退症。

✦ 维生素

除了前面章节节我们讲过的,硒,碘之类的微量元素之外,维生素也是必不可少的。

观察性研究将低维生素 D 与格雷夫斯病的发生联系起来;维生素 D 是一种有效的免疫调节剂。低水平的营养素可能使个体易患免疫失调,进而导致甲状腺自身免疫。<具体补充干预见下一章节>

8. 免疫系统在经历生育后发生变化

在女性中,在怀孕后出现自身免疫性甲状腺疾病的情况并不少见。

怀孕会增加T调节细胞的活性,这使得母亲的身体对在她体内生长的宝宝保持“耐受性”。然而产后,这种自然的免疫抑制状态就丧失了,免疫系统可能会向相反的方向倾斜,导致自身耐受性丧失,并产生针对自身组织(包括甲状腺)的自身抗体。

这就解释了为什么一些女性会在产后出现自身免疫性甲状腺疾病,包括桥本氏病和格雷夫斯病。

05 干预治疗方案

一、 干预可以从治愈肠道开始(肠道-甲状腺轴)

肠道修复的四个阶段:

  1. 去 除 刺 激 肠 道 的 诱 因

☑ 潜在的食物诱因

在3-6 周内,不食用任何可能的食物刺激物。从日常饮食中去除食物过敏原和其他可能的加重因素。比如:麸质、乳制品、玉米、大豆、坚果、豆类/豆类(包括花生)以及巧克力、红茶和咖啡等兴奋剂。

咖啡可能会与麸质发生交叉反应,刺激肠道。

减少致甲状腺肿食物的摄入量(减轻它们带来的危害);

选择合适的加工方式(煮沸和蒸煮可以减少食物的致甲状腺肿含量)。

☑ 药物

去除非甾体抗炎药、质子泵抑制剂 (PPI)、不必要的抗生素和节育措施。停药前请咨询医生。

☑ 生活压力

就像前面提到的,慢性压力实际上可以改变你的微生物组的构成。它还会扰乱 HPA 轴(下丘脑-垂体-肾上腺),影响体内几乎所有的激素。

☑ 肠道菌群检测

如果有任何慢性肠道或甲状腺问题,可以通过肠道菌群健康检测,了解自身菌群代谢或营养状况存在哪些异常,从而有针对性地进行干预。

2. 尝 试 消 化 酶

重要的消化酶会随着年龄的增长或使用不足而耗尽。当我们康复时,服用有针对性的消化酶一段时间会有所帮助。

☑ 甜菜碱盐酸盐

如果胃酸过少(胃酸过低)或吃得很饱,可能需要一些甜菜碱盐酸盐的帮助。可以询问医生。

☑ 考虑使用联合消化助剂

由消化酶和甜菜碱盐酸盐的混合物组合的产品,以支持蛋白质、脂肪和碳水化合物的最佳消化。可分解面筋和乳糖酶以消化乳制品。当患者在进食后出现胀气和腹胀、便秘或仅进食少量食物后有饱腹感时,餐前服用这类产品可能会有所帮助。

3. 重 塑 肠 道 菌 群

☑ 发酵蔬菜

这是让一些有益菌进入肠道的好方法。生的、培养的、有机蔬菜,如泡菜、酸菜和其他发酵蔬菜,如甜菜和胡萝卜,可以促进肠道中有益菌的生长。

☑ 益生菌

患有甲状腺疾病的女性可以考虑使用益生菌,如乳酸菌和双歧杆菌等。抵御病原体、增加有益免疫反应、保护胃肠道屏障功能并促进酶活性,可以更好地从食物中吸收营养。

注意:如果您的消化系统症状恶化,或者在引入益生菌食物或补充剂时出现极度胀气或腹胀,建议减少或不用益生菌,或遵医嘱。

☑ 可发酵纤维

食用富含可发酵纤维的食物可以改善肠道健康。比如苹果、柑橘类水果、胡萝卜、洋葱、大蒜、芦笋和绿色香蕉粉。

☑ 摄入足够的碘和硒

前面提到过,在饮食中摄入足够的碘和硒是避免补充的好方法。海鲜和碘盐是碘的良好来源,而巴西坚果是硒的极好来源。

4. 修 复

☑ 抗炎饮食

抗炎饮食对桥本氏病患者非常有益的。这种饮食不含引发免疫反应的食物,如茄属植物、鸡蛋、乳制品、谷物和豆类(仅举几例)。详见:谷禾健康:深度解析 | 炎症,肠道菌群以及抗炎饮食43 赞同 · 1 评论文章

☑ 有机食品

吃有机产品将帮助避免有害毒素,如杀虫剂、除草剂等。

☑ 姜黄素提取物

虽然吃姜黄有益于整体健康,但建议补充活性成分姜黄素的同时治愈肠道。

二、 干预措施(针对甲状腺问题)

  1. 药物选择

药物可能并非在所有情况下都必要,如果需要使用药物,提倡使用安全、剂量适当的药物来治疗特定的甲状腺和肠道健康状况。

2. 个性化的补充

肠道菌群检测后发现,很多有肠道/甲状腺问题的人都缺乏营养,通常建议除了改变饮食外,还应针对性补充一些优质维生素和微量元素(铁、硒、锌等)。

☑ 维生素

抗氧化营养素,如维生素 C 和 E,对于减轻格雷夫斯病中的过度氧化应激至关重要。

维生素 D 缺乏在格雷夫斯病患者中很常见,补充可能对格雷夫斯病复发具有保护作用。

☑ 微量元素

前面章节已提到过碘、硒等微量元素及相应的功能。它们可能存在于以下食物:

☑ 其他

omega-3 脂肪酸、二十碳五烯酸 (EPA) 和二十二碳六烯酸 (DHA) 以及谷胱甘肽具有抗炎和抗氧化特性,可能有助于抵消与甲状腺功能亢进相关的过度氧化应激。

左旋肉碱是一种类似氨基酸的物质,每天 2-4 克的高剂量可抑制 T4 和 T3 进入细胞核,从而降低甲亢的影响。左旋肉碱生物利用度最高的形式是乙酰左旋肉碱。

蜂草和柠檬香脂等植物药也被用来平衡甲状腺功能亢进,并且可能与其他饮食和生活方式改变一起作为有用的辅助治疗。

3. 生活方式的改变

☑ 管理压力

减轻慢性压力可以帮助缓解导致甲状腺问题的任何 HPA 轴功能障碍。瑜伽、冥想、呼吸练习和正念等措施都可以产生效果。

☑ 养成良好的睡眠习惯

睡眠是整体健康的必要条件,也是肠道健康的先决条件。争取每晚睡 8 小时左右,在凉爽、黑暗的房间里安静地入眠,并限制接触人造光。

☑ 制定可持续的锻炼计划

定期锻炼有益于肠道健康、血糖代谢正常,缓解压力,但需要注意的是要达到适当的平衡,不要过度训练。

☑ 足够的阳光

阳光照射已被证明对自身免疫性疾病具有保护作用。

☑ 优质水源

反渗透过滤器可以有效去除对甲状腺有害的毒素,如高氯酸盐、杀虫剂、多氯联苯、各种重金属等。

☑ 限制塑料的使用

尽可能不要饮用塑料容器中的食物或将食物存放在塑料容器中。如果确实需要选择使用某些塑料产品,请寻找“不含 BPA”的选项。当然,不含 BPA 的产品可能仍然含有其他潜在干扰甲状腺作用的双酚衍生物。

生活方式的改变是甲状腺功能亢进症康复的基本要素,通过日常减压练习来管理压力,获得充足的高质量睡眠,定期进行健身活动,保持健康的免疫功能,这是为治愈甲状腺问题和长期维持健康的先决条件。

我们可以看到,甲状腺功能亢进的诊断不一定需要导致终生依赖药物、侵入性手术或完全破坏甲状腺功能。通过功能医学方法(包括肠道健康检测,个性化饮食及生活方式干预等),不仅可以缓解甲状腺功能亢进的症状,还可能逆转导致甲状腺功能亢进的潜在疾病。

主要参考文献:

Knezevic J, Starchl C, Tmava Berisha A, Amrein K. Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function? Nutrients. 2020 Jun 12;12(6):1769. doi: 10.3390/nu12061769.

Fröhlich E, Wahl R. Microbiota and Thyroid Interaction in Health and Disease. Trends Endocrinol Metab. 2019 Aug;30(8):479-490. doi: 10.1016/j.tem.2019.05.008. Epub 2019 Jun 27. PMID: 31257166.

Soldin OP, O’Mara DM, Aschner M. Thyroid hormones and methylmercury toxicity. Biol Trace Elem Res. 2008;126(1-3):1-12. doi:10.1007/s12011-008-8199-3

Croce L, Di Dalmazi G, Orsolini F, et al. Graves’ Disease and the Post-partum Period: An Intriguing Relationship. Front Endocrinol (Lausanne). 2019;10:853.

Richardson VM, Staskal DF, Ross DG, Diliberto JJ, DeVito MJ, Birnbaum LS. Possible mechanisms of thyroid hormone disruption in mice by BDE 47, a major polybrominated diphenyl ether congener. Toxicol Appl Pharmacol. 2008 Feb 1;226(3):244-50.

Sapolsky RM, Krey LC, McEwen BS. The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocr Rev. 1986 Aug;7(3):284-301. doi: 10.1210/edrv-7-3-284. PMID: 3527687.

Duntas LH. The Role of Iodine and Selenium in Autoimmune Thyroiditis. Horm Metab Res. 2015 Sep;47(10):721-6. doi: 10.1055/s-0035-1559631. Epub 2015 Sep 11. PMID: 26361258.

Sanna, A.; Firinu, D.; Zavattari, P.; Valera, P. Zinc Status and Autoimmunity: A Systematic Review and Meta-Analysis. Nutrients 2018, 10, 68.

Shahbaz A, Aziz K, Umair M, Sachmechi I. Prolonged Duration of Hashitoxicosis in a Patient with Hashimoto’s Thyroiditis: A Case Report and Review of Literature. Cureus. 2018;10(6):e2804. Published 2018 Jun 14. doi:10.7759/cureus.2804

de Herder WW, Hazenberg MP, Pennock-Schröder AM, Oosterlaken AC, Rutgers M, Visser TJ. On the enterohepatic cycle of triiodothyronine in rats; importance of the intestinal microflora. Life Sci. 1989;45(9):849-56.

Abbott RD, Sadowski A, Alt A3. Efficacy of the Autoimmune Protocol Diet as Part of a Multi-disciplinary, Supported Lifestyle Intervention for Hashimoto’s Thyroiditis. Cureus. 2019 Apr 27;11(4):e4556. doi: 10.7759/cureus.4556.

P. Monteleone, D. Parrini, P. Faviana et al., “Female infertility related to thyroid autoimmunity: the ovarian follicle hypothesis,” The American Journal of Reproductive Immunology, vol. 66, no. 2, pp. 108–114, 2011

Mugunthan K, Mugunthan N, van Driel ML. Treatment for subclinical hyperthyroidism in adults. Cochrane Database Syst Rev. 2018;2018(7):CD010371. Published 2018 Jul 26. doi:10.1002/14651858.CD010371.pub2

肠道微生物群与五种癌症的相互作用:致癌 -> 治疗 -> 预后

谷禾健康

肠道微生物群在癌症中发挥免疫调节和抗肿瘤作用,肠道微生物失调可诱导有毒代谢物的释放,并在宿主体内表现出促肿瘤作用。肠道微生物群也能调节标准化疗药物和天然抗癌药物的疗效

本文列举5种常见的癌症(结直肠癌、肺癌、乳腺癌、前列腺癌、胃癌),以及肠道微生物群在癌症中的复杂作用。

肠道微生物群与癌症发病的关系概览

K. Jaye et al. Critical Reviews in Oncology / Hematology,2021

在进入具体的5种癌症章节之前,我们先来了解一下,微生物群与癌症的关系。有研究人员将微生物群和癌症之间的关系分为三个层次: 一级、二级和三级相互作用

01 微生物群与肿瘤微环境的一级、二级和三级相互作用

K. Jaye et al. Critical Reviews in Oncology / Hematology,2021

一级相互作用(主要)

主要的相互作用考虑了肿瘤微环境和微生物群之间的直接联系。几项体内和体外研究主要从两个方面支持了这种关系:

a) 肠道微生物群可通过生物失调导致致癌

b) 肠道微生物可通过调节肿瘤活性干扰化疗药物的疗效

二级相互作用(次要)

次要的相互作用考虑了组织或器官系统的微生物群和同一大体分区内的肿瘤之间的联系。这种相互作用水平有助于识别用于筛选不同癌症类型的潜在生物标志物。特别地,来自局部组织或器官环境的次级微生物群可包含来自肿瘤微环境和初级微生物群落的痕迹,其可用作癌症的生物标志物;但这些诊断过程往往很复杂。

三级相互作用

肠道微生物群和肿瘤之间的三级相互作用解释了位于体内不同部位的肿瘤上的微生物群的影响。对这种相互作用水平的研究对于确定生理上遥远的微生物种类和感兴趣的肿瘤之间的关系具有重要意义,这对于确定癌症患者中潜在治疗选择的功效也具有临床相关性。

这些三级相互作用可以通过以下方式影响癌症:

  • 调节化疗的功效和毒性
  • 修饰免疫系统
  • 产生调节激素或宿主代谢的代谢物(所述代谢物可以影响癌症表型和/或结果 )

肠道微生物群可以通过启动代谢过程(包括水解和还原)来调节口服药物代谢,这直接影响药物毒性,并可以增强或抑制药物活性。微生物群与肿瘤之间的三级相互作用也可以帮助诊断不同类型的癌症。

肠道微生物群的促肿瘤、抗肿瘤和免疫调节作用

K. Jaye et al. Critical Reviews in Oncology / Hematology,2021

了解这些相互作用便于后面章节所述癌症的理解。接下来列举的是5种常见癌症,以及它们与微生物群之间的关系。

02
五种常见癌症及其与微生物群的关系

1

结直肠癌

在与肠道微生物群相关的各种癌症中,迄今为止对结肠直肠癌的研究最为广泛,肠道微生物群与疾病进展之间存在很强的相互关系。

菌群失调和致癌

在结直肠癌患者中存在菌群失调,这意味着其在结直肠癌发生发展中的潜在作用。结肠直肠癌与饮食因素和生活方式直接相关,饮食因素和生活方式改变了人类独特的肠道菌群。

结肠直肠癌的发生通过多种机制发生,如炎症、致癌物的激活、致瘤途径以及宿主DNA的改变/破坏

对结直肠癌有致癌作用的菌

已经确定了肠道微生物群中的几种菌,这些细菌除了它们的致病性之外,还被假设对结肠直肠癌具有致癌作用(主要是通过初级相互作用),包括幽门螺杆菌、肝螺杆菌Helicobacter hepaticus、牛链球菌Streptococcus bovis、大肠杆菌、脆弱拟杆菌B. fragilis、败血梭菌Clostridium septicum、粪肠球菌Enterococcus faecalis、具核梭杆菌F. nucleatum、厌氧消化球菌Peptostreptococcus anaerobius和牙龈卟啉单胞菌Porphyromonas gingivalis,所有这些细菌都显示出潜在的致癌作用

这些菌如何诱导结直肠癌?

这些细菌可通过激活STAT3、NF-κB、Wnt和SREBP-2途径、诱导COX-2表达、与TRL2和TRL4相互作用、刺激促炎细胞因子(IL-1β、IL-6、IL-8、IL-17、TNF-α和IFN-γ)产生、调节NLRP3炎症体活性,通过氧化应激活性氧(ROS)和活性氮(RNS)DNA损伤来诱导结直肠癌的发生。

“司机-乘客”理论

肠道细菌(驱动菌,就好比司机)通过破坏上皮DNA导致肿瘤发生,进而促进细菌(乘客)增殖,使其在肿瘤微环境中具有生长优势,从而诱导结直肠癌。

肿瘤微环境由基因改变的癌细胞、非肿瘤细胞和多种微生物组成。

在结直肠癌的肿瘤微环境中,梭杆菌富集,拟杆菌门和厚壁菌门减少,产丁酸菌显著减少,导致致病菌增加。

产丁酸菌在肠内形成功能团,并在肠上皮细胞的粘膜层上定居后表现出厌氧和氧敏感活性,这增加了丁酸盐的生物利用度。这一菌群通过保存肠道上皮功能和释放免疫调节和抗炎剂来促进肠道稳态。

致病因素对结直肠癌病因和进展的贡献与肠道微生物代谢物的累积效应有关,而不是单一菌种的作用。

结直肠癌早期代谢物的变化

肠道内的微生物代谢组以及特定细菌和真菌病原体的促致癌功能都可以催化致癌。

结肠直肠腺瘤(结肠直肠癌的前体)患者的肠道代谢物如生物活性脂质(包括多不饱和脂肪酸、次级胆汁酸和鞘脂)升高,突出了结肠直肠癌发病机制中潜在的早期驱动代谢物。且与男性相比,在女性中观察到更强的肠道微生物组-代谢组关联。

肠道微生物群在结肠癌抗癌治疗中的作用

粪菌移植

粪便微生物群移植在结直肠癌治疗中的功效,是通过免疫治疗功效的调节、胆汁酸代谢的改善和肠道微生物多样性的恢复来介导。该方式的安全性和有效性仍需谨慎评估。

益生菌、益生元

益生元如菊粉、β(1–4)低聚半乳糖、低聚果糖、乳果糖、抗性淀粉、麦麸在结直肠癌中发挥有益作用。

一项体外实验研究了乳酸菌产生的一类重要代谢产物——细菌素对不同菌株幽门螺杆菌的抑菌活性,发现乳酸菌素A164和乳酸菌素BH5对幽门螺杆菌具有显著的抑菌活性。

该研究还表明,由益生菌菌株-嗜酸乳杆菌P38、长双歧杆菌P29和乳酸乳球菌M92产生的乳酸可以抑制幽门螺杆菌的生长,表明益生菌在幽门螺杆菌相关溃疡和癌症中的潜在治疗应用。

女性通过雌激素抑制结直肠癌

在世界范围内,结直肠癌男性比女性更常见。雌激素会影响肠道微生物群的组成。

两项研究证明,17β-雌二醇(一种雌激素)通过上调用氧化偶氮甲烷/硫酸葡聚糖钠处理的雄性ICR小鼠的Nrf2,改变肠道微生物群抑制结肠直肠癌的诱导

由于文献中的大多数研究是在体外和体内进行的,在制定基于益生元的结直肠癌策略之前,有必要进行更多的临床研究,这些研究将遗传、环境因素、年龄、性别、种族、文化、饮食和地理位置考虑在内。总的来说,这些临床发现对以肠道微生物群为中心的结直肠癌的诊断、预防和潜在治疗策略有积极的贡献。

2

肺 癌

肺癌是常见的恶性肿瘤之一,迫切需要制定有效的肺癌治疗策略。研究表明,肠道和肺部微生物群之间通过淋巴和血液循环系统在双向轴上存在复杂的联系。肠-肺轴是最近的科学认识,可能是肺癌治疗的潜在未来方向。

肠道菌群在肺癌的抗癌治疗中的免疫调节

特定的微生物群,其功能是调节针对肿瘤发生的免疫反应并增加针对癌症的免疫疗法的功效(三级相互作用)。

K. Jaye et al. Critical Reviews in Oncology / Hematology,2021

肠道微生物群产生代谢物和信号分子,包括SCFAs、肌苷、脂多糖(LPS)和IFN-γ,它们调节T细胞、B细胞、NK细胞、树突状细胞和巨噬细胞对抗肿瘤微环境的活性。

针对肠道微生物群,CD8 + T细胞、自然杀伤细胞和巨噬细胞产生穿孔素、颗粒酶、白细胞介素-12、白细胞介素-1β和肿瘤坏死因子来抑制肿瘤。

肠-肺轴一个部分的改变可能会影响另一个部分,这可能与肠和肺微生物群组成或免疫系统功能的变化直接相关。肠道微生物群在肺癌抗癌反应中的重要性已被癌症免疫周期所考虑。

抗癌免疫是如何发生的?

癌症免疫周期承认,抗癌反应是由释放促炎细胞因子构成的,该细胞因子来源于肠道微生物群的代谢物,这进一步导致针对癌症特异性抗原的效应T细胞的激活。效应T细胞的激活导致肿瘤细胞床的侵袭,与特定的肿瘤抗原结合,有效地破坏恶性肺癌细胞

肠道菌群在其中的作用

肠道微生物组对B和T细胞的引发和成熟通过抗体的作用增强了粘膜保护,因为它始于肠粘膜层,并通过淋巴和血液循环系统沿其他粘膜表面传播。这启动了远离起源部位的免疫反应

肠道菌群对ICIs癌症治疗中疗效影响显著

肠道微生物群已被证明对免疫检查点抑制剂(ICIs)在癌症治疗中的疗效有显著影响。例如,施用抗生素抑制了ICIs靶向患者和小鼠非小细胞肺癌的PD-1/PD-L1。

注:PD-1,程序性细胞死亡1;PD-L1,程序性细胞死亡1配体1

对患者粪便样本的宏基因组分析发现,Akkermansia muciniphila(回肠微生物群中最丰富的细菌之一)的相对丰度非小细胞肺癌患者对ICIs的良好临床反应相关,然而,免疫调节作用的机制仍不清楚。

肠道菌群失调降低疗效

另有研究也表明抗生素相关的肠道微生物失调降低了ICIs在非小细胞肺癌患者中的临床疗效,并且无论肿瘤部位如何,都需要完整的肠道微生物群来动员免疫系统。

一项回顾性研究报告了抗生素对中国109例晚期非小细胞肺癌患者抗PD-1 ICIs临床结局的不利影响。通过上调肺癌小鼠模型中VEGFA表达下调BAX和CDKN1B表达来促进肿瘤生长和降低生存率,也证明了抗生素相关性肠道微生物失调对标准化疗(如顺铂)疗效的不利作用

嗜酸乳杆菌Lactobacillus acidophilus联合顺铂治疗的小鼠表现出增强的抗肿瘤反应,上调了IFN-γ、颗粒酶B和穿孔素1的表达。

抗生素联合气溶胶疗法

一项有趣的研究表明,抗生素和益生菌气溶胶疗法改变肺部微生物群,可以预防黑色素瘤B16肺转移,并增强雌性C57BL/6小鼠对化疗的应答。

他们实施了万古霉素/新霉素气雾剂疗法,以减少调节性T细胞并增加T细胞和NK细胞的激活,这导致细菌载量的减少和黑色素瘤B16肺转移显著减少

该研究还发现,鼠李糖乳杆菌GG双歧双歧杆菌MIMBb23sg的气溶胶疗法显著增加标准化疗药物抗肿瘤作用。此外,鼠李糖乳杆菌GG通过增加NK细胞和T细胞中CD69的表达,强烈促进了对B16转移肿瘤的免疫力

总之,这些发现强调了肠道微生物群的重要影响,尤其是在肺癌的治疗和预后方面。然而,需要更多的研究来阐明肠道微生物群免疫调节作用的分子机制,以及它们在开发有效的肺癌治疗策略中的相关性。

3

乳腺癌

乳腺癌是常见的癌症之一,也是全球女性癌症相关死亡的主要原因。目前,对肠道微生物群理解的不断深入,肠道微生物群与乳腺癌关系也得到了进一步研究。除了遗传学,肠道微生物群可能在乳腺癌的发病机制中起重要作用。

菌群失调和致癌

一项关于绝经后妇女的研究调查了乳腺癌肠道代谢组学改变的相互关系。发现健康对照受试者和绝经后乳腺癌患者的肠道微生物组的组成生物活性存在差异,其中绝经后乳腺癌患者的肠道宏基因组具有编码β-氧化、铁复合物转运系统和脂多糖生物合成的基因。

体外研究提供了支持肠道微生物群与乳腺癌转移进展之间联系的功能证据,其中微生物代谢物可以通过血液传播,影响乳腺癌细胞和免疫细胞的功能。

此外,已经确定肠道微生物群中预先存在的干扰增加了乳腺癌细胞转移,然而,需要进一步的研究来确定这些发现在临床环境中的相关性。

肠道微生物群和激素调节之间的联系

另有研究报告了肠道微生物群对乳腺癌的多因素影响的几个有趣方面,这些影响是通过调节类固醇激素代谢以及粘膜和全身免疫反应介导的。例如,肠道微生物群可能通过介导类固醇激素的代谢模拟雌激素的生物活性代谢物的合成,在乳腺癌的发展中发挥重要作用。

下图描述由宿主中激素释放活性障碍引起的生理效应,包括代谢过程的变化和肠道内炎症和癌症的调节。

K. Jaye et al. Critical Reviews in Oncology / Hematology,2021

肠道微生物群和激素调节之间的相互联系是确定乳腺癌精确疗法的一个有前途的研究领域。

现有研究为肠道菌群贡献和乳腺癌风险提供评估

虽然肠道微生物群与乳腺癌之间的相关性和因果关系尚未明确,但乳腺癌的风险肠道和乳腺微生物群组成和功能以及接触有害环境污染物(如可能导致生物失调的内分泌干扰物)有关。尽管病例对照临床研究目前正在进行中(NCT03885648),但它对肠道微生物群(细菌、古细菌、病毒和真菌)的贡献以及环境压力对乳腺癌相关风险的改变提供了潜在的首次评估,这可能有助于理解风险因素、改善预后和定义乳腺癌的新干预措施。

肠道微生物群在乳腺癌抗癌治疗中的作用

最近的两篇综述探讨了肠道微生物群在乳腺癌中的作用。他们回顾了几项临床前和临床研究,这些研究涉及益生菌如罗伊乳酸杆菌、瑞士乳杆菌R389、副干酪乳杆菌、嗜酸乳杆菌双歧杆菌,及其对乳腺癌的潜在治疗效果的机制:

直接机制:抑制早期癌变、诱导乳腺癌细胞凋亡和抑制肿瘤生长

间接机制:通过升高IL-10降低IL-6水平进行免疫调节

两项在clinicaltrials上注册的正在进行的临床试验(NCT03358511和NCT03760653),也在研究益生菌对乳腺癌的治疗效果。

总的来说,需要更多的研究来了解益生菌在乳腺癌治疗中的功效。此外,未来的研究侧重于全面了解肠道微生物群对抗乳腺癌的直接和间接作用机制,以及益生菌如何影响乳腺癌标准和辅助化疗的疗效

4

前列腺癌

前列腺癌是男性人群中常见的癌症,虽然很普遍,但其危险因素还没有得到很好的确定或研究。

菌群失调和致癌

越来越多证据支持菌群失调和前列腺癌之间的生物学关系。恶性肿瘤和炎症之间的联系已经成为许多现有研究中的重要考虑因素,强调了炎症刺激(三级相互作用)在前列腺癌的发展和进展中的可能意义。

前列腺癌的肠道菌群变化

早期该研究的相关信息非常有限。2018年,对20名高加索血统的参与者进行的病例对照研究发现,良性对照受试者和前列腺癌男性的肠道微生物组的组成有很大不同,这可能适应前列腺癌的发病机制和对其危险因素的进一步研究。特别是,与对照组相比,前列腺癌病例中Bacteroides massiliensis的相对丰度较高,而对照组中普氏栖粪杆菌 Faecalibacterium prausnitzii 直肠真杆菌Eubacterium rectalie的相对丰度较。该试点研究还报告了相关基因、途径和酶丰度的生物学显著差异

肿瘤组织微生物群变化

另有研究报告了前列腺癌中促炎拟杆菌链球菌丰度的显著差异,叶酸和精氨酸途径显著改变。对前列腺肿瘤微环境的分析显示,与非肿瘤组织相比,肿瘤/肿瘤周围组织中的葡萄球菌 Staphylococcus明显,而丙酸菌属Propionibacterium 在所有测试的肿瘤/肿瘤周围和非肿瘤组织中最为丰富

肠道微生物群在前列腺癌抗癌治疗中的作用

类似于结直肠癌和乳腺癌,雌激素调节肠道微生物群与前列腺癌的相互关系也被认为是可能的。

对30例患者进行的横断面研究进一步验证了肠道微生物群、激素调节癌症治疗疗效之间的相互作用。作者发现,口服雄激素受体轴靶向治疗的男性,其肠道菌群组成存在显著差异

该研究发现了大量的Akkermansia muciniphilaRuminococcaceae菌,这两种菌曾被认为与抗PD -1免疫治疗反应有关。

5

胃 癌

作为全球范围内癌症相关死亡的第三大原因,胃癌已经在风险因素和预防方面进行了广泛研究。

菌群失调和致癌

胃癌最重要和已知的风险因素是由幽门螺杆菌引起的感染,幽门螺杆菌是一种革兰氏阴性微需氧细菌,导致癌前病变的形成,包括异型增生,这可能进一步导致胃肠癌。国际癌症研究中心、世卫组织将幽门螺杆菌视为腺癌和粘膜相关淋巴组织淋巴瘤的一类致癌物。

肠道微生物群与胃癌之间的联系可进一步分为幽门螺杆菌和非幽门螺杆菌微生物群,作为菌群失调和癌症发病的致病菌。

与幽门螺杆菌阳性个体相比,幽门螺杆菌阴性个体拥有更复杂和高度多样化的微生物群,主要由5个优势门组成:变形菌门、厚壁菌门、放线菌门、拟杆菌门和梭杆菌门。明确地说,胃癌被认为是炎症相关的(间接机制),因为幽门螺杆菌可以启动炎症反应并诱导异型增生,从而改变胃肠道内许多信号通路的调节。

来源于螺杆菌属的强毒蛋白,如外膜磷脂酶蛋白,有助于细菌在胃肠道粘膜层定居,从而引发胃炎发作,并因此增加胃内肿瘤发生的风险。

此外,胃中幽门螺杆菌产生高水平的活性氧和随之而来的DNA损伤也与致癌作用(主要相互作用)有关。幽门螺杆菌还会减少胃酸分泌,而胃酸减少的环境对许多细菌来说慢慢变得可以生存,从而导致胃酸缺乏症和胃微生物群的改变。

几项研究表明,胃癌中非幽门螺杆菌细菌,如乳酸菌Lactobacillus、毛螺菌科Lachnospiraceae、Escherichia-Shigella、硝化螺旋菌门Nitrospirae伯克氏菌属Burkholderia的丰度增加

肠道微生物群在胃癌抗癌治疗中的作用

越来越多的证据支持益生菌和益生元的治疗用途,它们在体外和体内对胃肠道恶性肿瘤具有显著的抗癌作用。已经确定将益生菌引入肠道上皮可以减少肿瘤的进展和复发,增强化疗药物的疗效。

对益生菌功能的进一步研究可能允许基于个体共生微生物组成进行给药。尽管已经在肠道微生物群和胃肠癌的发展之间得出了有希望的结论,但进一步的研究对于阐明这些生物过程的潜在机制至关重要。

03
肠道微生物群与标准抗癌药物的互作

肠道微生物群与化疗之间的关联通常是双向的。

1

肠道微生物群—>标准抗癌药物

肠道微生物群与宿主之间的生物相互作用可能会干扰抗癌药物的药代动力学。例如,许多研究表明,常驻肠道微生物群可以调节抗癌药物和治疗剂的活性,以及调节宿主对这些治疗方案的应答。

肠道微生物群可以通过三种主要临床结果介导宿主对化疗的应答:

1) 提高药物疗效

2) 破坏和损害抗癌效果

3) 调节毒性

这些研究证明了肠道细菌种类与化疗免疫治疗的药理作用之间的密切联系。

除了改善总体健康降低代谢紊乱慢性炎症的风险,肠道菌群如A.muciniphila, 脆弱拟杆菌B.fragilis, Bifidobacterium, Faecalibacterium,已被证明有助于动物模型和人类的抗癌免疫反应。

有趣的是,某些肠道细菌,如链霉菌WAC04685,通过体外去糖基化机制灭活抗癌药物。微生物群落代谢化疗药物以产生有毒的次级代谢物,这将直接干扰宿主对化疗代谢的免疫反应,同时改变宿主肠道微生物群结构。

2

标准抗癌药物—>肠道微生物群

铂类化疗,已被证实可能通过显示细胞损伤效应和改变DNA结构来干扰肠道微生物群。

化疗药物带来的炎症反应

研究表明,化疗药物会损害肠上皮和粘膜屏障,每一种都会极大地改变肠道微生物群,增加感染和疾病的概率。特别是,癌症患者的化疗已被证明通过ROS诱导的DNA损伤和细胞因子信号分子(NFκB途径、IL-1β、TNF- α和IL-12)导致肠上皮炎症和粘膜炎

当粘膜屏障受损时,致病菌共生菌共存,受损上皮细胞和致病菌分别释放的损伤相关分子模式(DAMPs)和病原体相关分子模式(PAMPs)反过来被Toll样受体(TLRs)识别,最终导致炎症

这些调节活动的机制框架包括易位、免疫调节、代谢、酶降解以及多样性和变异减少,并被科学地认为是“定时器”框架。

研究人员确定肠道微生物组和免疫系统之间的生物相互作用是由化疗后诱导的细菌易位构成的,该易位发生在淋巴器官内腔内

化疗患者的菌群变化

对接受化疗的癌症患者的人类粪便微生物群进行的16S rRNA测序显示,双歧杆菌属、乳杆菌属、韦荣球菌属 Veillonella和粪肠球菌属 Faecalibacterium prausnitzii 的数量减少,同时出现致病性和炎症性艰难梭菌Clostridium difficile粪肠球菌Enterococcus faecium

一项针对乳腺癌幸存者的研究发现,独特肠道微生物群的组成与癌症复发恐惧(FCR)之间存在直接关联,这意味着化疗药物诱导的微生物群变化可能是影响FCR的原因。

生活方式和抗生素改变菌群

除了化疗药物之外,生活方式因素(包括宿主环境和饮食)的中断已被证明会干扰肠道微生物群的组成。生活方式因素可以通过改变微生物群落结构来破坏肠道微生物群和宿主之间的共生关系,从而导致不利的化疗效果和结果。

此外,抗生素给药还被证明会破坏肠道微生物群,导致对抗癌化疗和免疫疗法的反应减弱。因此,这些发现为未来的研究提供了一个利基领域,以了解标准化疗对肠道微生物群的影响,定义精确的抗癌方案,并确定不同癌症类型的临床结果。

04
免疫疗法和天然抗癌物与菌群互作

1

癌症免疫疗法和肠道菌群

当前的癌症免疫疗法集中于利用特异性抗体自我调节癌症免疫周期,这确保了应答的传播而没有生物中断。

微生态的改变会中断和削弱化学信号,导致致病状态,包括与炎症相关的疾病和癌症。

无菌小鼠的免疫系统存在缺陷,包括先天免疫系统和适应性免疫系统。这种免疫是通过为模式识别而设计的受体通过PAMPs调节的,其中信号通路可以通过肠道微生物代谢物增强

肠道微生物群对抗癌免疫反应的调节活性也与通过微生物群影响PD-L1和CTLA-4抑制剂的疗效有关。当与双歧杆菌的口服给药相结合时,PD-L1特异性抗体疗法的给药可以显著调节肿瘤的发展,但在小鼠模型中肿瘤的生长几乎被消除。

阻断剂疗效取决于拟杆菌的存在

同样,CTLA-4阻断的疗效取决于肠道微生物群中拟杆菌的存在脆弱拟杆菌B. fragilis多形拟杆菌B. thetaiotaomicron的特异性T细胞免疫应答与CTLA-4阻断剂的疗效相关,在没有这些微生物群落的情况下,肿瘤进展对阻断剂具有抵抗力。

小鼠的一项研究确定了ICI功效与肠道菌群之间的联系,其中CTLA-4和PD-1抑制剂仅能够在共生细菌拟杆菌和双歧杆菌存在的情况下减少肿瘤生长。进一步的发现确定,除非用免疫治疗方法治疗,否则小鼠模型中的肿瘤生长对CTLA-4抑制剂阻断有抵抗性,这通过激活T细胞反应提高了这些抑制剂的功效。

2

天然抗癌化合物和肠道菌群

前面我们知道,癌症化疗/免疫疗法与肠道微生物群之间存在密切关系,而通过天然药物预防癌症是肿瘤学中一种很有前景的方法。天然药物包括膳食多酚、纤维、植物雌激素和维生素D等。

膳食多酚和肠道菌群互作

膳食多酚在几项临床前和临床研究中显示出显著的抗癌活性。肠道微生物群和膳食多酚之间的联系是双向的。例如,肠道微生物群能够生物转化膳食多酚,增加其生物利用度,膳食多酚可以通过抑制“坏”细菌的增殖和刺激“好”细菌来调节肠道微生物的组成和功能。

多酚改变肠道微生物的组成和功能,肠道微生物群产生多酚代谢物,这可能共同有助于对结直肠癌的保护作用。

表没食子儿茶素辅助治疗乳腺癌

另一项针对乳腺癌的研究表明,茶多酚-表没食子儿茶素-3没食子酸酯(EGCG)可显著降低血清中血管内皮生长因子(VEGF)、肝细胞生长因子(HGF)、EGCG加放疗组与单纯放疗组相比,金属蛋白酶-9 (MMP9)、金属蛋白酶-2 (MMP2)活性降低,提示EGCG对乳腺癌辅助治疗作用。

补充膳食多酚增加有益菌抑制结直肠癌

一些临床和动物研究已经证实,当补充膳食多酚(姜黄素、白藜芦醇、橙皮苷、绿茶多酚、花青素、异甘草素和黑树莓花青素提取物)时,有益菌(产丁酸菌和益生菌)如乳酸杆菌和双歧杆菌的丰度增加,这可能抑制结直肠癌。这些发现表明,肠道微生物群可以被靶向并用于潜在地改善几种天然抗癌疗法的药代动力学反应。然而,进一步的机理研究对于阐明潜在的分子相互作用至关重要。

05
病毒与肠道微生物群的互作

1911年,人们在鸡身上首次发现了病毒和癌症之间的联系。此后发现了几种致癌病毒,包括:

  • 卡波西肉瘤疱疹病毒(引起卡波西肉瘤和原发性渗出性淋巴瘤);
  • 人嗜T淋巴细胞病毒1(引起成人T细胞白血病和淋巴瘤);
  • 艾普斯登-巴尔病毒(引起伯基特淋巴瘤、免疫抑制相关非霍奇金淋巴瘤、结外NK/T细胞淋巴瘤、霍奇金淋巴瘤和鼻咽癌);
  • 丙型肝炎病毒(引起肝细胞癌和非霍奇金淋巴瘤);
  • 乙型肝炎病毒(引起肝细胞癌);
  • 默克尔细胞多瘤病毒;
  • 人巨细胞病毒。

病毒促癌机制

病毒可以通过不同的机制促癌作用:

a) 直接通过诱导病毒癌蛋白或通过调节病毒DNA整合位点的宿主细胞蛋白质的表达

b) 间接通过抑制免疫系统或通过修饰宿主细胞基因组而不持续病毒DNA

致瘤病毒以单克隆形式位于肿瘤细胞内,而间接作用的病毒存在于肿瘤外部

病毒还可以引发氧化应激损害局部组织,引起慢性炎症

因此,病毒致癌的直接和间接机制不一定作为单独的途径发生,包括肝癌和胃癌在内的某些肿瘤依赖于这两种机制。例如,已经观察到乙型和丙型肝炎病毒需要两种机制来诱导人类肝细胞癌。

最近一项研究报告了全球分布在人类肠道微生物群中的142809个非冗余肠道病毒(噬菌体)基因组,证实了病毒在肠道微生物群中的重要性以及进一步研究的必要性,以认识到它们与共生微生物群的相互作用。

由于大多数感染了癌病毒的人从来不会发展成癌症,因此,微生物群被认为是影响病毒感染促进癌症发生能力增加或降低的关键因素。

尽管病毒在癌症和肠道微生物群中具有相关性,但大多数微生物群研究忽略了病毒,而更多地强调肠道菌群。这可能归因于使用当前宏基因组学和生物信息学平台发现新病毒的挑战,可以通过开发新的病毒鉴定方法来缓解。还应进一步强调实施针对宿主中病毒相互作用(病毒-病毒、病毒-宿主、病毒-肿瘤和病毒-肠道微生物群)的抗癌疗法。

06
结 语

肠道微生物群在预防感染和维持健康中发挥重要而复杂的作用。本文重在帮助理解肠道微生物群在癌症发生、癌症治疗和预后中的直接和间接作用方面。

当然,癌症中肠道微生物群的相关性和因果关系尚未得到充分理解,需要进一步的系统生物学、体内和临床研究来阐明所涉及的复杂分子途径。精确定义什么是“好的”和“坏的”肠道微生物的研究也是至关重要的。

未来的临床试验(随机、双盲、安慰剂对照设计)在研究肠道微生物群在癌症中的作用时,还应考虑到因年龄、性别、种族、文化和饮食以及地理位置而发生的变化。

总之,肠道微生物群在癌症的发展、治疗和临床结果中的相关性是转化研究的一个新兴领域,可以为癌症治疗开辟新的途径。

主要参考文献:

Baffy, G., 2020. Gut Microbiota and cancer of the host: colliding interests. Tumor Microenviron. 93–107.

Camarillo-Guerrero, L.F., et al., 2021. Massive expansion of human gut bacteriophage diversity. Cell 184 (4), 1098–1109 e9.

Tao, J., et al., 2020. Targeting gut microbiota with dietary components on cancer: effects and potential mechanisms of action. Crit. Rev. Food Sci. Nutr. 60 (6), 1025–1037.

Eslami-S, Z., et al., 2020. Microbiome and breast cancer: new role for an ancient population. Front. Oncol. 10, 120

Jaye Kayla,Li Chun Guang,Bhuyan Deep Jyoti,The complex interplay of gut microbiota with the five most common cancer types: From carcinogenesis to therapeutics to prognoses.[J] .Crit Rev Oncol Hematol, 2021, 165: 103429.

Vivarelli, S., et al., 2019. Gut microbiota and cancer: from pathogenesis to therapy. Cancers 11 (1), 38.

Qiu, Q., et al., 2021. Exploring the emerging role of the gut microbiota and tumor microenvironment in cancer immunotherapy. Front. Immunol. 11 (3399).

Meng, C., et al., 2018. Human gut microbiota and gastrointestinal cancer. Genomics Proteomics Bioinformatics 16 (1), 33–49.

Wong, S.H., Yu, J., 2019. Gut microbiota in colorectal cancer: mechanisms of action and clinical applications. Nat. Rev. Gastroenterol. Hepatol. 16 (11), 690–704.

认识肠道微生物及其与高血压的关系

谷禾健康

肠道的内部环境作为外部环境和宿主之间的接口,不断受到宿主的消费习惯的挑战。在管腔一侧,微生物能够附着并定植于该空间,而在宿主一侧,胃肠道充当体内免疫细胞的最大隔室。

从解剖学上讲,肠道由不同的部分组成。十二指肠,空肠和回肠代表小肠(SI),它比由结肠和直肠组成的大肠(LI)占据更多的物理空间。与人类相比,啮齿动物的盲肠增大,盲肠囊是连接小肠和大肠的盲端囊。在小鼠中,盲肠充当了共生微生物的大贮藏库,这些微生物参与了无法通过其他方式裂解的纤维的发酵。  盲肠在小鼠中的作用很重要,因为它是短链脂肪酸(SCFA)产生的主要途径,去除盲肠会导致胃肠道远端部位炎症的增加 在人类中,该部位微生物的体积远小于小鼠,但该隔室在兼性厌氧发酵中仍起着重要作用。

值得注意的是,共生微生物的组成和丰度在不同的胃肠道区域是不同的,例如,成年小肠中的微生物丰度低(<105个微生物/ mL),在结肠中则增加到1012。小肠和大肠具有独特的生理功能。 虽然十二指肠和空肠参与消化,营养吸收和运动过程,但大肠具有三个主要功能:吸收水和电解质,产生和吸收维生素以及形成和运输排泄的粪便。肠道不断暴露在食物颗粒和食物抗原,生理或机会性微生物群衍生的代谢产物以及其他免疫调节刺激。 胃肠道内的免疫细胞不仅对肠道内的抗原刺激作出反应,而且还显示出扩散到全身的远端器官,表明它们在全系统炎症稳态中的重要性。

微生物无处不在。 他们自我组织,在原本无法居住的生态环境中创建了复杂的生态系统,迅速适应了他们的环境。宿主依赖微生物组实现几种基本的共生功能,例如启动免疫系统和生产必需的维生素,以及从食物中获取能量。 肠道微生物群(定义为人类体内的微生物分类群)现在被认为是内分泌器官,可产生可在宿主中充当效应子的代谢产物,从而触发局部微环境或远端的靶器官系统(如心脏,肾脏,脉管系统)的反应和大脑。

肠腔内壁衬里是抵抗细菌感染的生理屏障,可以与毒素结合。此外,粘液是细菌的营养来源,因此会影响具有在粘液层中生存和扩展能力的微生物的定殖。Akkermansia muciniphila(AKK菌) Citrobacter rodentium (柠檬酸杆菌)能够降解粘蛋白,而后者在纤维缺乏期间会增殖。结肠粘液层完整性的丧失会增加宿主对病原体的敏感性。 在健康条件下,紧密的上皮层可防止病原微生物的入侵,而某些刺激物(如炎症性疾病或西餐)可导致肠道通透性和所谓的肠道渗漏综合征的发展。

随着高通量测序技术和代谢组学的建立以及高性能计算和人工智能的发展,人们逐渐破译生活方式饮食,药物治疗和肠道微生物组之间的相互关系。每个人肠道微生物组随时间推移相对稳定,并与周围环境平衡共存。但是诸如抗生素,肠道感染以及饮食或生活方式变化等扰动都会引起短暂或持续的变化

01 肠道免疫与高血压

在过去的几十年中,实验和临床研究表明,先天性和适应性免疫系统的细胞在高血压,靶器官损害和心血管疾病(CVD)的发病机理中起着关键作用。促炎性效应记忆T细胞和 T辅助细胞亚型T辅助细胞17(Th17;产生IL-17)和1型辅助细胞(产生IFN-γ)促进高血压和心血管靶器官损伤,而调节性T细胞(Tregs)通常产生大量的抗炎性IL-10可以减轻血管,心脏和肾脏的损害

此外,γδT细胞和髓样来源的抑制细胞在高血压的发病机理中也起着重要作用。 已经证明可以改变几种T细胞亚型激活状态的树突状细胞会增加盐反应性高血压,并提示其在菌群失调与血压(BP)之间的相互作用中发挥作用。

细菌可以直接或通过其产生的代谢产物与参与心血管的不同免疫细胞发生反应。例如,分段丝状细菌或Bifidobacterium adolescentis(青春双歧杆菌)可诱导Th17细胞,而Lactobacillus murinus(鼠乳杆菌)及其色氨酸代谢产物吲哚3乳酸则可抑制Th17细胞。 和SCFA丁酸盐是结肠中Treg的杰出诱导剂。

图  肠道微生物与宿主免疫相互作用

在宿主和微生物组方面均可发现肠道空间变异性。内腔和组织相关内容的相对水平在此处进行了说明,表明这两种功能的区域专业化。 已知肠道中的内腔含量在微生物负荷,微生物种群以及所产生的微生物产生的代谢产物方面有显着差异。尽管在整个胃肠道中的种群和区域规格都受到微生物的影响, 根据管腔内物质含量的变化,宿主免疫系统同样具有区域特异性。

这里显示的是免疫细胞,这些细胞在免疫稳态过程中表现出空间动态。  

02 肠道菌群与高血压

高血压的发病机制涉及多种因素,包括遗传、环境、激素、血液动力学和炎症等。越来越多的证据表明,肠道微生物群在高血压的发生和发病机制中起着重要作用。胃肠道是人体内最大的免疫细胞库,代表着环境和宿主的交汇点。因此,生活方式因素的形成和调节的微生物组,影响着高血压疾病形成和发生的风险。一个被广泛研究的例子是膳食纤维的消耗,能导致短链脂肪酸的产生,并有助于抗炎免疫细胞的扩张,从而防止高血压的进展。饮食干预如禁食也被证明通过微生物群影响高血压

图 血压与肠道菌群的关系

摄入的食物被肠道微生物群转化为小的代谢物。食物抗原、微生物产生的代谢物以及微生物本身都有助于免疫稳态。干扰宿主和微生物群之间的共生关系可通过免疫系统直接或间接导致血压变化和相关的心脏、血管或肾脏损害。

在过去的十年中,许多关于肠道微生物组和高血压的作用的证据已积累起来。多项针对人体的横断面研究表明,肠道微生物组与血压或高血压之间存在关联。高血压患者或血压较高的患者,α多样性降低,肥胖,高胰岛素血症和血脂异常也已观察到。 许多人类肠道微生物组研究报告了革兰氏阴性菌群较高的菌群之间的相关性,包括克雷伯菌,副细菌,脱硫弧菌和普氏菌,尽管并非所有研究都能确定这种模式。

来自HELIUS队列研究(城市环境中的健康生活)的研究表明,克雷伯菌属和链球菌属与血压呈正相关。此外,与高血压小鼠相比,从高血压人类供体接受粪菌移植的GF小鼠出现了与其供体相似的肠道菌群,以及8周后收缩压和舒张压升高。它从2个血压正常的供体那里接受了粪菌移植。

此外,还有几种有价值的啮齿动物高血压模型分析了肠道微生物组和血压的作用。自发性高血压大鼠存在失调,与正常血压WKY(Wistar-Kyoto)对照大鼠的微生物群存在显著差异。自发性高血压大鼠的肠道通透性和菌群失调也可能可通过使用降压药治疗大鼠来补救。

肠道微生物组与高血压之间的联系不是物种特异性的。 例如,在小鼠和人类中高盐处理都会减少乳酸杆菌属。  值得注意的是,未治疗的高血压患者中盐的适度降低能够降低血压并改善动脉顺应性。改善的临床结果伴随着8种循环SCFA的增加(包括2-甲基丁酸、丁酸、己酸、异戊酸和戊酸 )。此外,已证明益生菌乳酸菌处理可通过恢复吲哚3乳酸水平(抑制微生物色氨酸代谢)抑制Th17细胞并减轻盐敏感性高血压

已显示,Lactobacillus coryniformis可以改善血管功能和胰岛素敏感性。Lactobacillus(乳杆菌)治疗不仅可以改善心血管疾病,还可以改善实验性自身免疫性疾病的结局。 对益生菌对高血压的作用进行调查的随机对照试验的系统评价表明,如果以足够高的剂量使用至少8周,含乳酸杆菌的益生菌是有效的。

03 饮食方式影响肠道菌群

在人类中,肠道中的核心微生物群落是稳定的,并且仅在响应诸如肠道感染,整体旅行或药物治疗等主要扰动时才发生变化,从而导致肠道微生物组发生短暂或持续的变化。 肠道菌群不仅对某些饮食刺激的比例具有反应性,而且还可能在时空环境中做出反应。

目前,我们对特定饮食变化影响炎症,自身免疫和心血管疾病易感性的确切机制的理解还很模糊。 使用经过微生物组组成和功能训练的机器学习算法可提供令人兴奋的机会,以促进更好地预测对营养刺激的反应。

新兴的研究表明,饮食因素(高盐或高纤维)和生活方式干预盐分限制或热量限制)会影响微生物群落的结构和功能,这对免疫细胞活化和血压具有重要意义。西方人的生活方式通常涉及每天进食几顿主餐,并导致细菌多样性下降,某些食物喂养细菌的过度生长,以及随之而来的其他食物为底物的细菌的抑制。因此,菌群产生的代谢产物发生了转移,从而促进了炎症,最终可能导致肥胖症和动脉粥样硬化等疾病的发展。

从历史上看,餐食通常是新鲜烹制的,但如今,人们更经常食用通常含盐量更高加工食品。这种生活方式通常会导致较高的盐摄入量 而不是医学指南或专家的建议。为减少心脏代谢疾病的风险,通常应节食健康的饮食和运动。 大多数建议的重点是将富含饱和脂肪,糖,盐和卡路里但纤维含量低的西方饮食改变为更健康的地中海式阻止高血压饮食方法,以实现最佳营养,平衡和降低盐摄入量,尽管合规性是一个重大挑战。

04 微生物群衍生短链脂肪酸

SCFA是最典型的微生物群代谢产物之一,它是在不易消化的纤维发酵过程中产生的。 乙酸,丙酸和丁酸是3种高丰度的SCFA。 膳食纤维是由≥3种单体组成的膳食碳水化合物的统称,如非淀粉多糖,抗性淀粉,菊粉,果胶,β-葡聚糖和低聚糖。 这些纤维状化合物中的大多数都被拟杆菌、厚壁菌和放线菌门微生物消化。Bifidobacterium adolescentis, Eubacterium rectale, Eubacterium hallii, Faecalibacterium prausnitzii ,Ruminococcus bromii 通常在大肠中定居,并具有消化纤维以生产SCFA的

大肠的丙酸和丁酸水平比小肠高约4倍。SCFA在结肠中迅速吸收,而丁酸在很大程度上被用作向结肠上皮细胞提供能量的燃料。肠道SCFAs与门静脉血相比要高得多,而门静脉SCFAs较高,其次是肝脏血液,外周血最少,这表明SCFAs基本上被肝脏吸收。肝中丙酸的摄取是糖异生,脂肪生成的前体,以及蛋白质合成,而乙酸盐进入循环系统并被多个组织代谢,并且是胆固醇合成的底物。

SCFA可以与G蛋白偶联受体Gpr41(G蛋白偶联受体41),Gpr43( 小鼠中的G蛋白偶联受体43),Gpr109a(G蛋白偶联受体109 A),Olfr558(嗅觉受体558)和Olfr78(嗅觉受体78),也称为FFARs(游离脂肪酸受体)。FFARs存在于各种组织中,包括血管和肾脏,并参与调节丙酸、乙酸和丁酸的血管反应性。

Gpr41和Olfr78似乎都参与了血压的调节,尽管它们似乎促进了相反的作用。Olfr78激活后会诱导肾素分泌。与此相符的是,Gpr41敲除小鼠为高血压,有趣的是,醋酸盐以前曾用于血液透析缓冲液,但由于其降压作用而被大量废弃,这与SCFA在大多数情况下降低血压的观点一致。

纤维本身已被建议在一定程度上塑造微生物组成

关于血压,纤维的刺激作用增加了SCFA生产者Faecalibacterium prausnitziiEubacterium rectale以及乳杆菌属的丰度。一项具有里程碑意义的研究表明,与传统上纤维含量高的未加工饮食的非洲儿童相比,食用西方饮食的欧洲儿童SCFA水平显着降低FirmicutesBacteroidetes(F/B)比率高。自该研究以来,高F/B比率通常被用作肠道生态失调的替代指标,虽然也已知一些Firmicutes细菌产生有助于健康微生物组的微生物代谢物。

同样,实验工作通常依赖于F/B比作为疾病标志物。自发性高血压大鼠和易中风的自发性高血压大鼠显示F/B比率增加,这支持了这可以作为肠道生态失调的标志物的概念。

05 血压和短链脂肪酸

各种实验或临床研究已证明益生元高级纤维或后生SCFA治疗对血压的影响。研究报道丙酸在麻醉小鼠中诱导了急性的剂量依赖性降血压反应,这是由Gpr41介导的。益生元纤维不仅可以预防心血管疾病,而且这些营养素的缺乏可能是导致高血压和心血管疾病的危险因素。 还发现在低纤维饮食中添加益生元乙酸盐,丙酸盐或丁酸盐可改善血压并减少靶器官损害

此外,GF小鼠的粪菌移植表明,与抗性淀粉相比,饮食中的肠道微生物组缺乏抗性淀粉。高纤维情况不仅在血管紧张素II攻击后导致较高的血压,而且还导致了心脏和肾脏损害的发病机制。

德国一项研究测试了在有和没有动脉粥样硬化的高血压小鼠中口服丙酸治疗的特性。在这两种模型中,丙酸治疗均能降低全身和局部炎症反应,血压以及心脏损害。丙酸的治疗作用是由Treg细胞介导的。但是该研究指出丙酸的降血压作用不是急性的,而是随着时间的推移而发生,提示SCFA的抗炎特性间接促进了血管表型的改善。Th17细胞和Th17与Treg的平衡介导SCFA在血压调节中的作用。

关于SCFA在血压中的作用的人类研究非常少见。对微生物群组成和高血压的一些研究表明,SCFA的生产者为Ruminococcaceae spp,RothiaRoseburia spp. 与较低的血压相关。

在一项小型干预试验中,生物素丁酸酯(600 mg / d),益生素菊粉(10 g / d)以及这两者的组合均降低了代谢综合征患者的舒张压。在HELIUS队列中,将机器学习算法应用于微生物组数据可确定Roseburia spp解释对血压的最大绝对影响,甚至在调整混杂因素(包括使用药物)后,丰度也使收缩压降低4.1 mmHg

相反,血压较高的患者的粪便SCFA水平较高。这种正相关与以前的研究一致,但似乎与血压与胃肠道内微生物SCFA生产者之间的负相关性相矛盾。 但是,粪便中的SCFA含量不一定反映肠道内的SCFA含量,而是反映肠道中产生的SCFA含量而宿主无法吸收的

自发性高血压大鼠的实验工作支持了这一观点,表明实验性高血压会减少结肠丁酸对宿主的吸收。此外,AT1(血管紧张素II型1型)受体阻滞剂坎地沙坦(一种经常用于治疗高血压的药物) 已发现自发性高血压大鼠可以增加乳杆菌的丰度和粪便SCFA水平,改善肠道完整性并降低血压。

坎地沙坦治疗改善了重度肥胖受试者肠道中丁酸生成基因的缺失。总之,在HELIUS队列中,基于肠道微生物群组成的机器学习模型分别解释了收缩压和舒张压变异性的4.4%和4.3%。

纤维来源的SCFAs不仅影响血压,而且在其他心血管疾病和自身免疫中也起着关键作用。例如,用醋酸盐,丙酸盐或丁酸盐进行生物后处理可改善急性肾损伤。肾脏保护与局部和全身炎症反应减少,氧化性细胞应激和细胞凋亡。在多发性硬化症动物模型中,T细胞介导的中枢神经系统炎症性疾病丙酸盐增加了肠道和脾脏中抗炎Tregs的频率,这伴随着临床症状的改善。

高纤维摄入量和增加的SCFA浓度也被证明可以保护中枢神经系统。值得注意的是,多发性硬化症患者可以从丙酸盐治疗中获益。短期丙酸盐治疗导致显着和持续的富集功能正常的Tregs,同时1型辅助细胞和Th17细胞同时消耗。此外,补充SCFA或高纤维摄入对类风湿性关节炎(一种关节慢性炎症性疾病)的预后有积极影响。丙酸酯可增加骨量,并且发现SCFA通过增加Treg的数量刺激骨形成。

06 SCFA与免疫系统相互作用

从机制上讲,SCFA可以影响不同的免疫细胞群。 例如,发现丙酸和丁酸处理后中性粒细胞产生的炎性细胞因子较少。丁酸还可以减少氧化应激和吞噬能力。

SCFA通过减少树突状细胞成熟并抑制CD4和CD8T细胞增殖来调节炎症过程。与乙酸盐相反,丁酸盐或丙酸盐通过HDAC(组蛋白脱乙酰基酶)抑制作用影响骨髓前体细胞的树突状细胞成熟。此外,丁酸可促使M1巨噬细胞分泌更少的炎性细胞因子,增加抗炎细胞因子IL-10的分泌。

SCFAs还引起人单核细胞和T细胞中抗炎标记的表达。 例如,丁酸抑制金黄色葡萄球菌刺激的人单核细胞中IL-12的产生并增强IL-10的分泌。

最近,研究证明了丙酸会降低Th17细胞分化的速率。还发现丁酸盐还通过Gpr43增加1型辅助细胞分化细胞中IL-10的分泌,由SCFA驱动的IL-10诱导激活STAT3(信号转导子和转录激活子3)和mTOR(雷帕霉素的机械靶标),从而上调转录因子B淋巴细胞诱导的表达成熟蛋白。

此外,SCFA最深入研究的特性之一是它们在诱导抗炎Treg中的作用。丁酸和丙酸可增加鼠和人Treg的分化并增强其抑制能力。除丁酸外,丙酸(而非乙酸)通过HDAC诱导外周新生Treg细胞形成。值得注意的是,Clostridia梭菌)是共生微生物的主要类别,它介导了诱导性结肠Tregs,这与Clostridium butyricum酪酸梭状芽胞杆菌)诱导Tregs并减少Th17细胞从而减轻实验性自身免疫的症状的发现是一致的

07 禁食:新的血压控制策略

越来越多的证据表明,禁食是控制代谢性疾病和炎性疾病的有效工具。热量限制会影响微生物组的基本原理令人兴奋。 然而,仍然缺乏关于人类的可靠数据。

一项研究关于10天定期禁食对15名健康男性的粪便微生物群的影响。禁食导致LachnospiraceaeRuminococcaceae菌减少。一项小型的人体试验研究表明,斋月禁食影响了健康受试者的微生物组,丰富了一些SCFA生产者

在一项临床研究中,35名代谢综合征患者接受了5天的禁食,然后进行了3周的DASH饮食,也被译为「得舒饮食」,字面意思是防止高血压的饮食方法饮食。

对照组仅接受DASH饮食。禁食后接着DASH饮食降低血压,需要抗高血压药物和干预后3个月的体重,并改变影响SCFA生产者的肠道微生物群。队列对血压反应性的分层显示,空腹组中存在的免疫细胞变化在血压反应者中比在无反应者中更明显。

此外,禁食组的免疫移位与DASH组观察到的变化根本不同。观察到干预后禁食组中血压响应者特异性微生物组的变化(F.prausnitzii,拟杆菌和厚壁菌的富集;放线菌的消耗)。值得注意的是,丁酸盐生产者F.prausnitzii的富集甚至在禁食后3个月仍然存在。血压反应者和无反应者不仅对禁食反应不同,而且在基线时的丙酸合成能力不同。

将机器学习算法应用于基线免疫组或16S微生物组数据,预测模型通过重新分析调查禁食和血压影响队列(Mesnage数据集)证实,队列中显着的长期血压下降预计准确率约为70%,进一步支持这些发现可能是普遍化的想法。重要的是要强调,上述研究建立了微生物组和血压之间的关联,以应对禁食。禁食对许多患者来说是一项艰巨的挑战。能够操纵负责响应禁食的血压变化的机制将具有高临床效用。

禁食是热量限制的一种极端形式,在不同的文化和宗教习俗中起着重要的作用。 大量的热量限制不仅影响宿主的健康和生理,还降低了血压。生活方式和饮食引起的微生物群及其代谢产物的扰动可直接影响上皮细胞和免疫细胞的稳态。但是我们对营养,微生物群和微生物产物,免疫系统与宿主健康或疾病之间的联系仍处于‘婴儿期’。

08

小鼠与人类的差异障碍和转化

宿主-微生物组相互作用对人类健康和疾病显然有影响。模型系统经常用于基础和临床前高血压研究,以研究疾病的发病机制和进展。小鼠和大鼠模型非常有用,可以提供人类队列研究无法获得的信息。然而,在模型系统中研究人-宿主-微生物组相互作用存在许多障碍。

差 异 

01 胃肠生理学和形态学有许多方面,这在人类和啮齿动物物种之间是截然不同的。盲肠可能是人类和啮齿动物不同物种形成的最明显的例子,以及小鼠结肠粘液层的薄度。

02 小鼠和人类对炎症应激物的基因组反应是明显不同的,这可能与宿主特异性或微生物组特异性特征或两者的组合有关。

03 居住在胃肠道的微生物在小鼠和人类之间通常也是不同的。人和小鼠只有约15%的细菌谱系。虽然它们在属或门的水平上可能具有可比性,但物种特异性变化通常在高血压中具有临床重要性。

04 已知在每个微生物进化枝内,成员物种之间共享功能特性的程度例如,厚壁菌作为进化枝特别代谢不一致,当考虑到普遍使用F/B比率作为生态失调的标志物时,这再次提出了一个问题。

05 由于人类微生物组随时间的相对稳定性,实验室小鼠在这方面与人类不同。

06 小鼠和人体免疫组成和建立不同,人类免疫系统的强劲发展,需要接触各种真菌,病毒,微生物等,而GF小鼠与人或大鼠微生物的定殖不会诱导免疫成熟,只有小鼠特异性微生物能够诱导完全的免疫能力。

07 啮齿动物模型的嗜食性已被认为对微生物组具有独特的影响,这可以通过使用单一住房策略来避免,尽管这会诱发小鼠的应激反应,增加一个额外的混杂因素。

许多研究人员试图通过使用人类微生物定殖小鼠或野外捕获的小鼠来规避物种比较问题。这提出了两个重要的挑战,应该加以考虑。

一,存在宿主与其微生物之间相互作用的相互排斥的问题。事实上,这种相互作用的重要性在最近的一项研究中得到了证实,该研究表明GF小鼠与人或大鼠微生物的定殖不会诱导免疫成熟,只有小鼠特异性微生物能够诱导完全的免疫能力。有几点差异在小鼠和人体免疫组成之间注意到,这可能与免疫微生物组轴有关,例如,与小鼠(10%–25%)相比,外周血中性粒细胞的比例约为人类的两倍(50%–70%)。此外,CD8+T细胞在成年人非淋巴组织中的分布远高于无特定病原体的小鼠,这可能对细胞内感染或癌症的进展有影响。

二,尽管野外捕获的小鼠比实验室培养的无特定病原体的小鼠更准确地概括人体生理,可能与临床试验结果的一致性更高,对疾病的抵抗力更强。但是在科研研究和临床上应用大规模野外捕获老鼠的可能性会受到限制。

因此,在未来动物研究中,整个领域的程序标准化,例如使用同窝对照和可能影响微生物组的条件的稳健记录是必不可少的。要注意笼养,用品和饮食等因素可能会对结果产生重大影响。此外,采样时间,地点也尽量一致。

值得注意的是除了不同胃肠道区域的空间动态外,从粘膜和管腔空间取样的微生物组在小鼠和人类中是独特的。由于胃肠道是免疫细胞极化和微生物产生的代谢物吸收的作用部位,许多人质疑粪便取样是否正确研究宿主-微生物组界面的途径。粪便代表该系统的排泄产物。

然而,粪便取样是检查微生物组的最常见和实际适用的方法,特别是对于需要非侵入性方法的纵向研究。粪便的收集无疑有助于我们理解宿主-微生物组的相互作用。尽管怀疑局部产生的微生物副产物的相关性是重要的,特别是影响代谢物对循环的摄取并影响胃肠免疫细胞的活性,但是该隔室的测量是不发达的。在间质液中的作用部位鉴定微生物产生的化合物的能力可能提供对宿主-微生物组动力学的不同观点。

总之,尽管在解释微生物组数据时需要谨慎,但是,高血压中微生物组-宿主界面的研究是一个有前途且正在迅猛加速的研究领域。随着各种技术的进一步发展,针对微生物组领域的以药理学和辅助诊断方式为中心的方案可能会在不久的将来出现。

相关阅读:

大样本人群揭示肠道菌群与血压之间的关系

肠道微生物群在冠心病中的作用

解密|肠道菌群与健康长寿

最新研究速递 | 肠道真菌与健康和疾病有关

参考文献:

Schluter J, Peled JU, Taylor BP, Markey KA, Smith M, Taur Y, Niehus R, Staffas A, Dai A, Fontana E, et al.. The gut microbiota is associated with immune cell dynamics in humans.Nature. 2020; 588:303–307.

Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, et al.; Million Veteran Program. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.Nat Genet. 2018; 50:1412–1425.

Ellen G. Avery. CirculationResearch. The Gut Microbiome in Hypertension, Volume: 128, Issue: 7, Pages:934-950

Tierney BT, Yang Z, Luber JM, Beaudin M, Wibowo MC, Baek C, Mehlenbacher E, Patel CJ, Kostic AD. The landscape of genetic content in the gut and oral human microbiome.Cell Host Microbe. 2019; 26:283–295

Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, et al.; MetaHIT Consortium. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota.Nature. 2015; 528:262–266.

Verger EO, Armstrong P, Nielsen T, Chakaroun R, Aron-Wisnewsky J, Gøbel RJ, Schütz T, Delaere F, Gausseres N, Clément K, et al.; MetaCardis Consortium. Dietary assessment in the metacardis study: development and relative validity of an online food frequency questionnaire.J Acad Nutr Diet. 2017; 117:878–888. 

人体肠道菌群有助于治疗癌症,肠道菌群和免疫系统关系密切

系统性红斑狼疮的发生、症状及预防治疗

掠食性细菌作为活的抗生素对抗感染

谷禾健康

后抗生素时代,当人类对某细菌无可奈何时,何不让细菌对抗细菌?

抗生素已经彻底改变了现代医学,但其有效性受到多重耐药细菌传播的威胁,而目前尚无有效的治疗方法。抗生素耐药性(AMR)通常由不必要的抗生素使用引起,是一种严重的全球健康和经济威胁。

特别值得关注的是,抗生素生产线不断减少,开发中的抗生素数量有限(数量和多样性都有限),以满足当前和预期的患者需求。此外,科学和经济挑战促使许多大型全球制药公司停止其抗生素开发计划,使得对新的感染控制方法的需求更加迫切。因此迫切需要用于治疗革兰氏阴性感染的新疗法。

最近一种潜在的方法是使用活的掠食性细菌。由于蛭弧菌Bdellovibrio bacteriovorus广泛存在于自然界中,而目前也尚没有与蛭弧菌相关的疾病报告,科学家认为有可能围绕它们建立一种安全无害的生物治疗手段,去抗击病原菌的感染。但毕竟蛭弧菌本身也是一种细菌,人和动物的免疫系统如果发现它们,会怎样对待这些“友军”?会增强对蛭弧菌的抵抗力吗?

本文讨论了支持掠食性细菌替代抗生素的可行性的基础科学。

· 掠食细菌—蛭弧菌B. bacteriovorus

蛭弧菌 Bdellovibrio bacteriovorus是寄生于其他细菌(也可无寄主而生存)并能导致其裂解的一类细菌。它虽然比通常的细菌小,能通过细菌滤器,有类似噬菌体的作用,但它不是病毒,确确实实是一类能”吃掉”细菌的细菌。

1962年首次发现于菜豆叶烧病假单胞菌体中,随后从土壤、污水中都分离到了这种细菌。根据其基本特性,命名为Bdellovibrio bacteriovorus

其中,” Bdello”一词来自希腊字,是”水蛭”的意思,”vibrio”意为”弧菌”,而种名”bacteriovorus”是 “食细菌”的意思。“捕食”的对象正落在多出产致病菌的细菌类群——革兰氏阴性菌(如大肠杆菌、志贺氏菌等)中。

蛭弧菌的掠食生活方式

B. bacteriovorus通常会持续3-4 h消耗其革兰氏阴性细菌的猎物。这种掠夺性生命周期是一个复杂的过程,在分子水平上已经开始被理解。最初,B. bacteriovorus识别,附着并进入猎物细胞,对其进入口进行加固,穿越和重新密封。侵袭伴随着猎物细胞的圆形化,稳定的胶质细胞的形成以及猎物细胞的死亡。

同时,通过依次释放一组酶,B. bacteriovorus消化了猎物,并利用所形成的养分库长出了长丝。 单个细丝的同步分裂会产生奇数或偶数个子代细胞,每个子代细胞会产生鞭毛或滑行引擎(取决于条件),然后从死亡的猎物细胞中爆发并开始寻找新的猎物。 根据猎物细胞的大小,以及猎物细菌内部可用的养分,每个细胞平均释放4–6个B. bacteriovorus后代。 尽管被认为是专性的捕食性细菌,但B. bacteriovorus仍可转变为不依赖宿主的生活方式,可以在全培养基上的无菌生长。

为什么蛭弧菌是掠食性细菌?

B. bacteriovorus生命周期和基因组的一些特征决定其成为一种潜在的抗革兰氏阴性细菌病原体的治疗剂。在捕食生命周期中,被捕食细胞在短时间内(<30分钟)被杀死,因此,被捕食者必须快速表达防御手段,以抵抗捕食,这是尚未见到的。

与某些抗生素不同,某些抗生素可引起一连串事件,导致细菌自溶和炎症分子释放,B. bacteriovorus细菌捕食不会导致猎物的最初溶解,因为在溶解之前,猎物的内容物是从稳定的蛭质体结构内消耗的。此外,没有单一的受体识别和附着猎物。在猎物入侵后,在数量和功能多样性方面,具有潜在遗传冗余的猎物破坏酶都出现了上调,这表明简单的猎物对B. bacteriovorus捕食的抵抗不太可能发生。

蛭弧菌对宿主会有哪些影响

为了实现B. bacteriovorus的治疗潜力,必须在生物学相关系统中充分表征其对革兰氏阴性病原体的捕食性。 这种表征还必须同时解决诸如宿主反应,毒性,炎症,组织损伤或伤口愈合抑制等问题。

其中一些问题已通过体外细胞培养和体内动物模型解决,评估了掠食性细菌对免疫系统各个组成部分以及整个宿主的影响。 许多人类细胞系,包括角膜-上皮细胞,血液单核细胞,巨噬细胞,肾上皮细胞,肝上皮细胞和脾单核细胞,已经暴露于不同的捕食性细菌中,测定了不同暴露的时间范围、持续时间(2至24小时),下促炎和抗炎细胞因子水平。

已知可响应细菌外膜脂多糖(LPS)而被刺激的细胞因子,是宿主抵抗病原体所必需的。 这些研究表明,尽管B. bacteriovorus在免疫反应方面并不沉默,但暴露后产生的炎性细胞因子水平可忽略不计或很低。 B. bacteriovorus不像同时检测到革兰氏阴性病原体那样具有免疫刺激性,这可能部分是由于其独特的脂质A结构以及它拥有带鞘的鞭毛

额外的细胞活力成像,细胞毒性测量以及暴露于掠食性细菌后对动物和人类培养细胞形态变化的评估初步表明,B. bacteriovorus对人细胞无毒,尽管还需要进行更多的研究。  Raghunathan及其同事使用人类巨噬细胞系(U937细胞)研大量掠食性细菌能够在细胞内存活长达24小时,从而确定了一段持久性和潜力捕食细胞内病原体的能力。

另外,通过在药理学抑制剂存在下进行吸收实验,证明了宿主肌动蛋白细胞骨架的作用及其在B. bacteriovorus吸收中的重排。B. bacteriovorus最终通过吞噬体途径被转运,这是由于它们靶向酸性液泡。 鼠巨噬细胞系中的类似观察结果支持了这一点,并且两者都是考虑给予B. bacteriovorus作为治疗剂的重要观察结果。 这些研究说明了B. bacteriovorus靶向细胞内病原体的潜力,而许多抗生素和其他生物控制剂(例如噬菌体)可能无法利用这些细菌。 尽管后一点正在积极研究中。 这些体外细胞实验以及下面描述的动物模型,是研究功效,缺乏毒性和潜在捕食者生物利用度的重要步骤。

早期体内宿主反应集中于B. bacteriovorus在吸热和放热脊椎动物肠道中的生存能力。研究了在鲶鱼(点状黄疸)、豹蛙(林蛙)、小鼠和兔子的肠道中实验投喂的B. bacteriovorus菌株MS7的生存能力和持久性,表明在接种后24-48小时内,B. bacteriovorus几乎没有恢复。通过饮用水给小鼠提供的3天B. bacteriovorus不能从肠道中完全恢复。同样,在注射后24小时左右,无论是使用无菌培养物,还是同时注射B. bacteriovorus,都没有或很少从兔回肠环中发现B. bacteriovorus。

B. bacteriovorus对动物没有致病性。这些研究已经扩展到包括评估宿主发病率、组织病理学、促炎和抗炎细胞因子水平、体内捕食性细菌传播以及长期评估大鼠、小鼠斑马鱼幼虫模型的一般健康状况。总的来说,在一系列动物模型中以及通过多种给药途径在体内给药已经证明,它们不会损害这些动物的健康

蛭弧菌捕食范围:体外和体内捕食

事实证明,B. bacteriovorus对多种猎物具有体外功效,包括与肠道,口腔,伤口和眼部感染有关的细菌和生物制药。B. bacteriovorus成功地减少了实验室缓冲液和人血清中的病原体数量和生物膜中的猎物,而生物膜通常是抗生素治疗的重大阻碍。 重要的是,已经显示出许多具有多重耐药性的人类临床分离株容易被B. bacteriovorus捕食。 该清单包括许多需要新治疗的E(S)KAPE病原体,包括表达mcr-1的革兰氏阴性大肠菌素抗性分离株。 体外研究还调查了成功捕食所需的B. bacteriovorus与猎物的比率; 如果抗生素不能治疗感染,则作为将来的体内实验和临床的重要考虑因素。

尽管实验性体外系统,尤其是实验室缓冲液或富含生长培养基的环境可能显示出掠食性功效,但它们不足以替代体内治疗的复杂性,而体内治疗必须考虑到宿主的免疫反应以及病原体的生存策略。 动物感染模型在评估B. bacteriovorus在体内捕食革兰氏阴性细菌的能力以及解决此类宿主对宿主的任何反应(以及由此产生的安全性)方面都发挥了作用,越来越多的证据表明,至少在动物中,以及将来将这种掠食性细菌用于治疗应用的可行性,将其扩展到人类。

一项对感染肠炎沙门氏菌p125109的鸡群实验表明。 在B. bacteriovorus处理后的三天内,与对照动物相比,经细菌性芽孢杆菌处理的禽类的盲肠中沙门氏菌数量显着降低。 此外,与对照动物的许多盲肠相比,经B. bacteriovorus处理的禽中盲肠的外观是正常的。

进一步的重要研究表明B. bacteriovorus能成功地在体内捕食病原体。 使用大鼠模型,Shatzkes及其同事证实B. bacteriovorus可以治疗肺炎克雷伯菌感染的大鼠,显示与对照组相比,细菌性芽孢杆菌治疗的动物的病原体负担明显减少。 另外一项通过向大鼠尾静脉注射引发疾病的败血病模型。 B. bacteriovorus不能显着减少感染。 这是首次将B. bacteriovorus直接施用到血流中,并且是评估掠食性细菌清除血流感染能力的重要一步。

斑马鱼幼虫的物理特征以及与人类的广泛基因组同源性包括良好的理解,充分发展的免疫系统和光学透明的性质,非常适合于创新的活荧光显微镜检查。

诺丁汉大学伊丽莎白·肖克特和伦敦帝国理工学院的塞尔吉·莫斯托维小组用模式生物斑马鱼做了研究。

接下来,研究者放心地开始了“以菌治菌”环节。他们用一种叫福氏志贺氏菌(Shigella flexneri)的病原菌来感染斑马鱼——所选取的菌株同时对链霉素与羧苄青霉素具有耐药性。他们向斑马鱼的后脑先接种了致死剂量的志贺氏菌,再注射蛭弧菌。由于这两种细菌被带上了不同颜色的荧光蛋白标记,研究者得以观察它们的数量和分布变化情况。他们发现,相比于对照组,注射了蛭弧菌的斑马鱼后脑内志贺氏菌大量减少,被感染的斑马鱼在72小时后的存活率也更高。在更高分辨率的显微观察中,研究人员也找到了蛭弧菌在斑马鱼体内和体外都能够侵染并杀死志贺氏菌的证据。

研究者认为,在抗击志贺氏菌感染这件事上,蛭弧菌和斑马鱼免疫系统其实某程度上达成了巧妙的“配合”:蛭弧菌对志贺氏菌的“捕食”开始得非常迅速,能够在感染初期控制住志贺氏菌繁殖的势头,帮免疫系统减轻应对的压力。而等到大批白细胞赶来时,蛭弧菌已经饱餐过一顿,收拾残余志贺氏菌的工作,免疫系统自己也能完成好。

1897年,日本细菌学家志贺洁发现了志贺氏菌(Shigella).

作为杆菌性痢疾的祸首,这类细菌每年导致约1.63亿严重痢疾病例,并夺走超过100万人的生命,可谓是最臭名昭著的病原菌之一。志贺氏菌是一类革兰氏阴性的杆状细菌,可以制造出能杀死细胞的志贺毒素。

在最近的一项研究中,Russo及其同事证明了B. bacteriovorus 可用于显着减少实验感染小鼠肺部的鼠疫杆菌(yersinia pestis)数量。 但是并非所有的体内B. bacteriovorus 施用都已成功地减少了病原体数量。 尽管在先前的研究中使用组织培养模型在体外取得了令人鼓舞的结果,但给予B. bacteriovorus 治疗经牛莫拉氏菌(Moraxella bovis )感染的牛犊是牛角膜结膜炎的病原体,未能导致角膜溃疡形成的显着改善。

从上面的大量研究可以看出,越来越多的证据表明Bdellovibrio sp持续非病原性且足够长以具有治疗活性,对免疫微生物群的不良影响极小,并且不成为正常宿主微生物群的一部分。 无论是成功的还是不成功的体内试验,如本文所述,对于评估哪些适应症,给药途径(局部给药还是静脉给药)和感染部位都至关重要,在的掠食性细菌给药将最有效地对其进行评估。

了解蛭弧菌捕食与宿主反应之间的关系

治疗后动物和人类感染的康复结果取决于多种因素的相互作用,例如患者的免疫系统和总体健康状况包括肠道菌群,病原体的性质以及治疗的类型和提供方式。 在将体外和体内细菌捕食视为宿主反应的独立实体时,未捕获革兰氏阴性病原体的细菌捕食与宿主反应之间的相互作用和协同作用。

该模型表明,B. bacteriovorus在非致病性条件下持续了足够长的时间,可以在实验性感染期间有效地捕食志贺氏菌。 在这项工作中,用显微镜观察了与宿主免疫系统细胞的相互作用。 此外,这项研究发现B. bacteriovorus的最大治疗益处来自细菌捕食和宿主免疫系统的协同作用。 给药后,掠食性细菌种群最终会通过与宿主免疫系统的相互作用而清除,实际上这种清除可能对(自我)限制治疗有益。

与其他微生物抗菌方法的比较

在考虑治疗掠食性细菌感染时,研究人员可以向噬菌体研究和临床界寻求动力,以应对从体外到临床环境的挑战。 尽管在一些国家已经使用了多年,但最近的一些引人注目的病例已证明在临床环境中成功施用了噬菌体鸡尾酒来治疗耐药性感染。

从表面上看,B. bacteriovorus和噬菌体具有许多潜在的生物防治剂特性。 它们都表现出掠食性或寄生性生命周期,它们是自我复制和自我限制的,仅在存在易感宿主或猎物时才持续存在,并且在裂解性噬菌体的情况下,两者都具有广泛相似的生命周期。 当将它们引入动物和人类体内时,它们似乎也几乎没有副作用。 但是,两者之间存在一些显着差异,这可能会限制和区别它们在某些适应症中的使用。

首先,与噬菌体相比,B. bacteriovorus无疑是“活的”并且具有代谢活性,噬菌体是惰性颗粒,直到它们通过特定受体与宿主建立接触。 这可能对B. bacteriovorus既有好处,也有缺点,因为它可能使用需要能量的过程,例如噬菌体无法获得的主动“定位”猎物。 但是,如果未发现猎物,则B. bacteriovorus不能进入休眠状态,并且会死亡。 相反,噬菌体可以在不消耗任何能量的情况下保持“生存”许多年,但无法主动寻找宿主。 他们必须依靠随机概率遇到宿主,并通过比B. bacteriovorus更快速地复制并且具有更大的爆发来补偿这种相对的低效率。

先前对伤寒沙门氏菌大肠杆菌的研究表明,噬菌体并不总是消除其宿主的全部种群。B. bacteriovorus和噬菌体的复制都可能受到最低宿主/猎物阈值的限制,在此阈值之下,它们无法无限期地维持其种群。 然而,这可能在治疗上是有益的,因为通常不需要消灭病原体即可显着减轻或完全缓解疾病症状。

单个噬菌体的宿主范围通常限于一个菌种或一个或两个密切相关的菌种内的许多菌株,这使得其种群的维持比B. bacteriovorus更具挑战性。需要考虑宿主特异性和细菌对噬菌体耐药性的快速获得;与之相比,广泛的细菌捕食范围和缺乏掠食性细菌的简单抗药性机制使其具有优势。 有趣的是,最近有科学金工作强调了将掠食性细菌与噬菌体一起使用的组合能力。 噬菌体敏感性和Bdellovibrio捕食的独立动力学使得在某些条件下更大程度地杀死了大肠杆菌

当被引入到吸热动物体内时,B. bacteriovorus和噬菌体都将面临挑战性条件。 与细菌噬菌杆菌相比,噬菌体在遇到苛刻的物理和化学条件(例如更高的温度和极端的pH值)时更有可能具有弹性。噬菌体可以穿过血脑屏障,但如果不进行故意修饰,可能无法在细胞内持续存在。 确实,以前的研究表明,当它们进入血液时,它们可以被网状内皮系统迅速隔离。 至少在某些情况下,可以通过在哺乳动物中连续传播噬菌体来重新分离能够在哺乳动物中长时间循环的噬菌体来应对这一问题。 众所周知,噬菌体能够通过普遍的和专门的转导在细菌之间转移DNA,这是一种不适用于B. bacteriovorus的风险。可以通过仔细筛选噬菌体基因组以除去具有整合能力的特定噬菌体和其他可能带有编码细菌毒素或其他毒力因子的基因的噬菌体,来减轻这种风险。

Bdellovibrio和噬菌体的治疗应用需要两者的工业生产。 每种噬菌体都面临着不同的挑战,因为噬菌体的产生数量更大且速度更快,但是它们的产生可能需要大量培养病原性宿主细菌。 相反,可以使用非病原性的Bdellovibrio宿主,例如大肠杆菌和恶臭假单胞菌,但是需要将它们与最终的治疗制剂有效地分开。 另外,维持Bdellovibrio制剂的生存力可能比噬菌体更具挑战性。 有趣的是,从生产这些生物防治剂的治疗制剂的技术挑战中可以学到什么教训,以及确定将它们一起用作治疗剂是否可以实现任何协同作用。

蛭弧菌对宿主反应的影响将基础科学转化为应用,以应对AMR的挑战

最近从事DARPA病原体捕食计划的一些研究人员,已经改变了研究领域,并证明了使用活的全食性B. bacteriovorus在体外和体内杀死广泛的抗药性(AMR)临床病原体的潜力。体内进一步支持其作为治疗手段的承诺。要被视为可靠的治疗选择,需要来自未来的人类试验的有力证据表明,这种治疗有效,至少在特定情况下,对患者没有(或最小)负面影响,并且与现有治疗相比具有一定优势

研究人员需要证明其临床价值并衡量治疗效果,以说明对患者的益处。但现在是否拥有所需的所有信息? 如果没有,还需要解决什么?

根据体内动物模型,研究人员需要在人类身上进行安全性和有效性试验。动物模型是至关重要的,但也有局限性,迄今为止的协议管理捕食性细菌之前,或不久之后,病原体的兴趣。需要对更确定的感染进行调查,并支持确定捕食性细菌的剂量范围(以及可能的病原体数量)、剂量数量和治疗感染所需的时间表。也许令人惊讶的是,在感染和康复期间,对人体不同部位病原体实际数量的了解仍然是一个非常发展的领域。大规模捕食者生长和纯化方法的发展目前受到限制,需要扩大更大规模的安全性和有效性试验。感染治疗是时间关键,因此评估稳定性,长期储存和提供一个活的,掠夺性的积极治疗需要进一步的工作。

结 语

总之,用另一种细菌来治疗细菌感染似乎是反直觉的,离使用它们作为药物改善患者的生存状况还有一段时间。虽然蛭弧菌对其他病原的杀伤能力还有待验证,而且考虑到人体内大量必要有益的共生菌群,如何避免大量蛭弧菌“伤及无辜”也是一个值得关注的问题。需要进一步的工作来评估捕食性细菌从给药部位的传播,并确定暴露对宿主或其驻留生态位微生物群的长期影响。

但是我们相信,未来以细菌对抗细菌治疗某些感染会是一条后抗生素时代新的机遇。

相关阅读:

细菌的天敌抗生素,如何利用这把救命的双刃剑?

细菌大盘点 | 大肠埃希氏菌、血链球菌、李斯特菌

细菌大盘点(二) | 葡萄球菌、沙门氏菌、弯曲杆菌

参考文献:

Laloux G. Shedding light on the cell biology of the predatory bacterium Bdellovibrio bacteriovorus . Front Microbiol 2020; 10:3136

Harding CJ, Huwiler SG, Somers H, Lambert C, Ray LJ et al. A lysozyme with altered substrate specificity facilitates prey cell exit by the periplasmic predator Bdellovibrio bacteriovorus. Nat Commun 2020; 11:4817

Ardal C, Balasegaram M, Laxminarayan R, McAdams D, Outterson K et al. Antibiotic development – economic, regulatory and societal challenges. Nat Rev Microbiol. 2019

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18:318–327

Atterbury Robert J,Tyson Jess,Predatory bacteria as living antibiotics – where are we now?[J] .Microbiology (Reading), 2021, 167.

Laxminarayan R, Van Boeckel T, Frost I, Kariuki S, Khan EA et al. The Lancet infectious diseases Commission on antimicrobial resistance: 6 years later. Lancet Infect Dis 2020; 20:e51–e60

最新研究速递 | 肠道真菌与健康和疾病有关

谷禾健康

我们知道,肠道菌群在调节肠道生理中起着不可或缺的作用。最新研究发现,肠道真菌与宿主的健康和疾病有关

细菌和真菌对免疫系统的作用非常相似肠道细菌可以影响肠道真菌,如在某些情况下,大肠杆菌的超级感染会增强白色念珠菌的毒力。

肠道真菌不仅会影响肠道功能,还会影响其他重要肠外器官的生理功能,例如肝,肺和脑。

本文阐述了肠道真菌在肠道,肺,肝,肾,胰腺和脑功能调节中的重要性,并提出了将肠道真菌应用于减轻/治疗人类疾病的可能性。

01 肠道真菌的定植和组成

最近,真菌在胎粪中被发现,表明肠道真菌的定植从出生时就开始了。(然而,由于缺乏直接证据和胎粪生物量低,很难忽视环境因素的影响。为了得到更有说服力的结论,迫切需要能够模拟整个妊娠过程的新模型和先进的检测技术。)

在新生儿肠道中,真菌的α多样性从出生到2岁一直持续增加,而β多样性在10天的婴儿中达到峰值。

在10日至3个月大的婴儿中,汉逊德巴利酵母Debaryomyces hansenii胶红酵母Rhodotorula mucilaginosa是最丰富的真菌,而在1-2年后,肠道真菌群的组成发生了变化,其中酿酒酵母S. cerevisiae成为最丰富的真菌,而念珠菌属Candida spp.开始减少。

此外,在10天至3个月的婴儿中未检出青霉菌,但在1- 2岁的婴儿中可检出。

囊泡菌门Cystofilobasidium sp.子囊菌门Ascomycota sp.单枝菌门Monographella sp. 仅在1- 2岁中检测到。之后,子囊菌门、接合菌门、担子菌门主导健康肠道真菌群。

念珠菌是人类和其他几种动物胃肠道和其他粘膜表面最普遍和丰富的真菌。

总的来说,肠道真菌的定殖和组成的研究还处于起步阶段。

02 影响肠道真菌组成的因素

肠道真菌在新生儿出生后立即在肠道内定居,其组成可能受到分娩方式、出生胎龄、婴儿喂养方式、母亲饮食、环境和宿主遗传等因素的影响。

影响肠道真菌群组成的因素

Wu X et al., Microbiome. 2021

分娩方式和孕妇的益生菌暴露

出生时健康的肠道菌群定植受分娩方式(自然分娩或剖宫产)的影响。自然分娩的婴儿更有可能从产妇生殖道获得真菌(例如白色念珠菌),而剖宫产后出生的婴儿更有可能从产妇的皮肤和周围环境获得真菌。

除了分娩方式外,胎龄母亲的益生菌暴露量还决定了婴儿肠道菌群的组成。然而,在298对母亲-后代受试者中,婴儿抗生素或母体益生菌的递送和/或使用类型对肠道真菌的操作分类单位(OTUs)的丰度影响很小。这种差异可能源于所分析的样本,因为他们选择的都是参与同一项研究的母亲-子女对。

饮食营养

饮食是决定肠道真菌组成的决定因素之一。甚至有人提出,口腔和饮食中的真菌来源可以解释健康受试者粪便中存在的所有真菌,这表明饮食对肠道真菌组成有很大的影响。

有趣的是,由于西方饮食的脂肪和碳水化合物含量高,具有引发代谢综合症的高风险,并且已经显示出它可以诱导人肠道真菌结构的改变。例如,高脂肪饮食会降低小鼠肠道中S. cerevisiae的丰度。

猪体内梅奇酵母属Metschnikowia、革菌属Tomentella、Loreleia的丰度与短链脂肪酸相关;短链脂肪酸与人体内曲霉属真菌Aspergillus的肠道丰度呈负相关

此外,富含碳水化合物的饮食与肠道念珠菌的丰度呈正相关。

同样,在健康志愿者中,高蛋白饮食产甲烷短杆菌和念珠菌的丰度呈负相关

有趣的是,酿酒酵母S. cerevisiae具有氨基酸转运蛋白,某些氨基酸如γ-氨基丁酸(GABA)瓜氨酸,是酿酒酵母的重要氮源;因此,饮食中的氨基酸可能对肠道真菌的组成有深远的影响。

此外,亮氨酸代谢副产物2-羟基异己酸在72 mg/mL时具有较低的抑菌活性,可抑制假丝酵母菌丝的形成。

人类饮食中的特定化学物质,例如开心果和杏仁的植物化学物质,也与青霉菌和念珠菌属的含量呈负相关

总之,检查饮食控制是否有可能减轻真菌感染是很重要的。如果该策略有效,那么对免疫抑制患者预防和控制继发感染可能特别有益。

其他因素

环境还能够触发肠道真菌的变化。

有趣的是,从杰克逊实验室的小鼠和服务部(JAX)获得的C57BL / 6J小鼠和在威尔·康奈尔医学(WCM-CE)处繁殖的小鼠的肠道真菌组成不同,分别以担子菌纲子囊菌为主。而且,当SPF小鼠“野化”为野生状态时,它们的肠道真菌会显着增加。

季节是改变肠道真菌的另一个因素,尤其是真菌的α多样性

性别代谢紊乱(富营养,超重和肥胖)也会改变肠道真菌。例如,西藏猕猴的雌性与雄性有不同的菌群。

在肥胖的人类个体中观察到酵母数量增加,而富营养和超重的人类个体具有更多的丝状真菌。肠道念珠菌属仅在哺乳动物物种中发现。因此,肠道真菌可能在某种程度上因物种或基因型而异。

总体而言,肠道真菌受到内部和外部因素的影响。

这些因素不是独立的

也就是说,季节和环境与哺乳动物,特别是野生动物赖以生存的食物有关。环境也影响宿主接触潜在的致病或非致病微生物。

此外,不同物种有不同的遗传背景,更不用说它们的食物。

随着婴儿的进一步成长,他们将接受多种饮食,并暴露于复杂的环境和刺激下,例如yao物,性激素等。因此,必须系统地、相互关联地认识这些因素,不应过分强调每一个因素的单独作用

03 肠道真菌与宿主免疫的相互作用

与肠道细菌相似,肠道真菌高度多效性,调节宿主的各种生理功能。

目前对肠道真菌群对免疫反应途径和细胞网络的影响的认识:

肠道真菌对肠道免疫的影响

Wu X et al., Microbiome. 2021

(a) 当由曲霉属真菌Aspergillus根霉属菌Rhizopus触发时,DCs促进Th17反应

(b) CX3CR1+巨噬细胞和中性粒细胞通过诱导Th17反应,产生高水平的IL-17和IL-22,有利于早期念珠菌控制。

(c) 同样,入侵的白色念珠菌曲霉菌触发中性粒细胞MDSCs和IL-1β的产生

(d)烟曲霉菌(A.fumigatus)记忆T细胞显示交叉反应白色念珠菌,因为他们有一个共享的TCR序列

(e) 同样,白色念珠菌活性T细胞通过产生IL-17与其他肠道真菌发生交叉反应

(f) 来自B细胞的抗酿酒酵母菌抗体ASCA免疫球蛋白G(由白色念珠菌或酿酒酵母刺激)具有抗肠道真菌的作用。

除上述真菌成分和真菌代谢物,提取物和分泌物外,次生代谢物还负责影响宿主体内稳态。

表2 真菌衍生的化合物及其功能

Wu X et al., Microbiome. 2021

产生次级代谢物的各种基因簇表明,真菌通过复杂的途径产生次级代谢物,具有巨大的结构和功能多样性。

值得注意的是,真菌次生代谢产物在真菌疾病和合成生物学方面具有无限的潜力;它们也是抗生素和免疫抑制yao物的大量来源,因为它们具有靶向或干扰真菌和/或细菌的能力。

然而,真菌的一些次生代谢产物,包括黄曲霉毒素和柠檬酸,具有较强的肝毒性和/或肾毒性

04 肠道真菌和肠道外疾病

小鼠长期抗真菌治疗后肠道真菌的紊乱使结肠炎恶化,甚至使过敏性气道疾病恶化,肠道真菌组成失衡可能与肠道和肠外疾病有关。

肠内和肠外疾病与肠道真菌群的关系

Wu X et al., Microbiome. 2021

肠道真菌和肠道疾病

具体来说,健康的肠道真菌主要由几种丰富的共生真菌组成。肠道真菌可能是条件致病菌的贮存库。

炎症性肠病 IBD

炎症性肠病(IBD),包括溃疡性疾病(UC)和克罗恩氏病(CD),与肠道真菌失调有关。

与健康儿童相比,IBD儿童的粪便样本显示出较低的真菌多样性,而IBD样本(72.9%)的念珠菌属丰富度比健康对照组(32.9%)高两倍。

这些结果与溃疡性疾病和克罗恩氏病相关的人类白念珠菌肠道定植的报道一致。此外,白色念珠菌在IBD发作时比缓解时增加。

限制性马拉色菌是一种常见的皮肤常驻真菌,它与克罗恩病的发病机制有关,特别是在CARD9 (S12N)中携带IBD连锁多态性的患者中,限制性马拉色菌的定植加剧了DSS诱导的小鼠结肠炎的严重程度。

这项研究表明,除了白色念珠菌,其他鉴定出的真菌也可能参与IBD的发展,遗传因素,特别是CARD9多态性,在定义定植的炎症反应中很重要。

此外,克罗恩病样本中真菌与细菌多样性的比例增加,这表明克罗恩病患者的肠道环境可能更适合真菌的定植

总的来说,IBD过程中肠道环境的改变与各种真菌和细菌的变化有关,并诱导真菌-细菌关系的改变

然而,宿主IBD的最终命运不仅与影响肠道稳态的细菌和/或真菌群落有关,宿主免疫也起着决定性作用

更重要的是,上述结果聚焦于克罗恩病和/或溃疡性疾病和克罗恩病混合患者或实验模型中的真菌群特征;溃疡性疾病患者肠道真菌群落的变化需要进一步的独立研究或实验模型。

有趣的是,酿酒酵母是有益菌,有能力改善肠胃炎,减轻CEACAM6(癌胚抗原相关细胞粘附分子6)表达小鼠的粘附性侵袭性大肠杆菌(AIEC)诱导的结肠炎缓解人类受试者肠易激综合征(IBS)的腹痛

因此,肠道真菌的调节可能是治疗IBD的一个潜在靶点。肠道共生真菌与IBD之间的因果关系有待进一步研究。此外,目前还不清楚肠道真菌是否通过与肠道细菌相互作用影响IBD的进展。

乳糜泻(CeD)

已发现乳糜泻(CeD)与肠道真菌群紊乱有关。乳糜泻的典型标志是可逆的小肠黏膜萎缩,临床症状不典型往往导致漏诊,疾病严重程度增加。

白色念珠菌可能是乳糜泻的潜在原因之一

念珠菌与乳糜泻的发病机制有关。具体来说,白念珠菌乳糜泻之间的关联始于白色念珠菌毒力因子-菌丝壁蛋白1 (HWP1)的假设,它与T细胞抗原表位中乳糜泻相关的-α和γ醇溶蛋白相同或高度同源,并作为谷氨酰胺转胺酶(TG)底物,协助自身反应性抗体的产生。

随后,通过抗原抗体反应和微芯片分析,乳糜泻组和白色念珠菌感染(CI)组均表达高水平的抗HWP1、抗麦胶蛋白抗体和抗转谷氨酰胺酶(anti-TG) IgA抗体,乳糜泻组对HMP1的反应较高。然而,需要更多的证据来确定白色念珠菌参与乳糜泻。

其他

结肠癌与肠道真菌的失调有关,特别是在CARD9−/−小鼠中热带念珠菌的显著增加

很少有研究证明肠易激综合征(IBS)和肠道真菌之间的联系。IBS的症状(如腹泻)与接受抗生素治疗或由念珠菌产物引发的念珠菌种类过度生长有关。然而,还需要更多的研究来揭示肠道真菌与这些肠道疾病之间的因果关系。

如上所述,黏膜免疫系统可能介导肠道真菌对肠道疾病发病机制的影响。特别是肠上皮细胞、其常驻免疫细胞、肠系膜淋巴系统、细胞因子、抗体以及上述真菌代谢产物,都可能在肠道疾病的发病机制中发挥重要作用。

肠脑轴和肠道真菌

肠道微生物-脑轴的证据主要包括以下几个方面:

(1) 肠道微生物通过迷走神经、细胞因子及其代谢产物色氨酸、GABA乙酰胆碱影响大脑

(2) 下丘脑-垂体-肾上腺(HPA)轴在肠道微生物群与大脑的交流中起核心作用

(3) 肠道-脑-微生物轴为抑郁症、自闭症帕金森病提供了新的治疗靶点

肠道真菌在肠道-脑轴中的潜在机制

Wu X et al., Microbiome. 2021

(a) 肠道真菌以性别依赖的方式调节犬尿氨酸通路基因海马区相关miRNAs的表达。

(b) 多发性硬化患者(MS)外周血和脑脊液中检测到念珠菌

(c) 精神分裂症患者(SC)的肠道真菌alpha多样性发生改变,毛壳菌属Chaetomium的丰度更高

(d) 肠道补充乳酒假丝酵母 Candida kefyr有助于缓解实验性自身免疫性脑脊髓炎(EAE)。

念珠菌可能在介导肠道真菌-大脑相互作用中发挥重要作用。因此,肠道真菌可能在精神疾病中占有重要地位。

肠肺轴和肠道真菌

哮喘是一种典型的慢性过敏性气道疾病(AAD),被视为与Th2相关的疾病。

根据嗜酸性粒细胞和中性粒细胞的比例,哮喘已分为不同的炎症亚型。除Th2细胞外,Th1、Th9、Th17、NKT、CD8+ T、Treg细胞也参与了不同类型的哮喘。

众所周知,真菌细胞壁的许多成分是哮喘的过敏原,因此,真菌疾病与哮喘有关并不奇怪。

肠-肺轴上肠道真菌的潜在机制

Wu X et al., Microbiome. 2021

箭头表示激活,水平线表示抑制

(a) 氟康唑引起的肠道真菌失调足以恶化屋尘螨(HDM)所致的呼吸道变态反应(AAD),但对无肠道菌群的小鼠无影响。氟康唑诱导的肠道真菌失调刺激肠道CX3CR+巨噬细胞,导致Th2扩增,伴有巨噬细胞、中性粒细胞和嗜酸性粒细胞浸润肺。

(b) 肠道真菌诱导的前列腺素E2(PGE2)促进肺泡巨噬细胞M2极化,加重AAD。

(c) 肿瘤坏死因子(TNF)拮抗剂增强组织胞浆菌诱导的肺部感染的敏感性,在此过程中肠道特异性CD11b+CD103+DCs在肺内迁移和增强,从而增强肺部感染。

(d)白念珠菌C.albicans酿酒酵母S. cerevisiae在肠道定植可触发肺中病毒特异性CD8T细胞(原因不明)和IFN-γ的产生,最终阻止流感病毒侵入呼吸道上皮细胞

肠肝轴和肠道真菌

肝脏是一个重要的解毒器官并参与防御反应,参与肠道衍生的危险防御反应,被称为“肠-肝-轴”。

肠道微生物群的破坏是密切肝病如肝炎和肝硬化有关。例如,仔鸭口服赭曲霉毒素A (ochratoxin A,简称OTA)后,盲肠微生物多样性降低,产脂多糖拟杆菌门(LPS-producting Bacteroidetes)在盲肠和肝脏中的丰度增加,最终OTA通过TLR4-Myd88通路促进肝脏炎症。

肠道真菌可能通过肠肝轴参与肝脏疾病。也就是说,与健康对照相比,原发性硬化性胆管炎患者的真菌多样性增加了。

肝硬化患者的十二指肠真菌丰富,酒精滥用引起的肝硬化与念珠菌过度生长有关,血清酿酒酵母 S. cerevisiaeIgG抗体更高。

值得注意的是,开菲尔是一种针对肠道真菌群的抗酒精性脂肪肝的有效治疗方法。

注:开菲尔(Kefir)是以牛乳、羊乳或山羊乳为原料,添加含有乳酸菌和酵母菌的开菲尔粒发酵剂,经发酵酿制而成的一种传统酒精发酵乳饮料。

肠道真菌在肠-肝轴、胰腺疾病和肠-肾轴中的潜在机制

Wu X et al., Microbiome. 2021

(a)肝硬化患者肠道真菌负荷,血清IgG水平

(b)随着1,3-β-D-葡聚糖(BG)的转运,肠道真菌负担增加。然后BG被C型凝集素样受体CLEC7A识别,诱导IL-1β的产生,加重肝细胞损伤

(c)肠道定殖白色念珠菌分泌ECE1基因编码的念珠菌素,这与酒精性肝炎患者疾病加重有关。

(d)慢性肾病(CKD)小鼠肠道菌群发生改变,上皮紧密连接受损,导致细菌或真菌产物泄漏。

(e)肠漏可促进BG在血清中的迁移,加重脓毒症

(f) PDA肿瘤在胰腺中高度富集马拉色菌,这是肠道真菌通过Oddi括约肌直接连接这两个器官而迁移的结果。此外,真菌细胞壁- MBL-补体级联途径的多糖在PDA中起重要作用。

肠肾轴和肠道真菌

肠-肾轴可能是肠道微生物的远端靶点。值得注意的是,慢性肾病(CKD)小鼠肠道微生物群的变化与上皮紧密连接受损有关,细菌产物可能通过肠道屏障泄漏,激活免疫反应

同样,念珠菌在重症监护室患者肠道中的定植是念珠菌血症的一个易感因素。

两项研究均表明,白色念珠菌的肠道定植可能与败血症有关,肠道泄漏可能促进BG迁移,从而加重疾病进程。

在发生念珠菌播散感染的ICR小鼠中,肾脏的真菌负担最高,提示肾脏可能在循环真菌感染中发挥重要作用,但其机制仍有待研究。

然而,肾脏疾病中某些真菌的大量变化和假定的BG渗漏不能真正解释真菌肠肾轴的存在。同样,目前有关肠道真菌失衡直接影响肾脏疾病发病机制的研究还很有限,推测真菌肠道-肾脏轴是可行的。肠道真菌与肾脏之间是否还有其他联系值得探讨。

肠胰轴和肠道真菌

胰腺β细胞与1型糖尿病(T1DM)的发病机制相关。

与健康对照组相比,T1DM和2型糖尿病(T2DM)患者白色念珠菌定植率更高。T1DM患者甚至有更高的真菌种类多样性。这些发现表明,肠道真菌可能参与了糖尿病的发病机制。

然而,关于肠道真菌与胰腺细胞功能之间的直接关系的证据仍然有限。此外,肠道共生细菌衍生的Nod1配体(作为信号分子)是胰腺细胞中胰岛素转运所必需的。因此,探索肠道真菌来源的分子是否对胰腺细胞的功能有影响将很有意思。

此外,在胰腺导管腺癌(PDA)患者中,胰腺细菌和真菌明显增多马拉色菌在人和小鼠的PDA中高度富集,肠道真菌可能通过Oddi括约肌迁移到胰腺。

然而,目前尚不清楚肠道真菌的失调是致癌进展的原因还是结果,揭示PDA的真菌特征是必要的;因此,我们仅提出Oddi和/或MBL补体级联可能作为肠-胰腺轴的连接。

总的来说,就像肠-肾轴一样,肠道真菌-胰腺相互作用的研究仍处于早期阶段。

05 结  语

虽然我们普遍关注肠道菌群,但值得注意的是,肠道真菌也具有许多潜在的功能。

肠道真菌参与肠道疾病或其他器官疾病可能为开发新的疾病治疗策略和提供新的诊断靶标提供新的窗口。然而,需要更多的研究来确定肠道真菌与肠道或肠道外疾病之间的因果关系。

除真菌本身外,肠道真菌化合物可能在疾病治疗中具有巨大潜力。一些真菌提取物具有抗病毒特性,因此利用真菌化合物可能为克服不可治愈的病毒性疾病提供新的突破。

相关阅读:

深度解析|睡眠健康与肠道健康之间的双向联系

深度解析 | 肠道菌群与慢性肝病,肝癌

最新研究进展 | 行为和神经退行性疾病中的肠道微生物分子

肾脏疾病中的肠道菌群

参考文献:

Kaźmierczak-Siedlecka K, Dvořák A, Folwarski M, Daca A, Przewłócka K,Makarewicz W. Fungal hut microbiota dysbiosis and its role in colorectal, oral, and pancreatic carcinogenesis. Cancers. 2020;12(5)

Sebaa S, Boucherit-Otmani Z, Courtois P. Effects of tyrosol and farnesol onCandida albicans biofilm. Mol Med Rep. 2019;19(4):3201–9.

Leonhardt I, Spielberg S, Weber M, Albrecht-Eckardt D, Bläss M, Claus R, BarzD, Scherlach K, Hertweck C, Löffler J, et al. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity. mBio. 2015;6

Wu X, Xia Y, He F, Zhu C, Ren W. Intestinal mycobiota in health and diseases: from a disrupted equilibrium to clinical opportunities. Microbiome. 2021 Mar 14;9(1):60.

Leger T, Garcia C, Camadro JM. The Metacaspase (Mca1p) Restricts Oglycosylation during farnesol-induced apoptosis in Candida albicans. Mol Cell Proteomics. 2016;15(7):2308–23

Aaron L, Torsten M. Candida albicans in celiac disease: a wolf in sheep’sclothing. Autoimmun Rev. 2020;19(9):102621.

Enaud R, Prevel R, Ciarlo E, Beaufils F, Wieers G, Guery B, Delhaes L. The gut-lung axis in health and respiratory diseases: a place for inter-organ and inter-kingdom crosstalks. Front Cell Infect Microbiol. 2020;10:9.

睡眠健康与肠道健康之间的双向联系

谷禾健康

今日,两条关于睡眠问题登上热搜。

我国有超3亿人存在睡眠障碍,尤其过去这一年,人们整体入睡时间延迟2-3小时,对睡眠搜索量增长43%,看来睡眠问题正在影响越来越多人。

疫情致使整体入睡时间晚2-3小时_腾讯视频

睡眠是由人脑控制的一种复杂的生理行为过程,与免疫功能同为正常生活所必要的生理机能。睡眠是在漫长的一天之后舒缓和恢复的良好方式,睡眠可以让身体和大脑补充能量,良好的睡眠对于巩固记忆、处理信息、生长身体、修复肌肉,增强免疫,抵御疾病至关重要的。

睡眠障碍与各种疾病的发生和发展有关,例如肥胖,II型糖尿病,心血管疾病,抑郁症,癌症等。睡眠不足也会影响判断力和智力。

本文我们来详细了解下,睡眠障碍——这个大多数人都有可能遇到的难题。

首先,关于热搜第一条“睡够睡眠周期”到底什么意思呢?

01

正常生理性睡眠

要了解睡眠障碍之前,我们的先看下,正常生理性睡眠。

正常睡眠结构的特征是轻度睡眠,更深的慢波睡眠和快速眼动(REM)睡眠周期。

第一阶段睡眠(清醒和睡眠的过渡期)

第一阶段睡眠是睡眠周期的开始,被视为清醒和睡眠之间的过渡期。这段睡眠时间仅持续5-10分钟,其特征是混合频率的theta波(非常慢的脑波)。

第二阶段睡眠(体温下降,心率减慢)

第2阶段持续约20分钟,涉及混合频率的脑电波,具有快速的节奏性脑电波活动。在第2阶段,体温开始下降,心率开始减慢。

第三阶段睡眠(从轻度到深度过渡期)

第3阶段睡眠的特征是20%-50%的缓慢脑电波(称为δ波)。这是从轻度睡眠到深度睡眠的过渡时期。

第四阶段睡眠(缓慢脑电波)

阶段4的δ波大于50%,在此期间发生了缓慢的脑电波。阶段4持续约30分钟。

第五阶段睡眠(快速眼动睡眠)

睡眠的第5个阶段,即快速眼动(REM)睡眠,是大多数做梦的时候。第五阶段的特征是呼吸频率增加,大脑活动增加,体内各种代谢功能都显著增加。REM睡眠具有混合频率的EEG和theta波。成年人大约每90分钟出现一次REM睡眠。

睡眠以正常顺序开始,但随后以不规则的顺序循环进行。它开始于阶段1,然后进入阶段2、3和4。在阶段4睡眠之后,在开始REM(阶段5)睡眠之前,重复阶段3和2。REM睡眠结束后,身体通常会返回第2阶段睡眠。REM睡眠的第一个周期是入睡后约90分钟,并且只能持续很短的时间。每个周期,REM睡眠持续时间更长。

02

失眠标准及影响睡眠的因素

失眠是最普遍的睡眠障碍。判断失眠的标准:

标准一: 3个30分钟 

入睡时间 [ 入睡时间超过30分钟 ]

睡眠维持困难 [ 醒后再入睡超过30分钟 ]

早醒 [ 比平时提前醒来超过30分钟 ]

标准二:

以上情况 一周超过三天

标准三:

社会功能受损,第二天身体不适

如何判断失眠?权威专家来解答_腾讯视频

影响睡眠质量和持续时间的因素如下,多种内部和外部因素都会对其进行干扰。

Matenchuk Brittany A,et al., Sleep Med Rev, 2020

睡眠障碍与多种原因有关,通常与不良饮食以及饮食习惯、昼夜节律、压力情绪、生活方式、疼痛炎症、以及慢性疾病等有关。

引起睡眠障碍的原因有很多,但有一个容易被忽略,那就是肠道菌群。

03

肠道菌群与睡眠

人类微生物群是体内复杂,动态的生态系统。越来越多的研究表明它似乎以许多重要的方式与睡眠相互沟通,相互作用。

菌群改变与睡眠密切相关

研究表明失眠症患者和健康人群肠道微生物的组成、多样性和代谢功能发生了显著变化。随机森林结合交叉验证确定了两种标志性细菌,可用于区分失眠患者和健康人群——拟杆菌属,梭菌属

对微生物组组成的分析表明,拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)的丰度与睡眠质量呈相关,而Lachnospiraceae、棒状杆菌(Corynebacterium)、Blautia等几种菌与睡眠质量测量值呈相关。

Faecalibacterium是肠道微生物群中产丁酸菌,可能有助于双相患者减轻疾病负担和改善睡眠质量。其潜在机制可能是产生促进睡眠的丁酸盐。

高质量的睡眠与肠道菌群相关,包括Verrucomicrobia菌和Lentisphaerae菌 ,占比偏高,与认知功能改善相关。

乳酸菌数量与睡眠呈负相关。干酪乳杆菌对健康成年人的应激性睡眠障碍有有益作用。短乳杆菌对小鼠的睡眠节律有好处。

微生物组多样性(丰度,香农多样性和辛普森多样性)与睡眠质量和总睡眠时间增加呈正相关。

研究发现,睡眠不足与肠道微生物的多样性降低有关,睡眠越好,微生物组的多样性就越丰富。

一项2019年的研究发现,睡前60分钟(这是衡量睡眠量和睡眠质量的指标)与肠道微生物多样性降低26%有关。这是在控制了可能影响微生物组成的其他因素之后,包括饮食中纤维和脂肪的摄入量,体力活动和身体质量指数。

肠道微生物的多样性高有助于减轻压力和改善睡眠。除了睡眠不足之外,微生物组多样性的降低还与一系列健康问题有关,包括情绪障碍,焦虑,抑郁,免疫系统功能障碍和自身免疫性疾病。

失眠患者肠道菌群的α和β多样性发生了显著改变。睡眠时间减少可能会导致肠道菌群失调。

 肠道菌群是如何影响睡眠的呢?

可以通过肠道菌群与大脑之间的持续不断的相互作用来影响。主要有以下途径:

 · 免疫系统途径 

大脑和肠道微生物组都影响免疫细胞的活性,并依次相互影响。

肠道细菌被吞噬细胞(如巨噬细胞或中性粒细胞)吞噬并被消化;消化产物(如MPs、LPS)被释放到周围的细胞间液中。MPs和LPS反过来激活吞噬细胞(如锯齿状细胞膜所示),然后释放细胞因子。全身性细胞因子通过至少两种途径(迷走神经和血脑屏障)进入大脑。

免疫细胞在保持肠道微生物组健康方面发挥了重要作用,并且帮助免疫系统发挥最佳功能。这些细胞执行许多关键功能,包括:

帮助调控微生物组的组成

调节新陈代谢

限制炎症

保护肠道不受感染

保持肠壁坚固(并避免所谓的“漏肠”)

 ——细菌细胞壁结构成分影响睡眠

微生物细胞壁的结构成分不断刺激先天免疫系统产生细胞因子,产生一种免疫激活的基本状态,从肠粘膜表面开始,影响全身。

当细菌分裂、生长或死亡时,肽聚糖、脂多糖和其他成分被细菌酶降解或改变。宿主吞噬细胞如巨噬细胞和中性粒细胞也可以消化肽聚糖产生胞壁肽(小糖肽)。从革兰氏阳性或革兰氏阴性细菌中分离出来的肽聚糖,诱导睡眠反应,例如,非快速眼动睡眠的持续时间和强度会增强几个小时。如果给吞噬细胞喂养细菌,它们就会释放出具有生物活性的胞壁酰肽;其中一些胞壁酰肽诱导睡眠反应与完整的肽聚糖和热杀死的整个细菌所诱导的睡眠反应相似。

细菌肽诱导肠巨噬细胞和T细胞产生细胞因子白细胞介素-1β(IL-1β)和肿瘤坏死因子α(TNFα)细菌细胞壁脂多糖(LPS)诱导IL-18的合成。

IL-1β,TNFa22,IL-18是非快速眼动睡眠的诱导因子。

其他微生物,如病毒及其组分也通过内源性受体(识别病原体相关分子模式,如Toll样受体)促进细胞因子的产生,从而影响睡眠。

· 神经内分泌途径 

肠道内有20多种肠内内分泌细胞,构成最大的内分泌器官。

肠道菌群直接参与多种神经递质,细胞因子和代谢产物的产生,例如5-HT,多巴胺,γ-氨基丁酸(GABA),SCFA和褪黑激素等。

某些乳酸杆菌和双歧杆菌可以产生GABA。在失眠患者中经常观察到GABA mRNA的异常表达。

大肠杆菌产生去甲肾上腺素、5-羟色胺和多巴胺;

链球菌和肠球菌产生5-羟色胺;

芽孢杆菌产生去甲肾上腺素和多巴胺。

Vernia F,et al., Int. J. Med. Sci.2021

这些代谢物直接作用于肠神经系统和迷走神经,并影响中枢神经系统的活性。

此外,肠道菌群还影响下丘脑-垂体-肾上腺(HPA)轴

HPA轴参与稳态,参与对新刺激的反应。HPA轴是一种自适应系统,目的是在不断变化的环境中保持体内动态平衡。越来越多的研究表明,睡眠与HPA轴活动之间存在相互关系。

HPA轴亢进会对睡眠产生负面影响,导致睡眠碎片化,深度慢波睡眠减少和睡眠时间缩短。反过来,包括失眠和阻塞性睡眠呼吸暂停在内的睡眠障碍会进一步加剧HPA轴功能障碍。

干预以使HPA轴异常正常化,减少夜间CRH亢进和降低皮质醇可能对治疗失眠和其他睡眠障碍有益。详见本文后面改善睡眠章节。

说起HPA轴,就不得不提到皮质醇。它的作用不容小觑。

皮质醇如何产生?

HPA轴被激活,下丘脑促肾上腺皮质激素释放激素(CRH)的分泌,然后刺激垂体前叶释放促肾上腺皮质激素。然后促肾上腺皮质激素刺激肾上腺释放皮质醇,导致交感神经系统的各种生理反应(如肾上腺素的释放、心率加快和血压升高)。

皮质醇升高可能是睡眠障碍的主要原因

HPA轴障碍可能导致皮质醇升高,当皮质醇水平较高时,会激活糖皮质激素受体。在压力时期去甲肾上腺素和糖皮质激素受体可以优先激活,从而增加促肾上腺皮质激素释放激素。这种升高的促肾上腺皮质激素释放激素会增加睡眠脑电波频率,减少短波睡眠,并增加轻度睡眠和频繁醒来

皮质醇还与昼夜节律相关,这部分我们在下一章节昼夜节律篇讨论。

·  迷走神经途径  

肠肌层神经丛的感觉神经元通过调节肠蠕动和肠激素分泌而接触肠道菌群。肠神经系统也与迷走神经形成突触连接,迷走神经将肠道与大脑连接起来。

细胞因子通过迷走神经传入向大脑发出信号,迷走神经的动作电位进一步诱导胶质细胞和神经元在大脑中产生细胞因子。细胞因子浓度高低与睡眠有关。

低浓度的脑细胞因子能促进睡眠,而高浓度的脑细胞因子则不利于睡眠。

睡眠障碍与肠道菌群失调存在循环关系

前面我们知道,肠道菌群会通过多种途径影响睡眠。

Krueger JM,et al .,Int Rev Neurobiol. 2016

反过来睡眠也会影响肠道菌群。

睡眠不足或者其他因素如受伤、食物摄入、压力、昼夜节律和运动等,可致肠屏障损伤和细菌移位,增加感染易感性,激活HPA轴从而影响菌群。

04

昼夜节律与睡眠

大多数人(和其他哺乳动物)都存在昼夜节律–控制进食和睡眠等过程的代谢时钟。最常见的昼夜节律周期是控制睡眠的周期,科学家们已发现存在着多种控制着不同生物系统的昼夜节律。

过去的研究已表明如果昼夜节律紊乱,人们可能会遇到健康问题。比如,改变工作时间的轮班工人更容易患睡眠障碍、肥胖、糖尿病等。

  昼夜节律——皮质醇  

前面提到的皮质醇分泌就有昼夜节律。皮质醇的最低点出现在午夜左右。睡眠开始后约2-3小时,皮质醇水平开始上升,并一直持续到清晨。

早晨醒来时,皮质醇开始迅速升高,并持续升高约60分钟。皮质醇的峰值大约是上午9点。随着一天的继续,水平逐渐下降。随着睡眠的开始,皮质醇持续下降直至最低点。

此外,越来越多的研究都表明,机体的昼夜节律能够调节肠道的免疫反应。

 昼夜节律——免疫系统  

昼夜节律调节免疫系统,并随之调节炎症水平。

第3组先天淋巴细胞(ILC3s)是昼夜脑-肠信号转导的关键介质。ILC3s表达高水平的昼夜节律基因,光-暗周期的反转导致ILC3s主要的昼夜节律振荡。这种作用依赖于中枢神经系统(CNS)和下丘脑SCN中ARNTL的存在,并进一步与肠道菌群组成的变化有关,特别是变形菌门拟杆菌门丰度的改变。

注:ARNTL——芳香烃受体核转位因子样蛋白

当昼夜节律被破坏时,正常的免疫功能也会被破坏。这样的情况下,人更容易患上各种疾病。

  昼夜节律——肠道菌群  

研究发现肠道菌群的两个主要组成部分拟杆菌门(Bacteroidetes)和厚壁菌门(Firmicutes)的丰度从白天到晚上呈周期性变化

肠道菌群受昼夜节律信号的影响,同时也对生物钟基因的表达产生交互作用。

来自美国德克萨斯大学西南医学中心的研究人员发现小鼠小肠中的微生物参与肠道昼夜节律。该研究发现改变受试小鼠中组蛋白乙酰化的过程,即在组蛋白末端添加乙酰基的过程,细菌便可开启HDAC3在位于小肠内壁的上皮细胞中的表达。这进而导致了参与基因表达的同步振荡,这些基因表达与脂质代谢和营养物运输有关。相比之下,肠道无菌的小鼠没有表现出这种节律性调节。

肠道微生物的昼夜节律振荡导致血清代谢产物的振荡,并与周围组织的转录和表观遗传波动有关。

 昼夜节律——肠道菌群代谢产物 

短链脂肪酸影响生物钟基因表达和睡眠模式

肠道微生物代谢产物,短链脂肪酸乙酸、丙酸、丁酸在一天中会发生变化,粪便样本中的最高浓度出现得较早,并且在一天中不断降低。短链脂肪酸可能会影响生物钟基因的表达。

研究发现,肠道微生物群的缺乏,以及微生物代谢物的缺乏,导致中枢和肝脏生物钟基因表达明显受损,这表明肠道微生物群在分子水平上传播生物钟的可能性。

在体外,发现在给予乙酸钠和丁酸钠后,小鼠肝细胞中时钟基因Bmal1和Per2的表达发生了显著变化。

在不同的光照-暗期和摄食周期下,添加乙酸后Per2表达量较高,添加丁酸后Per2表达量较低;短链脂肪酸处理后Bmal1表达持续升高,尤其是丁酸处理。

在无菌小鼠体内,关灯两小时后用丁酸盐治疗5天(小鼠处于活跃期),导致肝细胞中Per2:Bmal1 mRNA比值显著增加。此外,同样的处理也导致了中基底下丘脑细胞中Per2:Bmal1 mRNA比值的非显著增加(p=0.053)。Bmal1和Per2等时钟基因在分子水平上调控昼夜节律;它们的比率是肝脏代谢调节网络的标志。

丁酸盐在肠道菌群与大脑产生睡眠的机制之间提供重要联系。

进一步的研究表明,门静脉注射丁酸盐可导致小鼠非快速眼动睡眠增加70%;全身皮下和腹腔注射丁酸盐对睡眠无影响。这些结果表明,丁酸盐的睡眠诱导作用是由肝脏感觉机制介导的。

 昼夜节律——肠上皮屏障  

肠道菌群通过肠上皮细胞昼夜节律因子调节。

肠上皮细胞协调消化、免疫和神经内分泌功能,是人体最重要的屏障之一。胞壁肽(MPs)或脂多糖(LPS),通过肠上皮屏障转运。

通过受损的伪反应调节器(PRR)信号,导致过氧化物酶体增殖物激活受体α(PPARα)的永久表达,肠道微生物群的消失会破坏肠上皮细胞中Bmal1和Cry1时钟基因的表达,导致肠上皮细胞活动的完全丧失。

此外,肠道菌群也受饮食周期调控,我们将在下一章节详细了解它们之间的关联。

05

饮食,菌群,昼夜节律与睡眠障碍

睡眠与昼夜节律、食物摄入、运动和压力源密切相关;这些变量还相互影响,使它们在睡眠中的行为复杂化。饮食、进餐时间和睡眠之间的联系是相互的,因为昼夜节律驱动着代谢模式的变化,而代谢和营养状况的改变则影响着昼夜节律。

我们常听说健康的饮食,生活方式以及合理的饮食习惯有助于心理和身体健康。

辛辣食物、兴奋剂和不良食物反应(不耐受和食物过敏)影响睡眠可以理解。然而,为什么说不吃饭,吃得太快或吃得过饱,吃饭时间不规律,食物质量差,这些也都是导致睡眠障碍的饮食原因?

从本质上讲,饮食摄入与肠道菌群组成有关,因为我们摄入的食物是微生物生长的主要基质。我们饮食的改变可以在几天内导致我们肠道菌群重塑。

摄食节律和昼夜节律的破坏会导致肠道细菌的时间特异性变化。昼夜节律紊乱也会增加肠上皮屏障的通透性。

Vernia F,et al., Int. J. Med. Sci.2021

饮食行为影响人类睡眠的时间和质量。睡眠时间短和高能量摄入之间有一致联系。

食物中营养物质影响睡眠 

营养物质影响激素的产生,包括生长激素、催乳素、睾酮、褪黑素和血清素,所有这些都在调节生物钟中发挥作用。

食物中存在的氨基酸,如苯丙氨酸、组胺和酪氨酸,促进肾上腺素、去甲肾上腺素和其他刺激性神经递质的产生和释放,可能损害睡眠。

影响色氨酸供应或血清素和褪黑素合成的食物则促进睡眠。一些维生素(B1和B6)也能诱导褪黑素和血清素的产生和释放。

饮食习惯影响睡眠

进餐的时间,特别是零食的频率,使昼夜节律失去同步,影响新陈代谢,并促进肥胖。这与生物钟在调节激素和神经递质释放中的作用是一致的。

不吃饭、或者晚餐十分丰盛的现象越来越普遍。然而将主要热量摄入转移到一天结束时会对消化产生不利影响,并使睡眠困难;如果膳食丰富且脂肪丰富,则更是如此。

相反,碳水化合物对睡眠模式的作用仍有争议,碳水化合物的重量与热量负荷的关系也有争议。

为什么很想吃垃圾食品?

压力在影响饮食模式方面很重要,可能是通过改变下丘脑-垂体-肾上腺轴,让人对垃圾食品(高脂肪和精制糖)产生强烈的渴望。

久坐的生活方式,睡眠时间短同样会让人想吃高能量食物。

为什么睡眠不足与想吃高能量食物有关?

下丘脑外侧神经元通过不同的回路表达神经肽,如黑色素浓缩激素和食欲素/下视黄醇,在调节食物摄取、觉醒、运动行为和自主神经功能方面发挥重要作用。 

睡眠限制与饱食因子瘦素浓度降低、促饥饿激素ghrelin浓度增加有关,从而改变了它们发出正确热量需求信号的能力。于是又会促进代谢综合征和肥胖,并再次对生物钟产生不利影响。

注:Ghrelin是一种神经肽,参与睡眠-觉醒调节。

此外,食欲素Orexins在能量稳态和警觉状态之间提供联系,并参与多巴胺能奖赏系统。在动物模型中,产生食欲素的基因突变导致了睡眠表型的改变。有假设说,在清醒时,产生食欲素的细胞的高活性,而在睡眠时几乎没有这种活性,也会影响睡眠。

越来越多的证据也表明睡眠会影响饮食选择。睡眠较少的人更可能喜欢高能量的食物(如脂肪和精制碳水化合物),吃较少的蔬菜,并选择不规律的饮食模式。

糖摄入与睡眠

糖会对肠道健康产生特定作用。有大量证据表明,标准的西方饮食(加工糖和高脂)会导致肠道微生物群的组成发生变化。

上一小节提到的多巴胺奖赏系统与糖摄入也有关系。研究表明,糖是一种有力的触发剂,含糖的食物足以刺激大脑的奖赏系统,从而对食物产生更多的渴望,

糖还有其他间接影响我们肠道健康的方法。高糖饮食会加剧慢性炎症,而炎症则会损害肠道菌群的多样性和功能。经常食用添加糖的饮食可能导致体重增加。

另外添加糖还会升高胆固醇,这与炎症增加有关。关于炎症和睡眠的关系将在下一章节详述。

所有含糖食物(例如水果)都会影响睡眠吗?

不是的。水果之类的天然含糖的食物提升人血糖的速度,远没有含添加糖的食物快。天然食品中纤维含量很高,人体吸收糖的速度变慢,阻止血糖水平飙升。

06

炎症与睡眠

炎症和睡眠障碍也是双向联系的。

炎症是免疫系统的一种天然的,保护性的生物反应,可以抵抗有害的外来病原体(细菌,病毒,毒素),并帮助身体从受伤中恢复健康。急性炎症的症状包括肿胀和发红,发烧,发冷,疼痛和僵硬以及疲劳,这些迹象表明人体的免疫系统处于“战斗模式”。

睡眠障碍会加剧慢性低度炎症,这是导致疾病的重要因素。不需要几年或者几个月,哪怕只是一晚上的完全睡眠不足就足以提高促炎生物标志物、肿瘤坏死因子α(TNFα)和C反应蛋白(CRP)的循环水平;血清CRP水平随着4天的完全睡眠不足而逐渐升高。

有研究发现,一晚上完全睡眠不足,白细胞介素(IL-6)细胞因子升高,一周失眠不足(每晚4-6小时),IL-6和TNFα的24小时分泌量也会增加。

全身性炎症也会破坏健康的睡眠。通过触发生理和心理变化,让人难以获得良好的睡眠。

细胞因子升高与睡眠困难有关。炎症会在体内造成疼痛和僵硬,使人难以入睡。身体上的疼痛是失眠和其他睡眠问题的常见因素。关于慢性疼痛将在下一章节详细介绍。

炎症涉及较高水平的皮质醇,皮质醇前面了解过,可刺激机敏并导致心理压力。压力是健康睡眠的最重要的常见障碍之一。

07

其他疾病与睡眠

7.1  压力,抑郁与睡眠障碍

压力与睡眠

2017年进行的一项研究,压力对大鼠睡眠和肠道健康的影响。通过对小鼠尾部冲击睡眠模式中断。结果发现肠道菌群失去了多样性。少数菌群控制着肠道微生物,失去平衡是不健康的。当他们给小鼠服用益生元时,肠道菌群变得更加多样化,并包含了更多有益菌,如鼠李糖乳杆菌,睡眠变得更好,包括REM和非REM睡眠

昼夜节律引发情绪波动和睡眠障碍

临床经验表明,扰乱昼夜节律挑起时差综合征或减少睡眠可以触发情绪波动和睡眠障碍

核心时钟基因突变会引起肠道菌群失调。多种时钟基因变异易患精神疾病,例如重度抑郁症(MDD),双相情感障碍(BD),注意力缺陷多动障碍(ADHD),精神分裂症等。

微生物GABA产生(这是中枢神经系统的主要抑制性神经递质,已证实GABA受体的激活有利于睡眠)对抑郁症和肠道微生物多巴胺代谢物的能力的潜在贡献。

3,4-二羟基苯乙酸(一种主要包含在浆果、水果和蔬菜中的膳食多酚)的合成,与较高的心理生活质量感知相关。

7.2 慢性疼痛与睡眠障碍

慢性疼痛可以对睡眠有不同的影响并取决于疼痛的性质。

疼痛可能在夜间无法缓解,导致睡眠不足。除了缩短总体睡眠时间外,最常见的,慢性疼痛还会导致夜间频繁起床。我们会在轻度睡眠,慢波睡眠和快速眼动(REM)睡眠之间循环。破坏该周期会干扰睡眠阶段的进展,并导致睡眠不足和第二天的疲倦

疼痛带来的情绪不佳

疼痛也可能伴有焦虑,压力或抑郁。据估计,三分之一的慢性疼痛患者也符合临床抑郁症。这些状况本身会导致睡眠问题。

慢性疼痛间接影响睡眠

患有慢性疼痛的人白天可能会感到疲劳。那么他们不太能做到锻炼或遵循健康饮食,然而这两者对于获得良好的睡眠很重要。

慢性疼痛导致的不稳定睡眠也会打扰夫妻同床,对他们的睡眠质量和健康产生相应的影响。

 睡眠对疼痛的影响 

新的研究表明,睡眠对疼痛的影响甚至可能比疼痛对睡眠的影响还要强。

睡眠不好导致对疼痛敏感性增强

研究人员发现,睡眠时间短,睡眠分散和睡眠质量差等问题通常会导致第二天对疼痛的敏感性增强,诸如类风湿关节炎。患有睡眠问题的人似乎更有可能最终患上诸如肌痛和偏头痛等疾病。当失眠引起的疼痛加剧时,女性比男性更敏感,年轻人比老年人更有弹性。

慢性疼痛与睡眠障碍的不良循环

患有慢性疼痛的人可能患有自我延续的周期,疼痛,失眠,抑郁或焦虑。例如,遭受痛苦的人在无法入睡时可能会感到焦虑,睡眠不好,醒来时会感到沮丧,这增加了他们对疼痛的敏感性。第二天晚上又开始疼痛,无法入睡,周期一直循环。久而久之,状况可能更加恶化。

前面提到的褪黑素,除了它在调节昼夜节律中的作用,新的研究开始发现褪黑激素在我们对疼痛的感知中产生作用。维生素D、多巴胺也似乎在睡眠和疼痛中都起着作用。

7.3 消化系统疾病与睡眠障碍

胃食管反流性疾病

胃食管反流病以病理性酸或非酸反流为特征,并与多种可能影响上消化道(反流、烧心、疼痛)和/或诱发呼吸道症状(声音嘶哑、发音困难、慢性喉炎、咳嗽、哮喘和慢性支气管炎)的紊乱有关。

有强有力的证据表明胃食管反流病与睡眠障碍之间存在双向关系,因为胃食管反流病的症状会导致入睡困难、睡眠分裂和清晨醒来,而睡眠障碍又会诱发食管痛觉过敏

因此,有睡眠障碍的胃食管反流病患者比没有睡眠障碍的患者有更严重的症状和更差的生活质量。据报道,在这些患者中,焦虑和抑郁的患病率很高,在某种程度上是由睡眠障碍直接介导的

IBS

IBS患者的睡眠障碍是有据可查的,入睡困难、睡眠时间短、频繁觉醒等。最近的一项荟萃分析有63620名参与者,结果显示IBS患者睡眠障碍的患病率为37.6%。

IBD

前面章节我们已经知道,炎性细胞因子如肿瘤坏死因子-α(TNF-α)、IL-1和IL-6可引起睡眠障碍,而睡眠障碍可上调细胞因子,尤其是IL-1和TNF-α。(IL-1参与生理性睡眠调节和睡眠对微生物的反应)

临床研究发现睡眠障碍、亚临床炎症和IBD复发风险之间存在关联。最近的一项研究报道,使用匹兹堡睡眠质量指数评估睡眠质量差与粘膜愈合不良有关(P<0.05)。

7.4 肝病与睡眠障碍

睡眠障碍可能发生在急性和慢性肝炎,但更常见于肝硬化患者。相当一部分肝硬化和急慢性肝衰竭患者患有失眠、睡眠延迟和白天过度嗜睡

肝硬化

最近一项对341名病毒性肝硬化患者的研究证实了这种关联,报告称匹兹堡睡眠质量指数显著升高。多导睡眠图异常也存在。

肝性脑病

睡眠障碍通常是肝性脑病的早期症状,导致日常嗜睡,增加受伤风险,降低生活质量。

肝脏和大脑之间的神经和体液通讯途径尚不完全清楚,但炎症细胞因子如TNF-α、IL-1和IL-6发挥了作用,它们改变了中枢神经递质(血清素和促肾上腺皮质激素释放激素)的浓度。

60%的慢性丙型肝炎患者存在睡眠障碍。

脂肪性肝炎

脂肪性肝炎患者的睡眠障碍可能与肝细胞活性受损和多余脂质处理受损有关。酒精对肝脏和中枢神经系统有直接毒性作用。

最近的分析(2272名参与者)表明,阻塞性睡眠呼吸暂停与脂肪变性、小叶炎症、气球样变性和纤维化显著相关

瘙痒在慢性肝病患者中很常见,在原发性胆管炎等胆汁淤积性肝病患者中更常见。随之而来的往往是睡眠障碍和生活质量低下。

肝病中瘙痒的患病率从慢性丙型肝炎的5%到原发性胆汁性肝硬化的70%不等。胆汁盐、组胺、5-羟色胺、孕酮代谢物浓度的增加可能与此有关。

7.5 肥胖与睡眠障碍

前面饮食章节我们已经知道,睡眠不足会使身体发出错误信号导致饮食过量,对高热量食物难以抗拒,吃过多自然容易肥胖。

当然,肥胖也会导致睡眠障碍。

超重和肥胖通过胃食管反流病和非酒精性脂肪肝以及阻塞性睡眠呼吸暂停患病率的增加而导致睡眠障碍。

肥胖与阻塞性睡眠呼吸暂停综合征之间存在着相互关系。阻塞性睡眠呼吸暂停会促进行为、代谢和/或激素的变化,促使体重增加和/或减肥困难。阻塞性睡眠呼吸暂停综合征(OSA)与激素水平有关,其特点是瘦素和胃饥饿素水平高,进而促使能量摄入过高。

体重增加10%与患阻塞性睡眠呼吸暂停综合征的概率增加50%有关。当然,体重减轻会减少严重的阻塞性睡眠呼吸暂停,改善睡眠,进一步减轻体重

因此,阻塞性睡眠呼吸暂停、睡眠时间短和体重增加之间存在关系。一些证据表明,嗜睡与肥胖有关,在没有睡眠呼吸暂停的情况下也是如此。

08

改善睡眠

 营养物质改善睡眠 

 维生素B6 

在失眠研究中分析失眠患者中肠道菌群中的维生素B6分解代谢(ko00750)显着增强,导致宿主体内维生素B6缺乏。据报道,维生素B6是失眠症的一种常见治疗方法,维生素B6缺乏会导致疲劳和抑郁。因此,补充维生素B6可以改善失眠症状。

维生素B6食物来源:麦麸、葵花子、大豆、糙米、香蕉、动物肝脏及肾脏、鱼类、瘦肉、坚果等。

 叶 酸  

叶酸参与髓鞘的形成,在脑脊液和细胞外液中分布较多,可缓解因抑郁导致的失眠,对于人体精神和情绪方面的健康起到重要性的作用。

叶酸食物来源:芦笋,西兰花,胡萝卜,燕麦,奇异果等。

 镁 

镁补充剂有时用于治疗睡眠障碍,改善睡眠质量并减少睡眠潜伏期(即入睡时间)。一项研究发现,每天服用500mg可以改善老年人的失眠症状。

同时,补充镁也有助于减轻抑郁症症状。

镁食物来源:南瓜子,煮熟的菠菜,黑豆,藜麦,杏仁,腰果,鳄梨,三文鱼等。

除了镁,锌也有促进睡眠的作用,可以改善大脑神经细胞的代谢,平时可以适当多吃一些海鲜、坚果类食物以及全谷类食物,都有助于为身体补充锌元素。

  L-茶氨酸  

L-茶氨酸:一种氨基酸,L-茶氨酸可以改善放松和睡眠。

益生菌干预

益生菌是一种活的微生物,当其存在的量足够时,可以为宿主带来健康益处,例如发酵食品,如酸奶,开菲尔,豆豉,泡菜,康普茶等。

很少有研究测试通过控制肠道微生物群来改善睡眠的有效性。在一项32名医科学生参加的临床试验中,发现益生菌加氏乳酸杆菌CP2305能显著改善睡眠质量,这可以通过PSQI评分的变化来衡量。在服用了益生菌的男性参与者中,这种改善更为明显,在床上入睡时间的减少。

注:匹兹堡睡眠质量指数(Pittsburgh sleep quality index,PSQI)是美国匹兹堡大学精神科医生Buysse博士等人于1989年编制的。该量表适用于睡眠障碍患者、精神障碍患者评价睡眠质量,同时也适用于一般人睡眠质量的评估。

同时,15种肠道微生物的相对丰度在对照组和益生菌组之间有所不同,包括Bact. Vulgatus的减少,在使用益生菌后增加了Dorea Longicatena.

额外的双盲随机对照试验发现,补充益生菌混合物(含Lactobacillus fermentum LF16, L.rhamnosus LR06, L.plantarum LP01,长双歧杆菌 Bifidobacterium longum BL04 ),在年轻健康的参与者中,随着时间的推移,导致PSQI得分下降。

注:PSQI得分越高,表示睡眠质量越差。

高皮质醇诱发的睡眠问题的替代方法

解决慢性皮质醇水平升高的有效方法是确保肾上腺得到适当的营养支持。维生素B6,维生素B5(泛酸)和维生素C通常会由于肾上腺活动时间过长和皮质醇的产生而耗尽。这些营养物质在肾上腺的最佳功能和肾上腺激素的最佳制造中起关键作用。在压力时期,这些营养素的水平可以降低 。

改善睡眠的另一种方法是针对GABA(γ-氨基丁酸)活性。增加GABA活性将降低蓝斑,下丘脑室旁核和HPA轴活性。支持GABA功能的一种方法是减少谷氨酸信号。谷氨酸和GABA活性彼此相反。因此,降低谷氨酸的活性将支持健康的HPA轴活性。

Tips

1  不要在深夜吃东西,破坏微生物生物钟,还会促进胃反流。

2  多吃纤维。纤维有助于有益菌生长。纤维食物包括朝鲜蓟,芦笋,洋葱,豆类,绿叶蔬菜和大多数非淀粉类蔬菜。

3  尝试睡前禁食,禁食会使身体处于“待机”状态,可以自我修复。身体在睡眠过程中会继续燃烧卡路里。睡前禁食,早晨更有可能感到饥饿。可能会促使早起。 

4  如果一定要吃,尽量吃易消化食物。消化过程让人清醒睡不着,因此最好在睡前避免食用难消化的食物。包括:脂肪或油炸食品、辛辣食物、酸性食品、碳酸饮料等。

5  多吃各种食物,有益于维持人体健康的微生物群。均衡饮食,食物中的营养素在产生褪黑素以及其他有助于调节睡眠的重要神经递质中起着巨大作用。

6  尝试补充益生元。已显示许多益生元可在人类受试者中发挥作用。如低聚果糖和低聚半乳糖等。

7  创建理想睡眠环境。

关闭电子产品(就寝前30分钟至1小时),保持卧室适宜温度(在16至19°C之间)等

8  调整灯光。晚上关掉灯或调暗灯,黑暗下人体会分泌更多褪黑素,有助于睡眠,当然,早上拉开窗帘享受阳光,可以帮你清醒。

9  舒适的床是最佳睡眠环境。旧的床垫和枕头会引起疼痛和酸痛,难以获得优质的睡眠。通常,专家建议每10年更换一次床垫,每两年更换一次枕头。当然也取决于床垫枕头质量。

10  保持规律作息。最好每天在同一时间上床睡觉,早上同一时间起床,确保人体昼夜节律时钟正常运作。即使在周末或休息日最好也是如此。

11  避免白天睡过多。如果已经出现睡眠障碍,那么白天尽量不要睡觉。如果有午睡习惯,尽量控制在30分钟之内,且在下午3点之前完成。

12  睡前放松,可以进行温水浴,泡脚,深呼吸,做些伸展运动,适量阅读,听听舒缓的音乐等,这些准备工作都有助于良好的睡眠。当有压力或焦虑时,身体会产生更多的皮质醇,皮质醇过高可能导致夜间频繁醒来。

13  如果实在在20分钟或更长时间内无法入睡,请起床并做一些容易累的事情。最重要的是离开床。

14  运动是帮助睡眠的良好方式,如果可以的话,每天至少20-30分钟锻炼,每周五次左右,但不要在睡前剧烈运动。

15  随着年龄的增长,褪黑素水平会下降。可以购买褪黑激素补充剂,该补充剂已被证明可以帮助55岁以上的人们更快入睡和更长的睡眠。睡前一个小时服用。褪黑激素还可以增强肠道微生物的健康多样性。如长期服用需咨询医生。

【附录】  

需要多少睡眠时间取决于年龄,并且因人而异。大多数成年人每晚至少需要七个或七个以上的睡眠时间。

新生儿(0到3个月):睡眠14到17个小时

婴儿(4至11个月):睡眠12至15小时

幼儿(1至2岁):睡眠11至14小时

学龄前儿童(3至5岁):睡眠10至13小时

学龄儿童(6至13岁):睡眠9至11小时

青少年(14至17岁):睡眠8至10小时

年轻人(18至25岁):睡眠7至9小时

成人(26至64岁):睡眠7至9小时

老年人(65岁或以上):睡眠7至8小时

当然以上只是参考,并不是所有人必须达到的标准,少数人的需要的睡眠时间本来就不多,且没有睡眠困扰或不适症状,则无需参考以上标准。

相关阅读:

自闭症,抑郁症等与维生素缺乏有关

饮食与抑郁症密不可分,一文涵盖多种生物学机制

深度解析 | 炎症,肠道菌群以及抗炎饮食

益生菌的简单入门指南

主要参考文献:

Vernia F, Di Ruscio M, Ciccone A, Viscido A, Frieri G, Stefanelli G, Latella G. Sleep disorders related to nutrition and digestive diseases: a neglected clinical condition. Int J Med Sci. 2021 Jan 1;18(3):593-603. doi: 10.7150/ijms.45512. 

Krueger JM, Opp MR. Sleep and Microbes. Int Rev Neurobiol. 2016;131:207-225. doi: 10.1016/bs.irn.2016.07.003. Epub 2016 Aug 31. 

Matenchuk Brittany A,Mandhane Piush J,Kozyrskyj Anita L,Sleep, circadian rhythm, and gut microbiota.[J] .Sleep Med Rev, 2020, 53: 101340.

Hertenstein E., Feige B., Gmeiner T., Kienzler C., Spiegelhalder K., Johann A., Jansson-Frojmark M., Palagini L., Rucker G., Riemann D., et al. Insomnia as a Predictor of Mental Disorders: A Systematic Review and Meta-Analysis. Sleep Med. Rev. 2019;43:96–105.

Poroyko V.A., Carreras A., Khalyfa A., Khalyfa A.A., Leone V., Peris E., Almendros I., Gileles-Hillel A., Qiao Z., Hubert N., et al. Chronic Sleep Disruption Alters Gut Microbiota, Induces Systemic and Adipose Tissue Inflammation and Insulin Resistance in Mice. Sci. Rep. 2016;6:35405.

Kinnucan J.A., Rubin D.T., Ali T. Sleep and Inflammatory Bowel Disease: Exploring the Relationship between Sleep Disturbances and Inflammation. Gastroenterol. Hepatol. (N.Y.) 2013;9:718–727.

Bowers S.J., Vargas F., Gonzalez A., He S., Jiang P., Dorrestein P.C., Knight R., Wright K.P., Jr., Lowry C.A., Fleshner M., et al. Repeated Sleep Disruption in Mice Leads to Persistent Shifts in the Fecal Microbiome and Metabolome. PLoS ONE. 2020;15

Smith R.P., Easson C., Lyle S.M., Kapoor R., Donnelly C.P., Davidson E.J., Parikh E., Lopez J.V., Tartar J.L. Gut Microbiome Diversity is Associated with Sleep Physiology in Humans. PLoS ONE. 2019;14:e0222394. 

Durgan DJ. Obstructive sleep apnea-induced hypertension: role of the gutmicrobiota. Curr Hypertens Rep. 2017; 19: 35

Reynolds AC, Paterson JL, Ferguson SA, Stanley D, Wright KP Jr, Dawson D.The shift work and health research agenda: considering changes in gutmicrobiota as a pathway linking shift work, sleep loss and circadianmisalignment, and metabolic disease. Sleep Med Rev. 2016; 34: 3-9.

Parisi P, Pietropaoli N, Ferretti A, Nenna R, Mastrogiorgio G, Del Pozzo M, etal. Role of the gluten-free diet on neurological-EEG findings and sleepdisordered breathing in children with celiac disease. Seizure. 2015; 25: 181-183

Michalopoulos G, Vrakas S, Makris K, Tzathas C. Association of sleep qualityand mucosal healing in patients with inflammatory bowel disease in clinicalremission. Ann Gastroenterol. 2018; 31: 211-216.

Wang B, Duan R, Duan L. Prevalence of sleep disorder in irritable bowelsyndrome: A systematic review with meta-analysis. Saudi J Gastroenterol.2018; 24: 141-150.

慢性疾病是可控的!肠道健康如何影响疾病风险

谷禾健康

现在经济飞速发展,随着生活条件改善,人们的寿命开始变长,对健康长寿的研究也逐渐开始增多。

点击查看关于健康长寿的研究

然而寿命变长却不一定健康,越来越多人开始患上各种慢性疾病。

慢性疾病怎么来的?

首先从炎症开始。炎症其实是身体在与自身有害的物质(例如感染,毒素)作斗争来自愈的过程。当细胞要被破坏时,身体就会释放化学物质,从而触发免疫系统的反应。

当这种反应持续存在时,就会发生慢性炎症,身体处于持续的警觉状态。随着时间的流逝,慢性炎症可能会对组织和器官造成负面影响。于是各种疾病就开始了。

那慢性疾病为什么与肠道健康有关呢?

01 许多疾病始于肠道

看过我们文章的朋友,大概已经开始有了这样的概念:许多疾病始于肠道。

因为免疫系统有很大一部分在肠道,具体来讲,这要涉及到肠道通透性的问题。

来自麻省总医院儿童医院腹腔研究和治疗中心主任Fasano博士和他的团队发现了zonulin蛋白(连蛋白),这为研究肠道通透性功能的新方法打开了大门,不仅因为它影响肠道,而且还影响了整个过程中炎症和自身免疫的作用。

除了基因组成和暴露于环境诱因外,还有三个引起慢性炎症性疾病的额外因素:

肠道通透性的不适当增加(可能受肠道菌群组成的影响);

负责耐受性免疫应答平衡的“超好战”免疫系统;

肠道菌群的组成及其对免疫系统的表观遗传影响宿主基因组的表达。

近十年来,人们开始越来越多关注到人类遗传学、肠道微生物组学和蛋白质组学,表明粘膜屏障功能的丧失,特别是胃肠道粘膜屏障功能的丧失,可能会严重影响抗原的运输,最终影响肠道微生物组和免疫系统之间密切的双向相互作用

这种相互作用对宿主肠道免疫系统功能的形成有很大影响,并最终将遗传易感性转化为临床结果。这一观察导致了对慢性炎症性疾病流行的可能原因的重新审视,表明肠道通透性的关键致病作用

临床前和临床研究表明,连蛋白家族是调节肠通透性的一组蛋白质,与多种慢性炎症性疾病有关,包括自身免疫性,感染性,代谢性和肿瘤性疾病。这些数据为多种慢性炎症性疾病提供了新的治疗靶点,其中连蛋白途径与它们的发病机理有关。

02 细菌影响你的健康

Fasano指出,根本没有足够的基因来解释众多慢性疾病,基因也不能解释疾病发作的时间。他说,要解决这些谜团,我们必须关注微生物组,因为“决定个人临床命运的是个体之间的相互作用和我们所生活的环境。”

除了微生物本身,肠粘膜的状况也起着重要作用。Fasano解释说:“尽管这种巨大的粘膜界面(200 m2)看不见,但它通过与周围环境中各种因素的动态相互作用而起着关键作用,这些因素包括微生物,营养素,污染物和其他物质。”

虽然过去人们认为细胞内紧密连接是静态且不可渗透的,但我们现在知道并非如此。正如Fasano所解释的,连蛋白是肠道渗透性的强大调节剂。然而,尽管连蛋白是肠道通透性的生物标志物,并在许多慢性炎性疾病中起着致病作用,但并非所有慢性炎症性疾病都是由肠道渗漏引起的。

03 导致慢性炎症性疾病的连锁反应

在他的综述中,一篇题为“Zonulin,一种上皮和内皮屏障功能的调节因子,及其在慢性炎症疾病中的作用”的文章,详细描述了“导致慢性炎症疾病的连锁反应”。

在正常情况下,你的肠道会保持健康的内稳态,当遇到抗原时,不会发生过度的免疫反应。在图中第2点,肠道菌群失调(即肠道菌群的数量和多样性不平衡)正在形成,导致连蛋白的过量生产,从而使肠道内壁更容易渗透。

Sturgeon C et al., Tissue Barriers, 2016

两个最强大的触发连蛋白释放是细菌过度生长和谷蛋白。连蛋白是对坏细菌的反应产生的——它通过打开紧密连接帮助细菌排出体外,所以细菌过度生长是有意义的。但是为什么它对谷蛋白有反应呢?

有趣的是,连蛋白途径将谷蛋白误解为微生物的潜在有害成分。这就是为什么谷蛋白会触发连蛋白的释放。虽然Fasano没有提到,除草剂草甘膦也触发连蛋白,而且是谷蛋白10倍的效力!

随后的通透性允许微生物群衍生的抗原和内毒素从管腔迁移到固有层(肠粘膜的结缔组织),从而引发炎症。

随着过程的继续恶化(上图中第3阶段),适应性免疫反应开始,触发促炎性细胞因子的产生,包括干扰素γ(IFN-γ)和肿瘤坏死因子α(TNF-α)。这些细胞因子使通透性进一步恶化,从而形成恶性循环。

最终(第4阶段),粘膜耐受性被完全破坏,导致慢性炎症性疾病的发作。

04慢性炎症性疾病与肠道渗漏有关

最终出现的特定的慢性炎症性疾病,部分取决于你的基因组成,部分取决于你所接触的类型以及部分取决于肠道菌群组成。

除了遗传易感性和环境触发因素外,各种慢性炎症性疾病的发病机理还涉及到相互影响的肠道通透性/ Ag转运,免疫激活以及肠道菌群的组成/功能的变化。

连蛋白是上皮和内皮屏障功能的调节剂,肠营养不良可能导致连蛋白的释放,从而导致腔内物质穿过上皮屏障的释放,导致促炎性细胞因子的释放,而促炎性细胞因子本身会导致通透性增加,形成恶性循环,从而导致大量的饮食和微生物Ag大量涌入,触发了T细胞的活化。

根据宿主的遗传组成,活化的T细胞可能保留在胃肠道内,导致肠道慢性炎症性疾病或迁移到几个不同的器官以引起全身性慢性炎症性疾病。”

与zonulin通路失调相关的慢性炎症疾病包括:

自身免疫性疾病如腹腔疾病、1型糖尿病、炎症性肠病、多发性硬化症和强直性脊柱炎

代谢紊乱如肥胖、胰岛素抵抗、非酒精性脂肪肝、妊娠期糖尿病、高脂血症和2型糖尿病

肠道疾病如肠易激综合征、非腹腔麸质敏感性和环境肠道功能障碍

神经炎症性疾病如自闭症谱系障碍、精神分裂症、重度抑郁症和慢性疲劳/肌痛性脑脊髓炎

癌症脑癌和肝癌

05 肠道菌群影响基因并可能影响癌症风险

2018年,发现的肠道菌群实际控制肝脏中的抗肿瘤免疫应答,并且抗生素可以改变免疫细胞的组成在肝脏中触发肿瘤生长。

哈佛医学院的研究人员已经确定了肠道微生物的特定种群,可以调节局部和系统的免疫反应来抵御病毒入侵。

某些肠道细菌也会促进炎症,炎症是几乎所有癌症的潜在因素,而其他细菌则会抑制炎症。某些肠道细菌的存在甚至可以增强患者对抗癌药物的反应。

肠道菌群提高癌症治疗效果的一种方法:

激活你的免疫系统,让它更有效地发挥作用。

研究人员发现,当这些特定的微生物缺失时,某些抗癌药物可能根本不起作用。

06 肠道菌群是抗病毒防御的一部分

最近的研究表明,肠道细菌也参与了抗病毒防御。

哈佛医学院的研究人员第一次确定了特定的肠道微生物群,这些菌群调节局部和全身免疫反应,抵御病毒侵略者。这项工作确定了一组肠道微生物,以及其中的一个特定物种,它能使免疫细胞释放出抗病毒化学物质——1型干扰素。

研究人员进一步确定了许多肠道细菌共有的确切分子,它开启了免疫保护级联反应。研究人员指出,这种分子并不难分离,可能成为增强人类抗病毒免疫的药物的基础。”

虽然这些发现还需要重复和证实,但它们指出了一种可能性:你也许可以通过在肠道中重新播种脆弱拟杆菌和拟杆菌科的其他细菌,来增强你的抗病毒免疫。

这些细菌启动一个信号级联,诱导干扰素的释放,通过刺激免疫细胞攻击病毒,并导致病毒感染的细胞自我毁灭来保护免受病毒入侵

具体来说,驻留在细菌表面的一个分子通过激活所谓的TLR4-TRIF信号通路触发干扰素的释放,这种细菌分子刺激免疫信号通路,该通路由9种toll样受体(TLR)之一启动,TLR是先天免疫系统的一部分。

07 维生素D的作用

最近的研究还强调了维生素D在肠道健康和全身自身免疫中的作用。一篇综述文章发表于《免疫学前沿》中:

自身免疫性疾病往往会导致维生素D缺乏症,这会改变微生物组和肠道上皮屏障的完整性

这篇综述总结了肠道细菌对免疫系统的影响,探讨了自身免疫疾病研究中出现的微生物模式,并讨论了维生素D缺乏症如何通过其对肠道屏障功能,菌群组成的影响而有助于自身免疫,和/或对免疫反应的直接影响。

维生素D对免疫系统具有多种直接和间接的调节作用,包括促进调节性T细胞(Tregs),抑制Th1和Th17细胞的分化,损害B细胞的发育和功能,减少单核细胞的活化和刺激来自免疫细胞的抗菌肽。

也就是说,维生素D自身免疫之间的关系很复杂。除了免疫抑制,维生素D还通过影响菌群组成肠道屏障的方式改善自身免疫性疾病。

该文章引用了一些研究,这些研究表明维生素D会改变肠道微生物组的组成。一般而言,维生素D缺乏倾向于增加拟杆菌和变形杆菌,而更高的维生素D摄入量则倾向于增加普氏杆菌并减少某些类型的变形杆菌和厚壁菌。

虽然关于维生素D对肠道细菌的影响的研究仍很薄弱,尤其是在患有自身免疫性疾病的患者中,但已知维生素D缺乏症和自身免疫性疾病是合并症,通常建议这些患者补充维生素D。

08 维持紧密连接所需的维生素D

众所周知,维生素D支持肠道和免疫细胞的防御。维生素D是维持紧密连接所需的关键成分之一

肠上皮与外部环境不断相互作用。上皮表面适当的屏障完整性和抗菌功能对于维持内稳态和防止特定微生物物种的入侵或过度定殖至关重要。

健康的肠上皮和完整的粘液层对于防止病原性生物入侵至关重要,而维生素D有助于维持这种屏障功能。多项研究发现,维生素D3 / VDR信号调节紧密连接蛋白的数量和分布。

作为一种可使离子进入肠腔的“泄漏”蛋白,在功能性维生素D缺乏症的情况下,claudin-2表达可能会导致结肠炎。

维生素D上调抗菌肽的mRNA和蛋白质表达,包括抗菌肽,防御素和溶菌酶。

抗菌肽主要由肠道Paneth细胞分泌,是微生物组组成的重要介质。

防御素由上皮细胞,Paneth细胞和免疫细胞分泌,并且是肠道固有免疫反应的重要组成部分。

09 维生素D如何导致自身免疫性疾病

维生素D缺乏症可能通过以下方式影响微生物组和免疫系统,从而导致自身免疫疾病:

维生素D缺乏或补充会改变微生物组,细菌丰度或组成的操纵会影响疾病的表现。

由于饮食不足而缺乏维生素D信号传导会损害肠道的物理和功能屏障完整性,从而使细菌之间的相互作用刺激或抑制免疫反应。

如果缺乏维生素D,先天免疫防御能力可能会受到损害。

Yamamoto Erin A et al.,Front Immunol, 2019

10 如何优化肠道微生物组

以上所有,我们可以看到,优化肠道菌群和维生素D水平对于保持健康至关重要。通过肠道菌群检测,查看自己的肠道菌群的构成,适当补充益生菌,维生素D将有助于避免肠道泄漏。

对肠道微生物组产生重大影响的最简单,最有效和最便宜的方法:定期食用发酵食品

健康的选择包括酸奶,纳豆和各种发酵蔬菜。

避免破坏或杀死微生物组,其中包括:

如果可以的话,尽量避免抗生素。抗生素杀菌一视同仁,不管好坏。

尽量少吃常规饲养的肉类和其他动物产品,因为这些可能会被喂食低剂量的抗生素。

尽量避免经基因工程处理和/或草甘膦处理的谷物。

少吃加工食品(由于过量的糖会滋生病原菌)

相关阅读:

维生素D与肠道菌群的互作

炎症性肠病中宿主与微生物群的相互作用

20种有效改善肠道健康的科学方法

深度解析 | 炎症,肠道菌群以及抗炎饮食

参考文献:

Krautkramer KA, Kreznar JH, Romano KA, Vivas EI, Barrett-Wilt GA, Rabaglia ME, Keller MP, Attie AD, Rey FE, Denu JM. Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Mol Cell. 2016 Dec 1;64(5):982-992. doi: 10.1016/j.molcel.2016.10.025. Epub 2016 Nov 23. PMID: 27889451; PMCID: PMC5227652.

Guglielmi Giorgia,How gut microbes are joining the fight against cancer.[J] .Nature, 2018, 557: 482-484.

Larsen Nadja,Vogensen Finn K,van den Berg Frans W J et al. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults.[J] .PLoS One, 2010, 5: e9085. 

Sturgeon Craig,Fasano Alessio,Zonulin, a regulator of epithelial and endothelial barrier functions, and its involvement in chronic inflammatory diseases.[J] .Tissue Barriers, 2016, 4: e1251384. 

Yamamoto Erin A,Jørgensen Trine N,Relationships Between Vitamin D, Gut Microbiome, and Systemic Autoimmunity.[J] .Front Immunol, 2019, 10: 3141. 

12