Tag Archive 糖尿病

肠道微生物组的个体化诊·疗正在来临

谷禾健康

疾病表现、进展和治疗反应的可变性一直是医学的核心挑战。尽管宿主因素和遗传学的变异性很重要,但很明显,在迈向个性化治疗的过程中,必须考虑肠道微生物组具有巨大的遗传和代谢多样性

疾病表现、治疗反应和治疗不良反应个体差异是有效管理疾病和患者安全的主要挑战。这种认知是精准医学的基础,其最简单的形式可以这么说,用个性化方法为合适的患者确定合适的治疗方法,无需反复试验。

将肠道微生物组与人类遗传学区分开来的一个方面是它代表了我们健康的动态组成部分,通过复杂的网络不断与宿主和环境因素相互作用。虽然存在潜在挑战,肠道微生物组的可塑性也提供了一个独特的机会,使其成为精准医学的一个有吸引力的目标。

本文支持使用肠道微生物组作为精准医学工具的当前证据,并建议未来需要将微生物组作为个体化治疗或干预工具的工作。

该研究团队选择了六个广泛的疾病组,这些组具有相对较强的证据表明肠道微生物组的作用。 尽管每个疾病组都有不错的发展,但在考虑临床影响时,不同疾病组的前景和成熟度各不相同(下图)。

01 传染病(艰难梭菌感染)

抗生素诱导的肠道微生物组破坏会促进机会性和医院感染的机制。最常见的院内腹泻感染艰难梭菌为例,强调可能解释临床结果的个体差异的微生物组和病原体特异性特征。

复发性艰难梭菌感染 (CDI) 一直是微生物组研究的中心焦点。CDI 出现最常见的原因是使用抗生素,但矛盾的是,CDI 的一线治疗也包括抗生素。

抗生素对一般人相当有效,但为什么部分患者出现治疗失败,或是成功治疗后复发

这可能与宿主特征(例如高龄)或药物的使用(例如质子泵抑制剂)有关, 以及肠道微生物组中特定病原体的特征有关。

除了宿主因素外,肠道微生物群的破坏也是 CDI 的关键因素。

· 与健康对照个体相比,CDI患者的肠球菌、韦永氏菌、乳杆菌、γ-变形菌属的相对丰度较,而拟杆菌属、毛螺菌科、瘤胃球菌科的含量较

· 在无菌小鼠中建模时,由一系列宿主因素驱动的肠道微生物组的改变增加了对 CDI 的易感性,这是由于氨基酸可用性升高,这是艰难梭菌的有利营养生态位

· 其他小鼠研究已经确定了 CDI 中微生物群衍生抑制因子的丧失以及开放营养位的增加,其中包括短链脂肪酸(特别是戊酸)和次级胆汁酸脱氧胆酸的水平降低,而有机酸琥珀酸、唾液酸和氨基酸的水平增加。这些增加对 CDI 易感性的微生物组驱动因素因人而异,不是每个 CDI 患者都表现出所有这些异常。

除了肠道微生物组,艰难梭菌的菌株变异性,例如毒素产生、代谢和生物膜形成能力的变化,可能会导致不同的结果。

· 一项对约 400 个CDI 患者临床分离株进行全基因组测序的研究发现,大多数疾病复发是由与初始感染相同的菌株引起的,这表明能够在肠道中持续存在的菌株特异性特征可能是相关的。

· 艰难梭菌组织成多细胞生物膜增加了持久性,因为生物膜可以提供针对抗生素的物理屏障,并可以干扰胃肠道的清除。因此,在考虑个体化治疗方法时,将全基因组测序与肠道代谢环境和特定微生物分类群相结合的诊断测试可能会提供更大的分辨力。

▌ 多次复发性CDI的治疗方式之——粪菌移植

目前治疗多次复发性 CDI 或治疗失败的方法包括粪菌移植,其治疗复发性CDI 非常有效(预测粪菌移植失败的主要特征是继续使用抗生素)

长期安全性问题

一个问题是,粪菌移植的长期安全性,目前正在长期注册研究中对其进行调查。

供体粪便的筛查

筛查是否应该使用宏基因组学或病原体全基因组测序来确定抗生素耐药性特征,或者基于培养或 PCR 的病原体筛查是否足够?

两项临床试验说明了基于全基因组测序的方法的有用性,这些试验涉及与供体粪便相关的产超广谱 β-内酰胺酶的大肠杆菌的菌血症病例。粪菌移植的这种安全问题与免疫功能低下的患者尤其相关。

▌ 肠道微生物组——预测CDI治疗结果

除了粪菌移植,还发现肠道微生物组可以预测 CDI 的治疗结果。

在分类水平上,Ruminococcaceae, Rikenellaceae, Bacteroides,Faecalibacterium处理前的丰度与CDI中抗生素的阳性反应有关;在一项包括88例CDI患者的研究中,梭菌科Clostridiaceae, 毛螺菌科Lachnospiraceae, Blautia,粪球菌属Coprococcus, 链球菌Streptococcus, 双歧杆菌Bifidobacterium瘤胃球菌,放线菌与无应答相关。

其中一些菌群还预测了复发感染的风险,而另一些菌群则与艰难梭菌无法在肠道定植有关(图 2)。

肠道微生物组与药物治疗之间的关系

▌ 基于微生物群的其他CDI诊疗方法

对 CDI 的微生物组驱动机制和肠道微生物组在治疗结果中的预后作用的更多了解,加上粪菌移植长期风险的不确定性,导致基于微生物群的 CDI 诊断和治疗方法激增。其中最先进的是复合微生物,它在 II 期临床试验中显示出前景,据报道在 III 期临床试验中取得了成功。

此外,还有几种利用特定细菌和/或代谢物、益生元和噬菌体的方法,这些方法都处于研究的早期阶段。 这些小范围的治疗方式可能会允许基于宿主和宿主微生物组特征的更个性化的治疗方法,从而有可能进一步提高疗效并降低 CDI 治疗的风险

这一进展为 CDI 中未来更精确的基于微生物群的治疗策略的发展带来了希望(表 1)。

表1 肠道微生物在疾病中的研究现状与展望

02 癌 症

肠道微生物组可以从四个不同的角度为个性化癌症生物学领域提供信息:抑制癌症发展、识别新疗法、优化现有疗法和癌症诊断

现有治疗的优化涉及减少不良反应和对癌症疗法反应的预测,从化学疗法和放射疗法到新的免疫疗法。在这里,肠道微生物组在代谢药物以及影响免疫细胞和细胞因子水平中的作用可能导致治疗反应的变化和不良反应的发展

微生物组与癌症有关

可以探索肠道微生物组—免疫系统轴的机制,以阻止癌症的发展并确定新的治疗方法。癌症的发展和疾病进展可以通过微生物及其产物的致癌效应的影响,调节可能促进或抑制肿瘤生长的循环代谢物水平,并诱导炎性和免疫抑制作用。

已经确定微生物群的局部改变与涉及包含共生生物的器官(结肠直肠、宫颈、肺、头和颈部)癌症的发展进展程度相关。

▌ 微生物群与癌症的联系在结直肠癌中最明显

菌群及代谢产物导致炎症 —> 癌症:

微生物及其代谢物与肠道黏膜之间的复杂关系可导致黏膜通透性发生变化,从而增加局部暴露于多种潜在致癌化合物的风险,并可能导致慢性炎症状态。

菌群预测 —> 癌症风险:

另一个机制联系的例子是携带致病岛pks 的大肠杆菌菌株的存在,它编码基因以合成具有遗传毒性的次级代谢物大肠杆菌素,可用于预测结肠癌风险

菌群结构和功能 <—> 癌症:

除了确定的机制特征外,肠道微生物组成和功能属性的差异与较少直接接触器官的恶性肿瘤有关。

如,一项涉及68名胰腺癌患者的研究,与预后较差患者比,肿瘤组织中大量假黄单胞菌Pseudoxanthomonas、Saccharopolyspora、链霉菌Streptomyces 与手术切除后的长期生存率相关。

微生物组和癌症治疗

化学疗法和免疫疗法的反应会受到肠道微生物群在疗效和毒性方面的影响。这种关系可能是由于抗原呈递、炎症反应的诱导和药物化学修饰协同作用。例如,环磷酰胺是一种广泛使用的诱导 DNA 交联的烷化剂,通过调节与特定 T 辅助 17 (TH17) 反应的产生相关的免疫途径部分地发挥其抗肿瘤作用

 肠道微生物群在化疗药物的有效性中发挥重要作用

在一项关于 1 型免疫反应诱导 CpG 寡脱氧核苷酸和 DNA 交联剂奥沙利铂的小鼠研究中,抗生素存在时治疗效果降低,这归因于肿瘤相关骨髓细胞产生的肿瘤坏死因子 (TNF) 减少。这种抗生素诱导的奥沙利铂疗效降低可能是多因素的,因为其治疗效果部分是由肠道微生物群产生的活性氧产生的。

吉西他滨在细菌胞苷脱氨酶作用下的微生物代谢产生2′,2′-二氟脱氧尿苷可降低其治疗效果。

肠道微生物群在决定癌症免疫治疗的有效性发挥重要作用

在人类中,无进展生存期和总生存期的降低在多种癌症类型(非小细胞肺癌、肾细胞癌和尿路上皮癌)中使用抗生素和免疫疗法有关。

  • 特定菌群丰度增加,CTLA4抑制剂疗效改善

使用动物模型进一步研究了这一发现,表明免疫介导机制在抗生素的这些负面影响中发挥作用。 当脆弱拟杆菌属B.thetaiotaomicron、伯克霍尔德氏菌属Burkholderiales丰度增加时,CTLA4 抑制剂易普利姆玛在小鼠中的疗效得到改善,这与IL-12依赖性 TH1 免疫反应的上调有关。

在结肠癌的小鼠模型中,在有长双歧杆菌存在的情况下,CTLA4的阻断效果增强,这是由于治疗导致的黏膜屏障功能下降,促进了肌苷易位增加的免疫激活

  • IL-12在细胞募集中发挥作用,与AKK菌有关

还发现 IL-12 在 CCR9+CXCR3+CD4+ 细胞募集到小鼠上皮肿瘤中发挥作用,这反过来又与人类肠道微生物组中 Akkermansia muciniphila 的丰度升高有关。

  • PD1抑制剂在特定菌群下效果增强

PD1 和 PDL1 检查点抑制剂对黑色素瘤的作用可以在双歧杆菌物种丰度增加的小鼠中增强。

有趣的是,双歧杆菌甚至可能在没有常规治疗的情况下具有抗黑色素瘤作用,因为它在同一小鼠群体中的丰度预处理与肿瘤生长抑制有关。这种效应被认为与突细胞功能的上调有关,导致肿瘤微环境中 CD8+ T 细胞的活性和积累增强。

在一项对 42 名转移性疾病患者的研究中,PD1 抑制剂治疗黑色素瘤的功效在长双歧杆菌、产气柯林氏菌、屎肠球菌的丰度更高的情况下也得到了增强。而在 43 名黑色素瘤患者的独立人类队列中,PD1 抑制剂的疗效增加了微生物组多样性与 PDL1 和 PD1 治疗后癌症存活率的提高有关。

与无反应的患者相比,有反应的患者富含瘤胃球菌科Ruminococcaceae、厚壁菌门、真杆菌Eubacterium 、梭状芽孢杆菌Clostridia、梭菌目Clostridiales、Faecalibacterium prausnitzii .

▲ 肠道微生物群通过多种方式改变药物代谢

化学治疗剂的毒性可能是决定其使用能力的主要因素。肠道微生物群可以通过多种方式改变药物代谢,包括竞争性抑制、肠道微生物的直接代谢作用以及代谢途径相关基因的宿主表达改变,如无菌小鼠中异生物质解毒基因的下调所见。

具体而言,5-氟尿嘧啶 (5-FU)、伊立替康和索拉非尼等抗癌药物的毒性归因于肠道微生物代谢。

  • 5-氟尿嘧啶 (5-FU)

在大鼠模型中,DNA 复制子 5-FU 与病毒 DNA 聚合酶抑制剂索立夫定共同给药时的毒性是由于索立夫定转化的微生物产物溴乙烯基尿嘧啶 (BVU)诱导的 5-FU 代谢降低所致。了解导致 BVU 形成的特定生化途径可以帮助预测这种毒性,为替代治疗方案或 BVU 形成的特定抑制剂的开发提供信息。

  • 拓扑异构酶抑制剂

拓扑异构酶抑制剂伊立替康的给药通常会受到严重腹泻的阻碍,这与细菌 β-葡萄糖醛酸酶介导的无活性伊立替康代谢物的再激活有关; 抗生素治疗已被证明可减少体外活性伊立替康代谢物的产生,服用降低 β-葡萄糖醛酸酶活性的益生菌混合物可改善结肠癌患者的腹泻,而葡萄糖醛酸酶的小分子抑制剂已在临床前小鼠模型中显示出前景。

  • 酪氨酸激酶抑制剂

酪氨酸激酶抑制剂索拉非尼其毒性可能与肠道微生物活动有关,因为肝细胞癌患者服用索拉非尼后的腹泻和手足综合征都与特定的微生物群有关(图 2)。

具体而言,大量的韦荣氏菌、芽孢杆菌、肠杆菌、粪杆菌、毛螺旋体、Dialister 和厌氧菌对手足综合征具有保护作用,大量的丁酸单胞菌和较低水平的柠檬酸杆菌、消化链球菌、葡萄球菌较少的腹泻发展相关。这种作用的潜在机制可能会因药物及其代谢物的肠肝循环而减弱。

一项对接受其他酪氨酸激酶抑制剂帕唑帕尼和舒尼替尼)治疗的转移性肾细胞癌患者的研究表明,与安慰剂相比,健康供体的粪菌移植治疗引起的治疗性腹泻有所改善,进一步表明微生物组的这些改变与这种不良反应有关

▲ 整合微生物群的新疗法

开发基于活性的蛋白质探针来识别负责异生物质代谢的特定微生物途径,有望作为一种诊断工具,并可能使治疗更好分层。

新疗法可以使用细菌菌株或纯化的病原体相关分子模式,作为 Toll 样受体 (TLR) 激动剂来触发低水平 TLR 刺激患者的局部免疫反应 。此外,可影响肿瘤生长的粪便和循环微生物代谢物(短链脂肪酸、次级胆汁酸、维生素和多胺)的水平可用于评估治疗前的代谢健康状况,进而影响下一代生物治疗药物,也许在结合饮食干预

一系列免疫细胞亚群(TH17 细胞、T 调节 (Treg) 1 型细胞、细胞毒性 T 淋巴细胞、CD4+ 细胞、CD8+ 细胞)和细胞因子丰度(TNF、IL-12、IL-22 通过芳烃受体 (AHR) 信号传导 ) 受肠道微生物群变化的影响,并可能被调节以影响癌症免疫监测

此类标志物的测量还可导致对患者免疫健康的评估并提供干预目标。 这些方法需要对大型队列进行详细的个性化多组学研究,然后才能在临床中使用。

迄今为止的研究为肠道微生物群在癌症表型的异质性和对癌症治疗的反应中的作用提供了强有力的支持。 然而,来自人类研究的数据在很大程度上具有关联性,仍然需要跨队列复制。尽管存在这些担忧,但前景仍然乐观,将微生物组整合为癌症治疗策略的一个组成部分似乎是不可避免的(表 1)。

03 肥 胖

超重或肥胖的儿童和成人的数量正在增加。解决肥胖问题的一个主要挑战是由遗传、肠道微生物组、饮食和环境相互作用导致的机制的复杂性,这些机制会导致导致肥胖的生理变化。

微生物组与肥胖有关

2016年发表的一项针对人类微生物组研究的荟萃分析发现,肥胖与样本内丰富度和均匀度较低的α多样性之间存在微小但具有统计学意义的关联。除了 α 多样性之外,在小鼠模型和人体研究的早期微生物群研究中,已经报道了肥胖中厚壁菌门 拟杆菌门的比率升高,但在该研究中没有重复。

▪ 微生物组在传播肥胖表型中很重要

尽管缺乏强有力的组成标记,肠道微生物组在肥胖中的作用得到了菌群移植实验的支持,该实验表明,被与肥胖不一致的同卵双胞胎的粪便定植的无菌小鼠表现出供体的代谢表型

这个前提是进一步加强观察,高脂饮食引起的体重增加的人源化小鼠(用健康人粪便定植的无菌小鼠)可以传播到无菌小鼠,而无需继续喂养高脂饮食。这一发现表明微生物组在传播肥胖表型方面很重要

▪ 肥胖的驱动因素

肥胖几种机制已被归因于肠道微生物,如从饮食能量提取的增加的效率,影响饱腹感和能量摄入,全身性炎症和胰岛素抵抗

肥胖症缺乏一致的成分标志物表明存在大量的功能冗余。事实上,功能水平上的冗余较少,因为几种不同微生物群结构的变化可以驱动一系列生物活性因子的产生变化,如短链脂肪酸、胆汁酸和脂多糖 (LPS),所有这些都与肥胖有关。短链脂肪酸在激素信号传导中发挥作用,例如 5-羟色胺和肽 YY 的释放,它们在饱腹感中发挥作用,表明肠-脑轴参与导致肥胖

虽然在理解肥胖的微生物组驱动机制方面取得了重大进展,但我们还没有足够的分辨力来根据潜在的基于微生物组的机制对肥胖个体进行分层。随着该领域证据的积累,人们可以轻松地设想基于微生物组的个体分层将成为未来肥胖管理个性化策略的一部分。

▪ 益生菌益生元治疗肥胖功效喜忧参半

已经在动物模型中提出了益生菌作为肥胖治疗方案的功效,但人体临床试验的结果喜忧参半,而且鉴于所用益生菌制剂缺乏一致性,目前它们的作用仍不清楚。关于益生元在治疗上的使用,动物模型中再次出现了不错的发现,但就持久减肥而言,在临床试验中还没有任何明确的交叉作用到人类身上。

微生物组和肥胖疗法

肥胖管理的主要治疗方法是饮食、药物(如胰高血糖素样肽 1 (GLP1) 激动剂、奥利司他和芬特明)和减肥手术

饮食可以在短期和长期影响肠道微生物群,随着饮食的短暂变化而发生改变。 更重要的是,饮食的治疗效果还取决于个人的微生物组

将无菌小鼠的肠道微生物组简化为 10 种微生物菌株,证明饮食变化会改变肠道的定植模式及其发酵能力。肥胖患者饮食调整的一种方法是增加水果、蔬菜和低能量密度食物的摄入量,同时减少高营养密度食物的摄入量; 然而,对这种干预的反应是相当多变的。

▪ 饮食干预中基线肠道微生物群的重要性

一项针对 26 名超重或肥胖个体的初步研究发现,在进行此类饮食干预之前,肠道微生物群中糖苷水解酶的高预测丰度与容量饮食干预后体重减轻 <5% 相关,这表明基线肠道微生物群在预测结果方面具有潜在作用。这些发现与餐后血糖反应和脂血的个体差异一致,这归因于肠道微生物群

▪ 减少摄入热量增加通过菌群发挥作用

在 21 名健康个体的人群中,卡路里摄入量的增加与 3 天内人类肠道微生物组的快速改变有关,其中包括正常(>18.5 和 <25)和高 (≥30) BMI 的个体,显示相对增加的相对丰度的厚壁菌和减少的拟杆菌。这些变化与能量收集的增加有关,粪便热量含量降低就是最好的证明。因此,减少热量摄入可能会通过改变肥胖者的微生物群来发挥有益作用。

▪ 不同饮食干预引起微生物可塑性增加

在78名肥胖症患者中,肠道细菌的相对丰度,如反刍真杆菌Eubacterium ruminantium Clostridium felsineum,也与多种不同饮食干预措施引起的微生物组可塑性增加有关。

总之,这些研究表明,某些食物对每个人都“健康”的概念过于简单化,基于肠道微生物组指标的饮食选择可能对体重管理有益

 药物和手术下肠道微生物群的变化

很少有研究在药物和手术治疗肥胖症的背景下检查肠道微生物组。 然而,发现 GLP1 激动剂利拉鲁肽在血糖水平升高的情况下增加胰岛素释放并延迟胃排空,被发现会增加大鼠的厚壁菌门拟杆菌门比率,因此可能至少部分通过继发性变化来推动体重减轻

之前接受过 Roux-en-Y 胃绕道手术(一种用于管理生活方式改变和药物治疗失败的患者的减肥手术)与厚壁菌门相对丰度降低兼性厌氧菌(如变形杆菌)水升高有关,这些变化可能在减肥中发挥作用。

另一种手术——袖状胃切除术,有效减少炎症,并使 23 名术前肥胖患者的肠道微生物组更接近用作对照的健康个体,微生物测定的血浆谷氨酸水平相应恢复,作为肥胖的生物标志物 。

虽然大多数研究结果需要在更大的队列中进行验证并在模型中进行测试,但这些研究强调了微生物组分析在评估当前可用肥胖疗法的功效方面的效用。

 微生物疗法

在基于微生物组的疗法方面A. muciniphila是治疗代谢综合征和肥胖症的有希望的候选者。由于外膜蛋白引起的 TLR 信号传导激活,A. muciniphila 的摄入可改善肠道屏障功能、减少内毒素血症和改善葡萄糖耐量,从而防止小鼠体重增加。32 人的试点数据表明 A. muciniphila 的安全性和有效性,在 3 个月内可适度减轻体重并改善实验室肥胖指标。

同样,被认为是最具遗传性的微生物群之一,特别与人类瘦弱相关的 Christensenella minuta 也被发现可有效治疗动物模型中的肥胖症,并且计划很快开始一项人类随机对照试验 。

虽然强调了一些针对微生物组以减少肠道炎症信号的持续努力,但营养信号的改变和肠脑轴的调节也被证明是有效的策略。这些针对微生物-宿主相互作用的新方法可能是预防和治疗肥胖症的重要组成部分(表 1)。

04 糖尿病

由于对循环代谢物和免疫状态的影响,胃肠道和相关的肠道微生物组可以被视为类似于内分泌器官。因此,它通过影响胰岛素信号参与葡萄糖代谢

微生物组与改变的血糖控制有关

几项研究提供了糖尿病肠道微生物组的横断面分类学变化,导致产丁酸菌丰度和整体微生物多样性降低,但研究结果并不一致。

与来自 Roux-en-Y 胃旁路手术的粪菌移植相比,来自代谢综合征供体的粪菌移植阐明了肠道微生物群与胰岛素抵抗之间的明确关系,导致无菌小鼠的胰岛素敏感性降低。这在另一项人体研究中得到了进一步支持,其中肥胖个体的胰岛素敏感性在干预前从瘦肉供体进行粪菌移植后得到改善。

这突出了微生物群导向疗法在患者中的潜在治疗益处,对这些患者而言,肠道微生物的变化可能会带来更实质性的临床益处

一项人类随机临床试验表明,膳食纤维促进的一组选定的短链脂肪酸产生菌的多样性和丰度增加导致血红蛋白 A1c 水平的改善,这归因于胰高血糖素样肽的增加。

然而,其他潜在的短链脂肪酸生产者减少或不变,这表明并非所有短链脂肪酸生产者都是一样的,更有针对性地恢复特定微生物可能更有益

像这样的未来研究将有助于识别特定的菌群,这些细菌不仅能够发挥功能,而且实际上协同工作以恢复关键功能。总之,这些研究支持肠道微生物组与糖尿病之间的联系,并强调了使用肠道微生物组优化治疗的前景(表 1)。

 微生物群衍生的循环代谢物如何驱动糖尿病的发病机制?

肠道微生物组在胰岛素抵抗或 2 型糖尿病 (T2DM) 中的作用机制与肥胖的机制重叠,例如轻度炎症、胃肠道通透性改变可能导致内毒素血症,以及短链脂肪酸产生和吸收减少,这是符合代谢综合征的概念。短链脂肪酸的变化反过来又会影响各种代谢激素的产生,例如 GLP1 和肽 YY,它们在胰岛素分泌中起作用。

此外,由于微生物 BCAA 生物合成和 BCAA 降解的比例改变而导致的支链氨基酸 (BCAA) 水平升高与人类研究中的早期胰岛素抵抗有关,并且可能是由普氏菌普通拟杆菌驱动的。

在常规小鼠模型中,P. copri 的定植也与胰岛素抵抗相关。另一种微生物代谢物,丙酸咪唑,被发现在 2型糖尿病患者中升高,可直接损害葡萄糖耐量和胰岛素信号传导

▌ 2型糖尿病的治疗方案

2型糖尿病患者主要通过饮食和药物(如二甲双胍、磺脲类和 GLP1 激动剂)进行管理,尽管他们最终可能需要胰岛素替代疗法和/或手术。目前的方法是按顺序尝试治疗方案,尽管个体对每种治疗的反应存在很大差异,并且一些患者可能对饮食或药物没有反应。 微生物组为优化确定治疗策略是否更适合个人提供了重要途径。

▪ 基于微生物组的个体化饮食研究

以色列的一项针对 800 名非糖尿病患者的开创性研究,概述了基于机器学习方法开发个性化饮食建议的潜力,该方法使用测量组合,包括微生物组和宿主特征以及血糖对不同饮食的反应(图 1)。

随后的一项研究在美国中西部 327 名没有糖尿病的人群中验证了这种方法,并证实个人的微生物组可以预测不同膳食后血糖的变化。有趣的是,碳水化合物作为一个整体仍然与增加的血糖反应有关,但这种方法在个体水平上确定了碳水化合物中的主要危害因素,允许他们限制特定的碳水化合物,而不是“一刀切”低碳水化合物饮食。

另一项研究发现,个体的微生物组不仅可以预测血糖变化,还可以预测甘油三酯对不同膳食的反应。

微生物组与糖尿病治疗

治疗糖尿病最常用的药物之一是二甲双胍,它可以抑制肝脏葡萄糖的产生,增加胰岛素敏感性,并增强肌肉和肝脏对葡萄糖的摄取。 二甲双胍的功效似乎至少部分取决于微生物组

 二甲双胍通过菌群改变发挥作用

在动物和人类研究中使用二甲双胍会导致嗜粘蛋白菌以及与短链脂肪酸产生相关的几种细菌种类(例如 Blautia 和 Butyricicoccus)的丰度增加。

A. muciniphila 可以通过肠杯状细胞增殖、胃肠通透性降低和内毒素血症降低以及 TLR 信号传导的刺激来改善血糖控制,如小鼠模型中所见。

丁酸盐通过其对骨骼肌、棕色脂肪组织和胰腺 β 细胞的有益作用,与改善啮齿动物的能量代谢有关。此外,丙酸盐在啮齿动物模型中抑制肝脏糖异生并降低食欲和体重。

二甲双胍与胃肠道不良反应

二甲双胍最常见的副作用与胃肠道不适有关,如疼痛、腹胀和恶心。 一项包括 27 名没有糖尿病的健康男性的研究发现,在开始使用二甲双胍之前,粪便中大量特定属(Sutterella、Allisonella、Bacteroides 和 Paraprevotella)与胃肠道不良反应的发生有关(图 2)。 这一发现表明,除了在二甲双胍疗效中起作用外,肠道微生物群也可能导致其胃肠道不耐受

因此,基于微生物组的分层可以选择可能有良好反应并耐受治疗剂量的患者。支持肠道微生物组在其他糖尿病治疗中发挥作用的数据很少,但在小鼠中施用 GLP1 激动剂利拉鲁肽后,厚壁菌门丰度的减少与血糖控制的改善有关。

鉴于支持二甲双胍给药与 A. muciniphila 和产丁酸盐微生物丰度增加之间存在关联的数据,一项多中心、双盲、随机安慰剂对照试验研究了 76 名2型糖尿病患者以益生菌形式给药这些微生物。与安慰剂相比,接受联合治疗合生元(A. muciniphila、拜氏梭菌、酪酸梭菌、婴儿双歧杆菌、Anaerobutyricum Hallii 和菊粉)的患者有更好的血糖控制趋势,尽管人群少且随访时间短(12 周)尚不清楚这种方法是否对2型糖尿病患者长期有益。扩展这一发现的试验和使用类似的靶向微生物组方法进行糖尿病管理的研究应该有助于在未来进一步推动这种疾病的治疗进入精准医学

05 非酒精性脂肪肝

非酒精性脂肪性肝病 (NAFLD) 是一种与代谢综合征相关的相当严重的发病率,如果不加以控制会进展为肝硬化和终末期肝病。肠道微生物组通过肠-肝轴与肝脏密切相关,微生物产物的解毒是肝脏的一项重要功能。

微生物组与NAFLD

NAFLD还报道了代谢综合征中观察到的肠道微生物群改变及其后果,例如厚壁菌门拟杆菌门的比率升高、能量收集能力增加、肠道通透性增加和低度炎症。NAFLD人类供体粪便转移后,在无菌小鼠中发生脂肪变性,表明微生物组在 NAFLD 中起作用。

与 NAFLD 相关的其他微生物组介导机制包括微生物胆汁酸修饰和对肝脏法尼醇 X 受体 (FXR) 信号传导、内毒素血症和尿毒症毒素(如甲胺和对甲苯基硫酸盐)的产生的相关影响 。

▪ 考虑内源性产酒精

尽管根据定义,NAFLD与饮酒无关,但目前的定义并未考虑乙醇的内源性生产。

来自变形菌门的大肠杆菌和其他肠杆菌科能够内源性地产生乙醇; 因此,这些微生物在肠道中的高代谢活性可能会导致乙醇水平升高,从而导致被认为患有 NAFLD 的患者脂肪变性。虽然说极端情况(称为自动酿酒综合症)很少见,但微生物生产中长期低水平的乙醇可能仍然是一个促成因素。

微生物组和 NAFLD 疗法

二甲双胍通常用于治疗2型糖尿病,但也用于管理NAFLD,动物研究支持二甲双胍在这种情况下的疗效 和人类数据显示肝功能测试有所改善,但组织学反应没有改善。如前所述,对二甲双胍的成功反应似乎至少部分是由肠道微生物组驱动的

粪菌移植

NAFLD 与肠道微生物组之间的机制联系已经导致研究探索潜在的基于微生物群的疗法。粪菌移植在动物研究中显示出前景,初步的人体数据也表明粪菌移植后肝脏脂肪变性和肠道通透性异常的改善。正在进行的临床试验将更好地阐明这些程序的有效性和安全性。

益生菌

益生菌给药在改善脂肪变性和肝脏炎症标志物方面也显示出一些希望。然而,这些益生菌制剂的成分各不相同,这使他们目前的临床建议复杂化 。

一项在无菌小鼠中进行的研究表明,这些小鼠的粪便来自两名溶细胞素阳性的酒精性肝炎患者,表明靶向溶细胞性粪肠球菌的噬菌体具有治疗效果,类似的方法是否也适用于 NAFLD 仍有待观察。其他专注于减轻来自微生物群的肝毒性来源的新型微生物组疗法似乎很有前景,但仍处于早期阶段(表 1)。

06 心血管疾病

心血管疾病 (CVD) 是逐渐上升为主要死亡原因,并且在全球范围内持续上升,2005 年至 2015 年间增长了 12.5%。据估计,通过改善生活方式和饮食可以预防 90% 的心血管疾病。心血管疾病一再与内毒素血症、肠道通透性增加和低度炎症有关,所有这些都可以由肠道微生物组驱动。

微生物组与心血管疾病相关

肠道微生物组研究领域的一项早期进展是确定代谢物三甲胺-N-氧化物 (TMAO) 的血浆水平升高是心血管疾病的危险因素。

▌ 为什么TMAO是心血管疾病的驱动因素?

TMAO 是通过黄素单加氧酶 3 的作用在肝脏中产生的,使用细菌代谢物三甲胺 (TMA) 作为底物。TMA 源自胆碱、磷脂酰胆碱或左旋肉碱的细菌转化。基于动物研究的 TMAO 的机制作用表明,它可能是动脉粥样硬化斑块的主要驱动因素,只有当 TMAO 水平同时增加时,高血浆左旋肉碱水平才与心血管事件的无事件生存率降低相关,这表明 TMAO 可能是人类心血管风险的驱动因素

TMAO 导致心血管疾病的机制

TMAO 导致心血管疾病的机制包括其对泡沫细胞(形成脂肪堆积)和内皮细胞、血管炎症、动脉粥样硬化病变、纤维化以及血小板聚集和血栓形成增强的影响。 已知特定的肠道微生物,包括奇异变形杆菌、变形杆菌、埃希氏菌,可以在体外和动物模型中产生TMA。 然而,由于相当大的菌株间多样性,人类肠道微生物组中负责 TMA 产生的基因的丰度,即 cutC/D 或 cntA,可能比特定分类群的水平具有更大的预测前景。

 不同类型的心血管疾病相关菌群

此外,人类动脉粥样硬化还与肠道微生物群的微生物发酵功能降低以及细菌分类群肠杆菌科和链球菌的丰度增加有关

与降低血压相关的其他微生物群衍生代谢物是乙酸盐和丁酸盐。

产短链脂肪酸者的丰度减少,例如直肠真杆菌、多利亚长链球菌、梭状芽孢杆菌和普氏梭菌,与人类心力衰竭的发生有关。

 饮食是预防和治疗心血管疾病的主要手段之一

由于饮食成分的微生物代谢在心血管疾病发病机制中具有机械作用,肠道微生物组可能是饮食干预有效性的部分原因。

地中海饮食和高纤维饮食

地中海饮食和高纤维饮食似乎都可以预防心血管疾病,一项针对 396 名心肌梗死 (MI) 患者和 843 名作为对照的健康人的病例对照研究发现,不存在P. copri 与降低 18% 地中海饮食后 MI 的风险,而携带 P. copri 与地中海饮食后 MI 的非显著增加相关。

坚持地中海饮食还与一些已知可代谢纤维并产生短链脂肪酸的肠道微生物的丰度增加有关,例如 F. prausnitzii、Eubacterium eligens 、Bacteroides cellulosilyticus

纤维消耗量增加的好处可能与纤维降解微生物或其相互作用伙伴产乙酸盐产量增加有关。乙酸盐参与转录因子 Egr1 的调节,Egr1 反过来调节小鼠的心脏炎症、纤维化和肥大。此外,在进行各种饮食干预之前,产丁酸菌Clostridium sphenoides 的丰度升高与肥胖个体胆固醇水平的更大降低有关,也可能与心血管疾病相关。

西方饮食

与地中海饮食和高纤维饮食相比,西方饮食(大量摄入脂肪和/或加工肉类、饱和脂肪、盐、糖和精制谷物)与心血管疾病风险增加有关,这可能与 双歧杆菌和真杆菌 等肠道微生物的丰度减少。有趣的是,TMAO 前体胆碱、磷脂酰胆碱和左旋肉碱在动物蛋白中普遍存在,这是西方饮食的特征成分。然而,食用红肉等动物蛋白可能仅对携带可产生 TMA 或其他代谢物的微生物一部分个体有害

微生物组和心血管疾病疗法

几种针对心血管疾病的药物治疗的功效和毒性与肠道微生物组有关。

▌ 肠道微生物组的化学多样性如何与人类设计的药物的代谢产生串扰?

这方面的一个关键例子是Eggerthella lenta 菌中存在强心苷还原酶基因,该基因使地高辛失活,地高辛是治疗心律失常的重要药物,通过抑制心肌中的 Na+/K+/ATPase 起作用(图 2)。 这种细菌酶活性很可能是由于底物混杂造成的,而不是由于地高辛暴露于环境而进化出的过程。

由于地高辛的治疗窗很窄,因此在开始治疗之前确定这种细菌代谢途径的存在可以实现更准确的剂量并最大限度地减少不良反应。有趣的是,在小鼠模型中,在大量精氨酸氨基酸和高蛋白饮食减少地高辛失活的情况下,导致地高辛失活的基因受到抑制。

 对他汀类药物不同反应源于肠道微生物群

他汀类药物通过竞争性抑制 HMG-CoA 还原酶起作用,是治疗心血管疾病相关高脂血症最常用的药物,近一半的 40 至 75 岁美国人口有使用指征。有趣的是,通过 LDL 胆固醇水平的不同降低来衡量,对他汀类药物的反应存在显着的个体间差异。这种可变性可能源于肠道微生物组,因为在具有更高肠道微生物多样性的个体和动物模型中观察到更强烈的治疗反应。

此外,在一项针对 100 名总胆固醇水平为 160–400 mg/dl 的个体的研究中,变形菌水平升高与辛伐他汀疗效降低有关,显示出不同的 LDL 反应。 在 64 名高脂血症患者中,如果存在较高水平的CyanobacteriaLentisphaerae,同时存在较低水平的厚壁菌门梭杆菌,另一种他汀类药物瑞舒伐他汀的疗效也会降低。

这些研究表明,可以根据个人的肠道微生物组预测他汀类药物的治疗反应。2020 年发表的一项研究发现,与肥胖相关的拟杆菌 2 (Bact2) 肠型在接受他汀类药物治疗的患者中不那么普遍,这表明他汀类药物具有微生物组塑造作用。 这一发现是否可用于预测未来的治疗结果和直接治疗选择还有待观察。

▌ 益生菌在心血管疾病中的作用

鉴于越来越多的证据支持肠道微生物组在心血管疾病发病机制中的作用,有几项正在进行的临床试验研究益生菌在心血管疾病中的作用。

两个例子包括抗菌利福昔明和益生菌布拉氏酵母菌 的比较以及嗜酸乳杆菌对心力衰竭患者炎症的影响。 这种干预性试验提供了一个宝贵的机会,可以根据从治疗后从患者身上收集的肠道微生物组的纵向信息来研究潜在有益的微生物组重排。

▌ 下一代微生物疗法

基于其中一些突出的发现,下一代微生物疗法似乎有一席之地,可以驱动特定的功能,如乙酸盐的产生或改善屏障功能

另一种方法是开发特定微生物途径的小分子抑制剂,例如最近描述的 TMA 产生酶抑制剂。这些抑制剂可能能够实现更精确的治疗干预,并且可以专门针对具有高 TMAO 水平和功能基因水平的患者,这些患者表明 TMAO 生产能力高

总的来说,认识到肠道微生物组在心血管疾病发病机制和治疗中发挥作用是一项重要进展,为疾病识别、分层和治疗开辟了新途径(表 1)。

07 自身免疫性疾病(类风湿关节炎)

类风湿性关节炎 (RA) 是一种自身免疫性疾病,会导致关节慢性炎症。 几项研究描述了 RA 患者肠道微生物群的改变,这些改变随着疾病的阶段而变化。

微生物组与类风湿性关节炎

目前发现是普雷沃氏菌属的成员与疾病改善相关,强调同一属内的不同物种和/或菌株可以对宿主生理有不同的影响。因此,重要的是解决物种或菌株水平的分类差异,而不是通常将整个属标记为有益或有害

普雷沃氏菌属在类风湿性关节炎发病机制中的潜在作用是基于人类和啮齿动物研究的结果。在体外研究和小鼠中,普雷沃氏菌属已被证明会增加 TH17 反应,这反过来又与关节炎骨侵蚀增加有关。

在人类中,已在受类风湿性关节炎影响的关节的滑液中发现了普雷沃氏菌属。 尽管普雷沃氏菌属似乎是类风湿性关节炎的一个重要决定因素,但据报道其水平在健康个体中随时间变化很大; 因此,需要纵向研究结合宿主表型的评估来更好地了解其在类风湿性关节炎中的作用。

除了肠道微生物群,特定的牙周细菌和牙周病与人类和关节炎小鼠模型中类风湿性关节炎的风险增加有关。 牙龈卟啉单胞菌和聚集放线菌都与针对瓜氨酸肽的自身抗体增加有关,并可能促进类风湿性关节炎的自身免疫。

微生物组和类风湿性关节炎疗法

除了在发病机制中发挥作用外,肠道微生物群也可能在决定对类风湿性关节炎常用药物的反应方面发挥作用。 这些包括疾病调节剂,例如甲氨蝶呤和羟氯喹,以及抗炎剂,例如柳氮磺胺吡啶和非甾体抗炎药 (NSAID)。

▌ 甲氨蝶呤治疗

宿主因素和遗传学未能提供甲氨蝶呤反应的预测模型,但更高的肠道微生物多样性与甲氨蝶呤治疗相关。

一项针对 26 名未接受药物治疗的新发的类风湿性关节炎患者的研究发现,甲氨蝶呤应答者和非应答者存在不同的微生物分类群及其基因。使用机器学习技术开发的基于微生物组的模型预测了在 21 名患者的验证队列中对甲氨蝶呤缺乏反应的高度准确度 (AUC 0.84)。

这一发现归因于肠道微生物群对甲氨蝶呤的直接代谢,因为将药物与患者远端肠道微生物群孵育后的甲氨蝶呤水平可预测临床反应

在另一项研究中,甲氨蝶呤治疗对小鼠模型中特定微生物分类群和通路的影响导致免疫激活降低,从而降低疾病活动性。

这些研究表明,肠道微生物群对甲氨蝶呤的微生物代谢可能在药物疗效中发挥作用,而甲氨蝶呤降低疾病活动的作用本身是由肠道微生物群的调节驱动的。

甲氨蝶呤通过竞争性抑制二氢叶酸还原酶来抑制免疫功能,与肠杆菌的丰度降低有关,但尚不清楚这一发现是否对药物反应有任何影响。 然而,它确实进一步表明甲氨蝶呤影响肠道微生物组结构,并且可以进一步探索微生物组对甲氨蝶呤反应的预测以指导治疗。

甲氨蝶呤本身的不同肠道微生物代谢为细菌细胞内残留的非活性或不可接近的形式,这是肠道微生物组改变甲氨蝶呤功效的可能机制。

肠道微生物也在甲氨蝶呤的毒性中起作用; 已发现脆弱拟杆菌灌胃可预防肠道粘膜炎,在小鼠中使用甲氨蝶呤治疗后,约三分之一接受甲氨蝶呤给药的患者出现了不良反应

羟氯喹

羟氯喹通过减少 TLR 信号传导和 CD154 表达来抑制免疫激活 的功效与肠道微生物 α 多样性相关,具有更高的预处理多样性有利于更大的功效,但尚不清楚是否仅仅是更高的微生物多样性或 导致这种效应的特定细菌的丰度增加

依那西普

与甲氨蝶呤一样,与 TNF 抑制剂依那西普相关的肠道微生物组发生了变化,但在目前的研究中与疗效没有明确的关系。

柳氮磺胺吡啶

5-氨基水杨酸前药柳氮磺胺吡啶在乙酰化后通过肠道微生物群的酶促作用转化为其活性代谢物,因此,其功效取决于肠道微生物群。

非甾体抗炎药和扑热息痛

非甾体抗炎药和扑热息痛相关的不良事件可能与肠道微生物群有关。细菌 β-葡萄糖醛酸酶的活性可导致非甾体抗炎药的毒性,该酶的抑制剂可减少非甾体抗炎药诱导的小鼠肠病。原则上,β-葡萄糖醛酸酶活性的测量可以帮助识别应该避免使用非甾体抗炎药或适合与特定的 β-葡萄糖醛酸酶小分子抑制剂联合治疗的个体。某些细菌可以产生对甲酚它与扑热息痛在肝脏中竞争酶结合,并导致产生肝毒性化合物 NAPQI(图 2)。 因此,对甲酚水平可用于指导扑热息痛剂量,以避免肝毒性副作用

▌ 益生菌治疗

肠道微生物对类风湿性关节炎发病机制的潜在贡献导致了益生菌作为潜在治疗选择的探索。这些努力主要集中在调节免疫系统以抵消类风湿性关节炎中所见的变化,而不是潜在地替代缺失的微生物或机制的策略。

P. histicola 通过抑制抗原特异性 TH17 反应和刺激增加的 IL-10 转录来降低易感 HLA-DQ8 小鼠关节炎的发生率和严重程度。在胶原诱导的小鼠模型中,

干酪乳杆菌的给药与 CD4+ T 细胞减少的促炎分子(IL-1β、IL-2、IL-6、IL-12、IL-17、IFNγ、TNF 和 COX2)有关。 关节炎 。

在45 名成人研究中,凝结芽孢杆菌已被研究作为类风湿性关节炎的潜在辅助治疗选择,与安慰剂相比,给药可改善疼痛和残疾的自我评估并降低炎症标志物

微生物种类对免疫系统的不同影响表明,基于免疫标记的类风湿性关节炎亚型可以帮助选择最有可能对基于特定微生物群的疗法产生反应的患者(表 1)。

08 炎症性肠病

炎症性肠病 (IBD) 是一种慢性炎症,包括克罗恩病和溃疡性结肠炎。IBD 亚型在疾病表型、易感性、进展和对治疗的反应方面的异质性激发了尝试将它们分型而不只是临床表现。 重点一直放在宿主基因和免疫反应上,但暴露组和微生物组越来越被认为是 IBD 个体间变异的重要决定因素。

微生物组与 IBD有关

肠道微生物群在 IBD 中的核心作用是基于观察结果,例如粪便转移后疾病缓解、细菌水平升高的胃肠道区域疾病负担加重、抗生素治疗后患者亚群的改善以及 IBD 特异性的改变肠道微生物群的组成和功能。 此外,在 IBD 患者粪便定植小鼠后观察到与 IBD 相关的炎症通路增强,如 IL-17,突出了其在疾病中的作用。

▪ 克罗恩病和溃疡性结肠炎肠杆菌科增加,产丁酸菌减少

克罗恩病和溃疡性结肠炎的特点是微生物群落结构发生了巨大变化,最一致的发现是变形杆菌门,特别是肠杆菌科的相对丰度增加。特定菌群的丰富性与克罗恩病(大肠杆菌、弯曲杆菌属和鸟分枝杆菌)相关,而特定产丁酸菌的消耗与克罗恩病和溃疡性结肠炎的发病机制有关 。

在克罗恩病患者的回肠黏膜中也发现了粘附侵袭性大肠杆菌,并伴有 TNF 分泌增加,但目前尚不清楚这种细菌是诱发疾病还是其存在是潜在疾病因素的结果。

总体而言,这些菌群变化代表兼性厌氧菌(如变形杆菌)的增加,而牺牲了专性厌氧菌。 这里概述的大多数研究都集中在管腔微生物组上,虽然它在 IBD 发病机制中很重要,但在识别 IBD方面,其鉴别力低于粘膜相关微生物组。

▪ IBD中肠杆菌科增殖与什么有关?

肠杆菌科 在 IBD 中的总体扩张可能是由于肠道营养状况的变化,例如宿主产生的 N-乙酰乙醇胺信号脂质的增加,这可以被肠杆菌科利用。此外,细菌氮代谢与肠杆菌科细菌的增殖有关,通过尿素酶的产生和炎症环境中硝酸盐的可用性,可以促进肠杆菌科的厌氧呼吸。

▪ IBD中变形菌门增殖与什么有关?

变形菌门丰度的增加可能不一定是 IBD 的诱因,可能是宿主遗传易感性以及饮食和环境暴露的综合结果。 然而,变形菌确实含有高免疫原性 LPS,它本身可以引发炎症反应。这种前馈机制可能有助于使炎症持续存在并允许变形菌茁壮成长,同时排除细菌,如 F. prausnitzii,后者在炎症环境中表现不佳。

这一假设部分得到了观察结果的支持,即使用 TNF 抑制剂治疗 IBD 与克罗恩病儿科患者更多样化的肠道微生物组的恢复相关。除了 LPS,其他几种细菌成分和代谢物也与 IBD 相关,例如较高水平的多胺和 ATP 以及较低水平的二级胆汁酸和丁酸盐。

微生物组和 IBD 疗法

肠道微生物组也在预测对现有 IBD 治疗的反应方面发挥作用。更高的治疗前肠道微生物 α 多样性与使用抗整合素疗法维多珠单抗(α4β7 拮抗剂)治疗后更高的缓解可能性相关,这表明微生物代谢在决定疗效方面具有潜在作用。同样,在停止抗 TNF 治疗英夫利昔单抗后,特定的肠道微生物组特征与疾病复发相关。

由于目前的临床实践通常是在达到缓解后很长时间继续生物治疗,因此此类特征可能允许选择可以停止治疗的患者。鉴于对生物药物反应的可变性以及所涉及的成本和发病率,通过微生物组分析预测反应和持续缓解的能力可以简化 IBD 的管理。

这些观察结果推动了基于微生物群的IBD疗法的发展,范围从益生菌和粪菌移植到特定的细菌化合物或代谢物。

F. prausnitzii 是可能的益生菌的一个例子,因为克罗恩病患者术后标本中 F. prausnitzii 丰度的降低与切除后疾病复发的增加有关。F. prausnitzii 已被证明可以通过减少炎性细胞因子的分泌来预防急性结肠炎,这表明它具有抗炎作用,这可能是由于其产生丁酸盐的能力或通过对免疫系统的独立作用。 未来,微生物组的术后分析可以识别可能受益于治疗策略(如 F. prausnitzii )的个体。

同样,粪菌移植在 IBD 中的疗效与供体微生物组的特定特征有关。 毛螺菌科瘤胃球菌属的丰富度与反应相关,表明特定微生物分类群或代谢物在确定反应方面的作用,并为迄今为止在其他粪菌移植试验中观察到的反应变异性提供了可能的解释。

随着更多地了解肠道微生物组在 IBD 中的作用,基于肠道微生物组的亚表型可能会在预测进展以及对特定治疗的反应方面更好地对患者进行分层,并可能导致个性化治疗策略的发展靶向肠道微生物组(表 1)。

09 过敏和特应性疾病

肠道微生物群在免疫教育中的关键作用使其成为过敏和特应性疾病的重要参与者。 微生物群在生命的早期阶段最脆弱,这段时间的变化会对免疫系统产生长期影响。

因此,大多数过敏和特应性疾病微生物组研究都集中在早期生命,目的是确定新生儿的饮食、过敏原暴露和微生物组组成如何驱动过敏性疾病,并确定可以调节以预防这些疾病的特定目标

观察到生命早期的特应性是食物过敏发展的危险因素,并最终在以后的生活中引发哮喘,这表明了这种潜在的干预窗口。 这种联系表明了一个共同的潜在机制,经典地与 CD4 TH2 过度活化结合树突状细胞诱导的 Treg 细胞水平降低有关,所有这些都受到微生物组的影响。 虽然该领域仍处于起步阶段,但强调了一些可能与个性化微生物组变化相关的领域。

食物过敏

食物过敏很可能是由遗传、饮食和共生微生物群之间复杂的相互作用驱动的。 在人类中,在对鸡蛋、花生、大豆、小麦和牛奶等不同类型食物过敏的人群中,已经报道了不同的肠道微生物群变化。 然而,研究之间缺乏一致性使得解释这些变化具有挑战性。

肠道微生物群的作用得到以下观察结果的支持:无菌小鼠对食物的过敏反应敏感,抗生素增加过敏原致敏性,从健康婴儿移植肠道微生物群可以防止小鼠发生食物过敏。

在一项粪菌移植研究中,发现Anerostipes caccae 可以防止对牛奶的食物过敏反应。 另一项粪菌移植研究发现,用 Subdoligranulum variabile 拟杆菌属菌株进行的细菌疗法对小鼠的花生过敏具有保护作用。

具体而言,Treg 细胞通路 MyD88-RORγt 被发现在防止小鼠食物过敏方面很重要,并且被确定在患有食物过敏的婴儿中存在缺陷。Treg 细胞亚群由微生物代谢物丁酸盐诱导,但未发现丁酸盐与本研究中观察到的效应有关。

除了免疫教育,微生物组还可以通过产生或降解来影响过敏原的有效剂量。 特定的牛奶发酵益生菌菌株,如鼠李糖乳杆菌,提高了对牛奶的耐受性,支持在过敏原降解中发挥潜在作用。

因此,通过评估微生物群降解食物的能力,可能能够预测过敏的自发消退或识别可能从基于微生物群的疗法中受益的个体

过敏和哮喘

生命早期肠道微生物群的破坏,例如与剖腹产和在微生物暴露减少的“清洁”环境中长大有关的破坏,与发生特应性和哮喘的风险增加有关。尽管没有一致的人类微生物群特征与特应性和哮喘相关,但微生物代谢物可能直接参与疾病的发展。

发现源自肠道的 SCFA 丙酸盐的循环水平以依赖于游离脂肪酸受体 3(FFAR3)和小鼠树突细胞功能的方式减少肺部炎症。微生物代谢物可能特别参与 TH2 重编程和过度活化,即使并非所有哮喘患者的 TH2 水平都升高

▪ 微生物代谢物——12,13-diHOME

通过一系列代谢组学和微生物遗传学研究确定了一种参与哮喘发展的微生物代谢物,即亚油酸衍生物 12,13-diHOME。发现哮喘风险升高的出生队列中 12,13-diHOME 的粪便水平增加,这与肺部抗炎细胞因子和 Treg 细胞水平降低有关,表明免疫耐受受到阻碍。负责产生 12,13-diHOME 的细菌环氧化物羟化酶可能被抑制作为酶水平升高患者亚组的治疗策略。

已经尝试用特定菌株或群落补充母乳或配方奶,目的是降低日后发生特应性或哮喘的风险

▪ 鼠李糖杆菌

其中一个例子是鼠李糖乳杆菌 GG 的使用,这导致微生物种类增加,这些微生物种类被认为可以促进哮喘高危婴儿的免疫耐受性,尽管在以后的生活中发展为哮喘的进展和疾病的严重程度的评估尚不清楚。

▪ Acinetobacter lwoffii乳酸乳球菌

此外,从农场牛棚中分离出的Acinetobacter lwoffii乳酸乳球菌菌株对小鼠具有很强的过敏保护特性,可以在人类队列中进行研究。

为了更好地了解肠道微生物群在过敏和特应性疾病发展中的作用的时间机制,跟踪临床结果的纵向出生队列是必要的。 总体而言,这些研究可以为未来基于肠道微生物组的过敏性疾病个性化治疗策略提供信息(表 1)。

10 未来寄语

在考虑健康和疾病中的微生物组时,人们非常关注因果关系,但很明显,即使肠道微生物组不是诱发因素,它也会导致疾病。

▪ 需要在多背景下加以考虑

事实上,肠道微生物群很少是疾病的唯一驱动因素,需要在涉及宿主遗传学、宿主生理反应和环境的系统生物学背景下加以考虑

我们需要了解肠道微生物组在使个体易患疾病状态的复杂调控框架中的位置。尽管肠道微生物组与许多疾病有关,但与宿主(表观)遗传学、蛋白质组或转录组等其他变量相比,很难量化这种贡献的相对数量

▪ 需要对易混淆的因素加以研究

描述不同宿主和微生物组因素的贡献的一个主要挑战是难以将宿主和环境因素对微生物组的影响它们对独立于微生物组的宿主生物学的影响区分开来。

由于巨大的个体差异,生活方式、生理和饮食因素等因素可能会与微生物组因素混淆,需要更多这方面的研究。这样不仅有助于进一步了解与健康和疾病相关的微生物组,而且有助于如何提高未来工作的质量,以更好地了解微生物组在精准医学和个性化治疗中的力量

未来对大量表型良好的患者进行的研究将需要多维,包括宿主和微生物多组学以及暴露组,以更好地了解肠道微生物组和其他数据水平对疾病状态或治疗效果的相对贡献。

▪ 纵向分析用于减少变异,建立因果

这些研究还应通过使用纵向抽样来封装时间和人际变化。与横断面研究相比,纵向数据分析已被证明可以减少变异,并可用于建立因果关系。例如,可以通过对初治队列的纵向监测来确定治疗反应背后的变异,以确定可能导致治疗变异的相关微生物组和宿主因素。

▪ 多方法结合识别治疗反应新因素

这种方法与智能体外和离体方法相结合,可以识别导致治疗反应、不良反应和药物代谢的新因素。此类研究还将能够确定肠道微生物组是否可以作为其他宿主相关因素的解读,例如饮食、遗传、年龄和生活方式,并可能简化用于疾病分类和治疗分层的机器学习算法(图 3) 

随着研究数量的增加,可以看到该领域的持续强劲势头我们需要意识到现在仍处于调查的早期阶段,在将微生物组的知识转化为可用于临床以造福患者的可行措施之前,仍然存在重大挑战需要解决。包括缺乏大型临床队列中基于微生物组的标志物的验证、微生物组数据的处理和分析缺乏标准化,以及缺乏对不同疾病状态下微生物组相关机制的个性化理解。

管存在这些缺点和挑战,该领域的快速步伐和过去十年取得的进展令人乐观地认为微生物组迟早会成为临床实践的一部分

随着目前我们正在做的肠道微生物检测日渐明朗,可以开始设想如何将微生物组纳入个性化治疗策略,为每位患者选择最佳策略

主要参考文献:

Schupack DA, Mars RAT, Voelker DH, Abeykoon JP, Kashyap PC. The promise of the gut microbiome as part of individualized treatment strategies. Nat Rev Gastroenterol Hepatol. 2021 Aug 27. doi: 10.1038/s41575-021-00499-1.

Wang DD, Nguyen LH, Li Y, Yan Y, Ma W, Rinott E, Ivey KL, Shai I, Willett WC, Hu FB, Rimm EB, Stampfer MJ, Chan AT, Huttenhower C. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat Med. 2021 Feb;27(2):333-343. doi: 10.1038/s41591-020-01223-3.

Kelly, C, R. et al. Fecal microbiota transplant is highly effective in real- world practice: initial results from the FMT National Registry. Gastroenterology 160, 183–192.e3 (2021).

Yamamoto K, Kuzuya T, Honda T, Ito T, Ishizu Y,et al., Relationship Between Adverse Events and Microbiomes in Advanced Hepatocellular Carcinoma Patients Treated With Sorafenib. Anticancer Res. 2020 Feb;40(2):665-676. doi: 10.21873/anticanres.13996.

McDonald, J. A. K. et al. Inhibiting growth of Clostridioides difficile by restoring valerate, produced by the intestinal microbiota. Gastroenterology 155, 1495–1507.e15 (2018)

Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology. Nat Rev Rheumatol. 2020 Mar;16(3):155-166. doi: 10.1038/s41584-020-0372-x.

Liu R, Hong J, Xu X, et al., Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention. Nat Med. 2017 Jul;23(7):859-868. doi: 10.1038/nm.4358. Epub 2017 Jun 19.

油炸食品通过肠道菌群影响健康,与糖尿病相关

谷禾健康

油炸是一种流行的烹饪方法,它使食物在质地和香味上更有吸引力,从而改善食物口感。

油炸食品通常被认为不健康的,因为油炸可能会增加食物的能量密度,从而增加能量摄入,并通过氧化和氢化过程使油变质,导致不饱和脂肪酸如亚油酸和亚麻酸的损失,但反式脂肪酸、油脂降解和晚期糖基化终产物的增加。

油炸食品与2型糖尿病的关联

在流行病学研究中,油炸食品的高摄入量与多种不良健康后果有关(包括2型糖尿病),虽然结果并不完全一致

可能原因:

油的类型

据报道,在主要使用橄榄油制备油炸食品的人群中,油炸食品和2型糖尿病风险之间没有关联,橄榄油比其他普通油(如玉米油)更抗氧化。

食物成分 、条件

被油炸食物的不同成分和油炸条件(温度、持续时间)也可能引发不同的结果。

混杂因素

各种混杂因素(如体重增加、高血压和高脂血症)增加了不一致观察结果的复杂性,这些因素与食用油炸食品和2型糖尿病风险相关。

综上,油炸食品和2型糖尿病之间的不良关联背后的潜在机制在很大程度上仍然未知。很多途径包括体重增加、炎症和脂质代谢等都有可能参与其中。

油炸食品与肠道微生物群

近年来,越来越多的数据表明,肠道微生物群可能在饮食因素(包括油炸食品)与宿主健康联系中发挥着关键作用。

对人类和动物模型的研究表明,油炸食品的摄入量或油炸和热加工的副产品与肠道微生物群的多样性和丰富性有关。然而,评估油炸食品对糖代谢影响的随机临床试验仍然缺乏。

近日,《糖尿病护理》杂志上,一项随机对照喂养试验旨在测试油炸肉类摄入对葡萄糖稳态的影响

该研究发现,油炸肉的摄入通过影响肠道微生物群和微生物-宿主共代谢产物,与糖代谢异常有关,增加了肠道内毒素和全身炎症水平。

研究人员将117名年龄在18-35岁的青少年超重(BMI > 24 kg/m2)的成年人随机分为两组,分别提供等热量膳食和一致的食物,交替健康饮食指数(AHEI)评分>85。干预组是油炸,对照组是煮,蒸,或用调味汁拌。

葡萄糖代谢指数变化:

在两组的干预过程中,包括胰岛素生成指数(IGI)、肌肉胰岛素抵抗指数(MIRI)和胰岛素水平在内的几项葡萄糖代谢指数均有所改善,同时能量摄入也有所减少。

与对照组相比,油炸食品组的4周干预在IGI、MIRI和胰岛素曲线下面积(AUC)方面的改善较少,并且在HbA1c、C肽和葡萄糖的曲线下面积没有差异。作者得出结论,油炸肉的摄入损害了葡萄糖稳态

肠内毒素和炎症标志物变化:

次要结果中,油炸肉干预组显示肠内毒素和全身炎症生物标志物减少较少,调节饱腹感和糖摄入的肝因子FGF21增加较少

肠道微生物群变化:

发现油炸肉组的肠道微生物群丰富度低于对照组;总体微生物结构和组成以及微生物组预测的与葡萄糖稳态相关的途径在这两组之间也是不同的

油炸组降低了Lachnospiraceae和Flavonifractor的丰度。

  •  Lachnospiraceae在肠道稳态中起重要作用,它可以预防肥胖和胰岛素抵抗。
  • √ Flavonifractor是肠道健康的重要菌群,其含量与肥胖呈负相关。

同时增加了Dialister、Dorea、Veillonella的丰度(P FDR <0.05).

  • √ Dialister是一种致病菌,其丰度的增加与体重增加有关。
  • √ Dorea丰度与肥胖呈正相关,在糖尿病前期患者中发现其丰度增加。
  • √ Veillonella 不发酵葡萄糖或任何其他碳水化合物,可分解乳酸。

干预组的厚壁菌门和拟杆菌门的比率(2型糖尿病的经典标志)高于对照组。进一步支持了油炸肉的摄入对葡萄糖平衡的影响。

粪便代谢物变化(与菌群变化相关):

Flavonifractor丰度的变化与粪中戊酸含量的变化呈正相关(r = 0.226);

Dorea丰度的变化与粪中戊酸水平的变化呈负相关(r = -0.336)。

Dialister、Dorea、Veillonella丰度的变化与粪便肉碱水平的变化呈正相关(Dialister,r = 0.218, Dorea,r = 0.395, Veillonella,r = 0.314) (P < 0.05).

  • √ Flavonifractor可以产生短链脂肪酸,Flavonifractor 参与戊酸的代谢
  • √ Dorea高丰度可以降低产短链脂肪酸菌的丰度,导致粪便中包括戊酸在内的短链脂肪酸水平降低。
  • √ Dialister和Veillonella参与宿主氨基酸代谢,通过介导肉碱的产生和代谢影响宿主TMAO水平

油炸肉干预导致粪便代谢物的显著变化,如丁酸、戊酸和3-吲哚丙酸(IPA)的减少,肉碱和甲基戊二酸的增加(P FDR <0.05)。

  • √ 丁酸对葡萄糖平衡的有益作用已经在以前的研究中得到证实
  • √ 戊酸作为一种短链脂肪酸,抑制氧化应激和神经炎症,并调节自噬途径。
  • √ IPA可以降低血浆内毒素水平,食用富含IPA的饮食可以显著降低空腹血糖水平,改善胰岛素抵抗
  • √ 肉碱可以被氧化成三甲胺氮氧化物(TMAO),高水平血浆TMAO与心血管疾病和糖尿病有关

这些粪便代谢物的变化与IGI、MIRI、肠道内毒素脂多糖、FGF21和炎症标志物TNF-a, IL-1β,IL-10的变化显著相关,暗示肠道微生物群和葡萄糖稳态之间的复合机制联系。在小鼠身上进行的实验进一步证实了这一发现。

肠道微生物群通过循环代谢物影响宿主健康


肠道微生物群在食物成分的消化中起着至关重要的作用,血液代谢组的很大一部分对食物的摄入起反应。因此,循环代谢物直接标志着宿主微生物群与饮食的相互作用。

新出现的证据表明,饮食干预可能会显著改变循环微生物代谢物,进而影响葡萄糖代谢。因此,在未来的随机临床试验中,需要对循环代谢组学进行综合分析。

还需要进一步的研究来评估各种油用于油炸的效果,某些类型的油如特级初榨橄榄油,用于油炸食物,可以改善餐后胰岛素反应。

该研究的主要优点:

随机临床试验被认为是提供因果关系证据的金标准。在该研究中,被测试的食物是经过仔细控制的(油炸过程中的温度和持续时间受到严格控制,以限制有害物质的产生),在干预组和对照组中是一致的,随机化最大限度地减少了潜在的混淆。因此,观察到的与葡萄糖稳态相关的主要结果的差异可能是由不同的食物加工方法——油炸引起的。

该研究只包括健康超重的年轻成年人,因为油炸食品在这一人群中很受欢迎,这可以确保符合这项试验,并且已经证明成年早期超重与成年晚期2型糖尿病病的发病率较高有关。

这项研究的创新之处在于将肠道微生物组与粪便样本中定量靶向细菌代谢组学相结合。这些分析为微生物群在调节饮食对葡萄糖代谢的影响方面的作用提供了新的证据。

此外,小鼠实验为这一发现提供了额外的证据。对包括肠道内毒素、全身炎症和其他生物标志物在内的广泛生物标志物的综合评估,有助于进一步理解油炸肉、肠道微生物群和葡萄糖代谢之间的复杂联系。

该研究受到潜在的限制:

鉴于干预时间相对较短,该研究无法评估油炸食品对血糖稳态和2型糖尿病风险的长期影响。值得注意的是,包括葡萄糖和HbA1c在内的主要结果在干预组和对照组之间没有差异。这可能部分是由于干预时间短,样本量相对较小

研究参与者相对年轻健康;因此,调查结果的普遍性受到限制。

结 语

在当前的饮食建议中,食品加工在很大程度上被忽视了,在高温油炸过程中,蔬菜等健康食品的有益效果可能会降低。以上研究提示,食品加工方法(如油炸)也会影响肠道微生物群,从而影响健康。未来的膳食指南不局限于营养和食品成分,也可以将健康食品加工方法纳入膳食指南。

2型糖尿病如何做到可防可控?肠道菌群发挥重要作用

谷禾健康

2型糖尿病是一种血糖水平升高(高血糖)的慢性代谢疾病,主要由胰岛素抵抗和胰岛素分泌不足引起。2型糖尿病全球患病率在不断上升。

截止到2020年,根据美国糖尿病学会评估标准,糖尿病患病率已达到12.8%。其实在我国成年人中,已经有将近一半的人存在血糖异常,未来极有可能发展为2型糖尿病。如果不加干预治疗,会引发许多不良后果。

很多研究表明,肠道菌群在宿主的代谢和疾病状态中起着重要的作用。特别是2型糖尿病,其病因复杂,包括肥胖、慢性低度炎症,受肠道微生物群和微生物代谢产物的调节。

本文将从肠道菌群的角度了解其与2型糖尿病的关系;肠道菌群及其代谢物对葡萄糖代谢、免疫系统的影响;
从影响肠道菌群变化的因素来了解各种干预措施,包括药物,饮食,益生菌/益生元,粪菌移植,间接性禁食等方式。

01 2型糖尿病

葡萄糖主要通过食用的食物和饮料进入人体。胰腺会产生一种叫做胰岛素的激素,以帮助血液中的葡萄糖进入肌肉、脂肪和肝脏,用作能量。

  • 胰岛素如何将血液中糖分控制在正常水平?

胰岛素通过血液循环进入不同组织。组织大多数细胞表面有一种结构,叫胰岛素受体。当胰岛素流过时,会附着在胰岛素受体上,就像钥匙打开锁一样,糖可以进入细胞内,细胞获得能量维持正常运作,血液中糖分就会回落到正常水平。

  • 2型糖尿病如何形成?

2型糖尿病患者身上,细胞对胰岛素没有反应,这种情况就叫胰岛素抵抗。胰岛素没有了“钥匙”的作用,不能有效开启细胞上的“锁”,或者“锁”的数量也减少了,由此,糖分就不能进入细胞有效利用,被挡在了细胞外面,只好在血液中积累,血糖就升高了。

刚开始的时候,胰腺会觉得自己使不上力,于是不甘心开始拼命工作,产生更多的胰岛素来克服这种抵抗。

随着时间的推移,胰腺开始累了,力不从心,不能产生更多的胰岛素,这时候就是2型糖尿病开始了。

02 2型糖尿病患者的微生物群

肠道微生物群可以直接或间接地影响人类健康,肠道微生物群失调可能会增加促炎疾病的患病率,如肥胖、炎症性肠病、2 型糖尿病、关节炎和癌症。

2型糖尿病人群中个体微生物群的差异

Cunningham A L et al., Gut Pathog, 2021

在2型糖尿病患者普遍具有相对高丰度的特定属:Blautia、Coprococcus、Sporobacter、Abiotrophia、Peptostreptococcus、Parasutterella、Collinsella

2型糖尿病患者中,产生丁酸菌特别缺乏,特别是梭菌目,包括:

Ruminococcus、Subdoligranulum,Eubacterium rectale、Faecali prausnitzii、Roseburia intestinalis 、

Roseburia inulinivorans

2型糖尿病患者中,其他明显较少的菌属有:

拟杆菌属、普雷沃氏菌属双歧杆菌属

  • 双歧杆菌减少

双歧杆菌属具有显著的健康益处,包括改善肠道通透性,从而降低内毒素的循环水平并减少全身炎症。这与改善宿主的糖耐量和葡萄糖诱导的胰岛素分泌,并减少炎症有关。

  • 乳杆菌属增加

来自欧洲的女性2型糖尿病患者队列显示了乳酸杆菌Lactobacillus增加,五种梭菌的丰度下降。

在另外两项研究中也有类似的结论。乳杆菌属的增加较低的空腹血糖水平改善的糖化血红蛋白(HbA1c)水平正相关。这两种菌都与BMI指数没有关系。给糖尿病啮齿动物补充丁酸梭菌可以改善循环血糖水平,降低全身胰岛素抵抗和炎症,增加线粒体代谢,显著减少肠道破坏

  • Akkermansia菌减少

Akkermansia muciniphilaFaecali prausnitzii这两种菌为2型糖尿病的发展提供了保护。

Akkermansia菌维持粘蛋白层的完整性减少炎症方面起着关键作用。粘蛋白是大型、高度糖基化的蛋白质,参与GIT的腔内保护,导致细菌移位减少,并改善脂肪储存、脂肪组织代谢和葡萄糖稳态。给啮齿动物补充低聚果糖(使Akkermansia二次增加)或直接用Akkermansia治疗可以改善它们的整体代谢状态。

  • Faecali prausnitzii 减少

2型糖尿病的Faecali prausnitzii丰度降低,2型糖尿病的治疗似乎也直接导致了Faecali prausnitzii丰度的增加、全身炎症的二次减少和胰岛素抵抗的改善。

2型糖尿病前期菌群变化

2型糖尿病前期患者在其微生物群落中也有类似的发现,包括微生物多样性降低Akkermansia菌梭状芽孢杆菌属数量的减少瘤胃球菌属链球菌增多

如果可以确定2型糖尿病的“共同”微生物群分布,就有可能在机器学习预测模型中利用微生物生物标志物和临床参数,以可靠的诊断准确性区分2型糖尿病风险患者。其次,如果该模型被证明是成功的,所选择的微生物生物标志物可以用于监测患者的血糖控制和新疗法的引入。

03 肠道菌群对葡萄糖和胰岛素代谢的影响

肠道微生物群具有通过多种机制改变宿主葡萄糖稳态的能力,包括:

  • 发酵过程中代谢物产生及其产生的次级效应;
  • 炎症级联反应的激活导致细胞因子的释放;
  • 破坏肠粘膜屏障的渗透性,允许毒素流入;
  • 通过肠促胰岛素分泌的直接信号作用。

2型糖尿病患者表现出糖的膜转运、支链氨基酸(BCAA)转运、甲烷代谢、异生素降解和代谢以及硫酸盐还原的富集。同一队列显示细菌趋化性、鞭毛装配、丁酸盐生物合成以及辅因子和维生素代谢水平降低

微生物群对葡萄糖稳态的影响

Cunningham A L et al., Gut Pathog, 2021

04 肠道微生物群代谢物

短链脂肪酸、BCAAs、琥珀酸盐、吲哚、咪唑都是肠道厌氧发酵过程中产生的微生物代谢产物,是微生物-宿主信号通路的核心成分

这些代谢物主要由微生物群产生,如Akkermansia、普雷沃氏菌属Prevotella、瘤胃球菌属Ruminococus、粪杆菌属Faecalibacterium、真细菌属Eubacterium、Roseburia、梭菌属Clostridium、拟杆菌属、乳杆菌属、链球菌属、丙酸杆菌属Propionibacterium、梭杆菌属Fusobacterium。2型糖尿病病患者体内这些特殊微生物群的大部分已经耗尽。

Huda MN, et al., Front Endocrinol (Lausanne). 2021

丁酸盐、乙酸盐和丙酸盐是膳食纤维肠道发酵产生的最丰富的短链脂肪酸。乙酸盐和丙酸盐主要由拟杆菌门产生,而丁酸盐由厚壁菌门产生。短链脂肪酸被肠粘膜细胞直接用作能量来源,或转移到体循环中,为宿主产生重要的能量来源,并具有作为信号分子的能力。

短链脂肪酸如何影响葡萄糖代谢?

短链脂肪酸通过与选定的G蛋白偶联受体的偶联作用强烈影响葡萄糖代谢。这些主要在脂肪组织、肠道和免疫细胞中表达。GPR43和GPR119刺激促进肠内分泌L细胞分泌肠促胰岛素GLP-1。GLP-1增强葡萄糖诱导的β细胞胰岛素释放,抑制胰高血糖素分泌,保护β细胞免于凋亡,促进β细胞增殖并延长肠转运时间。

丁酸盐和丙酸盐对受体GPR41的刺激具有通过两种不同的作用机制诱导肠道糖异生的能力。

  • 首先,作为GPR41激动剂,增强肠道糖异生基因表达
  • 其次,通过涉及GPR41的肠-脑神经回路

短链脂肪酸还可以直接影响肝脏葡萄糖代谢,减少糖酵解和糖异生,增加糖原合成,降低血浆脂肪酸浓度。干细胞因子具有激活副交感神经活性的能力,从而增加食欲促进葡萄糖刺激的胰岛素分泌

短链脂肪酸通过AMP激活蛋白激酶(AMPK)活性的作用,通过增加葡萄糖转运蛋白4型(GLUT4)的表达来增强外周葡萄糖摄取。其次,在骨骼肌中,短链脂肪酸具有减少糖酵解的能力,导致葡萄糖-6-磷酸的二次积累,从而导致更大的糖原合成

▇ 乙酸盐

乙酸盐是最丰富的短链脂肪酸,被肠上皮吸收,通过门静脉输送到肝脏,并最终分布到外周组织,在那里被代谢。全身性乙酸盐具有穿过血脑屏障的能力,在那里它可以激活乙酰辅酶a羧化酶,导致神经肽表达增强,从而诱导下丘脑神经元激活并抑制食欲

▇ 丁酸盐

丁酸盐是结肠细胞的主要底物和能量来源,提供结肠粘膜至少60-70%的能量需求,对其增殖和分化至关重要。丁酸盐在维持结肠上皮稳态中发挥重要作用,主要是利用其抗炎特性,从而防止氧化应激产生活性氧和氮。在口服葡萄糖耐量试验期间,大量产生丁酸盐的微生物群与改善的胰岛素反应有关(这表明β细胞功能改善)。

餐后血浆丁酸浓度升高与丁酸肠杆菌Intestinimonas butyriciproducens 、Akkermansia muciniphila的丰度增加有关。值得注意的是,通过口服葡萄糖胰岛素敏感性(OGIS)模型评估,丁酸盐浓度与餐后胰岛素敏感性直接相关。

▇ 丙酸盐

肠道产生的丙酸盐是已知的糖异生的首选前体,其中约50%以这种方式利用。丙酸盐进入三羧酸(TCA)循环,通过三个连续的反应转化为琥珀酰辅酶a,生成的琥珀酰辅酶a重新进入TCA循环,并转化为草酰乙酸,即糖异生前体。

肠道丙酸酯释放增加与β细胞功能增强和葡萄糖刺激的胰岛素分泌有关,与GLP-1水平的变化无关。丙酸盐还通过直接抑制炎性细胞因子诱导的细胞凋亡为人类胰岛提供保护。

最后,用肠道丙酸盐补充超重患者导致能量摄入减少和肥胖,并且肽YY (PYY)和GLP-1的血浆水平升高。

膳食纤维的细菌发酵产生大量琥珀酸,通过激活肠道糖异生来改善血糖控制,对于丁酸和丙酸也是如此。

▇ 必需氨基酸

据报道,包括碱性氨基酸和芳香族氨基酸在内的少量必需氨基酸增加与未来发展2型糖尿病的风险增加五倍有关。血中碱性成纤维细胞生长因子水平升高也被证明是胰岛素抵抗的特征,与两种特定的细菌相关,即普雷沃氏菌拟杆菌

胰岛素抵抗患者表现出丰富的支链氨基酸生物合成,并被发现缺乏编码这些特定氨基酸的细菌内向转运蛋白的基因。在啮齿类动物中,普雷沃氏菌可诱导胰岛素抵抗,加剧葡萄糖耐受,并增加支链氨基酸水平。

▇ 吲哚丙酸

吲哚丙酸是细菌芳香族氨基酸分解代谢产生的代谢产物,与膳食纤维摄入高度相关,似乎可以降低患2型糖尿病的风险。它提供了有效的自由基清除活性,提示它可以保护胰腺β细胞免受与代谢和氧化应激相关的损伤。它还可能通过抑制电压门控钾通道,触发GLP-1分泌,参与调节肠内分泌L细胞的肠促胰岛素分泌

由肠道微生物群降解组氨酸产生的咪唑丙酸盐,通过作为细胞内胰岛素受体信号级联的抑制剂损害了细胞正确响应胰岛素的能力。

▇ 胆汁酸

胆汁酸是类固醇羧酸,主要通过限速酶7α‐羟化酶(CYP7A1)的作用从胆固醇衍生而来,然后在分泌到胆汁中之前与甘氨酸或牛磺酸结合。超过95%在末端回肠和结肠通过肠肝循环被重吸收。

胆汁酸的主要功能是小肠内脂类和脂溶性维生素的消化和吸收

乳酸杆菌、双歧杆菌、肠杆菌、拟杆菌、梭菌是影响胆汁酸合成、修饰和信号传导的主要肠道微生物群。它们具有通过解偶联过程控制初级胆汁酸(胆酸和鹅去氧胆酸)转化为次级胆汁酸(脱氧胆酸和石胆酸)的能力,以及代谢天然存在的FXR拮抗剂牛磺β-胆酸的能力。反过来,胆汁酸由于其强大的抗微生物活性,通过抑制细菌在肠道中的定居和生长来促进肠道稳态

除了在肠道消化和吸收中的作用外,胆汁酸还具有发挥激素作用的重要代谢作用的能力。

Xie C,et al., Nutrients. 2021

胆汁酸可以利用FXR和G蛋白受体5 (TGR-5)通过受体偶联信号调节葡萄糖代谢。FXR偶联只有通过原发性胆汁酸才有可能,并且具有减少糖异生、促进肝糖原产生、抑制GLP-1释放和刺激成纤维细胞生长因子(FGF-19)从回肠分泌的能力。

FXR信号抑制糖异生基因的表达,如那些编码磷酸烯醇丙酮酸羧激酶、果糖-1,6-双磷酸酶-1和葡萄糖-6-磷酸酶的基因。FGF-19通过降低CYP7A1的表达、抑制葡萄糖产生和诱导糖原合成来调节BA的合成。TGR-5(仅通过二级BAs结合)偶联导致肠L细胞分泌GLP-1,增加葡萄糖刺激的胰岛素释放,并促进前胰高血糖素转化为GLP-1。

在骨骼肌和棕色脂肪组织中,BATGR5信号通过刺激2型碘甲状腺原氨酸脱碘酶促进甲状腺素(T4)转化为具有生物活性的三碘甲状腺原氨酸(T3),导致更大的能量消耗。两种受体的偶联促进胰腺β细胞产生胰岛素

研究表明,使用钡螯合剂操纵钡池可以改善2型糖尿病患者的血糖控制。钡螯合剂在肠内结合钡,形成不可吸收的复合物,导致肠肝循环中断。胆汁酸螯合剂降血糖作用的潜在机制知之甚少,但据信涉及胆汁酸库组成的破坏、增强肝脏葡萄糖代谢、增加肠促胰岛素激素的释放和诱导肠道微生物群组成的改变

05 菌群缺失导致胃肠屏障功能受损

肠粘膜内层作为与潜在有害物质不良相互作用的预防性屏障,在免疫系统的调节中起着不可或缺的作用。

众所周知,2型糖尿病具有显著增强的肠道通透性,允许细菌穿过肠道上皮移位,导致引发低度炎症的宿主代谢性内毒素血症。由此产生的影响可以引发β细胞破坏胰岛素抵抗

如前所述,粪杆菌属Faecalibacterium、罗氏菌属Roseburia、双歧杆菌属都被认为具有防止细菌移位降低肠道通透性的能力。众所周知,2型糖尿病患者体内这些特殊微生物群的丰度已经耗尽。

06 炎 症 应 答

2型糖尿病的特征是慢性低度炎症状态,伴有大量炎症介质的异常表达和产生。患有2型糖尿病的个体产丁酸盐菌群数量减少,导致肠道轻度炎症

肠道微生物通过脂多糖(LPS)的活性激活宿主炎症胰岛素抵抗,脂多糖是革兰氏阴性菌细胞壁的重要组成部分。细菌片段和脂多糖被先天toll样受体(TLRs)识别,特别是TLR4,触发细胞内信号通路NF-κB的激活和促炎细胞因子的释放。LPS的释放还通过与在巨噬细胞和树突状细胞上表达的NLRP3炎症体和NOD样受体(NLRs)的高亲和力偶联来刺激局部免疫反应。炎性NF-κB级联中血清激酶(Jnk和IKK)的激活诱导胰岛素受体底物丝氨酸磷酸化,恶化胰岛素抵抗。

促炎细胞因子的释放会破坏葡萄糖代谢和胰岛素信号。2型糖尿病患者表现出肿瘤坏死因子-α水平升高,这与糖耐量改变、胰岛素抵抗增强和胰岛功能障碍密切相关。肿瘤坏死因子-α具有上调细胞因子信号转导抑制因子-3 (SOCS-3)转录的能力,该抑制因子与胰岛素受体的酪氨酸-960偶联,防止胰岛素受体结合。这导致IRS-1的降解和胰岛素信号通路的破坏

白细胞介素-1 (IL-1)是白细胞介素家族的一种炎性细胞因子,具有降低IRS-1表达、抑制GLUT-4向质膜移位和减少胰岛素刺激葡萄糖摄取的潜力。最近的研究表明,IL-1受体拮抗剂(IL-1RA)和IL-1β特异性抗体治疗改善了2型糖尿病患者的糖代谢和胰岛素分泌。

IL-6已被确定为2型糖尿病的独立预测因子。它对IRS-1、GLUT4和过氧化物酶体增殖物激活受体(PPARs)的基因转录产生长期抑制作用,并显著降低胰岛素刺激的酪氨酸磷酸化和胰岛素刺激的葡萄糖转运

以上部分是微生物群的改变直接或间接影响2型糖尿病的发展,那么微生物群会受到哪些因素的影响呢?

影响肠道微生物群的因素

Huda MN, et al., Front Endocrinol (Lausanne). 2021

以上因素都会改变肠道微生物群,其中如益生元、益生菌、FMT和间歇性禁食,都被认为是2型糖尿病的潜在疗法。

一些2型糖尿病的药物改善循环血糖水平部分通过调节肠道微生物群,这进一步支持了肠道菌群作为2型糖尿病治疗的可能性。接下来我们看看它们如何调节肠道微生物群。

07 药物引起肠道微生物群变化

肠道微生物的组成在个体之间有很大的差异,并被内源性和外源性因素不断改变。地理和环境因素,如饮食、疾病、生活方式、卫生和药物都会导致变化。抗生素治疗能够在给药后几年内破坏肠道微生物群落。

在斯堪的纳维亚的2型糖尿病患者中发现的拟杆菌属、普雷沃氏菌属双歧杆菌属的数量明显较少,这表明抗生素暴露与随后的2型糖尿病发展之间存在很强的相关性。2型糖尿病的诊断与抗生素处方数量之间的关系需要进一步建立因果关系。

抗生素可能使患者更容易发展为2型糖尿病,然而,在确诊前几年,有2型糖尿病风险的患者可能更容易患病。

下面,来看看抗生素治疗对肠道微生物群的影响,以及由此对肥胖和胰岛素抵抗患者代谢参数的影响

万古霉素显著降低了微生物多样性,厚壁菌门丰度降低,变形菌数量增多,尤其是乳杆菌属,外周胰岛素敏感性下降。包括双胍类、α-葡萄糖苷酶抑制剂、肠促胰岛素类药物、胰高血糖素样肽1 (GLP-1)受体激动剂、二肽基肽酶-4抑制剂和噻唑烷二酮类在内的降糖药物都会影响肠道微生物群。

▇ 二甲双胍

二甲双胍是2型糖尿病患者最广泛使用的口服药物之一,不会有意改变肠道微生物群。

  • 二甲双胍增加有益菌

然而,越来越多的证据表明,微生物群可能会增强某些效应。二甲双胍增加了Akkermansia属、双歧杆菌属乳杆菌属的相对丰度。其他丰富的关联包括拟杆菌属、丁酸球菌属、普雷沃菌属、巨球菌属和丁酸杆菌属。这些特殊的微生物群都具有产生短链脂肪酸的能力

  • 二甲双胍改善菌群多样性

二甲双胍治疗可改善肠道微生物多样性,快速改变肠道菌群组成,通过增加短链脂肪酸的产生,促进内分泌细胞活性,调节胆红酸(BA)的周转,减少内毒素血症,改善肠道功能。

  • 二甲双胍治疗减少脆弱拟杆菌

短期二甲双胍治疗与脆弱拟杆菌的丰度显著降低相关,导致肠道中BA糖链酸水平的二次增加。GUDCA抑制肠法呢样X受体(FXR)信号传导,从而改善葡萄糖耐量。重新引入脆弱拟杆菌逆转了使用二甲双胍后葡萄糖代谢的改善。

二甲双胍治疗下的微生物转移有助于改善血糖控制和不良反应

Forslund K, et al., Nature. 2015

▇ 格列本脲

其他糖尿病药物还没有像二甲双胍治疗那样被广泛研究。格列本脲对肠道微生物群α多样性的影响很小。它增加了Paraprevotellaceae 和普氏菌属 Prevotella 的相对丰度。当与二甲双胍联合使用时,达帕利沙星或格列齐特均未显示能显著改变2型糖尿病患者的肠道微生物群。

▇ 利拉鲁肽

在高脂饮食(HFD)中,利拉鲁肽降低了肠道微生物的多样性,降低拟杆菌门、变形菌门和放线菌门的丰度。所有与肥胖相关的菌(Romboutsia,Ruminiclostridium,Erysipelotrichaceae)的相对丰度也有所下降,同时与瘦相关的菌Blautia和Coprococcus有所增加

接受GLP-1激动剂联合二甲双胍治疗的患者,Akkermansia丰度高于接受单一利拉鲁肽治疗的患者。

08 间接性禁食影响肠道菌群

间歇性禁食被定义为一种周期性的饮食限制,已被证明可以延长寿命,并降低罹患包括2型糖尿病在内的各种年龄相关疾病的风险

动物研究表明,间歇性禁食可改善机体组成、糖脂代谢、减少炎症和自噬,肠道菌群可能在这一过程中发挥关键作用。虽然大多数人类间歇性禁食研究显示了一个有益的影响,结果还不完全确定。

最近一项使用糖尿病小鼠的研究报告称,28天间歇性禁食干预通过增加气球菌Aerococcus、棒状杆菌Corynebacterium、Odoribacter、乳酸杆菌的丰度,减少链球菌、Rummeliibacillus和Candidatusarthromitu的丰度,重组了肠道微生物群,从而降低了血糖和胰岛素水平,改善能量代谢

间歇性禁食引起的细菌丰度变化与血浆次级胆汁酸浓度、绒毛长度增加、肠道渗漏减少、血浆LPS水平降低相关,提示轻度炎症改善。更重要的是,抗生素治疗抑制了间歇性禁食对2型糖尿病的影响,提示微生物群是间歇性禁食改善2型糖尿病的诱因

间歇性禁食的另一种选择是禁食模拟饮食法,它含有非常的热量和蛋白质。禁食模拟饮食法通过增加 ParabacteroidesBlautia的数量,减少普雷沃氏菌科、Alistipes、Ruminococcaceae属的数量,重建肠道微生物群,使血糖水平正常化,改善血糖高db/db小鼠的胰岛素敏感性和β细胞功能

该研究进一步强调了胰岛细胞和β细胞的缺失可以通过禁食模拟饮食法介导的改变肠道微生物群来预防,提示禁食模拟饮食法通过胰腺β细胞的功能来改善2型糖尿病。

综上,间歇性禁食可调节肠道菌群,改善2型糖尿病。然而,这些发现需要在人类队列中进行验证,使用纵向研究来确定间歇性禁食在影响2型糖尿病结果中的长期有效性。

09
益生元、益生菌和合生元

益生元、益生菌和合生元能够调节肠道微生物群组成,目的是为改善葡萄糖代谢创造环境。越来越多的文献支持临床使用添加益生元、益生菌和合生元来改善2型糖尿病患者的血糖控制。

然而,由于研究方法(研究时间、补充量、患者人口特征)之间的异质性,阻碍了研究的比较,而且研究可用性差、单个研究的规模相对较小以及明显缺乏微生物群数据,数据仍然有限,这是具有挑战性的。

▇ 益生菌

益生菌是活的微生物,当以足够的量给药时,对个体的健康有益。

证据表明,益生菌能够改善肠道微生物群,从而实现更好的2型糖尿病控制,同时增强肠道完整性、降低循环LPS、降低内质网应激和改善外周胰岛素敏感性

一项荟萃分析,重点是研究补充益生菌对2型糖尿病患者糖化血红蛋白水平、空腹血糖和胰岛素抵抗的影响。共纳入了15项随机对照试验,涉及902名患者。结果表明,益生菌可降低基线水平的糖化血红蛋白(p = 0.02)、FBG(p=0.003)和胰岛素抵抗(p < 0.00001)。

有限的研究评论了微生物群的变化。两项研究提到了添加益生菌后的微生物群分析,并报告了细菌组成的变化。嗜酸乳杆菌Lactobacillus acidophilus的丰度从干预前的接近不可检测的水平显著增加双歧杆菌属(4.5倍)和乳杆菌属(两倍)数量的显著增加

▇ 益生元

益生元是食物成分,如不易消化的多糖或纤维,通过选择性刺激一个或有限数量的肠道微生物群的生长和/或活性而有益地影响宿主。

补充益生元与改善血糖控制有关,然而,根据益生菌研究报告,方法学的异质性也很大,导致文献不确定。

迄今为止最全面的荟萃分析,包括33个随机对照试验,涉及1346名参与者,分布在健康、肥胖和2型糖尿病队列中。仅关注糖尿病前期和2型糖尿病队列,与对照组相比,补充后FBG、糖化血红蛋白水平、空腹胰岛素浓度和胰岛素敏感性的相对降低,分别为基线值的7.15、7.00、16.58和25.34%。建议每日补充剂量大于10 g,持续时间至少42天,以持续改善血糖指标。

目前尚不清楚观察到的影响是与肠道微生物群的改变有关,还是因为发酵底物的可用性更高。文献中一直缺乏微生物群分析,直接归因于葡萄糖水平的改善。

研究表明,补充益生元六周可产生显著的双歧杆菌效果,并提高粪便短链脂肪酸浓度,但未观察到对整体微生物多样性的影响。其次,补充益生元可以增加细菌多样性,如Shannon和inverse Simpson指数所评估的,并增加2型糖尿病患者的丰富度。然而,在饮食治疗12周后,没有观察到葡萄糖控制的统计学改善。

▇ 合生元

合生元:”包含活微生物和被宿主肠道微生物群选择性利用以赋予‘宿主健康益处’的底物的混合物”。

一种合生元给六十名高血压前期患者2型糖尿病(两种乳酸杆菌和双歧杆菌各一种,一种链球菌和酵母,以及300毫克低聚糖)。据报道,干预后乳酸杆菌属(32.6%)和双歧杆菌属(131.6%)均有所增加,肠道致病菌(44.6%)显著减少,空腹血糖(3.3%)和HbA1c水平(14%)也有所改善

越来越多的证据表明,添加益生元、益生菌和合生元可以改善血糖控制。需要进行详细的工作来设计稳健的方法,以确定这些积极的变化是否直接归因于肠道微生物群的改变和所涉及的复杂代谢机制。一旦这种关系被更好地理解,在2型糖尿病的管理中利用这些饮食补充的潜力就可以充分发挥。

10 粪菌移植治疗,有待深入研究

粪便微生物群移植(FMT)是将最低限度操作的预先筛选的供体粪便转移到已确定的“患病”患者的肠道中,目的是纠正异常生物状态增加整体多样性并恢复微生物群的功能。

被诊断为代谢综合征的男性受体在接受异源菌群6周后,胰岛素敏感性提高,产丁酸盐菌群(Roseburia肠胃炎种)丰度增加

其次,一项研究报告了代谢综合征患者,观察到异体粪菌移植后HbA1c水平显著降低,并与肠道微生物群组成的变化相关。异体粪菌移植之前参与者基线微生物组中基因丰富度的降低与临床结果的改善相关。

应该注意的是,这两项研究的临床益处随着时间的推移而恶化,并且存在相当大的个体差异

因此,粪菌移植治疗虽有希望,但还需进一步研究,例如:

  • 确定最佳供体微生物群特征;
  • 计算补充治疗所需的适当给药频率和阈值,以延长微生物群植入的寿命;
  • 受体宿主因子是否具有调节治疗效果的能力。

11 2型糖尿病的风险因素及预防措施

2型糖尿病是一种多因素疾病。这意味着不是仅仅停止吃糖或开始锻炼就可以来避免这种健康状况。
以下是一些可能影响患2型糖尿病风险的因素:

肥胖

肥胖或超重患2型糖尿病的风险很大

不良的饮食习惯

美国糖尿病协会(ADA)强调,吃太多不健康的食物会增加你患2型糖尿病的风险。研究表明,经常吃高热量、加工食品和饮料的饮食,而完整的、富含营养的食物却吃的少,这样的饮食习惯会显著增加患2型糖尿病的风险。

看电视时间过长

哈佛大学公共卫生学院指出,长时间看电视(和久坐)可能会增加肥胖、2型糖尿病和其他疾病的风险。

缺乏足够的锻炼

就像体脂与胰岛素和其他激素相互作用影响糖尿病的发展一样,肌肉也是如此。通过心血管运动和力量训练可以增加的肌肉量,在保护身体抵抗胰岛素抵抗和2型糖尿病方面发挥着作用。

睡眠习惯

美国国家睡眠基金会指出,睡眠障碍会增加对胰腺的需求,从而影响身体胰岛素和血糖的平衡。随着时间的推移,这会导致2型糖尿病。

多囊卵巢综合征(PCOS)

根据2017年8月发表在《临床内分泌与代谢杂志》上的一项研究,被诊断患有多囊卵巢综合征(一种激素失衡疾病)的女性比她的同龄人患2型糖尿病的风险更大。胰岛素抵抗和肥胖是这些疾病的共同特征。

45岁以上

根据ADA的说法,年龄越大,患2型糖尿病的可能性越大。但近年来,越来越多的儿童和青少年被诊断出患有前体糖尿病和2型糖尿病。

✦ 预 防

对于预防2型糖尿病,没有万无一失的方法,但是根据上述风险因素进行相应调整,保持健康的体重,遵循健康的饮食,定期锻炼,降低高胆固醇和高血压等可以帮助预防这种疾病。

▇ 饮食

因为某些食物,如碳水化合物,直接影响你的血糖,所以饮食是控制糖尿病最重要的因素之一

重要的并不是不吃,而是尽可能均衡饮食。

一种简单的标准餐盘法控制饮食:

盘子的一半:不含淀粉的蔬菜

盘子的四分之一:瘦肉蛋白

盘子的四分之一:谷物或淀粉类蔬菜

按照上述方式吃完饭,如果你还觉得饿,可以再吃一点不含淀粉的蔬菜。重要的是,一定要慢慢吃,享受食物

餐盘法可以帮助你增加纤维摄入量。富含纤维的食物可以帮助减缓血糖上升的速度。让你有饱腹感,潜在地促进减肥提高胰岛素敏感性。高纤维食物通常富含维生素和矿物质,也可以增加营养

已有研究证明,鼓励患者摄入高纤维饮食可以提高产生短链脂肪酸的菌群数量,从而通过增加GLP-1的产量来降低糖化血红蛋白水平。接受高纤维饮食的患者HbA1c水平比对照组下降更大,更高比例的患者实现了充分的血糖控制(HbA1c < 7%)。

注:糖化血红蛋白(HbA1c)是红细胞中的血红蛋白与血清中的糖类(主要指葡萄糖)通过非酶反应相结合的产物。

进一步的临床研究,摄入地中海饮食(富含纤维),也报告了高心脏代谢风险个体的葡萄糖和胰岛素敏感性的改善

因此,高纤维饮食用于控制2型糖尿病是可能的。

▇ 运动

运动对于利用胰岛素(帮助将糖分转移到细胞中)和降低血糖至关重要。通过运动,新陈代谢加快,身体就会逐渐熟练地燃烧卡路里。此外,锻炼有助于保持胆固醇含量,避免胆固醇过高和斑块的形成(这些斑块可能会阻碍血液顺利通过动脉)。

你可能会说工作生活很忙,找时间锻炼很困难,但不得不说,运动非常重要。试着让运动变得有趣,给自己足够的动力,或者把锻炼计划写在本上,比如说每周150分钟的运动量。

常见运动活动的生理成分

Andrew Williams et al., CLINICAL,2021

运动方式对2型糖尿病患者健康相关结果的影响

Andrew Williams et al., CLINICAL,2021

重要的是,要选择适合自己的运动方式,比如说肥胖的人可能会减少负重训练,从而减少与冲击相关的肌肉骨骼问题加重的风险。

有人认为,2型糖尿病患者在运动过程中发生不良事件的风险增加,但不良事件的发生率较低,定期运动的好处远远大于风险

注:不稳定型心绞痛、不稳定呼吸系统疾病、未经治疗的心力衰竭或心肌病、严重主动脉狭窄和未控制的糖尿病患者,运动需要遵医嘱

总之,运动计划必须是有目标的并且是自己感兴趣的,才能坚持下去。

▇ 肠道菌群健康检测

定期进行肠道菌群检测,了解2型糖尿病的患病风险,也是一种可行的预防措施。当发现风险较高就及时调整,不恐慌不焦虑,对自身健康状况了如指掌。

12
结 语

2型糖尿病是一种复杂的多系统疾病,如果不加以适当的识别和治疗,可能会出现并发症。特定的肠道微生物群可能通过葡萄糖代谢途径的改变来避免2型糖尿病的恶化。

随着对微生物群的了解逐渐深入,利用微生物群来识别“高危”人群以及通过微生物群靶向治疗成为可能。对于益生菌,益生元等治疗方案还需进一步研究,最终目标是在已确定的风险人群中简化早期干预,真正做到可防可控。

主要参考文献

Cunningham A L,Stephens J W,Harris D A,Gut microbiota influence in type 2 diabetes mellitus (T2DM).[J] .Gut Pathog, 2021, 13: 50.

Huda MN, Kim M, Bennett BJ. Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Front Endocrinol (Lausanne). 2021 Apr 7;12:632335. doi: 10.3389/fendo.2021.632335.

Al-Jameel SS. Association of diabetes and microbiota: An update. Saudi J Biol Sci. 2021;28(8):4446-4454. doi:10.1016/j.sjbs.2021.04.041

Muñoz-Garach A, Diaz-Perdigones C, Tinahones FJ. Gut microbiota and type 2 diabetes mellitus. Endocrinol Nutr. 2016 Dec;63(10):560-568.

Forslund K, Hildebrand F, Nielsen T, Falony G, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015 Dec 10;528(7581):262-266.

Vitale M, Giacco R, Laiola M, et al. Acute and chronic improvement in postprandial glucose metabolism by a diet resembling the traditional Mediterranean dietary pattern: can SCFAs play a role? Clin Nutr. 2021;40(2):428–37

Tao YW, Gu YL, Mao XQ, Zhang L, Pei YF . Effects of probiotics on type II diabetes mellitus: a meta-analysis. J Transl Med. 2020;18(1):30

Zhang F , Wang M, Yang J, et al. Response of gut microbiota in type 2 diabetes to hypoglycemic agents. Endocrine. 2019;66(3):485–93.

Gérard C, Vidal H. Impact of gut microbiota on host glycemic control. Front Endocrinol (Lausanne). 2019;10:29.

Xie C, Huang W, Young RL, Jones KL, Horowitz M, Rayner CK, Wu T. Role of Bile Acids in the Regulation of Food Intake, and Their Dysregulation in Metabolic Disease. Nutrients. 2021 Mar 28;13(4):1104.

肠道微生物群在冠心病中的作用

谷禾健康

冠心病患者的肠道微生物群存在差异,这已成为共识。 研究表明,肠道微生物群与肥胖、糖尿病、血脂异常和高血压有关,这些都是冠心病的危险因素。肠道微生物群通过其代谢产物参与介导胆固醇代谢、尿酸代谢、氧化应激和炎症反应等基本代谢过程,可诱导动脉粥样硬化和冠心病的发生。 干扰肠道微生物群的组成,补充益生菌和粪便捐赠是潜在预防和治疗冠心病的热门研究领域。

肠道微生物群对冠心病危险因素的影响

研究表明,肠道菌群与肥胖,糖尿病,血脂异常和高血压有关,它们是冠心病的危险因素。

肠道菌群与肥胖

2004年,Bäckhed等人首先报道了肠道微生物群与肥胖有关,因为他们发现肠道微生物群可以调节实验小鼠的脂肪储存。在人和小鼠中都发现了与肥胖相关的相似的肠道菌群。在肥胖的小鼠和肥胖的人类肠道微生物群中,厚壁菌/拟杆菌比例更高。 他们的结果表明,肥胖患者的微生物组从饮食中获取能量的能力更强。 这一发现进一步证实了肠道菌群与肥胖之间的关系。

目前的研究表明,肠道菌群可能导致肥胖(图1)。 肠道微生物群会发酵宿主无法消化的物质,将其转化为小分子,例如短链脂肪酸(SCFA),并为宿主提供能量。 肠道菌群抑制禁食诱导的脂肪细胞因子(FIAF)的表达增加脂蛋白脂肪酶的表达,并促进脂肪细胞中甘油三酸酯的储存(乙酰辅酶A羧化酶[ACC]和脂肪酸合成酶[FAS]是关键的调节剂),因此诱发肥胖。肠道菌群还调节内源性大麻素(CB)系统。

CB调节肠的通透性以及肠粘膜中紧密连接蛋白的定植和分布,从而导致肠通透性增强,脂多糖和炎症反应增加,从而导致肥胖。

图1  肠道微生物群对肥胖的影响

肠道菌群和糖尿病

糖尿病是冠心病的主要危险因素。糖尿病患者的冠心病发病率为55%,是非糖尿病患者的几倍。糖尿病的发病机制与环境因素和宿主遗传有关。 作为重要的环境因素,肠道菌群与糖尿病密切相关。 在人类粪便微生物群的研究中,这些有益细菌与改善胰岛素敏感性和改善糖尿病有关。增加糖尿病风险的细菌是有害的。 

对我国345例糖尿病患者肠道微生物DNA的基因组学分析显示,中度菌群失调是2型糖尿病患者正常菌群平衡受到干扰的状态。 为了对2型糖尿病患者的肠道微生物含量进行分析,开展了一个全基因组关联研究(MGWAS),并根据shotgun法对来自345位中国人的肠道微生物DNA进行了两阶段的MGWAS分析。 此外,共生丁酸产生菌数量减少,而条件致病菌的数量增加

对145名欧洲糖尿病女性的肠道菌群进行的研究也得出了相似的结果:产生丁酸的梭状芽孢杆菌数量减少,而乳酸杆菌属和链球菌属增加

普氏菌Prevotella copri和普通拟杆菌(Bacteroides vulgatus)是支链氨基酸合成与胰岛素抵抗之间联系的驱动因素。 胰岛素抵抗者的血清代谢组的特征是支链氨基酸(BCAAs)含量升高,已证明Prevotella copri可以诱导胰岛素抵抗,加重葡萄糖耐量和增加小鼠BCAA的循环水平。普通拟杆菌可以引起胰岛素抵抗并增加循环支链氨基酸水平,从而介导糖尿病。 许多研究表明,肠道菌群通过影响胰岛素抵抗和胰岛素分泌失调来促进糖尿病(图2)。 

图2   肠道微生物群对糖尿病的影响

肠道菌群与2型糖尿病之间的重要联系是Toll样受体(TLR)。 肠道菌群的变化通过调节TLR4参与胰岛素抵抗诱导的肥胖。 来自肠道菌群的脂多糖(LPS)通过肠道吸收进入血液循环,这一过程称为代谢性内毒素血症。TLR4缺失对胰岛素抵抗的保护作用与其对代谢性内毒素血症信号转导的抑制有关 。LPS可以促进胰岛B细胞的凋亡并减少胰岛素分泌。

肠道菌群失衡会导致短链脂肪酸(SCFA)失调,这在调节肠道菌群,维持体液平衡,为肠上皮提供能量,抑制炎症因子形成以及促进肠黏膜修复方面起着重要的作用。增加的SCFA可以诱导TLR4信使RNA表达显着增加,并增强NF-κB与白介素(IL)-6结合。 

SCFA与G蛋白偶联受体41/43结合也可影响抗炎和脑肠肽激素分泌功能,导致胰岛素抵抗和胰岛细胞功能障碍,并导致胰岛素样生长因子-1(GLP-1)分泌障碍(例如GLP-1可降低血糖和胰岛细胞凋亡)。

此外,肠道菌群的结构和体内稳态的变化会改变胆汁酸的转化,从而导致异常的TGR5和法尼醇X受体(FXR)信号通路。 这种变化会导致代谢紊乱,最终导致糖尿病。

肠道菌群和血脂异常

血脂异常与冠心病密切相关。饮食,肥胖,激素,基因和其他因素会导致血脂异常。

肠道菌群的生理和代谢活动对于调节和维持人类平衡的脂质代谢至关重要。厚壁菌和拟杆菌属是影响血脂改变的主要细菌菌群。 肠道菌群的脂质代谢产物(例如胆碱,三甲胺氧化物[TMAO]和甜菜碱)会促进动脉粥样硬化并增加患心血管疾病的风险。肠道菌群会影响血清甘油三酯和高密度脂蛋白胆固醇的转化。

三种机制很可能导致血脂异常

首先,肠道菌群产生胆汁盐羟化酶,将结合的胆汁酸转化为二级游离胆汁酸。二级游离胆汁酸可通过G蛋白偶联受体调节肝脏和脂质的代谢,肠道菌群紊乱可导致胆汁酸分泌异常,从而引起血脂异常。

其次,肠道菌群将胆碱和肉碱从宿主转化为三甲胺(TMA),而TMA在肝脏中转化为TMAO。  TMAO可通过影响胆固醇的运输和代谢以及胆汁酸水平而引起血脂异常和动脉粥样硬化斑块。

第三,SCFAs可以抑制肝脏脂肪合成酶的活性,调节血液和肝脏中胆固醇的分布,从而在降低血清3-酰基甘油和胆固醇水平方面发挥作用。

细菌异常会导致SCFA分泌不足和血脂异常。 益生菌可以降低血清胆固醇并增加高密度脂蛋白含量,这表明正常的肠道菌群间接地参与了血脂水平的降低。

肠道菌群与高血压的关系

高血压是导致心血管疾病的关键因素。 本研究表明,除了公认的高血压病因(例如交感神经系统过度活跃,肾素-血管紧张素-醛固酮系统活化以及水和钠潴留),肠道菌群也与高血压密切相关(图3)。

图3   肠道微生物群对高血压的影响

对原发性高血压大鼠粪便细菌的分析表明,细菌数量和多样性明显降低。厚壁菌和拟杆菌的比例增加,SCFA产量降低

SCFA可通过嗅觉受体78(OLFR78),G蛋白偶联受体41(GPR41)和G蛋白偶联受体43(GPR43结合来调节血压。

SCFA在维持肠上皮屏障功能中发挥作用。它们可以减少炎症反应,直接影响免疫细胞,减少交感神经活动,从而改善高血压。 此外,一项研究还报道了肠道菌群可以影响血管活性激素(如5-羟色胺,多巴胺和去甲肾上腺素)的形成,从而在调节血压中发挥作用。

最近的一项临床研究对高血压患者的粪便菌群进行了分析,并发现了类似的结果。普雷沃氏菌和克雷伯氏菌的比例显著增加。将健康对照组和高血压组的肠道菌群移植到GF小鼠体内。用高血压患者粪便细菌移植治疗的小鼠血压显著升高。这表明肠道微生物群与宿主的血压有关,并进一步证实不平衡的肠道微生物群是高血压的重要致病因素。

肠道微生物群对冠心病的影响

肠道微生物群参与调节基本代谢过程,如胆固醇代谢、尿酸代谢、氧化应激和炎症反应,通过其代谢物,可导致动脉粥样硬化和冠心病的发展。

冠心病患者肠道菌群的变化

在2012年,Karlssion等人使用全基因组测序来确定肠道菌群变化与动脉粥样硬化性心脏病之间的可能联系。与健康人群相比,Collinsella菌的数量增加,而 Rothia 和 Eubacterium 菌数量减少。 使用宏基因组技术进行的进一步功能分析表明,冠心病患者肠道菌群中编码肽聚糖合成的基因增加,而编码八氢番茄红素去饱和酶的基因(与血清中β-胡萝卜素减少相关)减少。  

2016年,Emoto等人使用末端限制性片段长度多态性(T-RFLP)和16S rRNA来研究冠心病患者和健康志愿者之间肠道菌群的差异。结果表明,在冠心病患者中,成熟的乳杆菌数量显着增加,而拟杆菌(双歧杆菌和普氏杆菌)显着下降。此外,厚壁菌/拟杆菌的比例明显增加。  该研究还发现,不使用抗生素的冠心病患者肠道菌群中乳酸菌的比例显着增加,而拟杆菌的比例显着下降。  

2017年,这些作者在两项临床试验中再次验证了这些结果。首次将肠道菌群结构的变化直接鉴定为冠心病的诊断标记。

TMAO在冠心病中的作用

肠道菌群产生的代谢性TMAO是心血管疾病的关键机制(图4)。 食物中的胆碱(例如,磷脂酰胆碱,胆碱,L-肉碱和其他三甲胺[TMA])通过肠道微生物酶复合物来产生TMA。 然后TMA进入门静脉循环,并被宿主的肝酶进一步代谢,从而产生TMAO。

图4  TMAO对冠心病的影响

当前的研究表明,血浆TMAO水平与冠心病风险高度相关。临床研究还表明,TMAO增加了患心血管疾病的风险,并增加了急性心肌梗塞,心源性休克和死亡的发生率。 

一项为期3年的研究(涉及4007名参与者)进行了选择性冠状动脉造影术。 结果表明,空腹血浆TMAO水平在独立于传统心血管危险因素的心脏事件预测中发挥作用。 这项研究表明,最高四分位数患者中,TMAO水平较高的患者恶性心脏事件的发生率比最低四分位数患者高2.5倍。 而且,TMAO的风险比显着高于低密度脂蛋白的风险比。校正传统的危险因素和肾功能后,TMAO水平仍是恶性心血管事件的独立预测因子。

Cyp7al是胆汁酸合成中的主要酶。Cyp7al的表达上调可以帮助扩大胆汁酸库,增加胆固醇的运输,并最终减少动脉粥样斑块的形成TMAO可以降低Cyp7al的表达,抑制胆固醇的运输,引起胆固醇在细胞中的积累,并导致形成泡沫细胞。

TMAO还可以诱导血小板反应过度,因此成为动脉粥样硬化的危险因素。  TMAO与血小板之间的相互作用可能通过改变血小板依赖性钙信号传导而促进血小板高反应性并增强体内血栓形成。据报道血小板高反应性是心血管事件的危险因素。

最近的证据表明,TMAO可以在数分钟内迅速向细胞发送信号。 在内皮或平滑肌细胞中,TMAO可以迅速诱导丝裂原活化的蛋白激酶和NF-κB活化,并引起下游粘附分子的上调。 TMAO水平升高还与SMAD 3 蛋白的磷酸化增加有关。  SMAD 3是转化生长因子β(TGF-beta)途径中的关键信号。 在动物模型中,TMAO促进血管炎症并诱导主动脉内皮细胞活化和粘附蛋白上调。这些作用都是急性冠状动脉综合征的关键机制

肠道菌群通过尿酸对冠心病的作用

血清尿酸水平可能是冠心病的独立危险因素。 尿酸在体内具有氧化特性。 血尿酸水平升高会导致血尿酸增加氧自由基,氧化应激,血管内皮功能障碍,炎症反应以及动脉粥样硬化的发展。

肠道菌群通过调节尿酸代谢来影响氧化应激过程。 大肠杆菌含量越高,尿酸分解越多。 冠心病患者血清尿酸水平升高与肠道菌群功能障碍有关。高尿酸血症也是动脉粥样硬化的危险因素。血清尿酸水平升高会增加氧自由基的产生,引起氧化应激,并引起内皮功能障碍。UA水平与循环类胡萝卜素成负相关

与年龄,性别,总能量,蛋白质和维生素摄入量无关,循环尿酸水平与总类胡萝卜素(尤其是α-胡萝卜素,番茄红素,叶黄素,玉米黄质和硒)呈负相关。 类胡萝卜素作为抗氧化剂,具有抗心绞痛的作用。一项研究分析了动脉粥样硬化患者和正常对照组的肠道菌群结构,发现动脉粥样硬化患者的肠道菌群富含编码肽聚糖生物合成的基因,而正常对照组的肠道菌群富含类胡萝卜素编码基因。肠道微生物疾病会导致含有合成类胡萝卜素基因的细菌减少,从而降低血液中的类胡萝卜素水平并削弱抗氧化作用,从而促进动脉粥样硬化的发展。

肠道微生物是防治冠心病的新靶点

肠道菌群失衡与冠心病的发病机制有关。 这是一种有效的靶向疗法,但缺乏与冠心病和心肌梗塞患者干预相关的数据。 Lam等人使用抗生素抑制肠道菌群,并观察这些变化对急性心肌梗死(AMI)小鼠预后的影响。 研究结果表明肠道菌群变化与心肌梗死之间存在联系,并证明益生菌补充剂可以减少心肌梗死率。  Gan等研究了给予益生菌以减轻心肌梗塞后心肌肥大的小鼠。作者确定,干扰肠道菌群结构并改善急性心肌梗死的预后可能成为AMI的新疗法。

在当前的临床实践中,益生元和益生菌是调节肠道菌群失衡的主要治疗工具。 为了确定益生菌是否可以改变心肌梗塞后患者的预后,研究人员建立了大鼠心肌梗死模型,并在大鼠饮用水中随机给予GR-1或安慰剂和益生菌。  16S rRNA用于对大鼠盲肠微生物组成进行测序,两组之间无明显差异。 但是,心钠素的基因表达有所不同。接受GR-1的动物的左心室肥厚较轻,血液动力学参数更好。 停止使用益生菌后的四个星期,两组仍然存在差异,这表明在治疗结束后GR-1的作用仍然存在。 

益生菌可以用作预防冠心病和改善心肌梗死患者预后的潜在疗法。 益生元作为发酵底物,可以增强有益肠道菌群的活性,并有效改善血糖控制和血浆脂质分布。此外,益生元还可以改善肠道通透性,减少代谢性内毒素血症,减轻炎症,缓解糖尿病患者对葡萄糖不耐的症状

研究人员认为,粪便捐赠是一种治疗由于微生物引起的肠外疾病的新疗法。研究表明,健康人向代谢综合征男性患者捐赠粪便样本后,在6周后就会增加胰岛素敏感性和丁酸水平。 但是,该研究并未证实改善肠道菌群结构是否可以预防冠状动脉粥样硬化或降低AMI发生率。 需要大样本的前瞻性队列研究来进一步探讨肠道菌群与冠心病之间是否存在因果关系。

最近,研究人员发现DMB可以抑制TMA的产生。 抑制TMA的产生可降低小鼠的TMAO水平和动脉粥样硬化斑块形成,且无不良反应。 此外,在一些天然安全食品中也富含DMB,例如醋,红酒,初榨橄榄油和葡萄籽。因此,可以通过食用DMB胆碱来调节潜在的动脉粥样硬化来防止TMA产生

结语

本文介绍了肠道菌群与冠心病之间的关系,以及目前对这种关系的研究。 已经达成共识,冠心病患者的肠道菌群存在差异。 无菌小鼠模型和菌群基因组学技术的出现可以帮助确定肠道菌群与冠心病之间的关系,并将肠道菌群研究的准确性提高到菌株水平。

展望未来,早期发现和抑制冠心病发展,并进行干预调节是预防冠心病发展的关键目标。

【参考文献】

Liu Huagang,Zhuang Junli,Tang Peng et al. The Role of the Gut Microbiota in Coronary Heart Disease.[J] .Curr Atheroscler Rep, 2020, 22: 77.

Belkaid Y, Hand TW. Role of the microbiota in immunity and inflammation. Cell. 2014;157(1):121-41.

CM O, K R. Heartbeat: the gut microbiota and heart failure. Heart. 2016;102(11):811 TMAO increases the risk of cardiovascular disease

Richards EM, et al. The gut, its microbiome, and hypertension. Curr Hypertens Rep. 2017;19(4):36 

Pedersen HK, Gudmundsdottir V, Nielsen HB, Hyotylainen T, Nielsen T, Jensen BAH, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535(7612):376–81

1