Tag Archive 感染

色氨酸代谢与肠内外健康稳态

谷禾健康

色氨酸(Tryptophan,简称 Try)是人体必需氨基酸,也是唯一含有吲哚结构的氨基酸,由食物尤其膳食蛋白质提供,是正常细胞稳态所必需的,是维持细胞生长和协调机体对环境和饮食线索的反应(其中色氨酸代谢物充当神经递质和信号分子)。

不同组织内的色氨酸代谢与许多生理功能有关:

  • 肝脏通过降解过量的色氨酸来调节色氨酸稳态。
  • 免疫细胞将色氨酸降解为犬尿氨酸在感染过程中免疫炎症和肿瘤反应的调节中起着至关重要作用。
  • 肠道色氨酸通过吲哚和芳烃受体(AhR)通路对于肠道屏障健康、肠道免疫功能和肠道感染抵抗力至关重要。

在哺乳动物中,色氨酸是代谢物的生化前体,显著影响哺乳动物的生理机能,包括胃肠道功能、免疫力、新陈代谢和神经系统。色氨酸及其代谢物水平的失衡与广泛的人类病理学相关,包括抑郁症、精神分裂症、自身免疫、神经退化和癌症。同时它也是自身免疫、癌症、神经退行性或肠道疾病的一个非常有吸引力的治疗靶点

本文将总结和讨论色氨酸色氨酸代谢的生理和病理学作用,肠道中色氨酸代谢物的产生和调控、肠道菌群衍生的色氨酸代谢物在全身健康稳态中的作用、以及基于色氨酸代谢药物开发的巨大机遇和挑战。

/

/

01
色氨酸 简介

色氨酸是一种必需氨基酸,是体内许多重要分子的前体。

如果您读过我们很多文章,可能读到比较多是短链脂肪酸。短链脂肪酸(SCFA),尤其是丁酸盐,通常会在肠道菌群失调和慢性疾病的状态下耗尽。

但短链脂肪酸只是肠道代谢物的一大类之一。其他两类——色氨酸代谢物和胆汁酸,在维持肠道健康方面发挥着同样重要的作用。所以我们也将逐步关注和分享它们。

● 什么是色氨酸?

色氨酸是一种氨基酸——我们体内蛋白质的众多组成部分之一。

色氨酸是一种必需的芳香族氨基酸,由连接到吲哚基团 3 位的 β 碳组成。在 20 种常见的经典氨基酸中,色氨酸的分子量最大

虽然色氨酸是蛋白质和细胞中含量最少的氨基酸,但它是大量微生物的生物合成前体和宿主代谢物

大多数游离色氨酸通过犬尿氨酸 (Kyn) 途径 (KP) 血清素途径降解为具有生物活性的化合物。

色氨酸分解代谢途径

血清素途径产生血清素,可进一步转化为 N-乙酰血清素 (NAS) 和褪黑激素,后者对于昼夜节律调节和抗衰老至关重要。

肠道菌群对色氨酸的吸收很重要,限制和调节宿主细胞的使用。在此过程中生成吲哚衍生物扩大了色氨酸分解代谢在不同组织器官中中的通讯作用。

色氨酸是体内许多其他化合物的重要前体,包括:

  • 褪黑激素,一种调节睡眠-觉醒周期的激素;
  • 烟酸(维生素 B3),一种帮助身体将食物转化为可用能量的营养素;
  • 血清素,一种神经递质,在情绪调节和肠道蠕动中发挥作用;
  • NAD,辅酶,沿着 KP 的色氨酸代谢是 NAD 从头合成的来源。

● 色氨酸 / 起源与生产

色氨酸是人体无法产生必需氨基酸,必须通过饮食获取,主要来自动物或植物性蛋白质来源

起源:酪蛋白分离

色氨酸是在 1900 年代初期从酪蛋白(一种在牛奶中发现的蛋白质)中分离出来后被发现的。几年后确定了它的分子结构。

释放:进入血液循环

小肠中膳食蛋白质的消化导致色氨酸的释放,色氨酸可以通过肠上皮细胞吸收并进入血液。色氨酸在血液中循环,主要与白蛋白结合,而在血液循环中只有 10-20% 的色氨酸是游离态被吸收的色氨酸以其游离形式循环或与外周血流中的白蛋白结合。

据报道,健康献血者的总色氨酸平均血清水平为 73 ± 14.9 μmol/l 。

游离色氨酸的一个重要生理功能是对宿主蛋白质合成的贡献。

除了作为蛋白质合成的成分外,色氨酸还是生产多种重要生物活性物质的必需底物。例如,色氨酸是血清素合成(情绪相关)以及褪黑激素(睡眠相关)合成的底物

全身和细胞色氨酸水平食物摄入量、生物转化以及降解色氨酸的途径酶活性共同决定。

● 色氨酸的常见天然食物来源

乳制品、燕麦、香蕉、豆类、黑芝麻、李子干、金枪鱼、奶酪、面包、家禽、花生、黑巧克力、鱼肉、三文鱼、杏仁、南瓜和南瓜子等。

世界卫生组织将推荐的色氨酸摄入量设定为 4 毫克/千克/天,迄今为止,没有关于饮食中色氨酸过量的不良影响的报道。

注:含有色氨酸的食物对于制造激素血清素至关重要。但不应高估其影响。

一般来说,动物蛋白中的色氨酸含量往往高于植物蛋白。虽然色氨酸可以补充形式服用,但最好将其作为全食物中完整蛋白质的一部分。

● 为什么需要色氨酸?

色氨酸在体内的浓度是所有氨基酸最低的,然而,色氨酸摄入量低与抑郁、焦虑、情绪低落、睡眠质量差、视觉认知能力下降以及学习和记忆受损有关。它还可能改变肠道微生物组并削弱肠道免疫力

另一方面人们普遍认为色氨酸过量会导致困倦。比如在美国的感恩节食用大量火鸡,火鸡中的色氨酸含量很高,进食大餐会刺激胰岛素的产生,而胰岛素会清除血液中除色氨酸以外的所有氨基酸,会导致困倦。

/

/

02
色氨酸 / 代谢

大量的数据表明色氨酸代谢的调节对环境条件很敏感,并且会影响生理和行为过程。

它因物种、细胞类型、诱导剂而异,并且可以通过组织之间的相互作用进行调节。

● 宿主色氨酸代谢

这里我们对色氨酸代谢先有个整体的认识:

色氨酸分解代谢主要两条通路:

  • 犬尿氨酸通路
  • 血清素通路

▸犬尿氨酸通路占整体色氨酸降解的约95%

色氨酸 (TRP) 通过犬尿氨酸 (KYN) 通路 (KP) 的分解代谢,该通路占整体色氨酸降解的约 95%,形成主要最终产物 NAD+。

注:犬尿氨酸通路是炎症和免疫反应的重要参与者。

首先,色氨酸被转化为N-甲酰基-L-犬尿氨酸

该反应由三种限速酶之一催化:

  • TDO(色氨酸 2,3-双加氧酶) -肝内
  • IDO1(吲哚胺 2,3-双加氧酶 1) -肝外
  • IDO2(吲哚胺 2,3-双加氧酶 2) -肝外

注:这三种酶都是血红蛋白,并使用分子 O2作为共底物,这也使它们能够利用活性氧 (ROS) 并调节细胞内的氧化还原平衡

IDO 和 TDO 酶不同的组织中表达,暴露于不同的刺激物时被诱导,表明它们在健康和疾病中具有不同的功能。

TDO 在基础条件下催化色氨酸分解,而在免疫调节中具有关键作用的 IDO-1 受到多种刺激物的诱导和调节,例如炎症信号 。

进一步的,N-甲酰基-犬尿氨酸形式酰胺酶将 N-甲酰基-L-犬尿氨酸水解为 L-犬尿氨酸

成为三种具有不同氧化应激和器官毒性特性的替代代谢物

  • 犬尿氨酸氨基转移酶 (KAT) 产生的犬尿酸 (KYNA);
  • 犬尿氨酸酶 (KYNU) 产生的邻氨基苯甲酸 (AA);
  • 犬尿氨酸 3-单加氧酶 (KMO) 生成 3-羟基犬尿氨酸 (3-HK)。

最终在3-羟基邻氨基苯甲酸3,4-双加氧酶(3-HAAO)的催化下,进一步分解为喹啉酸、烟酰胺腺嘌呤二核苷酸(NAD+).

肝外色氨酸犬尿氨酸通路不提供所有必需的酶;因此,其中间代谢物及其特性在这些病症的发病机制和调节中变得至关重要(下图)。

注:在生理条件下,肝外通路仅占整体色氨酸降解的 5-10%.

编辑​

B 族维生素作为辅因子起着至关重要作用

KP 对B族维生素浓度的变化很敏感。维生素 B6(5′-磷酸吡哆醛,PLP)的活性形式影响犬尿氨酸酶 (KYNU) 和犬尿氨酸氨基转移酶 (KAT)。

维生素B6缺乏后,会影响色氨酸代谢。

▸ 大约不到5%的色氨酸会转化为5-羟色胺

通过色氨酸羟化酶(TPH)催化生成5-羟色胺(5-HT),也就是血清素。

doi.org/10.3389/fendo.2019.00158

以上是色氨酸代谢的两种主要途径。感染压力肠道菌群的变化都可以将色氨酸代谢从 5-HT的产生分流到犬尿氨酸途径,因此如抑郁症之类的病理变化,与人类的营养因素、压力和免疫功能有关。


简化的人类色氨酸的主要代谢途径

doi: 10.3390/metabo10050208.

● 色氨酸微生物代谢

肠道微生物未吸收的 L-色氨酸 代谢成几个分子,如吲哚衍生物 [indole-3-aldehyde (IAld)、indole-3-acetic acid (IAA)、indole-3-propionic acid (IPA)、indole-3-acetaldehyde (IAAld)、吲哚-3-乳酸 (ILA) 和吲哚丙烯酸],还有色胺和粪臭素

最近表明,其中一些分子不仅由微生物群合成,而且还通过 L-氨基酸氧化酶 (IL-4I1) 的作用由肿瘤细胞合成,代谢 L -色氨酸 转化为吲哚-3-丙酮酸,随后转化为 IAA、IAld 和 ILA,从而以 AhR 依赖性方式逃避免疫系统、存活和肿瘤运动

AhR 信号免疫反应屏障位点的重要组成部分。它通过作用于上皮更新、屏障完整性和许多免疫细胞类型(如上皮内淋巴细胞、T 辅助 (Th)17 细胞、先天性淋巴样细胞、巨噬细胞树突状细胞和中。

肠道环境的细菌色氨酸代谢

由于不同的微生物拥有不同的催化酶需要两种以上细菌相互合作才能从色氨酸中产生一种代谢物。与动物内源性色氨酸代谢相对简单的背景不同,人类肠道环境在细菌色氨酸代谢方面相对复杂。

肠道菌群通过各种代谢途径产生多种色氨酸代谢产物,例如:

  • 梭状芽孢杆菌将色氨酸转化为色胺、吲哚乳酸(ILA)和吲哚丙酸(IPA);
  • 消化链球菌属(Peptostreptococcus spp.),包括P. russellii,P. anaerobius,P. stomatis可将色氨酸转化为吲哚丙烯酸(IA)和IPA;
  • 乳酸杆菌属(Lactobacilli. Lactobacillus spp.)通过芳香族氨基酸氨基转移酶(ArAT)和吲哚乳酸脱氢酶(ILDH)将色氨酸转化为吲哚醛(IAld)和ILA。

肠道中微生物群相关的色氨酸代谢

不同菌种可能存在相同代谢能力

比如:消化链球菌属的相同代谢功能可能是基于这些菌种拥有苯乳酸脱水酶基因簇,在下列菌群中也发现与它们产生IPA能力一致的同源基因簇

  • Clostridium cadaveris
  • Clostridium botulinum
  • Peptostreptococcus anaerobius

不同菌种之间也存在一定代谢能力差异

比如:几种拟杆菌属梭菌(Clostridium bartlettii)可以产生ILA和吲哚乙酸(IAA),而双歧杆菌属(Bifidobacterium spp.) 产生ILA 。

通过 5-HT、Kyn 和吲哚/AhR 途径的色氨酸代谢途径

doi.org/10.1016/j.chom.2018.05.003

吲哚也是一种种间信号分子,能够控制细菌生理学的各个方面,例如抗生素抗性、孢子形成和生物膜形成。

在不产生吲哚的细菌中,吲哚及其衍生物显着抑制群体感应并调节毒力因子。然而,这些复杂现象在肠道生态系统中的重要性尚未得到具体解决。

微生物代谢的作用在肠道 AhR 活性中占主导地位。事实上,无菌或失调小鼠的肠道内容物缺乏 AhR 激动剂。只有少数共生物种能够产生 AhR 配体,例如Peptostreptococcus russellii罗氏消化链球菌和乳杆菌属已被表征,许多可能仍有待发现。

● 肠道色氨酸代谢平衡

虽然大部分色氨酸被小肠吸收,但其中一些会继续进入大肠,在那里它可以被微生物和宿主细胞作用。从上一小节的阐述,我们可以看到色氨酸在肠道内的三个主要归宿:

1) 吲哚/AhR 通路

肠道细菌直接将色氨酸转化为吲哚和相关分子。就像钥匙一样,其中一些吲哚分子与整个肠道和其他器官细胞表面的芳烃受体 (AhR)结合。这会引发广泛的反应,促进肠道稳态。该途径的活性取决于饮食和微生物群的组成。

2) 犬尿氨酸(KP)通路

一些色氨酸被肠道上皮细胞和免疫细胞吸收,在那里它被 IDO1 酶转化为犬尿氨酸。犬尿氨酸可以进一步代谢为其他分子,例如具有神经毒性作用的喹啉酸。应激、炎症或感染会增加该通路的活性。

3) 血清素途径

色氨酸也被吸收到肠道肠内分泌细胞中,然后通过酶 TpH1转化为神经递质血清素。肠道中的血清素调节肠道运动、分泌和吸收,并在肠-脑信号传导中发挥作用。该通路的活性受禁食、饮食、肠道感染和某些微生物的影响。

当然,关键是平衡。在健康的肠道中,这三种途径是平衡的,从而产生最佳的肠道屏障功能、动力、免疫力和神经功能

宿主生理学中肠道菌群控制下的综合色氨酸代谢

doi.org/10.1016/j.chom.2018.05.003

慢性疾病中,上述三种途径的平衡似乎出现了偏差,导致肠道功能受损和系统性影响。

/

/

03
疾病中的色氨酸代谢

色氨酸及其代谢物水平的失衡与广泛的人类病理学相关,包括肠道疾病、抑郁症、精神分裂症、自身免疫、神经退化、癌症、心血管疾病、过敏、代谢综合征、肥胖、衰老等。

本章节我们对这些疾病中的色氨酸代谢先做个大致了解,后面章节会对各类疾病一一展开阐述。

由于许多 KP 代谢物具有神经活性,因此通常由炎症损伤引起的 KP 酶功能障碍可引发或促进中枢神经系统 (CNS) 疾病

对于中枢神经系统疾病,人们越来越关注通过靶向特定 KP 酶来纠正 KP 代谢物变阻器的变化以实现净神经保护作用,以及色氨酸及其代谢物在调节肠道微生物组和大脑之间的相互作用中的作用。

肠道微生物组对膳食色氨酸吸收和代谢的影响也越来越受到关注,并且与中枢神经系统疾病以及肠易激综合征、胰腺炎和糖尿病具有潜在相关性。

降低维生素 B2 浓度会导致依赖于黄素腺嘌呤二核苷酸的犬尿氨酸 3-单加氧酶 (KMO) 的活性降低。B 族维生素,包括核黄素 (RBF) 和吡哆醇 ,在预防中风和中风后恢复中发挥作用。据报道,异常 KP 与神经系统疾病、癌症、心血管疾病和中风有关。

色氨酸分解代谢——涉及的关键器官

doi.org/10.1038/s41573-019-0016-5

a | 摄入膳食蛋白质后,肠上皮细胞将L-色氨酸转运穿过顶膜进入间质和肠系膜循环。或者,肠道微生物群合成色氨酸并将其代谢为吲哚并将其释放到体循环中。

b | 然后色氨进入肝脏,其中大部分被氧化为乙酰乙酰辅酶 A 并用于合成 NAD+。沿着犬尿氨酸 (Kyn) 途径 (KP) 代谢色氨酸 的肝外器官,包括肾脏、脾脏和免疫细胞,对 Kyn 和 KP 代谢物的循环水平贡献最大。

c | 在促炎性刺激后由骨髓细胞释放的 KP 代谢物抑制 T 细胞反应。

d | 色氨酸、Kyn 和 3-羟基犬尿氨酸 (3HK) 被转运穿过血脑屏障并被星形胶质细胞、小胶质细胞和神经元吸收。星形胶质细胞主要产生具有神经保护作用的犬尿酸 (KA),而小胶质细胞产生具有神经毒性的 KP 代谢物,例如喹啉酸 (QA)。

大约 5% 的色氨酸被代谢为血清素 (5-HT)、5-羟基吲哚乙酸 (5-HIAA)、褪黑激素 (MEL) 和色胺 (TA)。最近研究表明,5-HT除了在神经传递、血管收缩或血管舒张、止血控制和血小板功能中的作用外,还参与调节人体的能量平衡、食欲、肠道蠕动、免疫力、肝脏修复以及心血管和肺部生理学。

疾病中色氨酸代谢的扰动

doi.org/10.1016/j.chom.2018.05.003

使用免疫组织化学监测 KP 代谢物的抗体的最新发展使得能够确定组织中 KP 代谢物的积累

这些工具表明,犬尿氨酸通路在 IDO1 阳性癌症中积累,兴奋性毒性代谢物喹啉酸在脑肿瘤神经退行性疾病的神经元中积累,而黄嘌呤酸 (XA) 是谷氨酸能突触传递的调节剂,定位于躯体和健康大脑中神经元的树突。

色氨酸代谢物与一系列疾病的联系导致人们在治疗上调节 KP 方面付出了巨大努力,特别是通过抑制所涉及的关键酶,包括 IDO1、TDO 和 KMO。

在癌症中,IDO1 和 TDO 的异常激活导致抗肿瘤免疫抑制。近年来 IDO1 抑制剂在癌症免疫治疗中得到了深入研究。

临床试验中有多种化合物,通常与免疫检查点抑制剂等其他药物联合使用。人们普遍预计领先的 IDO1 抑制剂将接近监管批准,但最近的 III 期试验终止引发了对该方法可行性的质疑,并强调需要更深入地了解 KP

/

/

04
神经系统疾病与色氨酸代谢

● 神经退行性疾病中的色氨酸代谢

色氨酸代谢与多种神经退行性疾病有关,包括亨廷顿病 (HD)、阿尔茨海默病(AD)、肌萎缩侧索硬化 (ALS) 和帕金森病 (PD)。

尽管病理生理触发因素各不相同,但所有这些疾病的共同点是容易聚集的蛋白质引起神经元退化,从而导致细胞应激和有害的先天免疫反应

基于人群的研究表明,就这些病理学特征而言,衰老神经退行性疾病之间存在相当大的重叠,个体间差异很大

虽然遗传和环境对色氨酸代谢的影响尚不完全清楚,但据信色氨酸代谢会导致衰老和神经退行性变,并且所涉及的机制即使不完全相同。这一观察得到了小鼠研究的支持,其中 TDO 的缺失已被证明会导致海马体和脑室下区的神经发生增强,可能抵消神经变性

尽管生物标志物研究表明色氨酸代谢在神经退行性疾病患者中的活性不同,目前尚不清楚这是原发性倾向的结果还是神经变性或附带的先天免疫激活的结果。流行病学研究表明,KP 的激活与痴呆症风险增加有关。

然而,很难与生理老化明确区分。KP 对感染性和炎症性损伤的敏感性明显损害了其作为神经变性标志物的稳健性。另一方面,炎症对 KP 的激活可能在多发性硬化症等疾病中的神经炎症和神经变性之间建立联系。

由色氨酸代谢介导的神经变性的潜在机制包括:

  • 通过色氨酸依赖性机制引起的蛋白毒性
  • 通过神经毒性色氨酸代谢物积累引起的兴奋性毒性
  • 通过 NAD +消耗引起的能量失衡

➤ 阿尔茨海默氏病

色氨酸代谢物、肠道微生物和相关的神经炎症变化对阿尔茨海默病的病理生理学有显着影响。

阿尔茨海默患者的肠道微生物分类有显着差异,厚壁菌门和放线菌门减少拟杆菌门增加。CSF 生物标志物升高与某些属的丰度相关,尤其是拟杆菌属和Blautia

一项研究中,发现阿尔茨海默患者的循环色氨酸显著减少尿氨酸/色氨酸比率升高,这反过来又与认知能力较差促炎细胞因子升高相关。

几项临床前研究表明,在阿尔茨海默动物模型中具有保护作用。色氨酸代谢产物以芳基烃受体依赖的方式调节小胶质细胞和星形胶质细胞的活化

此外,延缓阿尔茨海默进展的药物治疗的研究表明,肠道微生物和色氨酸代谢产物在阿尔茨海默的发展中可能发挥作用。

研究人员提供了犬尿氨酸代谢物在阿尔茨海默中的潜在毒性作用的间接证据,因为持续向小鼠腔内灌注犬尿氨酸会导致小鼠后代的学习和记忆缺陷

吲哚途径代谢产物也可能介导阿尔茨海默病的发病。吲哚途径代谢物IPA在体外可抑制淀粉样蛋白-β诱导的神经毒性,并已被开发为治疗阿尔茨海默的神经保护剂。

➤ 帕金森病

帕金森病是一种进行性神经退行性疾病,其中α-突触核蛋白的聚集导致黑质神经毒性,导致多巴胺能神经传递不足

大量数据表明肠道微生物组通过诱导炎性神经毒性参与帕金森发病机制。这些患者肠道拟杆菌属的丰度与运动症状严重程度和促炎性TNFαIFNγ水平相关。尤其是疣微菌门(Verrucomicrobia)与循环中较高水平IFNγ相关,说明了与IDO色氨酸代谢产物的可能相互作用。

最近的研究还表明,帕金森病患者的色氨酸代谢紊乱,是潜在的治疗目标。帕金森患者血浆中3-HK显著升高,3-HANA降低。在这些患者中,犬尿酸显著降低喹啉酸水平与疾病严重程度相关,表明色氨酸代谢产物在加重兴奋性毒性损伤中的潜在致病作用,尽管因果作用仍有待确定。

帕金森患者脑脊液和血浆中的犬尿氨酸/色氨酸比率升高,犬尿氨酸转氨酶活性降低。因此,犬尿酸合成类似物已成为治疗帕金森、亨廷顿病和阿尔茨海默病的神经保护药物。

➤ 其他神经退行性疾病

已知 NMDA 受体过度激活和随之而来的神经元兴奋性毒性在几种神经退行性疾病的发病机制中发挥作用。

——肌萎缩侧索硬化症

犬尿酸可能作为一种内源性神经保护剂发挥其拮抗 NMDA 受体过度激活的作用。临床数据表明了潜在的作用。晚期和延髓起病的肌萎缩侧索硬化症患者的 CSF 中 KA 水平显着升高

——亨廷顿病

在亨廷顿病患者中,产生自由基的 3-HK 在早发性疾病中高度升高,同时纹状体和皮质喹啉酸升高。然而,对于更晚期的疾病,这些浓度会降低

虽然亨廷顿病患者的 CSF 中犬尿酸水平升高,对亨廷顿病大脑的尸检分析显示,与对照组相比,犬尿酸浓度降低血清犬尿氨酸/色氨酸 比率升高。有趣的是,谷氨酰胺重复次数和疾病严重程度与循环色氨酸水平呈负相关

亨廷顿病大鼠模型表明 3-HK 增强了神经兴奋性毒性,而自由基清除剂抑制了这种作用。

犬尿酸的合成类似物在原位产生神经保护和抗癫痫作用。鉴于IPA的抗氧化作用,研究人员还提出使用这种吲哚衍生物对亨廷顿病患者进行神经保护。

➤ 多发性硬化症

多发性硬化症是一种慢性、进行性和复发性中枢神经系统炎性脱髓鞘疾病。许多证据表明,这主要是由B和T细胞驱动的过程。最近,许多靶向B细胞和T细胞活化的药物被证明在预防复发方面具有临床疗效。

多发性硬化患者肠道菌群变化

多发性硬化患者粪便样本的微生物组分析显示,与对照组相比,多发性硬化患者中的MethanobrevibacterAkkermansia增加Butyricimonas 减少

肠道微生物代谢产物参与多发性硬化发病

色氨酸代谢产物和I型IFN信号已显示在多发性硬化的实验性变态反应性脑脊髓炎(EAE)模型中激活星形胶质细胞AHR,从而抑制中枢神经系统炎症

评估这种疾病中的犬尿氨酸途径的研究取得了有趣的结果。复发患者犬尿酸水平升高,而尸检样本显示犬尿氨酸转氨酶活性降低

此外,喹啉酸可能诱导少突胶质细胞凋亡,导致脱髓鞘损伤。在其他EAE模型中,数据显示了有毒的犬尿氨酸代谢产物的集中聚集

在这些模型中,肠道微生物也会影响中枢免疫,因为继发于微生物变化的免疫过度激活会加剧炎症损伤

● 神经精神疾病中的色氨酸代谢

KP 的不平衡导致具有特定神经活性特性的代谢物过多,被认为是导致多种神经精神疾病的原因

 焦虑和抑郁

色氨酸代谢产物,尤其是血清素,与焦虑和抑郁的发病机制密切相关。

促进中枢5-羟色胺可用性的药物,特别是选择性5-羟色胺再摄取抑制剂(SSRIs)、MAO抑制剂(MAOIs)和三环类抗抑郁药(TCAs)已经彻底改变了这些疾病的治疗。

重度抑郁症、自杀倾向与喹啉酸水平升高相关

例如,重度抑郁症与 KP 的 3-羟基犬尿氨酸 (3HK) 分支下的新陈代谢增加有因果关系,导致大脑神经毒性喹啉酸水平高于神经保护性 KA。

同样,与 KA 和吡啶甲酸相比,喹啉酸水平升高也与自杀倾向相关。社会心理压力、感染或细胞因子治疗引起的免疫激活会导致抑郁症状。

系统性 IDO1 激活与抑郁症中 3HK 分支的激活有关

小鼠中的 IDO1 抑制或敲除可减轻抑郁样行为,细胞因子诱导的抑郁症易感性与 IDO1 基因的多态性有关。因此,系统性 IDO1 激活被认为与抑郁症中 3HK 分支的激活有关,但目前尚不清楚为什么 KA 和喹啉酸在对 IDO1 诱导的反应中没有同样上调。

随着对不同疾病过程中肠道微生物组组成的理解的增加,很明显,肠道微生物可能在这些疾病的起源和临床表型中发挥关键作用。

无菌小鼠表现出比常规饲养小鼠更焦虑的行为,这种行为在宿主断奶后不易随着微生物的重新繁殖而逆转,这表明肠道微生物组可能支持心理发育的关键时期

一些益生菌在动物模型和人类中显示出减少焦虑和抑郁的功效。

补充色氨酸减少焦虑?仍然存在争议

  • 补充色氨酸可以减少焦虑,可能是通过提供充足的底物转化为血清素。
  • 在无菌小鼠中发现过多的色氨酸与焦虑行为相关,这表明焦虑和抑郁的病理生理学比单纯由色氨酸缺乏导致的更为复杂。

瑞士乳杆菌R0052长双歧杆菌R0175等物种的益生菌分别降低了小鼠和人类的焦虑增强情绪幸福感和抑郁症状。

患有抑郁症患者粪便微生物移植的小鼠表现出更严重的焦虑,这与更高的循环犬尿氨酸和犬尿氨酸/色氨酸比率有关。

有趣的是,已知慢性应激增加循环色氨酸和皮质醇,由于糖皮质激素诱导的TDO表达增强,导致5-羟色胺代谢向犬尿氨酸及其代谢产物分流

小鼠应激诱导的结果表明,外源性丁酸盐调节应激诱导的抑郁行为,降低海马血清素,增加海马脑源性神经营养因子(BDNF)。

肠道微生物群被抗生素耗尽的小鼠表现出类似焦虑的行为,循环的犬尿氨酸升高。在喂食高脂肪饮食的肥胖大鼠中,花青素可以防止神经炎症,并且循环色氨酸降低犬尿酸增加

➤ 精神分裂症

色氨酸向血清素的转换可能在精神分裂症的发病机制中受损,因为某些TPH1多态性增加了对精神分裂症和自杀的易感性

精神分裂症患者 KA 的水平升高,与认知缺陷相关

精神分裂症和精神病似乎是由 NMDA 受体拮抗剂 KA 的形成增加引起的。在精神分裂症患者的死后大脑和脑脊髓液中测量到 KA 水平升高KA 水平升高与在精神分裂症中观察到的认知缺陷相关、而KA 形成减少与认知功能改善相关。

同样,特别是在发育中的大脑中的神经炎症与精神分裂症的认知缺陷特征有关。KMO中的单核苷酸多态性基因与精神分裂症和双相情感障碍相关,这表明 KP 3HK分支下的流量减少可能使 Kyn 转向 KA 形成,KA 的积累与这些疾病有关

脑脊液中低5-HIAA水平与自杀和攻击行为相关

由于精神分裂症患者皮质犬尿酸水平升高,犬尿氨酸代谢产物也可能起到致病作用。动物模型研究表明,色氨酸抑制攻击性行为,可能与增加中枢血清素的可用性有关。

小胶质细胞突触修剪过度激活

Sekar及其同事发表了一项具有里程碑意义的全基因组关联研究,该研究确定了与精神分裂症发病机制有关的基因位点,这涉及补体C4介导的小胶质细胞突触修剪过度激活。

肠道失调与免疫失调联系起来

鉴于肠道微生物组在介导中枢免疫中的既定作用,以及病例对照研究在精神分裂症患者中的优势,研究人员试图将肠道失调免疫失调联系起来,导致大脑发育关键时期突触修剪过度活跃。

流行病学研究也支持这样的假设,即全身感染诱导的母体免疫激活后代患精神分裂症的独立危险因素

最近的一项研究表明,产前免疫暴露导致额叶皮质C4活性上调。母体微生物组向后代的垂直转移也可能导致持续的免疫功能障碍,增加突触过度修剪的风险

需要进一步的机制研究来了解肠道微生物、色氨酸代谢产物和宿主免疫在精神分裂症和其他神经发育障碍发病机制中的相互作用。

➤ 自闭症

根据循环色氨酸的临床研究和排泄的犬尿氨酸代谢产物的检查,自闭症谱系障碍患者可能缺乏色氨酸

自闭症患者来源的淋巴母细胞的代谢组学分析显示,当色氨酸唯一可用的能量来源时,NADH生成减少,表明这些患者的喹啉酸降解途径可能受损

某些微生物物种可能参与了自闭症的发病机制

几项评估自闭症患者肠道微生物丰度差异的研究将自闭症症状与Prevotella、Coprococcus、Veillonellaceae丰度较低联系起来。

脆弱拟杆菌(一种胰蛋白酶合成细菌),可能会降低自闭症患者的色氨酸可用性。非色氨酸衍生的微生物代谢产物也可能起到因果作用,一项观察自闭症小鼠母体免疫激活(MIA)模型中肠道微生物代谢产物的研究显示,微生物代谢产物4-乙基苯基硫酸盐增加了46倍,如果小鼠被脆弱拟杆菌定殖,则其正常化。

色氨酸代谢在肠道菌群-脑轴中的潜在作用

doi: 10.1093/advances/nmz127

通过各种方式(例如,抗生素和益生菌)对肠道微生物群组成和代谢的调控有助于在 5-羟色胺合成和色氨酸降解途径之间改变中枢色氨酸代谢,从而影响大脑功能和行为。

●  中枢神经系统疾病中靶向 KP 酶

尽管临床试验的重点(部分仍然是)补充或剥夺色氨酸或其代谢物以治疗神经精神疾病,但目前神经退行性和神经精神疾病药物开发的临床前工作主要集中在通过改变神经活性 KP 代谢物的变阻器抑制参与 喹啉酸或 KA 形成的酶

从概念上讲,所有 KP 酶都代表潜在的治疗靶点,并且有几项研究调查了药理学抑制的影响。

例如,IDO1 抑制剂黄连碱已被证明可以减缓阿尔茨海默小鼠模型的认知障碍,尽管其对 IDO1 的特异性尚不清楚。

有趣的是,环氧合酶抑制通过抑制海马 TDO 表达,来防止类似阿尔茨海默模型中的行为下降。当使用 TDO 的药理学抑制剂时,观察到类似的神经保护作用。这些研究连同阿尔茨海默病和亨廷顿病患者中 KP 激活的证据, 表明抑制色氨酸降解中限速的第一个酶促步骤是一种潜在可行的治疗方法,可以抵消由淀粉样蛋白形成蛋白的积累引起的神经毒性

尽管 IDO1 和 TDO 的抑制剂阻止了 KP 代谢物的产生,但这不会直接影响 KA/喹啉酸 喹啉酸变阻器,但会阻止两者的产生。这种治疗方法是可行的,因为它可以防止色氨酸的消耗,这可以减少在临床前模型中观察到的蛋白质毒性。

KAT 在辅助因子 pyridoxal-5-phosphate (PLP) 的帮助下催化 Kyn 转化为 KA。KATII 是哺乳动物大脑中最普遍的 KAT,并且正在寻求作为精神分裂症和认知障碍疾病的药物靶点。由于最近显示 KATII 也能催化 3HK 105形成 XA ,因此之前归因于 KA 的基于抑制 KATII 的效应也可能涉及 XA。

▸ KATII 抑制剂

KATII 的可逆抑制剂已经开发出来,包括 Kyn 类似物 (S)-4-(ethylsulfonyl)benzoylalalanine ( S -ESBA) ,它被证明可以降低大鼠大脑中的 KA 水平

高效和选择性脑渗透不可逆抑制剂 PF-04859989 也报道了相同的抑制模式。然而,这些化合物都没有进入临床研究,这可能是由于它们与 KAT 同工酶和所有其他 PLP 依赖性酶所需的 PLP 辅因子发生不可逆相互作用而引起的毒性。

将 KATII 抑制剂推进临床试验的主要挑战包括由脑 KA 水平降低引起的潜在毒性、获得足够的效力和选择性以及 KATII 抑制剂效力的种间差异的发生。

▸ KMO 抑制剂

为了抑制 KP 的 喹啉酸分支和增加拮抗 KA 水平,KMO 抑制剂正在积极开发中。有关 KMO 晶体结构的信息有助于生成特异性更高的 KMO 抑制剂。众所周知的 KMO 抑制剂 Ro 61-8048已用于大量临床前研究,证明其作用范围从改善神经变性到减少大麻素滥用。

另一种广泛使用的工具化合物,UPF-648, 是一种不含氨基的 Kyn 类似物,在构象上受到环丙基环的限制。这种化合物,以及高效的恶唑烷酮 GSK180(在胰腺炎的背景下研究),是所谓的 I 型 KMO 抑制剂,它模仿 Kyn 并刺激有害的过氧化氢产生。

在一项基于结构的药物化学合作研究中,开发并评估了一种新的芳基嘧啶先导化合物 CHDI-340246,用于治疗 HD。然而,这种选择性 KMO 抑制剂的长期治疗并未显着改变 HD 小鼠模型的行为表型或自然进展,尽管它恢复了电生理学改变。

结构研究最近破译了 I 型和 II 型KMO抑制剂112、121之间的区别。II 型 KMO 抑制剂 GSK065 和 GSK366 显示出比 I 型 KMO 抑制剂更好的类药特性,因为它们具有皮摩尔亲和力、增加的停留时间和不产生过氧化物。

GSK065以GSK3335065(NCT03245619)的名称进入治疗胰腺炎的I期临床试验。有趣的是,KMO 抑制剂的外周给药足以影响 CNS KP 。然而,KMO 抑制剂是否需要穿透血脑屏障才能发挥作用,这仍然是一个有争议的问题。

最后,抑制初始限速 KP 酶 IDO1 和 TDO,它们分别在炎症条件或慢性社会心理压力下诱导,在神经退行性疾病和精神疾病中也可能值得探索。由于这些酶的抑制剂目前正在开发用于癌症治疗,因此可以使用多种化合物在临床环境中测试这些方法。

/

/

05
传染性疾病与色氨酸代谢

● 感染中的色氨酸代谢

几条证据最近揭示了色氨酸代谢作为宿主-病原体相互作用塑造宿主微生物群中免疫反应的重要调节因子的关键作用

通过特定的色氨酸代谢酶,色氨酸代谢在细菌、病毒、真菌和寄生虫感染部位增加。通常以低基础水平表达,在抗原呈递细胞 (APC)中观察到 IDO1 增加,例如树突细胞 (DC) 和巨噬细胞,以响应多种微生物刺激,包括 Toll 样受体 (TLR) 配体(例如,脂多糖 (LPS) , CpG 寡核苷酸和聚肌胞苷酸 。

炎症刺激物诱导IDO1,IDO1 会耗尽色氨酸

此外,据报道,I 型和 II 型干扰素 、肿瘤坏死因子 (TNF)、前列腺素 和膜结合分子 等炎症刺激物可在特定APC类型中诱导IDO1。

在传染病中,IDO1 活性具有多效性,是一把双刃剑。实际上,IDO1 会耗尽色氨酸以饿死和重新编程营养缺陷型入侵者,同时有助于对在急性感染期间未清除的微生物产生 Kyn 依赖性免疫抑制状态或那些已经能够重新激活色氨酸生物合成的。

因此,已经表明色氨酸营养缺陷型病原体对 CD4 + T 细胞激活的巨噬细胞高度敏感。 在特定的环境条件下,色氨酸的微生物营养缺陷型可能会消失。

特定条件微生物重新获得合成必须氨基酸的能力

某些微生物可以在特定的胁迫条件下重新获得合成这种必需氨基酸的能力。此外,天然能够合成色氨酸的微生物群菌株可以在特定感染期间扩大,从而在色氨酸缺乏的条件下提供额外的这种必需氨基酸供应

最近的研究结果表明,结核分枝杆菌等特定病原体可以在压力条件下重新获得合成色氨酸的能力,从而抵消 IDO1 饥饿驱动的抗菌作用。

此外,衣原体在由局部色氨酸剥夺引起的应激条件下进入非复制的持久状态。同样,IDO1 依赖性持久性已被记录在其他细菌物种中,包括肺炎积瘤。

除了调节病原体负荷外,通过 IDO1 活性进行的色氨酸代谢对于抑制最终阻止病原体根除的免疫病理也至关重要。

在这方面,最近对肠道微生物群的研究发现:

色氨酸代谢与通过充当特定 AHR 配体的微生物或细菌毒力因子在粘膜屏障表达的 AHR 激活之间存在重要联系。

值得注意的是,AHR +由于产生色氨酸代谢物(即吲哚 3 醛)的乳酸杆菌的选择性扩增,即使在 IDO1 缺乏的情况下,也会诱导产生IL-22 的第 3 组先天淋巴样细胞 (ILC3s)能够激活 AHR,从而在真菌感染模型中诱导保护性耐受状态。

TDO 在感染过程中的潜在作用

用 LPS 攻击的小鼠肝脏中 TDO 表达增加,而 TDO 缺陷小鼠更容易受到内毒素攻击。因此,在对弓形虫和金黄色葡萄球菌感染进行的体外研究中,已经报道了 TDO 依赖性抗菌和免疫调节作用。此外,代谢组分析揭示了原发性登革热感染患者 TDO 激活的变化。

因此,在宿主细胞中的三种不同色氨酸分解代谢酶中,IDO1 的影响已在几种临床前感染模型中得到解决。具体而言,据报道,IDO1 在体内抑制某些细胞内寄生虫和细菌的复制,例如弓形虫、衣原体和杜氏利什曼原虫。另一方面,弱 IDO1 抑制剂 1-甲基- L – Trp (L-1-MT) 增强了沙眼衣原体抗生素清除的功效,尽管可能涉及额外的 IDO1 独立机制。

IDO1活性还可以在体外抑制特定病毒的复制

例如人巨细胞病毒 (CMV)、2 型单纯疱疹病毒和痘苗病毒。然而,体内情况可能有所不同,因为病毒感染可能会诱导 IDO1 和 KP 逃避宿主免疫反应

由于它们具有诱导 Treg细胞的能力 ,因此 IDO1 消耗色氨酸并产生 Kyn 是抑制抗菌 TH17 和 TH1 驱动的炎症的重要手段

因此,病原体可能会劫持 IDO1 的免疫抑制作用,并利用它们来促进自身的生命周期。在这方面,尿道致病性大肠杆菌(UPEC) 在泌尿道的上皮细胞中诱导 IDO1 ,并且色氨酸分解代谢的免疫反应减弱使得 UPEC 能够成功定植。

HIV-1 等病毒利用 IDO1 的免疫抑制活性建立 HIV 慢性感染

KP 活性的增加也与丙型肝炎病毒感染患者的进行性肝硬化有关。

同样,小鼠感染甲型流感/PR/8/34 (PR8) 会刺激肺部和肺引流纵隔淋巴结中 IDO1 活性的快速升高,导致发病率增加、恢复减慢和肺部效应 T 细胞反应降低,尽管在原发性甲型流感病毒感染期间,IDO1 诱导不会影响病毒清除。在其他情况下,例如在真菌感染中,IDO1 可用作建立共生或慢性感染的逃避机制。

● 在传染病中靶向 KP 酶

在选定的微生物物种中调节特定的色氨酸生物合成途径并靶向宿主细胞中的 IDO1-AHR-微生物群轴可能代表了抗生素开发或补充抗病毒疗法的新颖有吸引力的策略。有必要更全面地了解特定感染期间色氨酸分解代谢酶或下游酶的作用,以便了解旨在调节色氨酸分解代谢以根除病原体同时保持与微生物群平衡的疗法的效用。

基于以上总结的证据,可以假设特定的 IDO1 阻断剂可能会发现潜在的应用作为辅助疗法来提高抗病毒药物的疗效,但可能证明对真菌感染有害,其中色氨酸分解代谢主要通过 IDO1 作用于维持免疫稳态和保护性耐受

然而,这种作用可能构成使用 IDO1 抑制剂作为抗肿瘤药物的潜在缺点(下面讲)。实际上,在使用 IDO1 通路调节剂 1-甲基-D -Trp (D-1-MT)对转移性实体瘤患者进行的 I 期试验中,感染是最常见的不良事件

有趣的是,最近的一项研究表明,KYNU 的靶向抑制会影响铜绿假单胞菌基因表达和群体感应,这表明一种新的潜在抗毒策略。具体而言,与 Kyn 具有结构相似性的S-苯基-L-半胱氨酸亚砜可抑制对铜绿假单胞菌毒力至关重要的邻氨基苯甲酸盐的产生。

/

/

06
自身免疫性疾病与色氨酸代谢

● 自身免疫中的色氨酸代谢

自身免疫是未能发展出对自身的中枢(胸腺)耐受性和外周耐受性维持不足的结果。免疫区室中的色氨酸代谢主要由 IDO1 启动,它代表主要促炎刺激的靶基因。

在这方面,IDO1 介导的色氨酸降解可被视为调节过度活跃的免疫反应的关键反馈机制,这是自身免疫性疾病的标志

IDO1 在发炎组织中转录激活抑制适应性免疫反应的作用已经从最初在胎盘中观察到的维持胎儿耐受性扩展到多种自身免疫性疾病

尽管 IDO1 缺陷不会导致与 Treg细胞重要检查点缺陷相关的整体自身免疫表型,但它与更微妙的炎症表型相关。这种关联可能部分是由于与其他双加氧酶共享的酶功能冗余。越来越多的证据表明,人类自身免疫性疾病是由免疫和/或基质细胞未能上调 IDO1 以响应炎症刺激驱动的。

然而,与自身免疫相关的上调 IDO 的结构性缺陷的潜在原因尚未阐明。连锁分析将IDO1和IDO2基因的多态性分别与克罗恩病的严重程度和风险相关联。需要进一步的研究来确定上调组织中色氨酸代谢的本构或诱导缺陷是否会导致组织特异性自身免疫。

许多针对多发性硬化症、类风湿性关节炎、狼疮和自身免疫性糖尿病的自身免疫性疾病小鼠模型的研究已经证明色氨酸代谢在调节疾病活动中的相关性。

综上所述,这些研究表明 IDO1 在组织驻留的骨髓细胞中表达,并限制自身抗原和炎症病理学的先天性和适应性免疫。

然而,自相矛盾的是,在自发性类风湿性关节炎的动物模型中,使用 D/L-1-MT 对 IDO1 的药理学抑制减轻了疾病的严重程度,这可能是自身反应性 B 细胞活化减少的结果。

这一发现说明了 IDO1 在自身免疫中的复杂免疫调节功能,这取决于细胞区室。例如,B 细胞中免疫抑制细胞因子 IL-10 的表达依赖于 IDO1,这表明 IDO1 不仅会触发免疫抑制机制,还会协调对炎症的复杂免疫调节反应。

重要的是,转录激活和蛋白质表达不一定转化为人类 B 细胞中描述的酶活性。 在这方面,需要更多的研究来阐明 IDO1 的非酶功能。

此外,需要谨慎看待使用 D-1-MT 得出关于 IDO1 功能的关键结论的研究,因为 D-1-MT 不会抑制 IDO1 并显示出相当大的脱靶效应,从而导致 p38 MAPK 通路的激活

对自身免疫性疾病模型的研究表明,与 IDO1 相比,IDO2 充当自身免疫的促进者,特别是由于体液免疫反应的调节。由于致病性自身抗体和抗体分泌细胞的减少,IDO2 缺陷小鼠表现出关节炎症减少。尽管与人类疾病的相关性仍不清楚, 这些研究突出了双加氧酶对色氨酸代谢的复杂和高度分隔的调节。

尽管 IDO1 介导的免疫调节的主要作用被认为是由组织炎症的局部微环境中的活动驱动的,但在患有自身免疫性疾病的患者中观察到色氨酸代谢的全身激活。在干燥综合征患者中,血清中色氨酸的降解增加,并与循环 Treg细胞频率增加有关。

相比之下,在多发性硬化症中,血清中的 IDO1 活性与健康对照相比没有显着差异,但抗炎治疗降低了 IDO1 活性。由于全身性 IDO1 活性会受到大量非特异性和难以控制的刺激的影响,包括感染、压力和营养,尝试通过循环色氨酸代谢物监测组织特异性自身免疫将具有挑战性。然而,对血清中 KP 代谢组的更详细分析不仅揭示了 KP 在多发性硬化症患者中的激活,而且还将 KP 活性的程度与疾病严重程度相关联。因此,KP 活性可以作为能够指导多发性硬化症治疗的预测性生物标志物

● 靶向自身免疫性疾病中的色氨酸代谢

在治疗上针对色氨酸代谢的努力主要集中在开发具有 Kyn 样特性的药物上。

曲尼司特

曲尼司特是一种具有 AHR 激动特性的 AA 衍生物,能够在多发性硬化症和类风湿性关节炎的临床前模型中诱导免疫耐受和改善疾病活动。然而,一项针对类风湿性关节炎患者的 II 期临床试验(NCT00882024)因肝毒性而终止。

拉喹莫德

拉喹莫德是一种喹啉甲酰胺,在开发治疗多发性硬化症时显示出与 KA 的结构相似性,它以 AHR 依赖性方式抑制多发性硬化症临床前模型中的自身反应性 T 细胞免疫和疾病活动

在针对复发和进行性多发性硬化症患者的一系列 II/III 期临床试验中,拉喹莫德未达到预先指定的主要终点,包括减少复发率和残疾进展,因此被终止 (NCT01707992)。

AHR 配体改善自身免疫神经炎症

AHR 的特定内源性配体足够稳定,可以在临床前疾病模型中进行肠胃外给药。2-(1’H-indole-3′-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) 通过以 AHR 依赖性方式诱导致耐受性 DC,在实验性自身免疫性脑脊髓炎 (EAE) 模型中诱导 Treg细胞并改善自身免疫性神经炎症

AHR 激活配体也可以与自身抗原偶联,从而导致 APC 的特异性靶向,然后耐受性抑制自身反应性 T 细胞反应,从而抑制系统性自身免疫

从概念上讲,色氨酸代谢也可以通过全身给药色氨酸来增强,色氨酸在口服灌胃后会迅速代谢成 Kyn。尽管这种方法导致 TH17 免疫力的不同抑制,但这并不转化为实验性自身免疫性神经炎症的改善。

阻断IDO1降解,维持外周耐受性

认识到蛋白酶体降解是调节自身免疫中色氨酸代谢的免疫抑制活性的重要机制后,另一种治疗途径是阻断IDO1降解,从而维持外周耐受性

硼替佐米是一种批准用于治疗多发性骨髓瘤的蛋白酶体抑制剂,可防止 IDO1 降解并以 IDO1 依赖性方式在临床前动物模型中改善自身免疫性糖尿病。

基于 IDO1 感受态细胞的疗法

尽管间充质干细胞的过继转移已被证明可以独立于IDO抑制自身免疫性神经炎症的临床疾病活动,但 IDO1 已被证明在其他自身免疫性体内疾病模型中与间充质干细胞的免疫抑制特性密切相关。

增强或诱导宿主 IDO 表达的另一种方法是通过局部基因治疗。例如,腺病毒将 IDO1 递送至移植器官可诱导免疫耐受并防止大鼠发生移植排斥反应。

IDO2 直到最近才成为潜在的治疗靶点

迄今为止,还没有对 IDO2 具有足够特异性的小分子。在自身免疫性关节炎的临床前模型中,一种通过内化靶向 IDO2 的抗体通过抑制自身反应性 T 细胞和 B 细胞减轻了疾病。

新开发的 IDO2 特异性测定系统和基于计算结构的研究可能有助于开发对 IDO1 没有交叉反应的 IDO2 抑制剂。

/

/

07
炎症性肠病与色氨酸代谢

● 肠 病

最近研究强调了肠道色氨酸代谢的改变与肠道微生物的潜在联系。发现 IBD 患者微生物群产生的 AhR 配体减少,这是受遗传因素的影响。与健康受试者相比, 肠道组织中 AhR 的表达降低

IBD还与宿主和肠道细菌色氨酸代谢物的改变有关。IBD 患者的犬尿氨酸和 KA 血浆水平升高,血浆色氨酸浓度降低

几种特定的肠道细菌色氨酸代谢物也参与 IBD 的病理生理学

在患有 IBD 的狗中,被认为在肠道中具有抗炎功能的细菌色氨酸代谢物(吲哚乙酸盐吲哚丙酸盐显着减少。在 IBD 患者中,粪便中 IAA(肠道抗炎功能)水平降低,表明细菌色氨酸代谢减少可能是 IBD 的病因。

此外,在 IBD 患者中,可利用 α-L-岩藻糖苷酶从肠粘蛋白中切割末端岩藻糖残基的细菌数量显着减少,这与来自色氨酸的吲哚丙烯酸吲哚-3-丙酸产量减少有关。

IBD 患者的 IDO1 活性更高

据报道,IBD 患者外周血和结肠细胞中的 IDO1 活性增加。在 IBD 中,增加的促炎细胞因子,包括 IFN-γ、IL-1 和 IL-6,已被建议诱导色氨酸分解代谢途径以降低血浆色氨酸水平,并增加色氨酸分解代谢物水平。

此外,UC 患者血清中的 IPA 降低。在肠道局部观察到 IDO1 过度激活和免疫系统过渡激活。与非活动性 IBD 患者相比,活动性 IBD 患者的 IDO1 活性更高,并且色氨酸和 C 反应蛋白血清水平呈负相关,这一假设得到了支持,C 反应蛋白是一种常用的生物标志物,对炎症反应增加。

IBD 中 5-HT 通路激活的状态存在争议。限速酶TpH1的表达增加在克罗恩病中已报道。

小鼠研究表明AhR 缺乏会增加实验性结肠炎的严重程度

这种结肠炎是由 T 细胞转移或通过施用葡聚糖硫酸钠 (DSS) 以化学方式驱动的。在这些模型中,AhR 缺陷部分通过改变白细胞介素 (IL)-22 的产生来驱动结肠炎,白细胞介素 (IL)-22 是一种对肠道稳态具有众所周知影响的细胞因子。

缺乏 caspase 募集域 9 (Card9)(一种 IBD 易感基因)的小鼠的肠道菌群失调无法将色氨酸催化成 AhR 配体,导致 IL-22 释放减少并最终导致Card9的易感性更高-/-小鼠对 DSS 诱导的结肠炎 。

人类中也发现了一些功能相关性,因为 AhR 的药理学激活减少了促炎细胞因子干扰素 (IFN) γ 的产生,并增加了 IBD 患者固有层单核细胞中 IL-22 的产生。

此外,正如在患有 UC 的人类中观察到的那样,IPA 和吲哚在 DSS 诱导的结肠炎小鼠血清中减,另外的证据表明口服 IPA 在该模型系统中具有保护特性。

KP 的改变也可能在机制上参与 IBD 发病机制

IDO1 -/-小鼠更易患结肠炎,表明 IDO1 是肠道炎症的负调节剂。与 IDO1 缺乏相关的病理损伤部分是由于促炎细胞因子的激活和结肠中 CD4+ Foxp3+ 调节性 T 细胞数量的减少。然而,所涉及的确切机制和代谢产物仍然未知。

众所周知,Kyn 是一种 AhR 激动剂,但在肝癌细胞系中引发报告基因 AhR 活性所需的浓度让人怀疑它在生理条件下作为 AhR 激活剂的相关性,可能涉及导致抗炎代谢物(如 Kna)缺乏的下游代谢途径的改变,但这仍有待证明。在 IBD 的背景下,来自失调微生物群的异常信号可能是 KP 的驱动因素

5-HT 加重肠道炎症

化学诱导的结肠炎的严重程度在TpH1 −/−小鼠和用 5-HT 合成抑制剂对氯苯丙氨酸处理的小鼠中减弱,表明 5-HT 加重肠道炎症。此外,删除 SERT 会导致 5-HT 可用性增加,从而导致实验性结肠炎恶化。

这些促炎作用可能部分是由DC上 5-HT 7受体的激活驱动的。然而,新的线索表明 5-HT 还通过作用于 5-HT 4 发挥抗炎作用对肠上皮细胞屏障功能产生积极影响。

总之,这些数据表明在 IBD 中观察到的色氨酸代谢改变可能在疾病发病机制中发挥积极作用。就这些微生物产生 AhR 激动剂的能力受损而言,微生物群的参与是显而易见的,但也可能解释了在生理条件下微生物群的直接影响下发生的 IDO 和 TpH1 的局部激活加剧。

● 肠易激综合症

IBS 的病因在很大程度上是未知的,但可能与色氨酸代谢受损有关。IBS 患者血清中 Kyn 升高,外周 IDO1 活性与 IBS 严重程度呈正相关

IBS 与通过 KP 增加的色氨酸代谢有关

犬尿氨酸:色氨酸比率 IBS 症状严重程度呈正相关,IFN-γ 激活和随后的色氨酸 IDO1 氧化可能是 IBS 的致病机制

此外,血清素能系统的功能障碍与 IBS 的病理生理学有关。与急性色氨酸耗竭治疗相比,IBS 患者通过急性色氨酸增加治疗进行的 5-羟色胺能调节导致更严重的胃肠道症状。

肠道运动的改变是 IBS 的关键特征之一,与 5-HT 代谢障碍有关

与健康对照组相比,IBS 患者的直肠活检组织中发现 TpH1 和 SERT 表达水平降低。

此外,5-HT 结肠内容物在便秘型和腹泻型 IBS 中分别减少和增加。5-HT 的多效性与其受体的多样性有关,这些受体能够触发特定器官的特定功能。

在胃肠道中表达最多的5-HT 3和 5-HT 4亚型将 5-HT 与内脏伤害感受和运动障碍联系起来。5-HT 的作用已经被开发为治疗靶点,使用 5-HT 3受体拮抗剂和 5-HT 4受体激动剂分别显示出对腹泻和便秘为主的 IBS 的一些疗效。

然而,受肠道微生物群调节的中枢血清素作用紊乱也可能参与 IBS 发病机制。肠道菌群对 5-HT 产生和肠道运动的影响已在小鼠身上得到证实,并表明 IBS 发病机制部分与微生物群对 5-HT 产生的功能失调控制有关。

● 与年龄有关的胃肠功能障碍

高龄增加了个体对胃肠道功能障碍的易感性,这归因于与年龄相关的神经元丢失

5-HT4 激动剂刺激发育中的肠道中的神经突生长和网络形成,也已被证明可以防止神经元凋亡和炎症诱导的轴突变性和自噬

此外,5-HT4 受体激动作用可促进成人肠道神经发生。相应地,其他方面健康的高龄个体表现出循环色氨酸减少,可能会限制血清素的可用性。

/

/

08
衰老和代谢综合征与色氨酸代谢

●  衰 老

衰老与肠道微生物群的变化有关,这通常与胃肠道的生理变化有关,同时免疫系统功能下降可能导致感染、营养不良和其他功能缺陷的风险增加。

老年人菌群特征

老年人的肠道微生物群通常以细菌多样性降低、优势菌种改变、有益微生物减少和兼性厌氧菌增加为特征,所有这些都表明与衰老相关的微生物变化具有潜在的不利影响。微生物群组成的变化与老年人的免疫衰老和炎症有关。

色氨酸代谢受衰老影响

色氨酸在诱导免疫耐受和维持肠道菌群方面起着至关重要的作用。

对老年人和年轻人肠道核心微生物组直系同源基因的分析表明,丰度增加的年龄相关基因参与了色氨酸代谢途径 (ko00380),这与在百岁老人血清中发现的与年龄相关的色氨酸浓度降低一致。研究表明,肠道微生物群对色氨酸消耗的潜在增加可能会影响宿主对色氨酸的生物利用度。

最近的一项研究报告了血清色氨酸水平降低与免疫激活增加之间的关系。还推测微生物群依赖性色氨酸减少会增强百岁老人的炎症

食物传感信号通路调节寿命,与色氨酸关联

几种食物传感信号通路,包括胰岛素/胰岛素样生长因子 (IIS) 通路和哺乳动物雷帕霉素靶标 (mTOR) 通路,已被证明可以调节模式生物的寿命,并且已经提出了类似的关联对于KP途径。

在人类中,表示该通路活性的 Kyn:色氨酸 比率随着年龄的增长而增加。这种增加与 65 岁以上人群的虚弱有关,并预示着 90 多岁人群的死亡率

KP 的活性与衰老之间存在因果关系

此外,对成人个体外周血中年龄相关基因表达变化的荟萃分析将 KYNU 酶(犬尿氨酸酶,色氨酸降解途径关键酶)鉴定为表达差异最大的基因之一。在对秀丽隐杆线虫的后续研究中,通过 RNA 干扰 (RNAi) 敲低 KYNU 比敲低任何其他差异表达基因所达到的寿命更长,这表明 KYNU 对衰老有重要贡献。

连同独立发现,线虫和黑腹果蝇中 TDO 活性的遗传减少, 导致 Trp:Kyn 比率显着增加,延长寿命,这些研究表明 KP 的活性与衰老之间存在因果关系。

Kyn/Trp 分流在炎症中的后果

色氨酸代谢向肝外 Kyn 产生的炎症相关分流,可能影响衰老过程中一系列器官中色氨酸代谢物的功能。

编辑​

doi.org/10.3389/fimmu.2019.02565

与年龄相关的组织稳态下降会导致生理上的低度慢性炎症表型,称为炎症。我们假设色氨酸向Kyn途径代谢,以控制与年龄相关的炎症。色氨酸和Kyn代谢产物的相应紊乱可能与年龄相关疾病和寿命缩短有关。

色氨酸参与调节寿命机制

KP 调节衰老的机制尚不清楚。已经针对不同的无脊椎动物和脊椎动物模型描述了氨基酸(包括色氨酸)在调节寿命方面的作用。在大多数情况下,色氨酸可用性的降低或细胞摄取的阻断可延长寿命。然而,这种机制与 TDO 抑制(增加色氨酸)延长寿命的发现相悖,除非这与细胞摄取减少有关。

此外,用 Kyn 喂养果蝇会缩短寿命,这表明该通路下游的代谢物水平也可能参与寿命的调节。TDO 耗尽对秀丽隐杆线虫延长寿命的影响取决于 FOXO 转录因子 DAF-16,它是寿命调节通路的介质,例如驱动细胞防御通路表达的 IIS 通路,表明它具有保护细胞免受细胞侵害的作用伤害。

有趣的是,防止与年龄相关的蛋白质毒性(这也是由秀丽隐杆线虫中的 TDO 耗尽引起的)不依赖于 DAF-16,并且独立于 KP 63中的下游酶。这一观察结果表明,延长寿命的效果要么是这种保护的结果,要么是由一种独立的机制引起的

由于 NAD +正在成为一种潜在的延长寿命分子,KP 的改变可能通过 NAD +产生延长寿命的效果。然而,无脊椎动物的寿命更长是 KP 活性降低的结果,而通过外部供应其他 NAD +前体来延长寿命则表明 KP 活性的增加也是有益的。

需要更多的研究来理解这些看似矛盾的发现。由于 IDO1 或 TDO 的敲除小鼠是可行的,这些模型对于进一步研究 KP 中的寿命调节机制和潜在治疗靶点可能很有价值。KP 调节的寿命延长效应可能源于一般健康益处,而不是疾病特异性效应。

● 代谢综合征和肥胖

在患有代谢综合征的人类患者中,据报道 IDO1 过度激活会导致血清 Kyn 水平升高以及 Kyn/Trp 比率与肥胖、代谢综合征、BMI 和血液甘油三酯之间的相关性。

肥胖患者IDO1 的局部激活

IDO1和 KP 下游酶(如犬尿氨酸酶 (KYNU)、犬尿氨酸氨基转移酶 (KAT) 和犬尿氨酸 3-单加氧酶 (KMO))的基因表达增加已在肥胖患者的脂肪组织中观察到,表明 IDO1 的局部激活

然而,循环 5-HT 水平在代谢综合征中降低,并且与 BMI 和体脂呈负相关

色氨酸转化产物吲哚衍生物起作用

微生物群通过色氨酸转化产生的几种吲哚衍生物可能在代谢综合征的发病机制中起作用。

吲哚本身已被证明可以刺激内分泌 L 细胞产生胰高血糖素样肽-1 (GLP-1),这是一种刺激胰腺 β 细胞分泌胰岛素的肠降血糖素。这种机制涉及快速抑制刺激 GLP-1 分泌的电压门控 K通道,但受 ATP 合成抑制的长期影响控制,减少 GLP-1 分泌

硫酸吲哚酚促炎和氧化作用,与心血管和肾病等相关

吲哚也在肝脏中被吸收并代谢为硫酸吲哚酚。在肾衰竭期间,这种代谢物会积累,其促炎和氧化作用与动脉粥样硬化、动脉硬化、充血性心力衰竭和其他心血管并发症的发病机制有关,这些并发症在慢性肾衰竭患者中尤为突出。

硫酸吲哚酚在肾功能正常的受试者中的作用仍有待确定。KP 也与动脉粥样硬化有关。在小鼠模型中,IDO1 缺乏症通过 IL-10 产生失调减少了动脉粥样硬化病变的发展,这是一种通过施用 Kna 逆转的表型。在人类中,高 Kna 水平与不稳定的斑块表型相关

低度慢性炎症可能有助于 IDO1 激活

KP 的过度激活也可能参与低度炎症情况下胰岛素抵抗的发生,例如肥胖、抑郁、丙型肝炎病毒感染和心血管疾病。人体和实验数据表明,黄嘌呤酸和 KP 的其他产物对胰岛素的产生和释放以及对靶组织的影响具有有害影响

大脑中产生的血清素会引起饱腹感,但在微生物群的直接影响下产生的肠道来源的 5-HT 不会穿过血脑屏障。然而,色氨酸和直接 5-HT 前体 5-HTP 确实可以穿过血脑屏障,从而间接调节中枢 5-HT 的产生和功能。

外周 5-HT 独立于任何中枢效应影响宿主代谢

肠道来源的 5-HT 能够诱导食欲减退和饱腹感,其水平在禁食期间增加并刺激脂肪组织中的脂肪分解和肝细胞中的糖异生,有利于血糖控制。随后,通过一种涉及产热棕色脂肪组织消耗更多能量的机制,给予高脂肪饮食的 TpH1 基因或化学消融小鼠可免于肥胖、胰岛素抵抗和非酒精性脂肪肝疾病 (NAFLD)。

然而,这些结果可能不适用于棕色脂肪组织含量低且随年龄增长而减少的成年人。此外,人类肥胖与外周 5-HT 减少有关,表明其在发病机制中的复杂作用。

已经使用小鼠模型研究了 AhR 在代谢综合征中的作用,但尚未得出明确的结论。这可能与 AhR 的多重作用有关,AhR 在参与代谢综合征发病机制的各种细胞类型(肠细胞、肝细胞和免疫细胞)中表达。

/

/

09
癌症与色氨酸代谢

●  癌症中的色氨酸代谢

多项证据表明色氨酸代谢在癌症中具有重要作用,通过抑制抗肿瘤免疫反应增加癌细胞的恶性特性来促进肿瘤进展。

首先,色氨酸降解酶在多种癌症中表达

IDO1 在大约 58% 的人类肿瘤中表达,其表达与多种癌症的不良临床结果相关,包括黑色素瘤、妇科癌症、结肠癌和血液系统恶性肿瘤。

IDO1 表达要么作为一种反调节机制被诱导,以响应从肿瘤浸润性免疫细胞释放的细胞因子,要么它的表达通过肿瘤固有的致癌信号传导维持。

TDO 催化与 IDO1 相同的反应,在神经胶质瘤、黑色素瘤、卵巢癌、肝癌、乳腺癌、非小细胞肺癌、肾细胞癌和膀胱癌中表达,并已被证明可促进肿瘤进展

其次,各类癌症患者中全身色氨酸水平降低

已在成人 T 细胞白血病、结直肠癌 、妇科癌症、恶性黑色素瘤、肺癌和恶性神经胶质瘤患者中测量到全身色氨酸水平降低。在患有这些癌症的患者的血液中很少观察到 KP 代谢物浓度升高,这可能表明肿瘤微环境中 Kyn 和下游代谢物的局部变化受到更多限制。

第三,色氨酸降解在调节 Treg细胞和癌症中的免疫细胞浸润中发挥作用

FOXP3 + T reg细胞与宫颈癌引流淋巴结中表达 IDO1 的 DC 直接接触,IDO1 表达与转移性胰腺导管腺癌患者CD4 + CD25 + FOXP3 + T reg细胞增加有关,急性髓性白血病 (AML) 33和非霍奇金淋巴瘤。

此外,IDO1 表达与 CD3 + T 细胞、CD8的低肿瘤浸润相关+ T 细胞和 CD3 +和 CD8 + T 细胞以及 CD57 +自然杀伤细胞分别存在于结直肠癌、卵巢癌和子宫内膜癌患者中。

最近的一项研究表明,肿瘤再生细胞将 Kyn 转移到 CD8 + T 细胞,这反过来又以 AHR 依赖性方式上调程序性细胞死亡蛋白 1 (PD-1)。总而言之,这些观察结果为色氨酸代谢在肿瘤细胞免疫逃逸中的作用提供了机制解释。

第四,色氨酸代谢物可以有效促进癌细胞的运动和转移

例如,体外研究表明,TDO 在胶质母细胞瘤或乳腺癌细胞中的表达可促进肿瘤细胞迁移和侵袭。类似地,IDO1 的过表达增强了肺癌细胞的运动性,而敲除则降低了运动性。

这种促迁移表型也反映在临床前模型中由色氨酸降解引起的转移形成促进。药理学 TDO 抑制减少了肺癌小鼠模型肺部肿瘤结节的数量。

植入小鼠体内的人肺癌细胞中的 IDO1 过表达增加了大脑、肝脏和骨骼中的转移形成,而 IDO1 缺乏减少了转移负担并提高了乳腺癌衍生肺转移小鼠模型的存活率。

此外,TDO-AHR 信号轴促进了对贴壁依赖性细胞从周围细胞外基质分离时发生的程序性细胞死亡的抵抗,这是转移的关键步骤。最后,肿瘤内 IDO1 表达已被证明与结直肠癌肝转移、肝细胞癌远处转移和子宫内膜癌淋巴结转移的频率相关

第五,NAD+ 在癌症生物学中通过色氨酸 de novo 途径产生的作用

在小鼠中,色氨酸代谢受损导致肝脏中从头合成 NAD+ 受到抑制,从而通过 DNA 损伤促进肝肿瘤发生

在人类神经胶质瘤中,从色氨酸重新产生的 NAD+ 赋予对放化疗诱导的氧化应激的抗性。有趣的是,胶质瘤细胞和小胶质细胞合作产生 NAD+。

此外,在人类癌细胞中,IDO1 与通过产生 NAD +改善 DNA 修复和介导对治疗的抗性有关,例如 PARP 抑制剂奥拉帕尼、γ-辐射和化疗剂顺铂。因此,抑制色氨安代谢也可能通过从头形成 NAD +来防止治疗耐药性;然而,根据 NAD +合成所必需的 KP 酶的表达,这种效应可能是组织特异性或细胞特异性的,因此需要进一步研究。

●  靶向癌症中的 IDO1 和 TDO

基于 IDO1 和 TDO 的肿瘤促进功能,已经研究了这些酶的小分子抑制剂用于癌症治疗。临床阶段 IDO1 抑制剂 epacadostat (INCB024360)、navoximod (NLG-919/GDC919)等化学结构已被公开。未公开结构的化合物KHK2455、LY3381916和MK-7162也作为IDO1抑制剂进入临床评估。

TDO 抑制剂(最初被开发为抗抑郁药以提高全身色氨酸水平,从而提高大脑血清素浓度)也正在探索用于癌症治疗,但尚未进入临床试验阶段。

此外,indoximod 正在临床试验中进行研究,但与 L-1-MT 237不同,它们不是 IDO1抑制剂及其作用机制,尽管它似乎与 IDO1 表达有关,但仍存在争议。

然而,IDO1 抑制的最大治疗潜力预计是它与其他疗法的联合使用,这一直是大多数 II 期和 III 期研究的重点。

● 与免疫检查点抑制剂联合

IDO1 抑制剂的临床评估最先进的是它们与针对免疫系统检查点的单克隆抗体的组合,例如细胞毒性 T 淋巴细胞相关蛋白 4 (CTLA4)、PD-1 或其配体 (PD-L1),其中一些已被批准用于近年来治疗多种癌症的基础上部分患者出现前所未有的反应。

然而,由于相当大比例的患者无法从检查点抑制剂中获益,因此人们非常有兴趣确定缺乏治疗反应和治疗耐药性的分子基础,因为这些知识可能表明潜在的联合疗法可以改善反应。

有趣的是,在使用 PD-1 受体阻断剂 pembrolizumab 治疗期间,肉瘤患者的 Kyn:Trp 血浆比率增加,表明 IDO1 可能由免疫检查点封锁诱导。最有可能的是,这种 IDO1 的诱导,预计会抵消免疫检查点抑制的免疫刺激作用,是通过活化的 T 细胞产生的 IFNγ 介导的。

一项临床前研究表明,抑制 IDO1 会略微增强抗 CTLA4、抗 PD-1–PD-L1 和抗 GITR(糖皮质激素诱导的 TNFR 相关蛋白)疗法的疗效

这些发现虽然不大,但引发了对 IDO1 抑制剂与免疫检查点抑制剂联合治疗的广泛临床研究。在 epacadostat 与 pembrolizumab 联合治疗的 I/II 期单臂试验获得令人鼓舞的数据后,在无法切除或转移性黑色素瘤患者中进行了 III 期试验。

尽管 ECHO-301 试验的阴性结果明显代表了 IDO1 抑制剂在癌症免疫治疗中的开发受挫,但它也激励人们利用临床试验来更多地了解 IDO1 抑制剂在癌症中的作用机制,以开发更复杂的生物标志物用于患者选择和治疗监测,并利用该途径中的新靶点,例如 AhR。

●  与免疫检查点抑制剂联合

目前已经计划在验证试验中继续研究 IDO1 抑制剂在联合免疫疗法中的潜力,包括不同于与 PD-1 和 PD-L1 拮抗剂组合的策略。

几项测试 IDO1 抑制剂 epacadostat 与抗肿瘤疫苗联合应用的临床试验正在进行中,可能会显示阻断 IDO1 是否会提高抗肿瘤疫苗接种的功效。这背后的基本原理是干扰素信号对 IDO1 的上调涉及多种免疫相关途径。例如,TLR 的激活通过干扰素诱导 IDO1 表达。

抑制抗肿瘤免疫反应的其他几种途径也与驱动色氨酸降解酶的肿瘤表达有关,包括 AhR 信号、TGFβ 信号和信号转导和转录激活因子 3 (STAT3)。

因此可以设想两种情况:

• 如果这些途径的抑制剂非常有效并且同时完全消除了色氨酸降解酶的表达,那么它们可能会使 IDO1 或 TDO 抑制剂在这种情况下变得可有可无。

• 相反,如果这些药物不能完全减轻 IDO1 和/或 TDO 的表达,它们可能与色氨酸代谢抑制剂协同作用。相比之下,其他治疗方法可能会诱导 IDO1 作为一种不良影响,这表明这些疗法与 IDO1 抑制剂的组合可能是有益的

/

/

10
肠内外健康与色氨酸代谢

前面概述了色氨酸及其在肠道中的三种命运。在这里主要谈论吲哚/AhR 通路,将深入探讨 AhR 信号的好处、为什么大多数人都缺乏这种途径、增加肠道中 AhR 活性的潜在策略,以及 AhR 可能被过度刺激的一些例外情况。

● 什么是AhR?

芳烃受体 (AhR)是一种转录因子——一种调节基因表达的蛋白质。结合并激活受体的分子称为激动剂

AhR 的激动剂(即激活剂)主要分为三类分子

  • 环境污染物

AhR 最初因其在对二恶英和其他芳基碳氢化合物等环境毒素作出反应中的作用而被发现。这些污染物是 AhR 的非常强的激活剂。它们的结合增加了有助于促进其解毒的酶的表达。

  • 肠道细菌色氨酸代谢物

肠道细菌,包括各种梭菌属、拟杆菌属、真杆菌属、乳杆菌属和双歧杆菌属,可以直接将色氨酸转化为称为吲哚的化合物,其中许多结合并激活 AhR

  • 膳食化合物

近年来,膳食化合物也被证明可以激活 AhR。Indole-3-carbinol (I3C) 是一种源自十字花科蔬菜分解的化合物,可以结合并激活 AhR

虽然环境污染物对 AhR 的慢性激活可能对健康产生负面影响,但肠道代谢物和膳食化合物对 AhR 的瞬时激活具有许多积极的下游影响

● 肠道 AhR 激活的诸多好处

规律的、短暂的 AhR 信号在肠道和整体健康中起着许多重要作用。

1) 维持肠道屏障功能

AhR 刺激肠道中的先天免疫细胞产生细胞因子 IL-22,这是一种促进粘液产生和抗菌肽分泌的信号分子。在称为隐窝的肠道屏障口袋中,AhR 还支持干细胞增殖,这对于正常的肠道更新和修复至关重要。

2) 调节肠道菌群的组成

缺乏 AhR 刺激会导致促炎性肠杆菌科的扩张和产丁酸梭菌的减少,这是肠道菌群失调的常见特征。

3) 维持肠道免疫细胞群并减少炎症

AhR 支持肠道上皮细胞内足够数量的淋巴细胞。它还在将调节性 T 细胞引导至肠道并支持其抑制炎症的能力方面发挥关键作用。

4) 调节肠神经系统和肠蠕动

AhR 已被证明在调节蠕动方面发挥作用,蠕动是沿着胃肠道移动食物的肌肉收缩。AhR 也可能与损伤后肠神经的再生有关。

5) 防止念珠菌和其他肠道感染

AhR 激活通过支持 IL-22 信号传导在维持对酵母白色念珠菌和细菌病原体的定植抗性方面发挥重要作用。

6) 支持肺部的免疫防御

肠道 AhR 在防止其他粘膜表面(如肺)感染方面也起着重要作用。2019 年的一项研究发现,抗生素治疗后提高肠道中的 AhR 活性可显着减少肺部致病菌数量。

7) 促进健康的皮肤屏障功能

肠道 AhR 对于维持皮肤屏障的完整性至关重要。2016 年的一项研究发现,从饮食中去除 AhR 配体会损害皮肤屏障功能,而重新添加 AhR 激活剂吲哚-3-甲醇可挽救屏障缺陷,即使在老年小鼠中也是如此。

8) 激活解毒途径

AhR 在许多物质的解毒中发挥作用,包括多环芳烃、霉菌毒素、重金属和雌激素,激活整个身体的 解毒途径。

9) 保护肝肾功能

来自肠道色氨酸代谢的 AhR 信号也被证明可以预防非酒精性脂肪肝、酒精性肝损伤和肾纤维化。

10) 支持神经系统健康

星形胶质细胞中通过 AhR 发出的膳食色氨酸代谢物信号已被证明可以限制中枢神经系统的炎症。肠道 AhR 活性还促进成人神经发生,即新神经元的形成。

AhR 信号减少:许多慢性病的一个特征

在多种慢性疾病中观察到肠道 AhR 活性降低,包括炎症性肠病、肠易激综合征、结直肠癌、肥胖、代谢综合征、高血压、动脉粥样硬化、抑郁症、炎症性皮肤病、乳糜泻和多发性硬化症等疾病。

● 是什么导致 AhR 信号减少?

影响因素很多,包括:

  • 肠道生态失调

改变的肠道微生物群组成通常无法产生已知可激活 AhR 的化合物,包括色氨酸衍生的吲哚和短链脂肪酸丁酸盐。

  • 低蛋白质或低质量的饮食

色氨酸(细菌吲哚形成的底物)的摄入量减少和/或植物性食物中 AhR 激动剂的摄入量减少都会减少 AhR 激动剂的总量。人造甜味剂的消费也被证明会减少 AhR 信号。

  • 压力、炎症或感染

压力、炎症和某些类型的感染可以将色氨酸代谢从 AhR 转移到其他途径(后面我们会持续分享)。

解决这些根本原因始终是恢复 AhR 活动的第一步。

● 增加 AhR 活性的其他策略

以下是已知会暂时增加 AhR 活性的其他干预措施的总结。但是需要注意 AhR 激动剂具有物种特异性和组织特异性作用。它们的效果还取决于浓度,在存在多种化合物的情况下,它们甚至可能相互竞争——因此虽然这里列出了很多可能性,但“厨房水槽”方法并不一定是理想的。

希望在接下来的几年里,我们将看到更多的人体临床试验,以阐明这些疗法中的哪些可能对以 AhR 缺陷为特征的疾病状态最有帮助。以下信息不能视为医疗建议。

▸Indole-3-carbinol (I3C)

这种化合物由球芽甘蓝、卷心菜、西兰花、花椰菜和芥菜等十字花科蔬菜中的葡糖甘蓝素分解产生,是一种有效的 AhR 激活剂

在动物模型中,I3C 已被证明可以诱导调节性 T 细胞的形成、抑制 Th17、保护粘液层、增加丁酸盐的产生、上调 PPAR-γ 并防止结肠炎。还对其潜在的抗癌抗氧化作用进行了研究。虽然 I3C 或其衍生物二吲哚基甲烷 (DIM) 以补充剂形式提供,但较高剂量可能存在风险且人体研究有限,因此最好以整个食物形式食用 I3C。

注意:为了最大限度地提高膳食 I3C 的生物利用度,食用酸菜等生发酵形式的十字花科蔬菜,或在烹饪后加入芥末籽粉(含有黑芥子酶)。

▸丁酸盐

一种短链脂肪酸,是人肠上皮细胞中 AhR 的直接激活剂。在健康的肠道中,丁酸盐是由膳食纤维的发酵产生的,在较小程度上是蛋白质的发酵。它也以补充形式提供。一定情况下对结肠需要更有针对性。

▸尿石素 A

这种化合物由石榴、覆盆子和黑莓中的鞣花单宁分解产生,已被证明可以通过 AhR 增强肠道屏障功能。然而,估计只有 30-40% 的人拥有可以进行这种转化的细菌。尿石素 A也可以作为补充剂服用,并且作为食品成分已获得 FDA 公认的安全状态。

▸阳光照射

2019 年的一项研究发现,在小鼠身上,仅 15 分钟的 UV-B 照射就会诱导 AhR 靶基因在血液和外周组织(包括肠道)中的表达。

▸婴儿双歧杆菌Bifidobacterium infantis

该菌株在人乳低聚糖上生长后产生吲哚-3-乳酸,一种 AhR 的激活剂。它已在婴儿中得到充分研究,可用作婴儿益生菌。该菌株尚未在成人中进行研究。该配方确实含有大量的乳糖和残留量的大豆。

▸鼠李糖乳杆菌

某些乳杆菌菌株已被证明在色氨酸丰富时自然产生 AhR 激动剂。发现唯一已知可增加 AhR 活性且可商购的菌株是鼠李糖乳杆菌GG

但是注意,不建议在使用抗生素期间或之后立即使用基于乳酸杆菌的益生菌,也不建议患有组胺不耐受/肥大细胞活化综合症的人服用。

Akkermansia muciniphila

至少在一项动物研究中,这种细菌或其外膜上的一种蛋白质增加了循环中的吲哚化合物并上调了 AhR 靶基因。

▸美沙拉嗪 (5-氨基水杨酸,5-ASA)

该药物是炎症性肠病 (IBD) 的一线治疗药物。这种药物上调 PPARgamma 和促细胞凋亡和抗增殖作用的能力。有趣的是,美沙拉嗪似乎也能激活 AhR。

▸咖啡

咖啡提取物,尤其是过滤较少的咖啡,如土耳其咖啡,已被证明可诱导肠上皮细胞中的 AhR 表达,并在啮齿动物模型中预防结肠炎。

▸萝卜硫素

虽然这种化合物的作用通常归因于 Nrf2 通路,但 AhR 似乎介导了它的许多保护作用。在喂食西方饮食的小鼠中,萝卜硫素增加了肠道中吲哚乙酸的产生,从而上调了 AhR 活性

▸多酚

槲皮素、白藜芦醇和姜黄素都可以通过抑制控制 AhR 激动剂分解的 CYP1A1 酶来间接激活 AhR。其中,槲皮素在增强 AhR 信号传导方面最有效。

▸血清素

这种神经递质及其副产物 (5-HIAA) 也可以通过部分抑制 AhR 配体的清除来间接激活 AhR。这种效果取决于功能正常的血清素运输。

关于反馈调节而不是长期过度刺激 AhR 的重要性的说明:

这里不能忽略AhR 过度刺激的问题。虽然大多数慢性炎症性疾病都以 AhR 缺陷为特征,但在少数情况下,AhR 可能会过度激活,从而产生负面后果。这通常是由于污染物或霉菌暴露、严重病毒感染、或慢性肾病等引起的显着环境毒性。

这些条件的特点是持续的 AhR 激活,其对基因表达的影响与短暂的 AhR 激活截然不同。相反,由于某些解毒酶的上调,结合 AhR 的天然化合物在结合 AhR 时会被有效代谢。这种负反馈回路确保 AhR 信号是短暂的。

拥有足够的维生素,尤其B12 叶酸可以防止慢性 AhR 过度刺激。尽管如此,在某些极端毒性或感染的情况下,短暂的 AhR 刺激是不提倡的。

/

/

11
靶向肠道菌群:平衡色氨酸代谢的潜在方法

●  益 生 菌

益生菌,如属于乳杆菌属双歧杆菌属的细菌,对色氨酸代谢产生有益影响。

益生菌促进血清素合成

一方面,益生菌,如乳杆菌和双歧杆菌中的物种,可以直接将色氨酸转化为血清素

另一方面,一些益生菌乳杆菌菌株,如干酪乳杆菌327,可以通过增加TPH1表达间接促进结肠血清素合成。

益生菌与犬尿氨酸途径的调节密切相关

与血清5-羟色胺水平升高一致,大鼠口服约氏乳杆菌(Lactobacillus johnsonii) 无细胞上清液,也会导致血清中的犬尿氨酸水平降低,同时肠道IDO活性降低。口服约氏乳杆菌8周后,观察到人血清犬尿氨酸水平下降色氨酸含量增加的明显趋势。

此前的一项研究还表明,大鼠服用益生菌婴儿双歧杆菌( Bifidobacteria infantis)会导致色氨酸水平升高,血液循环中的犬尿氨酸与色氨酸比率降低

这些研究表明,一些属于乳杆菌和双歧杆菌的益生菌物种可能通过抑制犬尿氨酸途径改变宿主色氨酸代谢。

益生菌将色氨酸降解为吲哚化合物

此外,据报道,一些属于乳杆菌的细菌能够将色氨酸降解为吲哚化合物,如IAld、ILA和IAA。

向结肠炎易感小鼠口服3种色氨酸代谢乳杆菌菌株可促进微生物色氨酸新陈代谢芳基烃受体(Ah)依赖性信号传导,从而影响外周色氨酸的有效性。

尽管操纵肠道微生物群影响色氨酸代谢途径的机制尚未完全了解,但以肠道微生物群为靶点可能是调节色氨酸新陈代谢的一种有前途的方法。

●  抗 生 素

口服抗生素能够重塑肠道微生物群的组成和代谢。口服广谱抗生素会导致肠道微生物群耗竭,降低结肠血清素水平,进而延缓小鼠结肠运动。

正如结肠中关键合酶TPH1的下调所证明的,这项研究指出了共生微生物群在调节肠道血清素合成中的可能作用。

据报道,抗生素的微生物操纵会影响犬尿氨酸途,因为抗生素诱导的微生物群耗竭会导致小鼠和猪的循环色氨酸可用性增加,并降低沿犬尿氨素途径的代谢。

此外,一些研究表明,抗生素诱导的肠道微生物改变也有利于猪体内的微生物色氨酸降解途径。随着循环色氨酸水平的增加,口服抗生素降低了空肠中色氨酸的可用性,并降低了猪大肠中的微生物色氨酸脱羧活性

此外,口服抗生素会增加猪大肠中吲哚和吲哚化合物的含量。

有趣的是,最近的一项研究表明,回肠末端输注专门针对大肠微生物群的广谱抗生素会导致血液循环中的色氨酸水平降低,并增强微生物色氨酸降解,从而增加大肠中的吲哚水平。与之前的研究结果相反,该研究的发现表明,肠道微生物群在响应抗生素操作而调节色氨酸代谢方面发挥了独特的作用。

●  饮 食

饮食被认为是影响微生物色氨酸代谢的重要因素

高脂肪饮食:抑制微生物从色氨酸向吲哚代谢物的转化,从而影响免疫调节

例如,最近的一项研究表明,高脂肪饮食耗尽小鼠盲肠中的微生物代谢产物IAA和色胺,这表明在高脂肪饮食下,微生物色氨酸降解途径可以减弱

高脂肪饮食增加AlistipesBacteroides的丰度,同时减少了 Faecalibacterium。高脂肪饮食增加致病菌属Alistipes,同时减少了有益菌 Parabacteroides distasonis ,导致小鼠肠道屏障功能受损

高脂饮食显著增加小鼠肠道的IDO活性,促进色氨酸分解代谢为犬尿氨酸。

在暴露于高脂饮食的情况下,肠道微环境受到影响,随后抑制微生物从色氨酸向吲哚代谢物的转化,特别是吲哚-3-丙酸、吲哚-3-乳酸和吲哚乙酸盐。这些代谢物被认为是 AhR 激动剂,在免疫调节中起着关键作用。

配方奶:影响新生猪色氨酸代谢

母乳不仅是早期营养的唯一来源,而且有助于宿主肠道微生物群的成熟。有趣的是,之前的一项研究发现,配方奶引起的肠道微生物群的改变使新生猪结肠中的色氨酸代谢从血清素转变为色胺。

碳水化合物:影响色氨酸代谢速率

微生物色氨酸代谢的速率可能会受到管腔内营养物质(如碳水化合物可用性变化的影响。

正如先前的体外研究所证明的,从仔猪粪便中分离出的一株利用色氨酸的细菌使用色氨酸进行细菌蛋白质合成,以可消化碳水化合物(葡萄糖)为底物,而不可消化碳水化合物(低聚果糖)是吲哚产生的底物。

此外,通过添加不可消化的碳水化合物,如低聚果糖和抗性淀粉增加碳水化合物的可用性,促进碳水化合物代谢,从而增加短链脂肪酸的产量,同时减少色氨酸降解和仔猪大肠中的吲哚化合物。

事实证明,通过盲肠淀粉输注增加大肠碳水化合物的可用性可以抑制微生物色氨酸降解,从而导致大肠和血清中色氨酸水平的增加

这些研究表明,增加碳水化合物的可用性抑制了肠道中的微生物色氨酸降解,这将进一步影响循环色氨酸库。

相比之下,增加碳水化合物的可用性促进了肠道血清素的合成,这与增加胃肠道传输有关,正如先前在口服多糖的小鼠中进行的一项研究所报告的那样。微生物短链脂肪酸的产生增强可以参与这一过程,因为它们已经被证明可以刺激结肠EC中的血清素释放。

腔内色氨酸可用性是影响微生物色氨酸代谢的另一个直接因素

IDO激活或饮食限制导致的宿主色氨酸耗竭可减少微生物增殖,尤其是乳酸杆菌中的细菌,据报道,其中一些细菌是利用色氨酸的细菌。通过饮食喂养选择性地恢复色氨酸水平导致乳杆菌的扩张,这进一步导致微生物色氨酸代谢的增强,IAld增加

鉴于色氨酸也会被宿主直接吸收,肠道微生物群管腔色氨酸可用性宿主色氨酸代谢之间的复杂串扰需要进一步研究。

富含麦麸的饮食在调节色氨酸代谢物的合成和生物转化中的作用

富含麦麸的饮食有效地抑制了色氨酸向犬尿氨酸途径代谢物的转化,同时增加了褪黑激素和微生物分解代谢物,即吲哚-3-丙酸、吲哚-3-乙醛和 5-羟基-吲哚-3-乙酸。

麦麸增加促进健康的细菌(例如,AkkermansiaLactobacillus),它们与色氨酸衍生的吲哚类代谢物显著相关

富含麦麸的饮食可有效调节与免疫功能相关的微生物转化和色氨酸合成(即增加 AhR 和 IL-22 的结肠表达),同时改善葡萄糖和脂质稳态,以及增加肠道健康促进菌的丰度。

/

/

结 语

色氨酸代谢调节炎症、肠道稳态和大脑功能等。色氨酸可用性和代谢的微生物调节对许多肠脑轴疾病具有重要意义,包括伴有精神疾病的胃肠道疾病,如IBS 、IBD,其他具有胃肠道功能障碍的中枢神经系统疾病,如自闭症等。

由于宿主色氨酸代谢直接或间接受肠道菌群调节,许多因素会影响肠道微生物群的组成和代谢,包括饮食、抗生素、益生菌等可以调节肠道微生物群,调节色氨酸的可用性,因此靶向肠道菌群干是治疗肠脑轴疾病的有前途的方法。

色氨酸代谢可以作为与年龄相关的病理和寿命的调节剂。犬尿氨酸通路及其代谢产物可能成为预测衰老相关疾病的潜在风险标记物

色氨酸主要经犬尿氨酸代谢,既促进肿瘤细胞固有的恶性特性,又限制肿瘤免疫,因此它是癌症免疫治疗的重要药物开发靶点。肿瘤中色氨酸代谢的改变常伴随色氨酸相关酶基因表达的异常,基于此,IDO抑制剂、TDO抑制剂及联合治疗被应用于大量的临床试验中。

随着这方面研究的不断深入,我们会持续关注和更新色氨酸代谢和全身健康稳态以及药物进展等。

主要参考文献

Le Floc’h N, Otten W, Merlot E. Tryptophan metabolism, from nutrition to potential therapeutic applications. Amino Acids. 2011 Nov;41(5):1195-205. doi: 10.1007/s00726-010-0752-7. Epub 2010 Sep 25. PMID: 20872026.

Gao K, Mu CL, Farzi A, Zhu WY. Tryptophan Metabolism: A Link Between the Gut Microbiota and Brain. Adv Nutr. 2020 May 1;11(3):709-723. doi: 10.1093/advances/nmz127. PMID: 31825083; PMCID: PMC7231603.

Sorgdrager FJH, Naudé PJW, Kema IP, Nollen EA, Deyn PP. Tryptophan Metabolism in Inflammaging: From Biomarker to Therapeutic Target. Front Immunol. 2019 Oct 30;10:2565. doi: 10.3389/fimmu.2019.02565. PMID: 31736978; PMCID: PMC6833926.

Richard DM, Dawes MA, Mathias CW, Acheson A, Hill-Kapturczak N, Dougherty DM. L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int J Tryptophan Res. 2009 Mar 23;2:45-60. doi: 10.4137/ijtr.s2129. PMID: 20651948; PMCID: PMC2908021.

Platten M, Nollen EAA, Röhrig UF, Fallarino F, Opitz CA. Tryptophan metabolism as a common therapeutic target in cancer, neurodegeneration and beyond. Nat Rev Drug Discov. 2019 May;18(5):379-401. doi: 10.1038/s41573-019-0016-5. PMID: 30760888.

Chen G, Zhou S, Chen Q, Liu M, Dong M, Hou J, Zhou B. Tryptophan-5-HT pathway disorder was uncovered in the olfactory bulb of a depression mice model by metabolomic analysis. Front Mol Neurosci. 2022 Oct 10;15:965697. doi: 10.3389/fnmol.2022.965697. PMID: 36299862; PMCID: PMC9589483.

Roth W, Zadeh K, Vekariya R, Ge Y, Mohamadzadeh M. Tryptophan Metabolism and Gut-Brain Homeostasis. Int J Mol Sci. 2021 Mar 15;22(6):2973. doi: 10.3390/ijms22062973. PMID: 33804088; PMCID: PMC8000752.

van der Goot AT, Nollen EA. Tryptophan metabolism: entering the field of aging and age-related pathologies. Trends Mol Med. 2013 Jun;19(6):336-44. doi: 10.1016/j.molmed.2013.02.007. Epub 2013 Apr 2. PMID: 23562344.

Yao K, Fang J, Yin YL, Feng ZM, Tang ZR, Wu G. Tryptophan metabolism in animals: important roles in nutrition and health. Front Biosci (Schol Ed). 2011 Jan 1;3(1):286-97. doi: 10.2741/s152. PMID: 21196377.

Höglund E, Øverli Ø, Winberg S. Tryptophan Metabolic Pathways and Brain Serotonergic Activity: A Comparative Review. Front Endocrinol (Lausanne). 2019 Apr 8;10:158. doi: 10.3389/fendo.2019.00158. PMID: 31024440; PMCID: PMC6463810.

Gibson EL. Tryptophan supplementation and serotonin function: genetic variations in behavioural effects. Proc Nutr Soc. 2018 May;77(2):174-188. doi: 10.1017/S0029665117004451. Epub 2018 Jan 25. PMID: 29368666.

Gostner JM, Becker K, Kofler H, Strasser B, Fuchs D. Tryptophan Metabolism in Allergic Disorders. Int Arch Allergy Immunol. 2016;169(4):203-15. doi: 10.1159/000445500. Epub 2016 May 4. PMID: 27161289; PMCID: PMC5433561.

Liu XH, Zhai XY. Role of tryptophan metabolism in cancers and therapeutic implications. Biochimie. 2021 Mar;182:131-139. doi: 10.1016/j.biochi.2021.01.005. Epub 2021 Jan 16. PMID: 33460767.

Yan T, Shi L, Liu T, Zhang X, Yang M, Peng W, Sun X, Yan L, Dai X, Yang X. Diet-rich in wheat bran modulates tryptophan metabolism and AhR/IL-22 signalling mediated metabolic health and gut dysbacteriosis: A novel prebiotic-like activity of wheat bran. Food Res Int. 2023 Jan;163:112179. doi: 10.1016/j.foodres.2022.112179. Epub 2022 Nov 19. PMID: 36596122.

肠道核心菌属——梭杆菌(Fusobacterium)

谷禾健康

梭杆菌属Fusobacterium),是梭菌门最主要的菌属,厌氧革兰氏阴性细菌,与拟杆菌属、普氏菌属、卟啉单胞菌属一样都是医学上重要的厌氧革兰氏阴性杆菌

梭杆菌属是人类和动物的身体共生菌之一,主要定植在人类和动物的粘膜中,两个最主要的聚集地是口腔和结肠,某些类型物种属于机会性病原体,会引起菌血症和各种快速进展的感染。这些微生物比大多数正常的厌氧菌群更具毒性,产生重要的 脂多糖(LPS),内毒素和溶血素等,这可能是毒力的原因。


CNRI / SCIENCE PHOTO LIBRARY

其中具核梭杆菌Fusobacterium nucleatum, 简F. nucleatum)和坏死梭杆菌(Fusobacterium necrophorum,简F. necrophorum) 是可怕的厌氧病原体之一,最常存在于口腔、牙菌斑中,与牙周病、急性坏死性牙龈炎、口腔癌、溃疡性结肠炎、克罗恩病和结直肠癌有关。

此外,梭杆菌与大约一半的头颈部厌氧菌感染有关,包括牙龈和牙齿感染、慢性扁桃体炎、慢性鼻窦炎、中耳炎、咽旁感染以及口腔感染。它们不仅在这些组织中繁盛,而且很容易扩散,有时会引起肿瘤、息肉、囊肿和其他无害组织块的破坏。即使是局部炎症环境的变化也可能导致无功能组织过度生长,因此也称为“癌杆菌”。

梭杆菌属对粘菌素和卡那霉素敏感,这将它们与拟杆菌属和卟啉单胞菌区分开来。一些菌株产生β-内酰胺酶并对青霉素耐药

梭杆菌

梭杆菌是一种独特的细菌门,是以前研究不足的分类群中的一个主要例子。该门下研究广泛的主要是梭杆菌属

厌氧、革兰氏阴性菌,机会致病

梭杆菌属细菌是革兰氏阴性、不形成孢子的厌氧菌,球状、多形性小球(坏死梭杆菌)到杆状的一系列细胞形态。当杆状时,梭杆菌细胞具有平行的壁,具有圆形或锥形末端,可分为运动和不运动。

梭杆菌属DNA(G + C)含量约为26~34mol%,正常存在于人或动物的口腔、消化道和土壤中,已知对人和动物致病的有十几种以上,其中主要代表为具核梭杆菌(F. nucleatum)和坏死梭杆菌(F. necrophorum).

健康人的粪便中,发现以下数量的梭杆菌:

幼儿: 108-109 CFU/g

成人: 107-1010 CFU/g

老年人:108-109 CFU/g

通常,在成人的口腔中,含有 102 -104 CFU/g 的梭杆菌。

在血琼脂上,梭杆菌会形成圆形或不规则的针状菌落,一些物种,如具核梭杆菌,在孵化 3 至 5 天后会形成伞形“煎蛋”菌落。根据菌株的不同,它们可以是溶血的,并且一些菌株具有血凝作用。

临床感染中最常见的梭杆菌属有:

具核梭杆菌、坏死梭杆菌

它们几乎存在于儿童的所有类型的感染中,包括菌血症,与耳科疾病相关的脑膜炎 ,内脏破裂后的腹膜炎,以及口腔或肛门口附近的皮下脓肿等。

致病梭杆菌生物膜(特别是软组织)中粘附革兰氏阴性和革兰氏阳性菌斑微生物的卓越能力使其成为一种高度侵入性的病原体

最常存在于口腔、牙菌斑中,与牙周病、急性坏死性牙龈炎、溃疡性结肠炎和克罗恩病有关。在免疫缺陷中,可引起继发性坏疽和化脓性坏疽过程。对于扁桃体炎,疱疹性口炎,儿童营养不良,免疫缺陷病,可能会发生梭菌病,扁桃体口腔粘膜的坏死性炎症过程。

细胞代谢和病理因素

梭杆菌具有独特的代谢能力, 梭杆菌细胞通过发酵碳水化合物和蛋白获得能量。这种发酵产生丁酸盐,在某些情况下产生乙酸作为主要的代谢副产物。这是梭杆菌属物种与其他革兰氏阴性、非孢子杆状细菌的区别

致病性

在革兰氏阴性厌氧菌中,梭杆菌作为主要病原体侵入人类宿主的能力很强。已经描述了许多毒力决定因素,包括白细胞毒素蛋白水解酶脂多糖(LPS)血凝素的表达。

虽然是人体组织正常菌群的一部分,但梭杆菌可以在手术或意外创伤、水肿、缺氧和/或组织破坏后侵入组织。

★ 坏死梭杆菌 (F. necrophorum

坏死梭杆菌在其细胞壁中含有特别强大的内毒素脂多糖,并产生一种促进凝块形成的凝固酶。此外,它还产生多种外毒素,包括杀白细胞素溶血素、脂肪酶和细胞质毒素,所有这些都可能导致其致病。

坏死梭杆菌的粘附素和菌毛在宿主细胞附着中起关键作用。

白细胞毒素是已知的坏死梭菌的毒力因子,可能促进脓肿形成。内毒素和溶血素似乎也是脓肿形成和局部感染组织坏死增加的重要毒力因子。血凝素和尚未确定的导致血小板聚集的因素与Lemierre 综合征中发现的血栓形成后果相关性很大

★ 具核梭杆菌 (F. nucleatum


CNRI / SCIENCE PHOTO LIBRARY

具核梭杆菌是少数利用氨基酸分解代谢来提供能量的非产孢厌氧物种之一,能使用谷氨酸、组氨酸和天冬氨酸。梭杆菌代谢通过消耗氨基酸和释放氨自然增加其局部环境的 pH 值,从而使酸敏感细菌(如牙龈卟啉单胞菌)生长

但是,具核梭杆菌不使用葡萄糖作为其主要能源。现有数据表明,葡萄糖用于细胞内分子的生物合成,而不是能量代谢。具核梭杆菌也可以在低至 5 的 pH 值下存活。

——粘附各种细菌和细胞

具核梭杆菌是革兰氏阳性和革兰氏阴性物种之间物理相互作用的中心物种,可能对生物膜的形成很重要。

F. nucleatum具有外膜,于其细胞外表面上有大量蛋白质,可以发现细菌与宿主细胞表面上的各种互补结构具有特定的相互作用。这种粘附是由粘附素介导的。这种依从性对于易感宿主中感染的定植和建立非常重要。

它是附着在牙齿和上皮表面的共生体与真正的病原体F. nucleatum有两种物质:菌毛和非菌毛粘附素,用于附着在其他细菌和细胞上。这些物质有助于定植以及细菌发病机制和感染。

——梭杆菌粘附 A (FadA)

梭杆菌粘附A (FadA) 是一种菌毛粘附蛋白,最近被证明是细菌附着和侵入牙龈上皮和内皮细胞所必需的。它在栖息于口腔黏膜的梭杆菌属中是保守的,并且对细胞结合很重要。

FadA 是一种含有 129 个氨基酸的蛋白质,具有 18 个氨基酸的信号肽。它具有一种分泌形式,可导致 β-连环蛋白途径和 Wnt 基因表达上调,这两种重要的发育途径在失调时都是致癌的主要原因。

FadA 的晶体结构揭示了一种独特的“亮氨酸链”结构,该结构在发生突变时会破坏宿主细胞的结合。尽管他们没有确定 FadA 的受体结合位点,但他们认为 FadA 作为细丝发挥作用,该区域的治疗靶点可能适用于未来的临床治疗。

梭杆菌多样性和生态位

从 1880 年代和 1890 年代开始,科学家们在各种人畜共患病和人类样本中发现了梭形杆状物,包括健康和患病的口腔。

以前梭杆菌属区分开来的特征主要是代谢与发酵和分泌的有机酸谱、吲哚和硫化氢的产生以及胆汁敏感性有关。尽管这些指标在区分梭杆菌中无法真正有效,从基因组上层面区分和鉴定梭杆菌属是在测序时代,而且还提高了对梭杆菌内部差异的理解。

目前梭杆菌属鉴定的有30 多个物种,包括:

通过对 16s rRNA 序列的系统发育分组分析,发现F. nucleatum拟杆菌属和黄杆菌属密切相关。

比较基因组学研究表明,梭杆菌物种之间主要可以分为三个谱系。在这个模型中,F. nucleatum 进化为与牙周梭杆菌的谱系,这些物种不仅共享一个生态位,而且还具有与宿主细胞入侵相关的相似功能。

F. nucleatum本身可进一步划分为四个亚种:nucleatum、animalis、vincentii、polymorphum

虽然有人认为这些亚种在 DNA 水平上有足够的差异,可以被认为是独立的物种。

梭杆菌栖息在人类和动物的粘膜中,是两者的病原体。由于其致病性和寄生性,梭杆菌不会直接影响环境,但它可能会通过对受感染宿主动物菌群的影响来改变生态系统。

常见感染

一些梭杆菌菌株会导致多种人类疾病,包括牙周病、Lemierre 综合征和局部感染或溃疡

较早的研究表明梭杆菌在人类口咽部很常见,但目前的共识是梭杆菌应始终被视为病原体。与拟杆菌属相比,梭杆菌属具有强效的脂多糖。

在与牙周病统计学相关的所有牙周菌群中,具核梭杆菌是在其他身体部位发现的临床感染中最常见的。

“具核梭杆菌心包炎”——一名疑似感染分枝杆菌的 49 岁男子胸部发现具核梭杆菌心包炎。被认为分枝杆菌是原因,因此对他使用了抗结核药物。然而,这是F. nucleatum导致的。这一发现使人们认识到,具核梭杆菌通过口咽入口进入是导致此类疾病的原因。这是较早的发现之一,即具核梭杆菌也可能影响除口腔以外的其他体腔。

一些身体感染包括:皮肤溃疡、扁桃体周围脓肿、脓肌炎和化脓性关节炎、菌血症、肝脓肿、宫内感染、细菌性阴道病、尿路感染、心包炎和心内膜炎、肺和胸膜肺感染。巧合的是,它更常见于儿童体内

F. necrophorum 在某些类型的感染中可能具有很强的毒性。在心绞痛后脓毒症(Lemierre 综合征)中,感染始于膜感染,如扁桃体炎,然后发展为伴有转移性感染的败血症,包括肺脓肿、脓胸、肝脓肿、骨髓炎和化脓性关节炎。

与其他细菌的相互作用

梭杆菌属以多种方式其他细菌相互作用。相对于人类口腔和胃肠道中同时存在的微生物,梭杆菌属可以是互惠者、促进者、拮抗者和/或协同者

梭杆菌代谢的副产物可以促进其他细菌种类的生长。上面提到的梭杆菌粘附素库就允许与许多不同的菌属共聚集,甚至可以促进其他非侵入性细菌物种的入侵。

担当调解者——连接主要定植菌和厌氧菌——有益牙周健康

F. nucleatum在有助于牙周健康和疾病的生物膜中发挥不可或缺的有益作用。在牙菌斑生物膜中,具核梭菌作为桥梁生物在结构上起到支持作用,将主要定植菌(如链球菌属)与主要厌氧的次级定植菌(牙龈卟啉单胞菌和Aggregatibacter actinomycetemcomitans 连接起来。

许多口腔微生物,包括梭杆菌属是专性厌氧的,并且作为生物膜的一部分存在于口腔的富氧环境中。然而,溶解在唾液中的氧气可能会通过牙龈下生物膜中的通道深入渗透到牙龈下生物膜中。尽管在单一培养中,对氧气极为敏感的口腔菌斑衍生微生物(如牙龈卟啉单胞菌无法在这种微通气条件下存活,但与更耐氧的具核梭菌共培养可以促进专性厌氧菌的生长,这可能是由于梭杆菌对局部还原条件的贡献

能在酸性条件存活,增加pH值,促进其他菌生长

除了在低氧水平下生长的能力,F. nucleatum也可以在低至 5 的 pH 值下存活。梭杆菌代谢通过消耗氨基酸和释放氨自然增加其局部环境的 pH 值,从而使酸敏感细菌(如牙龈卟啉单胞菌)生长。除了促进其他细菌的生长,梭杆菌细胞可以将它们的 同居者” 固定在适当的位置。

梭杆菌属,特别是具核梭杆菌,已显示与所有测试的口腔细菌属可以发生共聚集。然而,这种聚合并不是无差别的。在每个属中,梭杆菌分离物优先与特定的某些菌株而非其他菌株共聚集。由于这种相互作用,具核梭菌是口腔生物膜发育的重要贡献者,是早期和晚期定植者之间的桥梁

接下来,我们了解一下,F. nucleatum可能与之共聚的细菌。

与肠源性细菌共聚集——协同作用

梭杆菌细菌素可以通过去除特定的口腔和/或肠道微生物来促进其他微生物的生长,从而促进互惠相互作用的选择性

通过与具核梭菌的侵入性菌株共聚集,一种具有粘附和侵入哺乳动物细胞能力的梭杆菌分离物——非侵入性细菌“乘客”可以穿梭到哺乳动物细胞中

例如,具核梭菌的侵入性菌株,促进一些源自口腔的非侵入性细菌能够侵入人类口腔细胞。有趣的是,尽管F. nucleatum原产于人类口腔已证明菌株但是能够与人类胃肠道结直肠区域的原生细菌共聚集

细菌共聚集可能对人类健康产生的影响

这种共聚集能力可能通过协同相互作用在结直肠癌(CRC)的病因中发挥作用。

尽管大量研究调查了结肠微生物群与结直肠癌进展之间的联系,结直肠癌病例相关的细菌包括F. nucleatum、产肠毒素脆弱拟杆菌(ETBF)、致肠致病大肠杆菌(EPEC)、侵入性大肠杆菌(AIEC)、粪肠球菌、弯曲杆菌属和Leptotrichia spp 等。

已发现具核梭杆菌和以上菌可能协同加速结直肠癌进展和/或转移

健康特性

引发感染和并发症

早在 1936 年,科学家就将梭杆菌感染与颈静脉血栓性静脉炎联系起来。

最近,梭杆菌感染的发病率有所增加。虽然这种增加的原因尚不清楚,但抗生素使用减少检测技术改进有关的理论可能解释了这种变化。

临床医生能够发现梭杆菌属感染的早期迹象至关重要,这种感染会迅速出现一系列并发症,如 Lemierre 综合征(心绞痛后脓毒症)、菌血症、骨髓炎和感染性休克。

儿童发病 ↓↓↓

儿科人群中的梭杆菌感染主要影响头部和颈部区域因为细菌主要存在于口腔内急性中耳炎是最常见的感染部位,尤其是在 2 岁及以下的儿童中。

一项研究了 27 名中位年龄为 3.5 岁的儿童的梭杆菌感染的神经系统表现,发现其中 5 人出现识水平下降,7 人在开始治疗前癫痫发作

厌氧菌引起的中耳感染不到 1%但是,如果不及时治疗,可能会出现严重的并发症,例如骨膜下和硬膜外脓肿

菌血症是一种严重的并发症,常见于高达 77% 的儿童梭杆菌病例,可能是由于颅内窦靠近乳突骨所致。在 40% 的患者中也观察到骨髓炎,并且通常是多灶性的,需要长期静脉内抗生素治疗

成年发病

在免疫功能正常的患者中,男性和女性的发病率相等。最初的症状包括发烧(38°C ~ 39°C)并伴有急性中耳炎,通常进展为乳突炎。实验室评估显示炎症标志物升高:C 反应蛋白水平、白细胞计数和中性粒细胞绝对计数。

梭杆菌引起的脑膜炎罕见且被描述少于 20 次;然而,人们经常注意到它会导致严重的发病率和死亡率

Lemierre 综合征

有人提出,Lemierre 或 Lemierre 样综合征的发展通常发生在梭杆菌感染中耳之后。这是由于中耳感染延伸到静脉窦血栓形成。

Lemierre 综合征是梭杆菌感染的严重并发症

在一项对 12 名感染患者的研究中,58% 的患者发展为 Lemierre 或 Lemierre 样综合征。该综合征以颈内静脉脓毒性血栓性静脉炎或血栓形成为特征,可在肺部或其他无菌部位引起脓毒性栓塞性病变。

坏死梭杆菌F. necrophorum是导致 Lemierre 综合征的梭杆菌属物种,是造成 10% 的急性咽喉痛和 21% 的复发性咽喉痛的原因,其余由引起由A 组链球菌或病毒引起。

F. necrophorum的其他并发症包括脑膜炎,并发脑静脉血栓形成, 以及泌尿生殖道和胃肠道感染。

菌血症

具核梭杆菌引起的菌血症不常见,但死亡率高

一些危险因素包括恶性肿瘤、年龄较大、酗酒、免疫抑制和透析;通常是通过医院感染。然而,F. nucleatum菌血症的死亡率可达 10%,并且与基础疾病的严重程度相关。

有一项研究调查了有梭杆菌属感染事件病例。研究期间的菌血症(每年 0.55 例/100,000 人),具核梭杆菌是最常见的物种(61%),其次是坏死梭杆菌(25%)。

  • F. necrophorum 菌血症发生在没有潜在合并症的年轻人群中,并且与死亡率无关。
  • F. nucleatum 菌血症在老年人群中发现,并且与潜在的恶性肿瘤或接受透析有关。大约 10% 的具核梭杆菌病例死亡,但该研究未确定因果关系。

许多具核梭杆菌菌血症发生在不同的疾病患者(糖尿病、肠道、肺部、肝脏或妇科疾病),其中口咽部、胃肠道、泌尿生殖道和呼吸道,通常是F. nucleatum定植,可能成为感染源

在强化化疗后患有恶性肿瘤(白血病和淋巴瘤)的血液病患者中,发生了具核梭杆菌菌血症。在大多数情况下,发生在口腔粘膜炎患者中。值得注意的是,F. nucleatum菌血症的病程似乎比由F. necrophorum等梭杆菌属引起的其他菌血症更有利,后者通常会导致 Lemierre 综合征。

F. nucleatum 感染与新冠感染有关

比利时研究团队报告了2020 年 3 月和 2020 年 4 月,比利时布鲁塞尔的 2 家主要医院观察到 4例 具核梭菌感染病例,均与冠状病毒病(COVID-19)患者的严重急性呼吸综合征冠状病毒 2(SARS-CoV-2)感染有关。

口腔疾病或口腔癌

在口腔中,细菌、真菌、病毒和古细菌在不同的栖息地自然定殖,包括牙齿、牙龈沟、舌头、脸颊、软硬腭和扁桃体。口腔微生物群是指这些生物的高度多样化和复杂的生态系统。超过 700 种细菌是口腔特有的,而本土口腔菌群则可以防止外来细菌的定居。

口腔菌群的两面性

口腔中的一些细菌是有害的,会导致严重的疾病,而同时也有许多口腔细菌上对预防疾病是有益的。

现在已经确定,许多慢性炎症状况是由宿主-微生物群相互作用之间的不平衡引起的。口腔共生菌在口腔疾病的发展中起着至关重要的作用,包括牙周病和牙齿脱落,以及维持正常的口腔生理环境。此外,已知口腔共生菌参与了肺炎、心血管疾病、糖尿病、痴呆等系统性疾病的发病和发展

梭杆菌在口腔疾病中的作用

梭杆菌是口腔中常见的专性厌氧革兰氏阴性菌,可充当牙菌斑中早期和晚期定植细菌之间的桥梁,并在口腔和口腔外感染中发挥作用

具核梭杆菌是一种常见于人类牙菌斑中的细菌。这种细菌已被证明在牙菌斑形成和牙龈炎等其他疾病中起着核心作用。

这是因为它能够粘附广泛的革兰氏阳性和革兰氏阴性菌斑微生物,例如牙龈卟啉单胞菌。牙周炎以及头部和颈部、胸部、肺部、肝脏和腹部的侵入性人类感染密切相关。由于其粘附能力,它可以与病毒相关联,病毒粘附在宿主组织细胞上作为入侵并调节宿主的免疫反应。

口腔鳞状细胞癌中的梭杆菌

最近已经表明,在口腔鳞状细胞癌(OSCC)组织中检测到梭杆菌一种口腔共生细菌。OSCC 组织表面生物膜内需氧菌和厌氧菌的比例约为 1:2,而健康对照组为 2:1,表明 OSCC 表面为厌氧菌提供了重要的储存库。梭杆菌在 OSCC 组织中的分布可能与健康口腔粘膜组织中的分布不同。

具核梭杆菌侵入上皮细胞

P. gingivalis相比,F. nucleatum 显着粘附并侵入人牙龈上皮细胞 (HGEC) 。具核梭菌的自发突变体无法侵入HGEC ,这表明它们的侵入需要细菌成分

此外,葡萄糖抑制试验表明,凝集素样相互作用参与了具核梭菌与 OSCC 细胞的附着。

具核梭杆菌在上皮细胞促进细胞迁移

具核梭杆菌的感染在人类上皮细胞中促进细胞迁移,可能通过刺激 Etk/BMX、S6 激酶 p70 和 RhoA 激酶,并通过激活丝裂原活化蛋白激酶 p38 增加 MMP-13(胶原酶 3)的产生 。

然而,梭杆菌在 OSCC 细胞中的粘附以及具核梭杆菌介导的OSCC细胞侵袭的详细机制仍不清楚。但是,普遍共识认为在OSCC 患者的口腔中富含具核梭杆菌这一事实似乎在口腔癌的肿瘤发生和/或进展中很重要

具核梭杆菌通过产生有毒代谢物成为牙周病原体

这些有毒成分具有杀死或阻止附近牙周正常细胞(成纤维细胞)增殖的能力

F. nucleatum形成的硫化物可能为细菌提供了一种避开宿主免疫系统的方法丁酸(以组织刺激性丁酸的形式)、丙酸和铵离子,由具核梭菌产生,抑制人牙龈成纤维细胞的增殖。

具核梭杆菌有穿透牙龈上皮的能力

且在与牙周炎相关的斑块中,以高水平存在。

因此,它们可能对产生牙龈炎等口腔疾病具有非常重要的作用。

素的作用对细胞来说不是致命的,但成纤维细胞增殖的抑制很严重,因为伤口快速愈合的潜力受到了损害。

通过对龈下菌斑样本进行聚类分析,发现牙菌斑中的细菌之间存在特定关联。如下图,如金字塔所示,存在各种细菌。具核梭杆菌在金字塔的中间。

梭杆菌属参与口腔癌发生和癌症进展的示意图

编辑​

Fujiwara, Natsumi et al, INT J MOL SCI, 2020

在金字塔中部的物种中,具核梭菌在牙菌斑形成后期的牙齿生物膜中占优势。

如上所述,梭杆菌感染通过各种反应影响 OSCC 的肿瘤发生和发展。然而,梭杆菌的靶分子仍然未知。需要进一步的研究来阐明梭杆菌参与 OSCC 肿瘤发生和发展的证据。

结直肠病和结直肠癌

梭杆菌属物种可能与炎症性肠病 (IBD) 有关,包括溃疡性结肠炎和克罗恩病。IBD 是一个已知的危险因素,它是结直肠癌的三个最高风险因素之一。

已报道了几种梭杆菌菌株与 IBD 相关。然而,大多数 (69%) 与F. nucleatum相关。

F. nucleatum其他梭杆菌属物种可以引发宿主促炎反应,并具有促进它们与宿主上皮细胞粘附的毒力特征以及它们侵入上皮细胞的能力细胞。

因此,与正常邻近组织和健康对照中的水平相比,结直肠癌中的具核梭杆菌富集,这些微生物可能导致肿瘤发生的可能性,可能在有限的患者亚群中,最可能是通过炎症介导的机制。

具核梭杆菌在结直肠癌患者中丰度及作用

最近的一项荟萃分析表明,与邻近的健康组织和对照组的健康组织相比,结直肠肿瘤组织中检测到具核梭杆菌DNA 的几率更高。与对照组的健康组织相比,结直肠息肉组织中的具核梭杆菌DNA 也较高。

结直肠癌患者粪便样本中,具核梭杆菌高

研究表明,结直肠癌患者的粪便样本F. nucleatum 含量丰富。Meta 分析发现,与健康对照组相比,结直肠癌患者粪便样本中具核梭菌阳性的综合几率更高;与结直肠息肉患者相比,结直肠癌患者更高;但与健康对照相比,结肠直肠息肉患者的情况并非如此。

F. nucleatum已从消化道其他部位的癌症中分离出来,即胰腺 、食道和胃

肿瘤内具核梭杆菌可能起源于口腔

有趣的是,已经表明结直肠癌中的具核梭杆菌菌株与从口腔中分离的该物种的菌株相同,这表明肿瘤内具核梭杆菌能起源于口腔。如果来自口腔的具核梭菌在口腔外部位的癌症发展中起作用,那么假设这种细菌可能导致口腔本身的致癌作用是合理的。

具核梭菌感染诱导特定的肿瘤分子事件

F. nucleatum曾经被认为是胃肠道中的被动细菌。然而,现在人们认识到,具核梭菌感染可以在结直肠癌中诱导一系列特定的肿瘤分子事件,包括 CpG 岛甲基化表型、微卫星不稳定性以及BRAF和TP53的基因突变。

肿瘤内有具核梭杆菌的存在,与较差生存率相关

此外,许多这些研究已经确定,肿瘤内有具核梭杆菌的存在与较差的生存率有关 。还观察到,具核梭杆菌感染与更差的临床病理学特征相关,例如更大的肿瘤、更差的分化、淋巴结和远处转移、晚期肿瘤分期和更深的肿瘤侵袭

总之,结直肠癌微生物组的基因组分析揭示了这些癌症中梭杆菌属的显着富集,尤其是与具核梭杆菌、死亡梭菌和坏死梭杆菌具有最大相似性的种系型。这种富集通过肿瘤组织的组织学分析以及结肠肿瘤转移中梭杆菌DNA 的鉴定得到证实。

梭杆菌介导结直肠癌发生,随着肿瘤转移进肝脏

2017年发表在《Science》肠道细菌Fusobacterium介导结肠癌的发生及伴随肿瘤的转移。作者进行以下操作:

  1. 检测Fusobacterium特异的RNA序列
  2. 从肿瘤组织中分离培养Fusobacterium
  3. 2种方法检测了结肠癌原位和肝转移灶里面Fusobacterium情况

结果发现,10个患者里面,只有2个患者的原位病灶和肝转移病灶Fusobacterium含量不一样,其他8个病人是高度吻合的(Fuso-qPCR)。

由以上结果我们可以得知:Fusobacterium阳性的患者中,原发灶和肝转移灶中的细菌谱是高度相似的Fusobacterium很有可能能够随着结肠癌一起进入肝脏

接下来,作者从病人体内分离出Fusobacterium,通过给小鼠口服Fusobacterium发现可以诱导结肠癌的产生。同时再次分离小鼠结肠癌中的细菌,通过测序发现,小鼠结肠癌中的细菌谱跟之前病人结肠癌中的细菌谱也是高度一致的。

是否可通过抗生素消灭具核梭杆菌及其他细菌,能否抑制结肠癌的生长?

作者先使用了没有Fusobacterium的细胞系HT-29,通过皮下成瘤,发现甲硝唑并不能够抑制肿瘤的生长。然后使用了从结肠癌患者的肿瘤组织中分离出Fusobacterium,诱导产生结肠癌。发现甲硝唑能够显著抑制肿瘤的生长

具核梭杆菌高与复发相关

此外,上海交通大学仁济医院房静远教授团队在《Cell》上发表了相关论文,发现在肿瘤复发患者肠菌具核梭杆菌含量明显升高,并明确了该菌诱导癌细胞自噬而导致化疗耐药与肿瘤的术后复发机制,从而引起大肠癌患者五年生存率降低。

另外,2017年发表在《Gastroenterology》上复旦大学肿瘤研究所领衔完成和《Oncotarget》(由西南医科大学领衔完成)杂志上的两篇也从另外的角度阐述了具核梭杆菌促进肿瘤发生发展的分子机制

总结一下梭杆菌与结肠癌的进展:

1)研究发现Fusobacterium在结肠癌组织中大量富集;
2)研究发现Fusobacterium能够抑制免疫,减少T细胞的在肿瘤组织中的浸润;
3)研究发现Fusobacterium能够促进结肠癌的发生和发展,通过给小鼠口服Fusobacterium可以诱导结肠癌的产生;
4)研究发现Fusobacterium在结肠癌原位和肝转移灶都能检测到,意味着Fusobacterium可能能够跟随肿瘤细胞一起转移到肝;

5)研究发现使用抗生素消灭Fusobacterium后可以抑制结肠癌细胞的生长(这里使用甲硝唑做实验并不代表今后治疗中可以直接使用,毕竟这是个广谱抗生素)。

那这些研究对我们临床有什么启示呢?

近些年来的很多研究都表明,Fusobacterium与结直肠癌的发生有很大的关联性。我们知道肿瘤防治重点于防而不在于治。关于肿瘤跟细菌的相关研究,大家最熟悉的是幽门螺杆菌和胃癌的研究。

2017年8月《Nature》首度报道了幽门螺杆菌导致胃癌发生的机制。通过对幽门杆菌的清除可以将胃癌的患病风险降低65%,那么通过以后监测Fusobacterium以及清除Fusobacterium可能为以后结肠癌的预后提供新的思路。同时,为什么Fusobacterium能够介导结肠癌的发生也同样值得研究。

影响PDL-1治疗效果

越来越多的证据表明,微生物会影响癌症治疗的效果。具核梭杆菌在具有不同微卫星不稳定性 (MSI) 状态的结直肠癌中,诱导不同的免疫反应

增强PD-L1阻断剂疗效

F. nucleatum水平与结直肠癌患者对 PD-1 阻断的治疗反应改善相关。此外,F. nucleatum增强了 PD-L1 阻断剂对小鼠结直肠癌的抗肿瘤作用并延长了生存期。结合F. nucleatum补充免疫疗法,挽救了 PD-L1 阻断的治疗效果。

激活信号,诱导 PD-L1 表达

此外,具核梭杆菌通过激活 STING 信号传导诱导 PD-L1 表达,并在 PD-L1 阻断治疗期间增加干扰素-γ (IFN-γ) + CD8 +肿瘤浸润淋巴细胞 (TIL) 的积累,从而增强肿瘤对PD-L1 阻断。

最后,源自患者的类器官模型表明,增加的具核梭菌水平与改善对 PD-L1 阻断的治疗反应相关。这些发现表明,F. nucleatum可能会调节结直肠癌的免疫检查点治疗。

与F. nucleatum相关的潜在致癌机制

1

与其他微生物共聚集

F. nucleatum是早期和晚期定植者之间的关键“桥梁”生物,其外膜粘附素 Fap2 部分负责促进多物种生物膜的形成 。当口腔生物膜中报告牙龈卟啉单胞菌(P. gingivalis时,始终存在F. nucleatum,这表明它先于该物种,并且是其殖民化所必需的。

P. gingivalis是一种酸敏感细菌,但F. nucleatum可以通过发酵谷氨酸和天冬氨酸产生氨,从而为P. gingivalis定殖提供更中性的环境。

F. nucleatumP. gingivalis可能协同工作,通过引发慢性炎症来促进肿瘤变化,刺激了人 OSCC 细胞的体外增殖 。

白色念珠菌是一种机会性致病酵母,常见于胃肠道和口腔。最近的真菌生物组研究表明,OSCC 中包括白色念珠菌在内的几种真菌种类的丰度增加 。众所周知,口腔中的念珠菌属具有乙醇脱氢酶,负责催化酒精产生乙醛,乙醛是一种有效的致癌物质 。已经表明,具核梭菌与念珠菌共聚集,这可以促进定殖。念珠菌口腔白斑的定植与F. nucleatum水平升高有关。F. nucleatum可能通过增加口腔黏膜与念珠菌产生的乙醛的接触而间接增加口腔癌的风险。

2

激活细胞增殖

最简单的癌症是不受控制的细胞生长,而有核梭菌已被证明通过与内皮钙粘蛋白(E-钙粘蛋白)相互作用来影响癌细胞的增殖。梭杆菌 FadA 与在宿主细胞膜表面表达的 E-钙粘蛋白结合。E-cadherin 是一种通过 β-catenin 发挥作用的肿瘤抑制因子。梭杆菌 FadA 与 E-cadherin 的相互作用激活 WNT/β-catenin 信号传导,导致细胞增殖并增加致癌和炎症基因的表达。

类似地,已显示F. nucleatum通过激活 Toll 样受体 4 (TLR4) 向 MYD88 发出信号来增加小鼠异种移植物中的 CRC 增殖,从而导致核因子 NFκB 的激活和 miR21 的表达增加;这种 miRNA 降低了负责控制细胞增殖和分化的 RAS GTPase RASA1 的水平 。

由细胞周期蛋白激活的细胞周期蛋白依赖性激酶促进细胞周期进程F. nucleatum感染与细胞周期蛋白 D1 的激活有关,这促进了肠道肿瘤的发生 。在 OSCC 中,F. nucleatumP. gingivalis均被证明能够通过上调 cyclin D1 和 c-Myc显着刺激 OSCC 细胞增殖。

TLR4 的细菌激活导致白细胞介素 6 (IL-6) 的表达增加,白细胞介素 6 (IL-6) 反过来又激活了 STAT3,这是一种负责调节细胞周期蛋白 D1  c-Myc 的关键信号分子 。而且,F. nucleatum通过降低 p27(一种细胞周期蛋白依赖性激酶抑制剂)的表达和加速细胞周期来引起 DNA 损伤并促进口腔癌细胞的细胞增殖 。此外,具核梭菌下调 DNA 修复蛋白 Ku70 和 p53,从而削弱细胞修复能力。

最近的一项研究发现,HNSCC 中具核梭菌的富集与宿主基因启动子甲基化有关,包括肿瘤抑制基因LXN和SMARCA2的高甲基化。SMARCA2是一种参与与 DNA 修复和复制相关的 ATP 依赖性染色质重塑的基因。这表明F. nucleatum感染可能通过表观遗传沉默导致细胞增殖

3

炎症的诱导

F. nucleatum的促炎潜力已得到充分证明,因为它可以促进活性氧 (ROS) 的产生和细胞因子的产生 。慢性炎症在致癌过程中起着关键作用,并且可以解释牙周炎与 OSCC 高风险之间的密切关联。已发现具核梭菌 CRC 和 OSCC 中的高细胞因子水平相关,从而产生支持肿瘤进展的炎症微环境 。LPS,存在于细胞外膜中F. nucleatum激活 TLR4 介导的 NF-κB 信号通路以产生促炎细胞因子,如 IL-6、IL-8 和肿瘤坏死因子 α 。

4

抗肿瘤免疫反应

F. nucleatum在 ApcMin/+ 小鼠模型中已显示将骨髓来源的抑制细胞募集到肿瘤微环境中。髓源性抑制细胞可抑制 T 细胞增殖并诱导 T 细胞凋亡 。

这与最近发现的F. nucleatum的数量与结肠直肠癌和乳腺癌组织中 CD3 和 CD4 T 细胞的密度之间的负相关的发现一致。

还观察到 OSCC 中具核梭菌负荷与 B 淋巴细胞、CD4 T 辅助淋巴细胞、M2 巨噬细胞和成纤维细胞的标志物之间存在显着负相关。

F. nucleatum抑制蛋白还可以通过将细胞阻滞在细胞周期的 G1 期来抑制人类 T 细胞活化 。梭杆菌 Fap2 粘附素结合并激活具有 Ig 和 ITIM 结构域 (TIGIT) 的 T 细胞免疫受体,TIGIT 是 T 细胞和自然杀伤 (NK) 细胞中的一种免疫调节信号受体。这种 Fap2-TIGIT 相互作用可保护具核梭菌和附近的肿瘤细胞免于被免疫细胞杀死。局部免疫抑制也可能发生,因为有核梭菌的Fap2和 RadD 外膜蛋白会诱导淋巴细胞中的细胞死亡

F. nucleatum还通过促进有核梭菌相关 CRC中巨噬细胞的 M2 极化发挥免疫抑制作用,可能通过 TLR4/IL-6/p-STAT3/c-MYC 信号通路。

5

细胞迁移和侵袭

基质金属蛋白酶 (MMP) 是一个锌依赖性内肽酶家族,它们共同能够降解细胞外基质 (ECM) 的所有成分。MMP 在 ECM 过度降解的病理状况中发挥作用,包括肿瘤侵袭和转移P. gingivalisF. nucleatum都可以通过不同的机制产生 MMP,从而促进癌细胞的侵袭和转移

在 OSCC 中,已观察到暴露于牙龈卟啉单胞菌和具核梭菌导致 MMP-1 和 MMP-9 的诱导。同样,与F. nucleatum一起孵育的 AT3 小鼠乳腺癌细胞也表现出 MMP-9 的过表达。

上皮-间质转化 (EMT) 定义为上皮细胞采用间充质表型的过程,是在癌症发展和进展中观察到的现象

一般来说,进入 EMT 的细胞表现出上皮标志物(如 E-钙粘蛋白)的下调和间充质标志物的上调,包括神经钙粘蛋白(N-钙粘蛋白)和波形蛋白 。这种细胞分化行为的转变是由一组转录因子控制的,包括锌指 E-box 结合同源框 1 和 2 蛋白 (ZEB1/2)、SNAIL 和 TWIST。

CRC 中高水平的具核梭杆菌与 E-cadherin 表达呈负相关,但与 N-cadherin 表达呈正相关。同样,OSCC 细胞系暴露于F. nucleatum与 E-cadherin 转录的显着降低以及 N-cadherin、vimentin 和 Snail 的上调有关。

F. nucleatum可以上调ZEB1 在口腔癌细胞中诱导这种间充质状态,一种先前已在H. pylori感染的胃上皮细胞中发现的机制。

其他健康关联特性

痛风

痛风患者中普氏杆菌(Prevotella)、梭杆菌(Fusobacterium)和拟杆菌(Bacteroides)的相对丰度增加,而肠杆菌科(Enterobacteriaceae)和产丁酸盐菌的相对丰度减少

胃肠道肿瘤

梭杆菌属(Fusobacterium)在胃肠道肿瘤的发生和发展中起重要作用。与正常组织样本,尤其是正常血源性样本相比,原发肿瘤中梭杆菌较多。泛癌分析还显示,在原发肿瘤组织和邻近正常组织样本中,将所有胃肠道癌(n = 8)与非胃肠道癌(n = 24)进行比较时,梭杆菌丰富度都是较高的。

胰腺导管腺癌

与其他肿瘤相比,胰腺导管腺癌中的肿瘤相关细菌 Gammaproteobacteria较多,尤其是肠杆菌Enterobacterales,与胃癌和结肠癌不同的是,它们的梭杆菌fusobacteria 较少。

口腔和唾液微生物群组成的改变与PDAC(胰腺癌主要是指胰腺导管腺癌,简称PDAC)的风险相关。最近的研究表明,口腔中参与PDAC肿瘤发生的主要致病菌有:

  • 牙龈卟啉单胞菌 (Porphyromonas gingivalis)
  • 梭杆菌 (Fusobacterium)
  • 缓症链球菌 (Streptococcus mitis)
  • 长奈瑟氏球菌 (Neisseria elongata)

在健康对照组和胰头癌患者中分别观察到嗜血杆菌、卟啉单胞菌、纤毛杆菌、梭杆菌的丰度有显著差异

PDAC肿瘤内梭杆菌的定殖与PDAC患者的预后更差相关。这项研究的结果表明,梭杆菌属可以作为PDAC的预后生物标志物

梭杆菌的治疗和管理

抗生素和抗菌药物

梭杆菌的严重程度和传播范围,决定了所需治疗程度

一般所有梭杆菌感染都必须用抗生素治疗,并且通常对 β-内酰胺类药物敏感,例如青霉素或头孢菌素或其衍生物。

一些梭杆菌菌株被发现含有 β-内酰胺酶,因此建议使用特定的厌氧抗生素,例如甲硝唑或克林霉素

适当的抗生素治疗与手术清创相结合可预防并发症

抗生素治疗通常通过肠胃外给药 1 至 2 周,然后进行大约 10 天的口服治疗。有些孩子需要切除坏死组织或手术引流。

在一项对 7 名小于 2.2 岁的梭杆菌感染患者的监测研究中,除了乳突切除术外,所有患者都需要一根通气管。

在以色列对 22 名感染梭杆菌的儿童进行的一项为期 14 年的研究中,5 名出现 Lemierre 综合征的患者中有 3 名接受了低分子量肝素治疗以缓解脑窦静脉血栓形成的症状,但是该治疗仍存在争议

一项 40 年文献回顾确定了, 12 例 2 岁以下儿童的梭杆菌感染病例;所有儿童都出现了乳突炎,并接受了乳突切除术和抗生素治疗,无论严重程度如何,都取得了成功。

早期发现和适当治疗,可以有效阻止和逆转感染的进展

梭杆菌感染在 2 岁及以下的儿童中,临床表现为急性中耳炎,但如果不及时治疗,则会发展为乳突炎和更严重的菌血症、骨髓炎症状,并可能出现 Lemierre 综合征和感染性休克。

使用适当的抗菌检测技术以及适当的成像程序应允许及时使用抗生素和手术参与,以防止感染的进一步传播。

虽然对梭杆菌感染的研究和分析有限,但对感染症状和严重程度的重要认识可以帮助临床医生发现感染的早期发作并将患者引导至适当的专科医生处。

梭杆菌的钙疗法管理

口腔牙周病感染中,高达 90% 的菌群由专性厌氧菌组成,钙化合物已被证明是牙科中有价值的材料。钙与酯的配方在牙齿结构的愈合过程中表现出显着的特性。根据国外“Calcium Therapy Institute”研究所的介绍,他们长达16 年的时间里,发现使用钙化合物来开发治疗牙髓和牙周(牙龈和骨)感染的牙周治疗钙法 (CMPT)具有重要意义。

口腔厌氧菌分散的一个原因是梭杆菌在上颌骨中获得了稳定的立足点,以增殖并将其大量的毒素释放到多孔的上颌骨、上颚和下牙列中。这个过程与人体正常的进食、呼吸、说话和吸吮机制相联系,是梭杆菌对人体细胞异常失衡的完美寄生关系。

北美该研究人员最近报告了的一项突破,发现厌氧细菌被局部刺激或炎症所吸引,会开启“饥饿触发”信号,向侵袭性细菌发出信号,释放一种酶以减少抗生素的影响。

这种自我饥饿细菌的“饥饿信号”会产生一种冬眠状态,或者说是防御状态,直到不再使用抗菌药物。他们进入休眠状态,只是为了在更有利的条件下重新发动进攻。

该研究所实验人员发现舌下颌下腺唾液肽的生物学特性,以及用于根管和牙周治疗的钙材料有助于深入了解答案。

它们是具有解热、抗炎、定时释放特性的非类固醇。几项临床研究表明,长期摄入唾液腺分泌物和对组织有益的钙材料具有积极的全身作用。

——降低有害菌的复制率

在 1980 年代中期,一些的血清研究表明,某些钙质材料不会杀死细菌,而是“降低”它们的复制率,而流行的抗菌剂在几毫秒内杀死一切,包括健康的细胞和细菌。在那项研究中,根据对口腔组织钙治疗的多年临床观察,消除细菌需要十个小时。关键因素是时间。

鉴于饥饿细菌的发现,钙材料会发出警报,但不会造成伤害。

——饿死那些“自我饥饿的细菌”

几十年来,钙疗法已被证明对口腔或皮肤的任何正常健康细胞无害,同时它们还能维持环境“围攻”。不是直接杀死它们,而是逐渐将饥饿细菌饿死。

然后,由于几乎没有复制能力,它们开始消亡,而健康细胞迅速蓬勃发展并主导该领域,尤其是在定时释放钙离子的情况下。

如果厌氧梭杆菌最常存在于口腔、牙菌斑中,并且与牙周病和炎症性牙龈炎有关,那么梭杆菌的下一个最有利的栖息地是结肠,可以刺激溃疡性结肠炎、癌症和克罗恩病。

口腔和结肠这两个区域很容易受到异常水平的梭杆菌的影响,这会长时间造成炎症环境并增强细胞的扩散或分布,甚至会扩散到以厌氧微生物而臭名昭著的身体远处器官。众所周知,生物膜菌落容易引起囊性和脓肿感染

梭杆菌的管理,中和它们的毒素仍然在控制厌氧微生物环境的范围内。同样,健康的一个主要考虑因素是限制侵入性病原体的局部和全身传播

从用钙材料管理口腔环境可以明显看出,下颌前切牙上的斑块沉积快速愈合和减少。对口腔黏膜和牙周组织进行长期钙治疗的患者会显著减少牙菌斑和牙石。

考虑到梭杆菌的两个最主要的聚集地,口腔和结肠,那么未来继续研究钙材料应该是价值的。这种病原体比预期的更容易控制,至少在口腔和下消化道的炎症和感染的早期阶段是如此。

声明:关于药物、诊断和治疗方法的部分中提供的信息仅供医疗专业人员交流使用,并非使用说明。

主要参考文献:

Brennan CA, Garrett WS. Fusobacterium nucleatum – symbiont, opportunist and oncobacterium. Nat Rev Microbiol. 2019 Mar;17(3):156-166. doi: 10.1038/s41579-018-0129-6. PMID: 30546113; PMCID: PMC6589823.

Susan Bullman et al. Analysis ofFusobacteriumpersistence and antibiotic response in colorectal cancer, Science (2017). DOI: 10.1126/science.aal5240

Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen-Vercoe E, Moore RA, Holt RA. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012 Feb;22(2):299-306. doi: 10.1101/gr.126516.111. Epub 2011 Oct 18. PMID: 22009989; PMCID: PMC3266037.

Kostic AD, Gevers D, Pedamallu CS, Michaud M, Duke F, Earl AM, Ojesina AI, Jung J, Bass AJ, Tabernero J, Baselga J, Liu C, Shivdasani RA, Ogino S, Birren BW, Huttenhower C, Garrett WS, Meyerson M. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012 Feb;22(2):292-8. doi: 10.1101/gr.126573.111. Epub 2011 Oct 18. PMID: 22009990; PMCID: PMC3266036.

Vidaurrazaga MM, McKinley GF, Camins BC. Postpartum Fusobacterium gonidiaformans bacteremia. Anaerobe. 2020 Apr;62:102168. doi: 10.1016/j.anaerobe.2020.102168. Epub 2020 Jan 28. PMID: 32045837.

Centor RM, Huddle TS. Should the risk of Fusobacterium necrophorum pharyngotonsillitis influence prescribing empiric antibiotics for sore throats in adolescents and young adults? Anaerobe. 2021 Oct;71:102388. doi: 10.1016/j.anaerobe.2021.102388. Epub 2021 Jun 2. PMID: 34089856.

Duncan SH, Hold GL, Harmsen HJM, Stewart CS, Flint HJ. Growth requirements and fermentation products of Fusobacterium prausnitzii, and a proposal to reclassify it as Faecalibacterium prausnitzii gen. nov., comb. nov. Int J Syst Evol Microbiol. 2002 Nov;52(Pt 6):2141-2146. doi: 10.1099/00207713-52-6-2141. PMID: 12508881.

Arane K, Goldman RD. Fusobacterium infections in children. Can Fam Physician. 2016 Oct;62(10):813-814. PMID: 27737977; PMCID: PMC5063768.

Peluso EA, Scheible M, Ton-That H, Wu C. Genetic Manipulation and Virulence Assessment of Fusobacterium nucleatum. Curr Protoc Microbiol. 2020 Jun;57(1):e104. doi: 10.1002/cpmc.104. PMID: 32539234; PMCID: PMC7398570.

Broadley M, Schweon SJ. Get the facts about Fusobacterium. Nursing. 2017 May;47(5):64-65. doi: 10.1097/01.NURSE.0000515524.23032.d5. PMID: 28445341.

Tadepalli S, Narayanan SK, Stewart GC, Chengappa MM, Nagaraja TG. Fusobacterium necrophorum: a ruminal bacterium that invades liver to cause abscesses in cattle. Anaerobe. 2009 Feb-Apr;15(1-2):36-43. doi: 10.1016/j.anaerobe.2008.05.005. Epub 2008 May 24. PMID: 18595747.

Mark J. Manhart DDS, Thomas B. Steg DDS,2011, Calcium Method of Fusobacteria Management. Alciumtherapy.com

调节肠道菌群,利用好15种天然抗生素

谷禾健康

抗生素自问世以来挽救了无数生命

曾被誉为治病的“神药”,风靡全球。

然而,由于抗生素药物的滥用

它开始变得越来越无效

更可怕的是

一些药物抗生素还伴有有害的副作用,如呕吐、腹泻、过敏反应、皮疹,

甚至还会导致人的微生物群失调,并伴有免疫系统减弱及慢性炎症发展…

现如今,在“不要滥用抗生素”的呼吁下

很多人都知道吃抗生素对身体不好

明知不好却依然摆脱不了啊…

有没有别的方式可以帮助预防改善?

天然抗生素或许可以帮到你

其实在日常生活中常见的食物,一些植物或者提取物也能达到同样的效果,它们的杀菌特性展现其作为天然抗生素治疗的潜力,本期我们为大家介绍15种天然抗生素

01 大 蒜

大蒜在历史上一直被广泛用于治疗和预防疾病。最近的研究评估了大蒜的潜在益处,包括其抗菌、抗真菌和抗病毒活性。

 作用机理 

大蒜素是大蒜中的主要活性化合物,负责其大部分抗菌活性。它对多种细菌菌株有效,包括多药耐药菌株。

大蒜素通过阻断对能源生产至关重要的酶(乙醇脱氢酶、乙酰辅酶 A 合成酶和乙酸激酶)维持细胞结构来杀死细菌。

此外,大蒜素可以通过阻断生物膜的形成来阻止细菌和真菌的生长,人体内大多数持续性感染源于生物膜,能阻断生物膜的形成意义重大。

有关生物膜感染,详见:

 抗 细 菌 性 

在接受14天治疗的60名患者中,大蒜素单独或与标准抗生素联合帮助34名患者根除幽门螺杆菌感染。然而,在对17人进行的2次试验中,大蒜对这种感染无效。

此外,在对75名健康人群进行的临床试验中,一种大蒜提取物漱口水降低了口腔变异链球菌的水平。

* 变异链球菌具有分泌酸性物质腐蚀牙釉质的特点,为人类主要致龋齿菌之一。

大蒜提取物可能有助于治疗牙龈肿胀预防蛀牙,因为它们可以杀死试管中的口腔致病菌,

例如:龈卟啉单胞菌 Porphyromonas gingivalis、

中间普氏菌 Prevotella intermedia、

Aggregatibacter actinomycetemcomitans

它还提高了其他抗生素在试管中对铜绿假单胞菌的有效性。然而,在34人的临床试验中,它未能阻止铜绿假单胞菌在肺组织瘢痕中形成生物膜

大蒜提取物除了杀死金黄色葡萄球菌和化脓性链球菌,还能通过减少细菌毒素(如α-毒素和链球菌溶血素O)的产生来保护身体免受伤害。

 抗 真 菌 性 

大蒜素可以抑制试管中孢子的萌发和真菌的生长(白色念珠菌、隐球菌、曲霉和酿酒酵母)。

念珠菌可感染口腔粘膜,引起炎症性疾病,称为假牙炎或口腔念珠菌病。在对96名患有这种疾病的人进行的2项临床试验中,大蒜提取物(作为漱口水或牙膏使用)显示出与抗真菌药物制霉菌素和克霉唑相似的效果

在110名妇女的临床试验中,大蒜提取物片(Garcin)改善阴道念珠菌病的症状与氟康唑一样有效。然而,另一种配方(大蒜素)在63名感染但无症状妇女的试验中无效。

在两项对81人进行的临床试验中,大蒜中的另一种成分,大蒜烯Ajoene(0.4-1%乳膏)杀死了导致足癣的真菌。

 抗 病 毒 性 

大蒜提取物对流感病毒和疱疹病毒(单纯型1、2和3)也有效。

在对146名健康成年人和172名儿童进行的2项临床试验中,用一种含有大蒜素的大蒜补充剂(每天1粒胶囊,持续12周)可以预防普通感冒,并缩短症状持续时间

 副 作 用 

大蒜可能会引起恶心、胃灼烧和口臭。

★  小   结  

大蒜对蛀牙/牙龈疾病、口腔念珠菌病、脚气和普通感冒有效。

02 茶树油

茶树油是从茶树植物(互叶白千层)中提取的,是一种用于皮肤的广谱抗生素。它是许多用于治疗皮肤感染的制剂中的活性成分。

 作用机理 

茶树油中的一些化合物,称为单萜(萜品烯-4-醇,芳樟醇,α-蒎烯和α-萜品醇)负责抗菌。

单萜阻断能量产生(细胞呼吸),破坏细菌和真菌细胞的外层(膜)。

 抗 细 菌 性 

茶树油对导致皮肤感染、痤疮、肺炎、食物中毒等细菌有效。

部分菌株包括葡萄球菌(金黄色葡萄球菌和表皮葡萄球菌),疮疱丙酸杆菌,绿脓杆菌,金黄色葡萄球菌,沙门氏菌,和大肠埃希氏菌。

在一项对 236 名住院患者进行的临床试验中,含有茶树油(分别为 10% 和 5% 茶树油)的乳霜和沐浴露使用 5 天,有助于清除耐抗生素金黄色葡萄球菌皮肤感染。

在30名受试者的唾液中,0.2%茶树油溶液减少了变异链球菌和其他微生物。

 抗 真 菌 性 

茶树油对以下真菌有效:白色念珠菌、曲霉菌、小孢子菌、表皮癣菌等。这些真菌会导致皮肤病(例如脚气和癣)以及其他问题。

在一项对 117 名患者的研究中(25% 和 50% 茶树油),每天两次使用茶树油治疗脚趾甲感染(甲真菌病)6 个月。

在一项137名患者的研究中(100%茶树油),每天使用两次,连续4周,也有治疗足癣的作用。

在大鼠研究中,外用茶树油治愈了阴道念珠菌感染。

 抗 病 毒 性 

茶树油抑制疱疹病毒的生长(单面型1和2)

 副 作 用 

注意,食用茶树油是有毒的。

另外,在皮肤上使用时,茶树油也有可能会导致干燥、灼热、瘙痒、炎症和过敏反应。

小   结  

茶树油有助于治疗细菌和真菌性皮肤感染(包括痤疮、肺炎、脚趾甲感染、脚气等),预防蛀牙或牙龈疾病。

接下来介绍的也是天然抗生素,相对来说,证据不够充分,可以作为参考。

03 牛至油

牛至油(从牛至中提取)一直被用作食品添加剂。它以其抗菌、抗真菌和抗氧化特性而闻名。

 作用机理 

牛至油的抗生素和抗真菌活性来自两种化合物,香芹酚百里酚。百里酚和香芹酚破坏细胞外细菌(膜),杀死细胞。

 抗 细 菌 性 

在一项对40名外科手术伤口康复患者的临床试验中,牛至油软膏减少了金黄色葡萄球菌对伤口的污染,从而有助于愈合过程。

百里酚和香芹酚可以阻止导致蛀牙的细菌(变异链球菌Streptococcus mutans)的生长,在大鼠试验中,可以保护大鼠免受牙龈疾病的侵袭。

在试管中,牛至抑制并杀死以下细菌:导致食物中毒、尿路感染、腹泻、肺炎、葡萄球菌感染等的细菌。

这些细菌包括:大肠杆菌Escherichia coli、沙门氏菌Salmonella、肺炎克雷伯菌 Klebsiella pneumoniae、枯草芽孢杆菌Bacillus subtilis、金黄色葡萄球菌Staphylococcus aureus、铜绿假单胞菌Pseudomonas aeruginosa、荧光假单胞菌Pseudomonas fluorescens、液化沙雷菌Serratia liquefaciens、变异链球菌 Streptococcus mutans、粪肠球菌Enterococcus faecalis、梭菌Clostridium、鸟分枝杆菌Mycobacterium avium和腐败希瓦氏菌 Shewanella putrefaciens。

在试管中,墨西哥牛至油与百里香和芥子油一起对三种细菌单核增生李斯特菌,金黄色葡萄球菌和肠炎沙门氏菌有效

牛至油与丁香和肉桂油一起抑制鲍氏不动杆菌Acinetobacter baumannii、鲍氏不动杆菌 RCH、肺炎克雷伯菌、大肠杆菌和铜绿假单胞菌生长

 抗 真 菌 性 

百里酚和香芹酚可有效阻止试管中三种不同的引起感染的真菌(酵母、曲霉和皮肤癣菌)的生长。

 抗 病 毒 性 

在基于细胞的研究中,香芹酚和百里酚对以下病毒具有抗病毒活性:

疱疹病毒(单纯型1)、人呼吸道合胞病毒、人轮状病毒、小鼠诺如病毒

 抗 寄 生 虫  

在一项小型试验中,14人感染了三种导致消化问题的寄生虫(人芽囊原虫blastocystis hominis、哈氏阿米巴原虫Entamoeba hartmanni和微小内蜒阿米巴Endolimax nana),在大多数情况下,补充牛至油可使寄生虫完全消失,并改善症状。

 副 作 用 

虽然很少见,但牛至油会引起过敏反应,尤其是对唇形科(如百里香)过敏的人。

药物间相互作用

牛至可以阻断肝酶(细胞色素p450)清除血液中的有毒物质。这可能会增加某些药物的效果。

小   结  

只有几个小型临床试验表明牛至可能有助于治疗细菌和寄生虫感染。需要对更大人群进行更多的临床试验,以确定其对抗传染病的潜力。

04 紫锥菊

紫锥菊一直被用作草药。紫锥菊提取物以其潜在的抗菌和免疫保护特性而闻名。

 作用机理 

虽然紫锥菊的确切成分因物种而异,但主要成分是碳水化合物、咖啡酸蛋白质(糖蛋白)。

紫锥菊通过阻断细胞因子等炎症标志物的释放来减轻细菌感染的症状。其抑菌作用机制尚未明确。

 抗 细 菌 性 

紫锥菊可有效减少多种细菌菌株的生长,例如化脓性链球菌、流感嗜血杆菌、嗜肺军团菌、艰难梭菌和痤疮丙酸杆菌。

 抗 真 菌 性 

紫锥菊阻止多种真菌菌株的生长,并保护小鼠细胞免受致命感染(白色念珠菌和单核细胞增生李斯特菌)。它还对酿酒酵母有效。

 抗 病 毒 性 

在对 282 人进行的临床试验中,在出现感冒症状时服用紫锥菊补充剂 (Echinilin),可减轻症状的严重程度。

然而,在一项对 100 多人的临床试验和一项对 700 多人的试验中,含有紫锥菊提取物的药片无法预防。一项荟萃分析得出结论,紫锥菊产品对治疗普通感冒无效,但可能有助于预防

在对 95 名有早期感冒或流感症状的人进行的临床试验中,紫锥菊有助于缓解症状

在154人的临床试验中,一种结合了紫锥菊和鼠尾草的喷雾剂与一种含有氯己定和利多卡因的喷雾剂对治疗喉咙痛同样有效。

然而,在一项针对400多名儿童的试验中,紫锥菊未能治疗上呼吸道感染;在两项针对近400名成人的试验中,紫锥菊未能预防上呼吸道感染。

基于细胞的研究表明紫锥菊对这些病毒有抗病毒活性:

鼻病毒、疱疹病毒(单纯型1和2)、甲型和乙型流感、呼吸道合胞体病毒

 副 作 用 

食用紫锥菊的副作用包括皮疹和恶心、胃痛等轻微胃部问题,但很罕见

过敏反应可能发生,特别是对菊科其他植物(如甘菊)过敏的人。

★  小   结  

尽管在患有普通感冒和其他上呼吸道感染的人群中进行了广泛调查,但结果有效和无效都存在,因此紫锥菊的有效性尚无定论。需要更多的临床试验来阐明其治疗潜力。

05
麦卢卡 蜂蜜

麦卢卡蜂蜜是由以麦卢卡树(Leptospermum scoparium)的花为食的蜜蜂生产的,被认为是最具药用价值的蜂蜜,但需要更多数据。

 作用机理 

麦卢卡蜂蜜的主要活性抗生素成分是一种叫丙酮醛的化合物。

蜂蜜的另一种成分是蜂胶,它含有黄酮类化合物(如高良姜精和匹诺塞林pinocembrin)、酚酸和酯类物质,可能有助于增强免疫系统

麦卢卡蜂蜜还富含葡萄糖氧化酶,这种酶可以将葡萄糖转化为具有抗菌特性的过氧化氢。

另一种化合物葡萄糖内酯可以降低蜂蜜的pH值,并具有天然的抗菌特性。水无法在蜂蜜中流动,使得细菌难以在蜂蜜中生存。

 抗 细 菌 性 

麦卢卡蜂蜜是一种广谱抗菌剂,可以杀死以下细菌:大肠杆菌、金黄色葡萄球菌、几种肠球菌、铜绿假单胞菌、化脓性链球菌Streptococcus pyogenes、奇异变形杆菌Proteus mirabilis、鼠伤寒沙门氏菌Salmonella typhimurium等。

在 150 名有消化问题的患者中,每周食用蜂蜜降低感染幽门螺杆菌的风险有关。

在42名慢性鼻窦炎患者的临床试验中,术前用麦卢卡蜂蜜冲洗改善了结果,包括细菌计数。

在一项针对 30 名健康志愿者的试点试验中,咀嚼麦卢卡蜂蜜口香糖可减少牙菌斑积聚和牙龈出血

将麦卢卡蜂蜜外用于感染了耐抗生素金黄色葡萄球菌的腿部溃疡,促进了使用免疫抑制剂药物患者的伤口愈合

 抗 病 毒 性 

麦卢卡蜂蜜可抑制水痘-带状疱疹病毒在人类皮肤细胞中的生长。

它还能抑制甲型流感病毒在狗肾细胞中的生长。

 副 作 用 

麦卢卡蜂蜜在 20 名健康成人中服用 4 周后没有产生副作用。虽然没有观察到过敏反应,但建议对蜜蜂过敏的个体应谨慎。

★ 小   结  ★

很少有小型临床试验支持在细菌感染患者中使用麦卢卡蜂蜜,虽然结果很有希望。需要更大规模、更稳健的临床试验来验证这些初步结果。

06 肉 桂

肉桂(Cinnamomum zeylanicum和Cinnamomum cassia) 是一种广泛使用的草药,以其抗氧化、抗炎、抗病毒、抗菌和抗真菌特性而闻名。

 作用机理 

肉桂醛和丁香酚这两种化合物负责肉桂的抗菌和抗病毒特性。

 抗 细 菌 性 

在试管中,丁香酚和肉桂醛阻止了幽门螺杆菌的生长。然而,4周治疗肉桂(80毫克/天)对15例幽门螺杆菌没有改善。

肉桂提取物还阻止痤疮丙酸杆菌和表皮葡萄球菌的生长,这两种细菌会导致痤疮。

肉桂油和丁香油可阻止大肠杆菌、小肠结肠炎耶尔森氏菌Yersinia enterocolitica、铜绿假单胞菌Pseudomonas aeruginosa、猪霍乱沙门氏菌Salmonella choleraesuis、金黄色葡萄球菌Staphylococcus aureus、单核细胞增生李斯特菌Listeria monocytogenes、蜡样芽孢杆菌Bacillus cereus和粪肠球菌Enterococcus faecalis 在试管中的生长。

 抗 真 菌 性 

肉桂提取物对抗真菌的许多菌株,如珠菌,曲霉Aspergillus,青霉菌等都有效。

在一项为期 7 天的试点研究中,每天服用 8 片肉桂含片可改善5 名 HIV 患者中 3 名的口腔念珠菌感染症状。

在一项针对60名肠道念珠菌感染患者的临床试验中,肉桂和藿香油胶囊解决了72%的感染,改善了28%.

肉桂油、迷迭香油和百里香油的组合减少了Penicillium expansumBotrytis cinerea真菌的生长。

 抗 病 毒 性 

肉桂醛可阻止流感病毒(流感 (A/PR/8))的生长并提高大鼠的存活率

在一项细胞研究中,源自肉桂的 IND02(一种原花青素 A 型分子)可阻止丙型肝炎病毒细胞进入,因此可能是治疗丙型肝炎和肝病的有效疗法。

在另一项细胞研究中,肉桂提取物阻止了另一种类型的流感病毒 (H7N3) 进入细胞。

 副 作 用 

肉桂提取物可能引起恶心,胃疼痛,和便秘。

★ 小   结  ★

肉桂只在临床试验中对念珠菌病进行了测试,其中一个非常小。需要在更大的人群中进行更多的临床试验,才能确定肉桂是否对治疗念珠菌感染有任何作用。

07 姜 黄

姜黄( Curcuma longa )常用于印度美食,它不仅以其风味而闻名,而且还以其众多的健康益处而闻名。

 作用机理 

姜黄素是姜黄中活性最强的化合物。在试管中,它阻断了引起尿路感染的细菌生物膜,如大肠杆菌、铜绿假单胞菌、奇异变形杆菌Proteus mirabilis和粘质沙雷氏菌Proteus mirabilis

姜黄素还会干扰细菌细胞间通讯(群体感应)并阻止重要化合物(pyocyanin和酰基高丝氨酸内酯)的产生。

姜黄素还会破坏真菌中参与存活的蛋白质(ATP 酶活性、麦角甾醇和蛋白酶)的活性。

姜黄素抑制丙型肝炎病毒的复制(通过PI3K /Ak 途径)。

 抗 细 菌 性 

经过 7 周的治疗,姜黄素摄入量(30 毫克,2 次/天)仅治愈了 25 名幽门螺杆菌患者中的 3 名。但 2 个月后,其余患者的症状有所改善(临床试验)。

在大鼠和小鼠中,姜黄素的摄入减少了由幽门螺杆菌引起的胃部炎症

姜黄素可预防小鼠创伤弧菌引起的血液中毒。

当与抗生素联合使用时,姜黄素可减轻小鼠肺炎(肺炎克雷伯菌感染)。

 抗 真 菌 性 

姜黄素通过破坏存活蛋白来杀死念珠菌。

 抗 病 毒 性 

姜黄素抑制HIV病毒,丙型肝炎病毒,流感病毒A和流感肺炎。

★ 小   结  

一项小型临床试验的适度结果显然不足以支持使用姜黄治疗幽门螺杆菌感染。需要进一步的临床研究。

接下来介绍的也是天然抗生素,但没有临床证据支持其对抗感染,是对现有动物和细胞研究的总结,对进一步的研究工作具有指导意义。

08 辣 椒

辣椒的多种变型椒(Capsicum annuum),如红椒,辣椒粉,墨西哥辣椒等,具有抗菌性能的影响。

 作用机理 

辣椒素是辣椒中的主要活性化合物,使辣椒具有辣味,可通过降低胃部 pH 值来防止细菌感染。

此外,咖啡酸、槲皮素和山奈酚使细菌细胞的外层(膜)变硬,从而杀死它们。

辣椒中的一种化合物 ( CAY-1 ) 通过破坏细胞外层(增加细胞膜渗透性)来杀死真菌。

 抗 细 菌 性 

辣椒素限制了金黄色葡萄球菌α-毒素的产生并预防了小鼠的肺炎。

辣椒素可阻止细菌(霍乱弧菌)毒素的产生,并防止细菌(化脓性链球菌和金黄色葡萄球菌)在试管中侵入细胞。

 抗 真 菌 性 

CAY-1在试管中对许多真菌有效,如白色念珠菌、曲霉、小孢子菌等。其中一些真菌会引起皮肤病,例如脚气和癣。

 副 作 用 

适量的辣椒素被认为是安全的,但可能会引起胃部刺激。

药物相互作用

使用辣椒素可能会增加服用治疗高血压药物(ACE抑制剂)的患者出现咳嗽的风险。

★ 小   结  ★

辣椒限制限制了金黄色葡萄球菌α-毒素,霍乱弧菌毒素的产生,对引起脚气和癣的许多真菌有效,需要更多的临床研究。

09 姜

生姜是一种源自植物生姜根的香料。它常用于烹饪许多亚洲、阿育吠陀和中东美食。它以其许多治疗特性而闻名。

 作用机理 

生姜含有姜辣素、姜酚、姜油酮、萜类化合物、黄酮类化合物和其他具有抗菌和抗生物膜特性的化合物。姜酚和姜二醇是主要的抗真菌成分。

 抗 细 菌 性 

生姜在试管中对许多细菌菌株有效,其中一些是葡萄球菌、芽孢杆菌、沙门氏菌、大肠杆菌、铜绿假单胞菌、肺炎克雷伯菌、幽门螺杆菌等。

生姜提取物减少了胃中压力引起的损伤并抑制了胃酸的产生,从而限制了小鼠体内幽门螺杆菌的生长。

在一项细胞研究中,姜化合物杀死了这三种导致牙龈疾病的菌,分别是:牙龈卟啉单胞菌、牙髓卟啉单胞菌中间普氏菌

 抗 真 菌 性 

生姜对试管中的几种真菌菌株有效,包括导致皮肤病(如足癣)和食物腐败的真菌菌株:镰刀菌、曲霉属、白色念珠菌、酿酒酵母、石膏小孢子菌等。

 抗 病 毒 性 

新鲜生姜可防止人类呼吸道合胞病毒 (HRSV) 附着在人体细胞上,并阻止气道中斑块的形成。

此外,姜提取物抑制疱疹病毒(单纯型1和2)。

 副 作 用 

姜看起来几乎没有副作用。

药物相互作用

生姜中的一种活性成分(姜酚)会阻断一种分解药物的酶(细胞色素 p450)的活性,这可能会增加药物的作用。

  小   结  

姜对导致肠胃疾病,口腔疾病的细菌菌株有效,对导致皮肤病(如足癣)和食物腐败的真菌菌株有效,防止人类呼吸道合胞病毒附着,抑制孢疹病毒。也需要更多临床研究。

10 丁 香

丁香(Eugenia caryophyllata)以其抗氧化、抗菌、抗真菌和抗病毒特性而闻名。

 作用机理 

丁香会破坏细菌细胞的细胞和外层(膜)限制其生长以及 DNA 和关键蛋白质的产生。

 抗 细 菌 性 

丁香酚是丁香中最重要和最有效的成分,对试管中的空肠弯曲杆菌、大肠杆菌、单核细胞增生李斯特菌和肠沙门氏菌有效。

丁香阻止了许多细菌菌株的生长,包括金黄色葡萄球菌和大肠杆菌。它还可以杀死牙龈疾病患者唾液样本中的细菌。

此外,丁香油和肉桂油可抑制大肠杆菌、小肠结肠炎耶尔森氏菌、铜绿假单胞菌、猪霍乱沙门氏菌、金黄色葡萄球菌、单核细胞增生李斯特菌、蜡样芽孢杆菌和粪肠球菌的生长。

丁香、牛至和肉桂油的组合抑制鲍氏不动杆菌、鲍曼不动杆菌 RCH、肺炎克雷伯菌、大肠杆菌和铜绿假单胞菌的生长。

 抗 真 菌 性 

口服丁香提取物可防止口腔白色念珠菌的生长并减轻大鼠的感染症状。

丁香的主要成分丁香酚可对抗多种念珠菌属,可用于治疗口腔念珠菌感染(口腔念珠菌病)以及假牙使用引起的炎症和酸痛(假牙口炎)。

 抗 病 毒 性 

研究表明,丁香油可能有效对抗:

单纯疱疹病毒、丙型肝炎。

  小   结  

丁香对口腔疾病患者的许多菌株有效,需要更多的临床研究。

11 百里香

百里香(Thymus vulgaris)是地中海美食中使用的一种香料,也因其药用特性而闻名。

 作用机理 

百里香提取物和精油可阻断细菌的群体感应,如大肠杆菌和铜绿假单胞菌

 抗 细 菌 性 

百里香提取物和精油的抑制细菌的许多菌株,包括大肠杆菌,沙门氏菌属,假单胞菌属(荧光假单胞菌和铜绿假单胞菌),粪肠球菌等。

 抗 真 菌 性 

百里香油与迷迭香和肉桂油一起减少了Penicillium expansumBotrytis cinerea真菌的生长。

百里香、墨西哥牛至和芥子油可抑制单核细胞增生李斯特菌、金黄色葡萄球菌肠炎沙门氏菌的生长。

 抗 病 毒 性 

百里香抑制以下病毒:

疱疹病毒(单纯型 1, 2) 

12 迷迭香

迷迭香( Rosmarinus officinalis L. )是一种广泛使用的草药,以其抗氧化、抗炎、抗菌、抗真菌和抗病毒特性而闻名。

 作用机理 

迷迭香包含化合物(酚衍生物和二萜烯)等1,8-桉树脑,α蒎烯,莰烯,α萜品醇,和冰片,即具有抗氧化,抗微生物剂,抗癌作用。

迷迭香提取物和精油阻断细菌的群体感应,如大肠杆菌和铜绿假单胞菌。

 抗 细 菌 性 

迷迭香提取物有效地降低许多细菌菌株等的生长,如沙门氏菌,金黄色葡萄球菌,肺炎克雷伯氏菌,大肠杆菌,铜绿假单胞菌等。

 抗 真 菌 性 

迷迭香油与肉桂油和百里香油一起阻止了Penicillium expansumBotrytis cinerea真菌的生长。

 抗 病 毒 性 

迷迭香提取物鼠尾草酚(一种酚类二萜)具有抗 HIV 的抗病毒特性。

13 柠檬草

柠檬草(Cymbopogon citratus)以其抗炎、抗氧化、抗菌和抗真菌特性而闻名。它被广泛用于治疗和芳香目的。

 作用机理 

柠檬醛α和柠檬醛 β是柠檬草油的主要成分,可阻止不同种类细菌(革兰氏阳性和革兰氏阴性菌)的生长。

 抗 细 菌 性 

在试管中,柠檬草提取物可以有效减少金黄色葡萄球菌、沙门氏菌、大肠杆菌、铜绿假单胞菌和许多其他细菌的生长。

 抗 真 菌 性 

柠檬草提取物减少了白色念珠菌、曲霉、石膏小孢子菌和多种青霉菌的生长。

 抗 病 毒 性 

柠檬草精油降低了一种蛋白质(HIV-1 Tat蛋白)的功能,从而减少了HIV病毒的复制。

14 没 药

没药(Commiphora molmol)在古埃及被用于制作木乃伊。现在,没药被用于治疗伤病和感染,因为它具有抗细菌和抗真菌特性。

作用机理 

樟脑、冰片、芳樟醇和α-萜品醇是没药精油的主要成分,具有抗菌特性。

没药可防止生物膜的形成。

 抗 细 菌 性 

在试管,没药抑制细菌的生长,如金黄色葡萄球菌,大肠杆菌,沙门菌,铜绿假单胞菌,肺炎克雷伯氏菌。

 抗 真 菌 性 

没药提取物对白色念珠菌、黑曲霉和青霉菌有效。

 副 作 用 

据报道,没药引起皮肤过敏反应。此外,还报告了腹泻、鼻子刺激和心率变化等可能的副作用。

15 橄榄叶提取物

橄榄叶提取物仅攻击病原体而对人体共生的肠道细菌无害,这是其超越人造抗生素的一大优点,且广泛用于保健品和化妆品。

 作用机理 

橄榄叶提取物的抗菌活性是由于其多酚。

 抗 细 菌 性 

橄榄叶提取物抑制了三种食源性病原体(单核细胞增生李斯特菌、大肠杆菌和肠炎沙门氏菌)的生长。抑制了单核增生乳杆菌肠炎链球菌的生物膜,抑制了单核增生乳杆菌的运动(细胞研究)。

 抗 真 菌 性 

叶子的甲醇提取物抑制酵母菌株(白色念珠菌和酿酒酵母)。

 副 作 用 

橄榄叶提取物传统上已在多种培养物中以多种不同方式制备和使用。

在大鼠身上评估了橄榄叶提取物的毒性,并认为是安全的。需要进行人体研究来验证这一点。

■ 目前还缺乏支持这些天然抗生素益处的人体试验,支持它们安全性的研究也有限。在某些情况下,临床试验的结果好坏参半。还需要进一步的临床试验来证实其对人类的益处。

■  如有慢性病,应该遵循原有的治疗计划,而不是直接用来代替药物。或者与医生讨论这些是否可以作为补充方法。

附录:如何使用天然抗生素?

* 以下不作为临床验方使用,仅供参考

足部或指甲真菌感染

将几茶匙牛至油放入一桶水中,然后把脚浸泡。也可以将一滴牛至油与一茶匙椰子油或冷榨橄榄油混合来稀释油,涂抹在指甲或皮肤上。

鼻窦感染

在一大锅热气腾腾的水中滴几滴牛至油,吸入蒸汽(注意不要太热)。或者使用洗鼻壶(仅使用一小滴),感到有点闷之后结束,效果很好。

口腔感染(如鹅口疮)

用一茶匙冷压椰子油稀释一滴牛至油。漱口几分钟,然后冲洗干净。每天重复3-4次。

皮肤感染

用麦卡卢蜂蜜轻拍患处,并在患处涂抹泡沫,用纱布包上,或者用创可贴贴上。

也可以将1汤匙冷榨橄榄油和1瓣捣碎的大蒜混合。将大蒜放入油中,静置30分钟,然后过滤。如果你想加热的话,可以把它放在温水里(不是热水)。然后滴在感染的地方。

也可以用几滴高品质锡兰肉桂油。把它和麦卢卡蜂蜜混合在一起,然后把它涂抹在感染部位。这种方法非常有效,因为它是两种不同的天然抗生素的组合。

耳部感染

根据 Natasha Campbell-McBride MD 博士的说法,可以用上述注入大蒜油来治疗耳部感染。取油,稍微加热,每小时滴几滴在受影响的耳朵中。这也将有助于松动耳垢堆积。

感冒——增强免疫力

如果你或者周围人最近感冒了,可以每天服用1-2杯麦卡卢蜂蜜茶。可以帮助你预防或缩短病情持续时间。麦卡卢蜂蜜有点贵,不建议长时间每天都吃它,免疫力差时吃点。

压碎 1 瓣生大蒜,压碎比咀嚼要好(减少口臭),吞下大蒜,每天服用一次。

还可以将高质量的有机锡兰肉桂粉与麦卢卡蜂蜜或普通的有机生蜂蜜混合,每天两次。预防感冒,或显著缩短感冒的时间。

生姜可以缓解流感带来的恶心。比较糙吃不下的话,可以和别的(如蜂蜜,肉桂等)结合泡一泡。

主要参考文献:

Leng BF, Qiu JZ, Dai XH, Dong J, Wang JF, Luo MJ, Li HE, Niu XD, Zhang Y, Ai YX, Deng XM. Allicin reduces the production of α-toxin by Staphylococcus aureus. Molecules. 2011 Sep 15;16(9):7958-68.

Lu X, Rasco BA, Jabal JM, Aston DE, Lin M, Konkel ME. Investigating antibacterial effects of garlic (Allium sativum) concentrate and garlic-derived organosulfur compounds on Campylobacter jejuni by using Fourier transform infrared spectroscopy, Raman spectroscopy, and electron microscopy. Appl Environ Microbiol. 2011 Aug;77(15):5257-69.

Watson CJ, Grando D, Fairley CK, Chondros P, Garland SM, Myers SP, Pirotta M. The effects of oral garlic on vaginal candida colony counts: a randomised placebo controlled double-blind trial. BJOG. 2014 Mar;121(4):498-506

Salgueiro LR, Cavaleiro C, Pinto E, Pina-Vaz C, Rodrigues AG, Palmeira A, Tavares C, Costa-de-Oliveira S, Gonçalves MJ, Martinez-de-Oliveira J. Chemical composition and antifungal activity of the essential oil of Origanum virens on Candida species. Planta Med. 2003 Sep;69(9):871-4.

Valcourt C, Saulnier P, Umerska A, Zanelli MP, Montagu A, Rossines E, Joly-Guillou ML. Synergistic interactions between doxycycline and terpenic components of essential oils encapsulated within lipid nanocapsules against gram negative bacteria. Int J Pharm. 2016 Feb 10;498(1-2):23-31.

Foster BC, Vandenhoek S, Hana J, Krantis A, Akhtar MH, Bryan M, Budzinski JW, Ramputh A, Arnason JT. In vitro inhibition of human cytochrome P450-mediated metabolism of marker substrates by natural products. Phytomedicine. 2003 May;10(4):334-42.

Manayi A, Vazirian M, Saeidnia S. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn Rev. 2015;9(17):63-72. doi:10.4103/0973-7847.156353

Carlos Tello, Jonathan Ritter, Puya Yazdi, 15 Natural Antibiotics and Side Effects, 2020

Mavric E, Wittmann S, Barth G, Henle T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res. 2008 Apr;52(4):483-9. 

Prabuseenivasan S, Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med. 2006 Nov 30;6:39. doi: 10.1186/1472-6882-6-39. PMID: 17134518; PMCID: PMC1693916.

Packiavathy IA, Priya S, Pandian SK, Ravi AV. Inhibition of biofilm development of uropathogens by curcumin – an anti-quorum sensing agent from Curcuma longa. Food Chem. 2014 Apr 1;148:453-60. doi: 10.1016/j.foodchem.2012.08.002. Epub 2012 Aug 10. PMID: 24262582.

Renault S, De Lucca AJ, Boue S, Bland JM, Vigo CB, Selitrennikoff CP. CAY-1, a novel antifungal compound from cayenne pepper. Med Mycol. 2003 Feb;41(1):75-81. doi: 10.1080/mmy.41.1.75.82. PMID: 12627807.

Aghazadeh M, Zahedi Bialvaei A, Aghazadeh M, et al. Survey of the Antibiofilm and Antimicrobial Effects of Zingiber officinale (in Vitro Study). Jundishapur J Microbiol. 2016;9(2):e30167.

Cameron Hooper, The Top 7 Most Effective Natural Antibiotics and How to Use Them, 2017,5

Chaieb K, Hajlaoui H, Zmantar T, Kahla-Nakbi AB, Rouabhia M, Mahdouani K, Bakhrouf A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother Res. 2007 Jun;21(6):501-6.

Vattem DA, Mihalik K, Crixell SH, McLean RJ. Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia. 2007 Jun;78(4):302-10. doi: 10.1016/j.fitote.2007.03.009. Epub 2007 Apr 11. PMID: 17499938.

Nikkhah M, Hashemi M, Habibi Najafi MB, Farhoosh R. Synergistic effects of some essential oils against fungal spoilage on pear fruit. Int J Food Microbiol. 2017 Sep 18;257:285-294. doi: 10.1016/j.ijfoodmicro.2017.06.021. Epub 2017 Jun 24. PMID: 28763743.

Mothana RA, Al-Rehaily AJ, Schultze W. Chemical analysis and biological activity of the essential oils of two endemic Soqotri Commiphora species. Molecules. 2010 Feb 1;15(2):689-98. doi: 10.3390/molecules15020689. PMID: 20335939; PMCID: PMC6263184.

Liu Y, McKeever LC, Malik NS. Assessment of the Antimicrobial Activity of Olive Leaf Extract Against Foodborne Bacterial Pathogens. Front Microbiol. 2017;8:113. Published 2017 Feb 2. doi:10.3389/fmicb.2017.00113

皮肤菌群如何导致痤疮、湿疹?如何维持皮肤健康?

低聚半乳糖对衰老肠道的多效作用

掠食性细菌作为活的抗生素对抗感染

谷禾健康

后抗生素时代,当人类对某细菌无可奈何时,何不让细菌对抗细菌?

抗生素已经彻底改变了现代医学,但其有效性受到多重耐药细菌传播的威胁,而目前尚无有效的治疗方法。抗生素耐药性(AMR)通常由不必要的抗生素使用引起,是一种严重的全球健康和经济威胁。

特别值得关注的是,抗生素生产线不断减少,开发中的抗生素数量有限(数量和多样性都有限),以满足当前和预期的患者需求。此外,科学和经济挑战促使许多大型全球制药公司停止其抗生素开发计划,使得对新的感染控制方法的需求更加迫切。因此迫切需要用于治疗革兰氏阴性感染的新疗法。

最近一种潜在的方法是使用活的掠食性细菌。由于蛭弧菌Bdellovibrio bacteriovorus广泛存在于自然界中,而目前也尚没有与蛭弧菌相关的疾病报告,科学家认为有可能围绕它们建立一种安全无害的生物治疗手段,去抗击病原菌的感染。但毕竟蛭弧菌本身也是一种细菌,人和动物的免疫系统如果发现它们,会怎样对待这些“友军”?会增强对蛭弧菌的抵抗力吗?

本文讨论了支持掠食性细菌替代抗生素的可行性的基础科学。

· 掠食细菌—蛭弧菌B. bacteriovorus

蛭弧菌 Bdellovibrio bacteriovorus是寄生于其他细菌(也可无寄主而生存)并能导致其裂解的一类细菌。它虽然比通常的细菌小,能通过细菌滤器,有类似噬菌体的作用,但它不是病毒,确确实实是一类能”吃掉”细菌的细菌。

1962年首次发现于菜豆叶烧病假单胞菌体中,随后从土壤、污水中都分离到了这种细菌。根据其基本特性,命名为Bdellovibrio bacteriovorus

其中,” Bdello”一词来自希腊字,是”水蛭”的意思,”vibrio”意为”弧菌”,而种名”bacteriovorus”是 “食细菌”的意思。“捕食”的对象正落在多出产致病菌的细菌类群——革兰氏阴性菌(如大肠杆菌、志贺氏菌等)中。

蛭弧菌的掠食生活方式

B. bacteriovorus通常会持续3-4 h消耗其革兰氏阴性细菌的猎物。这种掠夺性生命周期是一个复杂的过程,在分子水平上已经开始被理解。最初,B. bacteriovorus识别,附着并进入猎物细胞,对其进入口进行加固,穿越和重新密封。侵袭伴随着猎物细胞的圆形化,稳定的胶质细胞的形成以及猎物细胞的死亡。

同时,通过依次释放一组酶,B. bacteriovorus消化了猎物,并利用所形成的养分库长出了长丝。 单个细丝的同步分裂会产生奇数或偶数个子代细胞,每个子代细胞会产生鞭毛或滑行引擎(取决于条件),然后从死亡的猎物细胞中爆发并开始寻找新的猎物。 根据猎物细胞的大小,以及猎物细菌内部可用的养分,每个细胞平均释放4–6个B. bacteriovorus后代。 尽管被认为是专性的捕食性细菌,但B. bacteriovorus仍可转变为不依赖宿主的生活方式,可以在全培养基上的无菌生长。

为什么蛭弧菌是掠食性细菌?

B. bacteriovorus生命周期和基因组的一些特征决定其成为一种潜在的抗革兰氏阴性细菌病原体的治疗剂。在捕食生命周期中,被捕食细胞在短时间内(<30分钟)被杀死,因此,被捕食者必须快速表达防御手段,以抵抗捕食,这是尚未见到的。

与某些抗生素不同,某些抗生素可引起一连串事件,导致细菌自溶和炎症分子释放,B. bacteriovorus细菌捕食不会导致猎物的最初溶解,因为在溶解之前,猎物的内容物是从稳定的蛭质体结构内消耗的。此外,没有单一的受体识别和附着猎物。在猎物入侵后,在数量和功能多样性方面,具有潜在遗传冗余的猎物破坏酶都出现了上调,这表明简单的猎物对B. bacteriovorus捕食的抵抗不太可能发生。

蛭弧菌对宿主会有哪些影响

为了实现B. bacteriovorus的治疗潜力,必须在生物学相关系统中充分表征其对革兰氏阴性病原体的捕食性。 这种表征还必须同时解决诸如宿主反应,毒性,炎症,组织损伤或伤口愈合抑制等问题。

其中一些问题已通过体外细胞培养和体内动物模型解决,评估了掠食性细菌对免疫系统各个组成部分以及整个宿主的影响。 许多人类细胞系,包括角膜-上皮细胞,血液单核细胞,巨噬细胞,肾上皮细胞,肝上皮细胞和脾单核细胞,已经暴露于不同的捕食性细菌中,测定了不同暴露的时间范围、持续时间(2至24小时),下促炎和抗炎细胞因子水平。

已知可响应细菌外膜脂多糖(LPS)而被刺激的细胞因子,是宿主抵抗病原体所必需的。 这些研究表明,尽管B. bacteriovorus在免疫反应方面并不沉默,但暴露后产生的炎性细胞因子水平可忽略不计或很低。 B. bacteriovorus不像同时检测到革兰氏阴性病原体那样具有免疫刺激性,这可能部分是由于其独特的脂质A结构以及它拥有带鞘的鞭毛

额外的细胞活力成像,细胞毒性测量以及暴露于掠食性细菌后对动物和人类培养细胞形态变化的评估初步表明,B. bacteriovorus对人细胞无毒,尽管还需要进行更多的研究。  Raghunathan及其同事使用人类巨噬细胞系(U937细胞)研大量掠食性细菌能够在细胞内存活长达24小时,从而确定了一段持久性和潜力捕食细胞内病原体的能力。

另外,通过在药理学抑制剂存在下进行吸收实验,证明了宿主肌动蛋白细胞骨架的作用及其在B. bacteriovorus吸收中的重排。B. bacteriovorus最终通过吞噬体途径被转运,这是由于它们靶向酸性液泡。 鼠巨噬细胞系中的类似观察结果支持了这一点,并且两者都是考虑给予B. bacteriovorus作为治疗剂的重要观察结果。 这些研究说明了B. bacteriovorus靶向细胞内病原体的潜力,而许多抗生素和其他生物控制剂(例如噬菌体)可能无法利用这些细菌。 尽管后一点正在积极研究中。 这些体外细胞实验以及下面描述的动物模型,是研究功效,缺乏毒性和潜在捕食者生物利用度的重要步骤。

早期体内宿主反应集中于B. bacteriovorus在吸热和放热脊椎动物肠道中的生存能力。研究了在鲶鱼(点状黄疸)、豹蛙(林蛙)、小鼠和兔子的肠道中实验投喂的B. bacteriovorus菌株MS7的生存能力和持久性,表明在接种后24-48小时内,B. bacteriovorus几乎没有恢复。通过饮用水给小鼠提供的3天B. bacteriovorus不能从肠道中完全恢复。同样,在注射后24小时左右,无论是使用无菌培养物,还是同时注射B. bacteriovorus,都没有或很少从兔回肠环中发现B. bacteriovorus。

B. bacteriovorus对动物没有致病性。这些研究已经扩展到包括评估宿主发病率、组织病理学、促炎和抗炎细胞因子水平、体内捕食性细菌传播以及长期评估大鼠、小鼠斑马鱼幼虫模型的一般健康状况。总的来说,在一系列动物模型中以及通过多种给药途径在体内给药已经证明,它们不会损害这些动物的健康

蛭弧菌捕食范围:体外和体内捕食

事实证明,B. bacteriovorus对多种猎物具有体外功效,包括与肠道,口腔,伤口和眼部感染有关的细菌和生物制药。B. bacteriovorus成功地减少了实验室缓冲液和人血清中的病原体数量和生物膜中的猎物,而生物膜通常是抗生素治疗的重大阻碍。 重要的是,已经显示出许多具有多重耐药性的人类临床分离株容易被B. bacteriovorus捕食。 该清单包括许多需要新治疗的E(S)KAPE病原体,包括表达mcr-1的革兰氏阴性大肠菌素抗性分离株。 体外研究还调查了成功捕食所需的B. bacteriovorus与猎物的比率; 如果抗生素不能治疗感染,则作为将来的体内实验和临床的重要考虑因素。

尽管实验性体外系统,尤其是实验室缓冲液或富含生长培养基的环境可能显示出掠食性功效,但它们不足以替代体内治疗的复杂性,而体内治疗必须考虑到宿主的免疫反应以及病原体的生存策略。 动物感染模型在评估B. bacteriovorus在体内捕食革兰氏阴性细菌的能力以及解决此类宿主对宿主的任何反应(以及由此产生的安全性)方面都发挥了作用,越来越多的证据表明,至少在动物中,以及将来将这种掠食性细菌用于治疗应用的可行性,将其扩展到人类。

一项对感染肠炎沙门氏菌p125109的鸡群实验表明。 在B. bacteriovorus处理后的三天内,与对照动物相比,经细菌性芽孢杆菌处理的禽类的盲肠中沙门氏菌数量显着降低。 此外,与对照动物的许多盲肠相比,经B. bacteriovorus处理的禽中盲肠的外观是正常的。

进一步的重要研究表明B. bacteriovorus能成功地在体内捕食病原体。 使用大鼠模型,Shatzkes及其同事证实B. bacteriovorus可以治疗肺炎克雷伯菌感染的大鼠,显示与对照组相比,细菌性芽孢杆菌治疗的动物的病原体负担明显减少。 另外一项通过向大鼠尾静脉注射引发疾病的败血病模型。 B. bacteriovorus不能显着减少感染。 这是首次将B. bacteriovorus直接施用到血流中,并且是评估掠食性细菌清除血流感染能力的重要一步。

斑马鱼幼虫的物理特征以及与人类的广泛基因组同源性包括良好的理解,充分发展的免疫系统和光学透明的性质,非常适合于创新的活荧光显微镜检查。

诺丁汉大学伊丽莎白·肖克特和伦敦帝国理工学院的塞尔吉·莫斯托维小组用模式生物斑马鱼做了研究。

接下来,研究者放心地开始了“以菌治菌”环节。他们用一种叫福氏志贺氏菌(Shigella flexneri)的病原菌来感染斑马鱼——所选取的菌株同时对链霉素与羧苄青霉素具有耐药性。他们向斑马鱼的后脑先接种了致死剂量的志贺氏菌,再注射蛭弧菌。由于这两种细菌被带上了不同颜色的荧光蛋白标记,研究者得以观察它们的数量和分布变化情况。他们发现,相比于对照组,注射了蛭弧菌的斑马鱼后脑内志贺氏菌大量减少,被感染的斑马鱼在72小时后的存活率也更高。在更高分辨率的显微观察中,研究人员也找到了蛭弧菌在斑马鱼体内和体外都能够侵染并杀死志贺氏菌的证据。

研究者认为,在抗击志贺氏菌感染这件事上,蛭弧菌和斑马鱼免疫系统其实某程度上达成了巧妙的“配合”:蛭弧菌对志贺氏菌的“捕食”开始得非常迅速,能够在感染初期控制住志贺氏菌繁殖的势头,帮免疫系统减轻应对的压力。而等到大批白细胞赶来时,蛭弧菌已经饱餐过一顿,收拾残余志贺氏菌的工作,免疫系统自己也能完成好。

1897年,日本细菌学家志贺洁发现了志贺氏菌(Shigella).

作为杆菌性痢疾的祸首,这类细菌每年导致约1.63亿严重痢疾病例,并夺走超过100万人的生命,可谓是最臭名昭著的病原菌之一。志贺氏菌是一类革兰氏阴性的杆状细菌,可以制造出能杀死细胞的志贺毒素。

在最近的一项研究中,Russo及其同事证明了B. bacteriovorus 可用于显着减少实验感染小鼠肺部的鼠疫杆菌(yersinia pestis)数量。 但是并非所有的体内B. bacteriovorus 施用都已成功地减少了病原体数量。 尽管在先前的研究中使用组织培养模型在体外取得了令人鼓舞的结果,但给予B. bacteriovorus 治疗经牛莫拉氏菌(Moraxella bovis )感染的牛犊是牛角膜结膜炎的病原体,未能导致角膜溃疡形成的显着改善。

从上面的大量研究可以看出,越来越多的证据表明Bdellovibrio sp持续非病原性且足够长以具有治疗活性,对免疫微生物群的不良影响极小,并且不成为正常宿主微生物群的一部分。 无论是成功的还是不成功的体内试验,如本文所述,对于评估哪些适应症,给药途径(局部给药还是静脉给药)和感染部位都至关重要,在的掠食性细菌给药将最有效地对其进行评估。

了解蛭弧菌捕食与宿主反应之间的关系

治疗后动物和人类感染的康复结果取决于多种因素的相互作用,例如患者的免疫系统和总体健康状况包括肠道菌群,病原体的性质以及治疗的类型和提供方式。 在将体外和体内细菌捕食视为宿主反应的独立实体时,未捕获革兰氏阴性病原体的细菌捕食与宿主反应之间的相互作用和协同作用。

该模型表明,B. bacteriovorus在非致病性条件下持续了足够长的时间,可以在实验性感染期间有效地捕食志贺氏菌。 在这项工作中,用显微镜观察了与宿主免疫系统细胞的相互作用。 此外,这项研究发现B. bacteriovorus的最大治疗益处来自细菌捕食和宿主免疫系统的协同作用。 给药后,掠食性细菌种群最终会通过与宿主免疫系统的相互作用而清除,实际上这种清除可能对(自我)限制治疗有益。

与其他微生物抗菌方法的比较

在考虑治疗掠食性细菌感染时,研究人员可以向噬菌体研究和临床界寻求动力,以应对从体外到临床环境的挑战。 尽管在一些国家已经使用了多年,但最近的一些引人注目的病例已证明在临床环境中成功施用了噬菌体鸡尾酒来治疗耐药性感染。

从表面上看,B. bacteriovorus和噬菌体具有许多潜在的生物防治剂特性。 它们都表现出掠食性或寄生性生命周期,它们是自我复制和自我限制的,仅在存在易感宿主或猎物时才持续存在,并且在裂解性噬菌体的情况下,两者都具有广泛相似的生命周期。 当将它们引入动物和人类体内时,它们似乎也几乎没有副作用。 但是,两者之间存在一些显着差异,这可能会限制和区别它们在某些适应症中的使用。

首先,与噬菌体相比,B. bacteriovorus无疑是“活的”并且具有代谢活性,噬菌体是惰性颗粒,直到它们通过特定受体与宿主建立接触。 这可能对B. bacteriovorus既有好处,也有缺点,因为它可能使用需要能量的过程,例如噬菌体无法获得的主动“定位”猎物。 但是,如果未发现猎物,则B. bacteriovorus不能进入休眠状态,并且会死亡。 相反,噬菌体可以在不消耗任何能量的情况下保持“生存”许多年,但无法主动寻找宿主。 他们必须依靠随机概率遇到宿主,并通过比B. bacteriovorus更快速地复制并且具有更大的爆发来补偿这种相对的低效率。

先前对伤寒沙门氏菌大肠杆菌的研究表明,噬菌体并不总是消除其宿主的全部种群。B. bacteriovorus和噬菌体的复制都可能受到最低宿主/猎物阈值的限制,在此阈值之下,它们无法无限期地维持其种群。 然而,这可能在治疗上是有益的,因为通常不需要消灭病原体即可显着减轻或完全缓解疾病症状。

单个噬菌体的宿主范围通常限于一个菌种或一个或两个密切相关的菌种内的许多菌株,这使得其种群的维持比B. bacteriovorus更具挑战性。需要考虑宿主特异性和细菌对噬菌体耐药性的快速获得;与之相比,广泛的细菌捕食范围和缺乏掠食性细菌的简单抗药性机制使其具有优势。 有趣的是,最近有科学金工作强调了将掠食性细菌与噬菌体一起使用的组合能力。 噬菌体敏感性和Bdellovibrio捕食的独立动力学使得在某些条件下更大程度地杀死了大肠杆菌

当被引入到吸热动物体内时,B. bacteriovorus和噬菌体都将面临挑战性条件。 与细菌噬菌杆菌相比,噬菌体在遇到苛刻的物理和化学条件(例如更高的温度和极端的pH值)时更有可能具有弹性。噬菌体可以穿过血脑屏障,但如果不进行故意修饰,可能无法在细胞内持续存在。 确实,以前的研究表明,当它们进入血液时,它们可以被网状内皮系统迅速隔离。 至少在某些情况下,可以通过在哺乳动物中连续传播噬菌体来重新分离能够在哺乳动物中长时间循环的噬菌体来应对这一问题。 众所周知,噬菌体能够通过普遍的和专门的转导在细菌之间转移DNA,这是一种不适用于B. bacteriovorus的风险。可以通过仔细筛选噬菌体基因组以除去具有整合能力的特定噬菌体和其他可能带有编码细菌毒素或其他毒力因子的基因的噬菌体,来减轻这种风险。

Bdellovibrio和噬菌体的治疗应用需要两者的工业生产。 每种噬菌体都面临着不同的挑战,因为噬菌体的产生数量更大且速度更快,但是它们的产生可能需要大量培养病原性宿主细菌。 相反,可以使用非病原性的Bdellovibrio宿主,例如大肠杆菌和恶臭假单胞菌,但是需要将它们与最终的治疗制剂有效地分开。 另外,维持Bdellovibrio制剂的生存力可能比噬菌体更具挑战性。 有趣的是,从生产这些生物防治剂的治疗制剂的技术挑战中可以学到什么教训,以及确定将它们一起用作治疗剂是否可以实现任何协同作用。

蛭弧菌对宿主反应的影响将基础科学转化为应用,以应对AMR的挑战

最近从事DARPA病原体捕食计划的一些研究人员,已经改变了研究领域,并证明了使用活的全食性B. bacteriovorus在体外和体内杀死广泛的抗药性(AMR)临床病原体的潜力。体内进一步支持其作为治疗手段的承诺。要被视为可靠的治疗选择,需要来自未来的人类试验的有力证据表明,这种治疗有效,至少在特定情况下,对患者没有(或最小)负面影响,并且与现有治疗相比具有一定优势

研究人员需要证明其临床价值并衡量治疗效果,以说明对患者的益处。但现在是否拥有所需的所有信息? 如果没有,还需要解决什么?

根据体内动物模型,研究人员需要在人类身上进行安全性和有效性试验。动物模型是至关重要的,但也有局限性,迄今为止的协议管理捕食性细菌之前,或不久之后,病原体的兴趣。需要对更确定的感染进行调查,并支持确定捕食性细菌的剂量范围(以及可能的病原体数量)、剂量数量和治疗感染所需的时间表。也许令人惊讶的是,在感染和康复期间,对人体不同部位病原体实际数量的了解仍然是一个非常发展的领域。大规模捕食者生长和纯化方法的发展目前受到限制,需要扩大更大规模的安全性和有效性试验。感染治疗是时间关键,因此评估稳定性,长期储存和提供一个活的,掠夺性的积极治疗需要进一步的工作。

结 语

总之,用另一种细菌来治疗细菌感染似乎是反直觉的,离使用它们作为药物改善患者的生存状况还有一段时间。虽然蛭弧菌对其他病原的杀伤能力还有待验证,而且考虑到人体内大量必要有益的共生菌群,如何避免大量蛭弧菌“伤及无辜”也是一个值得关注的问题。需要进一步的工作来评估捕食性细菌从给药部位的传播,并确定暴露对宿主或其驻留生态位微生物群的长期影响。

但是我们相信,未来以细菌对抗细菌治疗某些感染会是一条后抗生素时代新的机遇。

相关阅读:

细菌的天敌抗生素,如何利用这把救命的双刃剑?

细菌大盘点 | 大肠埃希氏菌、血链球菌、李斯特菌

细菌大盘点(二) | 葡萄球菌、沙门氏菌、弯曲杆菌

参考文献:

Laloux G. Shedding light on the cell biology of the predatory bacterium Bdellovibrio bacteriovorus . Front Microbiol 2020; 10:3136

Harding CJ, Huwiler SG, Somers H, Lambert C, Ray LJ et al. A lysozyme with altered substrate specificity facilitates prey cell exit by the periplasmic predator Bdellovibrio bacteriovorus. Nat Commun 2020; 11:4817

Ardal C, Balasegaram M, Laxminarayan R, McAdams D, Outterson K et al. Antibiotic development – economic, regulatory and societal challenges. Nat Rev Microbiol. 2019

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18:318–327

Atterbury Robert J,Tyson Jess,Predatory bacteria as living antibiotics – where are we now?[J] .Microbiology (Reading), 2021, 167.

Laxminarayan R, Van Boeckel T, Frost I, Kariuki S, Khan EA et al. The Lancet infectious diseases Commission on antimicrobial resistance: 6 years later. Lancet Infect Dis 2020; 20:e51–e60

微生物群也有记忆 | 微生物群能被“训练”

谷禾健康

一个多世纪前,埃利·梅奇尼科夫提出了人类健康和预期寿命可以通过操纵肠道菌群来改善的概念

现在,科学家们已经将目光投向了如何利用微生物来促进人类健康

来自美国国立卫生研究院国家过敏症和传染病研究所的Stacy及其同事的最新研究表明,有感染史的肠道菌群能够为宿主提供更强的抗感染力。也就是说急性感染后,共生微生物群也可以被“训练”以增强对异源感染的定植抗性

定植抗性:微生物群阻碍病原体入侵肠道生态系统,这种现象称为定植抗性。定植抗性是肠道微生物群的原始功能之一,为宿主提供了明显的益处。

训练免疫:感染或免疫可以重新编程先天免疫细胞,产生对后续感染具有广泛保护作用的记忆反应,这一过程被称为“训练免疫”。

肠道微生物群是宿主防御网络的基础。除了塑造免疫系统的发展和维护,共生微生物通过战胜病原体获得必需的营养物质分泌抗生素来确保宿主(和它们自己)的生存,这些因素共同使肠道成为入侵的病原菌不可生存的环境。

肠道微生物群的训练总览

最初的肠道感染后:

( 如Y. pseudotuberculosis )

(1) 肝脏中与牛磺酸结合的胆汁酸产生增加,储存在胆囊,并释放到肠道;

(2) 在肠道中,胆汁酸被特定的微生物群化学解共轭;

(3)牛磺酸变得可利用,导致产生硫化氢的细菌大量繁殖,从而阻止肠道病原体的有氧生长。


下面我们来看Stacy等人是如何一步步进行的实验探究过程。

发现:感染史可以改变肠道微生物群

Stacy等人在研究中发现,与实验室特有的无病原体(SPF)微生物群的小鼠相比,拥有野生小鼠(即WildR)微生物群的自交系小鼠表现出对致命病毒感染的增强保护

在这里,作者还发现野生小鼠比SPF小鼠对肠道肺炎克雷伯菌感染更具抵抗力。考虑到WildR小鼠的未知感染史,作者用肺炎克雷伯菌对以前感染过急性Yersinia pseudotuberculosis ( post-△yopM) 的SPF小鼠进行了挑战。

值得注意的是,post-△yopM 的小鼠在初次感染后的至少15周内对肺炎克雷伯菌感染的抵抗力也更强。与SPF重建的对照组相比,用post-△yopM小鼠的粪便重建无菌小鼠也增强了对肺炎克雷伯菌感染的保护,这证实了微生物群在抗性中的作用

这些结果表明,感染史可以改变肠道微生物群,从而诱导定植抗性,因此称为“微生物群训练”。

过去的感染是如何导致微生物群的改变,使之具有更强的抵抗功能?

Stacy等人使用代谢组学方法记录了清除了假结核杆菌Y. pseudotuberculosis△yopM的小鼠肠道中胆汁酸水平的升高。微生物群对初级胆汁酸的解偶联释放了偶联组分,如牛磺酸

注:牛磺酸在胰腺中合成,对肌肉和大脑发育至关重要,是哺乳动物中最丰富的游离氨基酸。最近发现牛磺酸可以激活杯状细胞中的NLRP6炎症小体,并通过肠道上皮细胞调节稳定状态的抗微生物肽的产生。

在短暂的假结核杆菌感染后磺酸水平升高。之前的研究表明,牛磺酸支持解决肠道炎症和清除肠道病原体的柠檬酸杆菌感染。

他们发现,补充牛磺酸会损害柠檬酸杆菌C. rodentium肺炎克雷伯菌的肠道定植。而当补充给无菌小鼠时,牛磺酸对肠道感染没有影响,这表明它通过调节共栖群落而不是直接影响病原体。

那么,牛磺酸是如何调节肠道菌群的呢?

从机制上讲,牛磺酸可增强微生物群中硫化物的产生,硫化物是细胞呼吸的抑制剂,这是宿主被多种病原体入侵的关键。

Stacy等人用16S rDNA和宏基因组测序来解决这个问题。肠道炎症通常与肠杆菌科(Enterobacteriaceae)的大量繁殖有关。

参与对抗感染菌– δ 变形菌 Deltaproteobacteria

他们发现,与对照组小鼠相比,清除假结核杆菌△yopM感染的小鼠微生物群中变形菌门增加,特别是δ 变形菌纲(Deltaproteobacteria)。

宏基因组学揭示,δ 变形菌纲的这种繁殖导致感染小鼠的硫代谢途径增加。虽然在感染后的微生物群中没有发现代谢硫的菌(δ 变形菌纲Bilophila wadsworthia),但当补充到无菌小鼠中时,足以提高对肺炎克雷伯菌的定殖抗性。

牛磺酸的施用同样影响了微生物群;然而,这些变化与post-Yersinia状态相当不一致,包括梭状芽孢杆菌而不是δ变形菌的增殖。这些不一致的分类变化表明,仅补充牛磺酸并不能完全重现共生微生物群的感染后状态,多种因素和微生物群可能能够增强对继发感染的定殖抗性。

如果经历过感染和受过牛磺酸训练的微生物群在分类学上是不同的,那么它们是否有一个共同的功能来增强对肺炎克雷伯菌和柠檬酸杆菌(C. rodentium)感染的抵抗力?

Stacy等人通过宏基因组学检测牛磺酸处理过的小鼠微生物组,发现与post-Yersinia菌感染后的微生物组相似,编码异化亚硫酸盐还原酶(dsr)的基因得到了富集。这种蛋白质参与牛磺酸酶转化为硫化物的最后一步。

当牛磺酸调节的微生物群在体外培养中暴露于牛磺酸时,会产生更多的硫化氢,这与肠道中牛磺酸水平较高支持能将这种代谢物转化为硫化物的物种生长的观点一致。

重要的是,硫化氢通过抑制细胞色素氧化酶来限制有氧呼吸,而细胞色素氧化酶是病原体在不可发酵的底物上进行有氧呼吸和生长的常用物质。因此,牛磺酸依赖的硫化氢的产生可能通过阻断有氧呼吸来提高定植抗性

原发感染后牛磺酸代谢菌群的扩张增强了对继发感染的定植抗性

在原发感染(左)期间,病原体通过有氧发酵利用代谢底物,如1,2-丙二醇。清除感染后,宿主产生的胆汁酸水平增加,可以通过共生微生物群与牛磺酸解偶联。牛磺酸反过来被代谢成硫化物,抑制有氧呼吸,从而增强对继发感染的定植抗性(右)。

如何验证这一假设?

Stacy等人用两种方法验证:

(1) 使病原体不能在不可发酵的物质上生长

Stacy等人对肺炎克雷伯菌进行了高通量转座子测序。他们让12000个转座子突变体通过小鼠,然后测序,以确定与输入库相比丢失的突变体。

在未感染的小鼠中,导致细菌适应的因素包括与1,2-丙二醇利用有关的基因以及与细胞色素氧化酶bd-II同源的假定氧化酶。因此,肺炎克雷伯菌在低氧环境下对1,2丙二醇作用最为有利,低氧环境受硫化物抑制。

此外,缺乏在1,2-丙二醇或细胞色素氧化酶II上生长能力的肺炎克雷伯菌突变体在体内被它们的野生型对应物所取代,但当牛磺酸被补充到肠道生态系统中时却没有这种情况,表明牛磺酸破坏了病原体在1,2-丙二醇上的呼吸和生长能力

(2) 隔离硫化氢

Stacy等人使用铋来隔离硫化物。铋对小鼠的处理阻止了微生物群产生硫化氢,导致了具有有氧呼吸功能的细菌数量的增加。

重要的是,铋处理还增加了对肺炎克雷伯菌感染的易感性,突出了硫化物隔离对定植抗性的影响。

总的来说,这项研究引入了一个概念:在成功清除原发感染后,对定植抵抗力的记忆增强。

这种对继发感染的增强抗性似乎是高度非特异性的,因为弱毒假结核分枝杆菌的初次感染可以防止肺炎克雷伯氏菌或柠檬酸杆菌的继发感染

事实上,Stacy等人使用“wildR”小鼠的微生物群发现了相同的效果,这些小鼠是无菌小鼠,与野生小鼠的微生物群一起定居,野生小鼠可能有许多肠道感染的历史。

野生小鼠的肠道也显示出δ变形菌纲的扩张,但牛磺酸的水平降低而不是升高,这表明感染后牛磺酸可能会随着时间的推移而消耗,或者是不同的机制导致了这些小鼠中δ变形菌纲的大量繁殖。

Stacy等人没有用相同的病原体进行原发性和继发性感染,因此尚不清楚保护机制是否也适用于这种情况,以及增强定殖抗性的进化目的论是否是为了避免用相同的病原体进行二次感染。同样,确定感染后微生物群是否对不依赖硫化物敏感有氧呼吸的病原体无效也很重要。

Stacy等人的发现也存在一些问题。

首先,为什么在成功清除感染后胆汁酸分泌持续升高?

作者在postYersinia感染后的小鼠中发现了增大的胆囊,但这可能不是主要原因。

二、这种增强的殖民抵抗的状态持续多久

Stacy等人在post-Yersinia感染后15天观察到,接受来自小鼠体内微生物群的无菌小鼠的定殖减少,但尚不清楚肠道牛磺酸水平是否表现相似,以及保护作用是否在超过15天的时间内减弱。

同样,确定多轮感染是否会进一步增强最终的定植抗性能力也很有意思。

虽然存在以上问题,但Stacy等人的发现依然具有重要意义。

Stacy等人的工作使用了生物化学、微生物学和生物信息学方法等,不仅形成了一个关于感染史如何导致肠道-肝脏保护轴的新概念框架,使“微生物群记忆”的概念得到推广,还提供了对宿主及其微生物群之间存在的互利途径的新见解。

这可能是通过精确调节微生物群来提高抗病原体入侵能力的重要一步。

相关阅读:

低聚半乳糖对衰老肠道的多效作用

解密|肠道菌群与健康长寿

健康的人类微生物组

主要参考文献:

Stacy, A., Andrade-Oliveira, V., McCulloch, J.A.,Hild, B., Oh, J.H., Perez-Chaparro, P.J., Sim, C.K., Lim, A.I., Link, V.M., Enamorado, M., et al. (2021). Infection trains the host for microbiota-enhanced resistance to pathogens. Cell 184, this issue, 615–627.e18

Wong Andrea C, Levy Maayan,Microbial memories.[J] .Immunity, 2021, 54: 201-204.

King Irah L,Divangahi Maziar,Training the metaorganism: the microbial counterpart.[J] .Cell, 2021, 184: 574-576.

Rosshart, S.P., Vassallo, B.G., Angeletti, D.,Hutchinson, D.S., Morgan, A.P., Takeda, K., Hickman, H.D., McCulloch, J.A., Badger, J.H., Ajami, N.J., et al. (2017). Wild Mouse Gut Microbiota Promotes Host Fitness and Improves Disease Resistance. Cell 171, 1015–1028.

最新研究进展 | 小儿功能性腹痛症

谷禾健康

功能性腹痛性疾病(FAPD)是儿童期最常见的疾病,全世界25%的儿童和婴儿受其影响。

功能性腹痛性疾病

小儿功能性腹痛性疾病,目前称为肠脑相互作用障碍,包括肠易激综合症,功能性消化不良,腹型偏头痛和功能性腹痛。

<罗马IV诊断标准见附录>

近日,英国和美国的研究科学家联合发表在《NATURE REVIEWS | DISEASE PRIMERS》上的一篇综述文章题为:“Paediatric functional abdominal pain disorders”(小儿功能性腹痛症)。

该文总结了FAPD患病率和致病性的最新进展,并特别关注了早期生命的影响和构建。对食源性发病机理和病理生理学有了更深入的了解,包括肠道器官(炎症,运动和微生物群),核心因素(心理方面,某些大脑区域的敏感性和/或连通性或活动性差异)以及外在因素(感染)。

此外,讨论了当前的诊断方法并着重介绍了这些疾病的治疗选择,特别是IBS和FAP-NOS。强调可用的药理干预措施仅限于儿童,因此,干预管理重点落在综合方法上,包括针对精神的干预措施(催眠疗法和认知行为疗法),饮食(益生菌)和经皮神经电刺激。这些方向将有助于理解病理生理学并更好地治疗这些疾病。

01

FAPD 简介

FAPDs的特征通常内脏痛觉过于敏感以及内脏刺激中枢感知增加而导致残疾,是遗传易感性和早期生活事件背景上叠加社会心理因素和医学因素的最终结果。

功能性消化不良的症状特征主要来自胃肠道近端,涉及上腹部腹痛和/或餐后饱胀和/或早期饱腹感。

腹型偏头痛的特点是发作性长时间发作,剧烈,急性脐周,中线或弥漫性腹痛。这些痛苦的发作通常无能为力并干扰正常生活。

这些发作通常但不总是与其他症状(例如厌食,恶心,呕吐,头痛,畏光等)相关,这些症状可能在疼痛持续时间之前或与疼痛持续时间同时发生,并且这种症状性发作可能相隔数周至数月不等。 

02

流行病学

风险因素如下:

03

机制 / 病理生理学

FAPDs是一种复杂的疾病,似乎是由于一个或多个元素的功能和/或更微妙的结构完整性的破坏造成的菌群-肠-脑轴。这些条件下相互作用的复杂性和多面性被整合到一个生物心理社会模型中。

该模型的关键组成部分是内脏超敏反应和中枢敏感化。

  内 脏 超 敏 反 应  

内脏超敏反应描述了对周围信号的知觉反应(即痛觉过敏),并且可能是内脏传入信号处理变化的结果或疼痛下调变化的结果(例如,中枢敏感化)。

表现:疼痛的感觉阈值降低,也就是稍微一点点刺激就会感到疼痛。

可能原因:在肠扩张期间或由于暴露于食糜的化学成分改变引起,部分解释了对诸如饮食调整和抑酸等治疗的反应。

潜在诱因:炎症,感染和压力

从本质上讲,这些触发因素可引起粘膜通透性变化并导致炎症,释放促生因子,包括5-羟色胺,组胺,NGF,蛋白酶和前列腺素,它们能够激活传入伤害感受器(痛觉神经)上的受体,引起急性疼痛以及持久的功能和结构改变,这是维持慢性疼痛的关键。

  中 枢 敏 感 化  

中枢敏化是指通过增强中枢神经系统内的神经元功能和神经信号来放大疼痛敏感性的现象,会引起疼痛超敏反应,并且是一种发展和维持慢性疼痛的机制。

除了疼痛超敏反应外,中枢敏化还会导致脑部活动的继发性变化,可以通过电生理或成像技术进行检测。患有FAPD的个体可能更倾向于发展来源不明的中央致敏。

2018年进行的一项系统性回顾涉及12项病例对照研究,发现功能性腹痛儿童的继发性痛觉过敏和皮质伤害感受改变。

 生 命 早 期 事 件   

在小儿FAPD中,损伤时机比导致微生物群-肠-脑轴成分破坏的多种因素或该轴本身的破坏更为关键。在生命的头二十年中,尤其是从围产期到儿童时期直至青春期,支撑其功能的肠脑轴所有元素的发育和成熟的关键过程至关重要。

包括手术(例如脐疝和幽门狭窄),细菌性胃肠道感染,炎性或免疫介导的疾病(例如乳糜泻,炎性肠病),以及在生命的最初几个月中发生无害的侮辱,例如婴儿期对牛奶过敏和早期使用抗生素等。

  神 经 免 疫 相 互 作 用   

在一些患有FAPD的儿童中,证据表明存在低度的肠道炎症,并在发病机理中发挥了神经免疫相互作用的作用。 

一项研究发现,IBS患儿回结肠结肠粘膜中靠近神经的肥大细胞数量增加。神经纤维相关的肥大细胞计数与腹痛的强度和疼痛发作的频率相关。

  胃 肠 蠕 动   

胃肠动力异常促进FAPD的病理生理。具有上消化道症状的患者可能有胃排空延迟和/或胃适应性降低或两者都不存在。功能性下消化道症状的患者可能延迟,加速或正常结肠转移,和/或骨盆底运动障碍(肌肉协调障碍导致试图放松骨盆底肌肉时收缩)。

—功能性消化不良

—肠易激综合征

  微 生 物 群   

FAPD与肠道微生物群的多样性和菌群组成有关,尤其是IBS。2019年,一项系统评价86评估了健康个体和IBS患者(成人和儿童)的肠道菌群组成。发现双歧杆菌属的丰度下降。IBS患者中的抗炎作用与Faecalibacterium spp,尤其是Faecalibacterium prausnitzii一样,具有抗炎作用。 

IBS患者的粪便微生物群的多样性降低或保持不变。粪便微生物群组成或代谢组组成可以预测患者可能从饮食中获益。 

除细菌外,真菌或病毒也可能在FAPD病理生理中起作用。但是,有关真菌菌群失调或病毒菌群失调的可用数据有限,目前的研究主要集中于炎症性肠病,而不是IBS。

  营   养    

在患有FAPD的儿童中起着至关重要的作用。

饮食失调(例如神经性贪食症)可能导致IBS患儿肥胖的发生率增加。

碳水化合物的吸收不良可引起胃肠道症状。吸收不良可能与特定的酶缺乏症有关(例如乳糖酶缺乏症中的乳糖;蔗糖和异麦芽糖酶缺乏症中的蔗糖和淀粉)或与碳水化合物(如果糖,山梨糖醇或甘露醇)的吸收能力有限有关。

在糖较小的情况下,所引起的渗透负荷可导致肠腔膨胀小和快速转运。对于诸如果聚糖等较大的糖,人不具有消化的酶促能力,因此,吸收不良的糖会被结肠菌群发酵,从而导致气体形成和潜在的结肠扩张。

  心 理 因 素   

肠脑轴的生理很复杂,包括传入和传出成分。

下丘脑-垂体-肾上腺轴通过皮质醇和促肾上腺皮质激素释放因子的释放(在压力条件下均会增加),以及通过刺激肥大细胞和诱导脯氨酸释放的反馈回路,促进肠-脑相互作用。 

研究表明,在成年人和有FAPDs的儿科患者中,压力都会增加肠道炎症标志物,如粪便钙卫蛋白和CRP。 

肠道与大脑的相互作用涉及自上而下和自下而上的过程,因此,肠道菌群也可以影响脑功能。在压力条件下,肠道菌群可以增加上皮屏障的通透性,使抗原和/或病原体能够通过并引起炎症反应。由此产生的循环性促炎细胞因子可能会与中枢神经系统通讯,刺激大脑的免疫反应,从而可能导致或加重心理症状(例如焦虑和抑郁)。

几项研究表明,与健康儿童相比,患有家族性帕金森病的儿童的心理压力和行为问题有所增加。心理因素可能既是FAPD的起因,也是后果。

04

诊断、筛查和预防

05

治疗方法

无论采用哪种治疗方法,患者与临床医生之间有效的沟通和病人教育,是成功进行FAPD管理的核心。必须花足够的时间向每位患者的照护者解释诊断,并讨论生物心理社会模型。

FAPD的管理受到几个因素的限制

1. 由于FAPD生物心理社会特性,每个孩子都有一套独特的病理生理因素,并且对疗法的反应也不同。

2. FAPD患儿的证据基础很小,许多治疗建议都是基于对成年人的研究。 儿童通常不会像成年人那样做出反应。

3.  一些有效的治疗方法是行为疗法(饮食疗法和心理疗法),由于缺乏专职医疗保健专业人员以及缺乏保险,这些方法并不容易。

以下对每种治疗方法展开讨论。

   饮 食 调 整   

 益 生 菌   

多项研究检查了益生菌治疗FAPD的功效(大多成年IBS患者)。这些研究表明,益生菌或特定菌特定组合可能是有效的,但研究有局限性,如样品量,致盲性,所用益生菌的差异以及不同的剂量,其作用仍不清楚。

在患有IBS的儿童中,两项研究发现鼠李糖乳杆菌GG可有效减轻腹痛症状,而一项研究则报告腹痛没有改善,但感觉到的腹胀有所改善。在不同的研究中,疼痛程度再次有所不同。

在一个多中心,IBS儿童中进行的交叉RCT研究中,VSL#3(八种益生菌菌株的混合物)在改善症状和改善生活质量方面比安慰剂更安全,更有效

   心 理 干 预   

心理干预迄今为止,诸如CBT和催眠治疗等心理干预已被证明是管理FAPD的最成功干预措施,并主张将其普遍纳入管理策略。

   认知行为疗法(CBT)

CBT是治疗IBS的研究最多的心理疗法,其目的是改变认知,情绪和行为,这些不良情绪行为等都可能加剧或维持IBS症状。 

在成人和儿童中的研究表明,与教育和其他控制干预措施相比,CBT在改善疼痛和参与社交生活的能力以及减轻焦虑或抑郁症状方面是有效的

十二项随机对照试验涉及990名IBS儿童(7-18岁),显示出CBT对生活质量,学校表现和社会参与产生了长期的,持久的有益影响。CBT可以作为面对面的治疗提供,也可以通过互联网面向儿童或通过电话面向父母。

已报道,CBT在改善肠易激综合征儿童的疼痛和残疾方面具有有效性。患有家族性帕金森病的儿童的社区康复治疗主要集中在学习应对症状和减少残疾上,这些治疗应该是综合护理方法的理想组成部分。

    催 眠 疗 法   

在治疗师的指导下,患者会进入催眠状态,以响应改变主观体验,感知,情感,思想或行为的建议。 

在成年人中,催眠疗法已被证明可导致结肠运动改变改善内脏超敏性并减少长期持续存在的心理因素,例如躯体化和心理压力。

然而,在IBS患儿中,尽管接受了标准疗法的儿童的疼痛评分和躯体化评分均较低,但在催眠治疗后并未发现超敏反应降低(通过实验测试)。

IBS或FAP-NOS(n = 412;6-18岁)儿童的5个随机对照试验,无论是单独治疗还是在家中通过CD进行催眠治疗,均产生了长期有益影响

1年5年的随访中,接受催眠治疗的患者中分别有85%和68%已没有症状,而对照组中分别只有25%和20%的患者缓解

    瑜 珈 疗 法  

瑜伽练习已被证明可以改善应激诱导的副交感神经系统活性不足。三个随机对照试验,包括127名IBS儿童(7-18岁),瑜伽疗法在减少腹痛方面具有积极作用。

但是,一项荷兰研究表明,在1年的随访中,瑜伽干预并没有比不包括CBT的标准治疗更有效。由于学习方法的重大缺陷,尚不能提出将瑜伽作为FAPD儿童的常规干预措施的建议。

神 经 刺 激   

多项研究表明,脊髓和大脑的电刺激在调节疼痛途径中的功效,能够减少脊髓和中央杏仁核中50%以上的神经元放电,从而减轻内脏疼痛。

一项研究表明,经皮神经电刺激(PENFS)可以调节杏仁核和脊髓神经元的反应特性,并显着降低大鼠内脏超敏反应的发展。 

随后,同一组受试者在115名FAPD的青少年(11至18岁)的随机对照试验中显示,具有主动装置的PENFS可以改善健康状况,并显着减轻疼痛和残疾 与假刺激组。 

此外,PENFS的有益作用在2个月的随访期间得以维持。尽管有些耳部不适,但未报告严重的不良反应。

补 充 和 替 代 医 学 

补充和替代医学包括不同的方法,从针灸和阿育吠陀医学到脊椎指压疗法、整骨疗法、顺势疗法、精神治疗、按摩和冥想等身心技术。大约40%的澳大利亚和荷兰诊断为糖尿病肾病的儿童使用其中某些替代疗法,其中草药治疗是最常见的(46%)。

许多补充疗法被公众认为是“自然的”,比现代医学的医疗设备更安全、更温和。FAPDs儿童对对抗疗法药物相关可能产生不良反应的恐惧,常规治疗没太大效果,让父母希望寻求补充和替代治疗。

然而,到目前为止,评估草药疗法、针灸、顺势疗法、身心疗法或肌肉骨骼操作(如整骨疗法和脊椎指压疗法)对患有家族性帕金森病的儿童的效果的随机对照试验尚不可用。

由于糖尿病周围神经病变的自发缓解率很高(30-70%),采取逐步的管理方法是明智的;必要时,教育、识别和改变压力因素和饮食干预可能是第一步。当症状持续或再次出现时,下一步可能是开始一种心理治疗,如认知行为疗法和催眠疗法,或PENFS。

药 物 疗 法 

06

生活质量

胃肠症状的严重程度和发生频率对不同患者的功能状态有不同的影响。患者报告的健康相关生活质量(HRQOL)测量应该有助于深入了解FAPDs对儿童和青少年功能状态的不同影响,包括身体、情感、行为、社会和认知方面。

评估症状和HRQOL影响的患者报告结果已成为成人临床状态和治疗结果的公认指标。但在儿童环境中,自我报告的HRQOL措施在仪器开发和临床应用中遇到了挑战,部分原因是担心儿童能否可靠地自我报告与健康相关的信息。

量化个体胃肠道症状对于开发以患者为中心和针对症状的干预措施很重要,这可以改善整体HRQOL。例如,一项针对259名患有功能性便秘,功能性腹痛或IBS的儿科患者的多中心研究发现,胃肠道症状最能预测整体受损。

07

展  望

FAPD在儿童时期很常见,FAPD患病率和/或复杂性可能会增加。因此,需要有来自所有地理区域以及世界各地精心设计的流行病学研究,才能真正了解问题的性质和规模。

特别重要的是,我们目前对导致儿童FAPD发病机理的潜在因素的了解,需要使用来自FAPD患儿的组织样本来解决免疫功能障碍和神经功能障碍的基础和转化科学研究。如上所述,早期的影响,即在复杂的肠脑轴各要素发展的关键阶段发生的事件,通常是辱骂或创伤(心理或医学方面的事件),使易感人群容易患上FAPD。

异常改变肠道菌群的因素可能会改变肠神经系统的结构或功能完整性,进而改变其与中枢神经系统的复杂且平衡的相互作用。结果可能是胃肠道重新调整为过敏状态,而大脑则重新编程为过度警觉状态。

当然,其他遗传因素,社会因素和生理变化,例如在青春期或青春期发生的那些,也可能促进症状发展。

现代工具越来越多地与焦虑和压力相关联,也可能会对FAPD产生重大影响。 

总体而言,在过去十年中,儿童家庭保护方案取得了相当大的进展。对所有影响因素,及其与触发FAPD最终发展有关时机的更深入了解,可能带来更合适的预防或治疗策略。


【附录】

功能性腹痛疾病的罗马IV诊断标准

肠易激综合征

该标准必须满足至少2个月,并包括以下所有:

• 每月至少有4天腹痛伴有排便和/或排便次数的改变和/或大便外观的改变

• 腹痛不能随着便秘的解决而消失(疼痛消除的儿童患有功能性便秘,非肠易激综合征)

• 经过适当评估,症状不能完全由另一种疾病解释

功能性消化不良

诊断前必须至少满足2个月的标准,并且必须包括以下一种或多种症状,每月至少4天:

• 餐后饱腹感

• 早期饱腹感

• 与排便无关的上腹部疼痛或灼热感

• 经过适当评估,这种症状不能完全由另一种医学状况来解释

腹型偏头痛

必须在诊断前至少6个月内达到标准,并包括以下所有至少发生两次的情况:

• 持续1小时或更长时间的剧烈、急性脐周、中线或弥漫性腹痛的阵发性发作(应为最严重和最痛苦的症状)

• 发作间隔数周至数月;疼痛使人丧失能力并干扰正常活动;个体患者的定型模式和症状

• 疼痛与以下两种或两种以上症状相关:厌食、恶心、呕吐、头痛、畏光或苍白

• 经适当评估,症状不能完全由另一种医学状况解释,

功能性腹痛

未另行规定标准必须在诊断前至少2个月完成,每月至少四次,包括以下所有内容:

• 并非仅在生理事件(例如,饮食和月经)期间发生的偶发性或持续性腹痛;肠易激综合征、功能性消化不良或腹部偏头痛的标准不足

• 经过适当评估,腹痛不能由其他医疗状况完全解释

相关阅读:

早期生命菌群和呼吸道感染

一文涵盖:大脑发育差异背后肠道菌群的故事

微生物群对三大过敏性疾病发展的影响

儿童时期的饮食模式及其对肠道菌群的影响-亚洲人群的过敏分析

生命早期微生物接触和过敏风险:如何预防

主要参考文献:

Sjölund, J. et al. Prevalence and progression of  recurrent abdominal pain, from early childhood to  adolescence. Clin. Gastroenterol. Hepatol. 2020

Paediatric functional abdominal pain disorders.[J] .Nat Rev Dis Primers, 2020, 6: 88.

Rutten, J. M. T . M., Korterink, J. J., Venmans, L. M. A. J., Benninga, M. A. & T abbers, M. M. Nonpharmacologic treatment of functional abdominal pain disorders:  a systematic review. Pediatrics 135, 522–535  

Masuy, I., Van Oudenhove, L. & T ack, J. Review article: treatment options for functional dyspepsia. Aliment. Pharmacol. Ther. 49, 1 134–1 172 (2019)

Russell, A. C., Stone, A. L. & Walker, L. S. Nausea in children with functional abdominal pain predicts poor health outcomes in young adulthood. Clin. Gastroenterol. Hepatol. 15, 706–71 1 (2017)

Maragkoudaki, M. et al. Lactobacillus reuteri DSM 17938 and a placebo both significantly reduced symptoms in children with functional abdominal pain. Acta Paediatr. 106, 1857–1862 (2017).



1
客服