Tag Archive 益生菌

认识罗伊氏乳杆菌(Lactobacillus reuteri)

谷禾健康

乳酸菌属益生菌是使用最广泛的益生菌之一。罗伊氏乳杆菌( L. reuteri ) 是一种经过充分研究的益生菌,可以在大量哺乳动物中定殖。

罗伊氏乳杆菌是一种革兰氏阴性杆状细菌,已在各种食物中发现,尤其是肉类和奶制品。在人类中,罗伊氏乳杆菌存在于不同的身体部位,包括胃肠道、泌尿道、皮肤和母乳。罗伊氏乳杆菌的丰度因个体而异

可能的优势

● 可能促进皮肤光泽和头发浓密

● 可能有助于对抗感染

● 可能减少炎症并加强免疫

● 可能会改善肠道健康(减少 IBS 和 IBD 症状)

● 可能降低胆固醇

可能的副作用

● 可能对组胺不耐受的人不利

● 可能导致某些人体重增加

● 缺乏大规模临床研究

● 长期补充的安全性未知

罗伊氏乳杆菌的发现及分布

罗伊氏乳杆菌Lactobacillus reuteri)名字来自德国微生物学家 Gerhard Reuter,他在1960 年代在人类肠道和粪便样本中发现了它。1960 年代被发现时,罗伊氏乳杆菌自然存在于 30-40% 的人体内,现在大约降至10-20%。科学研究者将这种下降与生活方式的改变联系起来。我们不像以前那样吃发酵食品,如酸菜,而是使用防腐剂,这会杀死食物和体内的细菌。

罗伊氏乳杆菌的代谢产物

罗伊氏乳杆菌在发酵过程中能够产生葡聚糖和果聚糖。其中一种葡聚糖,α-1,4/1,6 葡聚糖,分子量为 40 MDa,支化度约为 16%,似乎是一种饱腹感诱导剂,对胰岛素和血糖水平有良好的影响在人类。葡聚糖不会在胃和空肠中降解,而是在结肠中完全降解。由于其慢淀粉特性,这种葡聚糖可能是烘焙应用中一种促进健康的成分。

不同菌株不同作用

不同菌株的Lactobacillus reuteri已被证明具有不同的生理作用。例如,Lactobacillus reuteri DSMZ 17648用于治疗幽门螺杆菌(H. pylori),而Lactobacillus reuteriNCIMB 30242 用于治疗高胆固醇。

但是,罗伊氏乳杆菌补充剂尚未获得批准用于医疗用途,而且有的益处和副作用缺乏可靠的临床研究。法规制定了补充剂的制造标准,但不保证它们是安全或有效的。

研究限制

大多数关于Lactobacillus reuteri的研究是在动物或细胞中进行的。临床研究很少,而且大多数是低质量的、小规模的或可能存在偏见的。此外,使用的确切菌株因不同研究而异。

从何而来

尽管罗伊氏乳杆菌在人类中是正常的,但并不是每个人的胃肠道中都有它。口服补充剂可以增加和补充胃肠道罗伊氏乳杆菌,然而它不一定会长期留在那里。

同样,罗伊氏乳杆菌的良好来源是乳制品和肉类,素食者和大多数素食者都避免食用这些食品,因此补充剂很重要。在母乳喂养时服用罗伊氏乳杆菌补充剂的女性更有可能将这些有益细菌转移给婴儿。

肠道定植

为消化和吸收而建,胃肠系统的某些部位已发展为对微生物定植不利。这方面的例子可以在由小肠上部胃酸和胆汁盐引起的低 pH 条件下看到。因此,在胃肠道定植的第一步就是在这样的环境中生存。幸运的是,罗伊氏乳杆菌对低 pH 值和胆汁盐具有抵抗力。这种抗性被认为至少部分取决于其形成生物膜的能力。

罗伊氏乳杆菌能够附着在粘蛋白和肠上皮细胞上,一些菌株可以附着在一系列脊椎动物宿主的肠上皮细胞上。粘附的一种可能机制是细菌表面分子与粘液层的结合。粘液结合蛋白 (MUB) 和 MUB 样蛋白,由乳酸杆菌特定的直系同源蛋白编码基因簇编码,用作粘附介质或所谓的粘附素。MUB 在识别粘液成分和/或其促进聚集能力方面的菌株特异性作用可以解释为 MUB 对罗伊氏乳杆菌粘附的贡献。

由于已经定植到宿主胃肠道罗伊氏乳杆菌可以形成生物膜,在体内的生物膜形成罗伊氏乳杆菌菌株似乎是依赖于菌株的宿主来源。在一项研究中,从不同宿主(人、小鼠、大鼠、鸡和猪)中分离的9个罗伊氏乳杆菌菌株给予无菌小鼠,并在 2 天后评估生物膜。有趣的是,尽管不同来源的菌株之间的管腔种群具有可比性,但只有啮齿动物菌株能够形成生物膜并粘附在前胃上皮上

后续的研究陆续发现,表面蛋白、操作子、胞外多糖 (EPS) 在协助定植中的作用。罗伊氏乳杆菌RC-14 已被证明能够穿透成熟的大肠杆菌生物膜并成为其中的一部分。最近,罗伊氏乳杆菌以生物膜的形式递送,发现这种递送能促进罗伊氏乳杆菌对肠上皮的粘附并增强其益生菌特性。

调节肠道菌群

研究表明,罗伊氏乳杆菌对啮齿动物、仔猪和人类的微生物群具有调节作用。一项研究评估了口服人类来源的罗伊氏乳杆菌菌株 (DSM17938) 对小鼠的影响,结果表明,这种罗伊氏乳杆菌菌株能够延长小鼠的寿命并减少多器官炎症,同时重塑肠道微生物群

肠道微生物群的变化包括厚壁菌门和乳杆菌属和 Oscilospira 属的增加。罗伊氏乳杆菌的疾病改善作用归因于肠道菌群的重塑,尽管群落组成仍与野生型同窝仔不同。进一步的研究表明,施用罗伊氏乳杆菌后,肠道微生物群增强了肌苷的产生。通过腺苷 A2A 受体的参与,肌苷可以减少 Th1/Th2 细胞及其相关细胞因子。这些结果表明,罗伊氏乳杆菌-肠道微生物群-肌苷-腺苷 A2A 受体轴可作为 Treg 缺陷疾病的潜在治疗方法

此外,在卵巢切除术诱导的骨质流失小鼠模型中,口服罗伊氏乳杆菌6475治疗导致空肠和回肠中微生物群的多样性更高。具体而言,梭菌属较多,但拟杆菌属较少。然而,改变的肠道微生物群是否与预防骨质流失直接相关还需要进一步研究。 此外,罗伊氏乳杆菌 C10-2-1 已被证明可以调节大鼠回肠中肠道微生物群的多样性

与阴道分娩婴儿相比,剖腹产婴儿的肠道微生物群中肠杆菌属含量更高,但双歧杆菌含量较少。 在一项研究中,用罗伊氏乳杆菌 DSM 17938 治疗 2 周至 4个月大的剖腹产婴儿可调节肠道微生物群向阴道分娩婴儿中菌群模式发展。在补充罗伊氏乳杆菌后,阴道出生婴儿的肠道微生物群结构保持不变。

在另一项研究中,用相同的罗伊氏乳杆菌菌株治疗婴儿导致肠道微生物群中厌氧革兰氏阴性菌数量减少和革兰氏阳性菌计数增加,而肠杆菌科和肠球菌的丰度因罗伊氏乳杆菌治疗而大大降低。 婴儿年龄、治疗持续时间、给药途径和剂量的差异可以解释两项研究结果的差异。

对于成人,罗伊氏乳杆菌 NCIMB 30242 作为延迟释放胶囊给药 4 周能够增加健康个体中厚壁菌门与拟杆菌门的比例。已知这种罗伊氏乳杆菌菌株能够激活胆盐水解酶,并且已经报道了其在增加循环胆汁酸方面的作用。循环胆汁酸的上调是调节肠道微生物群的原因。

在 2 型糖尿病患者中,虽然补充罗伊氏乳杆菌 DSM 17938 3个月并未显著改变肠道微生物结构,但罗伊氏乳杆菌治疗的疾病结果与个体的基线肠道微生物群结构高度相关。此外,在囊性纤维化 (CF) 患者中施用罗伊氏乳杆菌 DSM 17938 通过减少变形菌来平衡肠道微生物群失调,同时还增加了厚壁菌的相对丰度。然而,需要进一步探索调节的肠道微生物群是否有助于改善益生菌治疗的 CF 患者的胃肠道健康。

罗伊氏乳杆菌以菌株特异性方式影响仔猪肠道微生物群落。例如,口服罗伊氏乳杆菌 ZLR003 能够改变肠道微生物群的多样性和组成。然而,用 I5007 菌株处理并没有影响仔猪的结肠微生物结构。

在另一项研究中,用罗伊氏乳杆菌发酵的饲料改变了断奶仔猪中 6 种不同细菌分类群的丰度,尤其是肠杆菌科。然而,主要的改变包括增加 Mitsuokella 和减少拟杆菌门下的一个科只能在 L.reuteri TMW1.656 而不是 L.reuteri LTH5794 中看到。TMW1.656 是一种产生罗伊氏环素的菌株,而 LTH5794 不是,这表明罗伊氏环素可能对调节仔猪肠道微生物群有贡献

罗伊氏素

大多数人和家禽谱系的罗伊氏乳杆菌能够产生和排泄罗伊氏素,这是一种众所周知的抗菌化合物。罗伊氏乳杆菌可以在辅酶 B12 依赖性、甘油脱水酶介导的反应中代谢甘油以生成 3-HPA。 罗伊氏菌素可以抑制多种微生物,主要是革兰氏阴性菌大多数乳杆菌属对罗伊氏蛋白具有抗性,其中罗伊氏乳杆菌菌株具有最大的抗性。除了其抗菌特性外,罗伊氏素还能够结合杂环胺,这似乎也依赖于丙烯醛的形成。这表明丙烯醛是罗伊氏素活性中必不可少的化合物。

除罗伊氏菌素外,其他几种抗菌物质,包括乳酸、乙酸、乙醇和罗伊氏环素,已被确定为某些罗伊氏乳杆菌的产物。通过合成这些物质,罗伊氏乳杆菌对多种胃肠道细菌感染有效。这些感染包括幽门螺杆菌、大肠杆菌、艰难梭菌和沙门氏菌。罗伊氏乳杆菌作为益生菌对抗感染的功效的更显著例证之一是使用罗伊氏乳杆菌治疗幽门螺杆菌。有人提出,罗伊氏乳杆菌通过与幽门螺杆菌竞争并抑制其与糖脂受体的结合而起作用。竞争减少了幽门螺杆菌的细菌负荷并减少了相关症状。一些研究表明,罗伊氏乳杆菌有可能从肠道中彻底根除幽门螺杆菌。重要的是,罗伊氏乳杆菌在治疗幽门螺杆菌方面具有优势,因为补充剂可以根除病原体,而不会引起与抗生素治疗相关的常见副作用

有人提出,罗伊氏乳杆菌通过调节微生物群和分泌具有抗病毒成分的代谢物来改善病毒感染。有证据表明罗伊氏乳杆菌对肺炎病毒、圆环病毒、轮状病毒、柯萨奇病毒和乳头瘤病毒有好处。此外,一些研究表明罗伊氏乳杆菌也可能具有抗真菌特性,其中罗伊氏乳杆菌拮抗、阻止并最终杀死各种念珠菌

罗伊氏乳杆菌的益处

可能对以下情况有效:

1) 腹痛

根据临床研究,服用Lactobacillus reuteri(DSM 17938 1 亿个菌落形成单位,每天)4 周可减轻 6-15 岁儿童的腹痛。

婴儿绞痛

根据临床研究,服用Lactobacillus reuteri(Probiotic Drops,BioGaia AB)1周可改善母乳喂养婴儿的绞痛和哭闹时间等症状。

2) 腹泻

罗伊氏乳杆菌在腹泻中的作用研究

Saviano A, et al., Medicina (Kaunas). 2021

抗生素引起的腹泻

确凿的证据表明,Lactobacillus reuteri(尤其是Lactobacillus reuteri ATCC 55730–BioGaia 益生菌片剂和滴剂)似乎可以减少成人和儿童的抗生素相关性腹泻和功能性便秘

根据一项小型研究,这种益生菌菌株也可能有助于预防婴儿和儿童的腹泻。

3) 便秘

一些研究表明,Lactobacillus reuteri有助于便秘,增加人们的排便次数。Lactobacillus reuteri 显示出产生短链脂肪酸、降低肠道腔内 pH 值和促进结肠蠕动的能力,影响结肠肌电细胞的频率和速度,对慢性便秘有益。

罗伊氏乳杆菌在便秘中的作用研究

Saviano A, et al., Medicina (Kaunas). 2021

大量临床研究表明,罗伊氏乳杆菌可能有助于调节肠道微生物群、消除感染和减轻肠道结肠炎、抗生素相关的胃肠道症状腹泻、肠易激综合征、炎症性肠病和慢性便秘,加速急诊患者的康复和出院,被广泛用于预防和治疗多种胃肠道疾病。

也需要更多的证据来充分了解罗伊氏乳杆菌对肠道蠕动、腹部不适、疼痛和腹胀的作用。

4) 湿疹

一些证据表明,Lactobacillus reuteri补充剂与鼠李糖乳杆菌相结合,可能有助于预防儿童湿疹或减轻湿疹症状

一项研究发现,当女性在怀孕的最后 4 周和婴儿出生的前 12 个月同时服用这两种益生菌时,会产生这种效果。接受该方案的儿童在 2 岁时患湿疹率较少。

在另一项研究中,含有Lactobacillus reuteri 鼠李糖乳杆菌的补充剂在给 1 至 13 岁儿童服用6 周后可降低湿疹的严重程度

5) 作为幽门螺旋杆菌疗法的补充

一些研究表明,将Lactobacillus reuteri添加到标准H. Pylori治疗中时,有可能帮助根除肠道中的H. pylori

罗伊氏乳杆菌对幽门螺杆菌的临床疗效

Mu Q, Tavella VJ,et al., Front Microbiol. 2018

有人提出,Lactobacillus reuteri通过与幽门螺杆菌竞争并抑制其与糖脂受体的结合而起作用。竞争减少了幽门螺杆菌的细菌负荷并减少了相关症状。

在一项小型研究中,使用Lactobacillus reuteri DSM17648 进行2 周治疗可显著降低其他健康成人的幽门螺杆菌过度生长。

还需要进行更多的相关人体研究。

根据几项临床研究,Lactobacillus reuteri可能有助于预防或减轻儿童湿疹的症状。当添加到标准H. Pylori疗法中时,它也可能有益。

一项研究对200 名未经治疗的 H. pylori 阳性成年患者随机均等补充无活力的罗伊氏乳杆菌 DSM17648(LR 组)或安慰剂治疗 4 周,后 2 周与三联疗法一起治疗。结果显示,用三联疗法补充无活力的罗伊氏乳杆菌 DSM17648 并没有提高幽门螺杆菌的根除率,但它有助于建立有益的微生物特征并降低腹胀、腹泻和 GSRS 评分的频率。

6) 高胆固醇

有限的临床证据支持Lactobacillus reuteri作为降低血液胆固醇水平的补充策略的益处。

在一项人体研究中,Lactobacillus reuteri将 LDL 胆固醇降低了 11.64%,将总胆固醇降低了 9.14%,将非 HDL-胆固醇降低了 11.30%,将 apoB-100 降低了 8.41%。

Hs-C 反应蛋白和纤维蛋白原分别降低了 1.05 毫克/升和 14.25%。

另一项研究使用微囊化Lactobacillus reuteri NCIMB 30242酸奶,由高胆固醇成人在6周内每天服用两次。结果包括研究期间LDL降低8.92%,总胆固醇降低4.81%。

发现该形式和递送方法Lactobacillus reuteri比传统使用的益生菌效果更好,且与其它降低胆固醇的方法相当。

科学家认为,Lactobacillus reuteri降低胆固醇的部分原因是通过减少胆汁的吸收(通过增加肠道中胆汁的解离作用)。

然而,需要使用标准化Lactobacillus reuteri制剂的大规模、多中心临床试验来证实这种益处。

一些临床试验表明,将Lactobacillus reuteri到标准疗法中可能有助于降低高胆固醇水平。

Mu Q, Tavella VJ,et al., Front Microbiol. 2018

▌ 证据不足

以下声称的益处仅得到有限的低质量临床研究的支持没有足够的证据支持Lactobacillus reuteri 用于下列用途

1) 低维生素D 水平

在加拿大对 123 人进行的一项研究中,服用Lactobacillus reuteri可使血液中的维生素 D3含量增加25.5%。

据该研究的作者称,这是第一次通过口服益生菌补充剂来增加血液中维生素 D3 的水平。

尽管他们的发现很有希望,但在进行额外的大规模临床试验之前,这种所谓的好处仍未得到证实。

2) IBS 和溃疡性结肠炎

含有Lactobacillus reuteriRC-14 和鼠李糖乳杆菌 GR-1 的酸奶可增加炎症性肠病患者的T 调节细胞并减少炎症(TNF-α和IL-12)。

在活动性溃疡性结肠炎的儿童中,罗伊氏乳杆菌的直肠灌肠减少了肠道内膜炎症

科学家们提出了几种关于为什么这种益生菌可以改善肠道健康的假设。

根据他们的说法,肠道细菌需要消耗色氨酸来制造血清素,这对于正常的肠道功能至关重要

一些理论表明,当肠道细菌消耗糖而不是色氨酸时,人更容易受到念珠菌和其他感染(因为不产生 AhR 配体)。然而,没有足够的证据支持这一观点。

尽管如此,一些研究人员认为,Lactobacillus reuteri将肠道细菌的主要食物来源从糖转换为色氨酸,色氨酸有助于产生血清素,并保护肠道免受感染。据说,这可能会降低对肠道问题和IBS 的易感性。

它抑制了小鼠结肠炎的发作,并可能减少压力引起的结肠炎发作。

尽管有一些有希望的发现,但没有足够的证据来评估Lactobacillus reuteri在改善 IBD、溃疡性结肠炎或维生素 D 水平方面的有效性

3) 早产儿念珠菌

在一项针对极低体重早产儿的研究中,口服Lactobacillus reuteri补充剂作为制霉菌素可有效预防侵袭性念珠菌病。在另一项针对早产儿的研究中,它还能更有效地降低胃肠道念珠菌引起的败血症发生率。

4) 口腔健康

科学家们正在探索Lactobacillus reuteri是否能对抗主要的蛀牙细菌。

现有数据相互矛盾。

在一项小型研究中,咀嚼含有Lactobacillus reuteri 的口香糖可在两周内减少牙菌斑和牙龈出血。

含有Lactobacillus reuteri 的口服片剂可显着降低慢性牙周炎(牙龈炎症)患者的炎症标志物(TNF-α、IL-1β和IL-17)。

一项针对老年患者的研究显示Lactobacillus reuteri 含片可对抗口腔念珠菌 。

对 28 名正在接受正畸治疗的年轻人进行随机对照试验(短期前瞻性临床试验持续了三周),在三周的随访中,罗伊氏乳杆菌的混合物有降低pH的能力。然而,短期使用益生菌似乎对唾液中唾液变形链球菌和乳酸菌的数量和牙齿生物膜没有影响。

这种益生菌可能不会改善婴儿的口腔健康。在一项研究中,女性分娩前的最后 4 周服用L.reuteri,然后给他们的婴儿L.reuteri一直到 12 个月大。到 9 岁时,补充剂似乎并未减少这些儿童的牙菌斑。

需要更高质量的临床试验来探索这种所谓的益处

5) 体重控制

瘦人和肥胖者的微生物群组成各不相同。

似乎某些Lactobacillus reuteri菌株可能会导致体重增加,而其他菌株可能会导致体重减轻。

在肥胖人群的微生物群中发现了的高水平乳杆菌,尤其是Lactobacillus reuteri。事实上,当个体的Lactobacillus reuteri菌株对抗生素(万古霉素)具有抗性时,他们在抗生素(万古霉素)治疗后体重会增加

然而,在一项随机、双盲和安慰剂对照临床试验中,服用Lactobacillus reuteri JBD301 12 周可显着降低超重成人的体重。

这些结果似乎相互矛盾,因为一些Lactobacillus reuteri菌株会导致体重增加,而其他菌株会导致体重减轻。

在一项测试不同Lactobacillus reuteri 菌株的研究中,只有 PTA 4659 有效地降低了喂食高脂肪饮食 (HFD) 的小鼠的体重,而 L6798 治疗的小鼠甚至增加了一些体重。

Lactobacillus reuteriGMNL-263 可降低大鼠的胰岛素抵抗和脂肪肝。

在更多研究出来之前,Lactobacillus reuteri 对新生儿体重控制、口腔健康和念珠菌感染的影响仍然未知。

缺乏证据

没有临床证据支持将Lactobacillus reuteri用于本节所列的任何病症

以下是对现有动物和细胞研究的总结,可指导进一步的研究工作。但是,下面列出的研究不应被解释为支持任何健康益处。

1) 皮肤和头发健康

一项研究称Lactobacillus reuteri 菌株的动物研究显示出改善皮肤质量(厚度和“光泽”)和产生浓密有光泽的毛发的潜力

益生菌改善了两种性别动物的皮肤和毛发质量,但对雌性动物的毛发光泽水平有显著改善。罗伊氏乳杆菌使雌性具有更强的酸性pH,这与毛发光泽相关。

这些所谓的美容功效完全基于动物研究。由于缺乏临床研究,尚不清楚这种益生菌菌株是否可以改善人类的头发和皮肤健康。

高IL-17炎症可抑制毛发生长,研究表明Lactobacillus reuteri 抑制 IL-17。

2) 抗炎作用

在过去的几十年里,人类Lactobacillus reuteri水平的降低与同一时期炎症性疾病发病率的增加有关然而,这并不意味着较低的Lactobacillus reuteri水平直接导致炎症性疾病,因为研究人员只研究了关联

尚无关于Lactobacillus reuteri对炎症影响的临床研究。

Lactobacillus reuteri增加了动物和细胞中的Treg 细胞,导致细胞因子 IL-10 增加。结果,Th17(及其产生的 IL-17)受到抑制

Lactobacillus reuteri抑制NF-kB,NF-kB是减少全身炎症的最重要因素之一。

Lactobacillus reuteri也被证明可以提高动物体内“有益于身体”的激素催产素的水平,这种激素具有抗炎作用

注意Lactobacillus reuteri可能不利于组胺不耐受Lactobacillus reuteri能够将膳食中的 L-组氨酸转化为组胺,增加IL-10并抑制TNF-α(通过激活组胺 H2 受体)。

在狼疮性肾炎动物模型中,Lactobacillus reuteri增加了肠道中的乳酸杆菌,改善了肾功能,降低了血清自身抗体,延长了生存期。但是缺乏临床研究。

3) 压力&疼痛

没有人类证据支持将Lactobacillus reuteri用于压力和疼痛管理。

在肠道疼痛的动物模型中,罗伊氏乳杆菌已被证明可以降低神经系统的激活并减轻疼痛。

科学家认为,摄入Lactobacillus reuteri会影响神经,从而减缓肠道蠕动(改善腹泻病例)并减少疼痛感。尽管 ,该理论仍未得到证实。

4) 维生素 B12 和 B9(叶酸)

与许多其他乳杆菌属一样,科学家认为,几种Lactobacillus reuteri菌株能够产生不同类型的维生素,包括维生素 B12(钴胺素)和 B9(叶酸)。

已发现至少 4种不同来源的Lactobacillus reuteri菌株可产生 B12。在这些菌株中,Lactobacillus reuteriCRL1098(从酵母中分离)和Lactobacillus reuteri JCM1112 是研究最多的。

在一项研究中,Lactobacillus reuteri CRL1098 与缺乏维生素 B12 的饮食一起被证明可以改善缺乏维生素 B12 的怀孕雌性小鼠及其后代的病理状况。

目前尚不清楚Lactobacillus reuteri 是否会对人类产生类似影响

某些特定的Lactobacillus reuteri菌株也可以合成叶酸,包括Lactobacillus reuteri 6475 Lactobacillus reuteri JCM1112。这是否会发生在人类身上还有待研究。

尽管正在进行研究工作,但仍缺乏支持使用Lactobacillus reuteri改善维生素 B12 和叶酸水平的临床数据。

5) 甲状腺健康

缺乏证据支持将这种益生菌菌株用于甲状腺健康

在小鼠中,Lactobacillus reuteri 增加了甲状腺的大小和活动(增加了T4水平),减轻了与衰老相关的疲劳和体重增加,并导致更年轻的外表。

据一些研究人员称,这些抗衰老作用的关键是Lactobacillus reuteri增加抗炎T 调节细胞的能力。

6) 对伤口愈合的影响

总体而言,缺乏证据支持这种益处。

与对照动物相比,在饮用水中用Lactobacillus reuteri补充大鼠微生物组可将伤口愈合时间缩短一半

根据一种理论,Lactobacillus reuteri通过迷走神经增加催产素来促进愈合。然后催产素激活Tregs (CD4+Foxp3+CD25+),从而改善伤口的修复

罗伊氏乳杆菌通过催产素依赖性机制启动 T 调节细胞以促进伤口愈合

Poutahidis T, et al ., PLoS One. 2013

7) 感染

科学家发现,Lactobacillus reuteri可以产生抗菌分子,如乙醇、罗伊氏素、乳酸、乙酸和罗伊氏环素。由于其抗菌活性,Lactobacillus reuteri能够抑制致病微生物的定植

阴道念珠菌(Vaginal Candida):

根据基于细胞的实验,Lactobacillus reuteriRC-14 单独和与鼠李糖乳杆菌Lactobacillus rhamnosus GR-1 一起可能会抑制阴道中念珠菌的生长。

在实验室测试的 8 种益生菌菌株中,Lactobacillus reuteriATCC 55730 口腔中的白色念珠菌的抑制作用最强。

病毒感染:

正在研究Lactobacillus reuteri对肺炎病毒、圆环病毒、轮状病毒、柯萨奇病毒和乳头瘤病毒的作用。

有人提出,Lactobacillus reuteri通过调节微生物群和分泌具有抗病毒成分的代谢物来改善病毒感染然而,研究尚未证实这一理论

其他细菌感染:

Lactobacillus reuteri有效预防沙门氏菌,将小鼠、鸡的死亡率降低一半。

在鸡中,Lactobacillus reuteri在预防大肠杆菌相关死亡方面与抗生素庆大霉素一样有效。Lactobacillus reuteri合成的胞外多糖能够抑制大肠杆菌对猪细胞的粘附。

一种由Lactobacillus reuteri产生的抗生素,称为罗伊氏环素,可以杀死艰难梭菌感染

根据一些研究人员的说法,Lactobacillus reuteri的衍生物可能对皮肤上的 MRSA 有帮助,破坏生物膜并减少感染

缺乏人体研究。

8) 自闭症

没有证据支持在患有自闭症的儿童或成人中使用这种益生菌菌株。

在后代社会缺陷的动物模型中,发现Lactobacillus reuteri低 9 倍。补充它可以显着提高这些后代的社交能力和对社会新奇事物的偏好

主要机制可能是通过增加催产素,包括在下丘脑中的。

9) 生育能力

食用益生菌酸奶或纯化的益生菌会在雌性小鼠的皮肤、口腔、阴道和直肠中引起更多酸性条件。

阴道中的酸性 pH 值与生育高峰时间相关,估计在 25 岁左右。然而,应该更详细地研究Lactobacillus reuteri 的具体益处。

一些公司向男性推销Lactobacillus reuteri,声称它可以增强性欲。然而,目前尚不清楚Lactobacillus reuteri是否会影响男性或女性的性欲。

动物研究表明,Lactobacillus reuteri可能会增加睾酮(需要IL-10)。

结 语

总体而言,Lactobacillus reuteri 是一种研究相对充分的益生菌菌株,通常存在于肠道中。人们已经注意到罗伊氏乳杆菌的多种有益作用。

首先,罗伊氏乳杆菌可以产生抗菌分子,例如有机酸、乙醇和罗伊氏菌素。由于其抗菌活性,罗伊氏乳杆菌能够抑制病原微生物的定植并重塑宿主中的共生微生物群组成

第二、罗伊氏乳杆菌可以有益于宿主免疫系统。例如,一些罗伊氏乳杆菌菌株趋向于减少促炎细胞因子的产生,同时促进调节性 T 细胞的发育和功能。

第三,具有加强肠道屏障的能力,罗伊氏乳杆菌的定植可能会减少微生物从肠腔到组织的转移微生物跨肠上皮易位已被假设为炎症的引发剂。因此,可以通过增加罗伊氏乳杆菌的定植来改善炎症性疾病,包括那些位于肠道以及远程组织中的炎症疾病,虽然需要大样本的人体试验确定机制。

值得注意的是,文中提到的证据不足或缺乏有力证据的,也为该菌的临床研究提供了希望和方向,在使用和推广之前,还需要更多研究证实其对人体的益处。

主要参考文献

Mehling H, Busjahn A. Non-viable Lactobacillus reuteri DSMZ 17648 (Pylopass™) as a new approach to Helicobacter pylori control in humans. Nutrients. 2013 Aug 2;5(8):3062-73.

Jones ML, Martoni CJ, Parent M, Prakash S. Cholesterol-lowering efficacy of a microencapsulated bile salt hydrolase-active Lactobacillus reuteri NCIMB 30242 yoghurt formulation in hypercholesterolaemic adults. Br J Nutr. 2012 May;107(10):1505-13.

Lactobacillus reuteri good for health, Swedish study finds,November 4, 2010

Saviano A, Brigida M, Migneco A, et al. Lactobacillus Reuteri DSM 17938 (Limosilactobacillus reuteri) in Diarrhea and Constipation: Two Sides of the Same Coin?. Medicina (Kaunas). 2021;57(7):643. Published 2021 Jun 23.

Weizman Z, Abu-Abed J, Binsztok M. Lactobacillus reuteri DSM 17938 for the Management of Functional Abdominal Pain in Childhood: A Randomized, Double-Blind, Placebo-Controlled Trial. J Pediatr. 2016 Jul;174:160-164.e1.

Weizman Z, Asli G, Alsheikh A. Effect of a probiotic infant formula on infections in child care centers: comparison of two probiotic agents. Pediatrics. 2005 Jan;115(1):5-9.

Savino F, Pelle E, Palumeri E, Oggero R, Miniero R. Lactobacillus reuteri (American Type Culture Collection Strain 55730) versus simethicone in the treatment of infantile colic: a prospective randomized study. Pediatrics. 2007 Jan;119(1):e124-30.

Ojetti V, Ianiro G, Tortora A, D’Angelo G, Di Rienzo TA, Bibbò S, Migneco A, Gasbarrini A. The effect of Lactobacillus reuteri supplementation in adults with chronic functional constipation: a randomized, double-blind, placebo-controlled trial. J Gastrointestin Liver Dis. 2014 Dec;23(4):387-91.

Coccorullo P, Strisciuglio C, Martinelli M, Miele E, Greco L, Staiano A. Lactobacillus reuteri (DSM 17938) in infants with functional chronic constipation: a double-blind, randomized, placebo-controlled study. J Pediatr. 2010 Oct;157(4):598-602.

Rosenfeldt V, Benfeldt E, Nielsen SD, Michaelsen KF, Jeppesen DL, Valerius NH, Paerregaard A. Effect of probiotic Lactobacillus strains in children with atopic dermatitis. J Allergy Clin Immunol. 2003 Feb;111(2):389-95.

Mu Q, Tavella VJ, Luo XM. Role of Lactobacillus reuteri in Human Health and Diseases. Front Microbiol. 2018;9:757.Jones ML, Martoni CJ, Prakash S. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr. 2012 Nov;66(11):1234-41.

Jones ML, Martoni CJ, Prakash S. Oral supplementation with probiotic L. reuteri NCIMB 30242 increases mean circulating 25-hydroxyvitamin D: a post hoc analysis of a randomized controlled trial. J Clin Endocrinol Metab. 2013 Jul;98(7):2944-51. doi: 10.1210/jc.2012-4262. Epub 2013 Apr 22.

Hurdle JG, Yendapally R, Sun D, Lee RE. Evaluation of analogs of reutericyclin as prospective candidates for treatment of staphylococcal skin infections. Antimicrob Agents Chemother. 2009;53(9):4028-4031. doi:10.1128/AAC.00457-09Ana Aleksic, Potential Benefits of the Lactobacillus reuteri Probiotic, 2021

Hurdle JG, Heathcott AE, Yang L, Yan B, Lee RE. Reutericyclin and related analogues kill stationary phase Clostridium difficile at achievable colonic concentrations. J Antimicrob Chemother. 2011;66(8):1773-1776.

Hasslöf P, Hedberg M, Twetman S, Stecksén-Blicks C. Growth inhibition of oral mutans streptococci and candida by commercial probiotic lactobacilli–an in vitro study. BMC Oral Health. 2010 Jul 2;10:18. doi: 10.1186/1472-6831-10-18.

Martinez RC, Seney SL, Summers KL, Nomizo A, De Martinis EC, Reid G. Effect of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 on the ability of Candida albicans to infect cells and induce inflammation. Microbiol Immunol. 2009 Sep;53(9):487-95. doi: 10.1111/j.1348-0421.2009.00154.x.

Thomas CM, Saulnier DM, Spinler JK, Hemarajata P, Gao C, Jones SE, Grimm A, Balderas MA, Burstein MD, Morra C, Roeth D, Kalkum M, Versalovic J. FolC2-mediated folate metabolism contributes to suppression of inflammation by probiotic Lactobacillus reuteri. Microbiologyopen. 2016 Oct;5(5):802-818. doi: 10.1002/mbo3.371. Epub 2016 Jun 28.

Thomas CM, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, Britton RA, Kalkum M, Versalovic J. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS One. 2012;7(2):e31951. doi: 10.1371/journal.pone.0031951. Epub 2012 Feb 22.

Iyer C, Kosters A, Sethi G, Kunnumakkara AB, Aggarwal BB, Versalovic J. Probiotic Lactobacillus reuteri promotes TNF-induced apoptosis in human myeloid leukemia-derived cells by modulation of NF-kappaB and MAPK signalling. Cell Microbiol. 2008 Jul;10(7):1442-52. doi: 10.1111/j.1462-5822.2008.01137.x.

Heo YJ, Joo YB, Oh HJ, Park MK, Heo YM, Cho ML, Kwok SK, Ju JH, Park KS, Cho SG, Park SH, Kim HY, Min JK. IL-10 suppresses Th17 cells and promotes regulatory T cells in the CD4+ T cell population of rheumatoid arthritis patients. Immunol Lett. 2010 Jan 4;127(2):150-6. doi: 10.1016/j.imlet.2009.10.006.

利用饮食精准干预肠道微生物群

谷禾健康

自身免疫性疾病,包括炎症性肠病、多发性硬化和类风湿性关节炎,具有不同的临床表现,但肠道微生物群紊乱和肠道屏障功能障碍的潜在模式相同。但宿主因素的个体差异使得统一的方法不太可能。

我们往往会有这样的错觉:“自然”的东西一定是对健康有益的。我们是不是只要吃最原始的食物就能恢复健康?

事实上,优化人类健康的途径并不像照搬我们祖先的饮食或增加我们对微生物的接触那样简单。归根结底,过去和现在的环境是根本不同的,也许是不可逆转的。

因此,针对微生物群的饮食干预的目标不应是回到祖先的状态,而是操纵微生物群,优化宿主健康,直接适应日益工业化的世界。

本文介绍了关于饮食-局部炎症中的微生物群相互作用、肠道微生物群失衡和宿主免疫失调的知识。通过了解并结合个别饮食成分对微生物代谢输出和宿主生理的影响,研究了基于饮食的自身免疫性疾病预防和治疗的潜力。讨论了针对肠道微生物群的工具,如粪便微生物群移植、益生菌和正交小生境工程等。这些方法强调了在自身免疫性疾病不断增加的情况下,利用饮食精确操纵肠道微生物组的途径。

01 肠道微生物群与宿主免疫

在肠道中,对微生物威胁作出适当反应的免疫平衡行为,对共生微生物和自身抗原的耐受,在生命早期尤其重要,这是定植微生物群和宿主免疫系统相互作用的窗口,引发促炎或抗炎倾向,可能对终身健康产生影响。

★ 婴儿期影响菌群的因素

看过我们文章的都知道,早期生活因素,如剖腹产、配方奶粉喂养和抗生素的使用,可能会干扰微生物群生长过程。

婴儿期母乳中的人乳低聚糖有助于双歧杆菌的定植,双歧杆菌在早期肠道微生物群中占主导地位,产生岩藻糖、乙酸盐、丙酮酸盐和1,2-丙二醇,通过交叉喂养支持微生物群的扩增,有助于对共生细菌的免疫耐受。

人类通常在6个月大时开始转变为固体食物饮食,自此菌群显著扩大,产生更多数量和种类的代谢物(例如,丁酸盐,它促进结肠粘液屏障的成熟,并阻止具有高致病潜力的细菌的生长)。

★ 抗性淀粉缓解系统性红斑狼疮

在一项涉及149名健康志愿者的研究中,脂多糖通过诱导TLR4耐受来抑制先天免疫过程。微生物抗原对TLR的不当刺激也可能影响自身免疫疾病的进展,并为其修复提供线索,如系统性红斑狼疮过度表达TLR7的小鼠模型中,通过添加抗性淀粉来改变微生物代谢产物和分类组成,狼疮进展得到缓解

★ 微生物变化引起的免疫反应

在自身免疫性疾病患者中也发现了由微生物引起的适应性免疫反应失调。哺乳动物肠道中的共生微生物群,尤其是梭菌群IV和XIVa,它们将膳食纤维代谢成丁酸盐以诱导Treg细胞发育,与小鼠模型中的结肠炎严重程度呈负相关

通常,自身免疫性疾病患者表现出产生耐受性IL-10的CD25 FOXP3 T细胞的丰度降低,自身反应性效应性T细胞亚群(如TH1细胞和TH17细胞)的丰度增加,从而使Treg细胞与效应性T细胞的比率偏离稳态水平。这些改变可能通过过度产生促炎细胞因子(如TNF和IL-17)进一步促进肠道通透性的增加,这些促炎细胞因子可调节紧密连接蛋白的表达

自身免疫疾病共同的潜在驱动因素鼓励通过饮食干预或微生物群调节策略(下文讨论)来进行肠道微生物群工程,以将肠道微生物群转变为功能多样的“健康”状态。

02 饮食与肠道微生物群

饮食可直接影响肠道微生物群,调节其组成或代谢输出,从而可能促进疾病或形成稳态。

膳食碳水化合物发酵

在一项针对34名健康人参与者的每日抽样研究中,通过多次24小时食品召回评估,饮食占微生物组分变化的44%,另外三分之一的变化与性别、BMI和年龄等因素有关。

在分析的主要食物组中,谷物水果纤维与微生物成分的相关性最强

纤维与疾病之间的联系

益生元和后生元

国际益生菌和益生元科学协会定义,益生元是一种基质,具有被宿主微生物选择性利用及由此产生健康效益的特征。

★不同参数(如数量,溶解度等)影响纤维效果

使用一种灵长类小鼠模型,发现缺乏纤维的肠道微生物群以宿主粘蛋白聚糖为能源,导致肠道粘液屏障减少,并增加对肠道病原菌Citrobacter rodentium的易感性。然而,14种不同纯化益生元或其他高溶解度多糖(而非复杂的植物纤维)的混合物在喂食小鼠时无法阻止结肠粘液屏障的降解。

此外,富含纯化可溶性纤维(例如菊粉、低聚果糖或果胶)的食物可导致先前存在微生物群紊乱的小鼠肝细胞癌。这些发现表明,为了发挥最佳效果,可以考虑其他参数,如天然食品中天然膳食纤维或原纤维浓缩物的数量、溶解度和复杂分支形式

在炎症性疾病的背景下,继续研究确定的纤维类型的影响,并使用高质量的随机试验,对于提供可操作的、经证实的工具来利用饮食对自身免疫性疾病的微生物群介导的影响至关重要。

★ 纤维补充不是越多越好

在一项对39名健康志愿者进行的为期17周的随机前瞻性研究中,高纤维饮食改变了CAZyme谱;然而,丁酸水平在干预后没有显著变化。相反,摄入的纤维量与粪便总碳水化合物密切相关,这表明参与者的肠道微生物群无法完全降解饮食中的纤维。这些发现提醒人们,如果纤维降解途径饱和盲目增加纤维摄入可能不会转化为增加短链脂肪酸的生成。

★ 发病率——微生物群比单纯饮食更容易预测

在一项前瞻性队列研究中,对170776名妇女进行了26年的随访,结果表明,水果和蔬菜纤维与克罗恩病发病率呈负相关,但奇怪的是,其他纤维来源或溃疡性结肠炎发病率并非如此。另一项跟踪401326名参与者7年的研究发现IBD发病率与纤维摄入之间没有关联。这些发现提示,潜在微生物群的差异,特别是降解纤维生成短链脂肪酸的能力,可能比单纯饮食更好地预测疾病发生率。

★ 疾病发生前,短链脂肪酸生成力已受损

为此,对127例溃疡性结肠炎患者进行的研究表明,与健康对照组相比,患者体内关键产丁酸菌Roseburia hominisFaecalibacterium prausnitzii丰度降低,且这些细菌的丰度与疾病活动性呈负相关,这一发现在结肠粘膜刷毛细菌的靶向分析中得到了独立证实。总之,这些观察结果表明,在溃疡性结肠炎患者中,微生物短链脂肪酸生成受损可能先于疾病发生。

鉴于这些联系以及短链脂肪酸在维持免疫稳态和肠道屏障功能中的作用,人们有兴趣利用微生物衍生代谢物的有益宿主调节作用,包括“后生元”。例如,由主要降解物(如双歧杆菌)发酵的膳食纤维产生乙酸盐和其他中间产物,然后通过定义的结肠细菌亚群将其转化为丁酸酯。

丁酸盐

在小鼠和人类细胞系中,丁酸不足可导致产生粘蛋白的杯状细胞从β-氧化转变为厌氧糖酵解,从而对杯状细胞分化和构成结肠粘液层大部分的糖蛋白MUC2的合成产生负面影响。这种代谢变化还增加了氧气和硝酸盐的利用率,从而形成了一个正反馈回路,增加的氧气不利于专性厌氧菌,即短链脂肪酸的主要产生者。此外,丁酸盐可与G蛋白偶联受体(例如,GPR41、GPR43和GPR109A)结合,下调炎性细胞因子转录并促进Treg细胞分化。

丙酸盐

丙酸盐,另一种重要的短链脂肪酸,参与肝脏的糖异生,促进饱腹感和降低胆固醇。在一项概念证明研究中,143例多发性硬化症患者在补充丙酸和现有疗法后获得缓解,功能性Treg细胞增加,TH1和TH17细胞减少。尽管这种补充中的微生物组调节机制尚不清楚,但应答患者肠道微生物组的转录组学特征与与Treg诱导正相关的基因相对应,而与Treg细胞诱导负相关的基因被抑制,在无反应的患者中观察到相反的趋势。

Wolter M, et al., Nat Rev Gastroenterol Hepatol. 2021

排除或消除饮食

通过微生物组优化短链脂肪酸的生产可能是一种有希望的联合治疗策略;然而,评估宿主和微生物生物标志物(疾病状态的可测量的生化或生理指标)的迭代过程必须适应疾病状态,因为在疾病活跃期间,许多IBD患者在食用高纤维食物后报告腹胀和过量气体。

虽然在疾病活跃期或外科手术期间禁用复合碳水化合物,但它们仍可能在预防或延长缓解期方面发挥作用。各种排除或消除饮食,如专门为IBD患者提供的专用肠内营养(EEN)或部分肠内营养(PEN),不应完全忽视纤维,而应利用疾病活跃或缓解状态下即将进行的研究。例如,EEN和PEN是流行的治疗性饮食,它们缺乏纤维,能够诱导80-90%的克罗恩病患者病情缓解。

在所有患者中,EEN与一致的分类转变无关,但它似乎通过改变结肠微生物群的代谢输出,使其发酵成蛋白质而不是碳水化合物,从而增加克罗恩病的缓解率。这种功能转变对疾病结果的机制性影响尚未完全阐明;目前尚不清楚以下哪一项会缓解:排除纤维、缺乏另一种饮食成分、细菌密度或多样性降低,或这些因素的某种组合。

或者,通过肠道生态系统重建观察到的间歇性禁食对多发性硬化症进展的保护作用,也可能为EEN治疗的成功提供见解。

用于治疗的饮食

自身免疫方案饮食:基于古饮食,该方案强调食用营养丰富的新鲜或发酵食品,并消除可能引发炎症的食物组。在维持阶段,特定食物的逐渐重新引入因个体食物耐受性而异。

全部或部分肠内营养(EEN或PEN): 一种液态元素(氨基酸型)、半元素(寡肽)或聚合物(全蛋白基)配方饮食,不含固体食物(EEN)或限制摄入(PEN)1-3个月,以减少食物抗原暴露,促进肠道愈合。

克罗恩病排除饮食(CDED):为克罗恩病患者量身定制的缓解饮食,这种全食物饮食与PEN饮食一起使用,以减少暴露于可能对宿主免疫、肠道屏障功能和/或微生物群产生负面影响的饮食成分。

特殊碳水化合物饮食(SCD):最初是为治疗腹腔疾病而开发的,这种饮食通常用于帮助治疗IBD,允许大多数水果、一些蔬菜、坚果、肉类和鸡蛋,同时避免所有谷物、食糖、食品添加剂和大多数乳制品。

低FODMAP饮食:这种饮食强调限制可发酵低聚糖、双糖、单糖和多元醇(FODMAP),并分阶段进行——消除、重新引入和维持——以确定引发疾病症状的食物,并促进个性化饮食的发展。

生酮饮食:这种低碳水化合物、高脂肪的饮食会导致酮症,酮症是一种代谢状态,在这种状态下,脂肪(而不是葡萄糖)会被降解以产生能量。酮体的产生可以消耗双歧杆菌并降低促炎性T辅助细胞17的水平。

通过考虑这些消除饮食成功的微生物组介导机制,我们也许能够改进饮食干预措施。这种适应可能对提高患者依从性和持续缓解很重要,因为EEN配方饮食很难长期维持,甚至在与抗生素联用时可能对克罗恩病患者有害

诱导缓解后,如克罗恩病排除饮食中所建议,可能建议选择性地用耐受性良好的纤维混合物补充EEN。在对78名克罗恩病儿童进行的随机对照试验中,CDED导致变形菌门降低,炎症和病情缓解的患者比例高于单独用EEN的患者。

为了支持这一发现,对患有活动性结肠炎的Il10−/−小鼠给予含明确纤维混合物的EEN,可降低疾病活动度和结肠炎。这一发现还伴随着固有层中CD4 FOXP3 Treg 细胞群的增加,盲肠中总短链脂肪酸水平的增加,以及屏障功能恢复的各种其他迹象,促使人们考虑在活动性炎症患者中是否建议使用特定纤维。

尽管如此,干预的重点不应局限于碳水化合物。许多饮食和饮食成分以微生物群依赖的方式共同影响宿主健康。

西方饮食(其特点是大量摄入脂肪、蛋白质、糖、盐和加工食品)与伴随的导致自身免疫疾病发展的微生物变化之间的联系越来越明显,但要解开设计治疗性饮食的机制并不那么简单。研究表明,在影响肠道微生物群改变的因素中,饮食是一种潜在的强有力的工具,可以直接改变微生物群,使其达到健康状态。

人体宿主、肠道菌群和饮食的时间趋势

Wolter M, et al., Nat Rev Gastroenterol Hepatol. 2021

在游牧时代,人类饮食主要受季节性影响,相应的肠道菌群也存在相当明显的季节性变化。
当进入农业社会后,随着粮食种植,季节性变化逐渐减少,植物性饮食增加,但食物多样性在减少,相应的疾病以传染性疾病为主。
进入工业化之后,肉类饮食增加,加工食物快速增加,伴随的是自体免疫疾病的开始上升。进入信息时代后,随着抗菌药物的大量使用,自身免疫疾病快速增加并成为主要疾病类型,同时植物性饮食快速下降,肉类消费和加工食品达到最高。
我们希望通过进一步认知菌群和饮食的关系,有效规划饮食从而辅助微生物群的改善,减少抗菌药物使用,增加植物性饮食并改善摄入的多样性,减少加工食品的比例,最终减少自身免疫性疾病的发生。

蛋白质腐败

膳食蛋白质是另一种关键的大量营养素,也可以进行细菌发酵,产生影响宿主功能和细菌组成的关键代谢产物。

在消化过程中,膳食蛋白质首先被宿主酶水解成肽,游离氨基酸在小肠中被吸收。未被吸收的肽和氨基酸可到达结肠,在结肠中由共生微生物发酵,根据体外和体内测量,估计产生17–38%的结肠短链脂肪酸。肠道微生物群的蛋白质降解为宿主提供必需的游离氨基酸,支链脂肪酸(BCFA)可作为结肠细胞的替代能源

然而,这一过程可能对局部肠道环境有害,因为有毒的代谢副产物如氨、硫化氢和酚的释放,增加了小鼠上皮细胞的通透性,降低了体外细胞活力。

★ 不同来源蛋白质作用不同

在IBD小鼠模型中,动物源性蛋白质通过促炎单核细胞加重结肠炎,而富含植物蛋白的饮食或无菌小鼠中未观察到这种情况,这表明动物蛋白的微生物代谢物导致过度炎症

因此,将蛋白质类型或来源(例如,麸质或酪蛋白)个性化为个体患者的微生物群组成对于限制炎症代谢物的产生至关重要。

Wolter M, et al., Nat Rev Gastroenterol Hepatol. 2021

重要的是要考虑不同的蛋白质来源如大豆可能不容易在小肠中降解,因此增加的底物到达结肠,在那里它可以发酵。

★ 特定蛋白质对微生物组和代谢产物的影响各不相同

因为并非所有蛋白质都同样适合发酵,也并非所有细菌都配备了适当的酶途径。例如:

• 尽管所有氨基酸都经过氨释放脱氨作用,但只有支链氨基酸(缬氨酸、亮氨酸和异亮氨酸)产生支链脂肪酸;

• 硫酸化氨基酸有利于硫酸盐还原菌的增殖以提供硫化氢,这一过程在溃疡性结肠炎患者中升高

• 根据使用人类微生物组数据的代谢模型,肠杆菌属和大肠杆菌属优先发酵芳香氨基酸以产生酚类物质。例如,色氨酸是一种基本的芳香族氨基酸,主要由宿主酶代谢;然而,它也可以通过具有良好特征的吲哚途径被肠道微生物群代谢。其代谢产物为宿主芳基烃受体提供配体,降低促炎细胞因子和趋化因子的表达,促进IL-22的产生,IL-22刺激上皮细胞释放调节小鼠微生物组生长的抗菌肽。

与这些免疫代谢过程一致,饮食中补充色氨酸或产生色氨酸的乳酸杆菌菌株缓解各种小鼠模型中的实验性结肠炎。相反,饮食色氨酸可能通过增加循环自身反应性CD4+T细胞数量并促进其通过血脑屏障迁移而加剧实验性自身免疫性脑脊髓炎(EAE),EAE是多发性硬化症的临床前小鼠模型。

因此,虽然膳食色氨酸已被提议作为缓解IBD患者结肠炎的治疗策略,但其微生物群介导的作用可能是器官特异性和疾病特异性的

膳食脂肪代谢

除了作为肠道微生物的潜在营养源外,膳食脂肪还通过增加宿主胆汁酸的产生来改变微生物的组成,这可以促进具有高致病潜力菌的生长,如沃氏嗜胆菌Bilophila wadsworthia

★ 脂肪改变微生物群,调节此生胆汁酸

由膳食脂肪引起的肠道微生物群组成改变也可以节微生物来源的次生胆汁酸的丰度。例如,食用富含不饱和脂肪的核桃,会在健康成年人的肠道中富集粪杆菌、玫瑰杆菌和梭菌,从而减少微生物来源的、促炎症的次生胆汁酸。

★ 高脂饮食也可通过增加LPS暴露影响宿主健康

已经在小鼠中证明,高脂肪饮食也可以通过增加LPS暴露影响宿主健康,LPS可诱导宿主促炎性TLR4信号通路,导致代谢性内毒素血症的低度全身炎症。考虑到在IBD患者中观察到的LPS水平与疾病严重程度之间的强烈相关性,以及LPS与T1DM之间已证实的联系,这种代谢性内毒素血症可能对自身免疫活动的开始产生深远的影响。

自身免疫疾病和稳态中的饮食-肠道微生物-宿主轴

Wolter M, et al., Nat Rev Gastroenterol Hepatol. 2021

LPS暴露升高与疾病相关的详细机制仍有待充分阐明;然而,基于对小鼠的研究,它可能是多因素的,包括:革兰氏阴性杆菌的丰度增加,这是一种具有更强免疫原性的改变的LPS来源;抑制LPS诱导炎症的细菌减少,如双歧杆菌;以及宿主因素,如由于脂肪或微生物活动的直接影响而增加的肠道通透性。

★ 特定类型的脂肪对于精确设计非常重要

未定义的高脂肪饮食通常用于人类微生物群研究,然而,特定类型的脂肪对肠道微生物群和宿主健康结果有重大影响。尽管西方高脂肪饮食支持有害的微生物转移,但对于定义的脂肪类型,如ω-3多不饱和脂肪酸或复杂的脂肪源,如核桃,存在许多有益微生物变化的例子。

Wolter M, et al., Nat Rev Gastroenterol Hepatol. 2021

此外,在一项没有评估临床参数的研究中,多发性硬化症患者在服用生酮饮食(低碳水化合物高脂肪)6个月后,表现出包括直肠真杆菌Eubacterium rectale 和Faecalibacterium prausnitzii 在内的细菌水平恢复,这被认为反映了适当的发酵能力。

与右旋糖酐硫酸钠(DSS)中的低碳水化合物饮食相比,生酮饮食以类似的微生物组依赖方式减轻了结肠炎-诱导结肠炎小鼠模型。此外,在生酮饮食中产生酮体,特别是β-羟基丁酸盐,可消耗双歧杆菌并降低人类的TH17细胞水平,在自身免疫性癫痫儿童中观察到类似的生酮饮食诱导TH17细胞减少。

这些发现挑战了高脂肪饮食作为促炎症饮食的全面分类,但强调了需要进一步研究特定饮食脂肪如何调节肠道微生物组或宿主-微生物组的相互作用(例如,通过直接改变免疫系统,然后反馈给肠道微生物组,反之亦然)。分析特定类型的脂肪及其对微生物组的影响是使用膳食脂肪精确设计微生物组的关键

食品加工

食品加工通常随着人类历史的发展而增加,包括一系列可能是热加工(例如烹饪或膨化)、机械加工(例如研磨、切片或搅打)或化学加工(例如氢化或乳化),或者涉及添加剂的使用。这些操作通常用于延长保质期改善外观或味道

食品加工也可能使小肠中的营养物质消化饱和,对结肠微生物群的资源可用性影响不明确。

★ 生 v.s. 熟 (作用不同)

烹饪是最早的食品加工实例之一,对营养物质的消化率有着重要影响,Carmoty等人通过对小鼠和人类的控制喂养研究证明了这一点。他们发现,与煮熟的块茎相比,食用富含淀粉的生块茎会破坏肠道微生物群,降低细菌的丰度,并上调异源代谢的微生物途径。这些发现指向了挖掘生食物中具有治疗用途的成分的可能性,因为微生物的外生代谢可能对宿主有益或有毒,或者它可以修改药物,这取决于肠道微生物组成。

★ 不同烹饪、保存方式影响微生物组

另一项研究发现,将全麦面粉置于蒸煮-冷冻循环中会显著增加抗性淀粉的百分比,从而导致体外发酵过程中丙酸盐和双歧杆菌水平的增加。由于这些温度循环而增加的营养物质的生物利用度或化学变化很少是饮食设计中的因素,但鉴于生、熟和冷冻食品可能以不同方式影响微生物组的发现,这些过程可能需要更仔细地考虑。

★ 添加剂——损害紧密连接完整性和增加肠道通透性

在过去的一个世纪里,使用添加剂进行的有针对性的食品改性(通常用于保存、颜色或质地改性或口味增强)大幅增加。这是通过损害紧密连接完整性和增加肠道通透性来部分解释自身免疫相关上升的原因。

事实上,避免加工食品在许多用于调节自身免疫疾病进展的排除或消除饮食中是常见的,包括AIP饮食、特定碳水化合物饮食和低发酵低聚糖、双糖、单糖和多元醇(FODMAP)饮食。

Wolter M, et al., Nat Rev Gastroenterol Hepatol. 2021

★ 乳化剂—— 利于促炎微生物群生长

在具有结肠炎遗传易感性的小鼠模型中,暴露于两种常见乳化剂,羧甲基纤维素和聚山梨酯80,增加了粘液层的通透性,增加了细菌对粘膜的粘附性,并有利于更具促炎性的微生物群。

★ 误将乳化剂当膳食纤维

羧甲基纤维素在化学上来源于纤维素,在结构上被认为是一种纤维,因此,它有助于增加欧洲营养标签上的膳食纤维含量。这可能会误导那些打算根据标签值增加膳食纤维摄入量的消费者。监管机构对此类添加剂的安全性评估也没有纳入潜在的微生物群介导的健康影响,可能是因为这一研究相对较新。然而,在动物模型和患者团体的研究表明,食品添加剂可能比现行规定更具破坏性,强调需要考虑它们对微生物和宿主的影响。

总的来说,越来越多研究强调了碳水化合物、脂肪、蛋白质、植物化学物质、微量营养素和食品添加剂对微生物组成和代谢产物的影响。随着这些年测序技术的爆炸式发展,我们能够更深入地了解肠道内的复杂菌群及其在健康和疾病中的作用,但有针对性的个性化营养措施却跟不上。需要适应性、个性化的研究方法和工具来量身定制饮食计划或确定潜在的微生物目标,以缓解自身免疫性疾病患者的病情。

03 微生物群调节方法

由于在诊断为各种自身免疫性疾病的患者中观察到微生物多样性较低,因此丰富多样性是一种普遍建议的策略,有可能最大限度地提高人类肠道微生物组的健康效益。

然而,将“健康”微生物群等同于高度多样化微生物群这样的过度简化,可能掩盖了潜在的生物标志物或来自疾病潜在驱动因素的信号。布鲁索的警告:不要依赖多样性指标,在没有探索潜在机制的情况下,在疾病背景下将一个微生物群标记为“失调”。

基于最大化有益微生物生理学(微生物已实现的代谢或物理特性)和最小化有害影响的方法可以避免这种陷阱,前提是可以定义适当的生理目标。为此,机器学习方法是在自身免疫疾病背景下利用现有宏基因组和代谢组学数据的强大工具。这些目标还可以提供基于遗传、环境因素和存在于个体中的潜在微生物群的个性化干预的机会。

在患者队列和动物模型中的现有研究支持使用定制饮食或特定饮食成分来调节各种疾病环境中的肠道微生物群和宿主反应。

Wolter M, et al., Nat Rev Gastroenterol Hepatol. 2021

许多宿主因素,包括基因和预先存在的肠道微生物群组成,可以影响个体对饮食的反应。鉴于越来越多的证据表明,与饮食或治疗相关的个性化肠道微生物群反应,我们必须积极将更动态的方法纳入当前的自身免疫性疾病治疗方案中,利用疾病或缓解状态的潜在机制知识,最大限度地提高现有饮食疗法在特定个体中的成功率。例如,在个性化营养学中,个体可能会跟踪饮食,通过纳入相关的协变量,如疾病状态、治疗方案、微生物组和其他生物标记物,预测性建模工具可用于建议食用或避免食用特定结果的食物。

肠道微生物组工程工具的个性化应用方法

Wolter M, et al., Nat Rev Gastroenterol Hepatol. 2021

★ 设计定制饮食改变血糖水平

在一项针对800名健康人的里程碑式研究中,Zeevi等人设计了一种机器学习算法,通过考虑与葡萄糖反应密切相关的个人健康指标来推荐定制饮食。将该模型扩展到100名个体的队列中,同样允许有针对性地降低血糖反应,这表明通过考虑一组个性化因素,可以简化此类饮食的设计。设计定制饮食以引起血糖水平预期变化的能力只是冰山一角;在将这项工作扩展到其他非代谢性疾病时,机制上的见解应该为生物标记物的选择提供信息,以制定个性化的饮食建议。

★ 自适应平台试验有望进一步治疗自身免疫性疾病

提高我们对饮食-微生物组在健康和疾病中相互作用的理解的方法可能涉及提供饮食饮食成分的人类队列,以根据反应对患者进行分层,同时也纳入相关因素以帮助理解干预效果的差异。

为此,自适应平台试验有望进一步治疗自身免疫性疾病,因为在试验设计中建立了测试治疗方案以确定应答者亚群的迭代过程。然而,为了产生机理知识,对小鼠模型的研究对于验证或激发人类转化工作仍然是不可或缺的。这一策略将有助于深入了解饮食-微生物组-宿主轴,并确定新的干预选择。

★ 研究时要考虑空间异质性

出于实用性考虑,许多研究根据粪便样本中检测到的分类群推断肠道微生物群的组成,但宿主特征和胃肠道微生物生理学的细微变化可能与体内稳态密切相关。例如,居住在粘液或结肠隐窝中的细菌,如Akkermansia muciniphila或不动杆菌属,与多发性硬化症和病原体诱导的结肠炎有关,但它们在粪便衍生微生物组中的丰度可能低于在结肠粘膜中的实际丰度。然而,临床相关部位的微生物群调查,如结肠黏膜,需要侵入性活检,因此小鼠模型可以很容易地研究肠道微生物组成的空间异质性

没有一种单一的方法足以理解疾病驱动因素并改善健康结果;必须利用所有相关的模式生物、系统(如电子、体外或体内)和方法(如还原论或生态学)。

04 饮食辅助疗法

有许多新兴技术旨在通过引入具有新的或失去的有益功能的细菌,或通过消除具有有害功能的细菌,使肠道微生物群达到功能健康状态。这些技术的一个子集,如粪菌移植(FMT)或正交小生境工程,显示出与特定饮食或饮食补充剂结合使用的高潜力,以解决其一些局限性或潜在放大其效果。将特定饮食添加到这些技术中增加了另一个可修改的变量,有可能提供更高程度的系统控制,并提高处理个性化反应的能力。

这里介绍和讨论了在自身免疫性疾病的背景下设计肠道微生物组的新方法,这些方法已经与饮食或饮食补充相结合进行了探索

粪菌移植和饮食

尽管粪菌移植成功的机制尚未完全解决,但该程序有可能与特定饮食或膳食补充剂结合使用,更有效。

粪菌移植试图通过将健康供者的粪便物质转移到肠道微生物群紊乱的患者肠道,重新建立一种多样的、稳态的微生物群组成。关于粪菌移植在我们的很多文章里都有提到,此处不详述。

在这里我们将重点关注饮食在粪菌移植成功中的潜在作用。

鉴于饮食对微生物组的显著影响,接受移植的患者的营养习惯对移植成功和持久性的影响是一个潜在的重要话题。

尽管大部分未经探索,但有两种直观的方法:

1. 接受者的饮食可以设计为复制提供者的饮食,从而最大限度地提高供体微生物群的传递保真度

2. 接受者可以考虑一种支持潜在有益菌的饮食,如克罗恩病排除饮食或菊粉型果糖补充,以支持产短链脂肪酸的Roseburia 或Faecalibacterium

一项随机临床试验比较了20例活动性溃疡性结肠炎患者在补充或不补充果胶的情况下粪菌移植的有效性,表明补充果胶可能改善移植微生物群的持久性;然而,需要进一步的研究,包括足够数量的患者和合适的对照,以更好地了解饮食对提高粪菌移植成功率的潜力。

单独使用粪菌移植可能部分足以提供疾病缓解特性或诱导缓解,但在肺气肿小鼠模型中,给小鼠喂食高纤维饮食结合粪菌移植可对微生物组分和短链脂肪酸输出产生额外的有益影响。在肥胖小鼠模型中观察到,肠道微生物组的有益和疾病缓解作用可通过粪菌移植(例如,从食用富含植物化学物质饮食的供体)传播到食用高脂肪或高糖饮食的受体,这也提出了一个问题,即是否修改供体的饮食,应该进一步研究,而不仅仅是接受者的饮食。

最后,在供体肠道微生物群组成不清楚的情况下,设计支持粪菌移植饮食的能力可能会受到限制。因此,应考虑使用从健康捐献者粪便中提取的特定细菌培养物。

益生菌-饮食组合和合生元

独立于粪菌移植,对预先存在的肠道微生物群直接施用单一微生物菌株或菌株联合体,如益生菌制剂VSL#3,是IBD广泛探索的治疗选择。

在服用益生菌时,有两个主要考虑因素:

第一,可能是最重要的,是益生菌的微生物组成

第二,选择益生菌所在食品的基质或胶囊

无论是单一的益生菌物种还是一个群落的口服给药已经被广泛地探索。这种方法对实验性IBD的各种小鼠模型以及溃疡性结肠炎患者有效,但在克罗恩病患者中无效,克罗恩病需要长期缓解或积极诱导缓解。由于益生菌在治疗自身免疫性疾病,特别是IBD方面的应用和潜力已在其他文章中详细阐述。

在此讨论益生菌与膳食补充剂的结合以及它们的传递基质

输送微生物的基质可以有不同的形式,最常见的是食品基质,如酸奶、谷物棒和果汁,或保护性乳液或生物聚合物中的封装。选择给药基质至关重要,因为益生菌使用的主要限制是通过胃肠道时的细菌活力和定植抗性,这是内源性微生物群的特性,可防止以前不存在于微生物群中的新细菌定植。

★ 营养利用度

由于营养限制是定植抵抗背后的核心机制之一,并且如前所述,基于饮食的营养利用度对肠道微生物群产生重大影响,提供益生菌的食物或饮料的选择对益生菌菌株的活力和持续植入有相当大的影响。

★ 环境压力因素

这一过程不仅是由于营养素的可用性,而且还由于环境压力因素,如生产和储存期间的pH值、氧气和温度,以及胃的高酸度和通过胃肠道时肠道中胆汁酸的存在。尽管研究最广泛的食品基质是乳制品,但人们一直在努力探索不同的食品基质,如谷物、水果、蔬菜和肉制品。

★ 合生元

益生元和益生菌可以组合成所谓的合生元,合生元可以定义为互补或协同。

互补合生元包括益生元和益生菌,它们相互独立地产生健康益处。

协同合生元旨在最大限度地发挥益生菌的有益功能。

协同设计背后的原理是:益生元可以提高益生菌抵抗环境压力的生存能力;益生菌确保肠道微生物群以有益的方式代谢益生元的能力;益生元可以通过开辟一种新的营养生态位,支持益生菌植入宿主微生物群。

虽然使用合生元的人类研究才刚刚开始出现,但某些组合已被发现是有效的,并用于治疗自身免疫性疾病。

在IBD的背景下,双歧杆菌和乳酸杆菌车前草、低聚果糖和菊糖的结合显示出良好的前景。

类似地,添加菊粉嗜酸乳杆菌、干酪乳杆菌和双歧双歧杆菌的混合物对类风湿性关节炎患者产生有益效果,乳酸杆菌产孢菌与麦芽糊精和低聚果糖的组合对T1DM患者有益。

另一种提高生存能力和定植的方法是将细菌包埋在保护性乳液或生物聚合物中

这种封装不仅可以保护细菌免受环境危害,并有可能实现特定部位的释放,还可以通过将细菌封装在含有益生元的基质中,创造复杂的合生元结构;例如,海藻酸钠-菊糖-黄原胶或聚(乳酸-共-乙醇酸)-海藻酸钠胶囊。

正交小生境工程

正交小生境工程是合生元概念的一种演变,因为微生物-底物关系是利用细菌在宿主菌群中的持续植入。虽然合生元的益生元部分通常由普通营养素组成,但在正交小生境工程中,利用未使用或不常见的营养素,为细菌稳定植入宿主微生物群创造专属小生境。例如,降解卟啉(一种海藻多糖)的能力被用来稳定地将一种人类共生细菌移植到小鼠肠道中。

尽管目前的研究仅限于小鼠,但利用这些不常见的代谢途径,可以通过间歇性或持续的饮食补充精确控制植入的细菌。

Wolter M, et al., Nat Rev Gastroenterol Hepatol. 2021

虽然人类肠道微生物群降解海藻的能力比最初假设的更为普遍,但正交小生境工程在克服肠道微生物群中细菌持续植入的挑战方面有着巨大的希望,特别是考虑到利用的广泛潜在基因。

新的生态位,如琼脂糖、卟啉或卡拉胶降解,可用于帮助植入有益菌,这些细菌可以是野生型、原始菌株的改良版本,也可以是参与利用正交营养素的基因已转移的不同菌株。

★ 概念性应用

正交小生境工程的一个概念性应用是筛选工业化过程中丧失有益功能的细菌,这些细菌仍然与我们的现代生活方式相关,并将其重新引入人类肠道。这种细菌丢失的一个例子是经过充分研究的益生菌罗伊氏乳杆菌Lactobacillus reuteri,其对系统性红斑狼疮和多发性硬化症的免疫调节作用已经在小鼠模型中进行了研究。

另一个概念性应用是在重组细菌中引入罕见的营养利用途径,设计用于产生治疗性化合物,如用于IBD治疗的IL-10或防御素-5。使用不常见的营养素利用途径可以精确控制定植的剂量和持续时间,从而使治疗能够专门针对个别患者的需要进行调整。

然而,这种方法的长期可操作性可能是具有挑战性的,因为持续喂养会随着时间的推移降低植入细菌的活性。对这种现象的一种可能解释是,这种喂养可能会促进小生境分配,从而通过IgA结合将植入的细菌限制在结肠隐窝中,从而减少了与底物的接触。此外,还存在通过水平基因转移将这种特性传播给其他肠道细菌的风险,这可能导致特异性降低或反应完全改变。

05 挑战和未来方向

这一研究领域涉及具有众多变量的高度复杂的相互作用,例如肠道微生物组内出现的相互作用,这些相互作用进一步受到宿主基因组、免疫系统和多种生活方式因素的影响,每一个都可能是不完整的特征。

因此,即将进行的研究应该具有双重目标,即识别一般和亚群体特异性的生物标志物,以提供最佳治疗,并解决拟议干预措施的各种应对措施背后的根本机制。

随着可用工具的完善,微生物领域可以从基于相关性的研究转向旨在揭示机制的研究,从而开发新的以微生物为重点的治疗方案。

“诸事利弊共存”

1. 在实现疾病中肠道微生物群的饮食驱动操作方面仍面临许多挑战。人体肠道微生物组的弹性是健康条件下的有利属性,这意味着将小鼠模型的发现转化为人类时,干预的效果可能不如预期的明显

2. 肠道微生物组的相对稳定性可能会阻碍对自身免疫性疾病患者的组成或功能进行持久改变的努力,尤其是如果不解决稳定疾病状态的潜在驱动因素。虽然饮食是引起微生物变化的有效工具,但停止饮食通常会导致恢复到以前的微生物状态。因此,干预可能需要持续进行,这带来了确保遵守方案的额外挑战。通过将饮食干预与其他微生物组调节方法相结合,这种变化可能更稳定;然而,这一预测仍有待研究。

3. 对稳定群落的重复采样应减少典型微生物波动产生的背景噪音,从而揭示特定疾病的特征。通过了解基线微生物群,在单个患者中提出和测试有效治疗可能确实更容易。

因此,随着方法的发展,将有价值的机理知识从动物模型转化为人类或将其扩展到研究较少的疾病的研究对于完善饮食在微生物组工程中的应用至关重要。

06 结 语

微生物群驱动的屏障功能障碍是各种自身免疫疾病的基础,这一观点鼓励更密切地检查这些功能变化,以恢复有益的宿主-微生物群相互作用。

“精准——时代的召唤”

研究人员和临床医生必须考虑到这样一个事实,即许多宿主、环境甚至时间因素可能会在个体基础上决定“完美”的微生物组,并积极地将一种更动态、更量身定制的方法纳入当前的治疗方案。

通过实施精准医学方法和对驱动疾病的潜在机制的认识,可以提高现有治疗的成功率。我们正处于微生物组工程时代的前沿,但为了有效地实现这一转变,必须优先研究对饮食干预的个性化反应以及形成微生物组的精确机制。

主要参考文献:

Fugger, L., Jensen, L. T . & Rossjohn, J. Challenges, progress, and prospects of developing therapies to treat autoimmune diseases. Cell 181, 63–80 (2020).

Wolter M, Grant ET, Boudaud M, Steimle A, Pereira GV, Martens EC, Desai MS. Leveraging diet to engineer the gut microbiome. Nat Rev Gastroenterol Hepatol. 2021 Sep 27.

Scher, J. U., Nayak, R. R., Ubeda, C., T urnbaugh, P . J. & Abramson, S. B. Pharmacomicrobiomics in inflammatory arthritis: gut microbiome as modulator of therapeutic response. Nat. Rev. Rheumatol. 16, 282–292 (2020)

Johnson, A. J. et al. Daily sampling reveals personalized diet- microbiome associations in humans. Cell Host Microbe 25, 789–802.e5 (2019).

Horwat P, Kopeć S, Garczyk A, Kaliciak I, Staręga Z, Drogowski K, Mardas M, Stelmach-Mardas M. Influence of Enteral Nutrition on Gut Microbiota Composition in Patients with Crohn’s Disease: A Systematic Review. Nutrients. 2020 Aug 23;12(9):2551.

Wastyk HC, Fragiadakis GK, Perelman D, Dahan D, Merrill BD, Yu FB, Topf M, Gonzalez CG, Van Treuren W, Han S, Robinson JL, Elias JE, Sonnenburg ED, Gardner CD, Sonnenburg JL. Gut-microbiota-targeted diets modulate human immune status. Cell. 2021 Aug 5;184(16):4137-4153.

2型糖尿病如何做到可防可控?肠道菌群发挥重要作用

谷禾健康

2型糖尿病是一种血糖水平升高(高血糖)的慢性代谢疾病,主要由胰岛素抵抗和胰岛素分泌不足引起。2型糖尿病全球患病率在不断上升。

截止到2020年,根据美国糖尿病学会评估标准,糖尿病患病率已达到12.8%。其实在我国成年人中,已经有将近一半的人存在血糖异常,未来极有可能发展为2型糖尿病。如果不加干预治疗,会引发许多不良后果。

很多研究表明,肠道菌群在宿主的代谢和疾病状态中起着重要的作用。特别是2型糖尿病,其病因复杂,包括肥胖、慢性低度炎症,受肠道微生物群和微生物代谢产物的调节。

本文将从肠道菌群的角度了解其与2型糖尿病的关系;肠道菌群及其代谢物对葡萄糖代谢、免疫系统的影响;
从影响肠道菌群变化的因素来了解各种干预措施,包括药物,饮食,益生菌/益生元,粪菌移植,间接性禁食等方式。

01 2型糖尿病

葡萄糖主要通过食用的食物和饮料进入人体。胰腺会产生一种叫做胰岛素的激素,以帮助血液中的葡萄糖进入肌肉、脂肪和肝脏,用作能量。

  • 胰岛素如何将血液中糖分控制在正常水平?

胰岛素通过血液循环进入不同组织。组织大多数细胞表面有一种结构,叫胰岛素受体。当胰岛素流过时,会附着在胰岛素受体上,就像钥匙打开锁一样,糖可以进入细胞内,细胞获得能量维持正常运作,血液中糖分就会回落到正常水平。

  • 2型糖尿病如何形成?

2型糖尿病患者身上,细胞对胰岛素没有反应,这种情况就叫胰岛素抵抗。胰岛素没有了“钥匙”的作用,不能有效开启细胞上的“锁”,或者“锁”的数量也减少了,由此,糖分就不能进入细胞有效利用,被挡在了细胞外面,只好在血液中积累,血糖就升高了。

刚开始的时候,胰腺会觉得自己使不上力,于是不甘心开始拼命工作,产生更多的胰岛素来克服这种抵抗。

随着时间的推移,胰腺开始累了,力不从心,不能产生更多的胰岛素,这时候就是2型糖尿病开始了。

02 2型糖尿病患者的微生物群

肠道微生物群可以直接或间接地影响人类健康,肠道微生物群失调可能会增加促炎疾病的患病率,如肥胖、炎症性肠病、2 型糖尿病、关节炎和癌症。

2型糖尿病人群中个体微生物群的差异

Cunningham A L et al., Gut Pathog, 2021

在2型糖尿病患者普遍具有相对高丰度的特定属:Blautia、Coprococcus、Sporobacter、Abiotrophia、Peptostreptococcus、Parasutterella、Collinsella

2型糖尿病患者中,产生丁酸菌特别缺乏,特别是梭菌目,包括:

Ruminococcus、Subdoligranulum,Eubacterium rectale、Faecali prausnitzii、Roseburia intestinalis 、

Roseburia inulinivorans

2型糖尿病患者中,其他明显较少的菌属有:

拟杆菌属、普雷沃氏菌属双歧杆菌属

  • 双歧杆菌减少

双歧杆菌属具有显著的健康益处,包括改善肠道通透性,从而降低内毒素的循环水平并减少全身炎症。这与改善宿主的糖耐量和葡萄糖诱导的胰岛素分泌,并减少炎症有关。

  • 乳杆菌属增加

来自欧洲的女性2型糖尿病患者队列显示了乳酸杆菌Lactobacillus增加,五种梭菌的丰度下降。

在另外两项研究中也有类似的结论。乳杆菌属的增加较低的空腹血糖水平改善的糖化血红蛋白(HbA1c)水平正相关。这两种菌都与BMI指数没有关系。给糖尿病啮齿动物补充丁酸梭菌可以改善循环血糖水平,降低全身胰岛素抵抗和炎症,增加线粒体代谢,显著减少肠道破坏

  • Akkermansia菌减少

Akkermansia muciniphilaFaecali prausnitzii这两种菌为2型糖尿病的发展提供了保护。

Akkermansia菌维持粘蛋白层的完整性减少炎症方面起着关键作用。粘蛋白是大型、高度糖基化的蛋白质,参与GIT的腔内保护,导致细菌移位减少,并改善脂肪储存、脂肪组织代谢和葡萄糖稳态。给啮齿动物补充低聚果糖(使Akkermansia二次增加)或直接用Akkermansia治疗可以改善它们的整体代谢状态。

  • Faecali prausnitzii 减少

2型糖尿病的Faecali prausnitzii丰度降低,2型糖尿病的治疗似乎也直接导致了Faecali prausnitzii丰度的增加、全身炎症的二次减少和胰岛素抵抗的改善。

2型糖尿病前期菌群变化

2型糖尿病前期患者在其微生物群落中也有类似的发现,包括微生物多样性降低Akkermansia菌梭状芽孢杆菌属数量的减少瘤胃球菌属链球菌增多

如果可以确定2型糖尿病的“共同”微生物群分布,就有可能在机器学习预测模型中利用微生物生物标志物和临床参数,以可靠的诊断准确性区分2型糖尿病风险患者。其次,如果该模型被证明是成功的,所选择的微生物生物标志物可以用于监测患者的血糖控制和新疗法的引入。

03 肠道菌群对葡萄糖和胰岛素代谢的影响

肠道微生物群具有通过多种机制改变宿主葡萄糖稳态的能力,包括:

  • 发酵过程中代谢物产生及其产生的次级效应;
  • 炎症级联反应的激活导致细胞因子的释放;
  • 破坏肠粘膜屏障的渗透性,允许毒素流入;
  • 通过肠促胰岛素分泌的直接信号作用。

2型糖尿病患者表现出糖的膜转运、支链氨基酸(BCAA)转运、甲烷代谢、异生素降解和代谢以及硫酸盐还原的富集。同一队列显示细菌趋化性、鞭毛装配、丁酸盐生物合成以及辅因子和维生素代谢水平降低

微生物群对葡萄糖稳态的影响

Cunningham A L et al., Gut Pathog, 2021

04 肠道微生物群代谢物

短链脂肪酸、BCAAs、琥珀酸盐、吲哚、咪唑都是肠道厌氧发酵过程中产生的微生物代谢产物,是微生物-宿主信号通路的核心成分

这些代谢物主要由微生物群产生,如Akkermansia、普雷沃氏菌属Prevotella、瘤胃球菌属Ruminococus、粪杆菌属Faecalibacterium、真细菌属Eubacterium、Roseburia、梭菌属Clostridium、拟杆菌属、乳杆菌属、链球菌属、丙酸杆菌属Propionibacterium、梭杆菌属Fusobacterium。2型糖尿病病患者体内这些特殊微生物群的大部分已经耗尽。

Huda MN, et al., Front Endocrinol (Lausanne). 2021

丁酸盐、乙酸盐和丙酸盐是膳食纤维肠道发酵产生的最丰富的短链脂肪酸。乙酸盐和丙酸盐主要由拟杆菌门产生,而丁酸盐由厚壁菌门产生。短链脂肪酸被肠粘膜细胞直接用作能量来源,或转移到体循环中,为宿主产生重要的能量来源,并具有作为信号分子的能力。

短链脂肪酸如何影响葡萄糖代谢?

短链脂肪酸通过与选定的G蛋白偶联受体的偶联作用强烈影响葡萄糖代谢。这些主要在脂肪组织、肠道和免疫细胞中表达。GPR43和GPR119刺激促进肠内分泌L细胞分泌肠促胰岛素GLP-1。GLP-1增强葡萄糖诱导的β细胞胰岛素释放,抑制胰高血糖素分泌,保护β细胞免于凋亡,促进β细胞增殖并延长肠转运时间。

丁酸盐和丙酸盐对受体GPR41的刺激具有通过两种不同的作用机制诱导肠道糖异生的能力。

  • 首先,作为GPR41激动剂,增强肠道糖异生基因表达
  • 其次,通过涉及GPR41的肠-脑神经回路

短链脂肪酸还可以直接影响肝脏葡萄糖代谢,减少糖酵解和糖异生,增加糖原合成,降低血浆脂肪酸浓度。干细胞因子具有激活副交感神经活性的能力,从而增加食欲促进葡萄糖刺激的胰岛素分泌

短链脂肪酸通过AMP激活蛋白激酶(AMPK)活性的作用,通过增加葡萄糖转运蛋白4型(GLUT4)的表达来增强外周葡萄糖摄取。其次,在骨骼肌中,短链脂肪酸具有减少糖酵解的能力,导致葡萄糖-6-磷酸的二次积累,从而导致更大的糖原合成

▇ 乙酸盐

乙酸盐是最丰富的短链脂肪酸,被肠上皮吸收,通过门静脉输送到肝脏,并最终分布到外周组织,在那里被代谢。全身性乙酸盐具有穿过血脑屏障的能力,在那里它可以激活乙酰辅酶a羧化酶,导致神经肽表达增强,从而诱导下丘脑神经元激活并抑制食欲

▇ 丁酸盐

丁酸盐是结肠细胞的主要底物和能量来源,提供结肠粘膜至少60-70%的能量需求,对其增殖和分化至关重要。丁酸盐在维持结肠上皮稳态中发挥重要作用,主要是利用其抗炎特性,从而防止氧化应激产生活性氧和氮。在口服葡萄糖耐量试验期间,大量产生丁酸盐的微生物群与改善的胰岛素反应有关(这表明β细胞功能改善)。

餐后血浆丁酸浓度升高与丁酸肠杆菌Intestinimonas butyriciproducens 、Akkermansia muciniphila的丰度增加有关。值得注意的是,通过口服葡萄糖胰岛素敏感性(OGIS)模型评估,丁酸盐浓度与餐后胰岛素敏感性直接相关。

▇ 丙酸盐

肠道产生的丙酸盐是已知的糖异生的首选前体,其中约50%以这种方式利用。丙酸盐进入三羧酸(TCA)循环,通过三个连续的反应转化为琥珀酰辅酶a,生成的琥珀酰辅酶a重新进入TCA循环,并转化为草酰乙酸,即糖异生前体。

肠道丙酸酯释放增加与β细胞功能增强和葡萄糖刺激的胰岛素分泌有关,与GLP-1水平的变化无关。丙酸盐还通过直接抑制炎性细胞因子诱导的细胞凋亡为人类胰岛提供保护。

最后,用肠道丙酸盐补充超重患者导致能量摄入减少和肥胖,并且肽YY (PYY)和GLP-1的血浆水平升高。

膳食纤维的细菌发酵产生大量琥珀酸,通过激活肠道糖异生来改善血糖控制,对于丁酸和丙酸也是如此。

▇ 必需氨基酸

据报道,包括碱性氨基酸和芳香族氨基酸在内的少量必需氨基酸增加与未来发展2型糖尿病的风险增加五倍有关。血中碱性成纤维细胞生长因子水平升高也被证明是胰岛素抵抗的特征,与两种特定的细菌相关,即普雷沃氏菌拟杆菌

胰岛素抵抗患者表现出丰富的支链氨基酸生物合成,并被发现缺乏编码这些特定氨基酸的细菌内向转运蛋白的基因。在啮齿类动物中,普雷沃氏菌可诱导胰岛素抵抗,加剧葡萄糖耐受,并增加支链氨基酸水平。

▇ 吲哚丙酸

吲哚丙酸是细菌芳香族氨基酸分解代谢产生的代谢产物,与膳食纤维摄入高度相关,似乎可以降低患2型糖尿病的风险。它提供了有效的自由基清除活性,提示它可以保护胰腺β细胞免受与代谢和氧化应激相关的损伤。它还可能通过抑制电压门控钾通道,触发GLP-1分泌,参与调节肠内分泌L细胞的肠促胰岛素分泌

由肠道微生物群降解组氨酸产生的咪唑丙酸盐,通过作为细胞内胰岛素受体信号级联的抑制剂损害了细胞正确响应胰岛素的能力。

▇ 胆汁酸

胆汁酸是类固醇羧酸,主要通过限速酶7α‐羟化酶(CYP7A1)的作用从胆固醇衍生而来,然后在分泌到胆汁中之前与甘氨酸或牛磺酸结合。超过95%在末端回肠和结肠通过肠肝循环被重吸收。

胆汁酸的主要功能是小肠内脂类和脂溶性维生素的消化和吸收

乳酸杆菌、双歧杆菌、肠杆菌、拟杆菌、梭菌是影响胆汁酸合成、修饰和信号传导的主要肠道微生物群。它们具有通过解偶联过程控制初级胆汁酸(胆酸和鹅去氧胆酸)转化为次级胆汁酸(脱氧胆酸和石胆酸)的能力,以及代谢天然存在的FXR拮抗剂牛磺β-胆酸的能力。反过来,胆汁酸由于其强大的抗微生物活性,通过抑制细菌在肠道中的定居和生长来促进肠道稳态

除了在肠道消化和吸收中的作用外,胆汁酸还具有发挥激素作用的重要代谢作用的能力。

Xie C,et al., Nutrients. 2021

胆汁酸可以利用FXR和G蛋白受体5 (TGR-5)通过受体偶联信号调节葡萄糖代谢。FXR偶联只有通过原发性胆汁酸才有可能,并且具有减少糖异生、促进肝糖原产生、抑制GLP-1释放和刺激成纤维细胞生长因子(FGF-19)从回肠分泌的能力。

FXR信号抑制糖异生基因的表达,如那些编码磷酸烯醇丙酮酸羧激酶、果糖-1,6-双磷酸酶-1和葡萄糖-6-磷酸酶的基因。FGF-19通过降低CYP7A1的表达、抑制葡萄糖产生和诱导糖原合成来调节BA的合成。TGR-5(仅通过二级BAs结合)偶联导致肠L细胞分泌GLP-1,增加葡萄糖刺激的胰岛素释放,并促进前胰高血糖素转化为GLP-1。

在骨骼肌和棕色脂肪组织中,BATGR5信号通过刺激2型碘甲状腺原氨酸脱碘酶促进甲状腺素(T4)转化为具有生物活性的三碘甲状腺原氨酸(T3),导致更大的能量消耗。两种受体的偶联促进胰腺β细胞产生胰岛素

研究表明,使用钡螯合剂操纵钡池可以改善2型糖尿病患者的血糖控制。钡螯合剂在肠内结合钡,形成不可吸收的复合物,导致肠肝循环中断。胆汁酸螯合剂降血糖作用的潜在机制知之甚少,但据信涉及胆汁酸库组成的破坏、增强肝脏葡萄糖代谢、增加肠促胰岛素激素的释放和诱导肠道微生物群组成的改变

05 菌群缺失导致胃肠屏障功能受损

肠粘膜内层作为与潜在有害物质不良相互作用的预防性屏障,在免疫系统的调节中起着不可或缺的作用。

众所周知,2型糖尿病具有显著增强的肠道通透性,允许细菌穿过肠道上皮移位,导致引发低度炎症的宿主代谢性内毒素血症。由此产生的影响可以引发β细胞破坏胰岛素抵抗

如前所述,粪杆菌属Faecalibacterium、罗氏菌属Roseburia、双歧杆菌属都被认为具有防止细菌移位降低肠道通透性的能力。众所周知,2型糖尿病患者体内这些特殊微生物群的丰度已经耗尽。

06 炎 症 应 答

2型糖尿病的特征是慢性低度炎症状态,伴有大量炎症介质的异常表达和产生。患有2型糖尿病的个体产丁酸盐菌群数量减少,导致肠道轻度炎症

肠道微生物通过脂多糖(LPS)的活性激活宿主炎症胰岛素抵抗,脂多糖是革兰氏阴性菌细胞壁的重要组成部分。细菌片段和脂多糖被先天toll样受体(TLRs)识别,特别是TLR4,触发细胞内信号通路NF-κB的激活和促炎细胞因子的释放。LPS的释放还通过与在巨噬细胞和树突状细胞上表达的NLRP3炎症体和NOD样受体(NLRs)的高亲和力偶联来刺激局部免疫反应。炎性NF-κB级联中血清激酶(Jnk和IKK)的激活诱导胰岛素受体底物丝氨酸磷酸化,恶化胰岛素抵抗。

促炎细胞因子的释放会破坏葡萄糖代谢和胰岛素信号。2型糖尿病患者表现出肿瘤坏死因子-α水平升高,这与糖耐量改变、胰岛素抵抗增强和胰岛功能障碍密切相关。肿瘤坏死因子-α具有上调细胞因子信号转导抑制因子-3 (SOCS-3)转录的能力,该抑制因子与胰岛素受体的酪氨酸-960偶联,防止胰岛素受体结合。这导致IRS-1的降解和胰岛素信号通路的破坏

白细胞介素-1 (IL-1)是白细胞介素家族的一种炎性细胞因子,具有降低IRS-1表达、抑制GLUT-4向质膜移位和减少胰岛素刺激葡萄糖摄取的潜力。最近的研究表明,IL-1受体拮抗剂(IL-1RA)和IL-1β特异性抗体治疗改善了2型糖尿病患者的糖代谢和胰岛素分泌。

IL-6已被确定为2型糖尿病的独立预测因子。它对IRS-1、GLUT4和过氧化物酶体增殖物激活受体(PPARs)的基因转录产生长期抑制作用,并显著降低胰岛素刺激的酪氨酸磷酸化和胰岛素刺激的葡萄糖转运

以上部分是微生物群的改变直接或间接影响2型糖尿病的发展,那么微生物群会受到哪些因素的影响呢?

影响肠道微生物群的因素

Huda MN, et al., Front Endocrinol (Lausanne). 2021

以上因素都会改变肠道微生物群,其中如益生元、益生菌、FMT和间歇性禁食,都被认为是2型糖尿病的潜在疗法。

一些2型糖尿病的药物改善循环血糖水平部分通过调节肠道微生物群,这进一步支持了肠道菌群作为2型糖尿病治疗的可能性。接下来我们看看它们如何调节肠道微生物群。

07 药物引起肠道微生物群变化

肠道微生物的组成在个体之间有很大的差异,并被内源性和外源性因素不断改变。地理和环境因素,如饮食、疾病、生活方式、卫生和药物都会导致变化。抗生素治疗能够在给药后几年内破坏肠道微生物群落。

在斯堪的纳维亚的2型糖尿病患者中发现的拟杆菌属、普雷沃氏菌属双歧杆菌属的数量明显较少,这表明抗生素暴露与随后的2型糖尿病发展之间存在很强的相关性。2型糖尿病的诊断与抗生素处方数量之间的关系需要进一步建立因果关系。

抗生素可能使患者更容易发展为2型糖尿病,然而,在确诊前几年,有2型糖尿病风险的患者可能更容易患病。

下面,来看看抗生素治疗对肠道微生物群的影响,以及由此对肥胖和胰岛素抵抗患者代谢参数的影响

万古霉素显著降低了微生物多样性,厚壁菌门丰度降低,变形菌数量增多,尤其是乳杆菌属,外周胰岛素敏感性下降。包括双胍类、α-葡萄糖苷酶抑制剂、肠促胰岛素类药物、胰高血糖素样肽1 (GLP-1)受体激动剂、二肽基肽酶-4抑制剂和噻唑烷二酮类在内的降糖药物都会影响肠道微生物群。

▇ 二甲双胍

二甲双胍是2型糖尿病患者最广泛使用的口服药物之一,不会有意改变肠道微生物群。

  • 二甲双胍增加有益菌

然而,越来越多的证据表明,微生物群可能会增强某些效应。二甲双胍增加了Akkermansia属、双歧杆菌属乳杆菌属的相对丰度。其他丰富的关联包括拟杆菌属、丁酸球菌属、普雷沃菌属、巨球菌属和丁酸杆菌属。这些特殊的微生物群都具有产生短链脂肪酸的能力

  • 二甲双胍改善菌群多样性

二甲双胍治疗可改善肠道微生物多样性,快速改变肠道菌群组成,通过增加短链脂肪酸的产生,促进内分泌细胞活性,调节胆红酸(BA)的周转,减少内毒素血症,改善肠道功能。

  • 二甲双胍治疗减少脆弱拟杆菌

短期二甲双胍治疗与脆弱拟杆菌的丰度显著降低相关,导致肠道中BA糖链酸水平的二次增加。GUDCA抑制肠法呢样X受体(FXR)信号传导,从而改善葡萄糖耐量。重新引入脆弱拟杆菌逆转了使用二甲双胍后葡萄糖代谢的改善。

二甲双胍治疗下的微生物转移有助于改善血糖控制和不良反应

Forslund K, et al., Nature. 2015

▇ 格列本脲

其他糖尿病药物还没有像二甲双胍治疗那样被广泛研究。格列本脲对肠道微生物群α多样性的影响很小。它增加了Paraprevotellaceae 和普氏菌属 Prevotella 的相对丰度。当与二甲双胍联合使用时,达帕利沙星或格列齐特均未显示能显著改变2型糖尿病患者的肠道微生物群。

▇ 利拉鲁肽

在高脂饮食(HFD)中,利拉鲁肽降低了肠道微生物的多样性,降低拟杆菌门、变形菌门和放线菌门的丰度。所有与肥胖相关的菌(Romboutsia,Ruminiclostridium,Erysipelotrichaceae)的相对丰度也有所下降,同时与瘦相关的菌Blautia和Coprococcus有所增加

接受GLP-1激动剂联合二甲双胍治疗的患者,Akkermansia丰度高于接受单一利拉鲁肽治疗的患者。

08 间接性禁食影响肠道菌群

间歇性禁食被定义为一种周期性的饮食限制,已被证明可以延长寿命,并降低罹患包括2型糖尿病在内的各种年龄相关疾病的风险

动物研究表明,间歇性禁食可改善机体组成、糖脂代谢、减少炎症和自噬,肠道菌群可能在这一过程中发挥关键作用。虽然大多数人类间歇性禁食研究显示了一个有益的影响,结果还不完全确定。

最近一项使用糖尿病小鼠的研究报告称,28天间歇性禁食干预通过增加气球菌Aerococcus、棒状杆菌Corynebacterium、Odoribacter、乳酸杆菌的丰度,减少链球菌、Rummeliibacillus和Candidatusarthromitu的丰度,重组了肠道微生物群,从而降低了血糖和胰岛素水平,改善能量代谢

间歇性禁食引起的细菌丰度变化与血浆次级胆汁酸浓度、绒毛长度增加、肠道渗漏减少、血浆LPS水平降低相关,提示轻度炎症改善。更重要的是,抗生素治疗抑制了间歇性禁食对2型糖尿病的影响,提示微生物群是间歇性禁食改善2型糖尿病的诱因

间歇性禁食的另一种选择是禁食模拟饮食法,它含有非常的热量和蛋白质。禁食模拟饮食法通过增加 ParabacteroidesBlautia的数量,减少普雷沃氏菌科、Alistipes、Ruminococcaceae属的数量,重建肠道微生物群,使血糖水平正常化,改善血糖高db/db小鼠的胰岛素敏感性和β细胞功能

该研究进一步强调了胰岛细胞和β细胞的缺失可以通过禁食模拟饮食法介导的改变肠道微生物群来预防,提示禁食模拟饮食法通过胰腺β细胞的功能来改善2型糖尿病。

综上,间歇性禁食可调节肠道菌群,改善2型糖尿病。然而,这些发现需要在人类队列中进行验证,使用纵向研究来确定间歇性禁食在影响2型糖尿病结果中的长期有效性。

09
益生元、益生菌和合生元

益生元、益生菌和合生元能够调节肠道微生物群组成,目的是为改善葡萄糖代谢创造环境。越来越多的文献支持临床使用添加益生元、益生菌和合生元来改善2型糖尿病患者的血糖控制。

然而,由于研究方法(研究时间、补充量、患者人口特征)之间的异质性,阻碍了研究的比较,而且研究可用性差、单个研究的规模相对较小以及明显缺乏微生物群数据,数据仍然有限,这是具有挑战性的。

▇ 益生菌

益生菌是活的微生物,当以足够的量给药时,对个体的健康有益。

证据表明,益生菌能够改善肠道微生物群,从而实现更好的2型糖尿病控制,同时增强肠道完整性、降低循环LPS、降低内质网应激和改善外周胰岛素敏感性

一项荟萃分析,重点是研究补充益生菌对2型糖尿病患者糖化血红蛋白水平、空腹血糖和胰岛素抵抗的影响。共纳入了15项随机对照试验,涉及902名患者。结果表明,益生菌可降低基线水平的糖化血红蛋白(p = 0.02)、FBG(p=0.003)和胰岛素抵抗(p < 0.00001)。

有限的研究评论了微生物群的变化。两项研究提到了添加益生菌后的微生物群分析,并报告了细菌组成的变化。嗜酸乳杆菌Lactobacillus acidophilus的丰度从干预前的接近不可检测的水平显著增加双歧杆菌属(4.5倍)和乳杆菌属(两倍)数量的显著增加

▇ 益生元

益生元是食物成分,如不易消化的多糖或纤维,通过选择性刺激一个或有限数量的肠道微生物群的生长和/或活性而有益地影响宿主。

补充益生元与改善血糖控制有关,然而,根据益生菌研究报告,方法学的异质性也很大,导致文献不确定。

迄今为止最全面的荟萃分析,包括33个随机对照试验,涉及1346名参与者,分布在健康、肥胖和2型糖尿病队列中。仅关注糖尿病前期和2型糖尿病队列,与对照组相比,补充后FBG、糖化血红蛋白水平、空腹胰岛素浓度和胰岛素敏感性的相对降低,分别为基线值的7.15、7.00、16.58和25.34%。建议每日补充剂量大于10 g,持续时间至少42天,以持续改善血糖指标。

目前尚不清楚观察到的影响是与肠道微生物群的改变有关,还是因为发酵底物的可用性更高。文献中一直缺乏微生物群分析,直接归因于葡萄糖水平的改善。

研究表明,补充益生元六周可产生显著的双歧杆菌效果,并提高粪便短链脂肪酸浓度,但未观察到对整体微生物多样性的影响。其次,补充益生元可以增加细菌多样性,如Shannon和inverse Simpson指数所评估的,并增加2型糖尿病患者的丰富度。然而,在饮食治疗12周后,没有观察到葡萄糖控制的统计学改善。

▇ 合生元

合生元:”包含活微生物和被宿主肠道微生物群选择性利用以赋予‘宿主健康益处’的底物的混合物”。

一种合生元给六十名高血压前期患者2型糖尿病(两种乳酸杆菌和双歧杆菌各一种,一种链球菌和酵母,以及300毫克低聚糖)。据报道,干预后乳酸杆菌属(32.6%)和双歧杆菌属(131.6%)均有所增加,肠道致病菌(44.6%)显著减少,空腹血糖(3.3%)和HbA1c水平(14%)也有所改善

越来越多的证据表明,添加益生元、益生菌和合生元可以改善血糖控制。需要进行详细的工作来设计稳健的方法,以确定这些积极的变化是否直接归因于肠道微生物群的改变和所涉及的复杂代谢机制。一旦这种关系被更好地理解,在2型糖尿病的管理中利用这些饮食补充的潜力就可以充分发挥。

10 粪菌移植治疗,有待深入研究

粪便微生物群移植(FMT)是将最低限度操作的预先筛选的供体粪便转移到已确定的“患病”患者的肠道中,目的是纠正异常生物状态增加整体多样性并恢复微生物群的功能。

被诊断为代谢综合征的男性受体在接受异源菌群6周后,胰岛素敏感性提高,产丁酸盐菌群(Roseburia肠胃炎种)丰度增加

其次,一项研究报告了代谢综合征患者,观察到异体粪菌移植后HbA1c水平显著降低,并与肠道微生物群组成的变化相关。异体粪菌移植之前参与者基线微生物组中基因丰富度的降低与临床结果的改善相关。

应该注意的是,这两项研究的临床益处随着时间的推移而恶化,并且存在相当大的个体差异

因此,粪菌移植治疗虽有希望,但还需进一步研究,例如:

  • 确定最佳供体微生物群特征;
  • 计算补充治疗所需的适当给药频率和阈值,以延长微生物群植入的寿命;
  • 受体宿主因子是否具有调节治疗效果的能力。

11 2型糖尿病的风险因素及预防措施

2型糖尿病是一种多因素疾病。这意味着不是仅仅停止吃糖或开始锻炼就可以来避免这种健康状况。
以下是一些可能影响患2型糖尿病风险的因素:

肥胖

肥胖或超重患2型糖尿病的风险很大

不良的饮食习惯

美国糖尿病协会(ADA)强调,吃太多不健康的食物会增加你患2型糖尿病的风险。研究表明,经常吃高热量、加工食品和饮料的饮食,而完整的、富含营养的食物却吃的少,这样的饮食习惯会显著增加患2型糖尿病的风险。

看电视时间过长

哈佛大学公共卫生学院指出,长时间看电视(和久坐)可能会增加肥胖、2型糖尿病和其他疾病的风险。

缺乏足够的锻炼

就像体脂与胰岛素和其他激素相互作用影响糖尿病的发展一样,肌肉也是如此。通过心血管运动和力量训练可以增加的肌肉量,在保护身体抵抗胰岛素抵抗和2型糖尿病方面发挥着作用。

睡眠习惯

美国国家睡眠基金会指出,睡眠障碍会增加对胰腺的需求,从而影响身体胰岛素和血糖的平衡。随着时间的推移,这会导致2型糖尿病。

多囊卵巢综合征(PCOS)

根据2017年8月发表在《临床内分泌与代谢杂志》上的一项研究,被诊断患有多囊卵巢综合征(一种激素失衡疾病)的女性比她的同龄人患2型糖尿病的风险更大。胰岛素抵抗和肥胖是这些疾病的共同特征。

45岁以上

根据ADA的说法,年龄越大,患2型糖尿病的可能性越大。但近年来,越来越多的儿童和青少年被诊断出患有前体糖尿病和2型糖尿病。

✦ 预 防

对于预防2型糖尿病,没有万无一失的方法,但是根据上述风险因素进行相应调整,保持健康的体重,遵循健康的饮食,定期锻炼,降低高胆固醇和高血压等可以帮助预防这种疾病。

▇ 饮食

因为某些食物,如碳水化合物,直接影响你的血糖,所以饮食是控制糖尿病最重要的因素之一

重要的并不是不吃,而是尽可能均衡饮食。

一种简单的标准餐盘法控制饮食:

盘子的一半:不含淀粉的蔬菜

盘子的四分之一:瘦肉蛋白

盘子的四分之一:谷物或淀粉类蔬菜

按照上述方式吃完饭,如果你还觉得饿,可以再吃一点不含淀粉的蔬菜。重要的是,一定要慢慢吃,享受食物

餐盘法可以帮助你增加纤维摄入量。富含纤维的食物可以帮助减缓血糖上升的速度。让你有饱腹感,潜在地促进减肥提高胰岛素敏感性。高纤维食物通常富含维生素和矿物质,也可以增加营养

已有研究证明,鼓励患者摄入高纤维饮食可以提高产生短链脂肪酸的菌群数量,从而通过增加GLP-1的产量来降低糖化血红蛋白水平。接受高纤维饮食的患者HbA1c水平比对照组下降更大,更高比例的患者实现了充分的血糖控制(HbA1c < 7%)。

注:糖化血红蛋白(HbA1c)是红细胞中的血红蛋白与血清中的糖类(主要指葡萄糖)通过非酶反应相结合的产物。

进一步的临床研究,摄入地中海饮食(富含纤维),也报告了高心脏代谢风险个体的葡萄糖和胰岛素敏感性的改善

因此,高纤维饮食用于控制2型糖尿病是可能的。

▇ 运动

运动对于利用胰岛素(帮助将糖分转移到细胞中)和降低血糖至关重要。通过运动,新陈代谢加快,身体就会逐渐熟练地燃烧卡路里。此外,锻炼有助于保持胆固醇含量,避免胆固醇过高和斑块的形成(这些斑块可能会阻碍血液顺利通过动脉)。

你可能会说工作生活很忙,找时间锻炼很困难,但不得不说,运动非常重要。试着让运动变得有趣,给自己足够的动力,或者把锻炼计划写在本上,比如说每周150分钟的运动量。

常见运动活动的生理成分

Andrew Williams et al., CLINICAL,2021

运动方式对2型糖尿病患者健康相关结果的影响

Andrew Williams et al., CLINICAL,2021

重要的是,要选择适合自己的运动方式,比如说肥胖的人可能会减少负重训练,从而减少与冲击相关的肌肉骨骼问题加重的风险。

有人认为,2型糖尿病患者在运动过程中发生不良事件的风险增加,但不良事件的发生率较低,定期运动的好处远远大于风险

注:不稳定型心绞痛、不稳定呼吸系统疾病、未经治疗的心力衰竭或心肌病、严重主动脉狭窄和未控制的糖尿病患者,运动需要遵医嘱

总之,运动计划必须是有目标的并且是自己感兴趣的,才能坚持下去。

▇ 肠道菌群健康检测

定期进行肠道菌群检测,了解2型糖尿病的患病风险,也是一种可行的预防措施。当发现风险较高就及时调整,不恐慌不焦虑,对自身健康状况了如指掌。

12
结 语

2型糖尿病是一种复杂的多系统疾病,如果不加以适当的识别和治疗,可能会出现并发症。特定的肠道微生物群可能通过葡萄糖代谢途径的改变来避免2型糖尿病的恶化。

随着对微生物群的了解逐渐深入,利用微生物群来识别“高危”人群以及通过微生物群靶向治疗成为可能。对于益生菌,益生元等治疗方案还需进一步研究,最终目标是在已确定的风险人群中简化早期干预,真正做到可防可控。

主要参考文献

Cunningham A L,Stephens J W,Harris D A,Gut microbiota influence in type 2 diabetes mellitus (T2DM).[J] .Gut Pathog, 2021, 13: 50.

Huda MN, Kim M, Bennett BJ. Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Front Endocrinol (Lausanne). 2021 Apr 7;12:632335. doi: 10.3389/fendo.2021.632335.

Al-Jameel SS. Association of diabetes and microbiota: An update. Saudi J Biol Sci. 2021;28(8):4446-4454. doi:10.1016/j.sjbs.2021.04.041

Muñoz-Garach A, Diaz-Perdigones C, Tinahones FJ. Gut microbiota and type 2 diabetes mellitus. Endocrinol Nutr. 2016 Dec;63(10):560-568.

Forslund K, Hildebrand F, Nielsen T, Falony G, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015 Dec 10;528(7581):262-266.

Vitale M, Giacco R, Laiola M, et al. Acute and chronic improvement in postprandial glucose metabolism by a diet resembling the traditional Mediterranean dietary pattern: can SCFAs play a role? Clin Nutr. 2021;40(2):428–37

Tao YW, Gu YL, Mao XQ, Zhang L, Pei YF . Effects of probiotics on type II diabetes mellitus: a meta-analysis. J Transl Med. 2020;18(1):30

Zhang F , Wang M, Yang J, et al. Response of gut microbiota in type 2 diabetes to hypoglycemic agents. Endocrine. 2019;66(3):485–93.

Gérard C, Vidal H. Impact of gut microbiota on host glycemic control. Front Endocrinol (Lausanne). 2019;10:29.

Xie C, Huang W, Young RL, Jones KL, Horowitz M, Rayner CK, Wu T. Role of Bile Acids in the Regulation of Food Intake, and Their Dysregulation in Metabolic Disease. Nutrients. 2021 Mar 28;13(4):1104.

双歧杆菌:长双歧杆菌

谷禾健康

你知道吗?有一种菌群可改善人体免疫反应并有助于预防肠道疾病。还具有抑制过敏,降低胆固醇并改善皮肤健康的作用。它就是——长双歧杆菌Bifidobacterium longum

接下来带你探索它的秘密……

01 什么是长双歧杆菌?

定义发现

双歧杆菌是从六个不同的生态位中分离出来的,其中三个与人类和动物的肠道环境直接相关。例如:人、动物的肠道(牛,兔,鼠,鸡和昆虫)和口腔,而其他的则是污水,血液和食物,也可能是胃肠道污染的结果。

双歧杆菌广泛分布在为它们的后代提供有父母进行照料的活生物体中,例如:哺乳动物,鸟类和社交昆虫。到目前为止,尚未从其他动物(如爬行动物和鱼类)中分离出双歧杆菌。因此,它们的生态分布的重要原因可能是由亲代/照护者直接将双歧杆菌细胞传给后代。

长双歧杆菌是自然存在于人类胃肠道中的革兰氏阳性棒状细菌,是最早在婴儿通过产道时在肠道内定殖的细菌之一。这些细菌也被称为益生菌。婴儿双歧杆菌Bifidobacterium infantis猪双歧杆菌Bifidobacterium suis 是长双歧杆菌的亚种。

结构代谢

双歧杆菌是革兰氏阳性厌氧性和分支杆状细菌。它们也是非运动的和非孢子形成的。

双歧杆菌通过磷酸酮醇酶途径产生己糖代谢。果糖-6-磷酸磷酸酮醇酶(F6PPK)是其重要组成部分。

长双歧杆菌将糖发酵成乳酸,这有助于降低肠道的pH值。“它具有修复氧化损伤的酶的同系物,例如NADH氧化酶和NADH过氧化物酶。它还含有逆转氧化损伤的蛋白质和脂质,如:硫醇过氧化物酶,烷基过氧化氢还原酶(ahp C),肽甲硫氨酸亚砜还原酶。”

长双歧杆菌基因组存在编码各种专门用于分解寡糖的蛋白质。该菌在结肠中长期存在,是因为它能代谢宿主或其他肠道菌群吸收不良的底物

02 长双歧杆菌的潜在好处?

1  增强免疫力

一项针对婴儿双歧杆菌的小型研究表明,婴儿双歧杆菌可起到预防脊髓灰质炎病毒的作用。婴儿双歧杆菌改善了实验志愿者的免疫反应。

我们知道从婴儿期开始肠道健康就关系到未来生活中与健康相关的状况和疾病危险因素。研究已将肠道菌群的改变与多种疾病联系起来,包括自身免疫性疾病,如腹腔疾病和1型糖尿病,代谢综合征过敏,哮喘和炎症性肠病等

多种因素可以促进肠道健康。健康的肠道菌群是支持肠道健康,改善免疫功能并可能降低某些疾病风险的因素之一。

研究人员认为,双歧杆菌对早期生命疾病的保护能力是通过产生短链脂肪酸(SCFA)和乳酸,通过特定的免疫刺激肠道环境酸化来发挥作用。

长双歧杆菌还激发了45名接受过流感疫苗的住院的年迈患者的免疫功能。与其他知名的菌株相比,婴儿双歧杆菌在老年患者的血液中具有较强免疫调节作用。

2  降低传染病

实验表明,长双歧杆菌通过微调炎症反应加快肺恢复来保护小鼠免受肺炎诱发的死亡。婴儿双歧杆菌可以抑制小鼠轮状病毒感染,口服长双歧杆菌可以保护小鼠免受铜绿假单胞菌引起的肠道败血症的侵害,且大大提高了伤寒沙门氏菌感染小鼠的存活率

用长双歧杆菌喂养的婴儿显示出呼吸道感染的比率较少。在27名接受流感疫苗的老年受试者中,长双歧杆菌补充剂减少了流感和发烧率

3  减轻和治疗胃肠道感染

益生菌通常与抗生素结合使用,以降低胃肠道感染的风险并防止有益菌的死亡。此外,一些研究表明,用含有双歧杆菌的益生菌进行治疗可以通过减少腹泻来帮助治疗类似艰难梭菌的感染。

4  改善腹泻和便秘

肠易激综合征(IBS)通常以腹痛或不适为特征,并伴有大便次数和/或稠度变化,可能导致腹泻和/或便秘

关于IBS的临床实践指南得出结论,根据一些随机临床对照试验,长双歧杆菌可以改善IBS患者的总体症状。

婴儿长双歧杆菌可以改善腹部疼痛/不适,腹胀,排便困难

长双歧杆菌还降低了IBS小鼠的内脏超敏性,显著降低大鼠第一疼痛行为和总疼痛行为的内脏痛阈压。

美国家庭医师学会指出,“益生菌可减少抗生素相关性腹泻的发病率,减少所有因感染性腹泻的持续时间和疼痛的严重程度和患者腹胀。” 作用的有益程度取决于所使用的类型,配方和给定的量。

5  预防湿疹

许多研究表明,使用含有双歧杆菌菌株的益生菌在妊娠和哺乳期给予母亲以及婴儿,可以预防婴儿和儿童的湿疹。但当涉及湿疹治疗时,益生菌的有益用途是多样的,所以需要更多的研究来确定其益处。当给孩子进行任何补充之前,请应该先进行肠道菌群检测或咨询医生的建议。

6  减轻过敏

在柳杉花粉过敏患者中,摄入添加长双歧杆菌的酸奶或粉末可减轻主观症状影响过敏的血液标志物。鼻症状,如瘙痒,鼻漏,堵塞以及喉咙症状往往可以得到缓解。

实验表明,双歧杆菌菌株减轻了小鼠的过敏性气道炎症和食物过敏症状。口服长双歧杆菌可抑制IgE水平并改善IgG2a / IgG1比例。它也增加了小鼠的Th1细胞因子并降低了Th2细胞因子的产生。长双歧杆菌平衡了Th1 / Th2反应并减轻了小鼠的β-乳球蛋白过敏性炎症

7  减少胆固醇

长双歧杆菌降低了总胆固醇,特别是在中度高胆固醇血症患者中。长双歧杆菌补充剂可明显降低高胆固醇血症大鼠的总胆固醇肝脂质沉积脂肪细胞大小,并积极影响肝肾功能。

给大鼠喂食富含胆固醇的食物,并补充长双歧杆菌,结果发现,甘油三酯、低密度脂蛋白胆固醇(LDL-C)、超低密度脂蛋白(VLDL)胆固醇和丙二醛显著降低

8  减轻精神分裂症

每天服用长双歧杆菌可减轻小鼠的精神分裂症饲养行为,降低静息时的血浆皮质酮水平以及犬尿氨酸与色氨酸的比率。

9  治疗焦虑和抑郁症

长双歧杆菌可以使感染性结肠炎小鼠焦虑样行为和海马脑源性神经营养因子(BDNF)正常化。

服用婴儿双歧杆菌可逆转抑郁症。长期服用婴儿双歧杆菌可保护大鼠免于因母体分离引起的压力而导致的抑郁症状。

03 长双歧杆菌有哪些作用机理?

目前已经有研究了长双歧杆菌对细胞水平的影响。这些可能反映长双歧杆菌在人体中的作用机制。

以下列举的均有研究文献支持。

炎性条件

● 降低的Th1相关的细胞因子(T-bet的,IL-2 ,和IFN-γ)和Th17相关的细胞因子(IL-12p40的,RORγt,IL-17A,IL-21,和IL-23),并增加了调节性T细胞-相关分子(Foxp3的,IL-10 ,和TGF-β)。

● 降低IL-1α,IL-1β,IL-6,IL-18,TNF-α的表达。

● IL-27升高。

● 降低CD80,CD40,CXCL1 ,CRP,iNOS的和抗微生物肽Reg3b和Reg3g 。

传染性条件

● 增加天然杀伤(NK)细胞活性。

● 血清IgA增加和IgG2a产生减少。

● IL-2,IL-1 2和IL-18升高。

● 降低IL-6和IL-8。

● TNF-α降低。

● 既增加了和减少IL-10,并降低和增加的IFN-γ

变态反应

● 减少IgE和改进了的IgG2a / IgG1的比。

● IgA增加。

● Th1细胞因子增加而Th2细胞因子产生减少。

● 降低IL-4和IL-5。

● 增加IL-10,IL-12和TGF-β。

● 增加或降低的IFN-γ。

● 抑制了MDC和TARC。

● CD4 + CD25 + Foxp3 + Treg细胞增加。

乳糜泻

● 降低TNF-α。

● NFκB增加。

● IL-10升高。

● 减少的CD3+ T,CD4+和CD4+ / Foxp3+细胞和增加的CD8+ T。

● MIP-1β升高。

下面具体以长双歧杆菌BB536为例,对长双歧杆菌的缓解过敏感染,调节代谢,调节免疫等作用进行详细阐述。

长双歧杆菌BB536与肠道微生物群协同作用,改善胃肠健康,调节宿主免疫稳态,缓解过敏性疾病和感染状况

Wong C B, et al., Journal of Functional Foods, 2019

长双歧杆菌BB536通过与人体肠道微生物群串扰调节肠道代谢。

Wong C B, et al., Journal of Functional Foods, 2019

(A) BB536通过促进前体庚二酸的产生调节生物素的生物合成,并使Bacteroides caccae将其进一步代谢为生物素,从而促进宿主肠道内稳态

(B) BB536通过交叉喂养机制影响共生丁酸生产菌(如直肠真杆菌)的代谢活性。BB536在碳水化合物发酵过程中产生的乙酸盐作为底物,维持Eu. rectale的生长,刺激丁酸盐的产生

长双歧杆菌BB536的免疫调节作用

Wong C B, et al., Journal of Functional Foods, 2019

(A) 肠道微生物群的波动,特别是脆弱拟杆菌的过量,有助于干扰宿主免疫和发展过敏性疾病。在过敏反应中,一种过敏原被树突状细胞吸收,呈现给初始型T细胞(Th0),然后转化为辅助性T细胞2型(Th2)。Th2细胞分泌白细胞介素-4和白细胞介素-5,随后刺激记忆B细胞转换为过敏原特异性体液反应,主要由产生免疫球蛋白E(IgE)抗体。这些IgE抗体附着于肥大细胞和嗜碱性粒细胞,从而使它们对随后的暴露和过敏症状的发展敏感。

(B) BB536通过间接和直接机制调节宿主-微生物相互作用中的免疫稳态并减轻过敏性疾病。

(i) BB536通过纠正脆弱拟杆菌的流行,从而恢复Th1/Th2平衡,减轻过敏症状,促进肠道微生物群的稳定。

(ii)BB536通过其细菌成分直接影响抗原诱导的IgE介导的Th2倾斜免疫平衡。

04 如何摄取长双歧杆菌?

1  剂量与特征

在使用双歧杆菌之前,请咨询医生。如果有某些慢病,可能无法使用双歧杆菌。

双歧杆菌有胶囊,片剂,散剂和咀嚼片形式。在没有医疗建议的情况下,请勿同时使用不同的配方。

以下情况需咨询是否可以安全使用该产品:

● 牛奶过敏乳糖不耐症

● 正在服用抗生素药物期间

孕妇母乳喂养期间

应该如何判断益生菌的质量?

益生菌根据菌落形成单位(CFU)进行标记。这表明活细菌的密度或强度。益生菌中CFU的数量越高,就意味着它对肠道菌群中有益细菌的生长产生更大的影响。现在市面上很多产品把CFU的数量作为一种活菌标识。

有研究人员认为,关于CFU的特定剂量研究较少,可能不太重要。更重要的是找到一种经过适当加工和存储的高质量产品,这样就可以得到一种含有大量活细菌的产品。

未正确准备和存储的产品可能会导致细菌死亡,从而导致没有效果或者浪费。为了防止这种情况的发生,一些公司封装了他们的产品。

有效益生菌满足什么样的条件?

1. 它一定不能有毒或致病的。

2. 它必须保留已被证明对宿主(使用它的人)有益的特征。

3. 每单位必须包含足够数量的活微生物。

4. 它必须能够生长并在制造过程中存活,并能够通过胃和小肠运输

5. 在存储和使用期间,它要保持活的状态。

如果需要开始补充,请尽量缓慢并逐渐增加。剂量范围很广,太高的剂量可能会引起胃部不适

2  获取方法

每天食用富含有益菌的食物。发酵的食品和饮料,如酸菜,泡菜,开菲尔,康普茶,酸奶和人工培养的蔬菜,都是活益生菌和活性益生菌的绝佳来源。

* 开菲尔是一种发酵的乳制品,可以在酸奶和牛奶之间混合使用,可以作为早餐的不错选择。

如果想服用补充剂,请记住,益生菌菌株有很多不同的类型,每种类型的作用都略有不同。当寻找双歧杆菌时,请寻找完整的名称,包括属,种菌株

例如,在“Bifidobacterium adolescentis. 22L”中,“Bifidobacterium” 代表双歧杆菌属,种类是adolescentis,菌株为22L。

以正确的比例选择正确的活细菌类型非常重要。

冻干益生菌补充剂要特别小心。可以选择,但是,“它们暴露在湿气中会迅速降解,因此可能无法长期保持稳定” 。

3  如何储存

益生菌对光,热和水分敏感。优质的益生菌应保存在黑暗的玻璃瓶中,以防止细菌死亡。大多数类型的益生菌都需要冷藏。尽可能遵循厂商的说明进行最佳存储。

05 常见的问题

1 服用双歧杆菌时应避免什么?

请勿将口服粉与热液体或食物混合。

错过服用怎么办?

跳过错过的时间,并在常规时间使用下一个剂量。不要一下子服用两次的剂量。

服用过量怎么办?

咨询医生,寻求紧急医疗救护。

有可能出现的副作用?

如果你有过敏反应的迹象需就医: 

荨麻疹; 呼吸困难;脸,嘴唇,舌头或喉咙肿胀。

常见的副作用可能包括:胃腹胀或不适。也可能会发生其他副作用。

是否一定要服用?

不一定。首先确定体内是否缺少益生菌,尤其是双歧杆菌。结合长双歧杆菌的健康益处和每个人的健康状况,可以在进行肠道菌群检测后,发现双歧杆菌(尤其长双歧杆菌)缺少的情况下进行服用,或遵医嘱。这样可以更加有针对性地改善某些症状,从而达到更好的效果。

附录:双歧杆菌的历史演变

自1900年,亨利·蒂西埃从新生婴儿的粪便中发现了双歧杆菌,蒂西埃便称他为革兰氏阳性弯曲和分叉(裂开,X形或Y形)杆状细胞双歧杆菌。现如今,蒂西埃的原始分离株被称为双歧双歧杆菌。

不久之后,作为诺贝尔奖获得者,蒂西埃研究所的同事——梅契尼科夫(Elie Metchnikoff)将蒂西埃的杆菌加入了他所研究的一份关于活力和长寿理论中。虽然早期有关于发酵乳的报道已经隐含说出关于发酵乳对于健康的益处,但梅契尼科夫是率先将其作为科学依据的。

梅契尼科夫的理论,从摄入的乳酸杆菌含量对健康和长寿的影响进行分析,目前酸奶是最有益的食品,其他如酸牛奶,纯牛奶等也含有。梅契尼科夫这一言论导致了20年以来公众对酸牛奶产品的需求逐增。梅契尼科夫不仅提出并延续了该理论——即肠道微生物群不仅可以控制肠道病原体感染的结果,还可以调节自然的慢性毒血症,这在降低衰老和死亡率中起着重要作用。

虽然由于第一次世界大战的爆发以及梅契尼科夫在71岁的时候去世,导致了人们对细菌疗法的兴趣大幅度降低。但是,关于在饮食中使用乳酸菌的研究一直持续了一个世纪,并在现今依然流行着。在健康的母乳所喂养的婴儿中发现了大量的双歧杆菌以及双歧杆菌的发酵/酸化性质,以此来暗示着双歧杆菌对人类营养方面和胃肠道健康有很大的益处。

如今,随着研究逐步扩大,双歧杆菌不仅通过食用益生菌培养物对人类进行了有益效果评估,还对家畜和其他动物进行了评估。

参考文献:

Wong C B, Odamaki T, Xiao J. Beneficial effects of Bifidobacterium longum subsp. longum BB536 on human health: Modulation of gut microbiome as the principal action[J]. Journal of Functional Foods, 2019, 54: 506-519.

Smecuol E, Hwang HJ, et al., Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J Clin Gastroenterol. 2013 Feb;47(2):139-47. 

Smecuol E, Hwang HJ, et al., Exploratory, randomized, double-blind, placebo-controlled study on the effects of Bifidobacterium infantis natren life start strain super strain in active celiac disease. J Clin Gastroenterol. 2013 Feb;47(2):139-47.

Takahashi N, Kitazawa H, et al.,  Oral administration of an immunostimulatory DNA sequence from Bifidobacterium longum improves Th1/Th2 balance in a murine model. Biosci Biotechnol Biochem. 2006 Aug;70(8):2013-7. 

Xiao JZ, Kondo S, et al., Effect of probiotic Bifidobacterium longum BB536 [corrected] in relieving clinical symptoms and modulating plasma cytokine levels of Japanese cedar pollinosis during the pollen season. A randomized double-blind, placebo-controlled trial. J Investig Allergol Clin Immunol. 2006;16(2):86-93. 

Desbonnet L, Garrett L, et al., Effects of the probiotic Bifidobacterium infantis in the maternal separation model of depression. Neuroscience. 2010 Nov 10;170(4):1179-88. 

Takahashi N, Kitazawa H, et al., An immunostimulatory DNA sequence from a probiotic strain of Bifidobacterium longum inhibits IgE production in vitro. FEMS Immunol Med Microbiol. 2006 Apr;46(3):461-9.

Namba K, Hatano M, et al., Effects of Bifidobacterium longum BB536 administration on influenza infection, influenza vaccine antibody titer, and cell-mediated immunity in the elderly. Biosci Biotechnol Biochem. 2010;74(5):939-45. 

Jonathan Ritter, Puya Yazdi, Scientific Health Benefits of Bifidobacterium longum, 2020

Silva AM, Barbosa FH, et al., Effect of Bifidobacterium longum ingestion on experimental salmonellosis in mice. J Appl Microbiol. 2004;97(1):29-37. 

Akatsu H, Iwabuchi N,et al.,Clinical effects of probiotic Bifidobacterium longum BB536 on immune function and intestinal microbiota in elderly patients receiving enteral tube feeding. JPEN J Parenter Enteral Nutr. 2013 Sep;37(5):631-40. 

益生菌如何更好的发挥作用

谷禾健康

01 介绍和定义

在20世纪初,Elie Metchnikoff(著名生物学家,酸奶之父)发现了有益的肠道微生物,该微生物可使肠道健康正常化并延长寿命,后来被称为“益生菌”。益生菌是指“以适当的剂量给予宿主健康有益的活生物体” 。

益生菌是促进健康的微生物,在肠道微生物组学领域也被认为是下一代生物疗法乳酸菌(Lactobacillus),乳球菌(Lactococcus),芽孢杆菌(Bacillus),链球菌(Streptococcus),双歧杆菌(Bifidobacterium),小球菌(Pediococcus)和丙酸杆菌属(Propionibacterium)是众所周知的益生菌。

酵母(如啤酒酵母,卡里斯伯格葡萄球菌布拉氏酵母)和真菌(如黑曲霉米曲霉)也被视为益生菌。

然而,最常见的益生菌属是乳杆菌和双歧杆菌。到2020年3月,乳杆菌属包含261个遗传多样性物种。最近,一群科学家根据全基因组测序将其重新分类为25属。当前分类学分类的更新可能有助于理解益生菌有益健康的机制。

02 功能和市场

除调节肠道功能外,益生菌还通过其在人体内的生物学机制与多种其他健康益处相关联,例如大脑功能,增强免疫力,降低胆固醇和促进代谢稳态。益生菌可以产生短链脂肪酸,维生素,酶,有机酸和抗菌肽。这些化合物参与人体的生理功能。

《益生菌补充剂市场-2020-2025年全球展望与预测》报告说,人们对免疫健康的关注增加导致COVID-19大流行期间益生菌补充剂的市场增长

最近关于“益生菌市场-增长,趋势和预测”的报告预测,到2024年,全球益生菌市场将达到768.5亿美元,在2020年至2025年的预测期内复合年增长率为8.15%。

该报告还指出,由于在益生菌强化食品中对显着应用的需求不断增长,细菌市场将以最快的复合年增长率增长。

03 益生菌在人类健康中的生物学机制和作用

益生菌通过它们在体内的生物学机制提供各种健康益处。“人类微生物组计划”报告说,人体中其他细菌细胞的数量约为人体细胞数量的10倍。这些细菌还包括有益微生物,它们在维持人类健康方面也起着至关重要的作用。益生菌会产生短链脂肪酸,酶,乳酸,还会分泌杀死致病细菌菌株的抗菌肽。这些细菌素被认为是“天然防腐剂” 

益生菌也与营养物与病原体竞争,从而抑制在结肠腔框致病细菌粘附,从而改善粘液产生,这反过来又增强了免疫系统刺激肠上皮屏障。

益生菌减少通过胆盐水解酶[毒素],并通过其它的酶活性提高体内的养分生物利用度。一些益生菌甚至有可能分泌有助于疾病治疗的特定抗癌和抗氧化代谢产物

内源性补充益生菌可以帮助抗生素治疗后肠道微生物组的补充。与抗生素一起使用或在抗生素治疗后食用益生菌可以预防与抗生素有关的腹泻

除了增强消化健康,益生菌还与大脑功能有关,有助于治疗肠易激综合征,降低血液中的低密度脂蛋白水平,预防女性的阴道和尿道感染(酵母/细菌),预防胰腺炎和改善胰腺健康,促进呼吸道健康,抑制肿瘤发生,调节免疫反应,促进代谢稳态。

此外,益生菌有助于治疗代谢紊乱,如糖尿病、非酒精性脂肪肝和心血管疾病、癌症、口腔念珠菌感染和牙周炎。

因此需要知道自己缺乏哪些益生菌,以及整齐肠道菌群状况来选择合适的菌株和益生菌属是不同应用的关键。

益生菌的生物学作用可以基于它们的代谢过程进行解释,描述益生菌在人体中的重要性,即益生菌的生理作用。此类影响分为以下几类:

调制

益生菌通过直接或间接影响抑制或激活信号通路调节的信号通路,参与代谢调节。益生菌粘附于肠粘膜进行定植的能力及其与先天免疫反应的相互作用可以调节肠上皮细胞的屏障功能,从而为宿主带来健康益处。这些调节机制有助于对抗病原体,从而提高免疫力(免疫调节),增加抗氧化能力,改善肠道转运,增强神经反射(神经调节),调节血管内皮功能和血压,降低胆固醇水平,保持健康细胞和受损细胞的动态平衡。

合成

益生菌活性的关键方面是合成活性代谢物。如:通过多种机制合成短链脂肪酸(乙酸、丁酸、丙酸),维生素(枯草芽孢杆菌合成B2、K2,B.megaterium 合成B12),菌株特有机制产生的信号分子(唾液乳杆菌LDR0723, BNL1059, RGS1746CRL1528菌株相关的细胞因子)。

吸收

益生菌可以提高微量营养素的生物利用度及其代谢。铁以Fe2+形式吸收显著;然而,在肠粘膜中,铁与脱铁蛋白结合,脱铁蛋白将Fe2+转化为Fe3+(铁蛋白)。肠道微生物群中的益生菌有助于将Fe3+还原为Fe2+,促进十二指肠对铁的吸收。

摄入乳酸菌可通过胞外酶提高铁的吸收率和相对铁的生物利用度。益生菌在增强钙吸收以及通过结肠发酵改善钙吸收方面起着重要作用。益生菌参与维生素D的合成和吸收。这些例子解释了益生菌在提高人体维生素和矿物质的生物利用度方面的作用。

预防

益生菌的预防机制有助于预防疾病,降低感染、1型过敏、病毒感染和癌症的风险。此外,还有益生菌预防在细菌性阴道病治疗中的作用。重要的是,一些介入性临床试验正在进行,以了解益生菌预防的有效性。一些正在进行的临床试验是益生菌预防微生物组调节和预防严重感染。

04 益生菌发展和应用

益生菌科学涵盖了从微生物学到食品加工的各个方面,并且已在营养保健品和功能食品,牙科保健疗法,皮肤护理,肿瘤学,肠胃病学,免疫学和神经内分泌学等各个领域得到了应用。

通常,益生菌是口服给药的,并且可以以功能性食品,膳食补充剂和药物(药用益生菌)的形式在市场上买到。但人们更喜欢食物不是补充剂/药物

粮农组织/世卫组织2002年报告指出,食品中益生菌的生存能力必须足以赋予健康。另外,据报道,益生菌食品应至少含有106CFU / g的活的微生物的生存力。然而,益生菌的稳定性是口服摄入靶向结肠时最需要考虑的问题。有必要在胃肠道(GI)转运过程中维持其生存能力,以提高其功效

此外,益生菌需要在加工,储存和消化过程中防止各种压力因素的影响。益生菌的不同菌株显示出其能力的变化,例如功能特性,稳定性和功效。益生菌的稳定性可以通过各种策略来改善,例如通过预处理,诱变,选择性压力处理以及通过组学技术进行基因改造等来适应环境和选择

然而,一些这些方法中的可能改变的益生菌的潜力,并且还遗传修饰的菌株不能很好转化到食品应用。事实证明,封装是保护益生菌以确保其稳定性而不改变天然菌株特性的最佳方法

05 封装和保存

益生菌的包封提供了保护作用,这些包封材料通过增强抗逆性来稳定益生菌在加工,储存和作用部位时的稳定性。因此,封装过程也赋予了靶向递送配方是针对目标给药系统的关键考虑因素之一,可以通过适当设计工艺来开发。

有许多方法可将益生菌输送到结肠的降结肠。例如聚合物/脂质涂覆的,pH控制的,磁性/酶触发的和基于配体受体的递送系统。牛奶,酸奶,奶酪,冰淇淋,蜂蜜,巧克力和发酵食品(大米/水果/蔬菜)是益生菌的天然递送系统

此外,益生元是支持益生菌递送至结肠(如包封剂),并在所有情况下,不易消化的食物成分,滋养微生物的益生菌。天然的益生元包括生香蕉,洋葱,大蒜,甘蔗,朝鲜蓟,和菊苣和雪莲果[根部],并且是市售的如抗性淀粉,菊粉,乳果糖,乳糖醇,乳果糖,低聚果糖(FOS),低聚木糖,低聚半乳糖。

通常,微生物的生存能力高度取决于多种因素,如基质,贮存温度,湿度,pH值,和氧水平。包封基质提高了益生菌的抗逆性。因此,当两种益生菌以基质形式组合时,协同合生作用方法可确保共同施用的益生菌的稳定性。同样,这有助于在整个保质期内保持益生菌的潜力。

06 微生态制剂的封装:需要关键考虑的因素

通过口服途径摄入的益生菌在消化道中会遇到多种压力环境。例如,人类消化系统的pH值是可变的。大约,口腔的pH值为6–7,胃的pH值较低,为1–3,小肠和大肠的pH值在6到7之间。由于胃的低pH条件和小肠的高胆盐含量,维持到达大肠(结肠作用靶点)的益生菌的活性是一个挑战

因此,在任何功能性益生菌食品的开发过程中,益生菌的适当保护是至关重要的。除人体条件外,其他因素,如:加工温度、封装/基质材料的pH值、产品中的氧气水平、其他竞争细菌的存在以及代谢物的毒性等,都会影响益生菌的生存能力。在这种情况下,在储存期间,产品的温度和水分含量是需要考虑的主要因素。此外,干燥的益生菌的再水化和溶解度行为与它们的生存和复苏有关。

已经开发了各种技术来提高益生菌对外界胁迫的耐受性,从而通过食物基质修饰和采用过程工程方法来增强肠道微生物群的定植。在这方面,食品基质的选择和配方是技术性能和益生菌稳定性关键考虑因素

将益生菌封装为粉末制剂可以保护这些活的微生物,提高其稳定性,并在靶向给药方面提供益处。

重要的是,在优化益生菌封装方法的过程中,必须在封装过程前后建立微生物稳定性、功能性、安全性、有效性和靶向能力

Yohaet al., Probiotics & Antimicro. Prot. 2021

上图解释了根据FAO/WHO指南评估食品用益生菌所涉及的各种筛选部分。为了保持益生菌的特性,封装方法应该考虑以下几个方面。

益生菌的稳定性

提高胶囊化益生菌活力保留率的保证

益生菌的功能性

功能性方面,如抗胃酸、胆盐和消化酶、对潜在病原体的抗菌活性、粘液粘附性、聚集性和其他潜在特性应在封装后保留

安全性和有效性

益生菌菌株应安全、无污染、无毒、包封后保留治疗效果

靶向能力

提高对环境压力的耐受性和靶向结肠的能力,以增强肠道微生物群和有益健康的影响

已经探索了各种技术来封装益生菌(下图)。尽管所有这些方法的重点是保护益生菌的生存能力/稳定性,但每种技术的概念都是独特的,并对产品质量有直接影响。

Yohaet al., Probiotics & Antimicro. Prot. 2021

加工条件被认为是主要因素,是负责保留质量和活力的胶囊益生菌。此外,不同的壁材料已被探索作为保护/涂层剂用于封装益生菌。

它们来源于膳食纤维、多糖、蛋白质和合成聚合物。

通常,选择取决于它们的功能性、成膜能力、稳定性、溶解性、消化率和释放特性。为了获得所需的性能,还可以使用壁材的组合或乳化剂/填充剂的添加。

然而,大多数已建立的益生菌封装方法只考虑了益生菌的生存能力,而没有考虑益生菌的功能或特性。在益生菌的封装/干燥过程中,细胞的表面性质及其功能性会受到影响。这可能会影响益生菌的特性,如聚集(自聚集和共聚集)特性、肠粘液粘附能力、拮抗活性和胆盐水解酶活性。

因此,未来的研究除了探讨微囊化益生菌的生存能力外,还需要探索微囊化益生菌的功能特性,从而更好地关注微囊化益生菌的健康益处。

07 非胶囊益生菌的关键问题

未封装的益生菌(游离细胞)在高温、高操作压力、剪切应力和低胃pH下失去活力,进而导致益生菌细胞计数和性能的耗尽。

封装过程可以通过将益生菌包埋在保护壁材料/基质中来保护益生菌。益生元材料,如FOS、菊糖和填充材料,如麦芽糊精(MD)、乳清蛋白(WP)、乳清分离蛋白(WPI)、乳清浓缩蛋白(WPC)、海藻酸钠、明胶,并在改善益生菌在不同外部环境中的稳定性方面发挥了重要作用

下图详述了据报道用于封装益生菌的不同壁材料。

Yohaet al., Probiotics & Antimicro. Prot. 2021

在通过胃肠道的不利和波动条件的运输过程中,包埋可以为益生菌提供显著的保护

例如微胶囊化对益生菌的贮藏稳定性和贮藏后性能有显著的影响。且胶囊化益生菌的后酸化过程比非胶囊化益生菌慢。

一项关于抗生素与胶囊型益生菌(抗生素敏感型益生菌)合用效果的研究显示,胶囊型益生菌对抗生素耐药病原体的治疗效果有所提高。此外,抗生素治疗可以杀死目标病原体以外的有益细菌;因此,为了滋养肠道微生物,益生菌的补充是必要的。

封装的益生菌有一个由海藻酸钠或其他合适的生物相容性材料组成的保护壳,可以抵御抗生素。生物相容性脂质涂层提供肠道微生物的生物界面超分子自组装,用于增强口服给药和治疗

08 益生菌封装技术

研究人员和工业界已经探索了不同的封装方法来封装感兴趣的不同成分。作为公认的优点,胶囊益生菌可以提供更好的范围,有针对性的 “交付”。本节解释了每种技术的概念以及最近在益生菌的封装效率、生存能力和稳定性方面的应用。

下表总结了不同的封装技术。

传统方法

新型方法

Yohaet al., Probiotics & Antimicro. Prot. 2021

09 确认包封的益生菌靶向递送和生存能力的方法

益生菌的封装可以保护细胞直至到达结肠的生存能力,从而提高了到达肠道远端(胃肠道下部)后益生菌功能的有效性。益生菌递送的确认可以首先通过体外研究使用模拟的静态体外消化或动态体外消化系统(模拟器)来完成。这些可以为目标交付提供概念证明。此外,需要对益生菌的体内研究来获得对这种益生菌的现实看法以及对健康影响,功效和安全性进行深入研究的需要。

静态体外消化研究

可以在控制温度,pH和连续摇动条件下,使用模拟消化液(例如模拟唾液(SSF),模拟胃液(SGF)和模拟肠液(SIF))进行体外消化研究。尽管如此,这些还是很少地模仿消化过程(下图)。

Yohaet al., Probiotics & Antimicro. Prot. 2021

de Almeida Paula等人评估了在模拟的GI条件下植物乳杆菌的双过程微囊化对益生菌存活的效率。报告说,与游离细胞(25%)相比,微囊化植物乳杆菌中的细胞活力更高(80.4 %)。

动态体外消化研究

静态模型只能代表胃肠道中的生化过程,但不能提供动态环境,例如对胃的恒定物理力(轴向和剪切力),胃排空,用于肠蠕动的非自愿肌肉的同步收缩,反馈机制,以及餐食和常驻微生物区系的影响。为了解决这些挑战,已经开发了动态体外消化模型

——Mainville模型(IViDiS)

人类上消化道的动力学模型模拟了上消化道运输的事件。该模型由胃(胃)和十二指肠反应器组成,可用于验证从人,动物和发酵乳制品中分离出的益生菌的存活率。该模型考虑了进餐时胃中存在pH值以及小肠中的胆汁盐的pH值变化。特别是,它证明了膳食以及包封基质对益生菌生存力的影响。

——SHIME®

模拟人肠道微生物生态系统(SHIME®)是计算机控制的模拟人胃肠道模型。该模型由五个反应器组成,这些反应器模拟从胃到大肠的降结肠。胃反应器通过胃蛋白酶消化模拟酸性环境,小肠反应器为消化过程提供胆汁条件,大肠的三个反应器模拟结肠的不同区域(上升,横向和下降),有助于研究结肠的差异。微生物过程。

研究使用SHIME®评估了藻酸盐-壳聚糖微囊化嗜酸乳杆菌的靶向递送,确认了益生菌在目标部位的成功递送。

——SIMGI®

胃肠道模拟器(SIMGI®)是一种多隔室的GI模型,旨在模拟胃,小肠和大肠(具有上升,横向和下降结肠隔室)的消化过程。SIMGI®系统可以处理结肠菌群的增殖。

一项研究补充植物乳杆菌CLC17对多酚代谢的影响。他们将SIMGI®模型用于模拟的GI消化,并通过qPCR(定量聚合酶链反应)和16S rRNA基因序列分析对微生物群组成进行了定量。结果推断该菌株可以成功地在结肠区域的区室中递送

另一项使用SIMGI®模型研究了纳米银颗粒对人体肠道菌群的影响,并报道纳米颗粒不影响人体肠道菌群的代谢活性。

——ARCOL

人工结肠(ARCOL)是模拟结肠(大肠)消化的单室模型。它可以与任何其他动态上层GI系统一起使用。肠道菌群的组成及其活性可以使用ARCOL模型进行研究。此外,该模型中存在的透析纤维模仿了微生物代谢产物的被动吸收

——TIM

TNO胃肠模型(TNO)系统具有TIM-1(由胃,十二指肠,空肠和回肠组成)和TIM-2(大肠)两种模型。Marteau等首先研究了使用TIM-1的乳酸菌的存活率,并报道了它可用于验证胃肠道转运过程中益生菌的生存能力。

Cordonnier等使用TIM -1和ARCOL动态仿真器研究酿酒酵母的存活动力学以及CNCM I-3856及其对肠道菌群的影响。结果表明,益生菌菌株在上消化道中具有较高的存活率,而该菌株对结肠条件更敏感

Venema等使用TNO GI模型(TIM-1系统)研究了多层包被的益生菌菌株(加氏乳杆菌PA 16/8,长双歧杆菌SP 07/3和双歧双歧杆菌MF 20/5)的存活率-胃和小肠的体外模型。他们报告说,胃存活率双歧杆菌和乳杆菌分别以72%和53%的比例被递送到小肠。因此,与未包衣的益生菌菌株相比,益生菌菌株的肠溶衣提供的活细胞递送增加了20–40倍

——GITS

胃肠道模拟器(GITS)是模拟人类胃肠道状况的单个生物反应器

Sumeri等使用GITS研究了不同的益生菌(嗜酸乳杆菌La-5,约翰逊乳杆菌NCC533,干酪乳杆菌Shirota和鼠李糖乳杆菌GG)的存活率,并报道了嗜酸乳杆菌La-5和约翰逊乳杆菌NCC533对胆汁盐表现出更高的抗性,而干酪乳杆菌菌株Shirota和鼠李糖乳杆菌GG的生存能力降低。

——GIDS

胃肠道消化模拟器(GIDS)-一种半动态体外胃肠道模型,其模拟“禁食模式”,即空腹消化-添加样品前不含消化液。唾液在喂入胃反应器之前被人工添加到外面,以模拟口腔消化。

Adouard等人专门为益生菌开发了这个模型,并建立了它来评估整个人类胃肠道的益生菌生存能力。GIDS系统为识别到达结肠的目标菌株提供了有效的见解

定制动态体外消化系统

Moumita等人使用定制的体外GI模型研究了胶囊化乳酸菌的GI耐受性。对游离型和包封型乳酸菌进行了消化,观察到包封型乳酸菌在消化过程中的变化。

嗜酸菌NCIM-2660与游离菌相比表现出更高的抗性。除了封装外,抗应力/耐应力条件与应变有关。设计体外胃肠道模型,观察益生菌菌株在10.25小时(包括2小时胃、0.25小时十二指肠、3小时空肠、4小时回肠和1小时盲肠5个隔室)的释放和活力,并观察益生菌菌株的释放。在SGIF(模拟胃肠液)中,在pH值(6.0–6.5)范围内释放益生菌菌株,因此,在小肠的空肠腔中发现了活性益生菌

其他动态体外消化系统

Parthasarathi等人开发了一种工程化的小肠系统,以研究肠吸收和灌注过程以及粘膜层的干扰。它由一个与蠕动泵、pH计、供体、受体和缓冲循环室相连的灌注室组成。小动物(大鼠/鸡)的小肠可与该模型相吻合,该模型模拟了精确的体内模型。

Parthasarathi等人在这种工程化小肠系统中使用大鼠小肠来研究生物活性化合物的肠道通透性,并报告所开发的系统非常适合肠道通透性的被动扩散。

利用这种方法研究了纳米胶囊化玉米醇溶蛋白-白藜芦醇的生物利用度,改进后的方法可以推广到益生菌。

其他一些系统,如M.I.D.A.(婴儿消化器官模型)、动态胃模型(DGM)、人类胃模拟器(HGS)、DIDGI® 系统和工程化胃和小肠(ESIN)已被用于评估食物的消化率、溶解特性、营养素的吸收和生物可利用性,包括药物应用。

10 益生菌给药的体内研究

在BALB/c小鼠中评估了逐层包裹的凝结芽孢杆菌的靶向递送,并报告了逐层涂层可提高益生菌的存活率。此外,他们还利用猪小肠进行了粘液粘附和肠道定植研究,并通过使用活体成像系统(IVIS)软件进行生物发光成像,观察到益生菌在短时间内与肠组织良好粘附

Coelho Rocha等人通过口服给药研究了C57BL/6小鼠体内微囊化和非微囊化乳酸菌的存活情况,并通过共聚焦显微镜和qRT PCR(定量逆转录-聚合酶链反应)分析了小鼠的肠道切片。结果确保在肠的不同部分存在活的乳酸菌。研究人员观察到,包封乳酸菌和非包封乳酸菌在十二指肠和空肠切片中均有较高的相对表达,而回肠和结肠切片中仅在包封乳酸菌中观察到相对表达。

上述体内研究实例可证实益生菌在作用靶点的递送;尽管如此,还需要证据证明它们的健康主张/功效/健康用途路径。

11 益生菌在储存稳定性方面的挑战

包囊技术的范围提供了货架稳定的益生菌。然而,监管问题存储期间与在环境条件下益生菌的贮存稳定性产生。市场上的大多数益生菌产品都需要冷藏。但事实上,即使是胶囊形式,也应至少在打开包装后进行冷藏以保持益生菌的效力,因为大气中的潮湿条件会导致代谢发酵或降解。

尤其是在益生菌果汁中,由于高有机酸含量需要冷藏,因此酸性胁迫是一个挑战。

通过选择特定的弹性基因型益生菌(如形成孢子的益生菌)可以克服这一挑战。包封方法与益生菌的选择性菌株一起,即使在非冷藏条件下也将提高货架期。

在应用的基础上,益生菌在各种疾病的治疗中起着至关重要的作用,如本文前面的部分所述。有趣的是,益生菌在病毒感染中的作用-“抗病毒益生菌”是医学界的一个新概念。最近许多研究都集中在使用益生菌的急性呼吸道感染的治疗,考虑到涉及通过肠道-肺轴肠肺串扰科学。

益生菌的免疫调节和预防机制可用于治疗/预防病毒感染。众所周知,肠道益生菌介导的免疫调节通过细胞因子的分泌来上调呼吸道粘膜免疫,从而预防呼吸道病毒感染。

有几个关于益生菌防治呼吸道感染的干预临床试验报道(NCT01782755,NCT03449459,NCT03636191和NCT03683927)。

最近,国家卫生委员会建议益生菌用于COVID-19感染的患者,以维持肠道菌群的平衡并预防继发性细菌感染。此外,已经在我国临床试验注册中心(ChiCTR2000029974)下注册了临床试验,以评估丁酸梭状芽孢杆菌胶囊和凝结芽孢杆菌的有效性和安全性片治疗新型冠状病毒性肺炎患者并研究其作用机制。对益生菌及其新发现的认识不断提高,可能为改善人类健康的解决方案铺平道路,并且封装作用仍然至关重要。

结 语

这篇文章阐述了益生菌在人类健康中的作用以及为实现所需益处而对益生菌进行封装的必要性。

通过提供对人类口腔胃肠道的复杂途径和一系列应激环境的理解,来解释对封装的需求。益生菌的封装已被证明具有保护益生菌和促进其靶标递送的潜力。

益生菌的包封,靶向递送以及菌群检测方法以及包封对益生菌的作用等面临的挑战,是益生菌从研究进入商业化所必须解决的。

相关阅读:

益生菌的简单入门指南

新冠肺炎患者肠道菌群改变,相关的营养干预措施

低聚半乳糖对衰老肠道的多效作用

参考文献

Yoha, K.S., Nida, S., Dutta, S. et al. Targeted Delivery of Probiotics: Perspectives on Research and Commercialization. Probiotics & Antimicro. Prot. (2021).

van de Wijgert JHHM, Verwijs MC (2019) Lactobacilli-containing vaginal probiotics to cure or prevent bacterial or fungal vaginal dysbiosis : a systematic review and recommendations for future trial designs. BJOG An Int J Obstet Gynaecol 127:287–299.

Raghavi LM, Moses JA, Anandharamakrishnan C (2018) Refractance window drying of foods: a review. J Food Eng 222:267–275.

Patarroyo JL, Florez-Rojas JS, Pradilla D et al (2020) Formulation and characterization of gelatin-based hydrogels for the encapsulation of Kluyveromyces lactis – applications in packed-bed reactors and probiotics delivery in humans. Polymers (Basel) 12:1287

Yoha KS, Moses JA, Anandharamakrishnan C (2020) Effect of encapsulation methods on the physicochemical properties and the stability of Lactobacillus plantarum (NCIM 2083) in synbiotic powders and in-vitro digestion conditions. J Food Eng 283:110033.

最新研究进展 | 小儿功能性腹痛症

谷禾健康

功能性腹痛性疾病(FAPD)是儿童期最常见的疾病,全世界25%的儿童和婴儿受其影响。

功能性腹痛性疾病

小儿功能性腹痛性疾病,目前称为肠脑相互作用障碍,包括肠易激综合症,功能性消化不良,腹型偏头痛和功能性腹痛。

<罗马IV诊断标准见附录>

近日,英国和美国的研究科学家联合发表在《NATURE REVIEWS | DISEASE PRIMERS》上的一篇综述文章题为:“Paediatric functional abdominal pain disorders”(小儿功能性腹痛症)。

该文总结了FAPD患病率和致病性的最新进展,并特别关注了早期生命的影响和构建。对食源性发病机理和病理生理学有了更深入的了解,包括肠道器官(炎症,运动和微生物群),核心因素(心理方面,某些大脑区域的敏感性和/或连通性或活动性差异)以及外在因素(感染)。

此外,讨论了当前的诊断方法并着重介绍了这些疾病的治疗选择,特别是IBS和FAP-NOS。强调可用的药理干预措施仅限于儿童,因此,干预管理重点落在综合方法上,包括针对精神的干预措施(催眠疗法和认知行为疗法),饮食(益生菌)和经皮神经电刺激。这些方向将有助于理解病理生理学并更好地治疗这些疾病。

01

FAPD 简介

FAPDs的特征通常内脏痛觉过于敏感以及内脏刺激中枢感知增加而导致残疾,是遗传易感性和早期生活事件背景上叠加社会心理因素和医学因素的最终结果。

功能性消化不良的症状特征主要来自胃肠道近端,涉及上腹部腹痛和/或餐后饱胀和/或早期饱腹感。

腹型偏头痛的特点是发作性长时间发作,剧烈,急性脐周,中线或弥漫性腹痛。这些痛苦的发作通常无能为力并干扰正常生活。

这些发作通常但不总是与其他症状(例如厌食,恶心,呕吐,头痛,畏光等)相关,这些症状可能在疼痛持续时间之前或与疼痛持续时间同时发生,并且这种症状性发作可能相隔数周至数月不等。 

02

流行病学

风险因素如下:

03

机制 / 病理生理学

FAPDs是一种复杂的疾病,似乎是由于一个或多个元素的功能和/或更微妙的结构完整性的破坏造成的菌群-肠-脑轴。这些条件下相互作用的复杂性和多面性被整合到一个生物心理社会模型中。

该模型的关键组成部分是内脏超敏反应和中枢敏感化。

  内 脏 超 敏 反 应  

内脏超敏反应描述了对周围信号的知觉反应(即痛觉过敏),并且可能是内脏传入信号处理变化的结果或疼痛下调变化的结果(例如,中枢敏感化)。

表现:疼痛的感觉阈值降低,也就是稍微一点点刺激就会感到疼痛。

可能原因:在肠扩张期间或由于暴露于食糜的化学成分改变引起,部分解释了对诸如饮食调整和抑酸等治疗的反应。

潜在诱因:炎症,感染和压力

从本质上讲,这些触发因素可引起粘膜通透性变化并导致炎症,释放促生因子,包括5-羟色胺,组胺,NGF,蛋白酶和前列腺素,它们能够激活传入伤害感受器(痛觉神经)上的受体,引起急性疼痛以及持久的功能和结构改变,这是维持慢性疼痛的关键。

  中 枢 敏 感 化  

中枢敏化是指通过增强中枢神经系统内的神经元功能和神经信号来放大疼痛敏感性的现象,会引起疼痛超敏反应,并且是一种发展和维持慢性疼痛的机制。

除了疼痛超敏反应外,中枢敏化还会导致脑部活动的继发性变化,可以通过电生理或成像技术进行检测。患有FAPD的个体可能更倾向于发展来源不明的中央致敏。

2018年进行的一项系统性回顾涉及12项病例对照研究,发现功能性腹痛儿童的继发性痛觉过敏和皮质伤害感受改变。

 生 命 早 期 事 件   

在小儿FAPD中,损伤时机比导致微生物群-肠-脑轴成分破坏的多种因素或该轴本身的破坏更为关键。在生命的头二十年中,尤其是从围产期到儿童时期直至青春期,支撑其功能的肠脑轴所有元素的发育和成熟的关键过程至关重要。

包括手术(例如脐疝和幽门狭窄),细菌性胃肠道感染,炎性或免疫介导的疾病(例如乳糜泻,炎性肠病),以及在生命的最初几个月中发生无害的侮辱,例如婴儿期对牛奶过敏和早期使用抗生素等。

  神 经 免 疫 相 互 作 用   

在一些患有FAPD的儿童中,证据表明存在低度的肠道炎症,并在发病机理中发挥了神经免疫相互作用的作用。 

一项研究发现,IBS患儿回结肠结肠粘膜中靠近神经的肥大细胞数量增加。神经纤维相关的肥大细胞计数与腹痛的强度和疼痛发作的频率相关。

  胃 肠 蠕 动   

胃肠动力异常促进FAPD的病理生理。具有上消化道症状的患者可能有胃排空延迟和/或胃适应性降低或两者都不存在。功能性下消化道症状的患者可能延迟,加速或正常结肠转移,和/或骨盆底运动障碍(肌肉协调障碍导致试图放松骨盆底肌肉时收缩)。

—功能性消化不良

—肠易激综合征

  微 生 物 群   

FAPD与肠道微生物群的多样性和菌群组成有关,尤其是IBS。2019年,一项系统评价86评估了健康个体和IBS患者(成人和儿童)的肠道菌群组成。发现双歧杆菌属的丰度下降。IBS患者中的抗炎作用与Faecalibacterium spp,尤其是Faecalibacterium prausnitzii一样,具有抗炎作用。 

IBS患者的粪便微生物群的多样性降低或保持不变。粪便微生物群组成或代谢组组成可以预测患者可能从饮食中获益。 

除细菌外,真菌或病毒也可能在FAPD病理生理中起作用。但是,有关真菌菌群失调或病毒菌群失调的可用数据有限,目前的研究主要集中于炎症性肠病,而不是IBS。

  营   养    

在患有FAPD的儿童中起着至关重要的作用。

饮食失调(例如神经性贪食症)可能导致IBS患儿肥胖的发生率增加。

碳水化合物的吸收不良可引起胃肠道症状。吸收不良可能与特定的酶缺乏症有关(例如乳糖酶缺乏症中的乳糖;蔗糖和异麦芽糖酶缺乏症中的蔗糖和淀粉)或与碳水化合物(如果糖,山梨糖醇或甘露醇)的吸收能力有限有关。

在糖较小的情况下,所引起的渗透负荷可导致肠腔膨胀小和快速转运。对于诸如果聚糖等较大的糖,人不具有消化的酶促能力,因此,吸收不良的糖会被结肠菌群发酵,从而导致气体形成和潜在的结肠扩张。

  心 理 因 素   

肠脑轴的生理很复杂,包括传入和传出成分。

下丘脑-垂体-肾上腺轴通过皮质醇和促肾上腺皮质激素释放因子的释放(在压力条件下均会增加),以及通过刺激肥大细胞和诱导脯氨酸释放的反馈回路,促进肠-脑相互作用。 

研究表明,在成年人和有FAPDs的儿科患者中,压力都会增加肠道炎症标志物,如粪便钙卫蛋白和CRP。 

肠道与大脑的相互作用涉及自上而下和自下而上的过程,因此,肠道菌群也可以影响脑功能。在压力条件下,肠道菌群可以增加上皮屏障的通透性,使抗原和/或病原体能够通过并引起炎症反应。由此产生的循环性促炎细胞因子可能会与中枢神经系统通讯,刺激大脑的免疫反应,从而可能导致或加重心理症状(例如焦虑和抑郁)。

几项研究表明,与健康儿童相比,患有家族性帕金森病的儿童的心理压力和行为问题有所增加。心理因素可能既是FAPD的起因,也是后果。

04

诊断、筛查和预防

05

治疗方法

无论采用哪种治疗方法,患者与临床医生之间有效的沟通和病人教育,是成功进行FAPD管理的核心。必须花足够的时间向每位患者的照护者解释诊断,并讨论生物心理社会模型。

FAPD的管理受到几个因素的限制

1. 由于FAPD生物心理社会特性,每个孩子都有一套独特的病理生理因素,并且对疗法的反应也不同。

2. FAPD患儿的证据基础很小,许多治疗建议都是基于对成年人的研究。 儿童通常不会像成年人那样做出反应。

3.  一些有效的治疗方法是行为疗法(饮食疗法和心理疗法),由于缺乏专职医疗保健专业人员以及缺乏保险,这些方法并不容易。

以下对每种治疗方法展开讨论。

   饮 食 调 整   

 益 生 菌   

多项研究检查了益生菌治疗FAPD的功效(大多成年IBS患者)。这些研究表明,益生菌或特定菌特定组合可能是有效的,但研究有局限性,如样品量,致盲性,所用益生菌的差异以及不同的剂量,其作用仍不清楚。

在患有IBS的儿童中,两项研究发现鼠李糖乳杆菌GG可有效减轻腹痛症状,而一项研究则报告腹痛没有改善,但感觉到的腹胀有所改善。在不同的研究中,疼痛程度再次有所不同。

在一个多中心,IBS儿童中进行的交叉RCT研究中,VSL#3(八种益生菌菌株的混合物)在改善症状和改善生活质量方面比安慰剂更安全,更有效

   心 理 干 预   

心理干预迄今为止,诸如CBT和催眠治疗等心理干预已被证明是管理FAPD的最成功干预措施,并主张将其普遍纳入管理策略。

   认知行为疗法(CBT)

CBT是治疗IBS的研究最多的心理疗法,其目的是改变认知,情绪和行为,这些不良情绪行为等都可能加剧或维持IBS症状。 

在成人和儿童中的研究表明,与教育和其他控制干预措施相比,CBT在改善疼痛和参与社交生活的能力以及减轻焦虑或抑郁症状方面是有效的

十二项随机对照试验涉及990名IBS儿童(7-18岁),显示出CBT对生活质量,学校表现和社会参与产生了长期的,持久的有益影响。CBT可以作为面对面的治疗提供,也可以通过互联网面向儿童或通过电话面向父母。

已报道,CBT在改善肠易激综合征儿童的疼痛和残疾方面具有有效性。患有家族性帕金森病的儿童的社区康复治疗主要集中在学习应对症状和减少残疾上,这些治疗应该是综合护理方法的理想组成部分。

    催 眠 疗 法   

在治疗师的指导下,患者会进入催眠状态,以响应改变主观体验,感知,情感,思想或行为的建议。 

在成年人中,催眠疗法已被证明可导致结肠运动改变改善内脏超敏性并减少长期持续存在的心理因素,例如躯体化和心理压力。

然而,在IBS患儿中,尽管接受了标准疗法的儿童的疼痛评分和躯体化评分均较低,但在催眠治疗后并未发现超敏反应降低(通过实验测试)。

IBS或FAP-NOS(n = 412;6-18岁)儿童的5个随机对照试验,无论是单独治疗还是在家中通过CD进行催眠治疗,均产生了长期有益影响

1年5年的随访中,接受催眠治疗的患者中分别有85%和68%已没有症状,而对照组中分别只有25%和20%的患者缓解

    瑜 珈 疗 法  

瑜伽练习已被证明可以改善应激诱导的副交感神经系统活性不足。三个随机对照试验,包括127名IBS儿童(7-18岁),瑜伽疗法在减少腹痛方面具有积极作用。

但是,一项荷兰研究表明,在1年的随访中,瑜伽干预并没有比不包括CBT的标准治疗更有效。由于学习方法的重大缺陷,尚不能提出将瑜伽作为FAPD儿童的常规干预措施的建议。

神 经 刺 激   

多项研究表明,脊髓和大脑的电刺激在调节疼痛途径中的功效,能够减少脊髓和中央杏仁核中50%以上的神经元放电,从而减轻内脏疼痛。

一项研究表明,经皮神经电刺激(PENFS)可以调节杏仁核和脊髓神经元的反应特性,并显着降低大鼠内脏超敏反应的发展。 

随后,同一组受试者在115名FAPD的青少年(11至18岁)的随机对照试验中显示,具有主动装置的PENFS可以改善健康状况,并显着减轻疼痛和残疾 与假刺激组。 

此外,PENFS的有益作用在2个月的随访期间得以维持。尽管有些耳部不适,但未报告严重的不良反应。

补 充 和 替 代 医 学 

补充和替代医学包括不同的方法,从针灸和阿育吠陀医学到脊椎指压疗法、整骨疗法、顺势疗法、精神治疗、按摩和冥想等身心技术。大约40%的澳大利亚和荷兰诊断为糖尿病肾病的儿童使用其中某些替代疗法,其中草药治疗是最常见的(46%)。

许多补充疗法被公众认为是“自然的”,比现代医学的医疗设备更安全、更温和。FAPDs儿童对对抗疗法药物相关可能产生不良反应的恐惧,常规治疗没太大效果,让父母希望寻求补充和替代治疗。

然而,到目前为止,评估草药疗法、针灸、顺势疗法、身心疗法或肌肉骨骼操作(如整骨疗法和脊椎指压疗法)对患有家族性帕金森病的儿童的效果的随机对照试验尚不可用。

由于糖尿病周围神经病变的自发缓解率很高(30-70%),采取逐步的管理方法是明智的;必要时,教育、识别和改变压力因素和饮食干预可能是第一步。当症状持续或再次出现时,下一步可能是开始一种心理治疗,如认知行为疗法和催眠疗法,或PENFS。

药 物 疗 法 

06

生活质量

胃肠症状的严重程度和发生频率对不同患者的功能状态有不同的影响。患者报告的健康相关生活质量(HRQOL)测量应该有助于深入了解FAPDs对儿童和青少年功能状态的不同影响,包括身体、情感、行为、社会和认知方面。

评估症状和HRQOL影响的患者报告结果已成为成人临床状态和治疗结果的公认指标。但在儿童环境中,自我报告的HRQOL措施在仪器开发和临床应用中遇到了挑战,部分原因是担心儿童能否可靠地自我报告与健康相关的信息。

量化个体胃肠道症状对于开发以患者为中心和针对症状的干预措施很重要,这可以改善整体HRQOL。例如,一项针对259名患有功能性便秘,功能性腹痛或IBS的儿科患者的多中心研究发现,胃肠道症状最能预测整体受损。

07

展  望

FAPD在儿童时期很常见,FAPD患病率和/或复杂性可能会增加。因此,需要有来自所有地理区域以及世界各地精心设计的流行病学研究,才能真正了解问题的性质和规模。

特别重要的是,我们目前对导致儿童FAPD发病机理的潜在因素的了解,需要使用来自FAPD患儿的组织样本来解决免疫功能障碍和神经功能障碍的基础和转化科学研究。如上所述,早期的影响,即在复杂的肠脑轴各要素发展的关键阶段发生的事件,通常是辱骂或创伤(心理或医学方面的事件),使易感人群容易患上FAPD。

异常改变肠道菌群的因素可能会改变肠神经系统的结构或功能完整性,进而改变其与中枢神经系统的复杂且平衡的相互作用。结果可能是胃肠道重新调整为过敏状态,而大脑则重新编程为过度警觉状态。

当然,其他遗传因素,社会因素和生理变化,例如在青春期或青春期发生的那些,也可能促进症状发展。

现代工具越来越多地与焦虑和压力相关联,也可能会对FAPD产生重大影响。 

总体而言,在过去十年中,儿童家庭保护方案取得了相当大的进展。对所有影响因素,及其与触发FAPD最终发展有关时机的更深入了解,可能带来更合适的预防或治疗策略。


【附录】

功能性腹痛疾病的罗马IV诊断标准

肠易激综合征

该标准必须满足至少2个月,并包括以下所有:

• 每月至少有4天腹痛伴有排便和/或排便次数的改变和/或大便外观的改变

• 腹痛不能随着便秘的解决而消失(疼痛消除的儿童患有功能性便秘,非肠易激综合征)

• 经过适当评估,症状不能完全由另一种疾病解释

功能性消化不良

诊断前必须至少满足2个月的标准,并且必须包括以下一种或多种症状,每月至少4天:

• 餐后饱腹感

• 早期饱腹感

• 与排便无关的上腹部疼痛或灼热感

• 经过适当评估,这种症状不能完全由另一种医学状况来解释

腹型偏头痛

必须在诊断前至少6个月内达到标准,并包括以下所有至少发生两次的情况:

• 持续1小时或更长时间的剧烈、急性脐周、中线或弥漫性腹痛的阵发性发作(应为最严重和最痛苦的症状)

• 发作间隔数周至数月;疼痛使人丧失能力并干扰正常活动;个体患者的定型模式和症状

• 疼痛与以下两种或两种以上症状相关:厌食、恶心、呕吐、头痛、畏光或苍白

• 经适当评估,症状不能完全由另一种医学状况解释,

功能性腹痛

未另行规定标准必须在诊断前至少2个月完成,每月至少四次,包括以下所有内容:

• 并非仅在生理事件(例如,饮食和月经)期间发生的偶发性或持续性腹痛;肠易激综合征、功能性消化不良或腹部偏头痛的标准不足

• 经过适当评估,腹痛不能由其他医疗状况完全解释

相关阅读:

早期生命菌群和呼吸道感染

一文涵盖:大脑发育差异背后肠道菌群的故事

微生物群对三大过敏性疾病发展的影响

儿童时期的饮食模式及其对肠道菌群的影响-亚洲人群的过敏分析

生命早期微生物接触和过敏风险:如何预防

主要参考文献:

Sjölund, J. et al. Prevalence and progression of  recurrent abdominal pain, from early childhood to  adolescence. Clin. Gastroenterol. Hepatol. 2020

Paediatric functional abdominal pain disorders.[J] .Nat Rev Dis Primers, 2020, 6: 88.

Rutten, J. M. T . M., Korterink, J. J., Venmans, L. M. A. J., Benninga, M. A. & T abbers, M. M. Nonpharmacologic treatment of functional abdominal pain disorders:  a systematic review. Pediatrics 135, 522–535  

Masuy, I., Van Oudenhove, L. & T ack, J. Review article: treatment options for functional dyspepsia. Aliment. Pharmacol. Ther. 49, 1 134–1 172 (2019)

Russell, A. C., Stone, A. L. & Walker, L. S. Nausea in children with functional abdominal pain predicts poor health outcomes in young adulthood. Clin. Gastroenterol. Hepatol. 15, 706–71 1 (2017)

Maragkoudaki, M. et al. Lactobacillus reuteri DSM 17938 and a placebo both significantly reduced symptoms in children with functional abdominal pain. Acta Paediatr. 106, 1857–1862 (2017).



1