Tag Archive 肠道菌群

多糖——肠菌的能量来源,如何调控菌与我们身体

谷禾健康

让食物成为你的药物,让药物成为你的食物

随着现代生活节奏的加快,疲劳、压力、不均衡的饮食,都在悄悄侵蚀着我们的健康。多糖,这些来自植物、真菌乃至海洋生物天然赠礼,正以其独特的方式,为我们提供了一种全新的健康支持。

多糖由单糖通过糖苷键结合而成的高分子碳水化合物。研究表明,多糖具有多种生物活性,包括调节免疫功能、降低血脂和血糖、抗癌、抗病毒、抗肥胖、抗精神病、抗氧化、抗炎、抗凝血、止吐、抗辐射等作用。因此,多糖已成为最重要的天然成分之一,并引起了世界上越来越多研究者的关注。

虽然部分多糖如淀粉可以在人体胃和小肠中被消化吸收,但仍有许多特殊结构的多糖不能在这两个部位分解。对于那些不能被宿主消化的多糖,它们可以进入结肠,而结肠是大多数肠道菌群居住的地方。在结肠中,多糖可以与肠道菌群相互作用,从而发挥营养或药理作用。

多糖与肠道菌群之间相互作用可以影响健康,同时也通过肠道菌群的代谢作用,转化为有益的代谢产物,如短链脂肪酸,这些产物对维持肠道屏障的完整性、调节免疫反应发挥着至关重要的作用,甚至扩展到了全身的健康状况,可以影响我们的精力水平、情绪状态,对疾病的抵抗力等方方面面。

本文将深入探讨多糖,了解其在人体内的消化过程与肠道菌群的相互作用,以及它们如何通过调节肠道菌群代谢物影响健康,如短链脂肪酸、三甲胺、色氨酸,还讨论了多糖在疾病预防和治疗中的应用,包括它们在改善代谢性疾病、炎症性肠病、缓解疲劳、改善肿瘤,神经系统疾病等方面的潜在效果。这为靶向肠道菌群开发新型的营养补充剂和药物提供了新的思路。

本文目录

01 多糖

02 多糖调节肠道菌群的组成

为什么多糖可以调节肠道菌群的组成?

多糖促进或抑制肠道微生物群

多糖分子量、糖苷键影响其细菌调节活性

03 肠道微生物将多糖代谢为短链脂肪酸

短链脂肪酸的生物学效应

人体内的多糖代谢

多糖补充与短链脂肪酸的生成

04 多糖调节其他肠道微菌群代谢物

三甲胺和氧化三甲胺(TMAO)

色氨酸及其代谢产物

胆汁酸、脂多糖、胃肠道气体

05 多糖调节肠道菌群修复肠道屏障

06 多糖通过肠道菌群改善疾病

2型糖尿病、非酒精性脂肪肝、肥胖、高血脂症

炎症性肠病、其他肠胃疾病、肿瘤

疲劳、神经系统疾病(认知障碍、抑郁等)

07 部分多糖营养与菌群调节

路易波士茶多糖、地黄多糖、五指毛桃根多糖

大蒜多糖、槐耳多糖、黄芩多糖、枸杞多糖

岩藻多糖、桑叶多糖、沙棘多糖、蘑菇多糖

08 结语

01
多糖

,这个小小的分子,是能量的源泉,是细胞的加油站。除了我们熟知的葡萄糖以外,还有一种叫做多糖,由许多糖分子手拉手组成,从植物的根茎到海洋生物的细胞壁,它们以复杂多样的形态存在。


糖分类

根据糖单元的数量,碳水化合物可分为几类:

  • a)单糖含有一个糖分子;
  • b)双糖含有两个糖分子;
  • c)寡糖含有三至十个糖单元,可通过分解多糖产生;
  • d)多糖是含有十个以上单元的单糖大分子


什么是多糖

多糖是由多个单糖分子通过糖苷键连接而成的聚合物,属于高分子碳水化合物。它们广泛存在于自然界中,包括植物、真菌和海藻等生物体内。根据其来源和结构特性,多糖具有多种生物活性,如免疫调节、抗氧化、抗肿瘤等。

多糖是由10个以上相同或不同的单糖通过α或β糖苷键连接而成的大分子化合物,分子量从几万到数百万。

多糖的空间构象非常复杂,具有一级、二级、三级和四级结构。研究表明,多糖的活性与其结构密切相关。此外,通过分子修饰,如乙酰化、硫酸化、羧甲基化、硒化、磷酸化和磺化等可显著提高多糖的生物活性


多糖的主要来源及分类

根据来源和结构的不同,多糖可以分为天然多糖合成多糖,其中天然多糖又可根据其在自然界中的分布分为植物多糖、动物多糖、微生物多糖等。

例如,透明质酸和硫酸软骨素属于动物多糖,而纤维素、淀粉和糖原是常见的植物多糖

淀粉

由大量葡萄糖分子通过α-1,4-糖苷键α-1,6-糖苷键连接而成,形成直链淀粉和支链淀粉两种结构。广泛存在于谷物(如大米、小麦、玉米)、薯类(如土豆、红薯)等食物中。在人体消化过程中,被淀粉酶逐步分解为葡萄糖,为身体提供能量。

纤维素

由葡萄糖分子通过β-1,4-糖苷键连接而成,形成长而直的链状结构。是植物细胞壁的主要成分,在蔬菜(如芹菜、菠菜)、水果(如苹果)中含量丰富。由于人体缺乏分解β-1,4-糖苷键的酶,纤维素难以被人体消化吸收,但对促进肠道蠕动、预防便秘等具有重要作用。

果胶

是一种复杂的多糖,由半乳糖醛酸等组成。常见于水果(如柑橘、苹果)中。在食品工业中,常用于制作果酱、果冻等,增加其黏稠度和稳定性。


多糖提取

尽管功能性糖因其在健康和疾病预防中的潜在作用而受到越来越多的关注,但它们的天然可用性相对较小。这意味着,为了充分利用这些有益的分子,需要采用特定的提取方法来增加它们的可获得性,多糖提取常用的方法有热水提取、酸提取、碱提取和酶水解等。

近年来,一些新的方法,如超声波提取、微波提取、超滤、高压电场法、超临界流体萃取、亚临界水萃取等也用于多糖的提取。这些方法不仅能够提高多糖的提取率,还能够在一定程度上保护多糖的结构完整性,从而保留其生物活性。

02
多糖调节肠道菌群的组成

通常,人体分泌的消化酶只能分解几种多糖,而纤维等许多多糖不能被吸收和直接使用。因此,多糖可以通过小肠进入结肠,这是大多数肠道细菌居住的地方,然后与肠道微生物群相互作用

细菌在肠道中通过发酵降解多糖

doi.org/10.3390/nu14194116


为什么多糖可以调节肠道菌群的组成?

多糖转化为短链脂肪酸

首先与多糖能够发酵生成酸性的短链脂肪酸密切相关。未电离的短链脂肪酸能够穿过细菌细胞膜,对肠道细菌产生一系列影响,例如改变DNA合成氨基酸摄取

短链脂肪酸对肠道细菌的影响

例如,短链脂肪酸能够通过调节侵袭基因的表达,抑制沙门氏菌(一种常见的食源性病原体)的生长。因此,短链脂肪酸的增加可以改变肠道菌群的功能,进而影响其组成。

肠道pH值的变化

短链脂肪酸的增加还会导致肠道pH值下降,影响细菌的适应能力。每种细菌都有其适宜的pH范围,不同细菌在特定pH条件下的适应能力各异。

  • 例如,一项体外研究表明,金针菇多糖(Flammulina velutipes)在发酵6小时后,可以将pH值从6.8降至6.1。同时,体内研究也证实了金针菇多糖对pH值的降低效果,并且这一过程与肠道菌群组成的显著变化相关。

多糖的降解产物作为能量来源

多糖对肠道菌群组成的调节作用还与其降解产物有关。一些肠道细菌能够利用多糖的降解产物作为碳源和能量来源,而另一些细菌则不能。

  • 例如,在添加了木聚糖的基础培养基中,测试的所有双歧杆菌种类均无法生长,而两种拟杆菌属的种类却能够生长。

综上所述,多糖通过影响肠道菌群的代谢功能,直接调节了肠道菌群的组成。这些发现为我们理解多糖如何通过肠道菌群影响宿主健康提供了新的视角。


多糖促进或抑制肠道微生物群

多糖的益生元效应

具有选择性刺激有益微生物生长能力的多糖被称为益生元,例如果聚糖,它能丰富乳酸菌和/或双歧杆菌。这些有益细菌的减少与糖耐量受损密切相关。一些多糖能够丰富这些细菌,因此可以用来改善糖尿病表型。

  • 来自天麻的多糖可显著促进Akkermansia muciniphila、Lacticaseibacillus paracasei的生长。
  • 褐藻糖胶作为益生元调节剂,选择性地增加拟杆菌属、Akkermansia muciniphila、Blautia、Alloprevotella 的比例,以改善小鼠的代谢综合征和肠道营养不良。
  • 来自山楂多糖可以显著促进拟杆菌的生长,例如多形拟杆菌(Bacteroides thetaiotamicron),卵形拟杆菌(Bacteroides ovatus)和长双歧杆菌。

多糖抑制病原菌

病原菌在胃肠道中的定植和增加会导致一系列疾病,而抑制它们可以控制疾病的严重程度。例如,致病性 Sutterella、Desulfovibrionaceae、Streptococcaceae 、Clostridium 的比例较高肥胖发展呈正相关

  • 虎杖多糖可以抑制梭菌、梭状芽孢杆菌、肠球菌、多杆菌和乳球菌的生长,以减轻肥胖。大肠杆菌与克罗恩病和结肠癌有关。
  • 可溶性车前草非淀粉多糖具有抑制大肠杆菌凝集和粘附以改善炎症性肠病的能力。对于家禽,来自车前草香蕉(Musa spp.)的可溶性非淀粉多糖可以抑制鸡中鼠伤寒沙门氏菌的肠道侵袭和粘附。

多糖的双向调节作用

疾病的发生是一个复杂的过程,涉及不同的微生物,包括有害细菌和有益细菌。例如:

  • 精神分裂症伴随着有益细菌Rhodocyclales的减少和Deltaproteobacteria的增加。
  • 在非酒精性脂肪肝病患者中,链球菌属(Streptococcus)、Escherichia_Shigella、毛螺菌科(Lachnospiraceae_Incertae_Sedis)和经黏液真杆菌属(Blautia)的丰度增加,而普氏菌属(Prevotella)、Faecalibacterium的丰度减少。

多糖能够对肠道微生物发挥双向调节作用,即促进有益细菌的同时抑制有害细菌。

例如,口服灰树花多糖(GFHP)对非酒精性脂肪肝病的积极作用与调节肠道菌群有关。

  • 在门水平上,GFHP显著增加了拟杆菌门并显著减少了厚壁菌门;
  • 在属水平上,增加了Allobaculum、拟杆菌属、双歧杆菌属、Blautia、Coprococcus、Phascolarctobacterium、普雷沃氏菌属、Roseburia的相对丰度,而减少了Acetatifactor、Alistipes、Flavonifractor、Paraprevotella、Oscillibacter的相对丰度。


多糖分子量、糖苷键影响其细菌调节活性

在分子量方面,不同分子量的魔芋葡聚糖(KGM)对2型糖尿病(T2DM)大鼠的降血糖作用研究表明,中等分子量的KGM显著增加Muribaculaceae减少RomboutsiaKlebsiella,但高分子量和低分子量的KGM对这些细菌的影响不显著。

灵芝的低分子量多糖(<10 kDa)具有更好的发酵和更高的产气能力,刺激肠道细菌快速生长。另一方面,高分子量多糖(>100 kDa)更难被肠道细菌发酵,并且在肠道中的停留时间更长,导致对肠道微生物群的影响更长

高分子量的黄芪多糖具有一定的生物活性,但其相对分子量较大,溶解性差,生物利用度限制了其功效的发挥。低分子量的黄芪多糖具有较好的水溶性,能够在更大程度上刺激巨噬细胞摄取中性红、NK细胞增殖,发挥免疫活性

多糖由各种通过糖苷键连接的单糖组成,糖苷键的类型和位置导致肠道微生物群的选择性发酵存在差异。

多糖的单糖组成越复杂,调节细菌的活性越强

一项关于龙眼多糖和燕麦多糖的研究表明,龙眼多糖显著促进干酪乳杆菌、嗜酸乳杆菌、植物乳杆菌、粪肠球菌的增殖,但燕麦多糖的作用并不明显。原因是龙眼多糖由葡萄糖、甘露糖和阿拉伯糖组成,而燕麦多糖的单糖主要是葡萄糖

03
肠道微生物将多糖代谢为短链脂肪酸

短链脂肪酸(SCFA)是一组含有少于六个碳的脂肪酸,包括甲酸盐、乙酸盐、丙酸盐、丁酸盐、戊酸盐。

乙酸盐、丙酸盐和丁酸盐是肠道中的主要SCFA,约占所有SCFA的95%,三者的比例约为3:1:1

作为肠道微生物群和宿主的重要能量来源,短链脂肪酸通过不同的作用模式在健康和疾病中发挥着重要作用。


短链脂肪酸的生物学效应

作用机制

  • G蛋白偶联受体(GPRs)的配体
  • 组蛋白脱乙酰酶(HDAC)抑制剂

与GPRs的相互作用

  • 促进胰岛素分泌SCFAs通过与GPR41和GPR43相互作用,可以调节GLP-1和PYY的释放,促进胰岛素的分泌
  • 改善胰岛素敏感性
  • 减少糖异生

抗炎作用

  • GPR109a信号传导丁酸盐激活的GPR109a信号传导在肠道的抗炎作用中起着重要作用

免疫调节

  • 激活NLRP3SCFA可作用于GPR43和GPR109a,激活结节样受体家族pyrin结构域3(NLRP3)
  • 降低促炎标志物
  • 增加抗炎细胞因子产生

HDAC抑制作用

  • 调节免疫基因作为HDAC抑制剂,SCFA主要调节多种肿瘤抑制剂和免疫调节基因的转录活性
  • 降低炎症和癌症风险
  • 对葡萄糖稳态的影响

丁酸盐的作用

  • 丁酸盐可以通过抑制HDAC的活性和促进胰腺β细胞的增殖来改善葡萄糖稳态

与疾病的关系

  • SCFA异常与疾病SCFA异常可能影响许多疾病的发病机制,如过敏、癌症、自身免疫性疾病、代谢性疾病、神经系统疾病等

多糖对SCFA的调节及其对靶标的影响

doi.org/10.1016/j.foodres.2022.111653


人体内的多糖代谢

人体内消化酶的局限

在人体消化系统中,我们自身分泌的消化酶往往难以分解复杂的多糖。这些多糖分子,因其结构复杂,通常在我们体内无法被有效代谢。

肠道菌群的代谢作用

我们的肠道菌群拥有破解这些复杂多糖的秘密武器——一系列的,统称为碳水化合物酶(CAZymes)。这些酶能够分解多糖,将其转化为对人体健康有益的短链脂肪酸。

碳水化合物酶的种类

  • 多糖裂解酶:能够切断多糖链。
  • 糖苷水解酶:进一步分解糖苷键。
  • 碳水化合物酯酶:参与多糖的酯化反应。

肠道菌群中的“专家”与“通才”

在肠道菌群中,拟杆菌门厚壁菌门是编码CAZymes的两大主力。

  • “通才”——拟杆菌门因其能够编码多种降解多糖的基因;
  • “专家”——厚壁菌门因其专精于特定类型的多糖降解。

多糖的初步降解

在属的水平上,多糖最初可以由某些微生物降解,例如双歧杆菌属、真杆菌属、梭菌属、罗氏菌属(Roseburia spp.)。

SCFAs的生成途径

  • 乙酸盐:通过乙酰辅酶A和Wood-Ljungdahl途径产生。
  • 丙酸盐:主要通过琥珀酸途径、丙烯酸途径和丙二醇途径生成。
  • 丁酸盐:首先需要两个乙酰辅酶A分子缩合,形成丁酰辅酶A,然后通过两条不同的途径合成丁酸:1. 传统的丁酸激酶途径2. 通过丁酰辅酶A:乙酰辅酶A转移酶途径

尽管人体自身无法分解复杂的多糖,但我们的肠道菌群却具备了这一能力,它们通过一系列特殊的酶,将多糖转化为对人体健康有益的短链脂肪酸。


多糖补充与短链脂肪酸(SCFAs)的生成

多糖对SCFAs生成的促进作用

饮食补充多糖可以为产生SCFAs的细菌提供有利的生长环境,从而促进SCFAs的生成。例如,沙棘多糖(CCPP)通过调节肠道菌群和SCFAs,能够缓解2型糖尿病。

沙棘多糖调节肠道菌群和SCFAs,缓解2型糖尿病

  • 经过沙棘多糖处理的链脲佐剂(STZ)诱导的2型糖尿病大鼠,其结肠中产SCFAs菌的数量增加。
  • SCFAs水平(包括乙酸、丙酸、丁酸、异丁酸、戊酸和异戊酸)及其衍生物(D-3-羟丁酸、D(-)-β-羟丁酸和3-羟基癸酸)也有所提高
  • 在健康人的粪便样本中添加沙棘多糖后,同样观察到乙酸、丙酸、丁酸和戊酸的显著增加,这表明沙棘多糖在体内外都能增加SCFAs的产生。
  • 沙棘多糖的补充还显著刺激了SCFAs受体相关mRNA的表达,包括GPR41、GPR43和GPR109a,并伴随着GLP-1和PYY的上调。

枸杞多糖调节肠道菌群,提高SCFAs

  • 枸杞多糖(ZMP)对由致癌物质氮甲烷和硫酸葡聚糖(DSS)诱导的雄性C57BL/6小鼠结肠炎相关结肠癌的影响。ZMP的摄入减轻了结肠组织的损伤,降低结肠癌的风险,同时增加了双歧杆菌、拟杆菌和乳酸杆菌的数量,并且显著提高了SCFAs的产生水平,尤其是丁酸和乙酸。

多糖结构对短链脂肪酸生成的影响

不同的多糖因其分子结构的不同,对SCFAs的调节作用也不尽相同。

  • 香菇多糖的不同单糖组成比例,可以通过主要增加产丁酸菌如乳酸菌科和瘤胃菌科,来提高总SCFAs、异丁酸和丁酸的水平。
  • 相反,另一种香菇多糖通过增加Akkermansia和减少乳酸杆菌,增加了总SCFAs、乙酸、丙酸和丁酸的水平。

多糖的疗效与SCFAs的非直接关联

尽管大多数多糖可以被代谢成SCFAs,但它们的疗效并不一定与SCFAs直接相关。

  • 从冬虫夏草菌丝体中分离的多糖(PHS)在实验中显示出显著的抗肥胖、抗糖尿病和抗炎效果,但并未影响盲肠或结肠中SCFAs的水平,表明其抗肥胖效果与SCFAs无关。

多糖通过调节肠道菌群和促进SCFAs的产生,对健康具有多方面的益处。然而,多糖的结构与它们对SCFAs生成的调节作用之间的关系仍需进一步研究。此外,多糖的疗效可能不仅限于SCFAs的产生,还可能涉及肠道菌群产生的其他分子。

04
多糖调节其他肠道微菌群代谢物

在肠道微生物群的作用下,脂质和蛋白质等饮食成分可以代谢为一系列代谢产物,如三甲胺-N-氧化物(TMAO)、色氨酸、脂多糖(LPS)等。此外,肠道微生物群还可以与宿主合成和释放的化合物相互作用。例如,肠道微生物群可以将初级胆汁酸(BA)转化为次级胆汁酸。由于肠道微生物群的组成与肠道微生物群代谢物的产生直接相关,因此可以推断,除了SCFAs,多糖还可以调节其他肠道微生物群代谢产物,如BA。


三甲胺和氧化三甲胺(TMAO)

三甲胺和TMAO的代谢过程

在肠道中,饮食中的四胺类物质如胆碱、L-肉碱和卵磷脂(来自红肉、鸡蛋、鱼、海鲜)首先被微生物胆碱三甲胺裂解酶分解成三甲胺(TMA)。随后,TMA被吸收进入门脉循环,并运输到肝脏,在黄素单加氧酶1和黄素单加氧酶3的作用下转化为三甲胺-N-氧化物(TMAO)。

TMAO的潜在危害

值得注意的是,TMAO是一种潜在的有害代谢产物。多项研究指出,TMAO水平的增加与多种疾病的发生和发展呈正相关。例如,TMAO可以直接增强血小板的反应性,促进血栓形成,并通过激活核因子κB(NF-κB)和NLRP3炎症体影响血管炎症

多糖对TMA和TMAO代谢的影响

最近的研究表明,TMA和TMAO在理解多糖的作用机制中扮演重要角色。例如:

  • 灵芝孢子多糖处理后,可以减少放线菌门和Tenericutes的丰度,同时增加厚壁菌门和变形菌门的丰度,从而进一步影响TMA的生物转化,降低TMAO水平,减少心血管疾病的风险,保护心脏功能。

不同多糖对肠道菌群的调节作用

不同的多糖可以通过调节相同的肠道细菌来降低TMA和TMAO的代谢,例如变形菌门。研究表明,变形菌门负责TMA的转化,增加变形菌门可能导致TMA增加。然而,也有研究表明TMAO与变形菌门呈负相关,这表明多糖调节变形菌门与TMA产生的效应之间的关系需要进一步研究。

多糖通过调节肠道菌群,影响TMA和TMAO的代谢,从而可能对人体健康产生积极影响。然而,多糖与TMAO之间的关系复杂,需要更多的研究来阐明这些相互作用的确切机制。


多糖调节色氨酸及其代谢产物

色氨酸代谢的重要性

色氨酸(Trp)是人体必需的氨基酸。它的代谢可以分为内源性代谢细菌性代谢。内源性代谢主要通过犬尿氨酸途径(KP)和5-羟色氨酸途径进行,前者产生犬尿氨酸(KYN)、犬尿酸(KA)、烟酸、黄嘌呤酸等,后者转化为5-羟色氨酸(5-HT)和褪黑素。

色氨酸代谢物的生理功能

增强免疫:色氨酸可加强免疫力,减少炎症。

神经保护:KA作为谷氨酸受体拮抗剂,具有神经保护和抗惊厥作用,还能调节能量代谢。

情绪调节:5-HT作为神经递质,可调节情绪、肠道通透性和肠道蠕动。

肠道菌群在色氨酸代谢中的作用

肠道细菌代谢色氨酸产生吲哚及其衍生物,如吲哚丙酸、吲哚乙酸等,这些物质可以缓解炎症促进肠道上皮屏障功能。肠道菌群的色氨酸代谢异常与肠易激综合症、代谢综合症和结肠癌等疾病有关。例如,结肠癌患者常伴有色氨酸水平下降KP代谢物水平升高

多糖影响肠道微生物色氨酸代谢,从而改善疾病

吲哚是硫酸吲哚酚的前体,是一种蛋白结合尿毒症毒素,是心血管疾病的危险因素。对于患有终末期肾病心血管疾病的患者,吲哚水平升高,患者粪便中产吲哚细菌丰富

  • 菊粉型果聚糖治疗可以通过抑制产吲哚的多形拟杆菌来降低吲哚水平。
  • 姜黄多糖的研究表明,它通过显著增加乳杆菌、梭菌和拟杆菌的水平来恢复DSS引起的微生物失衡,而这一过程与吲哚-3-乙醛 (IAld) 和吲哚-3-乙酸 (IAA) 水平的增加有关。
  • 银杏叶多糖能上调乳杆菌种群的丰度,增加5-HT,从而产生抗抑郁作用。

总的来说,多糖可以通过调节肠道菌群来改变色氨酸代谢,最常见的是增加乳杆菌和阿克曼菌,从而缓解疾病。


多糖调节胆汁酸

胆汁酸的生物合成与功能

胆汁酸(BAs)是一类由肝脏产生的特殊类固醇分子,经过肠道菌群转化。肝脏中存在两种BA生物合成途径:

  • 一种是经典途径,胆固醇通过CYP7A1转化为7α-羟胆固醇,再由固醇12α-羟化酶和CYP27A1催化生成CA和CDCA;
  • 另一种是替代途径,胆固醇由CYP27A1氧化,再由氧固醇7α-羟化酶进一步羟化生成CDCA。

CA和CDCA是体内的主要胆汁酸。经过肠道菌群的改造,CA转化为脱氧胆酸(DCA),CDCA转化为鹅去氧胆酸(LCA)。

胆汁酸受体及其作用

胆汁酸受体包括细胞表面受体和细胞内受体。细胞表面受体包括TGR5,细胞内受体包括法尼酰X受体FXR、孕烷X受体、维生素D3受体(VDR)和组成型雄烷受体。胆汁酸通过激活相应的受体调节脂质、葡萄糖和能量代谢。例如,TGR5和VDR的激活导致GLP-1和FGF19分泌,GLP-1可以改善胰岛素敏感性,FGF19可以通过抑制脂肪生成减少肝脏脂肪变性

多糖对胆汁酸代谢的调节作用

近年来的研究表明,多糖可以通过恢复胆汁酸的代谢来缓解疾病

  • 在大鼠粪便菌群的体外培养中,莲子抗性淀粉的加入影响了牛磺结合物的转化率,特别是通过增加Bifidobacterium和Escherichia_Shigella,提高了BSH和羟固醇脱氢酶的水平,从而促进了牛磺胆酸的的水解,减少了牛磺去氧胆酸的转化。
  • 在高脂饮食建立的血脂异常小鼠模型中,岩藻聚糖减少了Clostridium、Corynebacterium、Staphylococcus、Lactobacillus的丰度,同时增加了Bacillus、Ruminococcus、Adlercreutzia、Prevotella、Oscillospira、Desulfovibrio,这些细菌的变化增加了未结合BAs,从而调节了血脂异常。

多糖对胆汁酸代谢影响的总结

多糖通过调节肠道菌群的组成,特别是Bacteroides、Lactobacillus、Clostridium、Ruminococcus、Bifidobacteria,影响胆汁酸的代谢。

某些多糖如岩藻聚糖灰树花多糖减少Clostridium的水平,这与文献报道的促进胆汁酸转化的作用似乎矛盾,需要进一步研究确认这些肠道细菌与多糖之间的关系。


多糖调节脂多糖(LPS)

脂多糖的危害

脂多糖(LPS)是由革兰氏阴性细菌(如大肠杆菌)产生的内毒素。持续暴露于LPS或LPS异常增加,可通过减少肠道上皮细胞活性、降低肠道细胞增殖、抑制肠道细胞迁移和导肠道细胞凋亡等方式,导致肠道损伤

LPS的转移还能损伤肠道,并可能通过与多种受体的相互作用,如LPS结合蛋白、簇分化14、髓样分化2和Toll样受体4,引发糖尿病、非酒精性脂肪肝病、肥胖、动脉粥样硬化等一系列疾病。

多糖对LPS产生菌的抑制作用

许多多糖能够抑制产生LPS的细菌。例如,在链脲佐素(STZ)诱导的糖尿病肾病模型中:

  • 蝉花多糖(CCP)抑制了能够引起肠道紊乱的LPS产生菌——变形菌门。蝉花多糖还能提升拟杆菌门、乳酸杆菌属、双歧杆菌属和阿克曼菌属的水平。
  • 牛蒡中的碱溶性多糖通过抑制变形菌门、葡萄球菌属和拟杆菌门来抑制LPS。
  • 菊粉通过增加Allobaculum和乳杆菌并抑制Parasturtella来抑制LPS

多糖调节肠道菌群的矛盾效应

尽管多糖可以通过调节肠道细菌来抑制LPS,但对特定细菌的调节作用可能存在矛盾。例如,作为LPS产生菌的拟杆菌门,在多糖处理后的水平变化并不一致。有研究表明,黄精多糖蝉花多糖增加了拟杆菌门的水平,而竹荪多糖降低了它。这些研究表明,多糖对肠道菌群的调节效应有时可能相互矛盾,需要进一步研究以确认结果。


多糖对胃肠道气体产生的调节作用

胃肠道气体的生成

胃肠道内通过细菌发酵食物,会产生一系列气体,包括氢气(H2)、甲烷(CH4)、二氧化碳(CO2)、硫化氢(H2S)和一氧化氮(NO)。这些气体在胃肠道中发挥着调节作用,例如影响结肠蠕动、神经通讯、血管功能和免疫反应等。

气体产生的部位和作用

CO2 主要在中产生,而其他气体如 H2、CH4、CO2 和 H2S 主要在小肠和结肠中产生。

这些气体对人体健康至关重要,它们可以调节肠道功能,影响营养物质的吸收和疾病的发生。

多糖对气体产生的调节

  • 木聚糖和果胶能够增加健康男性H2产生。
  • 两种纯化的纤维木聚糖和果胶可以增加CH4的水平,在乳果糖上没有这种影响

尽管多糖对 H2、CH4 和 CO2 的产生有明显影响,但关于多糖结构与气体产生之间具体关系的研究会相对较少。需要更多的研究来明确这些关系,以及多糖如何通过影响肠道菌群来调节气体的产生。


多糖同时调节不同的代谢物

肠道菌群是一个复杂的微生物群落,具有显著的组成和功能多样性。不同的微生物可以介导相同不同的代谢物的产生,相同的微生物也有助于不同代谢物的生产。

例如,持续的研究表明:

拟杆菌门(特别是Bacteroides thetaiotaomicron、Bacteroides fragilis)、厚壁菌门(如Clostridiaceae、Erysipelotrichia)、以及变形菌门可以促进TMA的产生。

放线菌门(如Bifidobacteria)、厚壁菌门(如Lactobacillus、Clostridium、Peptostreptococcus)、拟杆菌门(如Bacteroides)可以促进色氨酸(Trp)的转化。

双歧杆菌、乳酸菌、梭菌、Peptostreptococcus、拟杆菌也有助于次级胆汁酸(BAs)的产生

因此,就像肠道菌群组成的调节一样,多糖对特定肠道菌群代谢物功能的调节作用不是孤立的。

05
多糖调节肠道菌群修复肠道屏障


肠道屏障的基本构成与作用

肠道是我们抵御外界有害物质和病原体侵袭的第一道防线。它由多个层次的子屏障构成:

生物屏障:由肠道细菌和病毒组成;

化学屏障:包含免疫球蛋白A(IgA)、抗菌肽(AMPs)和粘液(MUC);

物理屏障:由肠道上皮细胞构成;

免疫屏障:含有T细胞、B细胞、巨噬细胞和树突细胞等免疫细胞。

这些子屏障协同工作,限制病原体与肠道的接触,维持肠道稳定。肠道屏障的损伤与多种疾病正相关,包括肠易激综合症(IBS)、代谢综合征、过敏、肝脏炎症等。


肠道菌群及其代谢物对肠道屏障的影响

肠道菌群及其代谢物可以直接或间接影响肠道屏障:

  • 肠道菌群通过竞争肠道粘膜位点,形成细菌屏障,抵抗致病细菌的侵袭。
  • 肠道菌群产生的代谢物,如短链脂肪酸和胆汁酸,可以维持肠道屏障功能。例如,短链脂肪酸通过调节肠道菌群组成,促进AMPs、紧密连接蛋白(TJs)和MUC的表达,调节细胞因子的分泌,抑制脂多糖的产生,从而保护肠道屏障。而某些BAs,如脱氧胆酸(DCA),则可能引起炎症并降低TJs和IgA的表达。


多糖通过调节肠道菌群修复肠道屏障

越来越多的证据表明,多糖通过调节肠道菌群对肠道屏障有益。正常的肠道菌群组成可以通过竞争性排除,通过消耗营养源占据附着位点,作为抵御外界病原体的屏障。

多糖→ 调节肠道菌群→ 修复肠道屏障

肠道菌群可以刺激宿主产生抗菌化合物,如IgA和AMPs,这些是化学屏障的关键组成部分。

例如,菊粉型果聚糖可以促进乳杆菌的丰度和IgA的分泌。在DSS诱导的溃疡性结肠炎小鼠模型中,金银花多糖通过增加双歧杆菌和乳杆菌增加了分泌型IgA含量,从而调节肠道屏障。

在DSS诱导的结肠炎小鼠中,海蜇皮多糖增加AkkermansiaAkkermansia muciniphila作为粘液的降解者,可以增强肠道屏障的完整性,减少炎症。同时海蜇皮多糖增加结肠中TJs和MUC2的表达,保护了肠道屏障。

多糖→ 短链脂肪酸→ 修复肠道屏障

短链脂肪酸胆汁酸等肠道菌群代谢物在调节肠道屏障功能中也扮演重要角色。

  • 黄柏多糖在STZ诱导的糖尿病模型中,通过增加产短链脂肪酸的菌如Roseburia、Prevotella,增强了肠道屏障。
  • 菊苣纤维可通过增加拟杆菌属、Prevotellaceae_NK3B31_group、Ruminiclostridium_5、Lachnoclostridium、Flavonifractor、Anaerostipes、Subdoligranulum、SCFAs来改善肠道屏障

多糖→ 色氨酸和胆汁酸代谢→ 修复肠道屏障

  • 茯砖茶多糖可增加乳杆菌属、IAld和IAA,从而改善肠道屏障。
  • 在高脂高胆固醇饮食建立的高脂血症小鼠模型中,龙须菜硫酸多糖通过提高Roseburia和Lachnospiraceae_NK4A136_group来增加亲水性胆汁酸 UDCA和TUDCA,并通过提高Prevotellaceae_UCG-001、Corprococcus_1、Alistipes来降低疏水性胆汁酸 CDCA和DCA,从而减轻肠道屏障损伤。

这些研究表明,多糖可以通过调节肠道菌群及其代谢物,维护肠道屏障的完整性。

06
多糖通过肠道菌群改善疾病

代谢性疾病包括一组因碳水化合物、脂质和蛋白质代谢错误而导致的疾病。2 型糖尿病 (T2DM)、非酒精性脂肪性肝病 (NAFLD) 和肥胖是常见的代谢性疾病。

生活方式干预、全身药物治疗和外科手术等多种方法被用于预防和治疗代谢性疾病。尽管代谢性疾病的药物治疗取得了最新进展,但潜在的不良反应仍然是关键挑战。

使用天然物质的药物治疗被认为是改善代谢疾病的一种有前途且可行的方法。

doi.org/10.1016/j.biopha.2023.114538


2型糖尿病

多糖通过多种机制在治疗2型糖尿病方面表现出良好的效果,比如:

  • 改善β细胞功能障碍
  • 促进胰岛素分泌
  • 改善胰岛素抵抗
  • 维持血糖稳态
  • 改善血脂异常
  • 抑制关键酶活性
  • 减轻炎症和氧化应激
  • 调节肠道菌群

肠道菌群在代谢紊乱,特别是 2 型糖尿病的发展中起着重要作用。

◤车前子多糖 对 STZ 诱导的 2 型糖尿病大鼠有抗糖尿病作用,这可能与其调节肠道菌群增加短链脂肪酸水平有关。车前子多糖可显著增加糖尿病大鼠粪便中Bacteroides vulgatus、发酵乳杆菌、Prevotella loescheii、Bacteroides vulgates等结肠细菌的多样性和丰度,以及短链脂肪酸的浓度。

◤桑果多糖 可以丰富糖尿病小鼠的功能菌并调节微生物多样性。具体而言,该多糖显著富集了一些有益细菌(拟杆菌目、乳杆菌属、Allobaculum、拟杆菌属、阿克曼菌属),同时减少了一些致病菌(葡萄球菌、棒状杆菌属、Jeotgalicoccus、Aerococcus、Enterococcus、Facklamia)。

◤罗布麻叶的两种富含多糖的提取物改善了糖尿病小鼠的肠道微生物群失调,包括增加Odoribacter、Anaeroplasma、Parasutterella、Muribaculum的丰度,并降低了肠球菌属、克雷伯菌属、Aerococcus的丰度。这可能有助于它们的抗糖尿病作用。

◤菊粉补充增加了双歧杆菌的丰度并增强了肠道屏障的完整性,这与2型糖尿病呈负相关。

青钱柳叶中分离的多糖通过增加 SCFAs 含量和有益的肠道细菌瘤胃球菌科来减轻 HFD/STZ 诱导的 2 型糖尿病大鼠的糖尿病症状。

◤苦瓜中的天然多糖通过增加 SCFAs 含量和Prevotella loescheii、Lactococcus laudensis 的丰度来改善 HFD/STZ 诱导的 2 型糖尿病大鼠的高血糖、高脂血症、高胰岛素血症。

◤天然南瓜多糖通过增加阿克曼氏菌和减少丹毒丝菌科(Erysipelotrichaceae)来显示出对 HFD/STZ 诱导的 2 型糖尿病的降血糖作用。此外,南瓜多糖还能增加 2 型糖尿病模型中肠道短链脂肪酸的产生。

◤灵芝多糖(GLP)通过恢复HFD/STZ诱导的肠道微生物群失调,特别是通过增加Blautia、拟杆菌、Dehalobacterium、Parabacteroides,以及减少有害的肠道细菌Aerococcus、Corynebacterium、Ruminococcus、Proteus,显示出抗糖尿病作用。

◤薏苡仁多糖通过降低厚壁菌门/拟杆菌门的比例和增加SCFAs的含量,在HFD/STZ诱导的T2DM小鼠模型中表现出降血糖活性。

◤葡甘聚糖作为铁皮石斛、芦荟和魔芋的天然多糖,通过增加厚壁菌门的丰度和减少拟杆菌门、变形杆菌的丰度,改善HFD/STZ喂养大鼠的T2DM代谢紊乱。


非酒精性脂肪性肝病

多糖对改善NAFLD具有有益作用,比如:

  • 减轻肝脏脂质蓄积和脂肪变性
  • 保护肝线粒体功能
  • 缓解肝脏氧化应激
  • 减轻肝脏炎症
  • 改善肠道菌群失调

多糖可以改善肠道菌群失调并保护非酒精性脂肪性肝动物的肠道屏障完整性

◤枸杞多糖结合有氧运动通过改善肠道菌群失调改善 NAFLD,包括调节肠道菌群的丰度和多样性,增加微生物代谢产物 SCFA 的水平,减少变形菌厚壁菌门/拟杆菌门的比例。厚壁菌门和拟杆菌门是参与宿主代谢和脂肪积累的关键细菌。

◤麦冬多糖可以通过调节肠-肝轴显著保护 NAFLD。具体来说,这种多糖显著降低了一些有害细菌的相对丰度,包括乳球菌、肠杆菌、Turicibacter、Clostridium- sensu-stricto -1、Tyzzerella、Oscillibacter,并增加一些有益的相对丰度,如Alistipes、Ruminiclostridium、Rikenella。这种多糖还显著增加了两种产SCFAs菌( Butyricimonas、Roseburia )的丰度以及乙酸和戊酸的水平,从而改善了炎症反应和肝脏脂质代谢。

◤灰树花杂多糖可通过调节肠道菌群来改善高脂饮食诱导的NAFLD,包括显著增加Allobaculum、拟杆菌属和双歧杆菌属丰度,减少Acetatifactor、Alistipes、Flavonifractor、Paraprevotella、Oscillibacter的丰度。

◤黄芪多糖可减轻HFD喂养小鼠的NAFLD,丰富脱硫弧菌属,尤其是作为SCFAs、乙酸的产生者的Desulfovibrio vulgaris减轻肝脂肪变性。

◤诺尼果多糖来源于辣木,通过促进短链脂肪酸的产生缓解HFD喂养小鼠的NAFLD,并通过改善肠道微生物群的多样性和组成逆转HFD诱导的肠道微生态失调。

◤核桃青皮多糖通过提高肠微生物群(包括普氏菌科、Allobaculum)的SCFAs含量和丰度,预防HFD喂养大鼠的肥胖和NAFLD。

从贻贝中提取的贻贝多糖,α-D-葡聚糖(MPA)可保护HFD喂养的大鼠的NAFLD,补充MPA可逆转HFD抑制的微生物微生态失调和SCFAs。

◤海带可溶性多糖通过降低厚壁菌门/拟杆菌门的比例,促进Verrucomirobia和丙酸盐产生菌拟杆菌和阿克曼菌,减轻高脂饮食喂养小鼠的NAFLD。


肥 胖

多糖通过多种机制表现出良好的抗肥胖作用,作用机制如:

  • 减缓体重增加
  • 刺激棕色脂肪组织的产热作用
  • 抑制肥胖动物的脂肪生成
  • 抑制肥胖动物的炎症
  • 改善肥胖者肠道菌群失调

◤枸杞多糖补充剂可降低厚壁菌门与拟杆菌门的比例增加产短链脂肪酸菌,如Lacticigenium、Butyricicoccus、Lachnospiraceae_NK4A136_group数量,从而改善肥胖小鼠的肠道菌群失调。

◤桑叶多糖治疗可调节肥胖小鼠肠道菌群的组成和功能,这与增加Allobaculum、Parabacteroides、Porphyromonadaceae、Butyricimonas、Ruminococcus 的水平有关。

◤黄精多糖调节HFD喂养的肥胖大鼠的肠道微生物群结构,包括降低梭菌、肠球菌、Coprobacillus、乳球菌、Sutterella的相对丰度。

◤沙蒿多糖给药8周显著上调了屏障完整性的结肠基因,并通过增加有益细菌(双歧杆菌和Olsenella)和抑制有害细菌(Mucispirillum和幽门螺杆菌)改善了肥胖小鼠的肠道微生物微生态失调。同时,它显著富集了与促进SCFAs产生相关的碳水化合物代谢,同时显著抑制了与肥胖和肠道微生态失调相关的氨基酸代谢。

海带中提取的天然多糖可通过使肠道菌群正常化来缓解小鼠HFD引起的肥胖,特别是通过增加拟杆菌目和Rikenellaceae的丰度。

中分离出的蘑菇多糖通过增加产生 SCFA 的肠道细菌AnaerostipesClostridium 的数量,在高脂饮食喂养的小鼠中表现出抗肥胖作用。

◤茶树菇多糖对HFD诱导的小鼠脂肪堆积和减肥的影响,发现脱硫弧菌减少副拟杆菌增加,从而显著降低肥胖相关的TNF-α 和 IL-6 的水平。

苦瓜中获得的多糖通过增加有益细菌(如放线菌、Coprococcus、乳酸杆菌)和减少有害细菌(变形菌和幽门螺杆菌)来改善HFD诱导的小鼠肥胖。

◤日本刺参的硫酸多糖通过富集益生菌Akkermansia减少携带内毒素的变形杆菌和提高SCFAs含量来预防HFD诱导的小鼠肥胖。

◤ 破壁灵芝孢子多糖逆转 HFD 喂养小鼠中许多细菌的相对丰度,特别是一些潜在的益生菌,包括Allobaculum双歧杆菌,这与抗肥胖呈正相关。双歧杆菌、乳杆菌和阿克曼菌可促进SCFAs的产生,并抑制梭菌科、脱硫弧菌和肠球菌的丰度,这将有助于减少体重和脂质积累。

总的来说,多糖可通过作用于多个环节、调控多个疾病相关靶点来改善这三种代谢性疾病。

doi.org/10.3389/fmicb.2022.859206


高脂血症

高脂血症是指脂质代谢紊乱,其特征是甘油三酯 (TG)、总胆固醇 (TC) 和低密度脂蛋白浓度升高,同时高密度脂蛋白水平降低。

◤果胶多糖(高支链 RG-I,531.5 kDa)显著改善了 HFD 引起的脂质代谢异常,TG、TC、LDL-C 和游离脂肪酸水平降低。它还通过增加Roseburia、Clostridium等产生 SCFA 的细菌的数量来恢复肠道菌群失衡。

◤裙带菜多糖 ( Undaria pinnatifida )修复了高脂饮食引起的肠道微生物群改变,特别是Prevotellaceae_UCG-001,发现这与脂质代谢紊乱有关。

◤鲍鱼性腺多糖显著增加丁酸水平,丁酸是一种重要的短链脂肪酸,它通过GPR依赖性途径抑制脂质相关基因的表达。

◤龙须菜多糖调节拟杆菌、瘤胃球菌_1和乳酸杆菌的相对丰度来增强胆固醇向BAs的转化。在遗传水平上,有人认为BA代谢的调节主要涉及CYP39A1和CYP7B1。


炎症性肠病

炎症性肠病 (IBD) 包括溃疡性结肠炎 (UC) 和克罗恩病 (CD),其特点是胃肠道持续炎症。IBD 的症状包括腹泻、腹胀、腹痛、便血、体重减轻和不适。

◤银耳多糖(TPs)通过多途径调节肠道菌群及其代谢物,改善了DSS诱导的溃疡性结肠炎。TPs可以增加Lactobacillus的丰度,从而改善色氨酸的分解代谢。这导致黄嘌呤酸、KA和吲哚衍生物(如5-羟吲哚、5-羟吲哚-3-乙酸、5-羟吲哚乙酰酸)的增加。

TPs还可以增加Romboutsia的水平,促进DCA的产生。因此,TPs可以通过影响色氨酸代谢和胆汁酸代谢来保护小鼠免受结肠炎的侵害

◤金针菇多糖已被证明可以通过控制结肠微生物失调、增加短链脂肪酸和抑制 TLR4-NF-κB 信号通路来缓解结肠炎。能促进益生菌的生长,抑制致病菌的生长,恢复肠道稳态,缓解IBD症状。

◤竹荪多糖由59.84%的葡萄糖、23.55%的甘露糖和12.95%的半乳糖组成,已被证明可以通过增加粘蛋白和紧密连接蛋白的表达,抑制有害细菌(如γ-变形菌、变形菌、拟杆菌科、拟杆菌科和肠杆菌科)并增强有益细菌(如嗜酸乳杆菌)来改善肠道菌群组成和肠道屏障功能。

◤坛紫菜多糖通过上调紧密连接蛋白,增加粘液层及其分泌,调节肠道微生物群落,富集有益细菌,如拟杆菌、Muribaculum和乳酸杆菌,从而减轻DSS诱导的结肠损伤,从而改善结肠粘膜屏障的完整性。

◤白术多糖可以缓解在DSS诱导的溃疡性结肠炎小鼠模型炎症。白术多糖可以增加Butybacterium、Lactobacillus,同时减少Actinomyces、Akkermansia、Faecalibaculum、Verrucomicrobia、Bifidobacterium等。

肠道菌群的变化逆转了DSS引起的短链脂肪酸的减少以及色氨酸和色氨酸相关代谢物5-羟基-N-甲酰基犬尿氨酸和吲哚-3-乙酸的减少。白术多糖还剂量依赖性地逆转了LCA、DCA、缬氨酸、亮氨酸等的异常变化。

天然植物多糖治疗IBD的机制

doi.org/10.1016/j.ijbiomac.2023.126799

◤甘草多糖GPS上调乳杆菌科、S24–7、Turicibacteraceae、Verrucomicrobiaceae和双歧杆菌科的丰度,下调脱硫弧菌科、瘤胃球菌科、毛螺菌科、肠杆菌科、丹毒丝菌科的丰度。GPS能促进乳杆菌、拟杆菌和产SCFAs菌的生长繁殖,起到减轻炎症、升高IL-10水平、抑制TLR4活化、降低血浆LPS水平的作用,从而保护肠道免受LPS诱导的炎症。

◤何首乌多糖(TSG)的给药显著增加了厚壁菌门和拟杆菌门的相对丰度,同时也降低了幽门螺杆菌和拟杆菌门的属水平,改善了肠道菌群,起到治疗IBD的作用。

doi.org/10.3390/nu15153321


其他肠胃疾病

◤乳果糖通过重塑肠道菌群组成和代谢物,改善了由洛哌丁胺引起的便秘小鼠模型中的肠道水和盐代谢。具体来说,乳果糖上调Bacteroides的丰度,并显著降低了厚壁菌门和Verrucomicrobia的水平。

此外,乳果糖减少了胆汁酸(包括CA、DCA等)、粪便中高浓度的吲哚(高浓度吲哚对细胞有毒)并增加了丙酸

◤西洋参多糖(WQP) 可增强大鼠肠道结构的恢复,降低炎性细胞因子水平,改善短链脂肪酸 (SCFA) 水平,促进肠道菌群和肠黏膜屏障的恢复,并减轻盐酸林可霉素引起的腹泻和菌群失调等抗生素相关副作用。

◤葛根多糖( PPL )可缓解抗生素相关性腹泻引起的结肠病理改变和肠道菌群失调。

◤紫菜中提取的多糖(Nemacystus decipiens)能显著缓解小鼠抗生素相关性腹泻(AAD)的症状,并且显著增加了 Muribaculum、Lactobacillus 和 Bifidobacterium 的丰度,降低Enterobacter 、Clostridioides 的丰度。

◤茯苓多糖(PCP)通过恢复7种肠道菌菌缓解了抗生素相关性腹泻小鼠的症状,包括:Parabacteroides distasonis、Akkermansia muciniphila、Clostridium saccharolyticum、Ruminococcus gnavus、Lactobacillus salivarius、Salmonella enterica、Mucispirillum schaedleri.


肿 瘤

适当调节免疫反应可以降低炎症反应引起的病原体入侵的风险。

结直肠癌

◤灵芝多糖在缓解结直肠癌症状方面比瓜尔胶更有效,因为它们能增加Akkermansia、结肠长度,并下调直肠癌相关基因。灵芝多糖通过动态调节肠道菌群和宿主免疫反应,已证明具有预防和治疗癌症的功能。

灵芝多糖通过调节乳酸杆菌、双歧杆菌等有益菌的相对丰度,诱导SCFAs的产生,改善肠道屏障损伤,抑制TLR4/MyD88/NF-κB信号通路,从而降低结肠炎和致癌风险。

◤绞股蓝与灵芝多糖联合使用显著提高了SCFAs产生菌的丰度,提高了丁酸和异丁酸水平,抑制了硫酸盐还原菌的丰度。

乳腺癌

来自灵芝破壁孢子(分子量为 3659 Da)的多糖可作为乳腺癌治疗的天然佐剂,增加细胞毒性 T 细胞和辅助性 T 细胞的数量。

灵芝孢子提取物(ESG)重塑了4T1荷瘤小鼠的肠道菌群:厚壁菌门和变形菌门的相对丰度增加,放线菌、拟杆菌门和蓝藻的相对丰度降低。

◤灵芝多糖联合紫杉醇对4T1乳腺荷瘤小鼠有抗肿瘤作用。联合治疗能显著富集拟杆菌、瘤胃球菌等5个菌属,降低脱硫弧菌和Odoribacter的丰度,平衡肠道菌群,抑制肿瘤代谢。


疲 劳

疲劳是一种普遍的不适感,表现为极度疲倦和力竭,通常在生理、病理或心理失衡时出现。体力劳动、心理压力、高原缺氧和长期疾病都可能引发疲劳。疲劳不仅影响日常生活,还可能导致内分泌、免疫、代谢等系统功能受损,甚至与癌症、糖尿病等重疾病相关。此外,疲劳还与焦虑、抑郁和神经系统疾病有关。

近年来,天然多糖因其在缓解运动性疲劳中的潜在效果和较少的副作用而受到关注。研究表明,肌肉功能与肠道菌群的多样性和组成密切相关,而天然多糖如决明子、灵芝、枸杞和冬虫夏草等可通过不同机制发挥抗疲劳作用。

doi.org/10.3390/foods12163083

多糖抗疲劳机制如下:

  • 影响能量代谢
  • 减少代谢物的积累
  • 提高免疫功能
  • 增强抗氧化活性
  • 抑制炎症反应
  • 干扰自主神经调节
  • 调节内分泌系统
  • 调节肠道菌群

抗疲劳多糖干预后肠道菌群的变化

doi.org/10.3390/foods12163083

肠道-肌肉轴是肌肉与消化道之间的双向沟通,微生物可以通过微生物-肠道-肌肉轴作用于全身的肌肉。肠道微生物在膳食多糖的作用下,产生一些代谢产物(短链脂肪酸等),有些代谢产物会直接穿过肠道上皮细胞,通过血液循环直接或间接作用于肌肉组织和细胞,引起细胞发生生理生化反应,对疲劳产生一定的影响。

补充膳食多糖通过作用于肠道菌群及其代谢产物,间接激活AMPK/PGC-1α、PI3K/AKT、NF-κB、Nrf2/Keap1信号通路,调节能量代谢,降低炎症水平,增强线粒体功能和抗氧化能力,进一步维持肌肉质量和功能,从而缓解疲劳

扩展阅读:

优化肠道菌群——对抗肌肉减少和骨质流失


神经系统疾病

◤银杏叶中的一种水溶性多糖(GPS)可减轻压力引起的抑郁症并逆转肠道菌群失调。GPS 治疗可以缓解压力引起的血清素阳性和多巴胺阳性细胞密度降低。GPS 逆转了与抑郁相关的肠道菌群失调,并增加了乳杆菌的丰度,而乳杆菌已被证明是缓解抑郁的途径。

秋葵中提取的多糖,发现它对抑郁小鼠的肠道菌群有明显的恢复作用,表现为厚壁菌门比例上调,拟杆菌门和放线菌门相对比例下调。这种调节有助于强化肠黏膜屏障,维持肠道免疫系统正常功能,减少肠道炎症反应,对抗抑郁有效,抑郁症小鼠的抑郁症状有所改善。用秋葵多糖治疗的小鼠体内的SCFAs显著增加,而SCFAs作为重要的通讯介质,对抗抑郁障碍有积极的影响。

接受金针菇多糖 (FVP)治疗的小鼠的肠道微生物组成发生显著改变,放线菌、丹毒菌和拟杆菌的丰度增加,梭菌的丰度降低,并且接受FVP治疗的小鼠的学习和记忆能力得到改善

◤肉苁蓉多糖可以通过恢复小鼠模型中D-半乳糖诱导的衰老引起的肠道菌群稳态来抑制氧化应激和外周炎症,从而改善小鼠的认知功能。

黄芪中提取的一种多糖已被证明可以通过改变糖尿病小鼠的肠道菌群来改善认知障碍

扩展阅读:

抑郁症与肠道微生物群有何关联

阿尔茨海默病de饮食-微生物-脑轴

肠道微生物与帕金森以及相关影响因素

07
部分多糖营养与菌群调节

以下是关于一些多糖的详细介绍,包括其功效,与肠道菌群的关联等,更深入地了解多糖在人体中的重要作用。


路易波士茶多糖

路易波士茶是什么?

路易波士茶(Rooibos)又名Aspalathus linearis,中文也有译作“路易博士茶”,取自原产于南非的一种豆科植物的茎叶。虽然带有一个茶字,但路易波士茶并不是传统意义上的茶叶。

路易波士茶因不含咖啡因单宁含量低而受到南非人的喜爱,并在全球范围内进行商业化种植和销售。2014年,中国卫生和计划生育委员会批准路易波士茶作为新的食品原料,丰富了中国的食品和药物资源。

路易波士茶具有良好的抗氧化、抗过敏、解痉和降血糖作用。也可以预防心血管疾病、神经退行性疾病、各种癌症、骨质疏松症等。

路易波士茶多糖

一项研究从路易波士茶中分离得到均一酸性多糖(ALPs) ,水溶性多糖ALP由β-糖苷键连接,含有吡喃糖环,主要由岩藻糖、鼠李糖、阿拉伯糖和半乳糖组成。

结合RT-PCR结果推测,ALP可能通过降低Cyp2e1和Keap1的mRNA表达,增加Nrf2和HO-1的mRNA表达,激活Cyp2e1/Keap1-Nrf2-HO-1信号通路,调控下游抗氧化酶活性和炎症因子表达,减轻氧化应激损伤和炎症反应造成的损伤,从而改善急性酒精性肝损伤

路易波士茶多糖对肠道菌群的影响

多样性

急性酒精性肝病模型对照组(MC)的物种多样性和丰富度显著降低(p≤0.05)。高剂量和低剂量ALP处理组的物种多样性和丰富度有所增加,其中高剂量组的增加更为显著。

干预后改善的菌群

ALP 干预后疣微菌丰度显著升高(p≤0.01),而脱硫杆菌丰度及F / B值降低,但差异不显著。

肠道菌群中乳酸杆菌科的丰度与肝脏 AST 和 ALT 水平呈负相关。小鼠ALP干预后,乳酸杆菌科的丰度显著增加(p ≤ 0.05),而Rikenellaceae的丰度显著降低(p ≤ 0.05)。

ALP 显著改善了小鼠急性酒精性肝损伤中AlloprevotellaAlistipes丰度显著降低的情况( p ≤ 0.05)。

肠-肝轴途径

对属级别排名前20位的菌种进行了 Spearman 相关性分析。

  • 拟杆菌属与IL-10、SOD呈负相关
  • 乳酸杆菌属与IL-10呈反比关系,与IL-1β呈正比关系
  • 副拟杆菌属与IL-1β呈正相关
  • 瘤胃球菌的存在与IL-10水平呈负相关,与IL-1β水平呈正相关。

推测ALP可能通过“肠-肝轴”通路促进肠道菌群与抗氧化酶炎症因子相互作用,从而减轻酒精性肝损伤,而上述菌群与酒精损伤标志物、抗氧化酶及炎症因子的表达均密切相关。

酒精及其代谢产物会影响肠道菌群的平衡和组成,导致肠道功能受损。这反过来又会影响肝脏健康,而肝脏健康与肠道菌群稳态密切相关。肠道和肝脏之间的相互作用被称为“肠-肝轴”通路。


地黄多糖

地黄是玄参科地黄属植物,在我国拥有久远的药用历史,作为滋阴补肾的传统中药,也被《神农本草经》列为上品。

多糖是地黄中的主要活性成分之一。地黄多糖具有免疫调节、抗肿瘤、抗氧化、抗衰老等多种生物活性。

迄今为止,从地黄中分离纯化了20多种多糖,主要由阿拉伯糖、鼠李糖、半乳糖、葡萄糖、甘露糖、木糖、岩藻糖和半乳糖酸组成。

地黄多糖能增加DSS诱发小鼠的体质量指数和结肠长度、降低DAI评分,改善组织病理学损伤。同时,地黄多糖能阻断NF-κB信号通路,降低细胞内促炎因子表达,减轻炎症,增加紧密连接蛋白表达,维持肠道上皮屏障。

地黄多糖可能在肠道微生物作用下发酵转化为SCFAs,增加肠道中乙酸、丙酸和丁酸的含量,起到缓解IBD的作用。

拟杆菌属、乳酸杆菌属、Alistipes是导致DSS结肠炎组肠道微生物组失衡的关键细菌类型,而补充地黄多糖可以逆转这种有害变化。


五指毛桃根多糖

五指毛桃,又叫粗叶榕(Ficus hirta Vahl),常被用作滋补品的草药成分,以其丰富的多糖含量和生物活性而闻名。

一项研究发现,FHVP-3 对肠道微生物群产生影响:

下列菌群富集

  • Faecalibacterium
  • Bifidobacterium
  • Bacteroides
  • Phascolarctobacterium
  • Blautia

FHVP-3 抑制了下列机会性致病菌属的丰度:

  • Dorea
  • Clostridium XIVa
  • Desulfovibrio

作为可发酵底物,FHVP-3 还增加了短链脂肪酸的浓度,包括乙酸盐、丙酸盐和丁酸盐。FHVP-3 对脂多糖 (LPS) 诱导的 RAW 264.7 巨噬细胞表现出显着的抗氧化活性和显着的抗炎作用。

doi.org/10.1021/acsfoodscitech.3c00626


大蒜多糖

大蒜多糖 (GP) 占大蒜干重的 75% 以上。它们的特征是具有 2,1- β – d -Fruf 主链和 2,6- β – d -Fruf 分支的果聚糖。

研究表明,大蒜多糖在调节肠道微生物群方面发挥着作用,但它们是否具有维持肠道健康的全面功能并可作为有效的益生元仍不清楚。

为了探索这一点,通过管饲法给昆明小鼠施用不同剂量的大蒜多糖(1.25-5.0g/kg 体重)和菊粉(作为阳性对照),并评估它们对肠道上皮、化学和生物屏障的影响。还使用洛哌丁胺建立了便秘模型,以研究大蒜多糖对缓解便秘的潜在影响。

施用大蒜多糖显著上调昆明小鼠小肠组织中紧密连接蛋白和粘蛋白的表达。大蒜多糖提高了盲肠丁酸含量,降低了脱硫杆菌的丰度,并降低了厚壁菌门与拟杆菌门的比例(F/B)。大蒜多糖还促进了 Bacteroides acidifaciens、Clostridium saccharogumia的生长。

Tax4Fun 功能预测表明,大蒜多糖具有预防人类疾病的潜力,可降低胰岛素抵抗、传染病和耐药性的风险。

大蒜多糖还通过增强小肠转运、软化粪便稠度、加速排便促进兴奋性神经递质的释放,在缓解洛哌丁胺引起的便秘症状方面表现出有益作用。


槐耳多糖

多年来,槐耳 (Trametes robiniophila Murr) 一直被用于药物治疗。槐耳含有多种成分,包括多糖、蛋白质、酮和生物碱,其中蛋白聚糖和多糖是主要的生物活性成分。

槐耳提取物具有免疫调节活性,并可通过激活自噬、抑制铁死亡、抑制内质网应激等过程对细胞发挥保护作用。研究表明,槐耳水提取物可通过抑制NLRP3炎症囊泡活化,减轻肠道屏障损伤炎症反应,并抑制DSS和氧化偶氮甲烷 (AOM) 联合诱导的结肠肿瘤形成。

可缓解 DSS 引起的肠道菌群紊乱

一项小鼠研究显示,槐耳多糖干预显著逆转了 DSS 引起的Muribaculaceae_unclassified、Anaerotruncus、Ruminococcaceae_unclassified丰度的下降以及Escherichia-Shigella丰度的增加( p < 0.05)。

其中,Muribaculaceae_unclassified是健康人中发现的肠道微生物,参与丁酸代谢和色氨酸代谢,可产生对人体有益的短链脂肪酸。

相关性分析,Muribaculaceae_unclassified与结肠长度、SOD 和 T-AOC 呈正相关,而与 DAI 评分以及炎症和氧化指标呈负相关

Anaerotruncus与结肠长度、SOD 和 T-AOC 呈正相关,但与炎症标志物 LPS、MDA 和 MPO 呈负相关


黄芩多糖

黄芩的根通常用作药物,用于清热利湿、泻火解毒。多糖是黄芩的最重要成分之一。

一种来自黄芩的多糖通过抑制 NF-κB 信号传导和NLRP3 炎症小体活化来改善溃疡性结肠炎。在多糖的分离和纯化过程中,研究人员还获得了另一种名为 SP2-1 的均质多糖。SP2-1由甘露糖、核糖、鼠李糖、葡萄糖醛酸、葡萄糖、木糖、阿拉伯糖和岩藻糖组成。

研究人员发现其对肠道菌群紊乱、肠道屏障改善以及短链脂肪酸产生影响。

在UC患者中,SP2-1显著抑制了促炎性细胞因子IL-6,IL-1β和TNF-α。

溃疡性结肠炎患者的屏障完整性被破坏,TJ 蛋白的表达发生改变,SP2-1增加小鼠TJ蛋白的表达,修复肠道屏障。

SP2-1对肠道菌群的影响

SP2-1组的粪便微生物群多样性明显高于DSS组。

临床上,溃疡性结肠炎患者的双歧杆菌和乳酸杆菌的丰度降低。与模型组相比,SP2-1 组的双歧杆菌、乳酸杆菌和Roseburia的水平提高。

拟杆菌和葡萄球菌的种群受到抑制。肠道菌群中存在过量的拟杆菌和葡萄球菌对肠道免疫系统有害。

Roseburia 通过调节调节性 T 细胞的发育和分化、增加抗炎细胞因子的分泌和抑制促炎细胞因子的产生来缓解UC


枸杞多糖

枸杞多糖(简称LBPs)是从枸杞中提取的一类多糖物质。枸杞是一种多年生灌木,属于茄科,枸杞多糖因其多样的药理活性生理功能而受到越来越多的关注。

枸杞多糖 (LBPs)作为最重要的生物活性分子,可通过肠道微生物参与有益作用,包括调节代谢、降血糖、神经保护、抗衰老、保护各种器官免受氧化应激相关疾病的侵害。

枸杞多糖对肠道菌群的影响

癌症

一般来说,抗癌化疗药物除了会诱导癌细胞凋亡外,还会对肠道菌群产生不利影响,主要表现在肠绒毛缩短,乳酸杆菌和肠球菌丰度下降,节段丝状菌丰度增加。而枸杞多糖治疗可通过增加有益菌相对丰度来改善肠道环境和免疫功能,逆转环磷酰胺引起的有害菌(瘤胃拟杆菌科、Longibraceae、脱硫弧菌和厌氧拟杆菌科)相对丰度的增加。

还发现毛螺菌科、瘤胃菌科、脱铁菌科、脱硫弧菌科、Aneoplasmataceae与细胞因子IL-2、IL-6、IL-1β、TNF-α、IFN呈负相关。因此,主要肠道菌群的相对丰度可能与免疫调节有关。

厚壁菌门与拟杆菌门(F/B)比例的变化与许多疾病状态有关,它被视为菌群失调的重要指标,有助于了解肝脏和代谢疾病的发展。枸杞多糖可降低高脂饮食大鼠的 F/B 比,表明补充枸杞多糖有助于调节肠道菌群失调。

doi.org/10.1080/10408398.2022.2128037

神经系统

枸杞多糖可通过调节肠道菌群-肠-脑轴的神经免疫通路,对中枢神经系统产生多方面的保护作用。枸杞多糖可改善菌群失调肠道屏障受损等问题,并通过抑制细胞凋亡、促进自噬等机制发挥神经保护效应。

  • 调节肠道菌群平衡,保护肠道屏障,减少有害代谢产物进入循环系统。
  • 抑制JNK信号通路和caspase-3活性,抵抗细胞凋亡,起到神经保护作用。
  • 通过抑制mTOR/p70S6K通路激活,促进自噬,保护周围神经。
  • 有望通过调节MGBA的神经免疫通路,对中枢神经系统产生多方面积极影响。

肝脏

枸杞多糖能够影响NAFLD患者的肠道菌群组成、肠道屏障及肝脏炎症。

  • 明显改善肠道菌群多样性,提高拟杆菌属和短链脂肪酸水平,降低变形杆菌属和厚壁菌门/拟杆菌属的比例;
  • 通过增加闭塞性ZO-1的表达和闭塞,恢复结肠与回肠之间的紧密连接,并通过下调肠源性LPS、肝脏LPS结合蛋白、炎症因子及肝脏LPS/TLR4/NF-κB信号通路,改善肝损伤症状

代谢(肥胖、糖尿病)

肥胖个体的研究中,肠道内F/B比例较高,因此推测肠道内F/B比例与肥胖呈显著正相关。

后续研究发现,LBPs可通过调节肠道菌群组成和短链脂肪酸生成来改善肥胖

枸杞多糖可作为2型糖尿病的潜在辅助药物

LBPs能调节肠道菌群,激活大鼠肠黏膜TLR2+上皮细胞γδT细胞,增强肠道屏障功能,改善糖尿病。此外,LBPs能明显降低血浆中促炎性细胞因子IL-1β、IL-6、IL-17A和TNF-α,而抗炎性细胞因子IL-10水平在糖尿病大鼠中有所升高。

哮喘

枸杞多糖还可以通过直接或间接地改变肠道菌群参与炎症介质的调控,从而改善肺功能和过敏性哮喘症状。

肠道菌群测序分析显示,LBPs能够促进哮喘小鼠肠道中乳酸杆菌和双歧杆菌增加,并降低厚壁菌门和放线菌水平,通过肠道介导缓解哮喘。


岩藻多糖

岩藻糖(Fucose),参与构成肠上皮细胞(IEC)顶端表达的聚糖,并介导肠道中的许多生物过程,尤其是宿主-微生物相互作用

释放的岩藻糖可被微生物用作膳食聚糖、能量来源或合成结构蛋白。肠道中岩藻糖的变化影响微生物群的定植。

岩藻多糖

岩藻多糖是一种含有岩藻糖和硫酸基团的多糖,可改善糖尿病肾病

一项小鼠研究发现,岩藻多糖可显著改善肾小球滤过率高滤过和肾纤维化,其机制与短链脂肪酸产生菌富集增加盲肠内乙酸浓度、提高肾脏ATP水平以及改善线粒体功能障碍有关。此外,岩藻多糖还可通过抑制MAPKs通路来改善肾脏炎症和纤维化。总之,岩藻多糖可通过改善线粒体氧化应激和抑制MAPKs通路,靶向肠道菌群-线粒体轴,改善早期糖尿病肾病


桑叶多糖

桑叶的药用功能最早在2000多年前的汉代被发现,并记载于《神农本草经》。明代李时珍在《本草纲目》中对桑叶的药用功效有更详细的描述,包括活血化瘀、祛风、清热解毒等功能。桑叶已被列入国家卫生健康委员会公布的食药同源资源名单。

桑叶多糖(Mulberry Leaves Polysaccharides,MLPs)是从桑树(Morus alba L.)叶片中提取的一种植物多糖。它们是桑叶中主要的活性成分之一,由多种单糖组成,主要包括木糖、阿拉伯糖、果糖、半乳糖、葡萄糖、甘露糖等。

桑叶多糖对人体的影响

桑叶多糖具有多种生物学活性,包括降低血糖、抗氧化、免疫调节、抗肿瘤、抗菌、抗凝和调节肠道菌群等。这些活性使得MLPs在医药和食品领域具有广泛的应用前景。并且安全、有效、低毒、副作用小。

doi.org/10.1016/j.ijbiomac.2023.128669

桑叶多糖对肠道菌群的影响

桑叶多糖通过调节肠道菌群的平衡,进而对人体的健康产生积极的影响。以下是桑叶多糖影响的肠道菌群及其变化情况:

桑叶多糖能够调节短链脂肪酸和肠道菌群的相对丰度,降低真细菌与过敏性细菌的比例,从而改善肠道屏障功能。


沙棘多糖

沙棘果实在藏族食品和药物中已有数千年的传统。沙棘多糖 (SP) 是沙棘果实中的主要功能成分之一。

对高脂饮食诱导的肥胖小鼠:沙棘多糖治疗提高了 p-AMPKα 和 PPARα 蛋白的表达,刺激了小鼠肝脏中 ACC1 的磷酸化,并抑制了 FAS、PPARγ 和 CD36 的蛋白表达。

沙棘多糖上调Muribaculaceae_unclassified、双歧杆菌、Rikenellaceae_RC9_gut_group、Alistipes、Bacteroides的比例,并下调Lactobacillus、 Firmicutes_unclassified 、Dubosiella Bilophila、 Streptococcus 的比例,重组了HFD诱导的肥胖小鼠的肠道微生物群。

此外,粪便中的微生物代谢物短链脂肪酸 (SCFAs) 的产生也有所增加。此外,相关性分析结果表明沙棘多糖的肥胖改善作用与粪便中的SCFAs水平高度相关。因此,沙棘多糖对肝脏脂质代谢的调节可能是由于肠道微生物群的变化和SCFAs产生量的增加。这些结果表明,沙棘多糖可以通过调节肠-肝轴发挥改善肥胖的潜在营养保健作用。


蘑菇多糖

蘑菇多糖是一类存在于蘑菇中的生物活性多糖,它们包括但不限于几丁质、甘露聚糖、半乳糖聚糖、木聚糖、葡聚糖、云芝多糖、灵芝多糖、半纤维素。这些多糖在蘑菇细胞壁中含量丰富,赋予蘑菇独特的结构和生物活性。

蘑菇多糖的功效

蘑菇多糖对人体具有多种潜在的健康益处。它们可以增强免疫系统、具有抗肿瘤活性、调节肠道菌群、抗氧化、抗糖尿病、抗衰老作用。

蘑菇多糖对肠道菌群的影响

促进益生菌生长

蘑菇多糖通过选择性地促进益生菌的生长,增强肠道健康。例如,灵芝和茯苓中的多糖被发现可以增加有益细菌的数量,这些细菌可以对抗肥胖、产生短链脂肪酸和乳酸。香菇中的多糖也显示出对嗜酸乳杆菌Lactobacillus acidophilus)有促进作用。

抑制病原菌

蘑菇多糖能够通过增强肠道屏障功能和促进益生菌的生长来间接抑制病原菌。双孢蘑菇中的多糖已被证明可以限制大肠杆菌的生长。

增强肠道屏障功能

蘑菇多糖通过增强肠道上皮细胞的功能,提高肠道屏障的完整性,减少有害物质的渗透。云芝(Trametes versicolor)中的多糖肽PSK和PSP能够调节肠道菌群,增加有益菌双歧杆菌和乳杆菌的数量,同时减少有害菌梭状芽孢杆菌金黄色葡萄球菌。在降低腹泻、艰难梭菌感染、炎症性肠病等方面发挥作用。

调节免疫反应

蘑菇多糖通过激活肠道相关淋巴组织,增强机体的免疫反应。灵芝多糖能刺激和增加免疫细胞如自然杀伤细胞、T淋巴细胞和巨噬细胞的数量。

产生短链脂肪酸

蘑菇多糖在肠道发酵过程中产生短链脂肪酸,这些物质对维持肠道健康和调节宿主代谢具有重要作用。蚝菇Pleurotus ostreatus)中的β-葡聚糖衍生物能够诱导前列腺癌细胞的凋亡,并且显示出免疫调节、巨噬细胞激活、抗肿瘤和免疫刺激活性。

08
结 语

多糖的多样性和复杂性使其在人体内的作用千变万化,它们能够通过与肠道菌群的互动,从调节免疫功能到改善代谢性疾病等。

然而,利用天然多糖通过肠道菌群治疗疾病仍存在一些限制和挑战。对肠道菌群和多糖之间相互作用的全面了解需要进一步研究,由于大多数研究都是在动物身上进行的,因此开展研究多糖-微生物组-疾病相互作用的临床试验并实现临床转化至关重要。

幸运的是,随着生命科学领域新兴技术的发展,我们有了更多的工具来揭示这些复杂问题。高通量测序技术、多组学技术、人工智能和大数据分析的交叉融合,为研究多糖和肠道菌群的相互作用提供了强大的技术支持,推动了这一领域的快速发展。

此外,多糖与肠道菌群之间的相互作用不仅揭示了多糖的生物活性,也突显了肠道菌群对健康的重要贡献。多糖与肠道菌群的相互作用为我们提供了一个全新的视角,了解个体的肠道菌群组成,不仅有助于我们理解自身的健康状况,更为个性化的营养和健康管理提供了科学依据。肠道菌群检测可以揭示个体对多糖等营养成分的响应差异,从而为制定个性化的饮食和治疗计划提供指导。

注:本账号内容仅作交流参考,不作为诊断及医疗依据。

主要参考文献

Xue H, Mei CF, Wang FY, Tang XD. Relationship among Chinese herb polysaccharide (CHP), gut microbiota, and chronic diarrhea and impact of CHP on chronic diarrhea. Food Sci Nutr. 2023 Aug 6;11(10):5837-5855.

Xu X, Wang L, Zhang K, Zhang Y, Fan G. Managing metabolic diseases: The roles and therapeutic prospects of herb-derived polysaccharides. Biomed Pharmacother. 2023 May;161:114538

Zhang D, Liu J, Cheng H, Wang H, Tan Y, Feng W, Peng C. Interactions between polysaccharides and gut microbiota: A metabolomic and microbial review. Food Res Int. 2022 Oct;160:111653.

Chen R, Zhou X, Deng Q, Yang M, Li S, Zhang Q, Sun Y, Chen H. Extraction, structural characterization and biological activities of polysaccharides from mulberry leaves: A review. Int J Biol Macromol. 2024 Feb;257(Pt 2):128669.

Lan Y, Sun Q, Ma Z, Peng J, Zhang M, Wang C, Zhang X, Yan X, Chang L, Hou X, Qiao R, Mulati A, Zhou Y, Zhang Q, Liu Z, Liu X. Seabuckthorn polysaccharide ameliorates high-fat diet-induced obesity by gut microbiota-SCFAs-liver axis. Food Funct. 2022 Mar 7;13(5):2925-2937.

Feng Y, Song Y, Zhou J, Duan Y, Kong T, Ma H, Zhang H. Recent progress of Lycium barbarum polysaccharides on intestinal microbiota, microbial metabolites and health: a review. Crit Rev Food Sci Nutr. 2024;64(10):2917-2940.

Cui L, Guan X, Ding W, Luo Y, Wang W, Bu W, Song J, Tan X, Sun E, Ning Q, Liu G, Jia X, Feng L. Scutellaria baicalensis Georgi polysaccharide ameliorates DSS-induced ulcerative colitis by improving intestinal barrier function and modulating gut microbiota. Int J Biol Macromol. 2021 Jan 1;166:1035-1045.

Tang YF, Xie WY, Wu HY, Guo HX, Wei FH, Ren WZ, Gao W, Yuan B. Huaier Polysaccharide Alleviates Dextran Sulphate Sodium Salt-Induced Colitis by Inhibiting Inflammation and Oxidative Stress, Maintaining the Intestinal Barrier, and Modulating Gut Microbiota. Nutrients. 2024 Apr 30;16(9):1368.

Zhao Q, Jiang Y, Zhao Q, Patrick Manzi H, Su L, Liu D, Huang X, Long D, Tang Z, Zhang Y. The benefits of edible mushroom polysaccharides for health and their influence on gut microbiota: a review. Front Nutr. 2023 Jul 6;10:1213010.

Álvarez-Mercado AI, Plaza-Diaz J. Dietary Polysaccharides as Modulators of the Gut Microbiota Ecosystem: An Update on Their Impact on Health. Nutrients. 2022 Oct 3;14(19):4116.

Tang M, Cheng L, Liu Y, Wu Z, Zhang X, Luo S. Plant Polysaccharides Modulate Immune Function via the Gut Microbiome and May Have Potential in COVID-19 Therapy. Molecules. 2022 Apr 26;27(9):2773.

Sun CY, Zheng ZL, Chen CW, Lu BW, Liu D. Targeting Gut Microbiota With Natural Polysaccharides: Effective Interventions Against High-Fat Diet-Induced Metabolic Diseases. Front Microbiol. 2022 Mar 15;13:859206.

Gan L, Wang J, Guo Y. Polysaccharides influence human health via microbiota-dependent and -independent pathways. Front Nutr. 2022 Nov 9;9:1030063.

Chen J, Gao Y, Zhang Y, Wang M. Research progress in the treatment of inflammatory bowel disease with natural polysaccharides and related structure-activity relationships. Food Funct. 2024 Jun 4;15(11):5680-5702.

Chen P , Hei M , Kong L , Liu Y , Yang Y , Mu H , Zhang X , Zhao S , Duan J . One water-soluble polysaccharide from Ginkgo biloba leaves with antidepressant activities via modulation of the gut microbiome. Food Funct. 2019 Dec 11;10(12):8161-8171.

Wang, A.; Liu, Y.; Zeng, S.; Liu, Y.; Li, W.; Wu, D.; Wu, X.; Zou, L.; Chen, H. Dietary Plant Polysaccharides for Cancer Prevention: Role of Immune Cells and Gut Microbiota, Challenges and Perspectives. Nutrients 2023, 15, 3019.

Zhou, Y.; Chu, Z.; Luo, Y.; Yang, F.; Cao, F.; Luo, F.; Lin, Q. Dietary Polysaccharides Exert Anti-Fatigue Functions via the Gut-Muscle Axis: Advances and Prospectives. Foods 2023, 12, 3083

Shen, Y.; Song, M.; Wu, S.; Zhao, H.; Zhang, Y. Plant-Based Dietary Fibers and Polysaccharides as Modulators of Gut Microbiota in Intestinal and Lung Inflammation: Current State and Challenges. Nutrients 2023, 15, 3321

Lv H, Jia H, Cai W, Cao R, Xue C, Dong N. Rehmannia glutinosa polysaccharides attenuates colitis via reshaping gut microbiota and short-chain fatty acid production. J Sci Food Agric. 2023 Jun;103(8):3926-3938.

感染与疾病,感染的逐步进阶以及伴随的疾病发展

病原微生物和/或有害微生物成功入侵、繁殖并定居于宿主的体内或体内,从而导致健康障碍,称为感染。简单地说,它可以定义为由微生物引起的疾病。感染也被称为传染病或传染病或传染性疾病。

感染每年导致 1300多万 人死亡;2019 年死亡人数为 1370万人(新英格兰医学,2022年统计)。在这 1370 万人死亡中,有 770 万人与细菌感染有关。由于抗菌素耐药性的迅速出现和蔓延,与传染病相关的病例严重程度和死亡率也在增加。

感染和疾病是两个经常互换使用的术语,但它们的含义截然不同。了解两者之间的区别对于有效预防、诊断和治疗至关重要。

感染是指有害微生物(如细菌、病毒或真菌)侵入人体。这些病原体可以通过各种途径进入人体,如呼吸系统、消化系统或皮肤等。感染可以是局部的,也可以是全身性的,程度可轻可重。

疾病是指由于感染或其他原因而出现的症状或异常的表现。感染是原因,而疾病是结果。简而言之,感染是体内存在病原体,而疾病是感染导致的症状的表现。感染可能只是局部的轻微症状,而疾病则是影响身体正常功能的更严重的情况。在某些情况下,如果免疫系统无法控制微生物的传播,感染可能会发展成疾病

在诊断时区分感染和疾病非常重要。一个人可能感染了病原微生物,但没有表现出任何疾病症状。另一方面,一个人可能患病但没有活动性感染。在这种情况下,疾病可能是由感染以外的因素引起的,例如遗传易感性或环境诱因

虽然预防策略主要侧重于避免感染,但防止感染发展为疾病也同样重要及早发现和适当治疗感染有助于防止发展为严重疾病。比如,长期的呼吸道或肠道感染被认为是相关肿瘤发生的高风险因素之一。

因此,早期识别感染、诊断、治疗和预防是控制感染和疾病的重要组成部分。感染可以用抗生素或抗病毒药物等药物治疗,而疾病可能需要更专业的治疗方案。准确诊断潜在病因对于有效治疗至关重要

01
了解疾病与感染

疾病的定义,原因,诊断

// 定义

疾病是一种以身体或精神功能异常为特征的医疗状况。它通常由感染或受伤等外部因素引起,但也可能是由内部失衡或遗传倾向造成的。疾病的严重程度各不相同,会影响身体的不同器官或系统。

// 原因

疾病有多种原因,包括:

  • 感染许多疾病由细菌、病毒或真菌感染引起,这些微生物侵入人体并破坏其正常功能。
  • 受伤身体创伤会导致疾病,例如骨折或脑震荡。
  • 遗传因素某些疾病通过基因遗传从父母传给孩子。
  • 失衡体内激素、化学物质或其他物质失衡会导致疾病。

// 症状

疾病可表现出各种症状,包括疼痛、疲劳、发烧和身体功能异常,以及癌症。疾病的症状会因具体情况而有很大差异。

常见症状包括发烧、疲劳、疼痛、炎症身体功能变化某些疾病还可能导致与受影响器官或系统相关的特定症状,例如呼吸系统疾病的咳嗽或胃肠道疾病的消化问题。

疾病的形成方式多种多样。有些疾病,例如由遗传性疾病引起的疾病,是天生的。其他疾病可能是通过接触有害物质或环境因素而获得的。感染也会导致疾病的发展。当病原体侵入人体并造成伤害时,免疫反应可能会引发炎症、组织损伤和其他导致疾病的变化。

// 诊断和预防

诊断疾病通常需要结合病史、体格检查、实验室检查和影像学检查等。

预防疾病对于保持整体健康至关重要。这可以通过各种方式实现,例如保持良好卫生习惯、接种疫苗、保持健康的生活方式以及避免危险因素。早期发现和治疗感染也有助于防止其发展成更严重的疾病。

疾病的治疗包括药物治疗、手术治疗、其他疗法或这些方法的组合。

总之,疾病涉及身体或精神的异常功能,可能由感染、受伤、遗传因素或失衡引起。识别症状、诊断和了解疾病的原因对于有效预防和治疗疾病至关重要。

感染的定义,原因,诊断

// 原因

感染是一个术语,用于描述有害微生物在体内的入侵和繁殖。这些微生物被称为病原体,包括细菌、病毒、真菌和寄生虫。当这些病原体进入人体时,它们会引起感染。

感染的原因多种多样,包括细菌、病毒、真菌和寄生虫。这些微生物可以通过各种途径进入人体,例如吸入、摄入或通过皮肤破损。

// 症状

虽然感染的严重程度各不相同,但它们通常具有共同的症状。这些症状包括发烧、疲劳、咳嗽、打喷嚏、喉咙痛和炎症。在某些情况下,感染还可能导致更具体的症状,具体取决于所涉及的病原体类型

感染可能是局部的,即传染源仅感染特定的器官或组织,或者可能是全身性的,即传染源通过血液或淋巴到达身体的不同部位,从而感染不同的器官和组织。

感染可能不会导致疾病等特定症状,因为大多数感染往往是亚临床的。相反,其他感染可能导致严重的症状和并发症。

虽然有些感染可能不被宿主的免疫系统察觉并自行消退,但其他感染可能会引起症状并发展为疾病。

// 预防与治疗

预防是控制感染的一个重要方面。这可以通过保持良好的卫生习惯来实现,例如经常洗手和避免与受感染者密切接触。疫苗接种也可以通过提供针对特定病原体的免疫力来帮助预防某些感染。

预防在降低感染和疾病风险方面发挥着重要作用。保持良好的卫生习惯、接种疫苗和避免与受感染者接触等措施有助于防止感染传播。此外,保持健康的生活方式和增强免疫系统可以降低感染发展为疾病的可能性。

一旦感染,治疗可能涉及使用抗生素、抗病毒药物、抗真菌药物或抗寄生虫药物,具体取决于引起感染的具体微生物。在某些情况下,支持性护理(如休息、补液和缓解症状的药物)可能足以恢复。

// 原因与传播

感染的原因可能因所涉及的微生物类型而异。例如,细菌可通过直接接触受污染的表面、咳嗽或打喷嚏时产生的飞沫,或通过食用受污染的食物或水引起感染。另一方面,病毒通常通过呼吸道飞沫、与受感染者的直接接触或通过受污染的表面传播。

总之,了解感染的原因和传播方式对于预防、诊断和治疗感染至关重要。通过保持良好的卫生习惯、采取适当的预防措施并及时就医,个人可以降低感染风险并最大程度地减少相关疾病的影响。

感染的诊断是基于通过不同的诊断过程对传染源的识别。

某些感染可能会表现出可用于症状诊断的症状,但通常需要进一步确认。感染直接取决于传染源以及宿主对该传染源的免疫反应。

现在我们认为手术是理所当然的,但不久前,即使是最小的手术,如果感染进入体内,也可能是致命的消毒为我们提供了一种预防手术感染和确保手术安全的方法。

消毒法是使用化学物质(称为防腐剂)来消灭引起感染的细菌的方法。它是由英国外科医生约瑟夫·李斯特发明的。

约瑟夫·李斯特找到了一种预防手术期间和手术后伤口感染的方法。他是第一个将细菌理论的科学应用于外科手术的人。李斯特消毒系统是现代感染控制的基础。

02
疾病与感染的区别


定义和症状区别

感染和疾病的区别在于症状的严重程度以及对个人整体健康的影响。

感染的定义是细菌、病毒和真菌等微生物在体内的入侵和生长。

感染可能由多种因素引起,包括接触病原体、卫生条件差、免疫系统受损以及食物或水受污染。感染的症状因感染类型和部位而异,但通常包括发烧、疼痛、炎症和疲劳。

疾病是指影响身体或精神功能的特定状况。

疾病可能是由感染引起的,但也可能是由其他因素引起的,例如遗传异常、环境毒素、生活方式选择或自身免疫反应。疾病的症状范围从轻微到严重,并且可能持续很短时间或变成慢性病。

感染的诊断通常涉及检测体液或组织样本以确定病原体的存在。另一方面,疾病的诊断通常需要结合病史、体格检查、实验室检查和影像学检查

在治疗方面,感染通常使用抗生素、抗病毒药物或抗真菌药物治疗。治疗的目的是消除入侵的微生物并缓解症状。另一方面,疾病可能需要更全面的方法,包括药物治疗、手术、改变生活方式和支持疗法。

大致的区别总结如下:

总之,虽然感染和疾病相关,但它们的定义、原因、症状和治疗方法不同。了解两者的区别可以帮助医护人员和个人采取适当的措施来预防和控制疾病。


类型的区别

感染常见类型

  • 细菌感染

细菌感染是由有害细菌进入人体引起的。它们会影响身体的不同部位,例如呼吸系统、泌尿道或皮肤。常见症状包括发烧、疼痛、肿胀和发红。细菌感染通常用抗生素治疗。

  • 病毒感染

病毒感染是由病毒引起的。它们可导致各种疾病,例如普通感冒、流感或 COVID-19。症状从轻微到严重不等,可能包括发烧、咳嗽、喉咙痛和疲劳。病毒感染通常会自行痊愈,但有些可能需要抗病毒药物。

  • 真菌感染

真菌感染是由真菌引起的,例如酵母菌或霉菌。它们会影响皮肤、指甲或内脏器官。常见的真菌感染包括足癣、酵母菌感染和癣。症状可能包括瘙痒、发红和不适。真菌感染的治疗方法包括抗真菌药物和外用药膏。

  • 寄生虫感染

寄生虫感染是由寄生在人体内或体表的寄生虫引起的。寄生虫感染的例子包括疟疾、虱子感染和贾第虫病。症状可能因寄生虫类型而异,但可能包括发烧、瘙痒、腹泻和疼痛。寄生虫感染的治疗可能涉及抗寄生虫药物。

  • 性传播感染 (STI)

性传播感染是通过性接触传播的感染。常见的性传播感染包括衣原体感染、淋病和疱疹。症状范围从轻微到严重,可能包括生殖器分泌物、疼痛和溃疡。性传播感染通常通过检测诊断,可以用抗生素或抗病毒药物治疗。

通过了解不同类型的感染、其症状、原因和治疗方法,个人可以采取预防措施来降低感染风险并在需要时寻求适当的医疗护理。


常见疾病类型

说到疾病和健康,有各种各样的疾病会影响人体。以下是一些常见的疾病类型:

– 传染性疾病

传染病是由细菌、病毒、真菌和寄生虫等微生物引起的。它们可以通过各种方式在人与人之间传播,包括直接接触、呼吸道飞沫和受污染的食物或水。传染病的例子包括普通感冒、流感、肺结核和艾滋病毒/艾滋病。症状和治疗方法因具体感染而异。

– 慢性疾病

慢性病是一种长期疾病,通常会随着时间的推移而发展,并且没有已知的治疗方法。这些疾病通常有多种原因,并可能受到遗传、生活方式选择和环境因素的影响。慢性病的例子包括心脏病、糖尿病、癌症和慢性阻塞性肺病 (COPD)。治疗通常侧重于控制症状和预防并发症。

其他常见疾病类型

– 自身免疫性疾病

当免疫系统错误地攻击健康细胞和组织时,就会发生此类疾病,从而导致炎症和组织损伤。例如类风湿性关节炎、狼疮和多发性硬化症。

– 心血管疾病

影响心脏和血管。包括冠状动脉疾病、心力衰竭和中风等。

– 呼吸系统疾病

这些疾病会影响肺部和呼吸。一些常见的呼吸系统疾病包括哮喘、慢性支气管炎和肺炎。

– 精神健康障碍

这些障碍会影响一个人的情绪、心理和社会健康。例如抑郁症、焦虑症和精神分裂症。

– 遗传性疾病

这些疾病是由遗传异常基因或突变引起的。这些疾病包括囊性纤维化、镰状细胞病和亨廷顿氏病等。

这些疾病的诊断、治疗和预防策略因具体情况而异。


预防的区别

预防感染

预防是感染和疾病管理的一个重要方面。虽然治疗和诊断很重要,但采取措施预防感染可以大大降低疾病的发病率。

预防感染的一个关键因素是了解病因和传播方式。感染可通过与感染者直接接触、受污染的表面或空气中的颗粒传播。通过了解传播途径,个人可以采取必要的预防措施,将感染风险降至最低。

定期洗手是预防感染最有效的措施之一。用肥皂和水洗手至少 20 秒或使用含酒精的洗手液有助于消除有害微生物。

此外,例如咳嗽或打喷嚏时捂住口鼻,有助于防止呼吸道感染的传播。

接种疫苗是预防感染的另一个重要方面。疫苗刺激免疫系统产生对抗特定病原体的抗体,从而提供免疫力。通过接种疫苗,个人可以保护自己并为社区免疫做出贡献,从而降低传染病的总体流行率。

教育和意识在预防感染方面也发挥着重要作用。了解常见感染的体征和症状可以及早发现并及时治疗,防止进一步的并发症。此外,提倡卫生习惯并提供有关适当预防措施的教育可以使个人能够做出明智的决定并保护自己和他人。

总之,预防是对抗感染和疾病的关键。通过采取积极措施,例如保持良好的卫生习惯、接种疫苗和提高认识,个人可以大大降低感染风险,并为整个社区的健康做出贡献。

预防疾病

预防在减轻疾病负担方面起着至关重要的作用。了解各种感染和疾病的原因、症状和诊断有助于制定有效的预防策略。

预防疾病不仅仅是避免感染。它涉及采取健康的生活方式并做出明智的选择以降低患病风险。这包括保持均衡饮食,定期进行体育锻炼,避免吸烟和过量饮酒等行为,这些行为会增加患某些疾病的风险。

定期筛查和检查对于疾病的早期发现和治疗也很重要。通过早期发现疾病,医护人员可以及时治疗,改善治疗效果并减轻疾病的总体负担。

感染和疾病预防还涉及教育公众预防的重要性,并提供必要的资源和服务。

总之,预防在减少疾病的发生和影响方面起着至关重要的作用。通过了解感染和疾病的原因、症状和诊断,实施预防措施并促进健康行为。


治疗的区别

感染治疗

在治疗感染时,了解这些疾病的病因、预防和诊断非常重要。

治疗感染的关键因素之一是防止其传播

感染的诊断对于有效治疗至关重要。医生可以使用多种方法,包括体检、实验室检查和成像技术来确定感染的原因并确定最合适的治疗方案。

感染的治疗方法取决于感染的类型和严重程度。细菌感染通常用抗生素治疗,而病毒感染则使用抗病毒药物。真菌感染使用抗真菌药物,寄生虫感染则使用抗寄生虫药物。

症状管理

除了针对感染的根本原因外,症状管理也是治疗的一个重要方面。这可能涉及使用非处方药来缓解疼痛、发烧和充血等症状。

治疗持续时间

感染的治疗时间各不相同。有些感染可能需要短期用药,而有些感染可能需要更长时间的治疗。即使症状有所改善,也必须完成处方药物的全部疗程,以确保感染完全根除。

总之,感染的治疗涉及多方面的方法,包括解决根本原因、症状管理和防止感染扩散。通过了解感染的原因、预防和诊断,医疗保健专业人员可以为患者提供最有效的治疗。

疾病治疗

疾病的治疗取决于具体症状和致病因素

在感染病例中,治疗通常侧重于消除引起感染的生物体。这可能涉及使用抗生素、抗病毒药物或抗真菌药物,具体取决于感染的具体类型。在某些情况下,可以预防性地使用抗病毒或抗真菌药物,以防止感染传播给他人。

另一方面,疾病的治疗不仅仅是治疗感染本身。当疾病被诊断出来后,治疗的目的是缓解症状、控制并发症,并改善整体健康和福祉。

疾病的治疗可能涉及药物治疗、生活方式改变和支持疗法的结合。对于糖尿病或高血压等慢性疾病,主要重点通常是通过药物治疗和生活方式改变(包括定期锻炼和健康饮食)来控制病情。

在某些情况下,可能需要手术干预来治疗疾病。这可能涉及切除受感染或患病的组织、修复受损器官,或在受伤或退化的情况下恢复功能。

预防也是疾病治疗的一个重要方面。通过解决风险因素并实施预防措施,例如接种疫苗、定期健康检查和改变生活方式,可以减少疾病的发生和严重程度。

诊断在确定疾病的最适当治疗方法方面起着至关重要的作用。准确及时的诊断使医疗保健提供者能够根据每位患者的个人需求量身定制治疗计划。

总之,治疗疾病需要综合考虑具体症状、潜在病因和个体因素。通过了解感染和疾病之间的区别,医护人员可以就治疗方案做出明智的决定,并改善患者的治疗效果。

03
常见人类感染及病原体

血液循环系统感染

与心血管系统相关的感染,包括血液,即心脏、血管和血液的感染,也称为血流感染或血液循环系统感染。与心血管系统相关的一些常见感染包括:

消化系统感染

消化系统是参与食物消化的身体系统。它包括胃肠道 (GI 道) 和相关消化器官。胃肠道两端开放,是外来、可能受污染的物质(包括食物和饮料)的停靠点。这使得消化系统极易受到感染。

幽门螺杆菌感染

消化系统感染包括胃肠道任何部位(从口腔到肛门)和任何消化器官(如肝脏、胰腺和胆囊)的感染。消化系统感染主要包括细菌、病毒、原生动物和寄生虫,真菌病原体感染较少。

呼吸系统感染

呼吸道感染 (RTI) 是指呼吸系统任何器官的感染。它是人类最常见的感染类型。根据感染呼吸道的部位,RTI 可分为上呼吸道感染 (URTI)(即鼻、鼻窦、咽和喉感染)和下呼吸道感染 (LRTI)(即气管、支气管、细支气管和肺感染)。

神经系统感染

神经系统感染是指大脑、脊髓和/或人体神经的任何形式的感染。此类神经系统感染可能危及生命。它们是由不同的微生物引起的,主要是病毒和细菌。

泌尿系统感染

泌尿系统包括尿道、膀胱、输尿管和肾脏。这些器官中的任何一个感染都称为尿路感染 (UTI)。UTI 主要由细菌引起,但也有真菌和病毒感染的报道,但这种情况很少见。由于女性尿道较短,因此女性比男性更容易患上 UTI。

生殖系统感染

生殖系统包括所有参与生殖过程的器官。它在人类中与泌尿系统非常接近。许多引起尿路感染的微生物是造成生殖系统感染的原因。生殖系统感染分为三种类型:

  • 性传播疾病 (STD)
  • 内源性感染(泌尿生殖道微生物过度生长引起的感染)
  • 医源性感染(因医疗不当和外来微生物入侵而引起的感染)

淋巴系统感染

淋巴系统是淋巴管、淋巴结和淋巴器官的网络,淋巴液在其中流动。它是免疫系统的一部分,也是循环系统的一部分。淋巴感染并不常见,但有报道称存在多种细菌和寄生虫感染。

皮肤系统感染

外皮系统包括身体的所有外部覆盖物。它包括皮肤、头发和指甲。外皮系统是我们身体的第一层防御。它是数百万微生物作为正常菌群的家园。病原体在侵入身体之前首先与外皮接触。

肌肉系统感染

肌肉系统包括我们身体的所有肌肉。肌肉感染通常是血源性或传染性传播,但通常很严重,需要立即治疗。

骨骼:

内分泌系统感染

内分泌系统由内分泌腺组成,内分泌腺感染主要是通过血源性播散感染或进行性全身感染而引起。

04
感染发生、逐步进阶及相关并发症

在当今世界,传染病始终是一个威胁,了解感染的各个阶段对于有效诊断和治疗至关重要。从感染到康复的过程可以粗分为四个不同的阶段,每个阶段都有各自的症状和结果。

  • 潜伏期 和病原体初次接触
  • 前驱期(急性期的前奏)入侵和复制,轻微症状
  • 急性期 更明显的症状,免疫系统战斗
  • 恢复期 成功消灭,症状逐渐减轻

了解感染的四个阶段对于确定适当的行动方案至关重要,从预防和早期发现到治疗和康复。识别前驱期及其独特症状有助于早期干预,降低传播率并预防并发症。下面详细了解一下每个时期不同的特征及相关干预。

潜伏期和初次接触

潜伏期

感染的第一阶段称为潜伏期,在此期间,患者接触到病原体,但可能不会出现任何症状。潜伏期的长短取决于具体感染源,可能为几小时至数周不等

最初接触病原体的方式多种多样,例如接触受污染的表面、空气中的颗粒物,或直接接触受感染者。在此期间,患者可能并未意识到自己已经接触到病原体。

潜伏期内可能出现前驱期

此阶段的特点是出现轻微症状,这些症状通常不具特异性,容易被忽视或归因于其他因素。前驱期的症状可能包括疲劳、头痛、轻微发烧全身不适

值得注意的是,并非所有感染都会经历前驱期。有些感染可能直接从潜伏期进入急性期,这取决于具体病原体和个人的免疫反应。

入侵和复制

潜伏期过后,感染进入第二阶段,即入侵和复制。在此阶段,病毒或细菌已成功侵入宿主体内,并开始快速繁殖。这导致体内病原体的浓度较高,从而导致症状的出现。

前驱期是侵袭和复制阶段的一部分,其特点是出现初始症状。这些症状可能是一般性的和非特异性的,例如疲劳、发烧、头痛和肌肉疼痛。前驱期是感染正在发展的警告信号,可让免疫系统为即将到来的战斗做好准备。

随着感染的进展,它会进入急性期,症状会变得更加严重,并且针对特定病原体。人体的免疫系统在各种防御机制的帮助下,试图对抗入侵的病原体。然而,在这个阶段,战斗仍在继续,结果尚不确定。

慢性期一些感染可以在体内持续很长一段时间。此阶段的特点是症状较轻,甚至完全没有症状。然而,病原体继续复制并慢慢损害身体组织。如果不及时治疗,慢性感染会导致长期并发症和后遗症。

在某些情况下,随着人体免疫系统成功消灭病原体,感染会自然消退。这会导致康复,症状逐渐消退,患者恢复正常健康状态。然而,在其他情况下,可能会出现并发症,如继发感染或器官损伤,这会延长康复过程,并可能需要额外的医疗干预。

值得注意的是,感染过程的各个阶段可能因具体病原体、个人免疫反应和医疗条件而异。

前驱期

经过潜伏期和症状出现后,感染者进入前驱期,预示着疾病急性期的开始。

在前驱期,症状逐渐恶化,变得更加明显。感染者可能会出现疲劳、不适和发烧等一般症状,以及特定感染特有的特定症状。

此阶段至关重要,因为它通常表明免疫系统正在积极对抗感染。然而,需要注意的是,并非所有感染都有明确的前驱期。有些人可能会直接从潜伏期进入急性期,而不会出现任何前驱症状。

可能出现并发症

如果不及时治疗或免疫系统无法有效控制感染,前驱期可能会导致进一步的并发症。这些并发症的严重程度可能因感染类型和个人的整体健康状况而异。

前驱期可能出现的一些并发症包括继发感染、器官损伤或感染扩散至身体其他部位。这些并发症会延长病程,增加重症甚至死亡的风险。

前驱期的恢复

对于大多数感染来说,前驱期标志着急性期的开始,在此期间症状达到顶峰。急性期过后,身体逐渐恢复并进入缓解期,症状开始消退,患者开始感觉好些。

从前驱期和随后的急性期恢复可能需要一些时间,因此遵循处方治疗并根据需要休息很重要。在某些情况下,即使感染痊愈后,也可能出现复发或出现长期后遗症,如慢性疲劳或器官损伤

总体而言,了解前驱期的进展和症状对于有效管理和治疗感染至关重要。认识到这一阶段的开始可以帮助个人寻求适当的医疗护理并采取措施预防进一步的并发症。

急性期和全面感染

潜伏期结束后,感染者进入感染的急性期。在这个阶段,症状会完全显现,感染也会达到高峰。

前驱期是急性期的初始阶段,其特点是出现发烧、疲劳、头痛和肌肉疼痛等症状。在此阶段,感染者还可能感到全身不适。

严重感染的急性期通常持续数天至数周。此阶段的严重程度和持续时间可能因具体病原体和个人的免疫反应而异。

并发症和后遗症

在某些情况下,感染的急性期会导致并发症。这些并发症可能是由于病原体对身体的直接影响或身体对感染的免疫反应而引起的。常见的并发症包括肺炎、器官衰竭和继发感染。

一旦成功控制了急性期,感染者就会进入恢复期。在此阶段,身体会逐渐消除感染,症状开始改善。根据感染的严重程度,恢复可能需要几天到几周的时间。

在某些情况下,感染可能会发展为慢性阶段。当身体无法完全消除病原体时,就会发生这种情况,并且感染会持续很长时间。慢性感染可能导致长期健康问题,可能需要持续治疗。

值得注意的是,并非所有感染都会经历所有阶段,并且进展和症状可能因具体病原体和个体因素而异。

常见症状

感染的这个阶段,可能会出现常见症状,这些症状可能因具体病原体和个人的免疫反应而异。值得注意的是,并不是所有人都会出现相同的症状,有些人的表现可能比其他人更严重。

在急性期,患者可能会出现发烧、疲劳、身体疼痛和头痛等症状。这些症状通常表明身体对感染产生了免疫反应,可能会持续数天

急性期过后,患者可能会进入慢性感染期。在此阶段,症状可能会持续很长时间,有时持续数月甚至数年。常见的慢性症状包括持续疲劳、关节疼痛、肌肉无力和认知困难。

有些感染还可能产生后遗症,即感染导致的长期后果或并发症。这些后遗症的严重程度可轻可重,可能影响身体的各个器官或系统。后遗症的例子包括器官损伤、神经系统疾病和免疫功能受损。

复发是另一种可能的结果,尤其是某些病原体引起的感染。经过一段时间的明显缓解后,症状可能会再次出现,表明感染复发。这可能是由于各种因素造成的,例如病原体根除不彻底或休眠感染重新激活

呼吸道症状

感染的呼吸道症状阶段,病毒已到达呼吸系统并开始影响肺部和呼吸道。此阶段通常是在前驱期结束后,发烧和疲劳等一般症状开始消退。

呼吸道症状的严重程度因个人和引起感染的特定病毒而异。常见症状包括咳嗽、呼吸急促、胸痛或不适以及喘息。这些症状通常表明呼吸系统发炎和充血。

在某些情况下,呼吸道症状可能导致肺炎、支气管炎或呼吸衰竭等并发症。这些并发症可能需要额外的医疗干预,并可能延长整体康复过程。如果呼吸道症状恶化或没有随着时间的推移而改善,请务必就医。

一旦呼吸道症状开始改善,患者即被认为处于康复阶段。在此阶段,身体继续抵抗感染,免疫系统努力清除呼吸系统中的病毒。康复阶段的持续时间可能因个人和感染严重程度而异

极少数情况下,有些人可能会出现与呼吸道症状相关的后遗症或长期影响。这些可能包括慢性肺损伤、肺功能下降或感染痊愈后仍持续存在的呼吸道疾病。同样,有些人可能会出现呼吸道症状复发,即症状在改善一段时间后再次出现。

为了帮助康复和预防并发症,休息、保持水分充足遵照处方治药物非常重要。健康的生活方式(包括均衡饮食和定期锻炼)也可以支持免疫系统并促进整体呼吸系统健康。

胃肠道症状

在感染的第七阶段,即胃肠道阶段,患者可能会出现一系列与消化系统相关的症状。这些症状的严重程度和持续时间可能有所不同,

可能包括:

  • 恶心
  • 呕吐
  • 腹泻
  • 腹痛
  • 食欲不振
  • 脱水

这些胃肠道症状可能是感染扩散至肠道或人体对感染的免疫反应所致。在某些情况下,这些症状可能会随着时间和休息而自行缓解。但是,可能会出现脱水等并发症,需要医疗干预。

对于处于此阶段的人来说,控制症状并在必要时寻求适当的医疗护理非常重要。根据症状的严重程度,医疗保健专业人员可能会建议休息、补充水分和改变饮食。在某些情况下,可能会开药来缓解症状或治疗并发症。

还要注意的是,虽然有些人可能在此阶段后症状完全消失,但其他人可能会继续经历其他阶段,例如复发或出现后遗症。

神经系统症状

神经系统症状可发生在感染的急性期,也可发生在恢复期、复发期和并发症期。这些症状可能是病毒直接入侵的结果,也可能是病毒对神经系统的继发影响。

在感染的急性期,部分患者可能会出现头痛、头晕和精神错乱等神经症状。这些症状通常较轻且短暂,可在数天或数周内缓解。

但在某些情况下,神经系统症状可能会在恢复阶段持续存在。这些症状可能包括持续性头痛、注意力不集中和记忆力问题。

复发阶段,神经系统症状可能会再次出现或恶化。这可能是病毒重新激活或对神经系统造成进一步损害的结果。

此阶段还可能出现并发症,导致更严重的神经系统症状。这些并发症可能包括脑炎、脑膜炎和中风

经过适当的医疗护理和治疗,大多数人可以从这些神经症状中恢复过来。然而,有些人可能会出现长期的神经后遗症,如认知障碍或运动功能障碍。

值得注意的是,感染潜伏期也可能出现神经症状。这是接触病毒和出现症状之间的阶段。此阶段的神经症状很少见,但可能包括嗅觉或味觉丧失。

在慢性感染病例中,神经系统症状可能会持续很长一段时间。这些症状可能是间歇性的,严重程度也各不相同。

如果您在感染的任何阶段出现任何神经系统症状,请务必重视。

皮肤症状

感染的急性期,个人通常会出现皮肤症状。皮肤症状是指影响皮肤的任何症状。这些症状的范围从轻微到严重,并可能以各种方式表现出来,具体取决于感染的类型。

在潜伏期,个人可能不会出现任何皮肤症状。然而,随着感染进展到慢性阶段,皮肤症状可能开始出现。这些症状可能包括皮疹、水泡、病变或皮肤变色。这些症状的严重程度因人而异,有些人只会出现轻微症状,而另一些人可能会出现影响日常活动的严重症状。

在某些情况下,皮肤症状可能导致并发症。当感染扩散到身体其他部位或免疫系统对感染反应强烈时,就会出现并发症。这些并发症可能导致更严重的皮肤症状,甚至可能导致其他健康问题。

感染急性期过后,患者可能会出现感染的后遗症或长期影响。这些后遗症可能包括持续的皮肤症状,如疤痕或色素沉着变化。这些长期影响因人而异,取决于感染的严重程度和个人的免疫反应等因素。

在某些情况下,即使感染痊愈,患者也可能会出现皮肤症状复发。如果感染未从体内完全清除,或者免疫系统受损,则可能会出现这种情况。如果患者出现皮肤症状复发,请务必就医,因为这可能表明感染复发或其他潜在健康问题。

总之,皮肤症状可发生在感染的各个阶段,从急性期到慢性期,甚至感染消退后。这些症状可从轻微到严重,并可能对皮肤产生长期影响。个人必须注意这些症状,并在必要时寻求医疗帮助,以确保正确的诊断和治疗。

血液学症状

血液学症状通常出现在感染的恢复期。此阶段发生在急性期之后,急性期的特点是出现症状并出现并发症

在此阶段,人体的血液系统开始稳定并恢复正常。前驱症状(即感染前出现的一般症状)开始消退。人体开始产生更多的白细胞,负责抵抗感染。

在某些情况下,血液学症状可能会复发。如果感染在急性期没有完全解决,就会出现这种情况。复发可能是由于病毒重新激活或出现新的细菌菌株引起的。

常见的血液学症状:

  • 疲劳
  • 贫血
  • 白细胞减少症(白细胞计数低)
  • 血小板减少症(血小板计数低)

潜伏期(即从接触感染到症状首次出现之间的时间)也会出现血液学症状。然而,此阶段的症状通常较轻微,可能不明显。

如果血液学症状在恢复期持续存在或恶化,则可能表明出现并发症或发展为慢性感染。在这种情况下,可能需要额外的医疗干预。

在感染的不同阶段密切监测血液学症状对于确保正确的诊断和治疗非常重要。可以定期进行血液检查以跟踪血液系统的变化并指导治疗计划。

肌肉骨骼症状

在感染的肌肉骨骼症状阶段,患者可能会出现肌肉、关节和骨骼的急性疼痛、僵硬和肿胀。这些症状通常发生在前驱期之后,可能是身体对感染的免疫反应的结果。

肌肉骨骼症状的强度和持续时间会有所不同,具体取决于个人和引起感染的具体病原体。有些人可能只会感到轻微不适,而另一些人则可能会感到剧烈疼痛和活动受限

在某些情况下,肌肉骨骼症状可能是感染的后遗症,这意味着即使感染已经消退,这些症状仍会持续存在。这在某些病毒感染中更为常见,例如寨卡病毒或基孔肯雅病毒。

注:寨卡病毒属黄病毒科,黄病毒属,单股正链RNA病毒,直径20nm,是一种通过蚊虫进行传播的虫媒病毒,宿主不明确,主要在野生灵长类动物和栖息在树上的蚊子。

基孔肯雅病是由伊蚊传染的一种急性传染病,其临床症状为突然发烧、头疼、呕吐、关节痛及腰下部疼痛等,而最有效的应对途径是采取预防措施,减少蚊虫的滋生。

肌肉骨骼症状的恢复通常包括休息、疼痛管理和物理治疗,以改善力量和活动能力。如果症状严重或持续,可能需要更密集的治疗。

值得注意的是,肌肉骨骼症状也可能是感染的并发症,可能需要额外的医疗干预。并发症可能包括关节炎症、骨骼或软骨损伤或周围组织感染。

在极少数情况下,患者在经过一段时间的缓解或恢复后可能会出现肌肉骨骼症状复发。这可能是由于引起最初感染的病毒或细菌重新激活,或被同一病原体再次感染。

总体而言,感染过程中的肌肉骨骼症状会极大地影响个人的生活质量。如果您出现任何这些症状,建议处理以便获得准确的诊断和适当的治疗。

泌尿生殖系统症状

泌尿生殖系统症状可作为某些传染病发展的一部分出现。这些症状可能表明感染已到达泌尿生殖道,包括生殖系统和泌尿系统的器官并非所有感染都会发展到这个阶段,并且出现泌尿生殖系统症状并不总是表明感染严重或晚期。

泌尿生殖道阶段通常发生在感染的初期阶段之后,例如急性期和前驱期。在此阶段,病毒或细菌可能已经通过血液或其他身体系统到达泌尿生殖道。

出现泌尿生殖系统症状的患者可能会注意到泌尿系统的变化,例如排尿频率或尿急增加、排尿疼痛、尿液浑浊或带血,或难以完全排空膀胱影响生殖系统的感染也会导致阴道分泌物、异常出血、盆腔疼痛或男性睾丸疼痛等症状。

在某些情况下,泌尿生殖系统症状可能伴有并发症。这些并发症可能包括肾脏感染、尿路感染、盆腔炎或性传播感染。如果出现这些症状或怀疑有感染,请务必就医。

泌尿生殖系统阶段的持续时间可能因具体感染和个人因素而异。在某些情况下,症状可能会通过适当的休息、补水对症治疗自行缓解。但是,如果感染未得到适当治疗或存在潜在健康问题,感染可能会发展为慢性阶段或导致复发

值得注意的是,某些感染会对泌尿生殖系统产生长期影响或后遗症。这些后遗症可能包括不孕症、慢性疼痛、疤痕或其他可能需要持续医疗管理的并发症。

常见的泌尿生殖系统症状:

  • 排尿频率或尿急增加
  • 阴道分泌物
  • 排尿疼痛
  • 异常出血
  • 尿液浑浊或带血
  • 骨盆疼痛
  • 膀胱完全排空困难
  • 男性睾丸疼痛

心理症状

在感染过程中,个人可能会经历多个阶段。这些阶段包括潜伏期、复发、并发症、缓解,甚至慢性和急性后遗症。然而,一个经常被忽视的阶段是心理症状阶段。

心理症状可发生在感染的任何阶段,程度从轻微到严重不等。这些症状通常表现为情绪、行为和认知的变化。常见的心理症状包括焦虑、抑郁、易怒、困惑和注意力难以集中。

心理症状的存在会对个人的整体幸福感和生活质量产生重大影响。这些症状会影响一个人进行日常活动、维持人际关系甚至工作或上学的能力。为了提供适当的支持和治疗,识别和解决这些症状非常重要。

05
病原微生物检测

病原微生物检测在感染管理中的重要性不容忽视。通过病原微生物检测可以有效地控制和预防医院内感染,并加速患者的恢复过程。

随着分子生物学技术的发展,现代医学微生物学检验技术已经取得了显著进步,正在成为指导临床感染辅助诊断和治疗的重要依据。

多种检测手段应用于病原体检测,例如:

  • 微生物培养:传统的微生物培养能够鉴定细菌种类,并进行药物敏感性测试。
  • PCR技术:能够快速检测特定病原体的DNA,具有高灵敏度和特异性。
  • 基因测序:高通量测序技术鉴定病原体的基因组,用于病原体鉴定和耐药性基因分析。
  • 免疫学检测:利用抗原-抗体反应原理,检测病原体或其产生的抗体。
  • 质谱技术:质谱分析能对病原体快速鉴定,尤其在未知病原体鉴定中显示出优势。

在感染的临床管理中,除了传统的病原体检测方法外,肠道菌群检测也是一个重要的发展方向。肠道菌群有助于消化、吸收营养物质,同时还调节人体免疫系统的功能,对人体健康起着至关重要的作用,肠道菌群失衡与多种疾病的发生发展密切相关

肠道菌群与宿主之间的相互作用对维持内稳态很重要,但这种相互作用一旦受到干扰,就会成为许多慢性疾病的核心驱动因素。

在肠道、相关微生物群和各种器官之间的双向或多向通信连接(轴)

Ahlawat S,et al.,Lett Appl Microbiol. 2021

关于这方面可详见我们之前的文章:

肠好身体好,了解肠与全身其他器官的对话

肠道菌群检测在临床感染中的应用

肠道病原体感染定植的三个关键角色——炎症、营养与共生菌群

肠道菌群报告中会有致病菌超标等明确指示,此外我们还可以判断整个肠道微生态的健康状况。肠道微生物群的失调可能导致肠道易感性增加,使得易感性疾病如艰难梭菌感染更容易发生。

通过分析肠道微生物组的变化,可以帮助我们更好地理解感染过程,评估治疗效果,并为个性化干预提供依据。

06
结 语

感染,作为全球健康的主要威胁,其影响甚至超过个体的病痛,它触及社会的每一个层面。本文在了解各种感染阶段、症状的同时,也强调了病原体检测在感染管理中的重要性,病原体相关检测手段让我们能够及时识别感染类型,评估其严重程度,并预测可能的并发症。

面对不断演变的病原体和日益严峻的抗生素耐药性问题,我们在推动科研创新的同时,也需提高公众对感染性疾病的认识,强化预防措施,如感染源的识别、个人卫生习惯等,对于控制感染的传播同样至关重要。

在治疗方面,针对病原体的特异性治疗是帮助患者恢复健康的关键。这需要医疗相关专业人员根据相关诊断结果,选择最合适的治疗方案,包括抗生素、抗病毒、抗真菌等。同时,症状管理和支持性护理也是治疗过程中不可或缺的组成部分。

随着科技的进步和医疗知识的积累,整合病原体相关检测,加强跨学科的研究,以及普及健康教育,有望不断提升治疗效果,为患者带来更好的康复和生存机会。

免责声明:本文仅供参考,不构成医疗建议。请务必咨询医疗保健专业人员,以正确诊断和治疗任何感染。

主要参考文献:

Murray, P. R., Rosenthal, K. S., & Pfaller, M. A. (2013). Medical microbiology. Philadelphia: Elsevier/Saunders

Parija S.C. (2012). Textbook of Microbiology & Immunology.(2 ed.). India: Elsevier India.

Sastry A.S. & Bhat S.K. (2016). Essentials of Medical Microbiology. New Delhi : Jaypee Brothers Medical Publishers.

Joseph Lister’s antisepsis system,2018,Science Museum

sciencedirect.com/topics/immunology-and-microbiology/germ-theory-of-disease

biologydictionary.net/germ-theory/

infectioncycle.com/articles/infection-stages-understanding-the-progression-of-infectious-diseases-and-their-impact-on-health

germ theory,Adam Augustyn,2024, 5

National Research Council (US) Committee to Update Science, Medicine, and Animals. Science, Medicine, and Animals. Washington (DC): National Academies Press (US); 2004.

Murray, P.R., Rosenthal, K.S., & Pfaller, M.A. (2015). Medical microbiology (8th ed.). Elsevier.

Fauci, A.S., Braunwald, E., Kasper, D. L., Hauser, S. L., Longo, D. L., & Jameson, J. L. (Eds.). (2008). Harrison’s principles of internal medicine (17th ed.). McGraw-Hill Medical

Mandell, G. L., Bennett, J. E., & Dolin, R. (2010). Mandell, Douglas, and Bennett’s principles and practice of infectious diseases (7th ed.). Churchill Livingstone.

Brook, I. (2013). Microbiology and management of respiratory tract infections. CRC Press.

Control of Communicable Diseases Manual by David Heymann.

G. Authia, S. Fablina, 2022. Global and regional sepsis and infectious syndrome mortality in 2019: a systematic analysis. Published by Elsevier Ltd. Published:March, 2022

Loretta J. Bubenik (2005). Infections of the Skeletal System. , 35(5), 0–1109. doi:10.1016/j.cvsm.2005.05.001

Morrison WB, Kransdorf MJ. Infection. 2021 Apr 13. In: Hodler J, Kubik-Huch RA, von Schulthess GK, editors. Musculoskeletal Diseases 2021-2024: Diagnostic Imaging [Internet]. Cham (CH): Springer; 2021.

Megran DW. Enterococcal endocarditis. Clin Infect Dis. 1992 Jul;15(1):63-71. doi: 10.1093/clinids/15.1.63. PMID: 1617074.

Roberts RB, Krieger AG, Schiller NL, Gross KC. Viridans streptococcal endocarditis: the role of various species, including pyridoxal-dependent streptococci. Rev Infect Dis. 1979 Nov-Dec;1(6):955-66. doi: 10.1093/clinids/1.6.955. PMID: 551516.

Infective endocarditis: A contemporary update. Ronak Rajani, John L Klein. Clinical Medicine Jan 2020, 20 (1) 31-35; DOI: 10.7861/clinmed.cme.20.1.1

Lamas, C. C., & Eykyn, S. J. (2003). Blood culture negative endocarditis: Analysis of 63 cases presenting over 25 years. Heart, 89(3), 258-262.

Smith DA, Nehring SM. Bacteremia. [Updated 2022 Jul 31]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan-.

Britannica, The Editors of Encyclopaedia. “septicemia”. Encyclopedia Britannica, 23 Jun. 2022

Martinez RM, Wolk DM. Bloodstream Infections. Microbiol Spectr. 2016 Aug;4(4).

Akhondi H, Simonsen KA. Bacterial Diarrhea. 2022 Aug 8. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 31869107.

Bacterial gastroenteritis: Causes, treatment, and prevention (medicalnewstoday.com)

Typhoid (who.int)

Imam Z, Simons-Linares CR, Chahal P. Infectious causes of acute pancreatitis: A systematic review. Pancreatology. 2020 Oct;20(7):1312-1322. 

自闭症早期风险判别和干预新路径

谷禾健康

自闭症谱系障碍 (ASD) 是一组神经发育疾病,其特征是社交互动和沟通的质量障碍、兴趣受限以及重复和刻板行为

环境因素在自闭症中发挥重要作用,多项研究以及谷禾队列研究文章表明肠道微生物对于自闭症的发生和发展以及存在明显的菌群和代谢物的生物标志物。

doi: 10.1136/gutjnl-2021-325115.

尽管环境因素在自闭症中发挥重要作用,但几乎没有确凿的证据将饮食与疾病的发生和进展联系起来。然而,最近关于饮食如何塑造肠道-大脑轴的研究可能会为环境对疾病机制的影响提供新的见解,并提出至少通过饮食改善某些自闭症谱系障碍症状的可能性。

此外,在谷禾检测实践过程中,也发现部分自闭症儿童的消化功能,以及饮食营养存在问题,主要集中表现为挑食,消化不良等。

doi: 10.1136/gutjnl-2021-325115.

本文参考以往相关研究性文章,详细讨论饮食和肠道微生物群-肠-脑轴如何影响自闭症,主要概述肠道微生物群对分子代谢(各类氨基酸、γ-氨基丁酸、不饱和脂肪酸、短链脂肪酸、胆固醇、丁酸盐、乙酸盐、N-乙酰天冬氨酸、多酚等)和与自闭症发病和进展相关的酶(二糖酶、己糖转运蛋白和单羧酸转运蛋白等)。还回顾了饮食模式、益生菌和肠道微生物群在大脑发育中的作用及与自闭症的关联,这些都为自闭症的干预策略提供了重要的理论支持。

01
自闭症及其概述

自闭症谱系障碍 (ASD) 是一组神经发育疾病,一般在 3 岁之前发病,其特征是社交互动和沟通的质量障碍、兴趣受限以及重复和刻板行为

直到几十年前,自闭症谱系障碍还被认为相当罕见,但自 20 世纪 80 年代以来,全世界自闭症谱系障碍快速增加,这给自闭症谱系障碍患者的家庭和整个社会带来了重大的后果。


自闭症的评估

目前在临床上自闭症谱系障碍的诊断仍然是根据行为来定义的,通过详细的发展史、父母对孩子日常行为的描述以及对孩子的社交互动方式以及沟通和智力功能的直接评估


自闭症的症状

一个重要问题让人对自闭症表型发病机制的理解变得更加复杂,简而言之,自闭症谱系障碍的发病和表现远非同质:

  • 15-30% 的自闭症谱系障碍儿童表现出一段发展停滞期,甚至明显丧失技能,最常见的是语言能力。

此外,除了核心症状之外,这些儿童通常还表现出一系列其他相关特征,例如:

  • 感觉运动异常、肌张力差和运动缺陷和异常的认知特征。
  • 合并症也很常见,包括注意力缺陷多动障碍 (ADHD) 和焦虑,以及睡眠问题,胃肠道疾病和饮食问题。

doi: 10.1136/gutjnl-2021-325115.


自闭症的风险因素

饮 食

人体必需氨基酸必须由食物供给,喂养可能代表环境因素和神经生物学因素之间的桥梁,因此可能在导致疾病表型的途径中发挥作用。从临床经验和文献中都知道,自闭症儿童往往与喂养和饮食态度有特殊的关系。

部分自闭症儿童可能有进食困难胃肠道症状,对食物的味道和颜色非常挑剔。因此,自闭症儿童必需氨基酸 (赖氨酸、色氨酸、苯丙氨酸、组氨酸) 减少,可能部分是由于食物摄入不足饮食习惯不良所致。

非常有限的饮食可能会使任何儿童面临营养缺乏和发育不良的风险,包括大脑发育。

遗 传

强有力的证据支持遗传因素对自闭症和相关疾病的疾病风险有影响。

  • 男孩自闭症患病率是女孩的四倍,头围经常出现异常。
  • 大约 50% 的自闭症患者的智商处于智力障碍范围内,并且自闭症通常与其他疾病有关,例如癫痫和癫痫样脑电图 (EEG) 异常或遗传综合征。
  • 双胞胎研究和分子遗传学研究发现,自闭症谱系障碍由许多具有共同症状和表现的不同综合征组成,遗传易感性可能源自多种基因型决定因素。

然而,与自闭症风险有关的许多不同基因编码参与各种生理过程的各种不同蛋白质,包括大脑发育和功能、神经递质受体或转运蛋白、细胞粘附/屏障功能蛋白、免疫相关蛋白、参与胆固醇代谢或运输的蛋白质,以及影响线粒体功能的蛋白质

近期,发表在《Cell》的一项研究对一个出生队列进行了 20多年的跟踪,详细的早期纵向问卷记录了感染和抗生素事件、压力、产前因素、家族史等饮食,在随访的 16,440 名瑞典儿童中,1,197 名患上神经发育障碍。下面一些有关自闭症风险的研究数据出自该文章:

家族病史

  • 父母有哮喘、乳糜泻或1型糖尿病家族史的孩子患神经发育障碍的风险较高 (OR = 1.28–1.46)。父亲哮喘与自闭症(OR = 1.71,[1.2–2.42,95% CI]) 以及 多动症(OR = 1.56,[1.20–2.02,95% CI]) 风险的关联最为密切。
  • 家族性自身免疫性疾病在患有神经发育障碍的个体中更为普遍,尤其是自闭症,在很大程度上由免疫介导的 HLA 基因驱动。

环 境

并非所有携带这些特定突变的个体都会患自闭症谱系障碍。最近的一项同卵双胞胎研究强调,环境因素可能解释了他们患自闭症谱系障碍相对风险的 55%,环境因素为自闭症谱系障碍型症状的出现提供了选择性压力,这些症状从各种不同的症状中出现。各种易诱发的遗传异常,结合起来会引起明显的疾病。

重大生活事件

  • 出生至 5 岁期间的严重生活事件(如分居/离婚、家庭成员去世、重病/事故或失业)使未来患神经发育障碍的可能性增加 1.98 倍(1.6–2.44,95% CI),影响了 32.8% 的儿童,而对照组儿童这一比例为 19.8%。
  • 智力障碍组与早产有很大关系,发生早产的比例为15.2%,而对照组为4.2%(OR=4.13[2.51–6.77,95%CI])
  • 患有言语障碍或智力障碍的儿童通过剖腹产分娩的可能性高1.93~2.02倍。

化学物质暴露

  • 母亲在怀孕期间吸烟会累积增加患神经发育障碍的风险(OR = 3.0 [2.33–3.87, 95% CI]),以及单独增加患自闭症的风险(OR = 3.72 [1.92–7.21, 95% CI])和多动症的风险(OR = 3.31 [2.52–4.34, 95% CI]),尤其是每天吸烟十支或更多。
  • 母亲在怀孕期间使用止痛药会增加多动症的风险(OR = 1.41 [1.23–1.62, 95% CI])和自闭症的风险(OR = 1.46 [1.19–1.78, 95% CI])。
  • 母亲吸烟量超过 15 支/天的儿童患多动症(OR = 4.88 [3.23–7.36]),父亲吸烟量超过 15 支/天的儿童患自闭症(OR = 3.47 [2.01–6.01])。

早期感染和抗生素

儿童早期(出生至 5 岁)感染与自闭症风险增加显著相关,最显著的是第一年内中耳炎反复湿疹

  • 经历频繁中耳炎发作(1至2.5岁三次或三次以上)的儿童后来被诊断为智力残疾、自闭症谱系障碍或多动症的可能性分别高2.13倍(1.1–4.13,95%置信区间)、1.74倍(1.21–2.51,95%置信度)和1.75倍(1.33–2.30,95%可信区间)。
  • 从2.5岁到5岁,增加扑热息痛退烧药(6次或更多次)会增加自闭症风险(or=1.82[1.16–2.88,95%CI])。在此期间使用青霉素会使多动症的风险增加1.54倍,自闭症的风险增加1.76倍。

微生物组

胃肠道症状长期以来表明,肠道和大脑之间存在着紧密联系,即”肠-脑轴”。

——胃肠道问题

未来患有神经发育障碍的儿童中,早期胃肠道问题明显,情绪问题程度较轻。

  • 在胃肠道问题中,未来智力障碍患者的21.3%出现腹痛、腹胀或胀气、便秘等症状(OR=2.4,95%置信区间[1.2-4.9],p=0.013)。
  • 在5岁时,与对照组(8.0%-8.9%)相比,“胃痛”和“腹痛”在未来的神经发育障碍中更为普遍(13.5%-24.6%),在未来的自闭症-多动症共病中尤为突出(OR=3.39-3.45,p<0.0001)。

——肠道菌群

肠道细菌可能在自闭症病理生理学中发挥一定作用。事实上,各种研究表明肠道微生物群在自闭症中发生了改变, 尽管文献中对于参与其中可能发挥作用的细菌几乎没有达成一致。

肠道细菌及其代谢产物不仅影响肠道功能和饱腹感,还可能与情绪、认知、行为、抑郁以及大脑发育等方面有关。

饮食在塑造哺乳动物代谢通量(包括神经化学物质的通量)以及塑造肠道微生物群及其活动方面具有重要作用。

例如,纤维和益生元尤其支持有益的糖分解肠道微生物群,其特征是双歧杆菌和乳酸菌的相对丰度增加以及短链脂肪酸 (SCFA) 的产生。来自水果、谷物和蔬菜等全植物食品的多酚也会影响肠道微生物群组成、免疫功能,充当抗氧化剂,防止大脑炎症并改善血脑屏障 (BBB) 功能。

Kieran M. Tuohy, et al.,Diet and the Gut Microbiota,2015,225-245

接下来我们着重就微生物组这方面,详细探讨肠道微生物群如何在自闭症的发展中起作用,以及相关的最新研究进展。

02
肠道微生物群和自闭症

肠-脑轴作为外部环境与人类大脑之间的沟通通路,在体内有重要的“内部”通道——人类肠道微生物群。许多营养物质和摄入的化学物质必须经过这些通道,转化为生物可利用和活跃的中间产物,然后通过肝门静脉吸收并在全身分布。

许多对脑重要的化学物质也由肠道微生物群在肠道中产生,包括色氨酸多巴胺、血清素、GABA、β-羟基丁酸、胆碱、牛磺酸、乙酸盐、琥珀酸、乳酸、乙酰辅酶A、肌酐、甜菜碱、谷氨酸、谷氨酰胺、对甲酚、反式吲哚丙烯酸甘氨、脂肪酸和马尿酸。

一些其他化学物质可能由细(例如在消化和发酵过程中)调节,或者是细菌成分,如革兰氏阴性细菌细胞壁的组成部分脂多糖(LPS),它可剂量依赖性地减少人类肠道细胞对血清素的吸收,并在外周和大脑引发炎症,影响大脑功能。

神经递质:GABA、血清素

最近有研究表明,神经递质GABA在自闭症谱系障碍神经元发育中可能起作用,尤其是考虑到它在婴儿期从神经递质兴奋剂到抑制剂的转变。

另一种神经递质,血清素(5-羟色胺,5-HT),也被怀疑在自闭症中起作用。自闭症患者的血液中,血清素和 GABA 水平均发生了变化。有趣的是,这两种神经递质都是由氨基酸代谢产生的,分别是色氨酸和谷氨酸

肠道代谢物是否直接影响大脑的神经发育?

取决于它们是否能够穿过血脑屏障(BBB)。

比如说,肠道细菌可以产生GABA,这个 GABA 可能会影响到肠道神经系统的工作,或者改变血液中 GABA 的含量。但是,在正常健康的情况下,肠道产生的 GABA 是不能直接穿过”血脑屏障”进入大脑的。

反之,乙酸盐作为肠道微生物群发酵碳水化合物的主要终产物和哺乳动物细胞胆固醇生物合成的底物,可以迅速通过血脑屏障

然而,血脑屏障可能会因化或炎症压力等原因受到损伤,与胃肠道屏障类似出现“”,允许不需要的化学物质进入大脑。在自闭症患者中血脑屏障受到损伤

为什么说肠道菌群可用于区分自闭症与非自闭症?

研究表明,肠道微生物群在影响自闭症谱系障碍(ASD)代谢产物谱和生理参数的过程中起着重要作用。

首先,自闭症患者的肠道微生物群与健康对照组或非自闭症的兄弟姐妹显著差异,显示出异常的肠道微生物组成和活动是自闭症的一个特征

研究报告显示,自闭症群体与非自闭症对照组之间在拟杆菌门、厚壁菌门、变形菌门和放线菌门的组成上存在差异。


生命早期自闭症儿童的肠道菌群

前面提到的发表在《Cell》大队列的自闭症儿童研究,在 11.9 ± 2.9 个月时采集了 1,748 名婴儿的粪便样本,将所有可用的对照与未来的神经发育障碍进行比较,然后匹配风险因素和微生物组多样性混杂因素。

doi.org/10.1016/j.cell.2024.02.035

在未来的神经发育障碍中,下列菌群丰度较高

  • Carnobacteriaceae
  • ASV-86 Enterobacter sp.
  • Clostridia
  • Veillonella

在我们的GUT队列里,也发现自闭症儿童这个菌的Veillonella显著富集。

doi: 10.1136/gutjnl-2021-325115.

注:Veillonella是一种革兰氏阴性的厌氧球菌,正常情况下通常存在于人体口腔和胃肠道中。该菌以其乳酸发酵能力而闻名,能代谢乳酸产生丙酸、CO2和H2。

下列菌群始终较少富集

  • Akkermansia muciniphila
  • Phascolarctobacterium faecium
  • Roseburia hominis
  • Coprococcus eutactus
  • Coprococcus comes
  • Bacteroides ovatus
  • Bifidobacterium breve
  • Alistipes putredinis

这些菌属具有抗炎、维护肠道屏障、产生短链脂肪酸等有益作用,其减少可能导致肠道功能紊乱免疫失调

Akkermansia muciniphila在后来被诊断患有自闭症自闭症-多动症合并的婴儿中不存在,并且与儿童早期的胃肠道和情绪症状呈负相关

Akkermansia muciniphila促进粘蛋白产生叶酸,丙酸和乙酸;以增强肠细胞单层完整性和强化受损的肠道屏障而闻名;并具有免疫调节特性。

doi.org/10.1016/j.cell.2024.02.035

特定菌群:

与对照组(21.7%)相比,两种Klebsiella michiganensis菌株(HCXXMCOL0180 和 HCXXMCOL0513)在自闭症儿童中更普遍(43.6%),携带这两种菌株的婴儿日后患自闭症的风险更高

携带这两种菌株的对照组婴儿抗生素使用频率更高(27.1%),提示抗生素暴露可能促进了这些菌株的定植

性别和诊断年龄影响:

菌群自闭症男童的肠道菌群组成可能因诊断年龄不同而异,如晚期诊断Akkermansia muciniphila丰度增加相关,而这种模式在女童中并不明显,女童中一些Bacteroides菌株丰度升高

早期诊断男童,Enterobacteriaceae科一些菌属如Enterobacter、 Klebsiella丰度升高

这提示自闭症的肠道菌群变化可能具有性别特异性,且随年龄和病程进展而动态变化。

代谢物异常与菌群相关:

粪便代谢组学分析显示,自闭症儿童的某些代谢物如酪氨酸、色氨酸(儿茶酚胺、血清素前体)、精氨酸、赖氨酸等氨基酸亚油酸等脂肪酸以及维生素B6等水平异常

注:关于氨基酸,脂肪酸等详细介绍与自闭症的关联详见后面章节。

精氨酸水平与Roseburia、Coprococcus、Akkermansia丰度呈正相关,提示菌群失调可能影响宿主氨基酸代谢。

色氨酸代谢产物:吲哚-3-乙酸盐(AhR激动剂)在自闭症组中升高,且与RuminococcaceaeLachnospiraceae科菌属丰度正相关

其他的一些与自闭症相关菌群的研究结果:

多样性降低

一些菌群减少,包括:

  • Deinococci
  • Holophagae
  • Prevotella_copri_CAG_164
  • Bacteroides_thetaiotaomicron
  • Azospirillum_sp_CAG_260

一些菌群增多,包括:

  • 肠球菌
  • Sillimonas
  • Eggerthella
  • Veillonellaceae
  • Rumminococcaceae
  • Subdoligranulum

下列菌群可作为3-6岁有胃肠道症状儿童自闭症的可靠生物标志物:

  • Bifidobacterium
  • Blautia
  • Eubacterium hallii
  • Subdoligranulum
  • Coprococcus
  • Ruminococcus
  • Veillonella

菌群代谢产物LPS→慢性炎症→血脑屏障损伤

研究表明,细菌脂多糖(LPS)会引发慢性低度系统性炎症或“代谢性内毒素血症”,在动物模型中,这被证明会损害包括血脑屏障(BBB)在内的屏障功能。实际上,出生期暴露于LPS引发的系统性炎症的小鼠表现出永久性的血脑屏障损伤渗透性增加,且在青少年和成年期表现出行为改变。对自闭症患者而言,血脑屏障功能的永久性损害将只会加剧肠道微生物及异常代谢产物输出所带来的病理后果。

母亲妊娠期:LPS诱导的系统性炎症如何影响孩子神经发育,增加自闭症风险?

妊娠期由LPS诱导的系统性炎症可以改变后代的神经发育和脑功能。自闭症中的这种先天性或细胞介导的炎症反应,可能会因获得性免疫系统中明显的自身免疫成分而加剧。由系统性炎症或母体自身免疫疾病触发的自身抗体在妊娠期间产生,现在被怀疑在胎儿异常神经发育和受损的血脑屏障发展中起作用,并影响婴儿期的大脑功能,包括增加自闭症的风险

肠道菌群失调诱导产生自身抗体,影响神经系统发育

在自闭症患者中,对叶酸、血清素和GABA受体的自身抗体水平,以及一些重要的免疫相关酶如转谷氨酰胺酶2的抗体水平也有所升高。尽管自身抗体生成的分子触发机制尚不完全了解,但有一个可能性是,对关键代谢物如神经递质受体的自身抗体可能是在血液中异常代谢物浓度、早期生活中的不当免疫教育或由肠道细菌模拟引导下由免疫系统产生的。

这样的“代谢组-炎症组”调控网络也在其他自身免疫性疾病中出现,包括1型糖尿病和炎症性肠病(IBD),并且似乎与肠道微生物群密切相关。


氨基酸代谢

氨基酸代谢在神经传递相关代谢物的生物合成中扮演着重要角色,长期以来被怀疑在自闭症谱系障碍中发挥作用。

血液分析氨基酸变化

  • 一项研究从2014 年至 2018 年共招募了110 名中国南方地区自闭症儿童和 55 名健康儿童。与对照组相比,自闭症儿童的谷氨酸、γ-氨基-n-丁酸、谷氨酰胺、肌氨酸、δ-氨基乙酰丙酸、甘氨酸和瓜氨酸显著升高。相反,他们血浆中的乙醇胺、苯丙氨酸、色氨酸、同型半胱氨酸、焦谷氨酸、羟脯氨酸、鸟氨酸、组氨酸、赖氨酸和谷胱甘肽水平明显降低。
  • 有研究比较了自闭症或阿斯伯格综合症儿童及其父母,发现患者及其家庭成员的血浆中谷氨酸、苯丙氨酸、天冬酰胺、酪氨酸、丙氨酸和赖氨酸的浓度高于正常(与年龄匹配的健康对照组),而谷氨酰胺的浓度则较低。

Glu:Gln比率升高

有许多研究报告称,自闭症患者的血液中谷氨酸与谷氨酰胺(Glu:Gln)的比率升高。

谷氨酸转化为谷氨酰胺是大脑中处理氨废物的主要方式,这对于避免氨中毒和在突触中谷氨酸的过度积累以减少兴奋性毒性非常关键。因此,血液中Glu:Gln比率的升高可能表明自闭症患者大脑中的氨解毒和谷氨酸循环发自闭症生了变化,这会影响行为

注:低纤维高蛋白饮食可能会使这种氨中毒恶化,因为这样的饮食会导致肠道中的蛋白水解微生物群发酵氨基酸,从而增加系统性氨贡献。饮食中氨基酸的微生物分解会影响哺乳动物体内氨基酸的可用性和循环,也可能产生生物活性化合物,如短链脂肪酸、支链脂肪酸和生物胺

蛋氨酸

一项包括87项研究的自闭症氧化应激生物标志物的汇总荟萃分析发现,参与甲基化循环和硫酸盐转移途径的几种代谢物异常。

蛋氨酸在硫酸盐转移途径中利用半胱氨酸合成,该途径连接蛋氨酸和谷胱甘肽的生物合成,蛋氨酸显著降低(p < 0.001),异常甲基化会增加自闭症谱系症状的风险 。

瓜氨酸

有研究发现,自闭症儿童的瓜氨酸水平与刻板行为(ADOS-2 上的 RRB 评分)之间存在正相关,且具有统计学意义。瓜氨酸和氨的累积暴露是经典瓜氨酸血症(精氨琥珀酸合成酶缺乏症)患者认知功能较差的最可靠标志。

尿液代谢物分析氨基酸变化

  • 使用基于质谱的策略,对48名自闭症儿童和53名年龄匹配的对照组的尿液代谢物进行分析,发现自闭症样本中有82种代谢物发生了变化,氨基酸(包括甘氨酸、丝氨酸、苏氨酸、丙氨酸、组氨酸、谷氨基酸)、有机酸和胆汁衍生物牛磺酸及肌肽在自闭症尿液中的水平较低。他们还观察到了肠道微生物群代谢物和氧化应激标志物的变化。

色氨酸

色氨酸因与自闭症症状相关而闻名,它是血清素 (5-HT) 的前体,血清素是一种抑制性单胺类神经递质,一些研究报告色氨酸水平升高,而另一些研究报告色氨酸水平降低 。

关于色氨酸,详见我们之前的文章:

色氨酸代谢与肠内外健康稳态

苏氨酸

有研究发现,自闭症组男孩的苏氨酸含量明显高于对照组男孩。5 岁以下自闭症儿童的尿液苏氨酸含量高于 5 岁以上儿童。苏氨酸属于天冬氨酸家族,是一种蛋白质氨基酸,其分解产生乙酰胆碱酯酶 A 和甘氨酸,促进各种生理过程和整体身体稳态 ,它也可以通过影响色氨酸进入大脑,间接影响5-羟色胺的合成。

脯氨酸

有研究发现,5 岁以下自闭症儿童的脯氨酸含量明显低于 5 岁以上儿童。

与 22q11.2 染色体缺失的 CMPT158 基因型相关的脯氨酸水平异常升高,会影响自闭症谱系症状的严重程度,尤其是影响面部情绪识别、行为和认知。

β-丙氨酸

β-丙氨酸,在肉类中常见的氨基酸,会抑制肠道细胞(如Caco-2细胞)对GABA的吸收β-丙氨酸也可以在肠道内由白色念珠菌产生的丙酸和氨反应形成,尽管这些化合物也由肠道内的许多其他微生物产生。

HPHPA

有研究报告了一种稀有代谢物3-(3-羟基苯基)-3-羟基丙酸(HPHPA)的出现。HPHPA梭菌属细菌特有的代谢产物,会耗尽大脑中的儿茶酚胺导致自闭症症状。

HPHPA在患有艰难梭菌感染的个体中也有发现,并且在急性精神病发作的精神分裂症患者中甚至达到非常高的水平。

以上这些研究是基于血浆、尿液氨基酸变化,血液和尿液中的氨基酸(AA)水平受许多因素影响,包括从食物中吸收的氨基酸、氨基酸和蛋白质的降解、宿主蛋白质的分泌和在粪便中的排泄。这些氨基酸相对比例的改变也可能对它们参与的代谢途径的产物产生连锁反应,包括不同神经递质的生产或相对比例。

肠道菌群代谢分析氨基酸变化

大多数氨基酸来自饮食或由体内合成,但肠道微生物群也会影响饮食氨基酸的回收以及氨基酸的生产或分解。

目前,我们对参与氨基酸生物利用度和肠道微生物群体生物转化的微生物种类或代谢过程知之甚少,对于其对神经功能的可能影响了解更少,也不清楚不同食物和食物成分如何相互作用以调节肠道微生物群对氨基酸的摄取或代谢。

有早期体外研究显示,人类肠道微生物群对氨基酸的发酵受到低pH值和可发酵纤维/碳水化合物(抗性淀粉)存在的抑制。然而,目前不知道这种过程在体内如何转化,或在自闭症等疾病状态或抗生素治疗下如何变化。

谷禾肠道菌群健康检测数据库中有这样的案例,一起来看一下:

一名5岁自闭症男孩,检测结果,自闭症为中等风险,符合实际情况。

<来源:谷禾健康肠道菌群检测数据库>

这是谷禾利用几十万例的临床和人群样本数据(其中4895例自闭症患者),结合机器学习方法,使用肠道菌群数据进行疾病状态和风险的预测,并给出了的风险值。

<来源:谷禾健康肠道菌群检测数据库>

从该患者肠道菌群检测报告可以看到,蛋白质,脂肪水平都相对偏低

<来源:谷禾健康肠道菌群检测数据库>

我们再来看肠道菌群检测报告中的氨基酸水平,部分氨基酸严重缺乏,例如组氨酸

其他氨基酸如酪氨酸、谷氨酸、甘氨酸、亮氨酸、赖氨酸、蛋氨酸也都相对偏低

酪氨酸是一种与认知功能相关的儿茶酚胺前体。

<来源:谷禾健康肠道菌群检测数据库>

组氨酸通过清除氧自由基发挥抗氧化作用,从而参与缓解氧化应激。组氨酸是肌肽的前体肌肽是一种含有 β 丙氨酸和组氨酸的二肽,在人脑中起到缓冲剂抗氧化剂的作用。肌肽可以调节与智力障碍相关的各种生物途径。

组氨酸是组胺的前体,而组胺是一种重要的神经递质和神经调节因子。关于组胺,详见之前的文章:

过敏反应的重要介质——组胺与免疫及肠道疾病

有小鼠研究显示,组氨酸缺乏的小鼠表现出一些类似自闭症的行为,如社交互动减少刻板重复行为增多等。其他也有多项研究表明,组氨酸血症与自闭症和语言发育迟缓之间存在关联。

谷氨酸,可以调节记忆和学习等认知功能,而这些功能在自闭症患者中通常会受损,关于谷氨酸,详见谷禾之前的文章:

兴奋神经递质——谷氨酸与大脑健康

甘氨酸是一种具有抗炎、细胞保护和免疫调节特性的抑制性神经递质,甘氨酸以多种方式与线粒体代谢相关。

其他,赖氨酸,蛋氨酸,亮氨酸都属于人体必须氨基酸,是人体不能自行合成或以适合人体需要的速率合成的氨基酸,必须通过食物摄入来获取。

<来源:谷禾健康肠道菌群检测数据库>

亮氨酸,属于支链氨基酸,支链氨基酸生物合成与自闭症症状甲基化潜力和细胞内 GSH 比率相关。支链氨基酸具有多种生理作用,包括调节葡萄糖和脂肪酸代谢以及调节重要的分子途径和促进蛋白质合成,它们通过琥珀酰辅酶 A 进入 CAC 与线粒体功能相连。大多数自闭症患者都会有线粒体功能障碍。

赖氨酸,是一种生酮氨基酸,通过合成谷氨酸作为其分解的副产物,参与肠道菌群-肠-脑轴。

经过几个月的干预,再次检测肠道菌群,该患者的自闭症风险有所下降症状也有相应好转

<来源:谷禾健康肠道菌群检测数据库>


脂类代谢与大脑

未来患有自闭症的新生儿中关键脂质减少,如亚油酸、α-亚麻酸、胆汁酸、甘油三酯

这些必需脂肪酸、它们的衍生物、相对比例和个体分子种类在许多哺乳动物的生理过程中起关键作用,包括磷脂生成、膜流动性和大脑发育。

亚油酸和α-亚麻酸

亚油酸α-亚麻酸是哺乳动物不能自行合成的必需脂肪酸(EFA),必须通过饮食摄取。

注:亚油酸LA,C18:2n-6,n-6脂肪酸的前体

α-亚麻酸: ALA,C18:3n-3,n-3脂肪酸的前体

它们对大脑具有抗炎作用,并调节自噬、神经传递和神经发生。它们通过抑制神经递质(例如GABA)的释放来调节内源性大麻素系统,从而影响突触功能和可塑性。

ARA、DHA、EPA

与其他身体组织相比,大脑亚油酸α-亚麻酸的浓度较低,而其衍生物,特别是ARA(花生四烯酸)和DHA(即二十二碳六烯酸)的浓度较高

在妊娠晚期,胎儿大脑快速积累多不饱和脂肪酸,特别是DHA

  • DHA在大脑中具有重要的结构作用,参与细胞信号传导和细胞增殖。
  • ARA参与信号传导和细胞生长。
  • EPA(二十碳五烯酸),另一种α-亚麻酸的衍生物,在大脑功能中发挥重要作用。

亚油酸和α-亚麻酸的衍生物可以进一步被宿主磷脂酶修饰,转化为主要来自ARA的二十碳烷类,如前列腺素、白三烯和血栓素。这些二十碳烷是促炎分子,作为局部激素来激活免疫细胞、启动血小板聚集和引发分娩。

相反,DHA和EPA可以进一步转化为抗炎的消退素(resolvins)和保护素(protectins)。

胆汁酸

关于胆汁酸,UDCA,熊去氧胆酸,一种天然存在的次级胆汁酸,在代谢性疾病、自身免疫性疾病、慢性炎症性疾病和神经病理学等疾病中显示出治疗前景。研究发现,UDCA在未来自闭症患者中较低

ARA加DHA改善自闭症

一项双盲、安慰剂对照随机试验发现膳食补充ARA加DHA(ARA占优势)显著改善了自闭症患者(n=13)在异常行为检查表-社区量表测量的社交退缩和社交回应量表测量的沟通情况。虽然样本量较小,但这个研究证明了通过饮食调节大脑脂肪酸谱可能带来的好处,这种脂肪酸调节在动物研究中也可以通过益生菌达到。

n-3和n-6脂肪酸

一些小规模的n-3和n-6脂肪酸的膳食干预研究显示,自闭症患者的症状有所缓解,虽然并非所有研究都显示有改善。

自闭症患者可能与母乳喂养较少有关

自闭症和精神分裂症患者较少接受母乳喂养,而健康对照组则较多,这表明富含ARA、EPA和DHA的人类母乳对婴儿大脑发育的最佳饮食份额的重要性。相反,早期断奶与自闭症风险增加相关。这些观察结果不仅强调了早期产后饮食对大脑发育和自闭症风险的重要性,还暗示了肠脑轴和肠道微生物群在这一发育过程中的可能早期作用

补充益生菌,改变脂肪酸

一些肠道微生物,最著名的是某些乳酸菌属双歧杆菌属的菌种,具备进行脂肪酸生物氢化所需的酶,从而增加脂肪酸的不饱和度

研究表明,饮食补充α-亚麻酸(ALA)会改变小鼠肝脏、脂肪组织和大脑中的脂肪酸谱,并且在联合补充α-亚麻酸与益生菌Bifidobacterium breve NCIMB 702258时,脂肪酸谱会进一步改变。

注:B. breve NCIMB 702258是高效生产共轭亚油酸(CLA)的菌。

相比于对照组喂养或单独补充α-亚麻酸的情况,食用n-3脂肪酸加益生菌的动物其大脑中的DHA水平升高,而ARA水平下降

同一组作者随后表明,单独使用B. breve NCIMB 702258菌株,相比于另一种共轭亚油酸(CLA)产生的B. breve菌株和对照组,小鼠的大脑中DHA和ARA的水平也有所上升,证实了益生菌调节大脑脂肪酸谱的能力,并显示这种活动具有明显的菌株特异性

LA和ALA不够,其他饱和脂肪酸来凑

尽管亚油酸(LA)和α-亚麻酸(ALA)是磷脂形成所必需的必需脂肪酸,但当饮食中这些脂肪酸含量偏低时,其他脂肪如饱和脂肪酸有时可作为替代品,从而对最终磷脂的结构和可能的功能产生影响。

磷脂代谢异常脂肪酸缺乏或血脂异常已牵涉到多种神经和大脑发育或退行性疾病,包括精神分裂症、注意力缺陷多动障碍(ADHD)、抑郁症、广泛性发育障碍、发育性协调障碍、癫痫、双相情感障碍、阿尔茨海默病、帕金森病、尼曼-皮克病、亨廷顿舞蹈病、中风。

胆固醇代谢和磷脂代谢异常在自闭症中起作用

自闭症患者血液中磷脂酶A2水平较高,细胞膜中的ARA和DHA水平较低,并且可能具有更高的n-6脂肪酸与n-3脂肪酸的比例

与健康对照组相比,自闭症儿童(n=16)的红细胞脂质谱被修改,表现为较低的胆固醇水平和细胞膜中单唾液四己糖神经节苷脂(GM1)的比例较高。研究人员认为这可能反映了更普遍的胆固醇合成缺陷,在大脑中,结合GM1表达的变化,可能会促成自闭症的病理生理机制。

BDNF对突触传递和神经元胆固醇合成的影响

  • 脑源性神经营养因子(BDNF)通过增强神经递质的释放来促进长期增强作用和兴奋性突触传递。
  • BDNF在神经元中特异性增加脂筏胆固醇含量,促进突触囊泡发育。

自闭症与BDNF和益生菌的关联

  • 自闭症患者中BDNF水平降低,负责BDNF生产的基因多态性,导致具有不同蛋白水解活性的蛋白异构体的产生。
  • 益生菌补充与自闭症动物模型行为改善及海马体和杏仁核BDNF变化有关。

然而,并非所有益生菌研究都显示BDNF与实验动物观察到的脑功能改善有关。

益生菌、益生元与改善脑功能

  • 自闭症患者的饮食特点是膳食纤维减少,这可能减少结肠乙酸盐对循环系统中乙酸盐浓度的贡献,而乙酸盐是脑中新生脂质生成的关键底物。
  • 这些观察结果表明一种可能性,即通过益生菌上调BDNF,与益生元在结肠中增强乙酸盐产生相结合,可影响脑中新生脂质生成,增加神经元脂筏形成和促进突触囊泡形成,从而改善包括自闭症、抑郁症在内的神经发育障碍儿童的脑功能。

然而,需要在人类受试者和相关实验模型中进行基础研究,以验证这些假设的有效性并在机制上将肠道细菌与这些病情联系起来。


短链脂肪酸与大脑

大脑占人体质量约2%,但却占胆固醇约20%血脑屏障(BBB)对脂蛋白是不可通透的,这意味着大脑所需的胆固醇是内源性形成的

其中星形胶质细胞神经元分别是胆固醇的净生产者使用者,体现了胆固醇生物合成机制的独特分区化。

神经元——胆固醇的使用者

神经元需要大量的胆固醇来维持其广泛的膜表面积并提供突触前囊泡的形成。它们还有稍微不同的酶途径,将鲨烯转化为胆固醇。出生后的胆固醇主要由星形胶质细胞提供,并优先来源于乙酸盐

注:鲨烯(C30H50)是一种多不饱和烃类,也称为角鲨烯或三十碳六烯。 它是一种在人体胆固醇合成等代谢过程中产生的萜类化合物。鲨烯在自然界中广泛存在,尤其是在鲨鱼肝油中含量较高,同时也是橄榄油、米糠油等少数几种植物油中的成分。具有良好的生物活性,在食品、化妆品、保健品等领域广泛应用。

星形胶质细胞——胆固醇的净生产者

星形胶质细胞是包裹神经细胞的细胞,负责供应细胞外钾、谷氨酸、能量和抗氧化剂,并调节大脑中的活性依赖性血流,并可能影响突触活动。

  • 婴儿出生后的早期阶段对大脑胆固醇的形成尤为重要,因为那时胆固醇的合成率增加;
  • 成年后,胆固醇的生物合成降至婴儿期高峰的十分之一。

星形胶质细胞在大脑胆固醇运输中的关键作用

  • 星形胶质细胞产生载脂蛋白,包括ApoE,负责在大脑中运输胆固醇。
  • ApoE缺乏导致的神经系统缺陷

ApoE缺乏的啮齿动物模型,表现出各种行为和神经系统症状,并在感觉系统中也有缺陷,这些缺陷与随年龄增长而丧失的突触和树突,突触膜胆固醇分布的改变有关。

CYP46,在维持大脑胆固醇稳态中的作用

  • CYP46是一种产生24S-羟胆固醇(24S-HC)的酶,在神经元胆固醇更新中的作用,是通过排泄24S-羟胆固醇进入血液并最终通过胆汁排出体外。
  • 24S-羟胆固醇浓度通过肝X受体与星形胶质细胞交流来控制大脑中的胆固醇稳态。这些可能影响血脑屏障处高密度脂蛋白的合成和重塑。

短链脂肪酸——乙酸,对神经发育的作用

出生后乙酸在神经发育中重要,母乳喂养乙酸多

  • 与成年期相比,AceCS1在出生后时期的表达最高,这暗示了乙酸在出生后神经发育、细胞分化和髓鞘形成中的作用。
  • 母乳喂养期间,乙酸相对于其他短链脂肪酸的比例在新生儿中达到最高,尤其与配方奶喂养婴儿相比。

AceCS1的表达及其功能

  • AceCS1主要在大脑细胞核中表达,而不仅仅是细胞质中,它在为组蛋白乙酰转移酶提供乙酸,在基因表达的表观遗传调控方面发挥作用。
  • AceCS1还存在于大脑基底前部神经元的细胞质,皮层和海马神经元表面,一些脑干神经元和神经节细胞的细胞体中,许多脑干纤维通路中的轴突中
  • 这可能表明它在这些细胞中的脂肪酸/胆固醇合成或其他细胞质乙酰辅酶A利用反应中的作用。

乙酸是胆固醇的组成成分

  • 胆固醇的组成成分包括乙酸、乙酰辅酶A和乙酰乙酰辅酶A。这些代谢物在体内有许多来源,包括三羧酸循环(TCA),但也包括微生物衍生的乙酸。

乙酸的代谢去向

  • 乙酸是结肠中碳水化合物发酵的主要终产物
  • 通过细胞质中的乙酰辅酶A合成酶1(AceCS1)转化为乙酰辅酶A。
  • 乙酸还被线粒体吸收,通过AceCS2转化为乙酰辅酶A,进入TCA循环进行呼吸,尤其是在生酮或禁食状态下

乙酸作为特殊代谢产物的重要性

  • 当血浆乙酸水平低时,肝脏和肠道都会释放乙酸进入循环系统,这表明乙酸在整个系统中,可能包括大脑中具有特殊作用。
  • 乙酸可能被视为一种特殊的代谢产物,是能量生产和储存的关键,其水平受到葡萄糖供应的严格控制

NAA——乙酸的主要来源之一

N-乙酰天冬氨酸(NAA)在大脑中的作用

  • NAA在大脑中存在高浓度,是大脑中乙酸的主要来源之一,可能作为乙酸储存分子
  • NAA参与脂合成、蛋白质乙酰化,以及组蛋白乙酰化和基因表达调控
  • NAA在神经元细胞质和线粒体中由天冬氨酸N-乙酰转移酶形成,推测在乙酰辅酶A过剩时生成

自闭症儿童大脑中NAA浓度降低

  • 一项荟萃分析显示,与健康儿童相比,自闭症儿童在所有被检查的大脑区域中(除小脑外)的NAA浓度显著降低,这提示自闭症的脑代谢改变可能与结肠发酵有关。
  • 然而,结肠来源的乙酸对血浆水平或大脑提供的乙酸的定量贡献仍缺乏研究。

短链脂肪酸——丙酸,对大脑的负面影响

  • 丙酸在高浓度引入大脑时,会引起神经炎症、发育迟缓和认知障碍。
  • 虽然丙酸可通过GPR41和GPR-43激活细胞信号过程和基因表达,调节免疫功能,但也可抑制胆固醇合成关键酶注:羟甲基戊二酸单酰辅酶A(HMG-CoA)还原酶或脂肪酸合成酶(FAS),这两者是哺乳动物胆固醇生物合成中的关键酶。
  • 脑室内丙酸灌注会影响脂肪酸代谢,导致动物模型中酰基肉碱和其他线粒体代谢物的变化,这些变化与自闭症儿童中的代谢物谱相似。

饮食如何影响大脑中短链脂肪酸的可用性?

  • 目前对饮食如何影响SCFA在大脑中的可用性或利用知之甚少。
  • 在肠道中,饱和脂肪、蛋白质和可发酵纤维/益生元的相对比例影响肠道微生物产生的SCFA的数量和比例,特别是进入外周血液的乙酸量
  • 高纤维饮食可能显著增加循环乙酸浓度,这对大脑中的胆固醇合成和/或呼吸产生连锁影响。对自闭症儿童尤其重要,因为他们可能存在更多的氧化应激和代谢问题。
  • 胆固醇代谢的改变也是自闭症的一个特征,这可能与饮食影响下的SCFA,特别是乙酸水平变化有关。


饮食、肠道菌群与肠道转运蛋白及酶表达

自闭症中二糖酶和己糖转运蛋白减少

研究发现,在自闭症儿童中二糖酶己糖转运蛋白的表达显著减少,这些变化与肠道微生物群组成的变化相关。这些变化与厚壁菌门相对丰度较高拟杆菌门较少,以及β-变形菌门升高有关。

注:至少是三种常见肠道二糖酶之一:蔗糖酶-异麦芽糖酶(SI)、麦芽糖酶-异麦芽糖酶(MGAM)、乳糖酶(LCT)

己糖转运蛋白:SGLT1、GLUT2

肠道二糖酶和糖转运蛋白的表达受到多种因素的调控,包括饮食、肠道微生物以及肠神经系统等。

  • 【饮食】 动物研究表明,与高淀粉饮食相比,喂食高脂肪饮食的动物碳水化合物消化酶和糖转运蛋白的表达减少。
  • 【肠神经系统】 葡萄糖传感器GLP-2通过激活存在于肠神经细胞而非内皮细胞上的GLP-2受体调节SGLT1的表达,这表明碳水化合物降解酶和糖转运蛋白的表达,还通过肠神经系统调节。
  • 【肠道菌群及其代谢产物丁酸】 肠道细菌本身或者通过其对碳水化合物发酵产生的丁酸的活性,能够调节转录因子CDX2,从而积极控制肠道二糖酶和糖转运蛋白的表达。

丁酸:结肠健康的关键能量源与吸收机制

考虑到丁酸是结肠细胞的首选能量来源、黏膜更新和分化的介质,以及其生产率在早期肠道微生物群继发发育过程中发生变化,丁酸在肠黏膜成熟中的作用可能非常重要

丁酸吸收机制:MCT1负责运输,GPR109A助攻

  • 丁酸摄取主要依赖于MCT(单羧酸转运蛋白),其中MCT1是肠道中丁酸的主要转运蛋白。丁酸可诱导MCT1表达,并通过GPR109A受体快速呈现MCT1,使肠黏膜高效吸收肠道菌群产生的丁酸。

在了解了丁酸在肠黏膜中的重要性及其吸收机制之后,我们再探讨不同饮食和环境因素对MCT1表达的影响及其对丁酸和其他短链脂肪酸吸收的调节作用。

饮食影响短链脂肪酸(丁酸)吸收的机制

高纤维饮食和益生元→MCT1表达和短链脂肪酸吸收↑

  • 高纤维饮食和益生元(包括菊粉、果胶和β-葡聚糖)补充可增加肠壁上MCT1的表达,提高短链脂肪酸的摄取和进入血液循环的能力。
  • 果胶还可以上调大鼠肾上腺中的MCT1,暗示着与胆固醇代谢、乙酸盐底物可利用性及肾上腺激素生成有关的体内平衡过程。

高脂肪饮食→抑制短链脂肪酸在结肠中的吸收

  • 吃了高脂肪的食物后,肠道里会产生一种叫做鹅脱氧胆酸的物质,它会跟肠道里的短链脂肪酸竞争,导致肠道对短链脂肪酸的吸收受到抑制,从而对我们的代谢健康产生不利影响。

肠道炎症和氧化应激→MCT1表达↓→丁酸吸收↓

以上我们知道,MCT1表达异常会影响丁酸吸收,不仅如此,MCT1表达异常还可能与肥胖相关的神经系统疾病有关。

饮食诱导和遗传性肥胖动物中,MCT1-4 表达都增加,特别是在神经元和神经元胞体中,说明这种变化可能不全是饮食因素,也可能是由于肥胖引起的激素变化间接导致的。

前面我们知道,MCT与短链脂肪酸转运相关,那么MCT表达异常,短链脂肪酸也异常,可能会影响大脑的能量代谢,如果这些变化发生在生命早期,可能会影响神经系统的发育过程,并与个体成年后的肥胖易感性相关。

注:从母乳到固体食物的饮食结构转换可能会影响生理发育、代谢途径和营养转运蛋白(如MCT)的表达,从而对大脑功能产生重要影响。

谷禾发表在 GUT上的队列也表明,随着断奶或引入辅食,自闭症儿童的肠道菌群发育轨迹逐渐偏离健康儿童。如下:

doi: 10.1136/gutjnl-2021-325115.

不良饮食,尤其是在断奶后采用现代西式饮食,实际上可能通过将营养素转运蛋白关闭,重定向营养流向,从而下调了必需营养素(如氨基酸、脂肪和SCFA)的肠道流动

03
通过肠道菌群干预改善自闭症


饮食、肠道微生物和大脑发育

对比现代西式饮食古老传统的饮食,有助于重新定义营养不良的范式。营养不良不再仅限于某些必需营养素的缺乏,还包括营养过剩异常的营养素比例和结构。

人类“超级有机体”中,这种改变的营养环境的代谢后果,最明显地体现在肠道微生物群与宿主能量代谢和大脑功能的相互作用中。

生命早期:母乳喂养

前面我们了解到,早期断奶与自闭症风险增加相关。很多自闭症患者较少接受母乳喂养,这表明母乳中含有ARA、EPA和DHA,是婴儿大脑发育的最佳饮食

随着年龄增长:其他饮食

  • 生酮饮食可能具有神经保护作用,一组 7 名 7 至 19 岁的患有自闭症的儿童在采用生酮饮食后,行为症状有所改善。粪便样本中的丁酸激酶DNA 和 RNA 水平升高,表明微生物组的变化显著影响了患者消化道中的丁酸激酶水平。 Roseburia可提高丁酸激酶DNA 并减少炎症。

多酚及其代谢物

现有的研究确认了流行病学数据,表明多酚及其代谢物可能有助于促进大脑健康。提出的作用机制包括抗氧化活动、改善血管功能和脑部血流、直接增强神经元信号传递、缓冲钙离子、增强神经保护性应激蛋白和减少应激信号。

线粒体功能障碍在自闭症谱系障碍、神经退行性疾病和一般脑老化的发病机制中得到了关注。线粒体常被认为是氧化应激的启动者和目标,植物多酚代谢物可能具有保护作用。

体外研究在生理相关剂量下测试了选定多酚代谢物对高级糖化终产物形成的抑制能力以及对人类神经元细胞中轻度氧化应激的对抗能力。例如:

  • 由鞣花酸代谢生成的尿石素A和B在1微摩尔/升浓度下显著减少了蛋白质糖化。
  • 在使用PC12细胞的实验中,已证明原儿茶酸(一种花青素的微生物代谢物)能够减少线粒体功能障碍。
  • 在大鼠胃内给药葡萄多酚提取物中的原花青素后,报告了大脑中存在没食子酸。尽管没食子酸和一些进一步甲基化的代谢物仅存在于微量,但它们确实存在于大脑中。

药用植物的多酚提取物

少数研究探讨了来自药用植物的多酚提取物对自闭症动物模型的影响,发现:

  • 高剂量的绿茶提取物(300 mg/kg)能够减少氧化损伤,并在经过丙戊酸(400 mg/kg)出生后挑战后改善大脑组织病理评分和动物行为。
  • 使用印度草药Bacopa monniera的类似效果也得到了观察。
  • 韩国红参能依赖剂量改善经过丙戊酸处理的动物的社交互动。

注:尚需确定这些高剂量植物提取物的抗氧化活性仅与减轻丙戊酸引起的氧化损伤相关,还是在氧化损伤可能只是一个影响因素的神经病理情况下更具广泛相关性。

——黄酮类化合物

肠道菌群对黄酮类化合物的吸收转化

估计有95%的膳食植物多酚在上肠道内无法消化和吸收,并最终到达结肠中的肠道微生物群。一些黄酮类糖苷进入结肠,被肠道菌群分解为更简单的代谢物,比如:

  • 肠道微生物可以将儿茶素代谢为戊内酯,其中一些戊内酯转化为酚酸,可被机体吸收利用;
  • 黄芩苷、大豆皂苷和葛根素分别在肠道菌群产生的β-葡萄糖醛酸酶、β-葡萄糖苷酶和C-葡萄糖苷酶的作用下转化为苷元;
  • 槲皮素被肠道菌群(乳酸杆菌和双歧杆菌)转化,产生可被人体吸收利用的小分子化合物。

黄酮类化合物对肠道菌群的调节

  • 花青素是常见的类黄酮,研究人员在研究中发现,喂食30 mg/kg富含花青素的蓝莓提取物的自闭症小鼠肠道乳酸杆菌数量增加,梭状芽孢杆菌数量减少
  • 柑橘类水果中含有的橙皮苷和柚皮素可以增加双歧杆菌和乳酸杆菌的数量,并减少肠球菌的数量
  • 木犀草素是一种重要的黄酮类化合物,在大鼠补充时显著富集了超过10%的肠道细菌物种。这种富集增加了ZO-1的丰度,并降低了肠道通透性

膳食类黄酮调节肠道菌群改善自闭症

doi.org/10.1016/j.foodres.2024.114404

黄酮类化合物抗自闭症作用的实验研究

doi.org/10.1016/j.foodres.2024.114404

肥胖和不良饮食与抑郁症和自闭症谱系障碍发病率增加有关。同样,母亲的不良饮食(特别是高脂肪饮食),健康状况(特别是肥胖/代谢综合症),会影响胎儿和新生儿的大脑发育过程,从而增加焦虑、抑郁、注意力缺陷多动障碍(ADHD)和自闭症等神经系统疾病的风险。


益生菌、益生元调节肠道菌群,增强大脑功能

神经内分泌系统,特别是下丘脑-垂体-肾上腺(HPA)轴,代表了肠道环境和中枢神经系统(CNS)之间的主要通信通道。

在动物模型中,使用各种益生菌微生物干预,既包括乳酸杆菌也包括双歧杆菌,已显示能够减轻标准动物应激挑战下的类似焦虑行为。

婴儿双歧杆菌

  • 持续14天喂养婴儿双歧杆菌的大鼠,与对照动物相比,系统性炎性细胞因子显著减少,同时前额皮质中的色氨酸(5-羟色胺和犬尿喹啉酸的前体)和5-羟基吲哚乙酸(主要的5-羟色胺代谢物)以及杏仁皮层中的3,4-二羟基苯乙酸(主要的多巴胺代谢物)浓度升高。这种益生菌菌株可以对抗由于强迫游泳应激测试(减少游泳行为、增加静止时间、降低大脑中的去甲肾上腺素、升高系统性IL-6和杏仁核促肾上腺素释放激素mRNA)所引发的应激效应。

L. helveticus R0052 和 B. longum R0175

  • 在小鼠中持续两周每天喂养益生菌混合物(L. helveticus R0052 和 B. longum R0175),观察到减少的类似焦虑行为(防御性掩埋测试),而同样的益生菌混合物在人类中也减轻了通过Hopkins症状检查表(HSCL-90)测量的心理压力。

L. rhamnosus JB-1

  • 益生菌L. rhamnosus JB-1减少了应激诱导的皮质酮和焦虑及抑郁相关行为,同时诱导大脑不同区域的GABA受体表达变化。在喂食益生菌的动物中,与对照动物相比,前扣带皮质和边缘皮质区域的GABAB1b受体上调,海马、杏仁核和蓝斑中的GABAB1b受体下调。同样,前额皮质和杏仁核中的GABAAα2表达减少,而海马中表达增加。

脆弱拟杆菌NCTC 9343

  • 用人类共生菌脆弱拟杆菌NCTC 9343 治疗断奶的母体免疫激活 (MIA) 小鼠,可通过使结肠紧密连接蛋白正常化和消退 IL-6 介导的炎症来恢复肠道屏障功能。补充脆弱拟杆菌可减少小鼠旷场测试中的焦虑样行为,改善前脉冲抑制测试中的感觉运动门控,降低刻板行为,并改善小鼠交流。然而,脆弱拟杆菌没有改善衡量社交行为测试。
  • 作者还报告说,尽管使用B. thetaiotaomicron也获得了类似的结果,但另一种哺乳动物共生微生物粪肠球菌(Enterococcus faecalis)对母体免疫激活 (MIA) 模型小鼠后代的焦虑样和重复行为没有影响,这表明在自闭症模型中,肠-脑轴的有益调节并不是与细菌攻击相关的普遍活动,而仅限于某些细菌或细菌群体。

注:脆弱拟杆菌是一个比较复杂的菌种,里面既有潜在的益生菌株,也有致病的病原菌株,具体可以查看我们以前文章:

正确认识肠道内脆弱拟杆菌——其在健康的阴暗面和光明面

益生元

最近的研究表明,饮食中补充益生元发酵纤维,可以选择性地刺激对人体有益的肠道细菌,如双歧杆菌,从而对大脑产生重要变化。

实验动物在摄入果寡糖(FOS)或半乳寡糖(GOS)后,海马中的BDNF和N-甲基-d-天冬氨酸受体(NMDARs)亚基NR1的表达增加,并且GOS似乎通过诱导肠道激素PYY来介导这一过程。FOS和GOS都能够上调肠道微生物群中短链脂肪酸的产生,特别是乙酸和丁酸,同时增加肠道双歧杆菌的相对丰度。


补 充 剂

L-肌肽

  • 一项单人饮食研究发现,在31名自闭症儿童中,每天服用800毫克L-肌肽持续8周,与安慰剂治疗相比,在行为测量(Gilliam自闭症评分量表,总分,行为,社交和沟通分量表以及接受性单词图片词汇测试)方面有改善。然而,这些研究仅在小人群中进行,并且某些使用的行为测量的有效性可能仅限于自闭症中的某些情况。

胆固醇或DHA

从模拟人类婴儿营养的猪仔研究中,发现婴儿配方奶粉中的胆固醇补充会改变大脑中的氨基酸谱降低谷氨酸、丝氨酸、谷氨酰胺、苏氨酸、β-丙氨酸、丙氨酸、蛋氨酸、异亮氨酸、亮氨酸和γ-氨基丁酸的浓度,同时增加甘氨酸和赖氨酸的浓度。

二十二碳六烯酸(DHA)也有类似的效果,但会降低牛磺酸水平,对异亮氨酸和赖氨酸没有影响。胆固醇或DHA膳食补充剂也会影响猪仔肝脏、肌肉和血浆中的氨基酸水平。DHA还会减少肌肉和大脑中的肌肽和氨的含量。

这些观察结果确实对食物选择或家庭饮食对营养可用性和代谢的影响有重要启示,进而影响早期儿童的大脑发育和功能,当然还需在人类队列中进一步研究其潜在机制。


其 他 干 预

药物

对自闭症儿童每周使用万古霉素治疗,可显著改善神经行为和胃肠道症状。

粪菌移植

一项开放标签研究对18名自闭症儿童进行了粪菌移植(每日口服8周),结果表明移植后其胃肠道症状自闭症核心症状评分均有所改善

移植后8周,受试者的肠道菌群多样性增加,厚壁菌门丰度下降,拟杆菌门和变形菌门丰度上升

随访2年后,受试者的部分症状改善仍然维持。这提示通过重建肠道菌群可能成为干预自闭症的新策略。

关于粪菌移植,仍需更多深入研究。

04
结 语

自闭症谱系障碍 (ASD) 是一组神经发育疾病,一般在 3 岁之前发病,目前的发病率在全世界逐渐升高,与多种因素有关,其中饮食会影响和塑造肠道微生物群,孕期和幼儿期似乎是一个关键时期,尤其从哺乳/配方奶→断奶→成人“家庭”饮食的过渡过程中饮食环境暴露影响较大。

人类微生物组对宿主代谢过程和膳食化合物加工的核心贡献,许多营养物质和摄入的化学物质必须经过肠道及肠道微生物,转化为生物可利用和活跃的中间产物,然后通过肝门静脉被吸收并在全身分布。

研究表明,大部分自闭症患者的肠道菌群异常,这可能与饮食习惯、抗生素使用等因素有关。同时,自闭症患者某些氨基酸水平也存在异常。

饮食作为塑造肠道微生物群的重要因素,可能在自闭症的发病中扮演重要角色。优化孕期和幼儿期的饮食结构,如母乳喂养、合理添加辅食、避免过多加工食品和添加剂等,有助于维持肠道菌群平衡,从而有助于大脑健康。

针对自闭症患者的饮食干预,如补充益生元、益生菌,调整膳食纤维和蛋白质比例等,可能对改善部分症状有一定帮助。但由于自闭症的高度异质性,饮食干预的效果可能因人而异,还需要更多的结合个体化健康信息及相应症状进行个性化指导和干预

此外,幼儿早期尤其6-12个月能够更早判别出自闭症风险,对于神经发育的改善和行为的扭转非常重要,希望临床上与相关机构能够合作共同推进自闭症的研究和个性化干预。

注:本账号内容仅作交流参考,不作为诊断及医疗依据。

主要参考文献:

Lou M, Cao A, Jin C, Mi K, Xiong X, Zeng Z, Pan X, Qie J, Qiu S, Niu Y, Liang H, Liu Y, Chen L, Liu Z, Zhao Q, Qiu X, Jin Y, Sheng X, Hu Z, Jin G, Liu J, Liu X, Wang Y. Deviated and early unsustainable stunted development of gut microbiota in children with autism spectrum disorder. Gut. 2022 Aug;71(8):1588-1599.

Ahrens A P, Hyötyläinen T, Petrone J R, et al. Infant microbes and metabolites point to childhood neurodevelopmental disorders[J]. Cell, 2024, 187(8): 1853-1873. e15.

Chen, WX., Chen, YR., Peng, MZ. et al. Plasma Amino Acid Profile in Children with Autism Spectrum Disorder in Southern China: Analysis of 110 Cases. J Autism Dev Disord 54, 1567–1581 (2024).

Chang, X., Zhang, Y., Chen, X. et al. Gut microbiome and serum amino acid metabolome alterations in autism spectrum disorder. Sci Rep 14, 4037 (2024).

Kieran M. Tuohy, Paola Venuti, Simone Cuva, et al, Chapter 15 – Diet and the Gut Microbiota – How the Gut: Brain Axis Impacts on Autism, 2015, Pages 225-245, American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (4th ed.), American Psychiatric Association, Washington DC (1994)

Anastasescu, C.M.; Gheorman, V.; Popescu, F.; Stoicănescu, E.-C.; Gheorman, V.; Riza, A.-L.; Badea, O.; Streață, I.; Militaru, F.; Udriștoiu, I. Serum Amino Acid Profiling in Children with Autistic Spectrum Disorder: Insights from a Single-Center Study in Southern Romania. Healthcare 2023, 11, 2487

V. Hughes. Epidemiology: complex, disorder, Nature, 491 (2012), pp. S2-S3

S. Baron-Cohen, F.J. Scott, C. Allison, et al., Prevalence of autism-spectrum conditions: UK school-based population study. Br J Psychiatry, 194 (2009), pp. 500-509

T.S. Brugha, S. McManus, J. Bankart, et al., Epidemiology of autism spectrum disorders in adults in the community in England Arch Gen Psychiatry, 68 (2011), pp. 459-466

B.S. Abrahams, D.H. Geschwind., Advances in autism genetics: On the threshold of a new neurobiology, Nat Rev Genet, 9 (2008), pp. 341-355

Brister, D.; Rose, S.; Delhey, L.; Tippett, M.; **, Y.; Gu, H.; Frye, R.E. Metabolomic Signatures of Autism Spectrum Disorder. J. Pers. Med. 2022, 12, 1727.

S. Ozonoff, B.J. Williams, R. Landa, Parental report of the early development of children with regressive autism: The delays-plus-regression phenotype, Autism, 9 (2005), pp. 461-486

S. Ozonoff, G.S. Young, M.B. Steinfeld, et al., How early do parent concerns predict later autism diagnosis?

J Dev Behav Pediatr, 30 (2009), pp. 367-375

G. Esposito, P. Venuti, Symmetry in infancy: Analysis of motor development in autism spectrum., disorders, Symmetry, 1 (2009), pp. 215-225

Zhao Y, Wang Y, Meng F, Chen X, Chang T, Huang H, He F, Zheng Y. Altered Gut Microbiota as Potential Biomarkers for Autism Spectrum Disorder in Early Childhood. Neuroscience. 2023 Jul 15;523:118-131.

G. Esposito, P. Venuti, F. Apicella, F. Muratori, Analysis of unsupported gait in toddlers with autism, Brain and Development, 33 (2011), pp. 367-373

F. Happé, A. Ronald, R. Plomin, Time to give up on a single explanation for autism, Nat Neurosci, 9 (2006), pp. 1218-1220

T. Charman, C.R.G. Jones, A. Pickles, E. Simonoff, G. Baird, F. Happé, Defining the cognitive phenotype of autism, Brain Res, 1380 (2011), pp. 10-21

P. Krakowiak, C.K. Walker, A.A. Bremer, et al.,Maternal metabolic conditions and risk for autism and other neurodevelopmental disorders,Pediatrics, 129 (2012), pp. e1121-e1128

J.A. Hollway, M.G. Aman Pharmacological treatment of sleep disturbance in developmental disabilities: a review of the literature,Res Dev Disabil, 32 (2011), pp. 939-962

Shen L, Liu X, Zhang H, Lin J, Feng C, Iqbal J. Biomarkers in autism spectrum disorders: Current progress. Clin Chim Acta. 2020 Mar;502:41-54.

C.A. Molloy, P. Manning-Courtney,Prevalence of chronic gastrointestinal symptoms in children with autism and autistic spectrum disorders, Autism, 7 (2003), pp. 165-171

D.V. Keen , Childhood autism, feeding problems and failure to thrive in early infancy: Seven case studies, Eur Child Adolesc Psychiatr, 17 (2008), pp. 209-216

L.G. Bandini, S.E. Anderson, C. Curtin, et al., Food selectivity in children with autism spectrum disorders and typically developing children, J Pediatr, 157 (2010), pp. 259-264

S.A. Cermak, C. Curtin, L.G. Bandini, Food selectivity and sensory sensitivity in children with autism spectrum disorders, J Am Diet Assoc, 110 (2010), pp. 238-246

Y. Martins, R.L. Young, D.C. Robson, Feeding and eating behaviors in children with autism and typically developing children, J Autism Dev Disord, 38 (2008), pp. 1878-1887, View at publisher

E. Cornish, A balanced approach towards healthy eating in autism, J Hum Nutr Diet, 11 (1998), pp. 501-509

P. Whiteley, J. Rodgers, D. Savery, P. Shattock, A gluten-free diet as an intervention for autism and associated spectrum disorders: Preliminary findings, Autism, 3 (1999), pp. 45-65

K. Fitzgerald, M. Hyman, K. Swift, Autism spectrum disorders, Glob Adv Health Med, 1 (2012), pp. 62-74

E. Courchesne, K. Campbell, S. Solso, Brain growth across the life span in autism: age-specific changes in anatomical pathology, Brain Res, 1380 (2011), pp. 138-145

M. Rutter, Aetiology of autism: findings and questions, J Intell Disabil Res, 49 (2005), pp. 231-238, View at publisher

J.J. Michaelson, Y. Shi, M. Gujral, et al.

Whole-genome sequencing in autism identifies hot spots for de novo germline mutation, Cell, 151 (2012), pp. 1431-1442

B.N. Vardarajan, A. Eran, J.Y. Jung, L.M. Kunkel, D.P. Wall, Haplotype structure enables prioritization of common markers and candidate genes in autism spectrum disorder

Transl Psychiatry, 3 (2013), p. e262

Yu X, Qian-Qian L, Cong Y, Xiao-Bing Z, Hong-Zhu D. Reduction of essential amino acid levels and sex-specific alterations in serum amino acid concentration profiles in children with autism spectrum disorder. Psychiatry Res. 2021 Mar;297:113675.

J. Veenstra-Vanderweele, R.D. Blakely

Networking in autism: Leveraging genetic, biomarker and model system findings in the search for new treatments, Neuropsychopharmacol, 37 (2012), pp. 196-212

K.T.E. Kleijer, M.J. Schmeisser, D.D. Krueger, et al. Neurobiology of autism gene products: towards pathogenesis and drug targets, Psychopharmacology (Berl), 231 (6) (2014), pp. 1037-1062

Li H, Dang Y, Yan Y. Serum interleukin-17 A and homocysteine levels in children with autism. BMC Neurosci. 2024 Mar 12;25(1):17. 

衰老过程中肠道菌群变化及其对老年抑郁和认知下降的影响

谷禾健康

编辑在老龄化过程中,生理功能逐渐衰退,伴随着多种疾病的发生,对老年人的身心健康构成重大威胁。

衰老是一个渐进、持续的过程,受到多种因素的影响,包括遗传、饮食、运动、生活方式等生理因素,也有社会、文化等复杂因素的交互影响,目前,越来越多的证据支持肠道菌群在衰老过程中的作用。

自然或“健康”的衰老,伴随着普雷沃菌属、粪杆菌属和双歧杆菌属以及直肠真杆菌属等减少,被其他共生微生物群所取代,如ButyricimonasAkkermansiaOdoribacter,尤其Akk菌与百岁老人的健康有关。而不健康衰老,则意味着致病菌或条件致病菌增多,包括肠杆菌科、放线菌属等。

肠道菌群与衰老相关的变化与认知能力下降、肌肉质量下降、骨质减少、皮肤稳态、血管老化、免疫衰老、代谢改变、肺和肝功能下降等密切相关。这些身体机能的衰退往往伴随着心理健康的变化,尤其是晚年抑郁症的发病率增高,约4%的老年人被诊断患有晚年抑郁症。

与成年人抑郁症相比,晚年抑郁症更多表现为生理症状突出认知功能损害更严重,晚年抑郁症可能是老年痴呆的先兆

经常看我们文章的朋友都知道,肠-脑轴与神经精神疾病的发病机制密切相关。这一双向调节轴通过神经免疫、神经内分泌等通路,以及肠道屏障微生物代谢物血脑屏障等,影响大脑功能,当然也包括认知水平。

近期几项研究(包括纵向跨诊断研究,横截面研究等)表明,肠道菌群可以预测未来的认知能力下降和抑郁症状,未来认知功能下降较低Intestinibacter相对丰度、较低的谷氨酸降解以及较高的组胺合成水平相关。关于谷氨酸和组胺可以详见我们之前的文章:

兴奋神经递质——谷氨酸与大脑健康

过敏反应的重要介质——组胺与免疫及肠道疾病

晚年抑郁症中总游离脂肪酸部分介导了Akkermansia认知功能之间的关系,IL-6、IFNγ、疣微菌门Akkermansia水平与抑郁严重程度相关。

本文我们通过这几项研究,来更深入具体地了解肠道菌群对老年人认知能力下降抑郁症状的当前和未来影响,同时也包括其他老年神经系统疾病相关合并症营养不良住院老年人的肠道菌群紊乱和临床结果,以及针对衰老的相关干预措施的介绍。希望为大家提供更多关于肠道菌群在老年健康领域重要作用的见解。

doi.org/10.14336/AD.2024.0331

01
老年健康和微生物组


肠道菌群与健康衰老

在人类的整个生命周期中,肠道微生物群的变化和转变伴随着衰老过程。

婴儿从出生起就接触各种环境微生物,导致肠道微生物群逐渐丰富和多样性增加

  • 新生儿

新生儿肠道最初定植主要涉及兼性厌氧微生物,如肠杆菌科和链球菌,其次是专性厌氧微生物,如双歧杆菌、梭菌和拟杆菌。

  • 1-2岁

Prausnitfaecali和喜爱粘蛋白的Akkermansia muciniphila等细菌在婴儿早期要么不存在,要么以非常低的水平存在,并在 1-2 岁左右增加到成人水平。

共生且稳定的肠道微生物群通常在9至36个月大的婴儿中形成,常见的分类群包括拟杆菌门、厚壁菌门和放线菌门。

  • 3-5岁

3-5岁儿童的肠道菌群组成逐渐向成人趋同。一旦建立,肠道微生物群的组成在整个成年期保持相对稳定

  • 成年人

成年人的肠道菌群包括拟杆菌型、普雷沃氏菌型等几种常见肠型。个体间差异与饮食、生活方式、运动频率、种族、文化习惯等许多因素相关。

  • 中老年

在中老年人中,肠道微生物群多样性下降。某些核心肠道微生物类群在老年人中也会发生变化。例如,拟杆菌属大肠埃希氏菌的比例较高

DOI: 10.14336/AD.2024.0331

自然或“健康”的衰老会导致肠道微生物组组成的特定变化,例如某些共生菌属的丧失,包括普雷沃菌属、粪杆菌属和双歧杆菌属以及直肠真杆菌属。在老年阶段,这些菌群被其他共生微生物所取代,如丁酸杆菌属(Butyricimonas)、AkkermansiaOdoribacter等。

特别是Akkermansia muciniphila,已知其有助于肠道中的粘蛋白降解。研究人员推测,AKK菌的水平可以指示健康状况,其相对丰度增加(高于健康老化时的水平)与百岁老人的极佳健康状况相关,而相对丰度降低则与肠道粘液层变薄酰基甘油减少有关。

注:酰基甘油是一种调节肠道通透性减少肠道炎症的内源性大麻素。

长寿人群的肠道菌群特征

研究发现,与100岁以下人群相比,百岁老人体内有益细菌(如拟杆菌属、Desulfovibrio suis、Pameliagodonibacterium pamelaeae、瘤胃球菌科、乳杆菌、Akkermansia、 甲烷短杆菌属)含量更高,而Faecalibacterium普雷沃特菌属、克雷伯氏菌属、链球菌属、肠杆菌属、肠球菌属含量较低

百岁老人肠道菌群多样性有所增加。百岁老人肠道微生物群中有益细菌占主导地位,可能有助于抵消与年龄相关的健康问题和衰老。

长寿人群的肠道菌群功能分析

2019年,一项对百岁老人肠道微生物功能的分析显示,中枢代谢能力增强,特别是在产生短链脂肪酸的糖酵解和发酵途径中。此外,百岁老人还表现出更高水平的磷脂酰肌醇信号系统、鞘脂生物合成和不同水平的n-聚糖生物合成。

2020年,一项对肠道微生物组的功能研究揭示,随着年龄的增长,与异养降解代谢相关的途径增加,与碳水化合物代谢相关的通路减少

2021年进行的一项研究,包括吲哚和苯乙酰谷氨酰胺在内的七种微生物代谢产物与百岁老人肠道微生物群的不同组成之间存在显著关联。这两种代谢产物先前被证明可以延长小鼠的寿命,在百岁老人的血液中发现了高水平的代谢产物。

总之,肠道微生物群不仅是衰老的标志,而且在维持人类健康和寿命方面发挥着至关重要的作用。


肠道菌群与不健康衰老

肠道微生物群与年龄相关的变化不仅影响肠道健康,而且还延伸到其他生理系统。

炎症衰老

早在20世纪60年代的研究就表明老年人的免疫功能有所下降,这一过程现在被称为免疫衰老,与免疫系统功能下降有关,从而导致促炎细胞因子的积累。

老年人群中炎症状态的增加现在通常被称为“炎症衰老”。促炎症状态使患者面临多种疾病的更高风险,例如自身免疫性疾病、心血管疾病、感染。

doi: 10.1186/s12979-020-00213-w

胃肠道内,维持功能性上皮粘液屏障对于预防感染和疾病至关重要。肠道通透性增加可导致微生物易位至宿主循环中,加剧促炎状态。

科学家还发现了几种在“不健康”衰老过程中会增加的致病生物或条件致病微生物,这一过程的特点是身体和精神迅速衰退,并与疾病进展和身体虚弱有关。其中一些病原体包括埃格特菌属(Eggerthella)、放线菌属、肠杆菌科,它们的存在和数量可以帮助预测寿命和疾病结果

老龄化人群:微生物组本身的变化导致促炎状态

在无菌小鼠模型中进行的实验表明,老龄化人群中微生物组本身的变化导致了促炎状态无菌小鼠的寿命比传统小鼠要长得多。此外,与灌胃其他年轻小鼠微生物组的小鼠相比,灌胃老年小鼠微生物组的年轻无菌小鼠表现出更大的肠道通透性和循环肿瘤坏死因子

与各种器官和疾病相关的年龄相关肠道菌群

DOI: 10.14336/AD.2024.0331

肠道微生物群与年龄相关的变化与能力下降、肌肉质量和能力下降、骨质减少、稳态、血管老化、免疫衰老、代谢改变、肺和肝功能下降密切相关。

表1 不健康衰老过程中的肠道微生物组

doi.org/10.14336/AD.2024.0331

一个越来越受关注的领域是通过可能影响认知功能的微生物群-肠-脑轴。神经精神疾病的病因复杂,肠道菌群和炎症可能是神经系统疾病发病机制的关键因素。接下来我们通过几项近期的研究队列,来了解老年人的肠道菌群与神经系统疾病关联。

02
老年人的肠道菌群与神经系统疾病关联


晚年抑郁、认知障碍

随着全球人口预期寿命的增加,晚年抑郁症的患病率显著上升,约4%的老年人被诊断患有晚年抑郁症。晚年抑郁症更多表现为明显的躯体症状,而情感症状不突出认知功能障碍也更严重

有认知障碍的老年人抑郁增加痴呆的进展。微生物群与当前的情绪和认知有关,近日,几项关于肠道菌群与老年抑郁、认知能力下降关联的研究发表,这些有助于我们更好地理解和应对老年抑郁和认知能力下降,一起来看一下:

literature 1
肠道菌群对老年人认知能力下降和抑郁症状的当前和未来影响

268名有不同认知和抑郁症状的参与者中收集临床评估和粪便样本。

70名参与者接受了为期2年的随访。

肠道菌群多样性↑ 认知↓ 抑郁严重程度↑

更大的微生物群落多样性,表明群落中物种的数量更高,分布更均匀,与样本中当前认知功能更以及未服用抗抑郁药的参与者抑郁严重程度更高有关

认知功能差双歧杆菌的相对丰度较低有关。

GABA↓ 抑郁症严重程度↑

在功能水平上,GABA 降解程度,基线抑郁症严重程度越高

GABA 是一种主要的抑制性神经递质抑郁症患者表现出较高的GABA降解较低的 GABA 生物合成,GABA功能的减少在认知功能中起着至关重要的作用,影响抑郁和衰老过程中出现的症状,微生物衍生的GABA会影响全身的GABA 水平,并与行为和功能连接的变化相关。

未来认知能力下降 与下列因素有关:

  • 基线时认知下降和焦虑程度更高有关
  • 厚壁菌门和Intestinibacter的相对丰度下降
  • 谷氨酸降解增加和基线组胺合成增加

未来抑郁症状的增加 与下列因素有关:

  • 较高的基线抑郁和焦虑
  • 较低的认知功能
  • 较低的拟杆菌门相对丰度

doi: 10.1038/s41380-024-02551-3

这是第一项纵向跨诊断研究,它代表着在精神病学、衰老微生物组的交叉点上迈出了重要的一步。

微生物组可以预测未来的认知能力下降和抑郁症状,有可能为识别可能经历认知能力或情绪下降的人提供生物标志物

literature 2
晚年抑郁中,总游离脂肪酸与肠道菌群组成和认知功能相关性的的中介分析

近日,来自浙江省人民医院精神病科康复医学中心廖峥娈团队的相关研究成果发表在《Lipids in Health and Disease》期刊上。这也是谷禾健康开放基金合作项目,一起来看一下。

晚年抑郁症是指60岁以上老年人出现的抑郁障碍,包括老年首发抑郁和老年复发的抑郁。该研究纳入来自老年抑郁认知结果队列研究的29名晚年抑郁症患者。

Spearman相关分析显示,Akkermansia丰度、总游离脂肪酸和MoCA评分之间存在显著相关(P<0.05)。多元回归分析表明Akkermansia总游离脂肪酸能显著预测MoCA评分(P<0.05)。

肠道微生物群、认知评估和脂质代谢指标之间的相关性

doi: 10.1186/s12944-024-02056-6.

调解分析显示,晚年抑郁症患者中Akkermansia相对丰度降低与认知功能下降的关系,部分由总游离脂肪酸介导(Bootstrap 95%CI: 0.023-0.557),占相对效应的43.0%。

肠道微生物群、脂质代谢产物认知功能评分之间的相关性

doi: 10.1186/s12944-024-02056-6.

这些发现表明,晚年抑郁症中认知功能Akkermansia总游离脂肪酸存在显著关系。总游离脂肪酸部分介导了Akkermansia与认知功能之间的关系。

晚年抑郁症患者的认知功能与总游离脂肪酸负相关,尤其是视觉空间/执行功能。

游离脂肪酸作为非酯化脂肪酸,是甘油三酯分解的产物,具有脂毒性,可通过被动转运或蛋白介导的内吞作用进入大脑,从而影响血管内皮功能。它们被认为可预示II型糖尿病(T2DM)患者阿尔茨海默的发生。有研究报告,在II型糖尿病合并轻度认知障碍的患者中,游离脂肪酸与注意力和执行功能呈负相关。另有研究发现,健康人群中游离脂肪酸水平升高认知功能下降相关。这些发现揭示了游离脂肪酸对晚年抑郁症患者认知功能的影响。

总游离脂肪酸在阿克曼症和认知功能之间关系中作用的中介模型

这是首次评估晚年抑郁症患者中认知功能、肠道菌群脂质代谢关系的研究。这些结果有助于理解肠道微生物-宿主脂质代谢轴在晚年抑郁症认知功能中的作用。

literature 3
晚年抑郁症患者肠道微生物群失调和信息功能障碍的横断面观察分析

这项研究也是来自浙江省人民医院精神病科康复医学中心廖峥娈团队的,其相关研究成果已于近日发表在《Neuropsychiatric Disease and Treatment》期刊上。

这也是谷禾健康开放基金合作项目,该研究分析了晚年抑郁患者的肠道菌群特征血清炎症细胞因子,探讨这两个因素在晚年抑郁潜在生物标志物中的联合作用。一起来看一下。

收集29名晚年抑郁患者和33名性别年龄匹配的健康对照(HC)的粪便样本和外周血,检测肠道菌群和12种炎症因子。

晚年抑郁症患者存在系统性炎症细胞因子水平升高肠道菌群失调

  • 在门水平,晚年抑郁症患者中疣微菌门相对丰度降低;
  • 在属水平,巨单胞菌属Megamonas、Citrobacter、Akkermansia相对丰度降低;粪球菌属Coprococcus、Lachnobacterium、颤螺菌属Oscillospira、Sutterella相对丰度升高

晚年抑郁症和健康对照的LEfSe分析

doi: 10.2147/NDT.S449224.

值得注意的是,IL-6、IFNγ、疣微菌门和Akkermansia水平与抑郁严重程度相关。

IL-6是神经元和胶质细胞表达的一种炎症细胞因子,对免疫和急性期反应至关重要。有研究人员提出,高IL-6水平可促进5-羟色胺降解减少5-羟色胺产生,从而损害神经可塑性,导致海马和前额叶萎缩等脑结构异常,这些异常已被证实与晚年抑郁症及其引起的认知障碍相关。与该研究一致。

IFNγ是一种参与中枢神经系统炎症的促炎因子,并激活大脑中的小胶质细胞以诱导促炎反应。研究表明,IFNγ激活的小胶质细胞改变了海马神经原生态位抑制神经干细胞和祖细胞的增殖,并促进未成熟神经元的凋亡,从而导致小鼠的抑郁症状和认知障碍。该研究在临床上证实了这一观点,并证明IFNγ水平与晚年抑郁严重程度有关。简而言之,这项研究表明,晚年抑郁是一种促炎和抗炎细胞因子共存的炎症状态,IL-6IFNγ与疾病严重程度有关。

既往研究发现,焦虑和抑郁患者中疣微菌门丰度降低,而Akkermansia丰度增加降低焦虑增强老年小鼠的认知功能。这与研究结果一致。回归分析显示,Akkermansia丰度是预测晚年抑郁概率的一个风险因素。但Akkermansia丰度与炎症因子水平无相关性,提示Akkermansia可能不通过炎症通路参与晚年抑郁的发病机制。

有趣的是,有研究发现,Akkermansia的外膜蛋白Amuc_1100可直接与TLR2结合促进5-HT合成率限速酶Tph1的表达,并降低肠上皮细胞中5-HT转运体的表达,从而增加5-HT的生物合成和胞外可用性,这提示Akkermansia可能通过直接调节肠屏障的神经递质释放来影响晚年抑郁。

肠道菌群改变、临床变量和炎症因子之间的关联(Spearman相关分析)

doi: 10.2147/NDT.S449224.

研究确定了IL-6AkkermansiaSutterella为晚年抑郁症的预测因子,它们的组合在区分晚年抑郁症患者和健康对照方面的曲线下面积为0.962

通过回归分析,Sutterella可作为预测晚年抑郁的指标。Sutterella是一种重要的肠道共生菌。既往研究发现,Sutterella丰度在重度抑郁和广泛性焦虑障碍患者中显著增加。许多研究也发现Sutterella肥胖以及体重和脂肪增加正相关

肥胖和抑郁之间存在双向关系,研究表明,促使垂体肾上腺皮质轴(HPA轴)过度激活、导致皮质醇失调可能是两者的共同机制。因此推测Sutterella可能通过影响HPA轴,从而影响皮质醇的释放,进而触发晚年抑郁的发生。

利用差异丰度属作为晚年抑郁症诊断因子的灵敏度和特异性的ROC曲线分析

doi: 10.2147/NDT.S449224.

这是一项横断面观察研究。该研究提供了晚年抑郁中肠道菌群和系统性炎症变化的证据。重要的是,将肠道菌群和炎症标志物结合使用,可以增强其作为晚年抑郁症潜在生物标志物的预测能力。这些发现有助于阐明肠道菌群和系统性炎症在晚年抑郁发展中的作用,并为临床实践中晚年抑郁的生物标志物提供新思路

其他合并症相关的研究:


轻度认知障碍、阿尔茨海默

轻度认知障碍(MCI)在老年人中高度普遍,影响了大约10%的70-74岁老人和25%的80-84岁老人。此外,轻度认知障碍患者更有可能进展为痴呆。迄今为止,药物治疗只能减缓轻度认知障碍的进展,但不能逆转它。

注:轻度认知障碍、阿尔茨海默虽然都涉及认知功能下降,但严重程度有所不同,轻度认知障碍是认知功能较正常人有轻微下降,但日常生活功能基本正常。阿尔茨海默是认知功能严重下降,严重影响日常生活。

虽然对微生物群改变是否会影响认知功能仍有分歧,但正在进行的长期项目,如MOTION(衰老肠道的微生物群及其对人类肠道健康和认知的影响),研究健康老龄化的认知和微生物群变化,为解释清楚这些相互作用提供了希望。

表2 选择随机对照试验和观察性研究(2019-2023)

评估老年人认知功能和肠道微生物组

DOI: 10.1007/s11894-024-00932-w

痴呆症:促炎菌增多

2019 年的一项鸟枪法宏基因组序列研究将 57 名患有痴呆症(包括阿尔茨海默病)的疗养院居民与 51 名未患有阿尔茨海默或其他形式痴呆症的老年人进行了比较,结果发现痴呆症患者体内的促炎性肠道细菌水平较高

阿尔茨海默:产丁酸菌减少,α 多样性降低

作者还注意到,与没有痴呆症的受试者和患有阿尔茨海默病以外的其他痴呆症的受试者相比,阿尔茨海默组中丁酸合成细菌的种类(例如丁酸弧菌属Butyrivibrio和真细菌属Eubacteria)有所减少

随后的系统回顾和荟萃分析同样发现,与健康对照者相比,阿尔茨海默患者肠道微生物组的 α 多样性有所降低,但轻度认知障碍 (MCI) 患者与健康对照者之间的差异并未降低。

阿尔茨海默病、轻度认知障碍和健康样本之间微生物组组成的差异(即β多样性)并没有一致改变。研究与痴呆症相关的肠道微生物组的一个挑战是缺乏明确、客观和非侵入性的测试来最终确定诊断和疾病阶段,从而使研究结果的解释进一步复杂化。虽然超出了肠道微生物组的范围,但阿尔茨海默病脑组织的尸检研究已经确定了大脑内存在微生物,这表明存在与神经退行性疾病相关的大脑微生物组

促炎Collinsella菌和APOE风险的强相关性

一项大型全基因组关联研究确定了几个与载脂蛋白E ε4 (APOE ε4) 基因高风险等位基因相关的微生物组属,载脂蛋白E ε4 是阿尔茨海默的一个公认的危险因素。这项研究的一些最重要的发现包括促炎Collinsella和 APOE 风险等位基因之间的强相关性,以及提出对Eubacterium fissicatena的保护作用。


帕金森、便秘

帕金森病 (PD) 是另一种神经系统疾病,在老年人中更为常见,人们越来越关注肠道微生物组作为其生物标志物或治疗方法。

帕金森:产丁酸菌如Roseburia、粪杆菌减少

2020 年对来自日本、美国、芬兰、俄罗斯和德国的 16S 测序数据进行荟萃分析发现,帕金森病患者的Roseburia粪杆菌相对减少,这两者都是丁酸盐的重要生产者

帕金森:普雷沃氏菌里的致病菌种增加

2022 年对 490 名帕金森病和 234 名健康对照者进行的鸟枪法测序研究证实了这些发现,并确定了帕金森病患者中发生改变的其他几个属,例如普雷沃氏菌里的致病菌种增加

帕金森:阿克曼氏菌属增加

有趣的是,多项研究指出,帕金森病患者中阿克曼氏菌属(AKK菌)的数量有所增加,考虑到阿克曼氏菌通常与健康衰老相关,并且在超级百岁老人中尤其丰富,这一点令人惊讶。一些科学家推测阿克曼氏菌是健康衰老的重要组成部分,但数量的增加使患者面临神经认知疾病的风险

进一步假设,阿克曼氏菌丰度的变化可能继发于便秘的发生,便秘是帕金森病的常见胃肠道并发症,并且在多项其他研究中与阿克曼氏菌增加独立相关。由于帕金森病和阿克曼氏菌之间的联系是一个不一致的发现,因此需要进一步的研究来确定该属在帕金森病和更广泛的衰老中的确切作用。

过度表达 α-突触核蛋白聚集体(PD 患者大脑中常见的现象)的帕金森病小鼠模型中,与移植有健康供体微生物群的小鼠相比,移植有 6 名人类帕金森病患者肠道微生物组的小鼠的身体运动障碍和便秘有所增加

粪菌移植改善帕金森病患者便秘和神经系统症状

基于帕金森病微生物群改变的这些早期发现,一项随机对照试验发现,健康捐赠者的粪便以冻干药丸形式每周两次服用,持续 12 周,可以改善便秘和肠道蠕动,并暂时提高轻度至中度帕金森病患者的客观运动技能。虽然仍需要大量的转化和临床数据开发,但这些初步发现表明肠道微生物组调节可能改善帕金森病的胃肠道和/或神经系统症状,并提供对疾病病理生理学的更深入了解的希望。

03
饮食和环境如何影响老年人肠道菌群?

需要更多协助完成日常活动(ADL)的老年人,可能会从社区生活过渡到长期护理机构。这种迁移会由于环境、饮食和医疗因素的推测变化而导致微生物群的变化。

在一般成年人群研究中,家庭表面的微生物肠道微生物群组成相关,这在过渡到长期护理环境时需要考虑。此外,老龄化和接触医疗机构(如长期护理机构)都与艰难梭菌感染(CDI)的风险增加有关,CDI是医疗相关性炎性腹泻的主要原因。

无论年龄如何,都有强有力的证据表明,特定的饮食可以引起微生物组的独特改变以及相应的血清和粪便代谢物的变化。

相对而言,高纤维受试者微生物组恢复能力最好

一项严格对照的研究跟踪了 30 名受试者,他们被随机分为纯素食(高纤维)、杂食(中纤维)和配方饮食(无纤维)。 6 天后,受试者接受口服抗生素和聚乙二醇的组合进行“肠道净化”。

研究人员发现,与其他群体相比,纯素食受试者的微生物组在“净化”后恢复得更快,在更短的时间内恢复了更大的多样性。另一方面,坚持配方饮食的受试者的恢复期最长

不同生活方式下,微生物多样性的差异

在一项横断面研究中,将以前未接触过的亚诺马米美洲印第安人的肠道微生物组与居住在美国和和半跨文化人群的个体微生物组进行了比较,与美国人相比,亚诺马米人的肠道微生物群多样性明显更高,而半跨文化人群的多样性水平居中。然而,值得注意的是,不仅仅是饮食,其他社会和医学因素,也可能导致多样性增加

从社区生活转向长期护理机构,饮食变化如何影响肠道菌群及功能?

微生物组中与年龄相关的变化的一个组成部分似乎与饮食和进食明确相关,特别是因为老年人在获取营养食物方面,出现牙列不良咀嚼困难、食欲下降以及缺乏社会支持的风险增加

例如,会导致微生物组改变的最显著的饮食变化之一,是从独立的社区生活转向长期护理机构内的辅助生活

这种转变通常会导致从高纤维、低脂肪饮食低纤维、高脂肪饮食的转变,与社区居民相比,长期护理居民的微生物组多样性较低。值得注意的是,这些长期护理居民和社区居民之间的差异与长期护理所花费的时间相关。

在消化过程中,纤维被代谢为短链脂肪酸,它可以作为保护性微生物群的能量来源,协助抗炎反应并维持肠道屏障完整性,从而为胃肠道带来许多好处。因此,转移到长期护理机构时因饮食改变而导致的短链脂肪酸缺乏,可能会间接导致肠道功能障碍

营养不良住院老年人的肠道菌群紊乱和临床结果

营养不良是住院患者尤其是老年人中最普遍和最具威胁性的综合征之一。营养不良表现为身体成分改变和生物功能减弱,导致体力下降恢复速度减慢。此外,它降低了对医疗干预的耐受和反应能力,使受影响的人容易出现并发症预后较差。

一项研究对来自入院时和住院 72 小时评估的前瞻性队列中的 108 名急性重症老年患者进行了二次纵向分析。收集了临床、人口统计、营养和 16S rRNA 基因测序肠道微生物群数据。

严重营养不良患者α多样性较差

与住院期间营养良好的患者相比,营养不良患者 (51%) 的微生物群组成不同 (ANOSIM R = 0.079,P = 0.003)。

严重营养不良患者在入院时(Shannon P = 0.012,Simpson P = 0.018)和随访时(Shannon P = 0.023,Chao1 P = 0.008)表现出较差的α多样性

营养不良与特定菌群的关联

Lachnospiraceae NK4A136组、Subdolilegum和普拉梭菌的差异丰度显着降低,与营养不良呈负相关,而棒状杆菌(Corynebacterium)、Ruminococcaceae Incertae SedisFusobacter的差异丰度显着升高,与营养不良呈正相关

棒状杆菌(Corynebacterium)、Ruminococcaceae Incertae Sedis及其总体组成是住院期间营养不良患者重症监护的重要预测因子

doi.org/10.1016/j.nut.2024.112369

总的来说,营养不良的老年急症患者肠道菌群组成不同,多样性较差,潜在有益菌丰度较低,住院期间机会致病菌增多。 “营养不良的肠道微生物群”可能能够预测不良的医院结果。为与疾病相关的营养不良进行更大规模的临床研究和临床前机制探索开辟了新的视角。

04
延缓或逆转衰老的干预措施


饮食

★ 地中海饮食

除了特定的补充剂外,某些饮食也与肠道健康有关。地中海饮食由植物性食品、全谷物和健康脂肪组成,已被证明可以预防所有年龄段的心血管疾病,这种饮食的影响可能是由肠道微生物组介导的

一项研究发现,坚持地中海饮食至少一年,肠道内的普氏杆菌、人型杆菌、直肠杆菌、埃里根杆菌、嗜木杆菌、多形杆菌、普氏杆菌、哈德鲁斯杆菌相对增加。此外,坚持饮食还与认知功能的改善相关,以及高敏 C 反应蛋白 (hsCRP) 和IL-17水平等全身炎症标志物的降低

饮食习惯(尤其是地中海饮食)与肠道菌群和衰老病理生理学方面的联系机制

doi.org/10.1007/s40520-024-02707-9

如何理解肠道微生物群介导的地中海饮食抗衰老作用?

短链脂肪酸的微生物合成

患有虚弱、肌少症、认知能力下降的老年人肠道微生物组的一个关键特征,是产短链脂肪酸的菌减少,包括普拉梭菌、罗氏菌属、丁酸弧菌属(Butyrivibrio)、琥珀酸弧菌属(Succinivibrio)等。而身体健康的百岁老人粪便中短链脂肪酸水平通常高于 60-70 岁的受试者。

地中海饮食刺激短链脂肪酸合成细菌生长和提高短链脂肪酸的能力很重要,然而,肠道细菌有效释放短链脂肪酸的功能能力不仅取决于饮食中的纤维含量,还取决于细菌之间复杂的交叉喂养相互作用以及细菌与宿主之间的相互作用,例如,只有在肠道环境中存在大量双歧杆菌的情况下,普拉梭菌才能产生足够的丁酸。

注:丁酸可以促进肠道粘膜完整性;调节炎症反应;改善胰岛素抵抗,并具有整体促合成代谢功能。

降低肠粘膜通透性

衰老,即使具有健康的活动模式,也与肠通透性增加相关,血清生物标志物连蛋白水平升高就证明了这一点。荟萃分析表明,虚弱者的血清连蛋白水平平均高于健康老年受试者,反映出肠粘膜屏障功能的逐渐丧失。这种情况与健康或患有慢性阻塞性肺病和痴呆等慢性疾病的老年受试者的骨骼肌力量丧失、肌少症等有关。

肠粘膜通透性增加与细菌毒素(包括脂多糖LPS)增加有关,这些化合物激活先天免疫反应和适应性免疫的抗原刺激,最终导致典型的衰老和虚弱的持续性亚临床炎症,也就是炎症衰老。 LPS 毒素增加在与年龄相关的认知衰退阿尔茨海默病的病理生理学中起着关键作用,并且被认为是肠-脑轴失调的主要原因之一。

在患有慢性疾病的成年受试者和老年人中,较高的地中海饮食依从性与胃肠粘膜通透性生物标志物和循环 LPS 水平呈负相关。

食品生物活性物质的生物转化

地中海饮食中通常建议大量摄入水果和蔬菜、全麦谷物、坚果、豆类和特级初榨橄榄油,这其中含有丰富的多酚或酚类化合物膳食多酚肠道微生物组之间的相互作用能够产生多种具有抗衰老作用的生物活性代谢物,特别是在骨骼肌中枢神经系统水平上。

  • 尿石素A具有潜在的抗衰老作用,而地中海饮食可增加尿石素的排泄

尿石素 A、异尿石素 A 尿石素 B 是肠道微生物在摄入鞣花酸鞣花单宁(核桃、石榴和草莓中常见的多酚)后释放的代谢物。

尿石素 A 的潜在抗衰老作用包括:改善肌肉力量和运动耐力、调节神经炎症和细胞凋亡并改善认知、促进胰岛素敏感性、调节脂质代谢和炎症反应。

地中海饮食与尿液中尿石素排泄的平均增加有关,即使分析没有考虑代谢型。同样,在两个不同的随机对照试验中,尿石素的尿液排泄与内脏脂肪减少和磁共振测量的海马占用评分显着相关,这些随机对照试验测试了长期地中海饮食干预的效果。

  • 橙皮苷由黄烷酮代谢产生,具抗氧化抗炎作用,地中海饮食可增其血浆水平

除鞣花单宁外,肠道微生物群衍生的多酚亚类代谢型鲜为人知。在饮食中摄入黄烷酮(一种特别以柑橘为代表的多酚亚类)后,已确定了橙皮苷的高排泄者和低排泄者。橙皮苷具有抗氧化、抗炎和促合成代谢作用,促进肌肉蛋白合成并减少阿尔茨海默病动物模型中的淀粉样蛋白沉积和神经炎症。

在一项测试地中海饮食对2型糖尿病受试者的影响的干预研究中,12周后检测到橙皮苷和其他黄烷酮衍生物的血浆水平增加,炎症生物标志物显著减少

  • 雌马酚由特定肠道菌群产生,有助改善认知功能

同样,雌马酚大豆异黄酮大豆苷元肠道生物转化后释放的生物活性化合物,但它仅由一部分具有特定微生物特征的群体产生。雌马酚在体外表现出针对痴呆症发作的神经保护作用,但在体内,只有在存在雌马酚产生微生物组代谢型的情况下,它才与更好的认知表现相关。

多酚对衰老过程中肠道菌群的影响

doi.org/10.3390/nu16071066

扩展阅读:

肠道微生物群与膳食多酚互作对人体健康的影响

★ 高脂肪和高钠的西方饮食

小鼠研究还表明,高脂肪和高钠的西方饮食会导致肠道微生物组的“预测年龄”增加,该模型基于对雄性 C57BL/6 J 小鼠进行贝叶斯模型训练,这些小鼠的微生物组从第 9 周起就已被表征到生命第 112 周。一旦小鼠恢复标准饮食,这些微生物组紊乱就会逆转。因此,鉴于老年人易受认知能力下降和不健康衰老的影响,评估老年人肠道微生物群和临床结果的干预性饮食研究很有意思。

★ 模拟禁食饮食

模拟禁食饮食(FMD)是一种日益流行的热量限制模式。研究人员发现模拟禁食饮食显著延长了过早衰老小鼠的寿命。在自然衰老的小鼠中,模拟禁食饮食改善了认知和肠道健康

在肠道中,模拟禁食饮食循环增强了肠道屏障功能,减少了衰老标志物,并维持了固有层粘膜中 幼稚T细胞的记忆平衡。模拟禁食饮食重塑了肠道细菌组成,显著增加约氏乳杆菌Lactobacillus johnsonii的丰度。模拟禁食饮食作为一种抗衰老干预手段,具有进一步研究的价值。


粪菌移植(FMT)

粪便菌群移植(FMT)是一种越来越多地被纳入复发性艰难梭菌治疗的疗法,并且还针对炎症性肠病和抗生素后菌群失调进行了研究。这使得研究人员猜测是否可以将来自年轻健康捐赠者的微生物组移植到老年人体内,以逆转不健康衰老的一些影响。

粪菌移植用于延缓衰老和改善认知功能

一项研究证明,“老年”微生物组从老年小鼠转移到年轻小鼠会导致多种与年龄相关的表型,包括晚期中枢神经系统恶化视力缺陷。重要的是,在一组相关实验中,用年轻小鼠的粪便进行微生物组移植后,老年小鼠的年龄相关变化得到改善。这项工作提供了强有力的临床前证据,表明年轻和老年小鼠之间的微生物组特征不仅不同,而且这些微生物组的相关生理效应是可转移的。其他研究人员也重复了这些和类似的发现,证明将老年小鼠的微生物组转移给年轻小鼠可能会导致认知缺陷

粪菌移植在早衰症模型研究中的应用

早衰症是一种特别独特的疾病,可以用来研究微生物组和衰老,因为受影响的个体携带编码层粘连蛋白 A 基因突变,从而导致快速衰老。尽管出生时外观正常,受影响的个体通常会在青少年成年早期出现致命的疾病并发症,主要是心血管疾病

菌群移植延长小鼠寿命并逆转肠粘膜变薄

早衰症小鼠模型研究表明,在早衰小鼠模型中发现肠道微生物群中变形菌Cyanobacteria丰度增加,疣微菌丰度减少。某些人类百岁老人富含的细菌菌株,例如Akkermansia muciniphila,可以通过移植来延长小鼠寿命并逆转肠粘膜变薄。

接受长寿菌群小鼠α多样性↑ 产短链脂肪酸菌↑

与普通老年组的小鼠相比,接受长寿个体肠道微生物群的小鼠表现出更长的小肠绒毛更低的脂褐质和β-半乳糖苷酶(衰老标志)的积累;更高的α多样性,乳酸杆菌、双歧杆菌和产短链脂肪酸菌丰度更高。

恢复外周免疫,改善记忆、学习和行为缺陷

通过粪菌移植,老年小鼠部分恢复了外周免疫(尤其是肠系膜淋巴结免疫细胞)并改善了海马小胶质细胞的缺陷。小鼠海马代谢组(包括维生素 A、GABA、Neu5Gc、精氨酸和相关途径)和谷氨酰胺合成酶表达发生有益变化,从而改善与年龄相关的记忆、学习和行为缺陷。

尽管这些发现仍处于临床前阶段,但它们为使用年轻捐赠者的 FMT 或其治疗成分来逆转不健康衰老的某些方面带来了希望。

扩展阅读:

粪菌移植——一种治疗人体疾病的新型疗法


益生菌、益生元

随着年龄的增长,老年人的饮食习惯通常会发生变化,这会致微生物组的变化。与衰老相关的饮食变化中研究最多的一项是纤维摄入量的减少。然而,补充纤维的临床试验在微生物群组成和炎症状态的变化方面产生了相互矛盾的结果,一些研究人员假设饮食干预和补充剂的功效可能取决于宿主的初始微生物组特征

阿拉伯木聚糖

在一项对 21 名 60 岁以上健康志愿者进行的双盲交叉试验中,他们补充了麦麸衍生的阿拉伯木聚糖,结果发现,所产生的微生物组组成因受试者最初的普雷沃氏菌丰度而异。尽管有限,但这些研究结果表明,需要采取个体化的方法来操纵微生物组,并且需要检测患者的初始微生物组,以调整实现预期结果所需的干预措施。

益生菌干预措施已在老年人中进行了专门研究。可惜,与一般人群的研究类似,临床可操作数据的生成因研究产品和结果的巨大异质性以及大量动力不足的研究而受到抑制。虽然尚未发现单一或组合的益生菌能够明确改善或逆转衰老迹象,但越来越多的研究正在评估特定的微生物菌株及其对客观生理效应的影响。

罗伊氏乳杆菌ATCC PTA 6475

在一项双盲、安慰剂对照研究中,骨矿物质密度较低的老年女性补充罗伊氏乳杆菌ATCC PTA 6475 改善胫骨总体积 BMD (vBMD)。

干酪乳杆菌

在衰老加速SAMP8小鼠模型中,益生菌干酪乳杆菌代田株(Lactobacillus casei Shirota)的给药可减少与年龄相关的肌肉退化线粒体功能障碍

研究发现补充干酪乳杆菌 LC122长双歧杆菌 BL986改善小鼠外周组织氧化应激和炎症反应,增加海马神经变性和神经营养因子表达,并增强学习和记忆能力

乳杆菌和双歧杆菌等细菌以光保护方式与真皮成纤维细胞结合,表现出抗衰老特性。

在人类中,一些小型但双盲随机对照试验已经确定了特定的益生菌改善老年人的认知功能,尤其是包括双歧杆菌乳杆菌在内的益生菌。因此,随着对微生物组操纵和客观健康措施之间更加严格理解的发展,益生菌疗法可能需要定制微生物混合物,以针对个性化护理方法中的特定缺陷或状况。

扩展阅读:

如果你要补充益生菌 ——益生菌补充、个体化、定植指南


锻炼

多项研究报告了实施锻炼计划后肠道微生物组发生了变化,早期结果表明老年人群中也是如此。

2020 年的一项研究利用美国肠道项目的粪便样本,其中还包括患者报告的体重指数和运动习惯信息。该研究包括 1,589 名具有健康 BMI(18.5 ≤ BMI ≤ 25)的成年人(年龄 18-60 岁)和 897 名老年患者(年龄 > 60)的样本,他们根据 BMI 进一步分层为正常体重(n  = 462),超重(BMI > 25,n  = 413)和体重不足(BMI < 18.5,n  = 22),并按运动频率分层。

研究人员发现,随着老年患者运动频率的增加,基于特定分类群和常见途径的相对丰度,老年患者的微生物组越来越接近健康BMI成年人的微生物组。例如,与不运动的老年人相比,运动的老年人中放线菌的相对丰度有所增加,并接近健康体重指数成年人的水平。此外,运动的老年患者的Cyanobacteria相对丰度有所下降,再次接近健康体重指数成人的水平。然而值得注意的是,Cyanobacteria产生的毒素如 β-N-甲基氨基-l-丙氨酸 (BMAA) 与阿尔茨海默病渐冻症等神经退行性疾病有关。

一项小型研究中,招募了 15 名久坐的老年患者(50-75岁),参加一项为期 24 周、每周三次的心血管和阻力运动计划,干预前后收集粪便样本进行16S测序。研究人员观察到,经过 24 周的锻炼计划后,双歧杆菌的相对丰度有所增加丁酸盐水平也有所增加。考虑到双歧杆菌在极端衰老和改善认知功能中的作用,这些研究结果表明,与运动相关的健康益处也可能是通过肠道微生物组介导的。

虽然有这些结果,但运动时的微生物组变化也存在显著的个体差异。此外,当前的许多研究没有对照组、缺乏严谨性和/或样本量较小。未来的研究需要确定运动与健康的衰老微生物群之间是否确实存在关系,以及可以影响肠道微生物群的体育活动类型。

扩展阅读:

体育锻炼与饮食相结合:调节肠道菌群来预防治疗代谢性疾病


艾灸

一项研究观察艾灸“足三里”对亚急性衰老模型大鼠氧化应激和肠道菌群的影响,足三里组艾灸双侧“足三里”,每日 1 次,每次每穴 3 壮,连续 28天。

与模型组比较,足三里组大鼠Chao1、Shannon指数升高(P<0.01,P<0.05)。经艾灸干预后大鼠肠道菌群多样性改善。

与模型组比较,足三里组厚壁菌门、密螺旋体属_2相对丰度降低 (P<0.01),拟杆菌门、乳杆菌属、普雷沃氏菌科UCG-003相对丰度及B/F值升高 (P<0.05,P<0.01)。

注:

  • 密螺旋体属有“隐形病原体”之称,因其外膜脱落,大部分是由非免疫原性跨膜蛋白组成,拥有丰富的脂蛋白,能够诱导炎性反应;
  • 乳杆菌属是健康成年人肠道中普遍存在的菌,有调整肠道菌群、改善肠道功能、增强免疫力、抗氧化等;
  • 肠道菌群中的拟杆菌门与厚壁菌门相对丰度比值(B/F值) 是衡量机体衰老进程的关键指标,老年人B/F 值明显低于年轻人;
  • 普雷沃氏菌属于人体中的抗炎细菌,有利于减轻炎性反应、促进纤维素的消化。

与模型组比较,足三里组大鼠血清SOD(血清超氧化物歧化酶)含量增加(P<0.01),MDA(丙二醛)含量减少(P<0.01)。

艾灸“足三里”可有效改善衰老大鼠氧化应激水平,调节肠道菌群结构,维持肠道菌群微生态平衡,从而起到延缓衰老的作用。

05
结 语

肠道菌群在预测及辅助治疗的应用

肠道微生物组可预测晚年的认知功能和抑郁症状;肠道微生物群和炎症标志物的组合,可能成为老年抑郁症的潜在生物标志物,具有更强的预测力。这些发现为老年认知下降和抑郁症的诊断和治疗提供了新的策略方向。

总游离脂肪酸在Akkermansia和认知功能之间的重要中介作用,为肠道微生物-脂质代谢轴在晚年抑郁症认知功能中的作用提供了新的视角。

营养不良的老年人肠道菌群可能能够预测不良的临床结果,肠道微生物群及其与宿主的相互作用,可能成为辅助个性化治疗/预防干预的新兴目标,有助于优化传统疗法的疗效

基于肠道菌群的干预

益生菌、粪菌移植等方法,可能通过调节肠道菌群,改善免疫功能,为衰老提供新的解决方案。

地中海饮食中的多酚因其抗炎、抗氧化和免疫调节作用,与肠道微生物群的复杂互作也日益受到重视,多酚化合物可能是抵御这些与年龄相关表观遗传变化的关键。未来有望通过多酚化合物调节肠道菌群,利用生物活性化合物的功能属性,巧妙地调节和重新调整与衰老相关的过程。

随着对肠道菌群的研究不断深入,这些都可能成为未来抗衰老领域的突破口。

主要参考文献

Kolobaric A, Andreescu C, Jašarević E, Hong CH, Roh HW, Cheong JY, Kim YK, Shin TS, Kang CS, Kwon CO, Yoon SY, Hong SW, Aizenstein HJ, Karim HT, Son SJ. Gut microbiome predicts cognitive function and depressive symptoms in late life. Mol Psychiatry. 2024 Apr 25.

Chen Y, Li J, Le D, Zhang Y, Liao Z. A mediation analysis of the role of total free fatty acids on pertinence of gut microbiota composition and cognitive function in late life depression. Lipids Health Dis. 2024 Feb 29;23(1):64.

Chen Y, Le D, Xu J, Jin P, Zhang Y, Liao Z. Gut Microbiota Dysbiosis and Inflammation Dysfunction in Late-Life Depression: An Observational Cross-Sectional Analysis. Neuropsychiatr Dis Treat. 2024 Feb 27;20:399-414.

Chen LA, Boyle K. The Role of the Gut Microbiome in Health and Disease in the Elderly. Curr Gastroenterol Rep. 2024 Apr 20.

Muñoz-Fernandez SS, Garcez FB, Alencar JCG, Bastos AA, Morley JE, Cederholm T, Aprahamian I, de Souza HP, Avelino-Silva TJ, Bindels LB, Ribeiro SML. Gut microbiota disturbances in hospitalized older adults with malnutrition and clinical outcomes. Nutrition. 2024 Jun;122:112369.

Wu YL, Xu J, Rong XY, Wang F, Wang HJ, Zhao C. Gut microbiota alterations and health status in aging adults: From correlation to causation. Aging Med (Milton). 2021 Jun 24;4(3):206-213.

Pereira, Q.C.; Fortunato, I.M.; Oliveira, F.d.S.; Alvarez, M.C.; Santos, T.W.d.; Ribeiro, M.L. Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging. Nutrients 2024, 16, 1066.

Wang XM, Fan L, Meng CC, Wang YJ, Deng LE, Yuan Z, Zhang JP, Li YY, Lv SC. Gut microbiota influence frailty syndrome in older adults: mechanisms and therapeutic strategies. Biogerontology. 2024 Feb;25(1):107-129.

Wang Q, Xu J, Luo M, Jiang Y, Gu Y, Wang Q, He J, Sun Y, Lin Y, Feng L, Chen S, Hou T. Fasting mimicking diet extends lifespan and improves intestinal and cognitive health. Food Funct. 2024 Apr 22;15(8):4503-4514.

Wang Y, Qu Z, Chu J, Hun S. Aging Gut Microbiome in Healthy and Unhealthy Aging. Aging Dis. 2024 Apr 9.

探索大脑健康的宝藏:神经营养素、肠道菌群与我们的思维宇宙

谷禾健康

大脑健康,其实是我们每个人日常生活质量的关键所在。从决策记忆,从情绪管理社交互动,大脑在我们生活中扮演着不可或缺的角色。

近年来,科学研究逐渐揭示大脑健康、神经发生与神经营养素以及肠道菌群之间存在着密切的联系。

研究人员逐渐认识到,大脑在一生中不断通过形成新的神经连接来进行自我重组。大脑中新神经元的诞生被称为神经发生。现在科学认为,大脑在一生中不断自我重组并创造新的脑细胞。

神经生长因子 (NGF) 是一组称为神经营养因子的类蛋白质小分子之一,负责神经发生新神经元的发育以及成熟神经元的健康和维持。

根据动物研究结果,研究人员认为神经生长因子可能促进神经元和轴突的生长、维持和存活。它还被认为有助于修复髓鞘,髓鞘是轴突周围的绝缘涂层。

动物实验发现,随着大脑中神经生长因子产生的减少,动物形成新连接以及保留和访问记忆的能力就会受到损害。神经生长因子可能会挽救退化的神经并帮助恢复其功能,但缺乏人体数据。

神经营养素有的像是ω-3脂肪酸这样分子,给大脑细胞补充能量,让其更加强健;有的则像是维生素E和C这样的抗氧化剂,为大脑提供了一层无形的护盾,对抗那些想要损害大脑的自由基;还有的,比如B族维生素,它们确保大脑的能量供应,让我们的思维更加敏捷。

肠道菌群是肠道中的居民,它们与大脑通过“肠-脑轴”的紧密相连。肠道菌群可以通过多种机制影响大脑功能,包括通过调节免疫系统、产生神经递质以及影响神经发生。不健康的肠道菌群组成可能会导致炎症的增加,从而影响大脑健康,增加患有情绪障碍和神经退行性疾病的风险。“肠-脑轴”让我们的大脑和肠道可以互相传递信息,这导致吃进肚子里的食物,能影响我们的情绪和思维。

科学家们通过不断的研究,揭示了这些微生物如何帮助我们的大脑保持年轻和活力。例如,补充ω-3脂肪酸可以改善记忆力,抗氧化剂的摄入与减缓认知衰退有关。

本文我们来了解一下神经发生、神经营养素、神经营养因子及其与肠道菌群的关联等,通过了解这些关键的生物学概念及其相互作用,可以采取措施维持肠道微生物群的平衡,可以为大脑提供必要的支持,提高认知能力,有效减缓认知衰退,从而保持其长期的活力和健康。

神经 · 发生

神经发生,或称神经元发生,是指在成年大脑中新的神经元(神经细胞)的形成过程。

成年大脑定型了吗?

长期以来,科学家们曾认为成年人的大脑不再能够产生新的神经元,也就是说大脑的结构和功能一旦在儿童时期和青少年时期形成之后便定型不会有太大的变化

然而,近年来的研究发现,成年大脑确实能够通过神经发生产生新的神经元,尤其是在海马区和嗅球区等特定区域。这一发现不仅挑战了以往的认知,也为理解大脑的可塑性、学习记忆机制以及大脑疾病的治疗提供了新的视角。

神经发生对大脑健康的影响和意义是多方面的

首先,它是大脑适应环境变化、学习新知识和技能的基础。新的神经元能够形成新的神经网络,增强大脑的处理能力和记忆存储能力。例如,在学习和记忆过程中,海马区的神经发生是非常重要的。

其次,神经发生对情绪调节和应对压力也有重要作用。研究表明,抑郁症和焦虑症患者的海马区神经发生水平较低,而适当的运动和抗抑郁治疗可以促进神经发生,改善情绪

然而神经发生并非在所有情况下都是有益的

在某些脑部疾病,如癫痫,过度的神经发生可能导致异常的神经网络形成,引发病症的加剧。因此,如何在促进神经发生的同时,维持神经网络的稳定性和功能性,是当前研究的一个重要课题。

生活方式对神经发生也有显著影响

研究发现,规律的身体锻炼充足的睡眠、健康的饮食习惯、积极的社交活动、一些草药和补充剂例如褪黑激素、尿苷等都能够促进成年大脑的神经发生。相反,长期的压力、抑郁、睡眠不足以及不健康的生活方式则可能抑制神经发生。

总之,神经发生是大脑适应环境变化、学习和记忆、以及情绪调节的一个重要机制。了解和促进神经发生的过程,不仅对于提高个体的认知功能和情绪健康有重要意义,也为治疗各种神经系统疾病提供了新的策略和方法。随着科学研究的深入,相信在未来,通过调控神经发生,人类将能更好地维护大脑健康,提高生活质量。

1
神经营养素如何影响神经系统发育?

大脑可以看做是一座正在建设中的超级城市,而神经营养素就是那些建设这座城市所需的原材料和工人。这些营养素通过一系列精妙的机制,共同打造出一个健康、功能强大的大脑。

那这些机制是如何运作的呢?

“大脑城市”的基础工程:细胞外基质分子及受体

首先,有些像是建筑工地上的脚手架和信号旗,细胞外基质(ECM)分子及其受体(比如层粘连蛋白和纤连蛋白)为神经元提供结构支持和方向指示。它们确保神经元能够正确生长和相互连接,就像确保城市中的道路和桥梁精准对接一样。

“大脑成长”的营养奶粉:关键营养素

假如说这座城市还是个婴儿城市,那它在成长的早期阶段需要大量的“营养奶粉”,这里指的是蛋白质、能量、长链多不饱和脂肪酸、维生素和矿物质。这些营养素保证了城市(也就是我们的大脑)的健康发育,为神经细胞的生长、分化提供能量和原料。

微量元素,比如铁、锌和碘,就像是城市中的微型工程队,它们在大脑发育中扮演着至关重要的角色。铁负责运输“氧气”,锌则负责“通信系统”的建设,保证城市运转顺畅。

“大脑城市”规划师与交通系统:神经营养因子与神经活动的调节

还有前面说到神经营养因子,如NGF和BDNF,它们就像是城市规划师和建筑师,指导神经元如何成长和相互连接,确保大脑城市的设计既清晰又实用

神经活动的调节作用就像城市中的交通系统,根据需要调整道路和信号灯,以保证信息流动的顺畅和效率,从而促进大脑的可塑性和学习能力。

脂质在这个比喻中,可以看作是提供能量和材料的重要来源,帮助城市中的建筑物更加坚固,同时保证城市的能源供应。

生命早期的营养对这座城市的未来有着长远的影响。正确的营养摄入不仅能促进城市的健康成长,还能避免未来出现结构和功能的问题,确保城市居民(即我们的神经细胞)能够快乐、健康地生活。

这些神经营养素和它们的作用机制共同努力确保了我们的大脑能够健康成长,展现出最佳的功能。

2
神经营养素如何影响认知功能?

试想一下,你的大脑始终处于工作的状态——调整呼吸和心跳、接收和处理信息、产生思想和调控运动等,即使你在睡觉时,它依然在24小时全天候工作。这就意味着你的大脑需要持续稳定的燃料供应,而这种“燃料”正是来源于你每天所吃的食物。

相比于其他身体部位,大脑消耗大量的能。虽然人的大脑仅仅占人体重量的2%,但它所消耗的能量可占总能量的20-25%。因此,从食物到大脑神经元的能量转移所涉及的机制可能是调控脑功能的基础,能量代谢紊乱直接影响大脑功能。

过去人们对食物的认知,还停留在为人体提供能量和提供构造身体的原料。现在越来越多的证据表明,某些营养素的摄入不足或过量都可直接影响神经健康,从而影响大脑的结构和功能,并最终影响认知和情绪

如果把大脑想象成一个超级复杂的宇宙神经营养素则是其中的超级英雄,守护着我们的认知功能——记忆、学习能力,乃至抵御神经退行性疾病的侵袭。但这并不简单,因为这些超级英雄的力量来源,也就是我们的饮食模式和营养素摄入量是可变的,有时候也可能成为我们的隐形敌人。

首先,看下反面角色。

高脂肪和高糖的饮食模式,就像是给大脑施加了一个沉重的负担,特别是在海马体这个与学习和记忆密切相关的区域,它们会导致突触功能障碍和神经可塑性的减退

但也有积极的力量。膳食脂质,比如磷脂和鞘脂,是认知功能的守护者,通过影响我们肠道的微生物组成,它们以一种隐秘的方式保护着我们的认知健康。

优质脂肪

起初,大家认为脂肪对心血管系统功能有影响;但最近的研究显示,有益的膳食脂肪更对大脑有直接的作用,包括:

  • 牛油果
  • 坚果、种子
  • 植物油(橄榄油)
  • 大豆

抗氧化维生素如β-胡萝卜素、α-生育酚以及叶酸,可以抵御认知功能的衰退

植物营养素

类胡萝卜素是食物中的色素,让水果和蔬菜呈现色彩,如黄色、红色和橙色等。

植物营养素家族中一些较有影响力的成员,叶黄素和玉米黄质,相比有益大脑的功效,它们支持眼睛健康的效果更熟为人知。这些营养素与正常健康的认知功能有关。

大脑也需要其它营养素。它们是帮助保护大脑免受氧化压力损伤的抗氧化成分,可以尝试以下食物:

胡萝卜、南瓜、菠菜、红薯、红甜椒、番茄、羽衣甘藍等。

而当谈论营养状况对认知能力的影响时,B族维生素、维生素D、E和omega-3脂肪酸的摄入量成了关键角色。它们是大脑宇宙中的正能量,但过量摄入又可能适得其反,成为负面力量,引发高血压和血糖控制不佳等问题。

图源:askthescientists

Omega-3脂肪酸促进大脑发育和维持大脑正常功能方面起着重要作用,其中DHA还是神经细胞膜的重要成分。人体无法自行合成Omega-3脂肪酸,因此这属于人体必需脂肪酸,这意味着这些重要脂肪酸的唯一来源是我们所摄入的食物。

Omega-3脂肪酸的主要来源是多脂鱼类,包括:

三文鱼、沙丁鱼、鲱鱼等。其中主要以DHA和 EPA的形式存在。

研究表明,多摄入DHA和EPA对认知功能具有保护作用;还可帮助改善患有轻度认知障碍人群的认知功能。

胆碱

胆碱在人体中具有多种重要功能。胆碱可与磷脂结合成磷脂酰胆碱,是大脑和神经元细胞膜的重要组成成分。同时,它也是神经递质——乙酰胆碱的前体分子,对神经信息传递起着重要作用,可控制人的运动、记忆和情绪等。

胆碱的缺乏还与某些肝脏疾病神经系统疾病的发生有关。

可以选择一些食物如:

  • 鸡蛋、肝脏(牛肝、鸡肝等)
  • 牛肉、猪肉、羊肉
  • 三文鱼、贝类

叶酸和维生素B12

叶酸(维生素B9)和维生素B12对于生命早期的神经发育至关重要,孕期如果缺乏这两种营养素,可能会导致胎儿神经管发育畸形

血液中同型半胱氨酸水平过高可增加认知功能减退和患痴呆症的风险,而叶酸和维生素B12可降低血液中同型半胱氨酸的水平,从而降低认知功能减退和患痴呆症的风险

缺乏叶酸可导致神经和认知问题

临床试验结果显示叶酸补充剂本身或与其它维生素(B6和B12)结合一起服用,可在衰老过程中有效维持健全的认知功能

可以选择以下这些食物:

  • 豆类、菠菜、西蓝花、芦笋
  • 牛肉、海鲜、鸡蛋(含有维生素B12)
  • 香蕉、马铃薯、坚果(含有维生素B6)

维生素C和维生素E

维生素C和维生素E 作为抗氧化营养素,可保护神经免受氧化损伤。此外,大脑神经元中需要保持一定水平的维生素C才能维持大脑的正常功能。因此,食用富含维生素C的食物可以帮助延缓因年龄增长而导致的认知功能退化。

一些维生素C含量较高的食物

注:单位“杯”是一个常见的非正式计量单位,美规和英规略有区别,大约是237毫升-250毫升左右,涉及到果蔬的份量时,一杯通常是指将果蔬切碎后填满一杯容器的量。

维生素D

维生素D可影响神经元的生长、发育和存活的过程。研究表明,在老年人群体当中,体内维生素D水平低下可能增加认知功能退化和患老年痴呆症的风险。

维生素D3是我们身体需要的维生素D形式。调节大脑中的钙水平,帮助保护脑细胞免受有害的氧化作用,并支持海马体(大脑记忆中心)的健康

大多数研究发现,纯素食者的血液中维生素D3含量较低,并且在冬季,素食者更有可能出现维生素D3不足。

类黄酮

类黄酮可以提高血管功能,从而影响神经细胞间的物质传递和信息交流,进而影响神经健康和大脑功能。食用富含类黄酮的食物或饮料可以帮助提高人体健康水平,以及帮助提高患有轻度认知障碍老年人的认知功能。

类黄酮的抗氧化作用已在实验中获得证实,但这些植物化合物(如可可、银杏、葡萄籽提取物)在人体内具有更多的综合作用,目前仍在持续进行研究中。

一些类黄酮在保持健康的大脑功能方面表现出不错的结果。

槲皮素是一种类黄酮,是银杏萃取物中的主要成分,它已在一些研究中被证明能维持记忆力和学习能力。

类黄酮来自多种色彩丰富的植物食物。可以尝试以下这些食物:

  • 莓果
  • 黑巧克力
  • 深色绿叶蔬菜
  • 葡萄
  • 李子
  • 西兰花

钙和镁

大脑能如此天衣无缝地运作依靠的是神经元之间相互连结和交流的能力。钙和镁这两种矿物质对维持通讯顺畅进行发挥重要的作用。

钙质有助于维持神经细胞正常发挥功能,并有助于控制神经递质的流量。镁对脉冲传输发挥作用。它还透过催化B族维生素转化为活性形式,而帮助大脑释放B族维生素的所有益处。

富含钙质的食物如:

  • 乳制品、豆类、橙子、卷心菜和羽衣甘蓝;

富含镁的食物如:

  • 坚果、全谷类、牛奶、肉类和绿叶蔬菜;

其它有益大脑的营养素

以下简要列举一些经研究对大脑健康有益的其它营养素:

α-硫辛酸

已获证实可维持记忆力和认知功能。它能够使其他抗氧化剂恢复到活性状态。富含的食物如:内脏(肾、心、肝)、土豆、菠菜、西兰花等。

咖啡因

不仅能帮助提神,摄入咖啡因还与大脑处理信息的能力之间存在联系有关。但注意适量,过多的咖啡因会让人过度兴奋或焦虑,一个健康的成年人每天的摄入量不应超过三到四百毫克

存在于大脑前部的一种必需矿物质。其运作机制仍需更多研究才能确定,但缺乏锌却与很多神经系统问题有关。当人的锌水平低时,可能会出现焦虑,抑郁,失眠和情绪失调等状况。

研究发现抑郁症和精神病患者的锌含量低。在患有帕金森氏病,阿尔茨海默氏病,唐氏综合症多动症的患者中也发现了锌缺乏

补锌有助于改善抑郁症状,是 “自然的抗抑郁药”。锌的饮食来源多种多样,尤其是在红肉,家禽和鱼类中。

姜黄素

一种强力抗氧化成分,可保护大脑免受脂质过氧化反应和一氧化氮类的影响。

新鲜姜黄可以适量切片或切碎后加入沙拉、汤或炒菜中。临床试验都表明姜黄素补充剂安全且耐受性良好的。

几种胃肠激素或胜肽

如瘦素、饥饿肽、胰高血糖素样肽-1(GLP1)和胰岛素等, 可支持健康的情绪反应和认知过程。

不要忘了炎症——认知功能的隐形敌人,通过抗炎和促炎作用影响着大脑。而姜黄素、白藜芦醇、蓝莓多酚和多不饱和脂肪酸等超级食材,以及生活方式的选择,如热量限制和体育锻炼,都是强大的盟友,帮助保持认知功能。

地中海饮食、营养支持和热量控制饮食抵御了认知能力下降和神经退行性疾病的威胁。

3
神经营养素如何调节情绪?

如前所述大脑是一座忙碌的都市,神经营养素则是其中维持秩序的超级英雄,特别是在情绪调节这个复杂的领域。情绪调节就像城市交通系统,涉及多个区域,对我们的心理健康和行为至关重要。接下来我们再来探索一下大脑城市。

神经递质:大脑交通的信号灯

首先,神经递质犹如信号灯,这就像是在城市交通中错误地发出信号就会导致了交通堵塞甚至是严重的交通后果。所以神经递质抑郁的严重程度之间的关系,就像是使用了不良情绪调节策略的结果。

前额皮质:情绪调节的指挥中心

然后,来到前额皮质区域,这个区域就像是大脑都市的交通指挥中心,它不仅参与情绪调节,还和身体的内分泌和免疫系统功能相关。这意味着,改善情绪调节就像是优化了城市交通,对整个都市的健康都有益处。

饮食与遗传:大脑都市的燃料与基础设施

我们的饮食,就像是为大脑都市提供燃料。特定的营养素能够影响神经元功能和突触可塑性,进而影响情绪。这就像是选择了高质量的燃料,让整个城市运转得更加顺畅。

遗传因素在情绪调节中也扮演了角色,就像是大脑都市中的基础建设。特定的遗传变异,比如血清素转运蛋白的变异,会影响情绪特征和神经系统,这就像是决定了城市交通系统的设计和效率。

神经影像学:交通管理

神经影像学研究揭示了参与情绪调节的特定大脑区域,就像是确定了城市中的关键交通节点。而实时功能磁共振成像神经反馈的研究,能够实时调节这些交通节点的流量,对精神障碍的治疗具有潜在的益处。

压力和性别:突发事件和不同司机

压力和性别在情绪调节中的作用,就像是突发事件和不同司机的驾驶习惯对城市交通的影响。急性压力可能会损害我们分散情绪刺激的能力,而性别差异则决定了我们减少负面情绪的能力

总之,神经营养素通过对大脑功能和突触可塑性的影响,扮演着情绪调节中的超级英雄。无论是遗传因素还是饮食,都在这个复杂的城市交通系统中发挥着重要作用。而神经影像学的发现和实时神经反馈技术的进步,就像是为这座都市提供了新的管理工具。最后,不容忽视的是压力和性别差异,它们就像是影响交通流量的突发事件和不同司机的习惯。

4
哪些人适合补充维生素B改善脑健康?

在这个快节奏的世界里,大脑像是永不休息的工作狂,不断地处理信息、接收信息、做决策、回忆过去和规划未来。但是,就算是高效的机器,大脑也需要适当的燃料和维护来保持其最佳性能,特别是那些对脑健康至关重要的维生素B。

最新的研究发现让我们对维生素B和其他神经营养素在保持我们的思维敏捷和记忆力方面的作用有了更深的认识。比如说,一项研究发现,老年人补充omega-3脂肪酸可以让认知功能保持在较好的状态,甚至减缓认知衰退的脚步。另一项研究则揭示了维生素E补充剂与降低某些类型认知障碍风险的联系。

那么,具体来说,哪些人群最适合通过补充B族维生素来提升脑健康呢?

  • 对于没有认知障碍或者患有轻度认知障碍(MCI)的老年人来说,补充维生素B可能帮助他们延缓或维持认知能力的下降,维生素B补充剂在提升记忆力方面表现出了中等程度的益处。
  • 那些有心血管事件病史的患者,尤其是曾经经历过中风的人,通过补充B族维生素和omega-3脂肪酸,可能会减少心血管事件的发生,对他们的时间定向任务有益。
  • 一般的老年人群,特别是那些B族维生素水平不足的人,通过补充这些维生素可能会提高他们的认知能力,因为即使是营养状况的轻微差异也可能微妙地影响认知。

总的来说,补充维生素B似乎对记忆力有一定的益处,目前的证据还不足以推荐其用于改善认知功能、执行功能和注意力,或者用于稳定或减缓阿尔茨海默病患者的认知、功能、行为和整体变化的下降。还需要更多精心设计的、大样本量的随机对照试验来明确维生素B补充剂在这些亚组中的预防效果和最佳剂量。

神经 · 营养因子

1
神经营养因子与脑健康

接下来再聊聊那些让我们的大脑保持活力和健康的小帮手——神经营养因子

神经营养因子:大脑城市的维护英雄

如果我们的大脑是一座充满活力的城市,那么神经营养因子就是那些维护城市基础设施、确保一切运转顺畅的英雄。

它们是一类特殊的蛋白质,对我们的神经系统来说,就像是超级食物一样,负责支持神经细胞的生存,促进受损神经细胞的修复,还有调节细胞之间的通信。简而言之,没有它们,我们的大脑就不能正常工作。

神经营养因子包括神经生长因子(NGF)和脑源性神经营养因子(BDNF)

  • 神经生长因子是这个家族中的先锋,对感觉神经和交感神经至关重要。
  • 而BDNF,则是大脑中的常客,它负责保持神经元的生存,促进神经突触的形成,以及调节神经传递物质的释放。

促进生长与修复

这些超级英雄通过与神经细胞表面的特定受体结合,激活一系列信号传导途径,从而促进神经细胞的生长、分化,增强我们大脑的可塑性和修复能力

影响学习与记忆

神经营养因子在保护神经细胞、促进受损神经组织的修复,以及提高我们的学习和记忆能力方面发挥着显著作用。比如,BDNF的水平,就和我们的学习能力及记忆形成紧密相关。这也像是大脑的健身教练,帮助思维保持敏捷,记忆力强大。

与神经退行性和精神疾病相关

神经营养因子还参与了与神经退行性和精神疾病相关的病理生理学过程。它们的水平改变与阿尔茨海默病、亨廷顿舞蹈病、抑郁症和药物滥用等疾病有关。这些都表明,神经营养因子的平衡对我们的神经健康至关重要。

2
哪些因素会影响神经营养因子

生活方式

运动

运动无疑是提高 BDNF 水平的最佳方法之一。

  • 在久坐的男大学生中,高强度运动可以提高 BDNF 水平和记忆力。
  • 在雄性和雌性大鼠运动后几天内,神经细胞中 BDNF 水平的变化,并且甚至在运动后持续数周。
  • 在大鼠中,当 BDNF 水平增加时,低强度运动实际上比高强度运动更好。这与正常大鼠的证据一致,即低强度运动比高强度运动更能改善突触可塑性。

这些影响尚未在人类中进行研究。

睡觉

与睡眠健康的对照组相比,失眠患者的 BDNF 水平较低。根据一些未经证实的理论,压力是否会导致精神障碍取决于睡眠是否得到维持或受到干扰。在大鼠中,长期睡眠不足导致IL-1b和TNF增加,BDNF 减少

在抗抑郁治疗中,BDNF 升高可能是抗抑郁药物是否有效的预测指标,尽管这一指标并不完全可靠。BDNF 实际上并不与抑郁症的减少同时发生,因此,人们认为大部分预测效果可能基于睡眠。这意味着 BDNF 可能是人们睡眠质量的一个标志,需要大规模研究来证实这一理论。

减轻压力

慢性或急性应激和皮质醇会降低大鼠海马和前额皮质中的 BDNF

急性应激更显著降低 BDNF。

承受很大压力的人表现出较少的 BDNF。

晒太阳

对荷兰 2,851 人的分析发现,血液中的 BDNF 在春季和夏季增加,在秋季和冬季减少。BDNF 水平与一个人暴露在阳光下的小时数相关。

然而,维生素 D 补充剂可能无效。

人体试验中补充维生素D不会增加 BDNF

绝经后女性补充维生素 D 实际上会降低 BDNF。

认知刺激

动物高度刺激的早期社会环境会增加 BDNF

在小鼠中,探索行为的水平会诱发 BDNF,而在人类中,这相当于精神和身体刺激或新奇感。

当学习事物或挑战大脑时,大脑会增加 BDNF,因为它在学习和记忆中发挥着重要作用。

间歇性禁食

在小鼠中,隔日禁食(禁食日单餐摄入约 600 卡路里热量)可使 BDNF 的产生增加 50% 至 400%具体取决于大脑区域。禁食对人类 BDNF 的影响还需进一步研究。

保持昼夜节律

一些科学家推测,昼夜节律失调与 BDNF 水平低有关。例如,昼夜节律失调的脑外伤患者的 BDNF 产生量也较低。

饮食/食物

科学家正在研究以下饮食因素是否会增加或降低 BDNF 水平:

西方饮食

所谓的“标准西方饮食”(“SAD”)——即高糖和饱和脂肪的饮食,可能会减少 BDNF 的产生。

鱼油 / DHA

抗性淀粉,例如抗性淀粉– 转化为丁酸盐,导致 BDNF 增加。

其他

下列物质均显着增加雌性大鼠额叶皮质中的 BDNF :

  • 蜂蜜
  • FOS、GOS(益生元)
  • 蓝莓
  • 可可(类黄酮)
  • 大豆 –雌二醇和大豆植物雌激素

然而,没有临床证据支持上面列出的增加 BDNF 的方法。上述因素涉及动物和细胞研究,应进一步研究。

激素/神经递质

科学家发现动物体内以下激素与 BDNF 水平之间存在联系:

  • 黄体酮
  • 雌激素
  • 褪黑素
  • 促肾上腺皮质激素
  • 血清素
  • 脱氢表雄酮

缺乏人类数据。

没有研究表明增加这些激素会增加人类的 BDNF。

在没有看医生的情况下不要服用任何激素。在没有医疗监督的情况下服用激素可能非常危险。

补充剂

膳食补充剂尚未获得批准用于医疗用途。补充剂通常缺乏扎实的临床研究

一些研究表明,这些补充剂可能有助于增加 BDNF 并支持心理健康:

  • 丁酸盐
  • 槲皮素和山奈酚
  • 咖啡因
  • 姜黄素通过激活啮齿动物皮质神经元中的BDNF/ TrkB依赖性 MAPK 和 PI-3K 级联产生神经保护作用。
  • 烟酸
  • 镁(位于前额皮质、海马体)
  • 乳酸研究人员给人们注射乳酸后发现 BDNF 水平升高。
  • L-苏糖酸镁脑镁含量升高会增加 NMDA 受体 (NMDAR) 信号传导、BDNF 表达。
  • 肌苷
  • 植物乳杆菌
  • 绞股蓝
  • 没食子儿茶素没食子酸酯
  • 锂通过抑制 GSK-3 来提高 BDNF,这也能促进骨骼肌生长。
  • 橄榄叶
  • 茶氨酸增加 BDNF 并减弱皮质醇与DHEA的关系,对 AMPA、红藻氨酸和 NMDA 受体的亲和力也较低 。
  • 红景天
  • 白藜芦醇
  • 熟地
  • 人参口服预处理后,GRb1 显着抑制应激介导的 BDNF 水平下降,同时进一步增加应激介导的HSP70水平升高。
  • 黄芩甙
  • 假马齿苋在大鼠中,当动物暴露于慢性不可预测的压力时,假马齿苋会增加 BDNF。
  • 何首乌
  • β-丙氨酸
  • 龙眼
  • 植物神经酰胺
  • 2-脱氧葡萄糖

药物

尚未批准任何药物用于提高 BDNF 水平;以下研究是调查性的,不够有力,不足以被视为足够的使用证据。它仅供参考。

  • Semax(ACTH类似物)
  • 西酞普兰(Celexa,SSRI)
  • 噻奈普汀(三环)
  • Ladostigil(实验药物)
  • 一种可逆的乙酰胆碱酯酶和丁酰胆碱酯酶抑制剂,以及一种不可逆的单胺氧化酶B抑制剂。增强 GDNF 和 BDNF 的表达
  • 雷沙吉兰

一些非法药物也会增加 BDNF,但会以整体有害的方式影响大脑并造成严重伤害。

其中许多药物可能劫持大脑的奖励系统,导致成瘾。它们的使用还可能导致危及生命的情况,应不惜一切代价避免使用。

注意:未经医生建议不要随意服用任何药物。

神经 · 肠道

胃肠道(GI)对于营养物质的吸收,粘膜和全身免疫反应的诱导以及健康的肠道微生物群的维持是必不可少的。

你会发现肠道不只是消化的细胞,还有大量的神经元和免疫细胞,以及海量的肠道菌群。

想象一下,我们的肠道里住着数万亿的微生物,它们不仅帮助我们消化食物,还能影响我们的心情和大脑功能。

经研究发现,神经发育的主要过程与母体和新生儿肠道微生物的变化一致。

Sharon et al. Cell, 2016

1
微生物群与大脑结构或功能关联的证据

微生物群对大脑结构的影响

关于微生物群在人类大脑结构发育中的作用的研究仍然很少。

在成年人中,聚类分析确定了与不同白质和灰质特征相关的不同微生物群组成,包括右海马、左伏隔核、右枕前沟和小脑的区域体积差异。微生物群中的α多样性也与肥胖成人的下丘脑、尾状核和海马的微观结构有关,而特定的放线菌门的相对丰度与下丘脑、丘脑和杏仁核的微观结构变量相关。

在儿童中,只有一项研究检测了大脑结构和肠道微生物群,报告了1岁时α多样性2岁时左中央前回、左杏仁核和右角回体积之间的正相关。同样的研究还报告了基于微生物群聚类分析的特定区域脑容量差异

微生物群对早产儿大脑发育的潜在影响

在新生儿重症监护病房早产儿粪便微生物群移植研究中采用了一种更具实验性的方法。与高生长菌群的受试者相比,在NICU中生长不良的婴儿微生物群定植的无菌小鼠在神经元分化、少突胶质细胞发育和大脑皮层髓鞘形成的标记方面表现出大脑发育延迟的迹象。来自低生长婴儿的微生物群也影响各种神经传递途径增加神经炎症,同时降低生长激素的循环水平

微生物群与大脑功能、神经发育的关联

去年两项研究都发表在儿童大脑功能或活动的微生物调节上。

  • 第一项研究,在1岁儿童中评估了各种大脑网络的功能连通性。肠道微生物群α多样性与杏仁核-丘脑、扣带回前皮质-右前岛叶和补充运动区-左顶叶三个独立网络的功能连通性相关。此外,后一组与2岁时的认知评估表现相关,可能为微生物群与认知表现之间的关联提供了部分机制。
  • 第二项研究是在5-11岁的儿童中进行的,这些儿童暴露在早期的逆境中(孤儿院的养育)。在这个队列中,某些菌群的水平与前额叶皮层对情绪面孔的激活相关。这些分类中的一些在有早期逆境史的儿童中不太常见,支持他们认为微生物群在早期创伤经历和神经发育和心理风险改变之间起着联系作用的观点。

相关动物研究

一项研究很好地拟合了动物早期应激模型中的观察结果。在母性分离后,一种已知会扰乱微生物群早期应激啮齿动物模型,大鼠幼犬表现出条件性恐惧反应的加速成熟。在压力期间益生菌补充足以逆转对这两种行为的影响前额叶皮层的激活。

在压力环境之外,在各种动物模型中,微生物调节大脑功能或活动的证据基础越来越强。例如,对无菌动物杏仁核的转录组分析揭示了差异基因表达、外显子使用和RNA编辑。

最近的一项关于在缺乏微生物群的小鼠中消除恐惧的研究发现,内侧前额叶皮层的基因表达、神经元活动和树突棘重塑发生了显著变化。此外,有许多关于通过操纵微生物群而改变各种神经递质系统的报告,特别是关于5-羟色胺BDNF(脑源性神经营养因子)。这项工作与脑形态学的研究一起,强调了微生物群对大脑发育和健康的深远影响。

2
肠道菌群如何影响大脑功能和行为?

肠脑轴

我们的肠道和大脑之间有着一条看不见的纽带,这就是所谓的肠脑轴。这条线不仅仅是关于我们吃了什么,更是关于我们的情绪、认知能力乃至大脑的整体健康。

肠-脑轴综合示意图

Wang and Kasper. Brain, behavior, and immunity, 2014

目前,微生物-肠道-脑轴内存在许多已知的通信途径,包括迷走神经、HPA轴、脊髓、免疫系统和代谢产物的外周传输等。这些已在其他地方详细阐述。在这里就提供一个简短的和简单的概述,其中一些路径与一个具体的发展重点(见下图)。

肠-脑轴参与婴儿早期神经发育与感受

Cong et al., Advances in neonatal care: official journal of the National Association of Neonatal Nurses, 2015

此外,肠道菌群可以影响神经传递的产生和释放,比如血清素多巴胺以及GABA,此外还有激素,谷氨酸,小分子肽等,这些都是影响我们情绪和认知的关键物质。

其次,通过调节免疫系统的反应,肠道菌群还能影响大脑中的炎症反应,这对于预防神经退行性疾病非常重要。

肠道菌群的代谢产物,比如短链脂肪酸,对大脑健康至关重要,它们不仅能为大脑提供能量,还能调节血脑屏障的完整性和功能

由肠道微生物及其产物直接或间接驱动的基本发育过程

编辑​

Sharon et al. Cell, 2016

深入一点来说,肠道微生物群通过涉及芳香氨基酸和色氨酸代谢的途径,影响诸如血清素、多巴胺和脑源性神经营养因子(BDNF)等神经递质水平。这就是为什么肠道菌群的失衡可能会导致神经递质途径紊乱,进而影响我们的大脑健康。

而且,特定的微生物酶能够直接产生神经递质,这说明了微生物群如何直接影响我们的生理和行为。肠道微生物群还能调节神经肽和神经递质受体的表达,影响体重调节和瘦素敏感性。

通过抗生素、益生菌或是粪菌移植等方式改变肠道微生物群组成,都会影响神经递质的调节,与一系列神经精神和神经系统疾病有关。

深入挖掘机制:微生物对神经发育的影响途径

微生物群-内脏-大脑轴由多个通道组成,允许微生物群和大脑之间双向交流。在发育过程中,一些关键的通路包括营养提取、免疫信号和屏障功能,以及沿脊髓、迷走神经和下丘脑-垂体-肾上腺轴(HPA轴)的神经和激素信号

之前的文章有详细介绍微生物群与大脑之间的通讯途径。

Cryan JF, et al., Lancet Neurol. 2020

多种直接(如迷走神经)和间接(如短链脂肪酸、细胞因子和关键的膳食氨基酸,如色氨酸、酪氨酸和组氨酸)途径,通过肠道微生物群可以调节肠-脑轴。

扩展阅读:

肠道微生物群在神经系统疾病中的作用

代谢和养分利用率

也许解释微生物群对神经发育的调节作用的最简洁的假设是,微生物群是生长中的大脑必需营养和能量的关键来源。微生物群将原本不易消化的食物成分,转化为具有营养或生物价值的产物,营养本身是一种公认的认知结果调节器。

母乳喂养是一种影响微生物群成熟的饮食因素,长期以来一直被认为可以改善认知结果,尽管最近的数据表明,这种影响是由诸如母亲智力或教育水平等混杂变量造成的。

另一方面,特定营养素缺乏总体饮食质量低都与认知发展的长期负面影响有关,并且对易受伤害人群的营养干预可以改善儿童期的认知结果。有人认为,这些影响需要从发展中的微生物群的角度来考虑。

为了支持这一论点,最近对荷兰小学生进行的一项队列研究发现,学龄前饮食与代谢表型之间关系的强度取决于微生物群的组成

儿童营养不良延缓了微生物的成熟,从营养不良的儿童身上移植到啮齿动物或猪身上的粪便菌群表明,这种改变的菌群在与营养不良相关的发育迟缓和代谢问题中起着因果作用。在这两种动物模型中,通过补充唾液酸化的母乳低聚糖来解决这些微生物依赖性问题。这些化合物通常存在于母乳中,作为微生物群的益生元,在营养不良儿童的母亲母乳中含量较低。

最近的另一项“微生物导向补充食品”试验发现,与传统食品治疗相比,在动物模型和营养不良儿童中都有很好的效果

营养物的可利用性微生物群和代谢发展之间似乎存在着重要的相互作用,通过喂养微生物群,微生物群可以喂养发育中的身体和大脑。

屏障功能

在微生物群和大脑之间,有两大屏障:胃肠道屏障血脑屏障(BBB)。

这些屏障的通透性与微生物来源的代谢产物神经递质在微生物-肠-脑轴之间的传递特别相关;渗透性越强,传递的信号就越多。

这两个障碍有惊人的相似之处

  • 首先,两者主要功能是防止入侵病原体和毒素。
  • 第二,它们具有一些广泛的结构相似性,由一个细胞层组成,该细胞层与免疫细胞(尤其是肠屏障的T细胞、大脑的小胶质细胞)一起构成主要的物理屏障,这些细胞可以抵御病原体。
  • 第三,尽管这些结构边界以及在这些关键界面上分离内外环境的重要性,但这两个屏障都不是完全不可穿透的。两者对某些生物和化学元素都有选择性的渗透性。在健康状态下,这允许来自胃肠环境的营养物质或信号分子流入血液和/或在大脑和身体之间传递。然而,如果这些受到严密监管的系统崩溃,屏障通透性的增加会导致各种病理形式的脆弱性。
  • 第四,这两种屏障在出生后仍在继续发展,在早期的发育阶段被认为是最易受伤害的。
  • 最后,至少在动物模型中,胃肠道和血脑屏障都是由微生物群调节的。微生物群密切地调节胃肠道的发育,无菌动物在肠屏障中表现出深刻的结构和功能改变。这些变化包括紧密连接蛋白和mRNA(claudin-1和clauddin)的表达改变、微绒毛拉长和粘膜层丢失,所有这些都可能导致肠通透性的增加。微生物群也与血脑屏障的发展有关。无菌动物的血脑屏障通透性显著增加,从子宫开始一直持续到成年。无菌动物BBB完整性的丧失伴随着紧密连接蛋白(claudin和claudin-5)表达的减少。成年后,无菌动物的肠道和血脑屏障通透性都可以通过再电离恢复,表明屏障功能和肠道微生物群之间存在着终生的联系。

3
微生物或饮食干预调节对大脑健康的影响

饮食或益生菌干预有希望恢复?

饮食干预在减少压力或其他微生物群对整个生命周期学习和记忆结果的影响方面显示出了希望。

在成年啮齿动物中,益生菌补充被用于逆转压力、感染或抗生素治疗后的空间记忆缺陷,甚至在空间记忆、物体识别记忆和长期恐惧记忆方面为健康动物提供益处

在青春期,饮食中添加ω-3多不饱和脂肪酸维生素A可恢复慢性社会不稳定应激后盲肠微生物群的组成和新的物体识别障碍。

在发育早期,特定的益生菌菌株(鼠李糖乳杆菌和瑞士乳杆菌)拯救了暴露于早年母体分离应激的幼鼠条件恐惧行为的预期发育模式。压力大的婴儿表现出更持久的恐惧记忆,在恐惧消失后更容易复发,但这两种行为异常都可以通过益生菌治疗逆转

饮食-微生物群相互作用在阿尔茨海默改善中的作用

鉴于阿尔茨海默患者与健康受试者之间微生物群差异的新数据,研究人员已经开始探索通过调节微生物群来改善阿尔茨海默。

我们知道肠道微生物群可以通过多种方法进行调控,包括使用益生菌、益生元、合生元和抗生素或改变饮食,但饮食是肠道微生物群的最重要调节方式

不饱和脂肪、水果和蔬菜以及全谷类为重点的饮食调节可以给阿尔茨海默相关的认知健康带来好处。例如,地中海饮食通过增加血浆类胡萝卜素和降低C-反应蛋白水平,与阿尔茨海默关键区域的脑萎缩减少相关,表明对阿尔茨海默病理学有积极影响。

此外,炎症也是阿尔茨海默的主要症状。食用富含二十二碳六烯酸(一种n-3多不饱和脂肪酸)的鱼制品降低阿尔茨海默风险有关。富含维生素D3的鱼和富含维生素D的奶制品促进神经生长因子蛋白的分泌,这种蛋白可以防止大脑炎症和衰老。

由于地中海饮食对阿尔茨海默的这些改善作用,一项人体试验研究了MD-DASH饮食干预对神经退行性延迟(MIND)的影响,该饮食是地中海饮食与DASH饮食(阻止高血压的饮食方法)的结合,富含水果,蔬菜,全谷类,低脂乳制品和瘦肉蛋白,实验表明MIND饮食比单独使用地中海饮食或DASH更为有效

除了某些饮食生活方式外,个别食物还可以带来抗阿尔茨海默病理学的益处。例如,在小鼠模型中:

  • 饮用红酒可防止Aβ肽生成并降低阿尔茨海默风险。
  • 富含类黄酮的食物,例如黑加仑子,葡萄,柑橘和绿茶,已显示出抑制Aβ沉积并防止tau蛋白过度磷酸化,同时改善了阿尔茨海默的其他生物标志物。

几项研究探讨了直接针对阿尔茨海默肠道细菌的补充剂的使用:

  • 一项随机双盲对照人体试验,研究了12周食用嗜酸乳杆菌(Lactobacillus acidophilus)、干酪乳杆菌(Lactobacillus casei)、双歧杆菌和发酵乳杆菌(Lactobacillus fermentum)的益生菌组合的效果,对认知功能有显著的积极影响,但对氧化应激或炎症没有影响。
  • 一项小鼠实验研究了生物素丁酸钠对早期阿尔茨海默小鼠Aβ水平和行为症状的影响,发现补充丁酸钠12周后Aβ水平显着降低,行为反应增加。

益生菌和益生元的组合合生元也显示出对阿尔茨海默的益处。

  • 一项人类研究观察到,阿尔茨海默患者食用开菲尔谷物发酵的牛奶(形成共生物质)90天后,精神能力得到改善,炎症和氧化应激减少。

综上所述,目前有关饮食和补充剂影响肠道微生物群和改善阿尔茨海默是有希望的,但更多的研究是也非常需要。

4
脑肠轴如何通过免疫系统影响大脑?

我们的肠道和大脑里都住着一些非常勤劳的免疫细胞。它们调节着炎症反应和免疫稳态。这种调节过程对于防止炎症相关疾病至关重要。

想象我们的肠道是一个繁忙的社交场所各种微生物在这里聚会,它们通过免疫系统的路径与大脑沟通,影响着精神和神经发育。而饮食、压力和我们早期的生活经历则是这场社交活动的调味料,影响着微生物群的组成和它们的交流方式。

肠道微生物群和肠道屏障的微小变化,都能引起中枢神经系统内免疫调节的变化。这就像是在说,改变我们的饮食习惯有可能对治疗多发性硬化症等疾病有潜在的帮助。

而益生菌、益生元和健康饮食不仅能让我们的肠道微生物开心,还能通过一系列免疫、神经和代谢途径,帮助调节大脑的发育和行为。这就像是给大脑发送了一份特别的营养餐。

肠道微生物群的影响力非常强大,它们通过神经递质、神经肽、激素和细胞因子,成为大脑、肠道、免疫系统和自己之间沟通的信使。

肠-脑轴甚至能通过分泌信号和免疫系统的激活,改变大脑的功能,有时候还会导致精神疾病。而迷走神经在这个双向通讯过程中,就像是一个忙碌的信息传递员。

有趣的是,微生物群还能通过抑制免疫系统诱导炎症来影响脑肿瘤的发展和治疗结果。这让我们意识到,微生物群在精准肿瘤学中的作用可能远比我们想象的要大。

肠-脑轴内的相互作用,包括自主神经和中枢神经系统、应激系统和肠道免疫反应,都与炎症性肠病的发病机制有关。而大脑-肠道-微生物组通讯的干扰,可能会导致肠易激综合征、肥胖以及各种精神和神经系统疾病。

总之,肠-脑轴通过免疫系统调节大脑功能,免疫细胞、微生物代谢物和各种信号分子在肠道微生物群和大脑之间建立了一个复杂的通讯网络。饮食、压力和早期生活事件是塑造这种相互作用的关键因素,对于治疗精神、神经发育和神经退行性疾病,以及炎症和压力相关疾病的干预具有潜在的影响。

5
哪些具体的肠道菌会影响认知衰退?

长双歧杆菌,能够通过阻止肠道菌群失调、降低内毒素水平和调节大脑炎症途径来保护我们的认知功能。简而言之,长双歧杆菌是我们大脑的守护神。

但是,就像任何城市一样,总有一些不那么受欢迎的居民。研究发现,Megamonas、Serratia、Leptotrichia和梭菌科的增加与阿尔茨海默病的早期阶段有关。同时,一些好家伙,比如CF231、Victivallis和肠球菌的数量减少,这也不是个好消息。

阿尔茨海默病患者的肠道小城市里,双歧杆菌、鞘氨醇单胞菌、乳酸菌和Blautia的数量丰富,但鞘氨醇单胞菌的增多似乎与认知功能的下降有关。同时,恶臭杆菌、厌氧杆菌的减少也值得我们关注。

认知障碍的情况下,放线菌和变形菌的丰度较高,而拟杆菌门和厚壁菌门的比例较低。这意味着,肠道小城市的居民组成与我们的认知健康紧密相关。

轻度认知障碍似乎与瘤胃球菌属、丁酸单胞菌属和草酸杆菌属的减少有关,而黄硝杆菌属的增加可能预示着问题。

主观认知能力下降的个体显示出抗炎的粪杆菌属显着减少,这提示我们,肠道中的抗炎英雄可能在保护我们的大脑健康方面发挥着关键作用。

6
哪些菌会导致抑郁?

科学研究已经锁定了一些特定的细菌属,它们似乎与重度抑郁症(MDD)有着密切联系。

研究人员发现,Gelria、Turicibacter、Anaerofilum、Paraprevotella、Holdemania、Eggerthella属在抑郁症患者中普遍存在,而普雷沃氏菌(Prevotella)和戴阿利斯特杆菌Dialister)的存在减少。

抑郁症患者体内有益菌大量减少

后来的研究还发现,与对照组相比,抑郁症患者肠道微生物总体减少。肠道微生物群中的双歧杆菌和乳酸菌减少

Dorea瘤胃球菌属阿克曼氏菌属显著减少副拟杆菌属Parabacteroides)、雷沃氏菌属和放线菌属Actinobacteria)的增加与抑郁个体相关。

Basiji K, et al., Metab Brain Dis. 2023

通过饮食调整,增加那些能让有益菌群欣欣向荣的食物,比如高纤维的蔬菜和水果,以及富含益生菌的酸奶和其他发酵食品。同时,减少抗生素的使用和压力水平,也能帮助我们维持肠道菌群的平衡。

我们不仅能够保持消化系统的健康,还能通过肠脑轴的联系,促进大脑健康,提升生活质量。

7
哪些菌与神经发育相关?

首先,有一些细菌属如拟杆菌属和双歧杆菌属,它们就像是小小的神经发育助推器,特别是在认知和语言发育方面。这些微生物帮助大脑发育,让你变得更聪明。

TuricibacterParabacteroides在那些精细运动技能不太灵光的小朋友的肠道中更常见。相反,双歧杆菌和乳酸杆菌则在那些精细运动技能较好的孩子们中占据主导地位。就仿佛这些微生物在背后默默地支持着孩子们的每一个小动作。

Gordonibacter pamelaeBlautia wexlerae似乎与更高的认知功能有关,而瘤胃球菌则在认知得分较低的儿童中更常见。这就像是肠道中的智力竞赛,不同的细菌支持着大脑的不同功能。

毛螺菌科的出现与最佳的头围生长有关,而头围生长是神经发育的一个重要标志

总的来说,特定的肠道细菌,如拟杆菌属、双歧杆菌属、乳杆菌属等,对早期神经发育有着不可忽视的影响。它们与认知和运动技能的发展,以及大脑的整体生长密切相关。这些发现让我们意识到,婴儿期肠道微生物组的组成可能对我们的神经和心理健康产生长期影响。

结 语

本文主要简述了大脑发育(神经发育),强调了神经营养素以及脑源性神经营养因子(BDNF)对神经发育以及功能和修复等的重要性。这些神经营养素或神经营养因子需要我们日常膳食足量足质的补充或摄入。此外,这些营养素吸收,转化以及代谢等都离不开肠道及其微生物群,而且肠道微生物还会通过其他多种途径影响大脑的发育,认知以及衰老和疾病发生。

如果将大脑和肠道都看着是两座超级大城市,那么神经营养素或因子和肠道菌群就是其中的参与者、建造者、使用者和维修者。例如优质的膳食脂质,比如磷脂和鞘脂,是认知功能的守护者,而双歧杆菌尤其长双歧杆菌就是肠道的领路者和超级英雄。

作为人体两大超级系统(大脑-肠道),它们之间的交流和互动密不可分,保持着信息和资源的畅通。我们在日常生活中的饮食习惯和生活方式不仅影响着肠道微生物的构成和功能,也直接关系到大脑的健康和发育。要想让这两座超级大城市运转良好,需要关注神经营养素的摄入和肠道菌群的平衡,尽可能让身体和大脑保持最佳状态。

主要参考文献

Borrego-Ruiz A, Borrego JJ. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2023 Sep 8:110861.

Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol. 2020 Feb;19(2):179-194.

Bear T, Dalziel J, Coad J, Roy N, Butts C, Gopal P. The Microbiome-Gut-Brain Axis and Resilience to Developing Anxiety or Depression under Stress. Microorganisms. 2021 Mar 31;9(4):723.

Bryan B. Yoo et al. (2018) The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity. 46(6): 910–926.

Shivani Ghaisas et al. (2016) Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther. 158: 52–62.

Cerovic M, Forloni G, Balducci C. Neuroinflammation and the Gut Microbiota: Possible Alternative Therapeutic Targets to Counteract Alzheimer’s Disease? Front Aging Neurosci. 2019 Oct 18;11:284.

Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol. 2020 Feb;19(2):179-194.

比尔盖茨:如果只能解决一个问题,我的答案总是营养不良

谷禾健康

当地时间12月19日,微软联合创始人、亿万富翁比尔·盖茨发布了对来年的年度预测,称 2024 年将是一个“转折点”。

在这封长达 10 页的信中他展示了对人工智能领域的更多创新、婴儿营养不良问题的突破气候变化谈判的进展等多方面的期待。

人工智能可以让世界变得更加公平。盖茨对人工智能的预测超越了去年的超声波预测,他断言人工智能的进步将广泛改善全球健康,同时促进创新

人工智能可以帮助世界各地对抗抗生素耐药性疾病,识别高风险妊娠并估计孕龄等,他预计人工智能在开发新药诊断疾病增强教育资源方面将发挥至关重要的作用。

盖茨表示,世界在利用肠道微生物补充剂来解决儿童营养不良方面即将取得突破

本文我们来看看盖茨眼中的儿童营养不良问题及解法,盖茨预计,随着对微生物组的深入研究,人们将能够开发出以微生物为基础的新型营养治疗方案,这将给解决全球儿童营养危机带来重要进展。

以下是比尔·盖茨年度展望的部分节选

期待已久的营养不良问题的突破即将到来

在盖茨基金会,我们愿意下大赌注。我们知道每一次冒险都可能没有回报,但这没关系。我们的目标不仅仅是逐步取得进展。我们的目标是将我们的努力和资源投入到重大项目中,这些项目一旦成功,就能拯救和改善生命。

当你下一个大赌注时,你往往要等待很长时间才能看到它是否有回报。当你终于意识到它会成功时,那种感觉是难以置信的。我最兴奋的一次豪赌就接近了这一时刻:利用我们对肠道微生物群的了解来预防和治疗营养不良

经常有人问我,如果只能解决一个问题,我会选择什么。我的答案不变:营养不良。这是世界上最严重的健康不平等现象,大约每四个儿童中就有一个受到影响。如果在生命的头两年得不到足够的营养,身体和智力都无法正常发育。通过解决营养不良问题,我们可以减少导致儿童死亡的最大因素之一。

营养不良的原因远比没有得到足够的食物要复杂得多。大约15年前,研究人员注意到脊髓灰质炎等口服儿童疫苗在营养不良率高的地区效果不佳,他们开始怀疑生活在肠道中的微生物群可能在其中发挥了作用。很明显,有什么东西妨碍了它们被正常吸收。

这种怀疑在2013年得到了证实,当时生物学家杰夫·戈登(Jeff Gordon)发表了一项有里程碑意义的研究,关于马拉维一对双胞胎婴儿的微生物群。微生物群不仅是健康的副产物,还是健康的决定因素。这是第一条重要线索,表明我们或许可以通过改变肠道微生物群来减少营养不良问题

经常有人问我,如果只能解决一个问题,我会选择什么。我的答案不变:营养不良

在过去的十年里,我们对肠道微生物群的了解比之前的1000年还要多。我们发现,生活在肠道中的细菌可能处于功能失调状态,从而导致炎症,使人无法吸收营养。我们发现,如果及早干预,就能最大程度地改善肠道微生物群。

在人类发育过程中最先出现的肠道细菌之一叫做婴儿双歧杆菌。它能帮助将母乳中的糖分分解成人体生长所需的营养物质。反过来,母乳又为婴儿双歧杆菌和整个肠道微生物群提供食物。这是一个良性循环。但是,如果婴儿一开始没有足够的婴儿双歧杆菌,他们就可能无法从母乳中吸收足够的营养来支持其他必要的肠道细菌的生长。

要克服这种缺陷几乎是不可能的。你可以获得世界上所有富含营养的食物,但这并不管用。如果你的肠道生长路径过早被打乱,你可能永远无法吸收到所需的全部营养。

但是,如果我们能给高危婴儿服用婴儿双歧杆菌作为益生菌补充剂呢?我们能否及早干预,让他们正常发育?

这正是基金会合作伙伴多年来一直在研究的问题——我们终于找到了答案。我们正在对一种可添加到母乳中的婴儿双歧杆菌粉末补充剂进行三期临床。来自5个国家的16000名婴儿参与了试验,研究人员正在对每个婴儿进行跟踪,以确保益生菌既安全又有效。

目前的研究结果令人惊叹:通过给婴儿喂食这种益生菌,可以帮助他们的微生物群进入积极状态,从而使他们能够长大并充分发挥潜力。这对预防营养不良大有裨益

在婴儿出生前就能改善肠道微生物群,这也让我感到兴奋。新的研究发现,婴儿的微生物群母亲的微生物群息息相关。解决子宫内的炎症问题会给产妇、胎盘和发育中的胎儿带来更多益处

如果我们能给准妈妈提供一种益生菌补充剂,让她的孩子从出生第一天起肠道就正常发育,那会怎么样呢?目前还不清楚这些活体生物药到底是什么样的,也不清楚如何给药,这还只是非常早期的研究。但研究表明,健康的微生物群可帮助婴儿在妊娠晚期每天增加5克体重

在过去十年里,儿童健康领域发展速度超出了我一生中的预期。看到微生物群从一个完全看不见的东西变成解决世界上最大健康不平等之一的关键策略,真是令人惊叹。我迫不及待地期待在接下来一年里我们将学到多少新知识,以及我们将如何运用这些知识来拯救生命…

——比尔·盖茨

儿童营养不良问题的现状如何?带来什么问题?

儿童营养不良问题给全球健康带来巨大挑战,据世界卫生组织和联合国儿童基金会的数据统计,到 2020 年,估计有1.49亿 5岁以下儿童生长发育迟缓(年龄身高低),而 4500万儿童出现消瘦(WLZ 低)。

营养不良及其长期后遗症是该年龄段人群发病和死亡的主要原因。后遗症包括线性生长、免疫和代谢功能以及神经发育持续损害——所有这些都对当前的干预措施有很大的抵抗力。

从比尔·盖茨的年度总结我们也可以看到,他十分重视肠道微生物对健康的影响,总的来说,微生物方面的研究给儿童健康带来了很大希望。

从肠道微生物组的角度入手,对营养不良儿童进行基于微生物群的相关干预措施,比尔及梅琳达·盖茨基金会已支持多项相关研究。我们来看近期得到该基金会支持的两篇研究文献。

研究一:柳叶刀子刊| 抗生素对严重急性营养不良儿童肠道微生物组的影响

健康儿童中,肠道微生物组在分类和功能多样性方面稳步增长,直到3岁,其中最明显的变化发生在断奶期间。相比之下,营养不良儿童的肠道微生物组是年龄倒退的,即肠道微生物组与年幼儿童相似。

抗生素是严重急性营养不良的标准治疗方法,因为即使儿童没有出现明显的疾病,他们也可能因急性感染而突然恶化。

在马拉维和尼日尔,与安慰剂相比,短期(即7天)阿莫西林给药已被证明在降低全因死亡率、住院率、腹泻病和改善人体测量方面具有益处。

然而,抗生素治疗对严重急性营养不良儿童的潜在后果(如抗生素耐药性的发展和微生物组破坏)仍存在不确定性

研究设计

研究人员想要确定 7 天的阿莫西林治疗,对接受严重急性营养不良治疗的儿童肠道微生物组抗生素耐药组急性和长期变化的影响。该成果发表在《Lancet Microbe》。

研究人员对尼日尔门诊治疗的严重急性营养不良儿童(6-59 个月)的阿莫西林随机、双盲、安慰剂对照试验 (NCT01613547) 进行了二次分析。从2013年9月23日至2014年2月3日从整个队列中随机选择了161名儿童(n = 2399)进行最初12周的随访。

根据人体测量结果从这161名儿童中选择了一个方便样本,2年后(2015年9月28日至10月27日)进行随访。儿童在基线、第 1 周、第 4 周、第 8 周、第 12 周以及 2 年随访队列中的第 104 周提供了粪便样本。研究人员进行了宏基因组测序,然后对粪便样本进行了微生物组和耐药组分析。38 名无严重急性营养不良的儿童和 6 名与原始队列基线年龄相匹配的严重急性营养不良儿童被用作参考对照。

研究结果

结果表明,营养不良的尼日尔儿童在接受抗生素治疗后,虽然发现克雷伯氏菌属、埃希氏菌属等增加,这些菌可能与更严重的感染相关,但是,微生物组和耐药组扰动的负面影响似乎是短暂三周内完全消失

进一步观察到阿莫西林治疗的一些意想不到的长期益处,包括改善长期微生物组丰富度,多样性和成熟度

阿莫西林对长期微生物组成熟的影响

doi.org/10.1016/S2666-5247(23)00213-6

生命头三年肠道微生物组急剧成熟的一些关键驱动因素包括婴儿在出生期间和出生后接触母体微生物、加入牛奶、奶粉以及向固体食物的过渡。在营养不良的儿童中,肠道微生物组的成熟过程和生长都受到阻碍。但在治疗计划中加入抗生素改善了他们的身体测量和微生物组发育。

抗生素可能起到重置的作用,使有助于固体食物消化的微生物群在肠道生态系统中繁衍生息。

接受抗生素治疗的效果,对严重营养不良儿童来说算是个好消息,对于这一特定人群,抗生素治疗的益处似乎大于风险,但风险确实存在。研究人员警告说,儿童中已知的耐药细菌和耐药基因的增加不应被忽视。

营养干预措施,如即食治疗性食品,已被证明可以暂时改善肠道微生物组的成熟度和人体测量得分;然而,这种改善并不总是持续的。

在过去的5年里,合理设计的以微生物群为导向的治疗性食品在中度和重度急性营养不良儿童的微生物组恢复和人体测量得分方面显示出了希望

接下来我们来看对于微生物群为导向的治疗性食品研究的最新进展。

研究二:Nature|针对营养不良儿童的微生物组食品中的生物活性聚糖

生命头两年,肠道微生物群的发育需要与身体其他部分、其他器官系统的发育同步。当这个微生物群不完全形成时,仅仅增加热量是无法修复的。研究人员试图寻找特定的食物成分,以滋养健康的肠道微生物群,希望修复营养不良儿童肠道微生物群功能失调

使用传统食疗食品治疗可减少死亡,但并不能实质性改善营养不良的其他长期影响,包括新陈代谢、骨骼生长、免疫功能和大脑发育问题。

近日,来自华盛顿大学医学院的一项研究,已经确定了一种新型治疗食品中天然存在的关键生化成分,以及处理这些成分的重要细菌菌株

该研究表明,识别这些成分以及作为其治疗靶标的关键促生长肠道细菌菌株,研究强调了了解细菌菌株如何加工特定食物成分的重要性可以帮助指导当前食品配方的治疗,并可以在未来创造新的、更有效的配方。该研究成果于2023年12月13日发表在《Nature》杂志。

研究人员从试验参与者的粪便微生物群中重建了1000个细菌基因组(宏基因组组装基因组,简称MAG),确定了75个丰度与体重生长(体重长度Z评分变化,简称WLZ正相关的MAGs。将MAG基因表达的变化表征为治疗类型和WLZ反应的函数,并定量MDCF-2和粪便中的碳水化合物结构

结果表明,两个与WLZ呈正相关的普雷沃氏菌MAG是MDCF-2诱导的代谢途径表达的主要贡献者,这些代谢途径涉及利用MDCF-2的组分聚糖

结果强调了微生物组反应的显著菌株特异性,并指出两种普氏菌菌株(MAG Bg0018 和 MAG Bg0019)是 MDCF-2 聚糖代谢和宿主体重生长反应的关键介质

在生长相关细菌分类群代谢的MDCF中鉴定生物活性聚糖结构,有助于指导关于其在急性营养不良儿童中使用的建议,并有助于开发其他制剂。

在这项工作的基础上,世界卫生组织与比尔及梅琳达·盖茨基金会正在支持一项大型多站点临床试验,研究这种新的治疗性食品——MDCF-2,或微生物组导向的补充食品。

MDCF-2 治疗性食品包括哪些食物成分?

在 2021 年的临床试验中,MDCF-2 治疗性食品作为膳食补充剂提供,以提供儿童每日能量需求的约 20%

  • MDCF-2的成分包括鹰嘴豆粉、大豆粉、花生酱和捣碎的青香蕉果肉;
  • 传统高热量即食辅食包括大米、扁豆、奶粉

Prevotella copri 两个菌株对MDCF-2干预改善营养不良的关键作用

研究人员发现:普雷沃氏菌Prevotella copri与儿童的生长发育正相关

P. copri是拟杆菌门的成员,该门的成员含有一组叫多糖利用基因座(PUL)的基因,这些基因介导特定聚糖或一组聚糖的检测、导入代谢

它们在利用MDCF-2治疗食品中有益的生物活性碳水化合物结构的代谢途径中表现出活性的增加

与接受传统治疗性食物的儿童相比,接受MDCF-2的儿童血液中支持肌肉骨骼生长和神经发育的某些蛋白质水平较高与炎症有关的蛋白质水平较低。也表明,微生物群修复的作用远不止于肠道。

研究人员对这些儿童的粪便样本进行了广泛的基因组分析,了解对这些食物成分有反应的细菌,以及这些细菌对治疗的反应所具有和表达的代谢能力。事实证明,许多与儿童生长密切相关的细菌富含碳水化合物代谢的途径。

分析不同食物中的关键有效成分

在该研究中,通过质谱分析MDCF-2和RUSF两类食品,确定其组成成分。

MDCF-2、RUSF 及其食品成分中的多糖

DOI: 10.1038/s41586-023-06838-3

对这些食物详细分析表明,MDCF-2食物中L-阿拉伯糖、D-木糖、L-岩藻糖、D-甘露糖和D-半乳糖醛酸 (GalA) 显著更丰富(P < 0.05)。

也就是说,MDCF-2含有更多的多糖,即半乳聚糖甘露聚糖。而传统的治疗性食物RUSF含有更多的淀粉和纤维素。

MDCF-2 有效提高营养不良儿童生长

尽管MDCF-2的热量密度比高热量食物低15%,但与接受传统补充食物的儿童相比,接受MDCF-2治疗的儿童表现出更高的生长速度

与MDCF-2治疗相关的生长增加与儿童微生物群中某些普氏菌菌株中存在的代谢途径的表达增加有关,这些途径与生物体利用MDCF-2中存在的多糖有关。

“来自食物频率问卷的信息表明,对MDCF-2反应最大的儿童食用了更多的坚果和豆类作为他们日常饮食的一部分” ,研究人员表示,“这些坚果和豆具有一些与MDCF-2相同的多糖。这表明可能有机会调整MDCF-2的成分和剂量,以进一步增强其治疗效果”。

营养不良儿童“微生物组修复”的一个定义是,重新平衡有益菌的表现和表达功能,使其呈现出更有利于健康微生物组-宿主共同发育的构型

以这种方式将膳食聚糖微生物代谢联系起来,为基于培养的计划提供了一个起点,这些计划旨在检索这些“效应”类群的分离物,用作潜在的益生菌制剂,或者如果与他们渴望的关键营养素相结合修复对单独基于食物的干预反应不足紊乱的微生物群,提供合生元配方。

当然,P.copri菌株和MDCF-2聚糖之间的关系并不排除其他宏量或微量营养素对MDCF-2在增重方面优于RUSF的贡献。

总之,为改善微生物群的营养干预提供了一种新的见解。

这些和其他研究的结果有助于加深我们对微生物如何与人类细胞和器官合作,从而影响发育生物学的理解,帮助相关产业科研人员开发微生物组导向疗法的方法,帮助开发构建儿童营养健康的新策略,以确保在出生后的头几年形成健康的微生物组,尽可能规避儿童营养不良风险。

同时,随着人工智能技术及高通量测序等先进技术的不断发展,整合食物-微生物-人体交互作用研究,通过对婴幼儿的肠道菌群进行定期检测,可以帮助家长更好地监测儿童肠道菌群的变化,及时发现异常,采取相应的纠正措施,有利于促进儿童的身心健康发育。

褪黑素的产生、功能、干预及其与肠道菌群的关系

谷禾健康

“唉,昨晚又没睡好!”

失眠已经严重影响着一部分人们的生活。失眠后会引起烦躁白天嗜睡精力不足、内分泌系统紊乱、认知功能受损、免疫力下降甚至易得心脑血管疾病

据中国睡眠研究会等机构统计,中国有超3亿人存在睡眠障碍。其中,19—25岁年轻人经常熬夜至零点以后;19—35岁青壮年是睡眠问题高发年龄段。 并且由于当代社会压力增加,失眠率还在不断攀升

影响睡眠质量的因素有很多:包括人体的生物钟,环境因素如光照、噪音、温度,还有心理状况,饮食状况及疾病状况。而近年来的研究发现体内有一种物质与睡眠紧密相关——它就是褪黑素

褪黑素于20世纪50年代首次被发现并表征,从那时起,广泛的研究揭示了它的生产、功能和潜在的治疗应用

褪黑素作为改善睡眠质量调节昼夜节律紊乱的补充剂已广受欢迎。除了在睡眠调节中的作用外,褪黑素还被发现具有抗氧化抗炎免疫调节神经保护特性。它影响生殖过程、心血管健康胃肠功能以及其他生理系统。

近年来,褪黑素肠道微生物群之间的关系已成为一个令人着迷的研究领域。研究表明褪黑素肠道微生物之间存在双向作用,强调了肠道微生物群对褪黑激素产生和代谢的潜在影响,以及褪黑激素对肠道微生物组成和功能的影响。

01
褪黑素的产生

褪黑素(N-乙酰基-5-甲氧基色胺)最早于1958年在牛松果体中发现并分离出来,因其能够美白青蛙皮肤,研究人员一开始认为作为一种“美白因子”,并将其命名为“褪黑素”。

后续的研究才证明了其在调节生物节律睡眠模式中的作用。

注:褪黑素是一种具有3-胺基和5-甲氧基的吲哚胺,因此具有两亲特性(同时具有亲水性和亲脂性)。

褪黑素的化学结构

Minich DM,et al.Nutrients.2022


褪黑素的合成

✦ 色氨酸是合成褪黑素的原料

松果体通常在黑暗环境中产生褪黑素,褪黑素生物合成从色氨酸开始,接着色氨酸转化为血清素(5-羟色胺)。5-羟色胺会经历两个酶促反应:首先,N-乙酰基转移酶进行N-乙酰化,产生N-乙酰-5-羟色胺。

然后,通过羟基吲哚-氧-甲基转移酶的作用,甲基从S-腺苷甲硫氨酸转移到N-乙酰血清素的5-羟基。N-乙酰基转移酶是褪黑素合成的限制步骤,它具有昼夜节律夜间活动是日间活动的50到100倍

褪黑素的生物合成途径

Miranda-Riestra A,et al.Molecules.2022

✦ 其他部位也可以产生褪黑素

值得注意的是,其他组织和器官也会产生褪黑激素,包括视网膜、胃肠道、皮肤和免疫细胞。其在胃肠道中的浓度比血清中的浓度高10至400倍

注:胃肠道中的褪黑素主要由肠嗜铬细胞、某些类型的免疫细胞和肠道共生细胞产生。肝脏几乎会降解所有褪黑素,这表明胃肠道褪黑素仅限于肠-肝轴,而不是循环到其他器官,并且它在局部发挥作用

在这些外周组织中,褪黑素的产生可能不会直接受光暗周期调节,但可能受到其他因素(例如饮食局部信号)的影响。

褪黑素在体内的合成

Miranda-Riestra A,et al.Molecules.2022


影响褪黑素产生的因素

平均而言,松果体每天产生0.1至0.9毫克褪黑素。但一些因素会影响褪黑素的分泌。

✦光照

光照对于调节褪黑素的产生起着至关重要的作用。视网膜中称为本质光敏视网膜神经节细胞(ipRGC)的特殊细胞可检测光并向下丘脑视交叉上核 (SCN)发送信号。

当暴露于光,特别是蓝光时,这些细胞会抑制褪黑素的产生。这是因为光照会抑制血清素N-乙酰转移酶和N-乙酰血清素O-甲基转移酶的活性,这些酶参与褪黑素合成。

Repova K,et al.Int J Mol Sci.2022

在没有光的情况下,例如在夜间,褪黑素合成的抑制被消除。SCN向松果体发出信号,以增加褪黑素的产生。因此,褪黑素水平上升,促进困倦并帮助调节睡眠-觉醒周期

✦生物钟

褪黑素的分泌与人体的生物钟密切相关。人体的生物钟是一种内在的生物节律,调节睡眠和其他生理过程。

褪黑素的分泌通常在晚上增加,帮助人们入睡。保持规律的作息时间和良好的睡眠习惯有助于维持正常的褪黑素分泌。

Minich DM,et al.Nutrients.2022

✦年龄

婴儿的褪黑素分泌和昼夜节律要到三个月左右才会发育。母乳喂养的婴儿可以从母乳中获得褪黑素。

从婴儿期到青春期,褪黑素的分泌水平随着年龄增长并达到稳定水平,然后从二十多岁开始随着年龄的增长而缓慢下降儿童通常比成人产生更多的褪黑素。这也是为什么年长者常常会有睡眠质量下降的问题。

Minich DM,et al.Nutrients.2022

✦色氨酸可用性

色氨酸(褪黑素合成的前体)的可用性也会影响褪黑激素的产生。色氨酸是通过饮食来源获得的,并且可能受到饮食新陈代谢等因素的影响。

充足的色氨酸对于合成血清素是必要的,血清素进一步转化为褪黑素。

✦药物和化学物质

某些药物和化学物质可能会影响褪黑素的分泌。例如,一些抗抑郁药物抗高血压药物咖啡因都可能抑制褪黑素的产生。

✦疾病和身体状况

一些疾病身体状况也会影响褪黑素的分泌。例如,睡眠障碍、抑郁症、焦虑症和肾脏疾病等都可能干扰褪黑素的正常分泌。

值得注意的是,褪黑素产生的调节是复杂的,涉及多种因素之间的相互作用。昼夜节律紊乱,例如轮班工作、时差反应或夜间暴露在人造光下,可能会影响褪黑素的产生并扰乱睡眠模式

总体而言,褪黑素的产生主要受到昼夜节律的调节,其中光照在抑制褪黑素合成中起着关键作用。黑暗色氨酸的可用性促进褪黑激素的产生,有助于调节睡眠-觉醒周期并促进健康的睡眠模式。

02
褪黑素的生理功能

褪黑素是一种多功能分子,在人体内具有多种生物学作用。在本节中,将介绍褪黑素对生理活动人体健康的相关影响。

Repova K,et al.Int J Mol Sci.2022

抗氧化、抗炎作用

许多研究已确定褪黑素是一种强大的自由基清除剂,甚至可能是迄今发现的最强的内源性自由基清除剂。体外和体内研究证明了褪黑素在抗氧化防御减少氧化应激抗炎过程中的作用。

• 褪黑素具有非常强的抗氧化作用

褪黑素是一种高效的抗氧化剂,因为一个褪黑素分子可以通过与其二级、三级甚至四级代谢物相关的级联机制清除多种活性氧和氮。

褪黑素的双重作用可以抑制促氧化酶(例如黄嘌呤氧化酶),同时还可以增强关键的抗氧化酶,例如超氧化物歧化酶、谷胱甘肽过氧化物酶和过氧化氢酶,有助于人体的第一道免疫防御代谢解毒

• 褪黑素可以抑制促炎性细胞因子

此外,褪黑素可以阻断作用于环加氧酶(COX-2)的促炎过程,并抑制炎症介质如肿瘤坏死因子-α(TNF-α)、白细胞介素-1β(IL-1β)和白细胞介素-6(IL-6)。

褪黑素还可以增强异常细胞的程序性细胞死亡(细胞凋亡),这在理论上使其成为一种理想的疾病治疗方法

调节昼夜节律,改善睡眠质量

人类的昼夜节律主要是由光照引起的,生活方式因素可能导致外在的昼夜节律障碍,如轮班工作或时差障碍,补充褪黑素可以通过提前或延迟调节昼夜节律。

褪黑素对具有睡眠和昼夜节律紊乱人群的影响已得到充分证实。在失眠患者中,外源性褪黑素对一些睡眠参数有显著影响,如入睡潜伏期总睡眠时间、早晨警觉性和睡眠质量

• 缩短了入睡潜伏期

一项针对失眠患者的荟萃分析包含5项原始研究,结果表明睡前2小时服用褪黑素2mg显著缩短入睡潜伏期

在其他一些目标群体中,也提供了褪黑素纠正昼夜节律方面的证据。一项针对睡眠觉醒时相延迟障碍(DSWPD)患者的荟萃分析得出的结论是,外源性褪黑激素可提前内源性褪黑激素的发作缩短入睡潜伏期

在有时差症状的受试者、轮班工人和非24小时睡眠-觉醒节律障碍中也观察到褪黑素对睡眠参数的改善作用

• 减少早醒时间,增加深度睡眠时间

最近的一项随机对照试验检查了97名中年失眠患者服用较高剂量的褪黑素(3毫克)4周对睡眠障碍的影响。研究显示褪黑素对睡眠参数有积极影响,例如减少早醒时间增加深度睡眠百分比

注:这些是睡眠的重要阶段,对于身体和大脑的恢复和健康至关重要。

缓解焦虑

褪黑素除了对肠道炎症有一定的缓解作用外,多项研究表明,服用褪黑素还能发挥抗焦虑作用

褪黑素的抗焦虑作用机制尚不完全清楚,可能与直接或间接作用有关。直接作用与大脑中褪黑素受体有关,间接作用与褪黑素调节各种神经体液系统(包括交感神经系统、糖皮质激素和神经递质)的能力有关,从而可能干扰应激反应和昼夜节律,并改变氧化和和炎症。

• 褪黑素用于预防术前和术后焦虑

在人类中,褪黑素已被测试为预防术前和术后焦虑的药物,作为麻醉药和止痛药辅助药物,以及用于预防术后谵妄

临床研究表明,在接受腹部子宫切除术、静脉局部麻醉期间的手部手术或其他选择性手术的患者中,作为术前用药给予褪黑素可以减少术前焦虑,并且与苯二氮卓类药物的抗焦虑治疗同样有效。

在接受小型择期手术的儿童中,褪黑素与咪达唑仑一样,可以减轻术前分离焦虑和与引入麻醉面罩相关的焦虑。

• 褪黑素可能比一些精神药物更安全

此外,一些临床研究观察到褪黑素在降低术后兴奋、苏醒性谵妄睡眠障碍发生率方面优于咪达唑仑。褪黑素还可以减轻结直肠手术和腹部子宫切除术患者的术后疼痛,同时减少吗啡用量

值得注意的是,褪黑素可以有效抵消精神药物引起的代谢副作用。褪黑素可降低抗精神病药物治疗引起的血压、体重增加或胆固醇水平。

褪黑素似乎是苯二氮卓类药物的一种安全替代品,可以缓解儿童和成人与外科手术相关的焦虑,同时被认为是一种安全且耐受性良好的药物。苯二氮卓类药物会损害麻醉后的精神运动和认知功能,但褪黑激素却不会。

此外,褪黑素在人体内还有一些非常重要的功能:

Markowska M,et al.Cells.2023

褪黑素对人体功能具有多种影响

Minich DM,et al.Nutrients.2022

神经保护和神经再生作用

褪黑素的浓度变化与睡眠-觉醒周期紊乱、情绪紊乱认知能力障碍、神经系统保护等有关。

• 对神经系统具有保护作用

由于其抗氧化特性,褪黑素可作为自由基的清除剂,在分子水平上调节多种反应,包括氧化应激炎症细胞凋亡

它会影响神经营养素神经递质的浓度。还有文献记载,褪黑素是钙蛋白酶的抑制剂,其活性在许多中枢神经系统疾病的发病机制中具有重要意义。

神经退行性疾病的发病机制与线粒体功能障碍有关。线粒体作为细胞能量来源,也是氧化损伤的目标。线粒体膜的敏感性会受到多种因素的损害,口服褪黑素可能会得到保护。线粒体膜选择性地吸收褪黑素,这是其他抗氧化剂不具备的功能。

初步研究还表明,它可能是淋巴液中的活性成分,有助于清除代谢废物,例如淀粉样蛋白的堆积。理论上,基于这一发现,从治疗角度来看,服用褪黑素可能是值得的,这样患有神经退行性疾病的老年人可以增加脑脊液类淋巴液的水平。然而,这个概念仍处于起步阶段。

免疫调节和加强监视

褪黑素另一个重要作用是其免疫调节加强免疫监视的能力。它刺激参与体液免疫和细胞免疫的不同细胞系的产生,例如巨噬细胞、自然杀伤细胞和CD4+细胞,并影响多种细胞因子的合成

• 褪黑素可以加强免疫调节和免疫监视

褪黑素的直接抗病毒抗菌作用已被记录。在严重感染期间,服用褪黑激素已被发现具有免疫调节和细胞保护功能,可以降低病毒和细菌炎症的死亡率。

• 褪黑素还曾用于新冠期间的辅助治疗

考虑褪黑素在氧化应激炎症过程以及免疫反应管理中的作用,对严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的病毒感染患者进行了检查。

研究表明,使用褪黑素作为辅助治疗可能是有益的,在2019年新冠状病毒(COVID-19)期间也使用了褪黑激素。

预防胃肠道疾病

消化系统中的褪黑素除了具有抗氧化作用刺激免疫系统的能力外,还可以减少盐酸的分泌,增强上皮的再生,并增加微循环

• 褪黑素有助于预防胃肠道疾病

所有这些功能使褪黑素成为预防不同胃肠道疾病的治疗选择之一,例如结直肠癌溃疡性结肠炎、胃溃疡和肠易激综合症。

据记载,补充褪黑素可以使胃食管反流病完全缓解。它对影响食道和胃的急性和慢性刺激物具有保护作用

一些研究还证实,褪黑素在预防非酒精性脂肪性肝炎方面对肝细胞具有很强的支持作用。

改善血压、血糖

• 褪黑素可以降低胆固醇和改善血压

在30名患有代谢综合征的患者中,使用褪黑素(每天5毫克,睡前两小时)短短两个月后,低密度脂蛋白胆固醇血压就得到了改善,而这些患者三个月的生活方式没有改变。

此外,褪黑素已被证明可以降低夜间高血压改善收缩压和舒张压,降低颈内动脉搏动指数,减少血小板聚集,并降低血清儿茶酚胺水平。

香港中文大学研究人员最近进行的一项荟萃分析和系统评价得出结论,口服褪黑素补充剂可将睡眠收缩压降低3.57毫米汞柱。

其他研究表明,褪黑素可以改善心力衰竭患者的预后,并被认为是这些患者的预防和辅助治疗措施

• 褪黑素可能有助于血糖控制

关于褪黑素是否有助于血糖控制的疾病(例如非胰岛素依赖型2型糖尿病)存在一些讨论。最近一项针对男性糖尿病患者的相对小型安慰剂对照研究表明,服用10毫克褪黑素三个月后,胰岛素敏感性降低了12%

褪黑素对糖尿病人群口服葡萄糖耐量的影响差异可能与褪黑素受体1B基因(MTNR1B)中2型糖尿病相关G等位基因的多态性有关。

对生育的影响

• 褪黑素有助于提高生育能力

已经在动物和人类群体中进行了褪黑素给药对生育影响的研究。研究发现,褪黑素可以提高生育能力卵母细胞质量成熟度和胚胎数量。

此外,还提出了在怀孕期间的积极作用。神经发生的保护、对胎盘的支持性影响以及氧化应激的减少是提高生育率改善胚胎-胎儿发育的关键。

活性氧会在怀孕期间引起干扰,它们也是围产期并发症的罪魁祸首。褪黑素是自由基的清除剂,具有抗氧化和细胞保护能力,这可能对成功怀孕至关重要。

• 褪黑素影响新生儿的健康状况

褪黑素不仅在怀孕期间发挥着重要作用,而且在新生儿病理发生时也需要其支持。褪黑素是脱氧核糖核酸(DNA)甲基化和组蛋白改变过程中的监管者。这样可以避免基因表达的根本性变化。使胎儿受到保护,免受一些疾病的影响。

怀孕期间褪黑素浓度不足可能会在个体发育早期的遗传密码中留下内分泌紊乱,随后在儿童期发生。

对骨骼健康的影响

根据细胞和临床前数据,有人认为褪黑素作用于骨代谢的合成代谢和分解代谢方面。

• 褪黑素增加了绝经后妇女的骨密度

一些临床试验证明了褪黑素在重新平衡围绝经期妇女骨重塑中的作用和增加绝经后骨质减少妇女的骨密度。

具体研究

在这些研究中,使用了多达3毫克的补充褪黑素。根据名为褪黑素微量营养素骨质减少治疗研究的为期一年的临床试验的结果,褪黑素(5毫克)、柠檬酸盐(450毫克)、维生素D3(2000IU/50微克) 的组合与安慰剂相比,能够对绝经后骨质疏松女性的骨标志物(例如骨矿物质密度)产生有利影响

除了有益地改变骨标志物之外,干预措施还改善了情绪睡眠质量等生活质量指标。当然,不能因此推断褪黑素是造成这些影响。

研究人员认为褪黑素是与年龄相关骨骼肌疾病的关键化合物,因为它通过其抗氧化潜力参与线粒体功能。这方面的研究结果可能对恶病质或肌肉减少症患者有帮助。

除了上述的影响外,褪黑素与肠道微生物组之间的相互作用也很有趣。肠道中包含着大量的微生物,其与人体健康密切相关,褪黑素已被发现与肠道微生物存在复杂且多样的联系,并可能因此影响人体健康。让我们一起来了解下。

03
褪黑素与肠道微生物间的双向关系

褪黑素主要由两种细胞产生:松果体细胞肠嗜铬细胞。松果体细胞位于大脑内的松果体中。肠嗜铬细胞位于整个胃肠道的表面,在胃肠道的粘膜内层浓度很高。

与松果体细胞不同,肠嗜铬细胞不受光和暗的调节,但似乎受到食物摄入消化的影响。

注:肠嗜铬细胞是神经内分泌免疫细胞,对肠道稳态至关重要。

★ 肠道中的褪黑素浓度比血清中高很多

据估计,肠道内的肠嗜铬细胞所含的褪黑素含量是松果体细胞产生的褪黑激素的400倍。肠道褪黑素水平可能比血清中褪黑激素水平高10至100倍

肠嗜铬细胞中褪黑素的生物合成

Iesanu MI,et al.Antioxidants (Basel).2022

肠道中褪黑素的释放以旁分泌方式发挥作用,增加胃粘膜的活动和循环,并增强胃肠道运动。此外,褪黑素在肠道中具有抗兴奋特性。它可以刺激上皮细胞的再生,并且还被证明对胃肠道内壁具有保护性抗氧化作用

旁分泌——通过扩散而作用于邻近细胞的激素传递方式。

Iesanu MI,et al.Antioxidants (Basel).2022

值得注意的是,关于松果体产生的褪黑素和肠道来源的褪黑素如何相互关联,是否存在肠道-松果体轴串扰,以及不同的饮食模式甚至特定食物、禁食方案或进餐时间可能相互影响,仍然是推测性的。改变全身褪黑素水平饮食和肠道产生的褪黑素这一领域还需要通过更多的研究来回答。


肠道微生物→褪黑素

褪黑素肠道细菌之间似乎具有复杂的相互关系。如下所述,微生物可以调节胃肠道中褪黑素的合成;相反,褪黑素与肠道微生物群的组成和动态有关。它们共同形成一个复杂的系统,在多个层面上发挥作用,以维持宿主的体内平衡

• 肠道菌群影响褪黑素的前体进而影响其水平

肠道菌群可以通过调节其必需的前体色氨酸5-羟色胺影响褪黑素水平。色氨酸的可用性可以通过饮食改变或通过改变肠道微生物群组成来改变。

肠道中色氨酸代谢的三种途径都可以受到肠道细菌的调节。关于吲哚途径,微生物组特征决定了吲哚衍生物的类型。这些吲哚衍生物具有广泛的作用,从对肠粘膜免疫系统的有益结果到肾毒性。

此外,炎症刺激激活的Toll样受体和肠道细菌释放的病原体相关分子模式分子会刺激犬尿氨酸途径

肠腔中产生的短链脂肪酸刺激肠嗜铬细胞释放血清素增强褪黑素的产生。内源性孢子形成细菌产生的其他代谢物可以激活肠嗜铬细胞并促进结肠中5-羟色胺的生物合成。

此外,抗生素引起的生态失调会增强吲哚途径抑制犬尿氨酸途径,并降低动物模型中的结肠5-羟色胺。

• 病原菌感染后褪黑素的分泌减少

多种细菌对肠道合成褪黑素有影响。例如,胃粘膜幽门螺杆菌感染下调褪黑激素生成酶的表达,并减少胃肠道中褪黑素的产生。感染清除后,褪黑素产量恢复到正常水平。

• 益生菌可能刺激褪黑素的产生

益生菌,对各种与菌群失调相关的疾病有效。研究还表明益生菌在刺激褪黑素产生方面发挥有益作用。

短期施用益生菌鼠李糖乳杆菌可以增加斑马鱼中褪黑素受体基因的丰度,与光周期转变为持续黑暗的结果相似。因此,益生菌似乎有可能影响褪黑素的产生,从而缓解各种疾病状态

相反,生态失调和随后的肠道损伤可能会降低局部肠道和全身褪黑素水平


褪黑素→肠道微生物群

越来越多的证据表明,褪黑素可以调节肠道微生物的组成和丰度,尤其是在各种病理状态下。

如下所述,褪黑素通过其作为抗氧化剂免疫调节剂昼夜节律调节剂的特性间接影响肠道微生物群,研究发现其还可能直接影响肠道微生物群。

• 褪黑素影响肠道微生物的昼夜节律

在人类中,褪黑素分泌主要以昼夜节律方式在夜间发生,血浆中最高水平出现在凌晨2至4点左右。

褪黑素的节律性释放由下丘脑前部的视交叉上核调节,代表中枢昼夜节律发生器。视交叉上核神经元的轴突投射到邻近的下丘脑核、丘脑和脑干,并使昼夜节律的一些组成部分同步,例如睡眠/觉醒节律、进食时间表和垂体/肾上腺轴的活动。

胃肠道和微生物群表现出与昼夜节律相关的变化,体外研究表明,多种肠道细菌受光暗循环影响,并与参与生物节律的分子密切相关。昼夜节律失调会引起并加剧炎症性肠病的炎症。

褪黑素含量高时,产气肠杆菌增殖的更快

产气肠杆菌(Enterobacter aerogenes)是人类肠道中普遍存在的细菌,具有昼夜节律,并对白天的褪黑素波动做出反应。

褪黑素存在时,产气肠杆菌以剂量依赖性方式增殖得更快。此外,当暴露于色氨酸、5-羟色胺或N-乙酰血清素时,没有观察到相同的效果,这突显了褪黑素的重要性和敏感性

产气肠杆菌主要生存于人类和动物的肠道,为人体内的正常菌群,在人体虚弱的特殊情况下才偶尔引起疾病

此外,大肠杆菌肺炎克雷伯菌对褪黑素的敏感性不同。另一项研究表明,高脂肪饮食会损害肠道细菌的日常波动,而褪黑素可以使这些波动正常化,这表明这种重新同步可能具有治疗意义 。

微生物代谢物(例如丁酸盐)的昼夜变化会影响宿主的生物钟。鉴于细菌代谢物的产生是周期性的,微生物功能与宿主的昼夜节律代谢之间存在隐含的联系。

• 通过氧化还原平衡影响肠道微生物组成

褪黑素的抗氧化活性存在于多种功能中,直接作用是中和自由基,间接作用是通过增加抗氧化酶的水平来发挥作用。

健康的肠道微生物群也具有相当大的抗氧化作用。共生细菌直接参与活性氧的代谢,因为产生乳酸的细菌(例如乳杆菌属)具有乳酸氧化酶、超氧化物歧化酶和丙酮酸氧化酶,这些酶可以去除活性氧减少氧化应激

在较高浓度下,活性氧具有潜在毒性并导致生物分子损伤,例如蛋白质、脂质和DNA的氧化,这可能导致多种细胞功能障碍,包括细胞死亡。

结肠健康很大程度上受到肠道抑制过量活性氧产生的能力的影响。值得注意的是,肠道微生物群的组成根据氧化还原平衡而变化。在暴露于氧化应激的小鼠中,肠道微生物群经历了拟杆菌门的增加和厚壁菌门、梭菌目、瘤胃球菌属(Ruminococcus)和颤螺菌属(Oscillospira)的减少

在衰老模型中,小鼠年龄越大,活性氧产生量越高梭菌目数量减少拟杆菌门丰度增加。当肠道损伤和生态失调时,胃肠道的抗氧化活性会受到抑制。例如,在炎症性肠病患者中,共生细菌多样性的减少和微生物群组成的变化与活性氧产生增加肠粘膜防御系统受损有关。在这些情况下,褪黑素可以发挥其抗氧化活性并重建氧化还原平衡,从而改善肠道微生物群组成

与其他器官类似,在肠道中,褪黑素不仅清除活性氧,还上调不同的抗氧化酶(GSH-Px、CAT、SOD)并下调促氧化酶。褪黑素可以通过与活性氧相互作用直接发挥其活性,或通过膜和核受体发挥其活性,膜和核受体作为其间接抗氧化作用的介质。

褪黑素激活该通路中的多个应激反应基因(例如AMPK、HIFa、Sirt),进而导致多种抗氧化酶的增加。

因此,通过所有这些褪黑素介导的途径减少肠道微生物群的氧化应激肠道微环境具有显著影响。


褪黑素在生态失调中的作用

越来越多的证据表明,褪黑素可以调节肠道特性常驻微生物,以应对压力(例如睡眠障碍)。

当评估褪黑素睡眠障碍肠道微生物组之间的相互作用时,在有明显肠道损伤的临床前研究中,血浆和肠道褪黑素水平会降低

总体而言,在睡眠障碍患者中补充褪黑素可以重建肠道微生物群平衡肠道屏障的完整性恢复了肠道微生物群的丰富性和多样性。

Wang X,et al.Microbiome.2023

• 增加了有益菌的丰度

在属水平上,补充褪黑素增加了阿克曼氏菌、乳杆菌、拟杆菌和粪杆菌(这些已知的有益细菌可以降低炎症),并减少了影响结肠炎的气单胞菌。

显著增加了阿克曼氏菌的丰度

褪黑素显著增加了阿克曼氏菌(Akkermansia muciniphila)的丰度,这种细菌以其在肠道中的有益作用而闻名(例如,增加粘蛋白产生,保持屏障完整性)。

提高了产丁酸盐细菌的丰度

此外,褪黑素通过增加拟杆菌属乳杆菌属、阿克曼氏菌属和粪杆菌属的丰度,提高丁酸盐的水平,丁酸盐是肠道微生物群的重要有益代谢物之一。

• 重建肠道屏障完整性

褪黑素还通过恢复因睡眠障碍受损的杯状细胞数量、粘液产生和肠上皮细胞增殖增加紧密连接蛋白(claudin-1、occludin、ZO-1)和含有半胱天冬酶募集结构域的蛋白9(CARD9)的表达来重建肠道屏障的完整性

• 降低促炎细胞因子,增加抗炎物质

睡眠障碍也会导致全身产生促炎症状态。褪黑素通过降低促炎细胞因子水平(IL-1β、IL-6、IL-17、TNF-α)同时增加抗炎标志物(IL-5、IL-10、IFN-α、IL-22)来抵消这种影响。

作为一种假定的机制,褪黑素还会下调睡眠剥夺小鼠的TLR4,从而降低长期炎症反应的可能性。

褪黑素在减轻粘膜损伤和生态失调方面发挥着至关重要的作用。这些发现表明,褪黑素可以作为益生元来治疗睡眠障碍相关的肠道损伤,并帮助保持肠道微生物群的平衡

需要注意的是,褪黑素抑制可能是导致肠道损伤和生态失调的罪魁祸首,而不是睡眠障碍本身造成的应激。

总之,外源性给予褪黑素可恢复由睡眠障碍引起的全身和肠道微生物群改变,这意味着褪黑素在根据健康状况调节微生物群落方面发挥着作用。

Iesanu MI,et al.Antioxidants (Basel).2022


褪黑素-肠道微生物轴对疾病的潜在影响

褪黑素肠道微生物群之间的相互作用对健康和疾病的各个方面都有潜在影响。大量临床和临床前研究证明了褪黑素结肠炎保护作用

• 结肠炎患者体内褪黑素水平下降

测量了疡性结肠炎患者和健康对照的降结肠和乙状结肠中褪黑素的浓度

与健康对照相比,疡性结肠炎患者的褪黑素水平急剧下降。值得注意的是,褪黑素浓度与组织学严重程度之间出现负相关。此外,溃疡性结肠炎患者中褪黑素生物合成途径中的关键酶AANAT和HIOMT的mRNA 水平显著低于健康对照。

这些数据表明疡性结肠炎患者的褪黑素水平下降,并且与疾病严重程度呈负相关,表明褪黑素可能参与疡性结肠炎的进展。

Zhao ZX,et al.Front Immunol.2022

(A)通过ELISA检测健康对照和溃疡性结肠炎患者中的褪黑素浓度;(B)结肠切片的代表性H&E染色(×20);(C)所有溃疡性结肠炎患者和健康对照的褪黑素浓度与组织学严重程度评分的相关性。

• 服用褪黑素可以减轻结肠炎

发现每日服用50毫克/公斤剂量的褪黑素治疗7天可显著改善恶唑酮诱发的小鼠结肠炎,体重减轻较少,结肠长度较长。

H&E染色显示,褪黑素治疗可预防肠道炎症,与对照组相比,褪黑素治疗导致CD11b+ Ly6G +中性粒细胞显著减少,并且炎症细胞因子的产生减少,例如TNF-α和Il-1β。

这些结果表明,褪黑素可以减轻恶唑酮诱发的结肠炎,炎症反应减少肠道完整性提高

• 服用褪黑素调节炎症性肠病的微生物组成

褪黑素改变微生物群组成的α和β多样性

Zhao ZX,et al.Front Immunol.2022

特定的变化与有益菌株的增加有害菌株的减少有关。例如,褪黑素增加瘤胃球菌科(Ruminococcaceae)和粪球菌属(Coprococcus)的水平,这两种细菌都是短链脂肪酸产生菌

它还增加双歧杆菌的含量,双歧杆菌作为益生菌在炎症性肠病中产生了积极的结果,以及乳杆菌的含量,乳杆菌是该疾病的另一种有前途的辅助疗法。

减少了条件性致病菌

相反,褪黑素给药后,肠道菌群显示出变形菌门显着减少,该门在炎症性肠病发病机制中发挥着重要作用。

链球菌属(Streptococcus)可能代表另一种被褪黑素下调的微生物并与疾病活动相关。另一项研究报告了脱硫弧菌消化球菌科和毛螺菌科的减少。发现脱硫弧菌和溃疡性结肠炎之间存在明显关联。尽管消化球菌科在炎症性肠病中的研究较少,但在一些研究中与肠道炎症相关。

重要的是,所有这些细菌组成的变化都伴随着明显的临床症状增强——通过多种组织学方法和症状学评估进行量化。这可能表明至少在一定程度上通过微生物群调节影响褪黑素的效果。

褪黑素在属水平上调节一些微生物群

Zhao ZX,et al.Front Immunol.2022

• 褪黑素有利于肠道屏障完整性

总的来说,就肠道微生物群而言,褪黑素不仅具有改变细菌种类组成的能力,而且还能够减少肠道细菌移位。事实上,在结肠炎模型中,褪黑素诱导紧密连接蛋白和闭合蛋白的上调,这些蛋白是肠道屏障的关键组成部分。

细菌易位是一种有害过程,可导致内毒素血症,与炎症性肠病活动呈正相关。

褪黑素肠道微生物群的调节可能对于缓解结肠炎至关重要。

除此之外,褪黑素还可以逆转高脂肪饮食产生的大多数代谢形态肠道微生物组成变化

• 褪黑素恢复高脂饮食导致的微生物变化

首先,褪黑素成功恢复了因高脂饮食而减少的微生物群多样性,改变了肠道微生物结构,使其类似于正常饮食的小鼠。与对照组相比,褪黑素增加了细菌数量,但它阻止了高脂饮食引起的细菌突然过度生长。

有趣的是,与仅接受高脂饮食的小鼠相比,接受褪黑素的高脂饮食小鼠和对照组的不同类群每日振荡之间存在相似性,证明褪黑素也可以恢复细菌节律性

它还刺激疣微菌门,包括阿克曼氏菌——一种治疗代谢紊乱的有效益生菌。脱硫弧菌科(产生内毒素的细菌)、AlistipesAnaerotruncus中的表达下调,这些细菌与肥胖相关

• 褪黑素改善代谢紊乱,降低脂肪比例

在影响这些微生物组相关的同时,褪黑素显著改善了高脂饮食啮齿动物的代谢紊乱。褪黑素还降低总体重内脏脂肪比例,促进棕色脂肪组织的产生和产热作用。它还降低炎症、脂肪生成基因表达以及胆固醇甘油三酯水平

此外,它重建了时钟基因表达和血清甘油三酯的正常昼夜节律变化,而这些变化被高脂饮食破坏了。它还通过降低血糖增强胰岛素敏感性增强葡萄糖代谢。对于肝脏,它可以对抗脂肪变性并抑制 NF-κB信号,该通路与非酒精性脂肪肝病有关。

褪黑素缓解脂质代谢异常的一个特殊机制与抑制大肠杆菌有关。研究人员在时差小鼠模型中研究了与代谢综合征相关的变化,这些小鼠表现出体重增加回肠脂质摄取增加以及血管生成素样4(脂质代谢调节剂)的减少。同时,观察到大肠杆菌和脂多糖产量增加。褪黑素逆转了所有这些修饰,并且通过下调大肠杆菌和脂多糖的合成,抑制了LPS/TLR4/STAT3等通路,使脂质摄取减少

肠道微生物群肥胖代谢综合征的发展中起着关键作用。褪黑素恢复这种复杂结构正常组成和功能的能力证明了其作为药物治疗这些病症的合理性。

!

注意

需要进一步的研究来充分了解褪黑素肠道微生物轴健康疾病的机制和影响。

然而,它强调了考虑肠道微生物群褪黑素相互作用维持肠道健康和整体健康方面的重要性。

04
补充外源性褪黑素的注意事项


褪黑素含量过低或过高的危害

褪黑素作为体内最重要的激素之一,过低或过高的含量都会对人体产生一些不利影响

▸ 褪黑素过低

失眠:褪黑素是调节睡眠的重要激素,过低的褪黑素水平会导致失眠和睡眠质量下降。

生物钟紊乱:褪黑素水平过低可能导致生物钟紊乱,影响日常作息和生理节律。

免疫功能下降:褪黑素具有免疫调节作用,过低的褪黑素水平会导致免疫功能下降,增加感染和疾病的风险。

心理健康问题:褪黑素与神经系统密切相关,低褪黑素含量可能与焦虑、抑郁等心理健康问题有关。

其他健康问题:一些研究表明,褪黑素含量过低可能与肥胖、糖尿病、心血管疾病相关。

▸ 褪黑素过高

通常情况下,人体不会出现褪黑素过高。一般都是在补充了外源性褪黑素的情况下导致体内褪黑素水平过高

一项研究对2130名患者进行了随机对照试验,发现过量服用褪黑素导致褪黑素水平过高引起的不良事件很少。其中最常报告的不良事件是日间嗜睡头痛、头晕和体温过低

除此之外,有一小部分研究发现过高的褪黑素水平可能对性欲性功能产生负面影响

由于褪黑素的代谢率较高,补充外源性褪黑素通常被认为是安全且耐受性良好的,大多数负面影响要么在几天内自然消退,要么在停药后立即消退。

褪黑素的分解代谢很快

循环中的褪黑素主要在肝脏和大脑中分解代谢。一般来说,褪黑素的半衰期(即分解一半所需的时间)约为30-50分钟。这意味着褪黑素在体内的浓度会在数小时内迅速降低。

在肝细胞中,褪黑素通过细胞色素P4501A2 (CYP1A2) 进行80%的羟基化;然后,在肾脏中,它被磺基结合(占总分解代谢的70%至80%)或与葡萄糖醛酸结合(占总分解代谢的5%)。

CYP1A2确保肝脏分解代谢。即使在肝脏水平,也存在脱乙酰化和脱甲基化途径。脱乙酰后,褪黑素转化为5-甲氧基色胺,氧化后转化为5-甲氧基吲哚乙酸。

褪黑素对人体如此重要,但经常会因一些外部环境生活作息疾病状态导致内源性褪黑素分泌不足,这个时候就需要一些外源性褪黑素来补充

补充外源性褪黑素也有一些注意事项,包括可用的剂量、最佳服用时间、禁忌症


膳食中天然的褪黑素

除了人体自身会分泌褪黑素外,许多食物中也存在一些天然褪黑素,尤其是植物性食品

✦ 许多植物性食品中含有褪黑素

自从20世纪90年代中期在植物中首次发现褪黑素(“植物褪黑素”)以来,各种食用植物草药中的褪黑含量不断被提及。

然而,其浓度范围广泛且不一致,取决于许多因素,例如品种生长条件、发芽、收获和加工(例如烘烤、干燥)等。

尽管褪黑素存在于大多数植物部位,但植物的生殖器官中的含量通常较高,尤其是种子,可能有助于确保植物的生存并抵御环境压力

值得注意的是,褪黑素在植物中的众多作用之一是刺激促进健康的植物营养素(如芥子油苷和多酚)产生。

褪黑素已被记录在下列植物性食品和饮料中:

Minich DM,et al.Nutrients.2022

✦ 动物食品中的色氨酸有助于转化成褪黑素

虽然有几个变量需要考虑,但一般来说,动物性食品中的褪黑激素含量相对植物性食品中较少。根据已发表的文献,牛奶和乳制品、鸡蛋、鱼和肉类(牛肉、羊肉、猪肉)含有一定水平的褪黑素。

相反,动物食品往往是比植物食品更好的膳食色氨酸来源,因此可能需要考虑将这些食物最终转化为大量的褪黑素


形式和剂量

如前所述,虽然一些天然食物含有褪黑素,但其含量较低,因此很难获得足够的治疗剂量褪黑素。必须强调的是,几乎所有褪黑素产品都涉及工业加工,因此可能导致一些潜在毒性

褪黑激素补充剂有多种形式,包括片剂、胶囊、舌下片和液体制剂

• 褪黑素可能产生副作用和依赖性

在临床应用中,据记录,过多的褪黑素或各种缓释剂型会产生副作用,例如第二天健忘症或“褪黑素宿醉”,发现睡了三到四个小时就睡不好,醒来后无法再入睡。长期高剂量服用褪黑素随着时间的推移,个人可能会产生依赖性

注:具有某些基因型的人,例如褪黑激素受体1B(MTNR1B)基因多态性,如果补充褪黑素,可能需要监测糖化血红蛋白

• 补充高剂量的褪黑素会导致体温过低

一项关键研究中,比较了多个剂量:生理剂量(0.3mg)、药理剂量(3mg)和0.1mg的低生理剂量。

研究发现补充0.3毫克/天褪黑素的数据最佳客观。生理剂量(0.3 毫克)可恢复睡眠效率,并将血浆褪黑素水平提高至成年早期的正常水平。药理剂量(3毫克)也能改善睡眠;然而,它会导致体温过低,并导致血浆褪黑素在白天一直保持升高状态

• 一般补充0.5-3毫克/天为宜

临床上补充褪黑素的剂量通常为每日0.5-3毫克;然而,发现剂量取决于产品类型,在某些情况下较低剂量也同样有效。

剂量参数可能会根据健康状况、睡眠问题类型或相关神经病理学等因素而有所不同,因此还需要根据每位患者提供适当的个性化的剂量。


服用时间

• 睡前一小时服用效果较好

从时间角度来看,许多与睡眠相关的研究都表明在睡前三十到六十分钟补充褪黑素效果较好;然而,一些研究表明,提前四个小时服用即可有效。

建议在黑暗环境较弱光刺激下服用褪黑激素,从而模拟基于明暗模式的生理动力学和昼夜节律


禁忌症

根据已发表的报告,口服褪黑素大多被认为是安全的,然而,在某些特定情况下可能需要进一步的临床监督。

• 一些药物会影响褪黑素的代谢

早期研究已发现,大部分褪黑素通过细胞色素CYP1A2代谢,小部分通过CYP1A1、CYP1B1和CYP2C19进行较少的代谢活动。

因此,影响这些酶途径的药物将影响褪黑素的代谢。褪黑素与一种或多种药物同时服用时应谨慎;否则,可能会导致不良副作用(如极度镇静)。

例如,最著名的相互作用之一是褪黑素与抗抑郁药物氟伏沙明的相互作用。该药物是一种已知的CYP1A2抑制剂,可通过减少褪黑素的降解来增强褪黑激素水平。同样,咖啡因也通过CYP1A2代谢,并可增加褪黑素水平

总之,虽然还不全面,但褪黑素可以与具有血液稀释降血糖、降血压、抗惊厥、镇静、抗抑郁或免疫抑制活性的药物、营养素或草药相互作用或受到影响

褪黑素的代谢和活性可能会受到许多饮食补充剂和药物的潜在影响,所有这些都说明了这样一个事实:每个人对褪黑素的个性化反应存在差异,具体取决于他们的饮食和医疗背景

由于缺乏安全性数据,不建议怀孕哺乳期的女性补充褪黑素。然而,有一些迹象表明褪黑素在这两个阶段可能都有好处。因此,让这些女性咨询了解患者个性化需求的健康专业人士是关键。同样,被诊断患有任何疾病的人应咨询其健康专业人员并接受医疗监督。

温馨提醒

调查发现,有的褪黑素产品月销已超过3万件,说明需要使用褪黑素来帮助改善睡眠的人已不在少数。需要注意的是,虽然补充外源性褪黑素可以在一定程度上改善睡眠质量、代谢健康或降低焦虑,但服用褪黑素存在的副作用使其不能成为长久的选择。

而且补充褪黑素主要是针对一些工作昼夜颠倒导致的内源性褪黑素分泌不足造成的睡眠障碍,对于其他原因造成的失眠可能效果一般。我们额外补充的这些褪黑素,并不能促进身体去分泌更多的褪黑素。如果停用褪黑素,可能睡眠情况还会回到原样,并不会解决本质问题

重点还是要从自身生活习惯出发,改善饮食,调节作息规律,增加体育锻炼并定期体检,及时了解自身健康状况。肠道菌群与很多影响睡眠的因素相关,例如压力、消化等,调节肠道菌群可以更全面地从根本上改善睡眠障碍

改善内源性褪黑素的措施

除此之外,调节内源褪黑素的措施有以下几种:

•控制光照暴露,睡前半小时不玩手机

光线会影响褪黑素的分泌,晚上避免暴露于强烈的蓝光,尤其是来自电子设备的蓝光。蓝光会抑制褪黑素的分泌,影响睡眠质量。

•维持规律的睡眠时间

建立健康的睡眠习惯,如果不是因为工作导致的昼夜颠倒,尽量每天保持规律的睡眠时间,避免熬夜睡眠不足

•营造舒适的睡眠环境

保持安静、黑暗和凉爽的睡眠环境,可以使用遮光窗帘、耳塞或眼罩等辅助工具,有助于提高睡眠质量。

•避免过度应激

减少压力和焦虑,通过放松技巧如深呼吸、冥想和瑜伽等来缓解压力,有助于促进褪黑素的分泌。

•适度运动

进行适度的有氧运动,如散步、跑步或游泳等,可以提高睡眠质量和褪黑素的分泌。

•饮食调整

摄入富含色氨酸的食物,如禽肉、鱼类、坚果和豆类,色氨酸是合成褪黑素的必需物质。此外,可以适量摄入富含维生素B6的食物,这些营养素有助于褪黑素的合成和释放。

05
褪黑素目前的临床应用和未来展望

褪黑素在临床上有多种应用,以下是一些常见的褪黑素临床应用


临床应用

•睡眠障碍

褪黑素补充剂通常用于治疗睡眠障碍,如失眠、睡眠时相延迟综合征和非24小时睡眠觉醒障碍。它可以帮助调节睡眠-觉醒周期并提高睡眠质量。治疗睡眠障碍的剂量通常为0.3毫克至10毫克,睡前30分钟至2小时服用。

•时差反应

褪黑素可用于缓解时差反应症状,时差反应是因跨越多个时区旅行而导致的睡眠-觉醒周期暂时中断的症状。

在睡前适当的时间服用褪黑激素,可以帮助调整人体的生物钟,有利于更快地适应新的时区。

•轮班工作睡眠障碍

夜班或轮班工作的人经常会遇到睡眠困难和昼夜节律紊乱。褪黑素补充剂可用于帮助调节睡眠模式改善白天的睡眠质量


潜在治疗疾病

•神经退行性疾病

褪黑素已被研究其对阿尔茨海默病帕金森病和亨廷顿舞蹈病等神经退行性疾病的潜在治疗作用。它具有抗氧化和抗炎的特性,可能有助于保护神经元并减轻神经退行性过程。然而,需要进一步研究以确定其功效和最佳剂量。

•情绪障碍

褪黑素补充剂在治疗重度抑郁症季节性情感障碍等情绪障碍方面显示出良好的前景。它可能有助于调节昼夜节律、改善睡眠并缓解抑郁症状

治疗情绪障碍的剂量可能会有所不同,咨询医疗保健专业人士很重要。

•癌症

褪黑素已被研究其潜在的抗癌特性。它具有抗氧化、抗炎和免疫调节作用,可能可以抑制肿瘤生长并增强癌症治疗的有效性。然而,需要更多的研究来确定其在癌症治疗中的功效和最佳用途。


未来展望

关于褪黑素肠道微生物群相互作用的新兴研究具有重要的临床意义,并为治疗干预带来了希望。

通过益生菌益生元粪菌移植调节肠道微生物群组成和功能可能与补充褪黑素在促进肠道健康和治疗炎症性肠病、肠易激综合征和代谢紊乱等疾病方面具有协同作用。

以下是有关褪黑素-肠道微生物轴未来前景的一些要点。

•时间生物学和个性化医疗

褪黑素肠道微生物群之间的相互作用为个性化医疗增加了时间生物学的维度。考虑褪黑素产生的昼夜节律以及肠道微生物群组成和功能的昼夜变化,有助于优化针对褪黑激素-肠道微生物群轴的干预措施的时间和剂量

•微生物代谢物和褪黑激素衍生物

肠道微生物群可以将褪黑素代谢成各种代谢物,其中一些可能具有不同的生物活性。探索这些褪黑激素代谢物的作用及其与肠道微生物群的相互作用可以发现新的治疗途径

•营养干预

饮食在塑造肠道微生物群组成和功能方面起着至关重要的作用。未来的研究可以调查特定饮食成分,例如色氨酸(褪黑激素的前体)和多酚对褪黑激素-肠道微生物群轴的影响。

了解影响褪黑素产生和肠道微生物群的饮食因素可以为肠道健康的营养干预提供信息。

​Iesanu MI,et al.Antioxidants (Basel).2022

•挑战和未来方向

尽管研究数量不断增加,但该领域仍存在一些挑战和未来方向。需要对肠道微生物群褪黑素测量的研究方法进行标准化,以确保研究之间的一致性和可比性。

需要进行长期临床试验来评估针对褪黑激素-肠道微生物轴的干预措施的安全性有效性最佳剂量

主要参考文献

Iesanu MI, Zahiu CDM, Dogaru IA, Chitimus DM, Pircalabioru GG, Voiculescu SE, Isac S, Galos F, Pavel B, O’Mahony SM, Zagrean AM. Melatonin-Microbiome Two-Sided Interaction in Dysbiosis-Associated Conditions. Antioxidants (Basel). 2022 Nov 14;11(11):2244.

Markowska M, Niemczyk S, Romejko K. Melatonin Treatment in Kidney Diseases. Cells. 2023 Mar 8;12(6):838.

Minich DM, Henning M, Darley C, Fahoum M, Schuler CB, Frame J. Is Melatonin the “Next Vitamin D”?: A Review of Emerging Science, Clinical Uses, Safety, and Dietary Supplements. Nutrients. 2022 Sep 22;14(19):3934.

Repova K, Baka T, Krajcirovicova K, Stanko P, Aziriova S, Reiter RJ, Simko F. Melatonin as a Potential Approach to Anxiety Treatment. Int J Mol Sci. 2022 Dec 19;23(24):16187.

Moon E, Kim K, Partonen T, Linnaranta O. Role of Melatonin in the Management of Sleep and Circadian Disorders in the Context of Psychiatric Illness. Curr Psychiatry Rep. 2022 Nov;24(11):623-634.

Zhao ZX, Yuan X, Cui YY, Liu J, Shen J, Jin BY, Feng BC, Zhai YJ, Zheng MQ, Kou GJ, Zhou RC, Li LX, Zuo XL, Li SY, Li YQ. Melatonin Mitigates Oxazolone-Induced Colitis in Microbiota-Dependent Manner. Front Immunol. 2022 Jan 18;12:783806.

Wang X, Wang Z, Cao J, Dong Y, Chen Y. Gut microbiota-derived metabolites mediate the neuroprotective effect of melatonin in cognitive impairment induced by sleep deprivation. Microbiome. 2023 Jan 31;11(1):17.

Miranda-Riestra A, Estrada-Reyes R, Torres-Sanchez ED, Carreño-García S, Ortiz GG, Benítez-King G. Melatonin: A Neurotrophic Factor? Molecules. 2022 Nov 10;27(22):7742.

Zhang B, Chen T, Cao M, Yuan C, Reiter RJ, Zhao Z, Zhao Y, Chen L, Fan W, Wang X, Zhou X, Li C. Gut Microbiota Dysbiosis Induced by Decreasing Endogenous Melatonin Mediates the Pathogenesis of Alzheimer’s Disease and Obesity. Front Immunol. 2022 May 10;13:900132. 

肠道菌群与肌肉减少和骨质流失

谷禾健康

现代的生活工作方式大多是久坐户外运动少,导致与骨骼肌肉相关的亚健康症状越来越普遍,覆盖人群越来越广。

例如长时间的低头垂肩的姿势会让竖脊肌处在伸展的位置,进而导致竖脊肌的无力,产生受伤的状况。长时间久坐使得臀大肌萎缩无力,无力松弛的臀肌再结合无力的竖脊肌,导致腰背疼痛等症状。

老年人的肌肉骨骼疼痛,在我们生活的每一个角落悄然出现。这无声的挑战,让他们在岁月的长河中饱受苦楚。

随着全球老龄化的日益严重,与衰老相关的疾病,包括肌肉减少症、骨质疏松症和骨关节炎,变得越来越突出,影响着至少7-27%的世界人口。

肌肉减少症的发生率为 10% 至 27%。50岁以上女性骨质疏松患病率不低于20%骨关节炎的患病率约为7%。

肌肉骨骼系统对于平衡代谢活动保持健康非常重要。骨骼肌是机体最大的器官之一,其质量和功能的丧失或减退会导致一系列疾病。虽然临床上用了很多方式来治疗缓解这类疾病,但有效的治疗方法却较少

最近的研究表明,肠道微生物群稳态的破坏与肌肉骨骼系统功能异常相关,甚至可能导致肌肉骨骼系统功能异常。生活中也发现,肠道菌群与骨质疏松症的发病相关。如果你肠胃不好,时不时就腹泻腹胀、消化不良,当心了,骨质疏松也可能已经“盯”上了。

研究还表明,肠道菌群及其次级代谢产物可以通过调节炎症、免疫和蛋白质合成代谢、能量、脂质、神经肌肉接头、氧化应激、线粒体功能、内分泌和胰岛素抵抗等多种机制来影响肌肉骨骼系统

现有文献大多支持合理的营养干预有助于改善和维持肠道菌群的稳态,并可能对肌肉骨骼健康产生积极影响。即使已提出“肠道菌群-肌肉轴”,但其因果联系仍然是未知的。

本文对现有文献进行整理、总结和讨论的目的是探讨营养补充、适度运动等干预方法能否通过调节肠道菌群微生态来影响肌肉和骨骼健康。未来更深入的功效验证实验将有助于临床应用。

01
“肠道菌群的存在与否”对肌肉骨骼系统的影响及其机制

骨 骼 肌

无菌小鼠:肠道菌群存在对骨骼肌健康很重要

基于无菌 (GF) 小鼠的实验揭示了体内肠道微生物群的存在或缺失,通过调节营养和能量代谢途径对骨骼肌的健康至关重要。缺乏肠道微生物群的小鼠的骨骼肌质量显著降低无菌 (GF) 小鼠中肌球蛋白重组基因和骨骼肌分化调节基因的表达显着低于正常携带细菌的小鼠,而肌肉的表达萎缩标志物明显升高

肠道菌群→蛋白质合成/能量代谢→骨骼肌营养

蛋白质合成和降解是影响骨骼肌质量的重要因素胰岛素样生长因子1(IGF-1)是促进蛋白质合成和增强肌肉功能的重要物质,无菌小鼠体内的IGF-1水平显着下降。此外,无菌小鼠中糖皮质激素诱导的支链氨基酸分解代谢显着增加

肠道菌群还可以通过改变能量代谢模式来影响骨骼肌。无菌小鼠葡萄糖和胰岛素含量较低,线粒体功能明显扰乱,影响骨骼肌对葡萄糖的利用,减少肌肉合成的能量供应,最终影响骨骼肌的氧化代谢能力

肠道菌群调控神经肌肉接头

无菌小鼠的胆碱水平下降,导致神经肌肉接头传递受损肌钙蛋白与骨骼肌中的肌纤维收缩性和运动功能有关。

无菌小鼠骨骼肌中肌钙蛋白编码基因的表达显着降低,表明肌纤维收缩力可能受损。更重要的是,将肠道微生物群移植到无菌小鼠体内后,结果显示骨骼肌质量增加,肌肉萎缩标记物减少,肌肉氧化代谢改善,神经肌肉接头组装基因表达增加。证据表明肠道微生物群在维持正常骨骼肌功能方面发挥着关键作用。

骨骼通过骨成骨细胞(OB)和破骨细胞(OCL)不断重建。这个过程的不平衡会导致骨质疏松症

早期研究发现,肠道微生物群也是骨量的主要调节者,其对骨量的影响是通过其对免疫系统的影响来介导的,免疫系统反过来又调节破骨细胞的生成。

肠道微生物群缺失对维持骨量有负面影响

无菌小鼠骨髓中破骨细胞前体细胞和破骨细胞的数量减少。此外,无菌小鼠肠道来源的 5-羟色胺和炎症细胞因子的水平降低。值得注意的是肠道微生物群定植可以恢复无菌小鼠损失的骨量。当然,不排除其他机制也可能参与其中。

然而,最近的一项研究表明,成年雄性 GF BALB/c 小鼠的骨骼生长速度比正常饲养的小鼠。粪便微生物群对无菌小鼠的长期定植会导致股骨长度惊人的增加骨小梁微结构的改善

维生素D改善肠道钙吸收促进骨代谢

无菌小鼠的维生素D 代谢存在缺陷,而被微生物群定植的无菌小鼠则表明 1, 25-二羟基维生素 D 和钙水平得到恢复。因此,肠道微生物群也对骨骼产生有益影响。

骨 关 节

越来越多的证据表明肠道微生物组在骨关节炎(OA)病理学中发挥着关键作用。早期研究表明,在无菌条件下, 在TLR4(Toll 样受体 4)缺陷小鼠中,类风湿性关节炎(RA) 表现也受到显着抑制,肠道微生物群可作为抗原或佐剂来诱导或促进类风湿性关节炎产生

注:Toll样受体(TLR)是参与非特异性免疫(天然免疫)的一类重要蛋白质分子,也是连接非特异性免疫和特异性免疫的桥梁当微生物突破机体的物理屏障,如皮肤、粘膜等时,TLR可以识别它们并激活机体产生免疫细胞应答(参考自百度百科)。

肠道微生物群对创伤性骨关节炎的发展产生影响

研究发现,无菌小鼠中内侧半月板不稳定手术引起的骨关节炎显着减少,表明肠道菌群促进了骨关节炎的发生。还发现肠道微生物组对小鼠模型中损伤引起的骨关节炎的严重程度有显着影响。

关节损伤后无菌小鼠仅有轻微的骨关节炎症状,病理表现的严重程度最低。小鼠体内微生物组丰度与炎症生物标志物浓度、肠道通透性和骨关节炎严重程度呈正相关。这可能是因为在存在关节损伤的情况下,肠道微生物群(由更多的梭杆菌和粪球菌,以及更少的瘤胃球菌科)引起的免疫激活可能会加剧骨关节炎的病理过程。

以上无菌动物实验,主要是小鼠结果表明,肠道菌群的“存在与否”确实是影响和维持小鼠肌肉骨骼系统的关键因素。

无菌小鼠是通过无菌技术培育得到的。这里无菌小鼠既没有共生菌群,也没有致病菌等情况下,表现出不良的病理特征。这表明致病菌并非唯一的因素导致疾病发生。

疾病的发生通常是由多种因素共同作用引起的,包括宿主的遗传因素、环境因素和微生物因素等。致病菌可能需要与其他共生微生物或宿主因素相互作用才能引发疾病。在无菌小鼠中,缺乏这些相互作用,可能导致致病菌无法发挥其病原性。这刚好强调了微生物群落的复杂性和其与宿主的相互作用的重要性

无菌小鼠试验的结果也需要与其他研究方法和模型相结合,例如体内试验、体外试验和临床研究,以获得更全面和准确的结论。综合多种研究方法的结果可以提供更可靠的科学依据,并有助于我们理解和解释无菌小鼠试验结果的适用性。

02
“肠道菌群的存在失调”对肌肉骨骼系统的影响及其机制

肠道微生物群失调一般主要指致病生物的大量繁殖、正常菌群的减少和微生物群组成多样性的减少。代谢、自身免疫、炎症和神经退行性疾病等多种因素与肠道菌群失调有关。微生物群失调对肌肉骨骼系统的影响引起了越来越多的关注。

扩展阅读:

肠道菌群失衡的症状、原因和自然改善

骨 骼 肌

许多因素与肌少症的病理学相关,包括衰老、炎症、线粒体损伤和/或胰岛素抵抗

注:肌少症是指因持续骨骼肌量流失、强度和功能下降而引起的综合症。患有肌肉减少症的老年人站立困难、步履缓慢、容易跌倒骨折。

几乎所有病理过程都会引发肠道微生物群的失调反过来,微生物群失调也在骨骼肌质量和功能下降中发挥着至关重要的作用。由于肠道微生物组是导致肥胖或胰岛素抵抗等代谢失调表型的发生和加剧的原因,因此骨骼肌质量和功能可以部分受到肠道微生物组的调节。

老年人肠道菌群:促炎菌增多

健康肠道微生物群的主要门是厚壁菌门、拟杆菌门、放线菌门和疣微菌门,变形菌门的数量较少。在老年人和营养不良者中,都显示促炎症的变形计门增加,而产丁酸菌普拉梭菌,罗氏菌属减少。肠道菌群失调引起的循环促炎细胞因子的增加可以通过不同的机制(胰岛素抵抗、炎症和相关的氧化应激)诱导肌肉萎缩

肠道菌群失调的两个最典型的例子:

炎症性肠病(IBD)衰老引起的肌肉功能衰竭

接下来我们用这两个例子来具体阐述肠道菌群失调引起肌肉减少症的内在机制。

 IBD

IBD→肠道菌群失调→炎症→肌肉萎缩

IBD 的典型特征是肠道微生物群失调,肠道菌群失调往往伴随着肠道屏障损伤和肠道屏障通透性增加,内毒素和其他细菌代谢产物容易进入循环系统,从而增加LPS(脂多糖) 和其他炎症因子的水平,诱发体内的炎症反应。LPS 诱导的炎症的一个特征性表现是由于蛋白水解降解增加和蛋白质合成减少引起的严重肌肉萎缩。

肠道菌群失调→氧化应激→肌肉无力

肠道菌群的失调还可能导致肠道氧化应激、肠粘膜炎症和屏障功能障碍,从而引起免疫功能障碍。高水平的活性氧 (ROS) 引起的氧化应激可导致骨骼肌收缩障碍,导致肌肉无力和疲劳。因此,肠道微生物群失衡引起的炎症反应和氧化应激会对肌肉功能产生负面调节。

在结肠炎小鼠模型中,股四头肌和腓肠肌的骨骼肌质量和肌纤维横截面积减少,肌肉蛋白质含量减少。与此同时,肌肉功能障碍恶化,肌肉生长标志物 IGF-1 R(胰岛素样生长因子 1 受体) 和雷帕霉素磷酸化哺乳动物靶标 (mTOR下调

研究人员认为,肠道微生物群失调引起的炎症可能是骨骼肌萎缩的触发因素。与肌原纤维分解相关的肌肉萎缩F-box(atrogin-1)和肌肉环指蛋白1(Murf-1)表达增强,介导肌原纤维加速分解

IBD→炎症→肌肉合成和分解代谢→肌肉损伤

临床研究还发现,肌肉损伤是 IBD 等慢性胃肠道疾病的常见病理特征42% 的 IBD 患者会出现肌肉减少症。

肠道微生物群刺激粘膜免疫细胞,促进促炎细胞因子(IL-6、IL-10、TNF-α等)的产生,产生一般状态慢性低度炎症,激活氧化应激损伤,进一步影响胰岛素敏感性、氨基酸生物合成、线粒体、生物生成、肌肉合成和分解代谢以及增加肌肉衰减相关分子途径。这可能导致肌肉骨骼损伤和虚弱

 衰 老

同样,体弱或活动能力差的老年人肠道微生物群的复杂组成也表现出不同程度的失调,物种丰富度降低以及机会性病原体和抗炎菌群之间的不平衡。

衰老→菌群多样性↓↓→代谢↓↓→炎症↑↑

肠道微生物群失调可能与肌肉萎缩的复杂机制有关。具体而言,肠道微生物群多样性因衰老而降低。同时,调节肠道环境的代谢能力也会下降,肠道屏障功能减弱,肠道粘膜通透性增加,从而导致包括脂多糖在内的细菌产物的吸收增加,并激活体内炎症反应。

衰老相关的肠道微生物组会促进炎症,从而导致循环炎症介质的水平增加,而逆转这些与年龄相关的微生物组变化是减少与年龄相关的炎症和伴随发病率的潜在策略。

脂多糖促炎→代谢综合征→诱发骨骼肌衰老

脂多糖促进炎症信号传导,诱发骨骼肌炎症和胰岛素抵抗,从而促进代谢综合征的过程,进而诱发骨骼肌衰老

研究表明,脂多糖相关细胞因子对蛋白质平衡(即合成和分解)的能力有决定性影响,并且随着衰老而增加的细胞因子可能会导致肌肉质量减少。

炎症反应增强会加剧骨骼肌质量损失

例如,在肌肉减少症患者中,IL-6 和 TNF-α 等促炎因子水平升高会导致肌肉质量减少。抗 TNF 治疗可以逆转微生物群中与年龄相关的变化,因此具有潜在的抗肌肉衰老作用。

肠道菌群变化与衰老中免疫稳态的紊乱有关

移植了年老小鼠肠道微生物群的年轻无菌小鼠的小肠,发现了与免疫相关的差异遗传特征,包括抗原呈递减少以及细胞因子和趋化因子产生的改变。这些基因可能在肠道微生物组老化过程中作为免疫紊乱的标志物发挥潜在作用。

肠道菌群失衡→肠漏→LPS释放到外周血

由于上述各种原因(炎症、营养不良、恶病质、衰老等)引起的肠道微生物生态系统组成的变化,可能导致肠漏和细菌内毒素(例如LPS)释放到外周血中。LPS可以通过TLR4受体触发巨噬细胞产生炎症细胞因子和ROS。

限制蛋白质合成,促进肌肉生长蛋白水解,肌肉萎缩

在骨骼肌中,TNF-α 激活参与NF-κB通路的基因表达,从而通过抑制肌细胞生成素和 myoD 来减少肌细胞分化和增殖。IL-6和IκB激酶可以抑制与诱导胰岛素抵抗相关的胰岛素受体底物1,限制mTORC1(雷帕霉素复合物1)肌肉靶标的激活,从而限制肌肉细胞中的蛋白质合成。

此外,由于蛋白激酶B受到抑制,叉头盒O的抑制作用不再发挥,导致泛素E3连接酶Atrogin-1和MuRF1表达增加,促进肌肉生长蛋白水解

同样,不受 mTORC1 抑制的自噬激活激酶 1 进一步诱导骨骼肌细胞自噬。当肠道菌群失调引起的这些调节机制被激活时,蛋白质分解/合成之间就会出现不平衡,并最终导致肌肉萎缩

其他机制:细菌群体感应,短链脂肪酸,胆汁酸

其他机制包括粪肠杆菌在细菌失调过程中产生的群体感应肽iAM373,下调了大多数骨骼肌发育和分化基因,降低了成肌细胞的代谢活性,并上调了肌管中的蛋白酶体降解途径,这是一种肌肉减少症新的诱导剂

队列研究表明,肌肉减少症还与产生短链脂肪酸 的菌减少相关,从而导致肠道菌群失衡。

肠道菌群失调可能通过上调初级胆汁酸-法尼醇 X 受体途径导致骨骼肌萎缩。

随着肠道微生物群在骨代谢稳态中的关键作用得到更好的了解,人们对肠道微生物群在调节骨骼健康中的重要作用越来越感兴趣(以前我们的文章专门介绍过肠道菌群与骨骼生长于骨代谢的关系,详见:肠道微生物如何影响骨骼发育和代谢 )。

肠道菌群失调与骨骼之间存在密切关系

研究发现,TLR5缺陷小鼠的肠道微生物群受损和微生物多样性较差会引起整体骨强度的变化;另外,长期使用抗菌药物引起的肠道菌群损伤(主要表现为拟杆菌、变形菌显著上调)导致小鼠骨性能受损,尤其是总骨量减少。卵巢切除术会导致小鼠肠道微生物群失调并导致骨质流失,这是由微生物依赖性 T 淋巴细胞(例如 Th17细胞)介导的。

骨密度低:

罗氏菌属、双歧杆菌属↓↓ 合成LPS的菌↑↑

骨骼疾病患者中观察到肠道微生物群的变化。横断面研究表明,肠道微生物群与骨矿物质密度积累之间存在关联。最近,一项全基因组研究确定了与骨量变异相关的梭菌目和毛螺菌科。研究发现,与健康人相比,有害细菌过度生长的患者骨量较低,骨质流失率较高。

注:骨质流失加剧是 IBD 的常见并发症,肠道菌群失调也是IBD 的重要表现。

临床研究表明,骨矿物质密度低的个体肠道微生物群的组成和丰度显着下降。罗氏菌属(Roseburia)、双歧杆菌属和乳酸菌属等细菌群与骨密度呈正相关。然而,在骨矿物质密度较低的人群中与LPS合成相关的微生物群更为丰富

骨质疏松患者:多样性与骨密度呈负相关

研究发现,厚壁菌门/拟杆菌门的比例与骨量呈负相关,而放线菌和双歧杆菌与骨量呈正相关。使用 16sRNA 测序对骨质疏松症(OP)的肠道微生物群进行分析表明,肠道微生物群多样性估计值与骨矿物质密度呈负相关

在骨质疏松患者中,如下菌属的丰度增加

  • 放线菌属
  • Clostridium Cluster XlVa
  • Eggerthella
  • Blautia
  • Lactobacillus
  • Ruminococcaceae
  • Parabacteroides

其他研究发现骨质疏松症患者DialisterFaecalibacter显著增加

菌群失调→营养素吸收能力下降→影响骨骼健康

微生物群骨骼健康所需的营养素(例如钙和维生素 D)的运输和吸收具有必要的影响。肠道微生物群失调可能会损害营养物质和钙通过肠道进入循环系统的运输。随着年龄的增长,肠道对1, 25(OH) 2的吸收能力下降,这与肠道菌群失调密切相关。这也是微生物群失调影响骨骼健康的主要原因之一。

免疫系统干预肠道微生物群和骨代谢

生物多样性的变化和机会性病原体的定殖导致细菌内毒素的增加,例如脂多糖(LPS)、这与肠道炎症反应的增加有关,而炎症的增加与破骨细胞的激活有关。

肠道菌群失调会介导炎症

尤其是IL-1、TNF-α 和 IL-6,它们与骨质疏松症一样在破骨细胞激活中发挥着关键作用。

肠道微生物组依赖性Th17细胞和产生 TNF-α 的 T 细胞增殖产生大量促炎细胞因子(IL-17、TNF-α)、NF-κB 配体受体激活剂 (RANKL)、并减少RANKL拮抗剂的分泌(RANKL诱导破骨细胞功能,IL-17减少骨形成;TNF-α增强RANKL活性,诱导Th17细胞增殖和活化,是该过程中潜在的免疫调节机制。

注:Th17细胞是一类免疫细胞,主要参与调节免疫系统的炎症反应,并在自身免疫性疾病炎症性疾病中发挥重要作用。

新生成的破骨细胞诱导了 Treg 细胞的生成。它抑制免疫反应,诱导和维持免疫耐受,通过多种途径减少炎症,并产生免疫抑制细胞因子,例如 TGF-β 和 IL-10。 Treg 细胞和 Th17 细胞之间微妙而复杂的关系会影响骨骼健康。重要的是,肠道细菌是控制这种平衡的关键。

注:破骨细胞是一种骨髓源性巨核细胞系的细胞,主要功能是吸收和降解骨组织。

Treg细胞是调节性T细胞(Regulatory T cells)的简称。它们是一类免疫细胞,主要功能是抑制免疫系统的活性,以维持免疫平衡和自身耐受。

肠道菌群→血清素下调→调节骨代谢

5-HT是5-羟色胺的缩写。它是一种神经递质,也称为血清素。根据合成部位分为两类:脑源性5-HT和肠源性5-HT。

有趣的是,这两种 5-HT 具有不同的功能:肠道来源的血清素对骨形成有负面影响,而大脑来源的血清素则具有相反的影响。近年来研究发现,肠道菌群不仅诱导细胞因子调节骨代谢,还通过减少血清素生物合成酶、增加血清素转运蛋白,下调肠源性血清素水平,从而调节骨代谢。

肠道菌群→改变 IGF-1→调节骨质量

IGF-1 在骨形成和生长的调节中也起着至关重要的作用。肠道微生物群可能通过改变 IGF-1 水平来调节整体骨质量。例如,传统特定肠道微生物群对成年 GF 小鼠的定植可以增加循环 IGF-1 并增加骨的形成和吸收。

菌群多样性↓↓→循环雌激素↓↓→影响骨钙沉积

肠道微生物群多样性减少也可能导致循环雌激素减少,进而影响正常骨钙沉积,因为肠道微生物群通过β-葡萄糖苷酶分泌调节雌激素,β-葡萄糖苷酶将雌激素分解为其活性形式。

注:IGF-1是胰岛素样生长因子-1(Insulin-like Growth Factor 1)的缩写。它是一种蛋白质激素,由肝脏和其他组织产生,并受到生长激素的调控。IGF-1促进细胞增殖和分化,对于骨骼和肌肉的生长和修复具有重要作用;也与肿瘤生长和代谢相关;较高的IGF-1水平与较长的寿命和较少的年龄相关疾病风险有关。

▸▹小结

根据上述研究结果提示,与肌肉健康类似骨骼健康相关的肠道菌群紊乱主要表现为肠道优势菌群消失或减少,有害菌或衰老菌群的增殖导致LPS等产生过多或引起更多的炎症反应。机制主要涉及细胞因子以及Treg和Th17细胞的成骨/破骨平衡的微妙控制。

与肌肉健康不同,肠道菌群失调对钙离子有效吸收的影响以及肠道来源的 5-HT、IGF-1 和雌激素的调节作用也在此强调。这些机制是否也对肌肉健康发挥作用,可能是个有意义的探索方向。

骨 关 节

近年来,越来越多的证据表明肠道菌群失调与类风湿关节炎(RA)的发生和发展密切相关。在人类和动物研究中也观察到类风湿关节炎中肠道微生物群失调。

类风湿关节炎:拟杆菌↓↓,乳杆菌属、普雷沃氏菌属↑↑

在类风湿关节炎模型小鼠中,拟杆菌门减少厚壁菌门和变形菌门增加。该模型还导致 14 种肠道细菌失衡,并对色氨酸、脂肪酸和次级胆汁酸等代谢物产生相当大的干扰。

在类风湿关节炎患者中,各种乳杆菌属Lactobacillus和普雷沃氏菌属( Prevotella更加丰富;因此,普氏菌数量增加和肠道菌群失衡是 类风湿关节炎发展的潜在资源

广古菌门(Euryarchaeota)与类风湿关节炎的严重程度直接相关,成为类风湿关节炎发病的独立危险因素。

拟杆菌丢失,普雷沃氏菌存在

在未经治疗的新发类风湿关节炎患者的粪便微生物群中,普雷沃氏菌(Prevotella)的存在同时拟杆菌的丧失(拟杆菌与普雷沃氏菌一般认为是拮抗菌)存在强烈相关性

从类风湿关节炎患者的滑膜组织中分离出细菌 rRNA。类风湿关节炎患者肠道菌群中乳杆菌的数量和多样性显著增加,与报道胶原蛋白诱导性关节炎小鼠体内乳酸杆菌增加的数据一致。矛盾的是,嗜酸乳杆菌Lactobacillus acidophilus和干酪乳杆菌 Lactobacillus casei)似乎有利于类风湿关节炎的改善。

致病菌破坏屏障,促炎,诱导关节炎发生和维持

肠道机会致病菌,如普雷沃氏菌,可能通过增强细胞凋亡机制、破坏肠道屏障完整性,参与促炎免疫状态的形成,从而诱导关节病炎症的发生和维持。此外,Th17 细胞通过产生一系列炎症因子来促进破骨细胞分化,这些炎症因子是导致类风湿关节炎骨质破坏期的原因。拟杆菌的减少可能通过减少 Treg 细胞分化来促进局部炎症环境。

骨关节炎的发生可能是由于肠道菌群组成发生特异性变化,尤其是机会性促炎菌增多,具有抗炎特性的共生菌显著减少,肠道通透性增加,然后LPS引起炎症和免疫反应,诱导级联信号通路激活,导致关节病变甚至疼痛,但相关证据有限。而类风湿性关节炎免疫炎症相关的研究相对深入,肠道菌群多样性较为丰富,但也导致机制更加复杂,需要进一步探索。

03
益生菌及其次级代谢产物对肌肉骨骼系统的影响及其机制

这里主要总结了益生菌及其次级代谢产物对肌肉骨骼系统的影响和机制。

骨 骼 肌

由于肠道微生物组的活性,肠道与骨骼肌相关,并通过调节全身/组织炎症、胰岛素敏感性等来调节肌肉功能。


益生菌

益生菌通过改善肠道微生物群的多样性,来对抗肌肉质量和功能的损失。

小鼠模型

在小鼠癌症模型中,罗伊氏乳杆菌能够抑制恶病质的发展,并与肌肉质量的保存有关。

植物乳杆菌HY7715通过改善老年 Balb/c 小鼠的骨骼肌质量和功能来改善肌肉减少症

补充植物乳杆菌TWK10 可改善小鼠的运动表现并增加肌肉质量

副干酪乳杆菌PS23 通过确保 SAMP8 小鼠的线粒体功能来减缓与年龄相关的肌肉损失。恢复特定乳酸杆菌水平可减少急性白血病小鼠模型中的炎症和肌肉萎缩标志物。

其他实验还表明,至少有七种益生菌对小鼠骨骼肌质量和强度有益:

  • 干酪乳杆菌 LC122 (LC122)
  • 布拉酵母菌 (SB)
  • 副干酪乳杆菌 PS23 (LPPS23)
  • 长双歧杆菌 BL986 (BL986)
  • 植物乳杆菌 TWK10 (LP10)
  • 唾液乳杆菌 SA-03 (SA-03)
  • 长双歧杆菌 OLP-01 (OLP-01)

其中,使用最广泛的菌株是乳杆菌和双歧杆菌,它们可以改善肌肉质量、力量和耐力损失。

益生菌有助于肌肉健康,提高蛋白质合成和力量,但益生菌的作用可能针对不同的信号或代谢途径和组织,例如降低炎症和压力、维持肌肉蛋白质合成、并提高了肌肉力量。然而也有研究表明,对肌肉质量和功能的影响几乎很小观察到一定的抗炎作用。

人类

年轻人:益生菌可以改善运动耐力、增肌

在人类中,已经发现摄入特定的益生菌可以改变肠道微生物群,有利于增加骨骼肌质量。例如,摄入植物乳杆菌TWK10 六周可以提高年轻人在跑步测试中的耐力表现。补充植物乳杆菌表明,益生菌可以改善运动表现、耐力以及身体成分,减少脂肪量并增加肌肉量。

老年人:需进一步探索益生菌对肌肉的影响

不过,也有报道称,老年人补充益生菌在一定程度上可以导致肠道菌群发生有益变化,减少病原体,改善便秘,但对宿主健康的影响相对较小。

含有乳酸菌和双歧杆菌菌株以及干酪乳杆菌的对老年人的肌肉状况没有影响。这些发现表明益生菌的作用机制很复杂,需要进一步研究。

最近的一项荟萃分析表明,补充益生菌可以增强肌肉质量和力量,但在总去脂体重方面没有观察到有益效果。该研究表明,探索不同老龄化人群生理机制的差异,并探索补充合适的益生菌菌株以获得最佳肌肉质量和力量非常重要。

上述发现,研究的稀缺性、人群的变异性和重复性低,导致很难找到优化肌肉质量和功能的特定益生菌菌株,需要在更明确的人群中进行进一步研究设计个性化的益生菌干预措施。

— 改善血糖,提高肌肉质量和功能

益生菌可降低厚壁菌门与拟杆菌门的比例,从而提高小鼠的肌肉质量、耐力和力量。添加 植物乳杆菌 TWK10和 CP2998 可通过抑制糖皮质激素受体激活、改善血糖对肌肉发挥积极作用。

扩展阅读:

厚壁菌门/拟杆菌门——一个简单但粗糙的菌群评估指标

— 抑制炎症反应,改善肌肉合成

补充干酪乳杆菌LC122 和 长双歧杆菌BL986降低炎症细胞因子 TNF-α、IL-6 和 IL-1β 的表达,并改善肌肉蛋白合成。

口服短双歧杆菌和鼠李糖乳杆菌可显着降低小鼠促炎细胞因子 IL-2、IL-4、IL-6 和 TNF-α 的水平,从而抑制炎症反应。还通过增加 IL-10 水平来减轻肌肉炎症。

还发现含有植物乳杆菌 TWK10 罗伊氏乳杆菌的可以改善小鼠的肌肉质量,这与减少炎症和肌肉萎缩标记物表达有关。

— 抗氧化,或增加蛋白质吸收的方式

服用副干酪乳杆菌PS23的老年小鼠肌肉中抗氧化应激因子(例如超氧化物歧化酶和谷胱甘肽过氧化物酶)的表达较高。

罗伊氏乳杆菌可提高乳清蛋白中亮氨酸的吸收比例,从而增强蛋白质吸收,提高蛋白质利用率,最终促进肌肉合成,增加肌肉质量。

— 其他作用机制

益生菌的有益作用还通过多种机制产生,包括诱导免疫调节、抵抗生理应激、抑制病原体和改善肠上皮细胞的屏障功能。益生菌调节肌肉的潜在机制主要包括:

  • 葡萄糖、脂质和蛋白质的能量代谢;
  • 炎症水平;
  • 线粒体功能和神经肌肉连接;
  • 肌肉合成和分解代谢产物的分子途径

doi: 10.1080/19490976.2023.2263207

肠道益生菌限制胰岛素抵抗、调节代谢途径或抑制氧化应激和炎症。肠道菌群还可以通过不同的代谢途径将营养物质分解为次级代谢产物,调节肠道免疫和代谢稳态,维持宿主与肠道菌群之间的共生和寄生关系。

下面讨论这些代谢产物对骨骼肌代谢的主要影响和作用机制。


肠道菌群代谢产物

短链脂肪酸(SCFA)是肠道菌群对膳食纤维发酵产生的代谢产物,主要包括丁酸盐、丙酸盐和乙酸盐。SCFA 在葡萄糖和脂质稳态、炎症调节以及肠道与其他远端组织之间的连接中发挥着重要作用。

SCFA在调节肠道环境稳态、改善糖代谢、促进钙磷吸收、缓解氧化应激和炎症反应等方面发挥着重要作用,对调节骨骼肌功能具有重要意义。

无菌小鼠接受 SCFA 治疗后,骨骼肌损伤得到部分逆转(SCFA 降低了 atrogin-1 表达,增加了 MyoD 以及肌肉质量和功能),表明肠道菌群产生的 SCFA 在调节骨骼肌功能中发挥着关键作用。

丁酸盐:保持肌肉质量

在一项针对雌性 C57BL/6 小鼠的研究中,丁酸盐治疗后后肢肌肉萎缩得到完全或部分改善,而常规饮食喂养的老年 C57BL/6 雌性小鼠后肢肌肉质量显着降低。丁酸盐不仅能保持肌肉质量,还能改善小鼠的葡萄糖耐量,但对胰岛素耐量没有显着影响

丁酸盐:改善线粒体功能,减少氧化应激,防止骨骼肌损伤

丁酸盐还能增加线粒体蛋白孔蛋白和线粒体转录因子 A 的水平,并显着改善骨骼肌细胞中的线粒体功能。

此外,丁酸盐治疗减少小鼠氧化应激表达和细胞凋亡标记物,并改变抗氧化酶的活性,从而防止氧化应激引起的骨骼肌损伤

丁酸盐:改善与年龄相关的肌肉损失

丁酸盐是一种重要的 SCFA 和组蛋白脱乙酰酶抑制剂,可调节与年龄相关的肌肉损失。丁酸盐已可以通过抑制组蛋白脱乙酰酶表达并改善老年小鼠的肌肉质量和横截面积来促进肌肉合成。

乙酸盐:促进葡萄糖吸收,减少肌内脂质生成

添加乙酸盐可以促进兔骨骼肌中的葡萄糖吸收和糖原生成,并通过增加脂肪酸和氧化来减少肌内脂质生成。

此外,SCFA 还可诱导 IGF-1 产生,从而促进肌肉合成代谢。SCFA 的这些代谢影响可能直接作用于骨骼肌,也可能通过刺激胰高血糖素样肽 1 (GLP-1) 分泌而间接产生。SCFA 对肌肉的其他间接影响包括加速血流效应。

分解色氨酸,产生吲哚代谢物:抗炎,增强肌肉蛋白合成

色氨酸人体不可缺少的芳香氨基酸。肠道菌群分解色氨酸过程中产生的富含吲哚和吲哚衍生物的代谢物在维持肠道环境稳态和肠道菌群多样性方面发挥着关键作用。

来自肠道微生物群的吲哚代谢物可以增强体内IL-10水平,而IL-10在调节宿主炎症状态方面具有抗炎作用。

其他研究的证据表明,色氨酸代谢物吲哚丙烯酸可通过下调炎症和氧化应激相关基因表达来促进肠道屏障功能并抑制炎症反应。当机体处于慢性炎症状态、肌肉蛋白合成受到限制时,色氨酸代谢物的抗炎作用尤其重要。

肠道菌群→影响胆汁酸代谢→影响骨骼肌代谢

胆汁酸是肝脏产生并分泌到肠道的小代谢分子,参与膳食脂质吸收。肠道菌群可以改变胆汁酸的结构、生物利用度和生物活性,从而影响胆汁酸代谢和宿主代谢稳态。

肠道厌氧菌已被证明可以将初级胆汁酸转化为次级胆汁酸。毛螺菌科也可以产生 SCFA 并从初级胆汁酸转变为次级胆汁酸

肠道菌群可能参与胆汁酸代谢和 FXR-FGF19 信号通路(有证据表明 FGF19 激活可以抑制肌肉萎缩标志物的蛋白表达,增强与生肌分化相关的分子,调节骨骼肌蛋白平衡,这反过来又影响骨骼肌代谢次级胆汁酸还可以通过促进脂质和葡萄糖代谢来增强肌肉功能。

益生菌→促进维生素合成→影响骨骼肌功能

维生素是人体必需的微量营养素,大部分是人体无法合成的。实验证据证实,肠道益生菌促进体内维生素的合成,对骨骼肌功能有显著影响。例如,双歧杆菌和乳酸杆菌可以合成B族维生素 (包括叶酸、核黄素、维生素 B12)。B族维生素是直接参与能量代谢的水溶性维生素,它们的缺乏会导致心肌损伤和心力衰竭。维生素 B12缺乏会增加同型半胱氨酸水平并导致肌肉损伤。

先前的研究表明,益生菌有利于肠道稳态,并在预防和治疗骨质流失中发挥关键作用。

益生菌

胃肠道中乳杆菌的上调可以产生有效的杀菌剂和有机酸,从而抑制致病性大肠杆菌。肠道菌群中乳酸杆菌和乳球菌丰度的增加

罗伊氏乳杆菌补充剂可以显着改善肠道微生物群的不平衡,增强肠道屏障功能以防止骨质流失。

在一项随机对照试验中,75-80 岁骨量低的绝经后妇女每天服用罗伊氏乳杆菌,12个月后骨密度下降的比例明显低于对照组,这表明益生菌补充可以减少骨质流失。

补充普通双歧杆菌还可以降低 LPS 浓度,从而抑制炎症反应并防止骨质流失

嗜酸乳杆菌和克劳氏芽孢杆菌Bacillus Clausii)可以通过平衡炎症细胞因子的水平来维持骨稳态。

长双歧杆菌还可以预防和治疗骨质疏松症,通过增强成骨细胞活性和抑制破骨细胞形成来改善骨质流失。

此外,益生菌可以通过调节矿物质吸收来改善骨骼健康。例如,长双歧杆菌可以通过改善钙、磷酸盐和镁等矿物质的吸收来增强骨密度。罗伊氏乳杆菌可以通过抑制破骨细胞来减轻骨质流失

益生菌促进维生素B12、维生素D、钙等吸收

维生素B12水平低还会抑制成骨细胞活性,从而增加骨质疏松风险,甚至诱发骨折

益生菌如乳酸菌和双歧杆菌,在促进核黄素和叶酸的形成方面发挥着关键作用。核黄素和叶酸对于促进维生素合成和调节炎症反应很重要。研究表明,核黄素在一定程度上具有抗炎作用,其摄入可抑制大鼠白细胞中TNF-α的释放。

核黄素还作为抗氧化酶的辅助因子调节氧化应激。叶酸与调节胰岛素抵抗和抑制促炎细胞因子 IL-6、IL-8 和 TNF-α 有关。

不难发现,B族维生素的抗炎、抗氧化、参与能量代谢等功能对于维持骨骼健康是不可或缺的。钙和维生素 D 的吸收对于健康的骨骼维护尤为重要,益生菌可降低肠道PH值并改善钙吸收,从而增强骨骼功能

多联益生菌→抗炎→减轻骨关节炎

骨关节炎(OA)大鼠模型中,益生菌复合物通过抑制促炎细胞因子和软骨破坏来减轻骨关节炎的发展。

在一项人体试验中,537 名 骨关节炎(OA) 患者随机分配到干酪乳杆菌或安慰剂组,6 个月后,与对照组相比,干酪乳杆菌组的全身炎症显着降低口服嗜热链球菌可改善骨关节炎变性。

口服丁酸梭菌(Clostridium butyricum可有效保存 骨关节炎大鼠膝关节软骨和滑膜,显着减少纤维组织量,并显着降低骨和软骨各种炎症和代谢标志物的血清浓度。

干酪乳杆菌通过下调促炎细胞因子来减轻关节炎症损伤。益生菌最近添加到治疗关节炎症的药物清单中,因为干酪乳杆菌可以抑制关节肿胀、减少类风湿性关节炎,并防止关节炎症大鼠的骨质破坏。

嗜酸乳杆菌和干酪乳杆菌也常用于治疗类风湿性关节炎的缓解剂。还有人提出,用于缓解类风湿性关节炎相关后果的益生菌补充剂的可用性仍然很弱,而且益生菌对类风湿性关节炎的影响似乎是菌群特异性的。

肠道菌群代谢产物

短链脂肪酸:参与骨代谢,抑制骨吸收

短链脂肪酸(SCFA)参与骨代谢并影响骨形成和吸收。SCFA 对骨量的保护作用与抑制骨吸收有关。从潜在机制来看,丁酸盐和丙酸盐诱导破骨细胞代谢重编,增强糖酵解,下调关键破骨细胞基因,显着减少破骨细胞数量,从而抑制骨吸收

因此,SCFAs是破骨细胞代谢和骨稳态的有效调节剂,在促进骨形成中发挥重要作用。

丁酸盐:促进骨合成代谢,维持骨代谢平衡

在一项小鼠研究中,发现丁酸盐可以通过调动成骨细胞中的 Wnt 信号通路来促进骨合成代谢并增加骨量

此外,丁酸盐可以保护成骨细胞前体细胞免受过氧化氢诱导的损伤,并促进成骨细胞的矿化和分化。它主要通过增强细胞抗氧化酶的活性、促进ATP的产生、降低ROS水平来维持骨代谢的平衡。

短链脂肪酸还可诱导 IGF-1 的产生

IGF-1除了促进骨骼肌功能外,在骨代谢中起着至关重要的作用。IGF-1参与骨形成和吸收,调节骨代谢平衡。因此,SCFA 在维持骨代谢过程中的体内平衡中发挥着关键作用。

短链脂肪酸→调节IL-10→减轻关节炎

乳酸菌产生的丁酸通过控制软骨细胞自噬和炎症细胞死亡来抑制骨关节炎。益生菌衍生的丁酸盐可以通过影响 T 和 B 细胞的进展来抑制小鼠关节炎。

色氨酸代谢与骨代谢密切相关

犬尿氨酸是一种色氨酸代谢物,是色氨酸酶降解后形成的第一个稳定代谢物。

犬尿氨酸骨代谢中的关键功能似乎是加速骨质流失并介导对骨骼的不利影响犬尿氨酸含量随着衰老而增加,其对骨骼的不利影响可能是由于其对破骨细胞活化的影响,导致骨骼脆性增加和骨重塑失衡。

其他研究表明,犬尿氨酸水平升高会损害成骨细胞分化并增加破骨细胞吸收,从而加速骨骼老化。

次级胆汁酸调节骨稳态

次级胆汁酸还通过调节成骨细胞和破骨细胞之间的信号转导来调节骨稳态。此外,次级胆汁酸诱导 GLP-1 的产生,GLP-1 调节葡萄糖稳态并刺激成骨细胞分化并能进一步增强骨骼系统的功能。

对于益生菌及其次级代谢产物其抗炎和免疫调节特性值得进一步研究,以确定其在肌肉骨骼系统中的作用和生物学机制。

小结

常见肠道微生物群对肌肉骨骼系统的影响

doi: 10.1080/19490976.2023.2263207

肠道微生物群及其产生的代谢物的重要作用:

  • 益生菌促进短链脂肪酸的产生,通过改善能量代谢、促进 IGF-1 产生、抑制炎症和氧化应激来增强肌肉骨骼系统的功能。
  • 维生素 B 通过减少炎症和氧化应激来促进肌肉骨骼发育,而维生素 D 通过促进骨形成来增强骨功能。
  • 吲哚通过减少炎症来促进肌肉骨骼发育。

然而,肠道微生物群的失衡还会引发一系列负面影响:

  • 首先,肠道通透性失衡会促进循环中ROS和LPS水平升高,引起氧化应激和炎症,从而损害肌肉骨骼系统和关节。
  • 其次,有害细菌会激活炎症反应并抑制肌肉骨骼功能。犬尿氨酸可增强破骨细胞功能,增加骨吸收,促进骨质流失。

04
基于肠道菌群的肌肉骨骼健康有效干预

肠道菌群与肌肉骨骼系统的正常代谢密切相关。可以采取适当的干预措施,促进肠道益生菌发挥最佳调节作用。

doi: 10.1080/19490976.2023.2263207

肠道微生物群一般分为三类:益生菌、有害菌和条件菌。

不同的生活方式对肠道微生物群产生不同的影响。衰老、性激素分泌减少、高脂肪饮食、高蛋白饮食以及久坐的生活方式或过度运动会对肠道微生物群产生负面影响。这些都会导致有害细菌比例增加,诱导粘膜通透性并引发一系列负面反应。同时,健康饮食、适度运动、光生物调节、补充益生元和益生菌、维生素、钙、性激素、褪黑素等可以促进肠道菌群的积极变化,从而增强肌肉骨骼系统功能。


补充益生元、维生素 D、膳食钙

促进肌肉骨骼系统健康

益生元通过选择性刺激某些肠道菌群的活性或生长,对宿主肌肉骨骼系统产生有益的生理作用。益生元有助于有益菌生长,比如乳杆菌和双歧杆菌等,常见的益生元有菊粉、低聚糖等。

益生元可改善肠道屏障功能和宿主免疫力,并减少梭菌等潜在致病菌的丰度。

益生元→炎症↓↓→肌肉质量↑↑

结果表明,喂食益生元纤维寡糖的小鼠的循环 LPS 水平和炎症降低,肌肉质量增加。此外,补充益生元可提高双歧杆菌、乳杆菌、拟杆菌门/厚壁菌门的比例。

同时,益生元作为膳食纤维的一种,也可以促进 短链脂肪酸的生成。

维生素D:有利于钙吸收、维持肠道屏障

维生素 D 增加骨量的关键因素。除了直接影响钙吸收外,维生素 D 还通过维持肠道屏障的完整性来调节肠粘膜稳态,从而影响免疫系统功能和炎症反应。维生素D可以抑制促炎因子的水平,促进体内抗炎因子的分泌。

维生素D:改善肠道微生物稳态、促进肌肉合成

具体研究结果表明,维生素 D 补充剂可以调节女性肠道菌群并增加其多样性。维生素D补充后,AKK菌和双歧杆菌的相对丰度增加。

争议:维生素D能否改善肌少症,需要更多研究

维生素 A 在维持肠道屏障功能、调节免疫反应和细菌多样性以维持肠道稳态方面表现出类似的功能。但是同时有报道称,补充维生素 D 并不能改善社区老年人的任何肌肉减少症指数,并且可能会损害身体功能的某些方面。需要更多的实验证据来阐明维生素 D 的作用。

钙:菌群多样性↑↑ 有益菌↑↑ 保护肠道屏障

钙是体内最常见的矿物质,其摄入量关系到骨骼的健康发育。钙也是维持骨骼肌正常兴奋和收缩功能的最重要元素。膳食钙摄入量会引起肠道微生物群的变化。例如,用膳食钙喂养的小鼠肠道微生物群多样性显著增加,双歧杆菌、拟杆菌、瘤胃球菌科(Ruminococcaceae)和阿克曼氏菌(Akkermansia)丰度更高。

此外,膳食钙似乎对肠道屏障具有保护作用,通过增加宿主体内膳食钙的吸收来增加缓冲能力并促进骨量。总之,膳食钙可调节肠道微生物群,与宿主建立交叉对话,促进新陈代谢,并促进肌肉骨骼健康。


饮食调节肠道微生物群稳态

促进肌肉骨骼系统健康

肠道微生物群最近被定义为宿主营养信号的“传感器”。所消耗食物的类型和多样性与肠道微生物群的组成密切相关。

动物性饮食:拟杆菌门↑↑ 乙酸盐、丁酸盐↓↓

先前研究的证据表明,饮食模式的长期变化会引起肠道菌群的变化。短期饮食改变也会导致肠道微生物群的变化。例如,从植物性饮食转变为动物性饮食后,肠道中乙酸盐和丁酸盐的浓度显着降低。此外,以动物为基础的饮食增加了拟杆菌门的数量,并减少了厚壁菌门数量。

富含蛋白质的饮食:菌群多样性↑↑ 拟杆菌↑↑

骨骼肌质量受到肌肉蛋白质合成和分解的影响,肠道微生物群随年龄的变化也受到膳食蛋白质摄入量的影响。此外,摄入富含蛋白质的饮食与肠道微生物群的多样性呈正相关,可以提高肠道微生物群中拟杆菌。

长期高蛋白饮食:并不总是对肌肉产生积极影响

耐力运动员长期服用牛肉蛋白补充剂会减少双歧杆菌等有益肠道细菌的丰度。此外,结肠中未消化的蛋白质残留物发酵产生的化合物对肠道、免疫和代谢功能具有潜在的负面影响

高脂肪饮食:炎症↑↑ 氧化应激、 变形菌↑↑

对高脂肪饮食小鼠的研究表明,这种饮食会增加体重和炎症标记物的表达,并降低葡萄糖耐量;更重要的是,高脂肪饮食喂养的小鼠体内LPS的循环水平增加了两到三倍,这导致肠道通透性增加,从而引发损害肌肉质量的炎症反应。

高脂饮食摄入引起的肥胖还可能导致体内 ROS 过量产生和氧化应激反应,并随之增加脂肪因子群和 TNF-α 表达,从而加重体内慢性炎症反应并影响骨骼肌肉功能。此外,高脂肪饮食可以减少 SCFA 的产生,并增加变形菌的比例。

地中海饮食:均衡蛋白质、碳水化合物、多酚,有益菌↑↑ 炎症↓↓

较高的碳水化合物摄入量与肠道菌群多样性下降密切相关。虽然双歧杆菌含量增加,但乳酸菌和链球菌含量减少

咖啡、茶和红酒富含多酚,多酚与益生元丰度和双歧杆菌活性有关。膳食多酚可以增加产短链脂肪酸菌的繁殖并抑制产LPS菌的生长,从而调节肠道微生物群并影响肌肉骨骼系统健康。

地中海饮食的摄入有助于维持健康的肠道菌群,因为该饮食均衡摄入优质蛋白质和复合碳水化合物以及较高水平的纤维和多酚。因此,健康的饮食可以提高益生菌的相对比例调节炎症,而不健康的饮食会导致肠道菌群失调、氧化应激、炎症等不良反应,最终损害肌肉骨骼系统的健康。


运动对肠道微生物群的积极影响

促进肌肉骨骼系统健康

运动改善效果大于营养补充剂

适度的运动可以改善肌肉、骨骼和关节。研究结果表明,运动干预可以有效改善60岁以上老年人的肌肉质量和功能,并且运动的效果明显大于营养补充剂

运动还可以有效增加骨矿物质密度,提高骨强度降低骨质流失风险以及跌倒和骨折的发生率。同样,运动可以缓解骨关节炎患者的疼痛、增强关节功能并提高生活质量。

运动:改善肠道菌群、改善肌肉骨骼健康(动物)

在人类和动物实验中,运动可以促进肠道微生物群的积极变化,从而改善肌肉骨骼功能。高强度训练可以防止高脂肪饮食诱导的肥胖小鼠中与肥胖相关的肠道微生物群失调,并维持肠道微生物群的多样性。非肥胖小鼠的拟杆菌与厚壁菌门的比例在运动后也会发生变化,并且拟杆菌的丰度在运动后显着增加。

在一项针对肥胖大鼠的运动和饮食研究中,随着时间的推移,运动对肠道微生物群产生更强、更稳定的影响,并能更有效地促进肠粘膜完整性和代谢功能。

运动员多样性高,肠道菌群有助于运动中乳酸转化为丙酸

关于运动与肠道微生物群之间关系的人体研究也获得了类似的结果。接受强化训练的精英运动员肠道微生物群的相对丰度明显高于久坐的成年人

职业橄榄球运动员的肠道微生物群多样性高于非职业运动员。职业运动员的炎症细胞因子水平也低于非职业运动员。此外,研究表明,肠道微生物群菌群还可以通过将运动过程中产生的乳酸转化为丙酸,从而延长跑步时间,提高运动成绩。

扩展阅读:

肠道微生物组如何影响运动能力,所谓的“精英肠道微生物组”真的存在吗?

有氧运动:拟杆菌↑↑ 改善心肺健康

有氧运动期间人体中拟杆菌门和厚壁菌门之间的平衡对于维持健康至关重要,肠道细菌定植平衡的破坏可能导致炎症和代谢或神经系统疾病。

日本一项关于有氧运动干预老年女性肠道微生物群的研究表明,为期 12 周的有氧运动计划不仅增加了拟杆菌,而且还改善了心肺健康。同时,快走时间增加超过 20 分钟的受试者中拟杆菌的丰度。

因此,适度运动可以通过改善肠道菌群组成、增强肠道粘膜功能、抑制炎症反应、维持多种肠道菌群来增强肌肉骨骼功能。

有氧运动+益生元:改善代谢紊乱,预防膝关节损伤

运动对肠道微生物群的潜在影响介导了骨关节炎的过程。在一项动物研究中,研究人员给高糖、高脂肪饮食的小鼠同时进行有氧运动、益生元两者的结合,发现两种干预措施的结合完全可以预防肥胖老鼠的膝关节损伤

有趣的是,另一项研究表明,有氧运动和益生元的结合可以改善肥胖大鼠的代谢紊乱,但不能改善膝关节先前存在的骨关节炎损伤。因此,需要进一步研究进行更大样本的临床调查。

过度运动:促炎,限制肌肉形成、微生态失衡

过度运动可能会促进炎症、营养限制以及氧化和代谢应激,从而限制肌肉形成过度训练的其他负面影响包括肠道缺血、肠道屏障通透性增加和氧化应激,从而导致肠道微生态失衡、炎症反应增加、分解代谢增加肌肉功能恶化

定期训练与更好的生物多样性和对肠道微生物群的有益影响有关。某些研究的证据支持这样的观点,即疲劳训练可能与有害的微生物后果有关。因此,运动对肠道菌群的影响可能取决于运动的强度和持续时间。


补充雌激素和褪黑激素对肠道菌群的影响

促进肌肉骨骼系统健康

肠道细菌与人体细胞的比例因性别而异,女性的比例高于男性。细菌与人体细胞的比例男性为1.3,女性为2.2 。

绝经后女性:厚壁菌门 / 拟杆菌门比例 ↓↓

女性肠道微生物的多样性也更高Akkermansia muciniphila在女性中尤其丰富绝经前女性的厚壁菌门/拟杆菌门比例高于绝经后女性。

绝经前女性中普雷沃菌属、毛螺菌属(Lachnospira)、嗜胆菌属( Bilophila)的相对丰度低于绝经后女性,同时炎症水平的 IL-6 和单核细胞趋化蛋白-1 血浆水平也较低。

这表明雌激素可能影响肠道微生物稳态和免疫的调节。与此同时,肠道菌群失衡也会影响雌激素活性

绝经后雌激素水平下降,对肠道屏障和骨骼健康造成损害

如前所述,肠道微生物群通过分泌 β-葡萄糖苷酶来调节雌激素,当这一过程因肠道菌群失调(其特点是微生物多样性减少)而受到损害时,会导致循环雌激素减少,从而影响骨骼代谢。

非卵巢雌激素更多地受到肠道微生物组的影响,这可能是绝经后妇女更容易患骨质疏松的原因之一。因此,维持肠道稳态对于雌激素的正常分泌和骨代谢的平衡至关重要。

老年人睡眠障碍:与肠道菌群,肌少症相关

人们认为肌肉骨骼健康的丧失与睡眠障碍有关。同时,在老年人中,较短的睡眠时间与促炎细菌的增加有关,而睡眠质量的改善Warts microbacteriaFlatcoccus有关。

年轻人睡眠中断:肠道菌群变化介导促炎状态

在年轻人中,睡眠中断对肠道微生物组成的影响,特别是有益的厚壁菌门与拟杆菌门的比例,仍然是矛盾且不清楚的。这项研究不仅将加深对肌肉减少症的多种影响因素的理解,而且还可以对这种复杂的情况提供更全面的看法。

当睡眠不佳时,肠道微生物群经常发生变化,这可能介导睡眠障碍和肌肉减少症之间的促炎症状态。

这些发现不仅表明肠道微生物群在睡眠质量和肌肉减少症之间的相关性中发挥着重要作用,而且还暗示调节睡眠的激素(例如褪黑激素)可能是有效的干预目标之一。

褪黑素:调节睡眠、抗炎抗氧化、保护骨骼肌

褪黑素是另一种调节睡眠和昼夜节律的内源性激素,具有抗衰老、抗炎和抗氧化特性,是一种用于疾病治疗和骨骼肌质量改善的安全膳食补充剂。褪黑素可减少氧化应激和炎症,并保护骨骼肌免受氧化损伤。

此外,它还可以改善衰老过程中的肌肉线粒体功能。对老年人的研究也表明褪黑激素水平与肌肉力量之间存在显著相关性。

褪黑素:逆转睡眠剥夺小鼠的肠道菌群失衡

有趣的是,睡眠剥夺小鼠的肠道菌群减弱,益生菌种类有限。有趣的是,褪黑素治疗逆转了这种异常的微生物组组成。褪黑激素可以改善动物和人类的肠道微生物群。口服褪黑激素补充剂可以减少脂质积累,逆转肠道微生物群失衡,并改善肠道菌群的多样性。

褪黑素:改善肠道生态失衡,恢复SCFA水平

高脂肪饮食喂养的小鼠肠道中SCFA水平显著降低,但在补充褪黑激素后恢复。此外,高脂饲料喂养的小鼠补充褪黑素可以有效改善肠道生态失衡,褪黑素可以改变厚壁菌门与拟杆菌门的比例,增强肥胖小鼠的肠粘膜功能。

褪黑素:减轻胰岛素抵抗,参与骨代谢

同时,补充褪黑激素减轻了小鼠因低度炎症和高脂肪饮食摄入引起的胰岛素抵抗。褪黑激素可以调节胰岛素敏感性,因此在维持葡萄糖稳态和调节葡萄糖代谢方面具有关键作用。

褪黑素还可通过激活核因子红细胞 2 相关因子 2 (Nrf2)/过氧化氢酶信号通路抑制破骨细胞形成,从而治疗炎症性骨溶解。

因此,我们可以推断,褪黑激素可以增强肠道粘膜功能,改善脂质和糖代谢,并通过调节肠道微生物群失调促进 SCFA 的产生,从而最终增强肌肉骨骼系统的功能。


光生物调节对肠道菌群的影响

促进肌肉骨骼系统健康

作为一种局部治疗,光生物调节在临床上用于治疗各种病症,包括肌肉疲劳、关节和肌腱炎症以及伤口和骨折愈合

光生物调节:肠道菌群多样性↑↑

对健康小鼠腹部照射PBM后,小鼠肠道菌群发生显着变化,肠道菌群多样性也显着增加。这种效果在每周接受 3 次红光治疗的小鼠中最为明显,但在接受单次红光治疗的小鼠中则不明显。

近红外光比红光发挥更显着的效果

近红外照射后,小鼠肠道菌群中益生菌的比例显着增加,并且治疗还调节了与肠道菌群失衡相关的细菌丰度;这种作用可能归因于 PBM 对肠道微生物群的抗炎和氧化还原信号作用。

紫外线辐射:影响肠道菌群,维生素D和钙吸收,促进骨骼健康

紫外线辐射也会影响骨质流失大鼠模型中的肠道微生物群结构和功能除了抗炎作用外,紫外线辐射还可以通过诱导维生素D合成肠道钙吸收来调节骨代谢,从而促进骨形成、减少骨吸收、增强骨矿物质密度。该证据表明,尽管没有太多直接证据,但 PBM 仍然显示出通过调节肠道菌群失衡维持肌肉骨骼系统稳态的潜在作用。PBM 有潜力作为辅助疗法(与饮食和运动一起)来平衡微生物组并促进肌肉骨骼健康。

包括运动、电针和补充益生菌在内的生活方式干预措施对肠道微生物群有直接影响,改变其组成和功能,改善疼痛和生活质量,这为患有多种慢性疾病的患者开辟了新的治疗机会的创新途径。

05
结 语

肠道和骨骼之间的跨学科作用越来越引起骨生物学领域的关注。肠道菌群调节肌肉骨骼健康的潜在机制包括蛋白质、能量、血脂、糖代谢、炎症水平、神经肌肉连接性和线粒体功能。

肠道菌群的组成和代谢变化可能会影响肌肉骨骼系统的功能。肠道菌群失衡增加促炎因子水平,激活氧化应激途径,减少肌肉质量,影响骨形成和吸收。

肠道菌群调节的个性化治疗对于肌肉骨骼系统疾病的治疗来说既困难又充满希望

临床应用,还需深入研究

粪便移植的临床研究中,现有的荟萃分析对粪便移植对85种疾病的治疗效果进行综述发现,大多数研究是在传染病和肠道疾病方面进行的,而与肌肉骨骼健康直接相关的研究很少

不同人群的年龄、遗传背景生活方式等背景下,肠道微生物群变化可能会汇聚成不同的病理微生物群模式,这些复杂的相互作用需要进行大规模的纵向研究才能解决。

临床应用刚刚开始,考虑到微生物菌群的复杂性和个体差异,是否适合筛选促进肌肉骨骼健康的细菌,或者基于人类粪便细菌移植的个体化治疗;无论是肠道微生态干预的手段和方法,还是肠道微生态干预的效果,都还需要大量的临床证据来支持,需要共同努力才能实现。

多种干预措施,组合探索

基于肠道菌群在肌肉骨骼系统中的作用机制,可以采用不同的干预措施,如益生菌、益生元、维生素和膳食钙等,改善肠道菌群的组成和代谢,增强肌肉骨骼系统功能。

此外补充雌激素和褪黑激素以及光生物调节等新兴方法已显示出调节肠道微生物群和促进肌肉骨骼健康的潜力,特别是联合使用时。各种合理干预方法的组合应用也是一种有意义的探索

包括运动在内的生活方式干预措施对肠道微生物群有直接影响,改变其组成和功能,这为患有多种慢性疾病的患者开辟了新的治疗机会的创新途径。

主要参考文献:

Wang Y, Li Y, Bo L, Zhou E, Chen Y, Naranmandakh S, Xie W, Ru Q, Chen L, Zhu Z, Ding C, Wu Y. Progress of linking gut microbiota and musculoskeletal health: casualty, mechanisms, and translational values. Gut Microbes. 2023 Dec;15(2):2263207.

Sender R, Fuchs S, Milo R. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol.2016;14(8):e1002533.

Petermann-Rocha F, Balntzi V, Gray SR, Lara J, Ho FK, Pell JP, Celis‐Morales C. Global prevalence of sarcopenia and severe sarcopenia: a systematic review and meta-analysis. J Cachexia Sarcopenia Muscle. 2022;13(1):86–35.

Ayers C, Kansagara D, Lazur B, Fu R, Kwon A, Harrod C. Effectiveness and safety of treatments to prevent fractures in people with low bone mass or primary osteoporosis: a living systematic review and network meta-analysis for the American college of physicians. Ann Intern Med. 2023;176(2):182–195.

Wei J, Zhang Y, Hunter D, Zeng C, Lei G. The gut microbiome-joint axis in osteoarthritis. Sci Bull (Beijing). 2023;68(8):759–762.

Dey P, Chaudhuri SR, Efferth T, Pal S. The intestinal 3M (microbiota, metabolism, metabolome) zeitgeist – from fundamentals to future challenges. Free Radic Biol Med. 2021;176:265–285.

Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R. Current understanding of the human microbiome. Nat Med. 2018;24(4):392–400.

Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, Gordon JI. The human microbiome project. Nature. 2007;449(7164):804–810.

Fan Y, Pedersen O. Gut microbiota in human metabolic health and disease. Nat Rev Microbiol. 2021;19(1):55–71.

Delzenne NM, Neyrinck AM, Backhed F, Cani PD. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol. 2011;7(11):639–646.

Ma Q, Li Y, Li P, Wang M, Wang J, Tang Z, Wang T, Luo L, Wang C, Wang T, et al. Research progress in the relationship between type 2 diabetes mellitus and intestinal flora. Biomed Pharmacother. 2019;117:109138.

Lynch SV, Pedersen O, Phimister EG. The human intestinal microbiome in health and disease. N Engl J Med. 2016;375(24):2369–2379.

Ridaura V, Belkaid Y. Gut microbiota: the link to your second brain. Cell. 2015;161(2):193–194.

Chen Y, Zhou J, Wang L. Role and mechanism of gut microbiota in human disease. Front Cell Infect Microbiol. 2021;11:625913.

Dinan TG, Cryan JF. Brain-gut-microbiota axis and mental health. Psychosom Med. 2017;79(8):920–926.

Hu X, Wang T, Jin F. Alzheimer’s disease and gut microbiota. Sci China Life Sci. 2016;59(10):1006–1023.

Witkowski M, Weeks TL, Hazen SL. Gut microbiota and cardiovascular disease. Circ Res. 2020;127(4):553–570.

Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

Moludi J, Maleki V, Jafari-Vayghyan H, Vaghef-Mehrabany E, Alizadeh M. Metabolic endotoxemia and cardiovascular disease: a systematic review about potential roles of prebiotics and probiotics. Clin Exp Pharmacol Physiol. 2020;47(6):927–939.

Koh A, De Vadder F, Kovatcheva-Datchary P, Backhed F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell. 2016;165(6):1332–1345.

Bana B, Cabreiro F. The microbiome and aging. Annu Rev Genet. 2019;53(1):239–261.

Strasser B, Wolters M, Weyh C, Kruger K, Ticinesi A. The effects of lifestyle and diet on gut microbiota composition, inflammation and muscle performance in our aging society. Nutrients. 2021;13(6):2045. 

从头到肠:揭秘偏头痛与肠道菌群的关联

谷禾健康

偏头痛

偏头痛是一种常见且使人衰弱的神经系统疾病,也是世界经济的重大负担。大约14%的成年人患有偏头痛。其特点是反复出现一侧或两侧严重头痛(抽痛),并伴有独特的相关症状,包括畏光、恐声、恶心、呕吐等。

偏头痛在儿童晚期/青春期早期发病,在 40 多岁的人群中发病率最高,此后发病率下降。在所有年龄段中,女性偏头痛的发病率始终高于男性

潜在危险因素包括压力、饮食、急性药物过量、激素波动、睡眠、环境、天气等。

对偏头痛根本原因的研究已经跨越了几个世纪,涉及外周和中枢机制等,但其根本机制仍未完全了解。已经确定三叉神经系统的激活和敏化在偏头痛发作期间至关重要。

胃肠道系统和中枢神经系统之间存在双向关系。多项研究表明偏头痛与某些胃肠道疾病有关,例如幽门螺杆菌感染、肠易激综合征(IBS)、胃轻瘫乳糜泻等。

越来越多的证据表明微生物介导的肠-脑串扰可能导致偏头痛的发病机制。在偏头痛患者中,肠道微生物群的组成发生了改变,包括肠道菌群多样性下降,产丁酸菌减少梭状芽孢杆菌增加等。

偏头痛患者肠道和大脑之间的相互作用,可能受到多种因素的影响,如炎症介质(IL-1β、IL-6、IL-8 和 TNF-α)、道微生物群、肠道菌群代谢产物血清素途径、谷氨酸途径、神经肽(包括 CGRP、P物质、PACAP、NPY)等。

本文主要介绍了偏头痛相关症状、发病人群、四个阶段,基于偏头痛的发病机制,阐述肠道微生物群如何通过各个途径参与偏头痛的病理生理学,并探讨了潜在的干预策略。

01
什么是偏头痛?

很多人在听到偏头痛这个词的时候,会想到严重的头痛,但头痛并不直接等于偏头痛,头痛只是偏头痛的一种症状。

偏头痛是一种常见的神经系统疾病,会引起多种症状,最明显的是头部一侧的搏动性头痛,伴随着头部不适感和其他一些症状。

偏头痛是原发性头痛,这意味着它不是由其他疾病引起的。偏头痛的发作通常会对患者的日常生活和工作造成较大的干扰,那么偏头痛发作时,具体会有什么表现?


偏头痛的症状

偏头痛可能会有以下症状:

  • 头痛,有些人是剧烈疼痛,或有些人是抽痛。一开始可能是钝痛,然后发展成轻度、中度或重度的搏动性疼痛。疼痛可能从头部的一侧转移到另一侧,也可能位于头部的前部,或者感觉疼痛正在影响整个头部。
  • 对光、噪音、气味的敏感性增加
  • 头晕,视力模糊
  • 恶心 (约 80% 的人会感到恶心并伴有头痛)
  • 呕吐
  • 极度疲劳
  • 肤色苍白

日常体力活动、运动,甚至咳嗽或打喷嚏都会加剧头痛。

偏头痛最常发生在早晨,尤其是刚醒来时。有些人会在可预测的时间出现偏头痛,例如月经前或一周紧张工作后的周末。许多人在偏头痛后感到疲惫或虚弱,但在两次发作之间通常没有症状。


发生频率、持续时间

偏头痛的频率可以是每年一次、每周一次、或介于两者之间的任意时间。

每月发生两到四次偏头痛是最常见的。

未经治疗的发作持续 4~72 小时

大多数偏头痛持续约 4 小时,但严重的可能会持续 3 天以上。


偏头痛的类型有哪些?

偏头痛的两种主要类型是:

先兆偏头痛

以前称为经典偏头痛,包括视觉障碍和其他神经系统症状,这些症状在实际头痛前约10-60分钟出现,通常持续不超过一小时。个人可能会暂时失去部分或全部视力。这种先兆可能会在没有头痛的情况下出现,并且随时可能发作。

其他典型症状包括:

说话困难;身体一侧感觉异常麻木肌肉无力;手或脸有刺痛感意识混乱。头痛之前可能会出现恶心、食欲不以及对光、声音或噪音的敏感性增加

无先兆偏头痛

或普通偏头痛是更常见的偏头痛形式。症状包括毫无征兆地出现头痛,通常在头部的一侧感觉到,并伴有恶心、意识模糊、视力模糊、情绪变化、疲劳以及对光、声音或噪音的敏感性增加。

其他类型包括:

经期偏头痛

这些通常发生在经期开始前 2 天,并持续到经期后 3 天。可能还会在每月其他时间出现其他类型的偏头痛,但月经前后的偏头痛通常没有先兆。

沉默偏头痛

会出现前兆症状,但没有头痛。事实上,前兆通常是这种类型偏头痛的主要警告信号。但可能还会出现恶心和其他偏头痛症状。它通常只持续约20-30分钟

前庭偏头痛

平衡问题、眩晕、恶心、呕吐,伴或不伴头痛。这种情况通常发生在有晕车病史的人身上。

腹部偏头痛

可能会导致胃痛、恶心和呕吐。它经常发生在儿童身上,随着时间的推移可能会变成典型的偏头痛

偏瘫偏头痛

身体一侧出现短暂瘫痪 (偏瘫)或无力。可能还会感到麻木、头晕或视力变化。这些症状也可能是中风的征兆,因此请立即寻求医疗帮助。

眼部偏头痛

也称为眼部或视网膜偏头痛。它会导致一只眼睛短暂、部分或完全丧失视力,并伴有眼睛后面的钝痛,这种疼痛可能会扩散到头部的其他部位。请立即就医检查这些症状。

带脑干先兆的偏头痛

头痛之前可能会出现头晕、意识混乱或失去平衡。疼痛可能会影响头后部。这些症状通常突然出现,并可能伴有说话困难、耳鸣和呕吐。这种类型的偏头痛与激素变化密切相关,主要影响年轻的成年女性。请立即就医检查这些症状。

持续偏头痛

这种严重类型的偏头痛可持续超过 72 小时。疼痛和恶心非常严重需要去医院。有时,药物或停药可能会导致它们出现。

眼肌麻痹性偏头痛

这会导致眼睛周围疼痛,包括周围肌肉麻痹。这是医疗紧急情况,因为这些症状也可能是由眼睛后面的神经受压或动脉瘤引起的。其他症状包括眼睑下垂、复视或其他视力变化。

02
偏头痛的诱因、高发人群、四个阶段


哪些人群容易出现偏头痛?

活动性偏头痛的高峰发病年龄为 40 岁左右,其中 35%左右的女性15%左右的男性受到影响。

doi: 10.1038/s41572-021-00328-4.

  • 儿童和成人都会出现偏头痛。其中,15-45岁的人群中普遍存在偏头痛,大部分人在青春期首次经历偏头痛。
  • 成年女性的偏头痛发病率是男性的三倍。女性偏头痛通常与激素的变化有关。头痛可能在第一个月经周期开始时或怀孕期间开始。大多数女性在绝经后症状都会有所改善。
  • 没有头痛的女性可能会因口服避孕药的副作用而出现偏头痛。然而,有些女性发现服用这些药物后,偏头痛发生频率有所减少。
  • 大多数偏头痛患者都有该病的家族史。五分之四的偏头痛患者的其他家庭成员也有偏头痛。如果父母之一有此类病史,那么他们的孩子就有 50% 的机会患上此类头痛。如果父母双方都有,则风险会跃升至75%
  • 患有其他疾病的人身上也容易出现,例如:抑郁、焦虑、双相情感障碍、睡眠障碍、癫痫,中风等患者。- 偏头痛和癫痫发作有阵发性表现、各种先兆、发作和发作后特征,并可能相互引发或在接近的时间范围内发生。- 有重度抑郁症的人发生偏头痛的风险比没有抑郁症的人高出三倍。- 先兆偏头痛与缺血性中风之间存在联系,主要发生在 50 岁以下的女性


偏头痛的诱因

一些常见的偏头痛诱因包括:

  • 激素发生变化

许多女性注意到她们在月经期间、怀孕期间或排卵期间会感到头痛。症状也可能与更年期、使用激素避孕激素替代疗法有关。

  • 压力

当感到压力时,大脑会释放化学物质,这些化学物质会导致血管变化,从而可能导致偏头痛。

  • 食物

某些食物和饮料,例如陈年奶酪、酒精硝酸盐(意大利辣香肠、热狗和午餐肉中的硝酸盐)、味精等食品添加剂,高盐和加工食物,可能对部分人造成影响。

  • 咖啡因

摄入过多未达到习惯的摄入量都会导致头痛。咖啡因本身可以治疗急性偏头痛。

  • 天气变化

风暴锋、气压变化、强风或海拔变化都可能引发偏头痛。

  • 环境

大声的噪音明亮的灯光强烈的气味都会引发偏头痛。

  • 药物治疗

口服避孕药、血管扩张剂可以扩张血管,从而引发这些症状。

  • 体力活动

这包括体育锻炼和性生活等。

  • 睡眠

当睡眠过多或不足时,可能会感到头痛。

  • 其他

不良习惯包括不吃饭(或推迟进餐),吸烟,酗酒等,还有晕车也都可能引发偏头痛。

doi.org/10.1016/j.biopha.2021.111557


偏头痛的四个阶段

前驱症状阶段

有时称为头痛前阶段,此阶段的特点是在偏头痛出现前数小时数天出现,特点是没有疼痛的症状。这些包括情绪波动对食物的渴望颈部僵硬严重口渴腹胀、便秘或腹泻、注意力不集中、排尿增多等。

先兆阶段

先兆是指偏头痛之前或期间发生的感觉障碍。这些障碍会影响一个人的视力、触觉或言语,但并不是每个偏头痛患者都会出现视觉异常期。例子包括:

视力模糊、看到黑点、波浪线、闪光或不存在的东西、渐渐扩大的盲点手臂麻木、手臂和腿部有沉重感、口齿不清语句混乱

头痛阶段

这是通常出现疼痛的阶段,疼痛程度可能从轻微到无法忍受

偏头痛通常以钝痛开始,然后发展为抽痛,有时候是钻孔感。也可能出现颈部疼痛、僵硬、鼻塞、恶心、呕吐、失眠等。

体力活动以及接触光、声音和气味可能会加剧疼痛。然而,有些人在发作偏头痛时并不会出现头痛。

恢复阶段

最后阶段是疼痛消退时。在此阶段,人们可能会感到疲惫、困惑总体不适

doi.org/10.3390/neurolint15030073

03
偏头痛的发病机制

简单来说,在偏头痛发作之前几天,可能会感到疲劳,情绪变化,打哈欠,出现睡眠问题,恶心等情况,对光和声音敏感,这些预警信号与大脑中某个特殊的区域——下丘脑有关。下丘脑通常控制体内激素平衡,昼夜节律等,偏头痛发作之前下丘脑很活跃

偏头痛还有常见的症状,视觉变化,刺痛感,言语困难等,这些感觉与细胞膜电位变化相关,导致脑活动血流变化在大脑中扩散,电位变化快速在大脑表面传播,它传向哪里,哪里就出问题(*>﹏<*) …当它侵入视觉皮层,可能出现视觉盲点

在头痛阶段,三叉神经起到关键作用,三叉神经会传递来自脸部皮肤,头皮,覆盖大脑皮层的血管和膜层的触觉,温度等,一旦被激活,三叉神经会传递痛觉信号,当偏头痛发作时,这个痛觉通路会变得敏感化,也就是说能触发痛觉的阈值下降了,那么平时不太会引起疼痛的也变得容易痛了,比如说,咳嗽,弯腰,一些强光,噪声等都会引起疼痛。

具体来说,关于偏头痛的发病机制,目前主要有以下几种理论。

I) 血管学说

该学说认为由血管舒缩功能障碍引起。基于先兆期间大脑血管收缩引起的三叉神经过度兴奋,随后产生炎症神经肽释放引起血管舒张,导致偏头痛。

II)神经学说 (皮层扩散性抑制)

该学说认为偏头痛是原发性神经功能紊乱疾病。其中通过皮层-三叉神经通路,大脑皮层的过度神经兴奋(异常的神经放电)会增加细胞外谷氨酸、钙离子、钠离子和钾离子的释放,从而引发去极化作用,造成皮质扩散性抑制(CSD)。

皮质扩散抑制是什么意思呢?

它其实是一种缓慢传播的大脑活动改变波,涉及神经、血管功能的巨大变化,皮质扩散抑制可能是偏头痛先兆的原因。这些慢电波可以激活负责感知大脑周围覆盖物(“脑膜”)疼痛的神经,并改变血管功能,这两者都可能导致偏头痛。

doi.org/10.3390/ijms221810134

III)三叉神经血管学说 (近年流传较广)

三叉神经感觉纤维的激活(传递疼痛信号)导致脑膜血管(硬脑膜)发生痛性神经源性炎症,此过程通过炎症神经肽(CGRP、SP、NK-A)的释放介导,这表明CGRP释放神经源性硬脑膜血管舒张有关,这可能在偏头痛的发生中很重要。

注:关于CGRP在第四章节会详细介绍。

简单来说,激活三叉神经血管通路:

激活三叉神经元 → 释放P物质CGRP等血管活性神经肽 → 血管扩张和促炎分子(组胺、缓激肽)的释放 → 神经源性炎症 → 激活脑膜痛觉受体

偏头痛中的 CGRP 和三叉血管系统

doi.org/10.3390/ijms22168929

三叉血管系统是一组感知面部和大脑覆盖层疼痛的神经细胞。三叉血管系统的反复激活会导致神经系统过敏和持续疼痛

IV)肠脑轴(GBA)理论

肠-脑轴作为肠道功能和维护的协调系统,将大脑的情绪中心与肠外周机制连接起来,包括肠反射、肠道通透性、免疫反应和肠内分泌信号传导等。

肠道微生物群组成的改变可能会影响肠脑轴并引起炎症,从而可能导致偏头痛

通过肠-脑轴影响偏头痛

doi.org/10.1111/ene.15934

众所周知,睡眠不足和压力是原发性头痛障碍的常见诱因,不良饮食增加偏头痛的严重程度和频率

a) 上述因素导致肠道微生物组多样性和组成的改变,导致肠道细菌产生的短链脂肪酸减少LPS转移到系统循环中。

b) 此外,这些因子激活免疫细胞,产生的促炎细胞因子也进入系统循环。

c) 这反过来又促进了肠道微生态失调增加了肠道上皮的通透性,并将分子转移到系统循环中。

肠道微生物组的功能障碍,会导致与头痛病理生理学有关的必需神经递质GABA和血清素的耗竭。这反过来又改变了迷走神经功能

系统性促炎细胞因子LPS,改变了HPA轴的功能,并激活了孤束核,孤束核介导了大脑中的疼痛处理途径,包括前扣带、岛叶皮层、运动皮层和感觉皮层,导致疼痛感知的改变。

神经炎症刺激三叉神经纤维释放CGRP,并驱动皮层扩散性抑郁(CSD),改变兴奋性和抑制性传递,激活三叉神经-颈复合体,加剧头痛严重程度并介导头痛频率

接下来,我们主要就以上肠脑轴理论展开讨论一下,这其中涉及到的肠道菌群及其代谢产物与偏头痛有什么样的关联。

04
肠道微生物群 & 偏头痛

偏头痛常伴随一些胃肠道症状,包括恶心、呕吐、腹泻、便秘和消化不良。一些研究表明,肠道微生物群失调,可能会下调免疫系统功能,改变宿主代谢,破坏肠-脑轴,导致代谢和神经疾病的发生。胃肠道中的炎症神经免疫调节可能在偏头痛的发病机制中发挥重要作用。


肠道微生物群

偏头痛患者的肠道微生物群的物种多样性(α多样性)和代谢功能降低产丁酸菌减少

梭状芽孢杆菌增加,如:

  • Cl. asparagiforme
  • Cl. clostridioforme
  • Cl. bolteae
  • Cl. citroniae
  • Cl. hathewayi
  • Cl. ramosum
  • Cl. spiroforme
  • Cl. symbiosum

硝酸盐已被确定为一种普遍的偏头痛诱因

与没有偏头痛的人相比,在偏头痛患者的口腔和粪便样本中观察到能够减少硝酸盐、亚硝酸盐和一氧化氮的细菌丰度更高,如嗜血杆菌属Rothia属

编辑​

doi.org/10.3390/microorganisms11082083

特殊年龄段的偏头痛研究队列:

儿童和青少年

偏头痛在儿童和青少年中表现出多种形式,估计全世界儿童和青少年的总患病率为 10%。儿童双侧偏头痛更为常见,且持续时间较短。偏头痛儿童会出现多种胃肠道症状,包括腹痛、恶心、呕吐、腹泻、便秘。

在381名 7-18 岁儿童的队列中(40 名患有偏头痛,341 名没有偏头痛,平均年龄 11.5 岁),在偏头痛儿童和健康对照儿童有明显的菌群差异。

与健康对照相比,偏头痛儿童下列菌群升高

  • 拟杆菌门Bacteroides、Parabacteroides、Odoribacter
  • 放线菌门Eggertella、Varibaculum
  • 厚壁菌门SMB53、Lachnospira、Dorea、VeillonellaAnaerotruncus、ButyricicoccusCoprobacillus、Eubacterium
  • 变形菌门Sutterella

老年患者

一项针对108位老年女性(54 名偏头痛患者、 54 名健康受试者)的宏基因组关联研究发现偏头痛患者的细菌特征如下:

厚壁菌门,尤其是梭菌显著增加

在健康对照中有更多有益菌,例如:

普氏粪杆菌、青春双歧杆菌、史密斯甲烷杆菌。

同时,该研究发现犬尿氨酸降解谷氨酸降解γ-氨基丁酸(GABA)合成途径较多,提示神经传递和代谢可能发生转变。

接下来我们看这些肠道菌群代谢产物会怎样参与到偏头痛的发病机制中。


肠道菌群代谢产物

谷氨酸γ-氨基丁酸(GABA)等都参与疼痛感知。肠道中的这些神经递质参与了几种信号通路,这些信号通路除了调节疼痛外,还调节促炎细胞因子的释放

★ 谷 氨 酸

谷氨酸作为一种兴奋性神经递质,通过不同的作用,包括皮质扩散抑制、中枢敏化和刺激三叉血管系统,在偏头痛病理生理学中发挥作用。

研究证实,各种细菌菌株,包括在环境中发现的或用于食品发酵的菌株,都能够产生谷氨酸

偏头痛患者谷氨酸水平升高

由于谷氨酸可以沿着三叉神经血管通路对伤害性神经元产生刺激作用,因此它可能在偏头痛和偏头痛相关的中枢敏化的病理生理学中至关重要。这一理论得到了进一步的证明,偏头痛患者的血液谷氨酸水平在间歇期和发作期都有升高,在血浆和脑脊液中均升高

有研究表明,血浆谷氨酸水可能是慢性偏头痛和阵发性偏头痛的潜在指标

此外,有证据表明谷氨酸在皮质扩散性抑制中起主要作用,皮质扩散性抑制被假设为偏头痛先兆的生理底物。基于这些,谷氨酸能神经传递可能是偏头痛和微生物组之间的联系。

扩展阅读:

兴奋神经递质——谷氨酸与大脑健康

★ 血 清 素

血清素存在于大脑、肠道和血液的组织中,其中肠道含有~95%的人体总血清素。血清素能神经元存在于中缝背核和整个疼痛通路中。

它在体内有很多作用,例如在神经细胞之间发送信号并帮助身体控制血管收缩的方式。它还在控制情绪、睡眠、饮食和消化方面发挥作用。

血清素从血小板释放到血浆中可能与偏头痛先兆期的病理生理学有关。偏头痛发作期间储存在血小板中的血清素被耗尽血清素血浆水平降低,而相应代谢物羟基吲哚乙酸 (5-HIAA) 水平升高。

血清素既是血管扩张剂又是血管收缩剂,可作为伤害性疼痛的调节剂

  • 血清素太少与抑郁症相关,也可能会引发偏头痛,血清素水平低可能能够激活皮质扩散性抑制触发的三叉神经血管伤害性通路,从而支持偏头痛是一种低血清素能处置综合征的假说。
  • 血清素太多也可能与偏头痛相关,过多的血清素可能会导致大脑神经元过度活动并引发皮质扩散性抑制,偏头痛患者可能容易受到血清素水平急剧升高的影响

偏头痛患者经常报告说,呕吐后头痛就会停止,呕吐会刺激肠道蠕动并提高血液血清素水平。而血清素的合成与肠道菌群有关,例如肠球菌、链球菌、大肠杆菌等。

血清素可能具有促伤害感受和抗伤害感受特性,具体取决于亚型

现在估计至少有七种不同的受体家族(5-HT1-7),其中许多具有亚型,偏头痛的发生涉及不止一种亚型。由于色氨酸是血清素的前体并且可以穿过血脑屏障,因此大脑中血清素的量取决于色氨酸的水平

接下来我们看看关于色氨酸的代谢。

★ 色 氨 酸

色氨酸在人体内以三种主要途径代谢:血清素(5-HT),犬尿氨酸(l-kyn)和微生物群相关的吲哚途径

一些报告表明,增加膳食色氨酸的摄入量预防偏头痛的发生或减轻其胃肠道相关症状,如恶心、呕吐以及畏光。

色氨酸的代谢途径在五个肠道门中最有效:放线菌门、厚壁菌门、拟杆菌门、变形菌门、梭杆菌门。梭菌属、Burkholderia、链霉菌属、假单胞菌属、芽孢杆菌属5个属也具有较大的肠道内色氨酸代谢潜力

色氨酸代谢的犬尿氨酸途径,可能对偏头痛具有治疗潜力

色氨酸代谢产物可能作用于谷氨酸能系统,该系统参与疼痛传递、中枢敏化和皮质扩散性抑制,谷氨酸能离子型和代谢型受体参与偏头痛的发病机制,KYNA(犬尿喹啉酸)是NMDA受体的竞争性拮抗剂,其抑制作用可防止谷氨酸诱导的兴奋性毒性,因此有理由推测色氨酸代谢的犬尿氨酸途径可能对偏头痛具有治疗潜力。

注:NMDA受体是离子型谷氨酸受体的一个亚型

犬尿氨酸途径是色氨酸转化的主要途径,因为它在正常情况下约占色氨酸代谢的95%,并且与神经系统疾病的行为和认知症状有关。

犬尿氨酸(l-kyn)途径(KP)将l-色氨酸转化为几种神经活性化合物。犬尿氨酸喹啉酸的产生,耗尽了作为血清素前体的色氨酸和色胺的供应。

doi.org/10.3390/ijms221810134

犬尿氨酸衍生物具有有效的镇痛作用,其机制包括抑制CGRP。犬尿氨酸途径产物是芳烃受体(AhR)的重要配体,其激活与胃肠道炎症偏头痛的发病机制有关。

AhR、TLR 和 MyD888 激活可能强调犬尿氨酸参与偏头痛和功能性胃肠道疾病。

扩展阅读:

色氨酸代谢与肠内外健康稳态

★ 短 链 脂 肪 酸

短链脂肪酸 (SCFA) 是胃肠道细菌的代谢产物,对葡萄糖稳态、饱腹感、抗炎作用和大脑信号传导有许多局部和全身影响。

通过调节免疫细胞和细胞因子→影响神经炎症

如短链脂肪酸的施用可以减少硝酸甘油诱导引起的痛觉过敏,并导致肠道促炎细胞因子如 TNF-α 和 IL-1β 的释放减少

丙酸可以保护血脑屏障免受氧化应激

一些菌群如:普通拟杆菌、B.uniformis、Alistipes putredinis、Prevotella copri、Roseburia inulinivorans、VeilonellaAkkermansia mucinophila等,具有很高的丙酸盐生产能力。

丁酸和丙酸等短链脂肪酸通过迷走神经,穿过血脑屏障,然后激活可能改变多巴胺能和血清素能信号传导的受体

神经保护特性:如丁酸盐

丁酸盐影响肠嗜铬细胞释放血清素,前面我们已经了解到血清素在偏头痛发病中的重要性。

与产丁酸相关的菌群,例如:

  • Faecalibacterium prausnitzii
  • Coprococus spp.
  • Roseburia spp.
  • Lachnosiraceae spp.
  • Clostridial Clusters IV
  • Clostridial Clusters XIVa
  • Eubacterium hallii

快速和极端的饮食变化直接影响肠道微生物群,影响肠道微生物群的β多样性。在高脂肪饮食中添加益生元(可发酵纤维)可以恢复产丁酸菌双歧杆菌水平,这也突出了饮食对肠道微生物群组成的关键影响。

丁酸盐刺激齿状回的细胞增殖和分化,并增强脑源性神经营养因子(BDNF)和胶质源性神经营养因子(GDNF)的表达。丁酸盐还通过抑制 TNF-α 的合成而在大脑中显示出抗炎作用,TNF-α 是由内毒素脂多糖 (LPS) 通过抑制NF-κB 诱导的。

下面我们来看看炎症因子在偏头痛发病中扮演怎样的角色。

炎症介质

在炎症性疾病和偏头痛中都观察到炎症免疫反应增强。促炎性免疫反应的主要触发因素是由于肠道通透性增加而导致脂多糖进入循环,那么,炎症反应可能出现在身体的各个部位,当三叉神经上伤害感受器的激活时,偏头痛就出现了。

研究表明偏头痛发作期间,下列炎症因子升高

  • IL -1β
  • IL – 6
  • IL – 8
  • TNF-α

这些炎症因子是如何在偏头痛发病中发挥作用的呢?

IL-1β 是一种主要细胞因子,可驱动大脑和全身炎症激活普遍存在的细胞表面受体 IL-1R1。

IL-1β/IL-1R1 轴激活一系列炎症分子,包括其他细胞因子和趋化因子。IL-1β 激活脑膜伤害感受器并使之敏感,是皮质扩散性抑制后三叉神经激活的关键介质。也就是说,IL-1β/IL-1R1 轴在外周TG和中枢神经系统的三叉血管通路中尤其发挥着至关重要的作用。

IL-1和IL-6 是由调节性B细胞响应微生物群的紊乱而释放的。

研究表明,肠道微生物群失调通过三叉神经伤害感受系统中的TNF-α水平上调促进了类似偏头痛疼痛的持续性

肠道菌群通过间接信号传导维持肠脑轴正常平衡的作用机制

doi: 10.1186/s10194-020-1078-9

IL-8的表达,涉及到神经肽,与P物质有关,P物质可以帮助调节免疫细胞及其产生的各种细胞因子。

接下来,我们来看偏头痛中重要的——神经肽。


神经肽

★ CGRP(降钙素基因相关肽)

对于患有慢性偏头痛的患者,CGRP 水平在偏头痛发作期间持续升高,并且在两次发作之间继续升高。CGRP是我们反复提到的词,我们来看看它在偏头痛疾病中发挥什么样的作用。

CGRP,降钙素基因相关肽 ,一种由37个氨基酸组成的肽,可能通过胃肠道免疫细胞肠道运动与肠道微生物有关。在偏头痛的情况下,它在三叉神经节、三叉神经尾核、杏仁核、丘脑和皮质中浓度很高

CGRP有两种形式:

  • α-CGRP主要分布在周围神经系统和中枢神经系统中
  • β-CGRP存在于肠道神经系统中

CGRP升高如何与偏头痛关联起来:

  • CGRP 会触发三叉神经元释放血管活性神经肽,导致脑血管舒张,从而导致偏头痛的出现
  • CGRP 在传递疼痛信号和促进炎症方面发挥着关键作用。
  • CGRP 不仅作为递质,还作为肠道激素,其信号传导可能通过多种途径受到微生物群的影响
  • CGRP 抑制胃酸分泌并减少食物摄取,这可能与偏头痛发作时食欲下降有关
  • CGRP 对树突状细胞(硬脑膜中较多)的抑制作用,表现为减少树突状细胞的迁移和抗原呈递

星形胶质细胞和神经元参与了CGRP合成释放过程的正反馈循环,并维持了增加的炎症致敏状态。

CGRP 可以作为一种有价值的治疗标志物

目前,许多用于治疗和预防偏头痛药物的原理,就是针对这个CGRP或其受体的,抑制 CGRP 转录并减少其释放,从而缓解偏头痛。

★ P 物 质

P物质(substance P),是一种广泛分布于细神经纤维内的神经肽,主要作用是传递痛觉信息

呕吐是最常见的胃肠道反应之一,受P物质的控制

中枢神经系统中,延髓有面突区孤束核的区域,这两个区域控制呕吐反射并含有高水平的P物质。P物质释放结合到NK1R上会触发呕吐反应

P物质的一个功能是通过改变细胞信号通路作为神经递质和疼痛感知调节剂

有一个假说是P物质有助于突触后神经元对谷氨酸的敏感性,有助于将疼痛信号传递到大脑的体感区域。在许多其他中枢神经系统病理中通过神经源性炎症引起早期血脑屏障的破坏

P物质的关键作用是双向调节免疫细胞及其产生的各种细胞因子

IL-1、IL-4和IFN-γ可以诱导巨噬细胞表达NK1R。诱导细胞因子释放会导致巨噬细胞和树突状细胞的招募,这有助于刺激IL-8的表达。P物质间接参与了免疫细胞的招募和迁移。P物质能刺激和诱导肥大细胞脱颗粒化。

★ PACAP

在与偏头痛病因机制相关的几个结构中发现了PACAP(垂体腺苷酸环化酶激活肽)的存在,包括硬脑膜、脑血管、三叉神经节、三叉神经原球和颈椎脊髓。

PACAP在神经调节神经源性炎症痛觉中起着重要作用。PACAP在感觉神经元炎症后上调。PACAP与CGRP在一些硬膜神经纤维中共同表达,也与疼痛的中枢敏化和情绪负荷有关。

PACAP对革兰氏阳性菌、革兰氏阴性菌和真菌具有抗菌活性,因此它可以直接影响膜的杀菌功能有效的防御能力较低的细菌耐药性使抗微生物神经肽成为一类有吸引力的新型抗生素。

★ NPY(神经肽Y)

NPY是去甲肾上腺素能系统功能的可能指标,通过脑循环调节影响脑血流量。值得一提的是,在偏头痛发作期检测到较高水平的NPY

NPY已经在肠-脑轴的各个层面上被检测到。NPY通路也有助于改变胃肠道功能及其血流、免疫系统和炎症状态疼痛、能量稳态、情绪、情绪以及行为和大脑认知功能等。

★ 胆囊收缩素 (CCK)

胆囊收缩素(CCK)由小肠粘膜内(I 细胞)、哺乳动物大脑(例如皮质、丘脑、中脑边缘、导水管周围灰质和中脑)和脊髓的肠内分泌细胞合成。这种肽抑制胃排空和胃酸分泌,刺激胆囊收缩和胰腺分泌,并通过 CCK1 受体在大脑中激发饱腹感

CCK在导水管周围灰质中产生,可能是偏头痛内源性疼痛信号系统及其水平高的原因。CCK也存在于三叉神经节中,因此刺激三叉神经节会导致局部CCK增加。

CCK——肥胖和偏头痛之间的桥梁之一

肥胖患者偏头痛发作的频率和严重程度明显更高。偏头痛和肥胖之间联系的一种可能解释是,是高脂饮食引起的CCK分泌,因为十二指肠内游离脂肪酸会刺激CCK的分泌。

关于CCK可以详见我们之前肠道激素的文章:

肠道作为内分泌器官在代谢调节中的作用


性激素

当考虑到性激素时,我们知道偏头痛在女性中的发病率是男性的2-3倍,女性的发作时间更长、更严重,恢复时间也更长。

无先兆偏头痛的风险在月经前 2 天和月经期间,这也是生殖道微生物群多样性最低的时候。周期中期雌激素孕酮水平高与无先兆偏头痛的风险较低以及生殖道内微生物群落的稳定性较高有关。

众所周知,雌激素会改变肠道内的紧密连接和粘蛋白保护,改变肠道通透性。

雌激素受体广泛表达于中枢神经系统,有证据表明雌激素调节痛觉传导,雌激素敲除模型在脊髓背角水平导致CGRP升高,从而改变了发起偏头痛攻击所需的阈值。临床上支持这一点的是黄体晚期偏头痛发作的可能性增加。虽然孕酮撤退似乎不会触发偏头痛发作,但它可能在疼痛敏感性和病程演化中起作用

关于雌激素与肠道菌群详见我们之前的文章:

探索女性健康——肠道菌群及其他因素对雌激素的影响

肠道菌群、性激素与疾病:探索它们的交互作用

睾酮降低了对CSD的易感性,增加了血清素能调,并具有抗炎特性。较高水平的睾酮与肠道微生物群多样性增加有关,研究表明,患有偏头痛的男性存在雄激素缺乏雌二醇水平增加

因此,肠-脑轴可能介导性激素和头痛疾病之间的关系。

以上我们阐述了肠道菌群及其代谢产物等参与偏头痛发病机制,包括炎症介质、肠道微生物群、神经肽、血清素途径等。有证据表明偏头痛胃肠道疾病之间存在共同的病理生理学,下面我们来了解一下它们之间的关联。

05
偏头痛与肠道疾病的共病

偏头痛和胃肠道合并症的病理生理学都很复杂,尚未完全阐明;然而,科学证据确实表明这些复杂疾病之间的病理生理学重叠。研究这种重叠有助于阐明常见的病理生理异常或生物学机制

特别是,自主神经系统(ANS)被认为在偏头痛和胃肠道功能障碍之间的关联中起重要作用,因为它们的症状特征相似,包括恶心,呕吐,消化不良和胃轻瘫。

doi: 10.1111/head.14099

肠易激综合征(IBS)和炎症性肠病(IBD)的患者中,偏头痛的发生率增加。两者都是严重的肠道疾病,与肠道通透性增加和微生物引起的炎症有关。此外,中枢性、内脏性和热性皮肤过敏在IBS和偏头痛中很常见。患有长期和更频繁头痛的偏头痛患者更有可能被诊断为IBS。


IBS

偏头痛与IBS有一些共同的重要特征,这两种疾病都是慢性疼痛相关疾病,在女性中比男性更普遍,并且在纤维肌痛、慢性疲劳综合征、间质性膀胱炎、失眠、抑郁等方面与心理合并症有关。据估计,约60%的偏头痛患者患有异常性疼痛,除内脏超敏反应外,大多数IBS患者还报告异常性疼痛

  • 一项大规模队列研究显示,与非IBS人群相比,Cole等人发现IBS队列中偏头痛、纤维肌痛和抑郁的几率高60%。
  • 挪威队列的较小范围人群研究发现,IBS亚人群中偏头痛的发生率是对照组的2倍。

在IBS患者的粪便微生物群中评估出偏头痛的严重程度与肠道菌群失调之间存在强正相关。约一半没有先兆的年轻女性偏头痛患者患有肠道微生物群失调

美国肠道计划队列研究发现,偏头痛口腔微生物中具有还原硝酸盐、亚硝酸盐和一氧化氮功能活性的菌群水平呈正相关关系。


IBD

IBD是一种慢性复发-缓解炎症性疾病,由克罗恩病和溃疡性结肠炎组成。关于偏头痛和IBD之间可能关系的数据很少。

  • 一项病例对照研究显示,与对照组相比,IBD患者的头痛患病率更高(46% vs 7%)。
  • 在巴西的一项研究中,头痛是IBD患者最常见的神经系统表现;25%的头痛患者符合偏头痛的标准
  • 在三级护理头痛中心的一项横断面研究表明,与普通人群相比,IBD患者的偏头痛患病率高出两倍
  • 另一项研究报告称,与非IBD受试者(8.8%)相比,IBD患者的偏头痛患病率更高(21.3%)

虽然机制不明确,IBD中存在的自身免疫性炎症反应、吸收不良、内皮功能障碍以及为该疾病开具的免疫抑制治疗可能参与了炎症性肠病和偏头痛之间的病理生理关联。

扩展阅读:

肠道菌群失调与炎症性肠病的关联


功能性消化不良

根据罗马IV标准,功能性消化不良分为餐后不适综合征(PDS)和上腹疼痛综合征(EPS)。

  • 餐后不适综合征:每周出现令人烦恼的早饱感或餐后饱胀感≥3天。
  • 上腹疼痛综合征:过去3个月内每周出现上腹疼痛或上腹部烧灼感。
  • 其他症状还可能包括腹胀、打嗝和恶心。

偏头痛是功能性消化不良和餐后症状患者的常见合并症

  • 一项针对 60 名功能性消化不良患者(38 名 PDS 患者和 22 名 EPS 患者)的研究中,68% 的患者出现无先兆偏头痛。在 EPS 患者中,54% 的人出现无先兆偏头痛,这与进餐无关,而 76% 的 PDS 患者出现偏头痛,其中 89% 的偏头痛发作与进餐相关。有趣的是,与轻度或无偏头痛的PDS患者相比,患有PDS和中度至重度偏头痛的患者经历了显著更强的饱腹感(2.2±0.7 vs.1.9±0.7;p=0.02)和早期饱足感(2.0±0.8 vs.1.7±0.8;p=0.01)而与患有轻度或无偏头痛的EPS患者相比,患有EPS和严重偏头痛的患者,上腹部烧灼感(0.7±0.7 vs.1.6±0.8;p=0.008)和腹胀(1.3±1.0 vs.2.3±0.7;p=0.01)较轻。

扩展阅读:

肠道微生物:治疗功能性消化不良的新途径


胃 轻 瘫

基于人群的研究,个体主要是女性,最常见的症状(无论是持续性还是偶发性)是恶心呕吐,但也可能包括腹痛、腹胀、体重减轻、餐后饱腹感和早饱感。

在患有特发性胃轻瘫和腹痛的个体中,腹痛严重的人比症状较轻的人更有可能患有重叠偏头痛

  • 一项 711 名患者参与的研究,其中 516 名胃轻瘫患者和 195 名慢性不明原因恶心呕吐 (CUNV) 患者。36.6% 的胃轻瘫患者报告有偏头痛发作。偏头痛患者的胃轻瘫主要症状指数也更严重(比值[OR]1.24,95%置信区间[CI]1.05–1.45,p=0.009),特质焦虑增加(OR1.16,95%CI=1.03–1.32,p= 0.02)

胃轻瘫中,观察到胃排空时间与偏头痛发作患者头痛、恶心和对光敏感的严重程度显著相关多潘立酮是一种多巴胺受体拮抗剂,可用于治疗胃轻瘫,并已被证明在早期高剂量给药时可预防大多数偏头痛发作。另一种多巴胺受体拮抗剂甲氧氯普胺可用于治疗胃轻瘫和恶心,作为偏头痛的急性静脉注射治疗是有效的。


幽门螺杆菌感染

根据 5 项病例对照研究的荟萃分析结果,约 45% 的偏头痛患者患有幽门螺杆菌感染,而健康对照组的患病率估计约为 33% 。有证据表明根除幽门螺杆菌可能与缓解偏头痛症状有关。

幽门螺杆菌感染与持续慢性炎症状态有关,这反过来可能导致炎症介质血管活性化合物的产生增加。因此,偏头痛和幽门螺杆菌感染之间的关联机制可能包括诱导免疫、炎症血管反应,以及随后免疫细胞、炎症和血管活性物质释放到胃粘膜中,最终可能导致大脑疼痛敏感结构的超敏反应

  • 细菌引起的炎症状态似乎改变了偏头痛病理生理过程中涉及的其他因子的神经内分泌释放,包括血清素、P物质等。
  • 与健康人相比,幽门螺杆菌诱导的十二指肠溃疡中CGRP水平升高。
  • 幽门螺杆菌刺激的IL-10可能会加剧偏头痛的严重程度。

扩展阅读:
正确认识幽门螺杆菌


乳糜泻

乳糜泻具有多种神经系统表现,如癫痫、共济失调、小脑性共济失调、情绪障碍、脑炎、周围神经病变、神经肌肉疾病、痴呆、学习障碍发育迟缓偏头痛

与没有这种疾病的人相比,被诊断患有乳糜泻(一种由谷蛋白肽引发的自身免疫性疾病)的人表现出更高的偏头痛发生率,据估计,大约 21-28% 的乳糜泻患者患有偏头痛。

相反,患有偏头痛的人乳糜泻的患病率更高。临床医生可能会考虑在存在此类改变的偏头痛受试者中寻找乳糜泻,特别是如果存在其他提示乳糜泻的症状。

偏头痛和乳糜泻之间的联系可归因于几种同时存在的机制,包括面筋引起的促炎细胞因子的激活、吸收不良导致的重要维生素和必需元素的缺乏、血管张力的紊乱、神经系统敏感性的增加、脑灌注不足、血管周围炎症等。

06
偏头痛的干预措施


饮食

✔ 消除饮食

消除饮食需要先确定首先引发头痛的饮食成分,然后从常规饮食中排除这些成分。这是一种个人方法,个人可以识别引发或加剧头痛的成分。

如果某种食物在接触后 1 天内引起头痛,则可将其视为触发因素。大多数患者存在多种触发因素;因此,很难识别单一成分。况且有些食物含有不止一种成分,因此要完全识别出来并不简单。

✔ 综合饮食

富含ω-3ω-6脂肪酸低脂高叶酸生酮饮食对偏头痛患者有益。

改良的阿特金斯饮食提供神经保护,改善血清素能功能障碍,抑制神经炎症,改善线粒体功能。

生酮饮食会增加产生的酮体浓度,这对头痛患者有帮助。

低血糖饮食也能改善炎症状态。保持ω-6脂肪酸和ω-3摄入之间的微妙平衡可以减少炎症,维持血管张力,增强血小板功能。

偏头痛发作频率与坚持“健康”饮食模式(大量食用水果、蔬菜、鱼类、豆类、发酵食物等)成反比(P=0.04)。与坚持“西方”饮食方式(大量食用可乐、咸坚果、加工肉和快餐)成正比(P=0.02).

生姜、薄荷和辣椒都具有天然的止痛功效。生姜和薄荷有助于减少与偏头痛相关的恶心

薰衣草可以减少血管炎症,通常是治疗焦虑、压力和压力引发的偏头痛有效的草药。

✔ 低钠饮食 / 高钠饮食

对脑脊液的分析显示,与对照组相比,偏头痛患者的钠含量较高,尤其是在头痛发作时。然而,低钠饮食的效果取决于许多因素,因此在考虑低钠饮食之前应详细评估其效果。

低钠饮食可以有效减少老年高血压患者头痛的发生。除了控制血压之外,低钠饮食还可以降低头痛的发生率。

相比之下,在没有高血压的低至正常体重指数的年轻女性人群中,高钠饮食有助于降低偏头痛发作的频率

因此,低/高钠饮食应该根据患者群体进行调整。

低热量饮食 or 生酮饮食?

有研究认为,生酮饮食对偏头痛患者更有益,低热量饮食对偏头痛患者不利 (n = 108) 。在另一项研究中,生酮饮食显着改善了这些患者的头痛特征,并减少了发作频率和药物使用。停止生酮饮食后 2 个月观察到持续改善。

虽然看起来生酮饮食患者的头痛频率有所减少,但过渡期的头痛频率更严重。然而,经过3个月和6个月的随访后,低热量饮食组的头痛频率显著改善。

✔ 低血糖饮食(LGD)

通常从碳水化合物中获取总热量的 50-55% 是安全饮食。饮食转向低血糖指数碳水化合物已被证明可以增加短链脂肪酸水平。在某些情况下,LGD 是一种重要的替代方案,例如高脂血症、糖尿病、癫痫和体重管理。

罗马进行的一项队列研究中报告称,增加全麦面包(P = 0.04)和全麦面食(P = 0.004)的消费,以及减少白面包(P = .004)的消费,与偏头痛发作频率和每月使用药物救治的统计显著减少有关。

✔ 低脂饮食

一项研究调查了54名成年人减少脂肪饮食对偏头痛治疗的影响。患者被告知他们的脂肪消耗量将降至<20 g/天(12周)。发现头痛药物的发生率、严重程度和需求显著降低

在一项为期 12 周的试验中,患有慢性偏头痛的成年人被随机分配接受高omega-3 低omega-6 饮食或低 omega-6 饮食。与采用低omega-6 饮食的偏头痛患者相比,采用高omega-3/低 omega-6 饮食的人的头痛改善程度更高

可能与此相关:omega-6 和 omega-3 之间的平衡有助于炎症控制。omega-6 脂肪酸促进血管舒张。

谨慎选择下列食物

味精在高浓度和溶解在液体中可能会引发偏头痛。并不是说引发每个患者的偏头痛发作,不能一概而论。

咖啡因可能缓解偏头痛或者引发偏头痛。与阿司匹林和对乙酰氨基酚结合,咖啡因是一种高效的止痛药。咖啡因戒断会引发咖啡因使用者的偏头痛发作。需要注意自己的剂量

咖啡因与偏头痛频率之间的联系没有定论。一些研究数据表明,不同的偏头痛和慢性日常头痛在咖啡因使用者中比不摄入这种物质的人更常见。也有研究认为偏头痛频率和咖啡因摄入之间没有关联。

饮酒是偏头痛发作最常见的原因之一。酒精可以刺激三叉神经节中的脑膜伤害感受器触发疼痛信号,然后在三叉神经脊核传递到丘脑核,最后传递到体感皮层。也可能涉及其他机制,例如血管舒张作用、脱水、毒性等。除了酒精,酒精饮料还含有某些化合物(酒精发酵的副产品),这些化合物都可能会引发偏头痛。

许多研究提出了巧克力摄入头痛之间的联系,但其确切的生理机制尚不清楚。可能是巧克力中的黄烷醇刺激内皮一氧化氮合酶(eNOS)活性,这可以通过增加一氧化氮(NO)的产生导致血管舒张。

也有研究认为巧克力含有许多维生素和矿物质(例如镁和核黄素),用于预防偏头痛。富含可可的饮食通过抑制CGRP的表达来预防三叉神经节神经元的炎症反应。

酪胺(Tyramine)是一种衍生自酪氨酸的胺化合物,存在于各种食品中,包括陈奶酪、腌肉、熏鱼、啤酒、发酵食品和酵母提取物等。酪胺有可能通过促进去甲肾上腺素的释放并对α-肾上腺素受体产生激动作用而引发头痛。

阿斯巴甜是一种人造甜味剂。几项研究表明,它会引起各种神经或行为症状;也会引起头痛,尤其是对于长期使用中等或高剂量(900–3000 mg/天)的人。

基于以上所述,识别和避免饮食中的偏头痛诱因至关重要,因为这有助于降低偏头痛的频率,让偏头痛患者能够控制让他们感到疲惫和无助的情况。


维生素及微量元素

B族维生素

维生素B2对氧化代谢至关重要,可以降低偏头痛的风险。根据随机对照试验,服用维生素B2可以显著减少每月偏头痛天数1-3天。通过增加产短链脂肪酸菌丰度,维生素B2和其他B族维生素有助于对肠道微生物组产生正面影响。

扩展阅读:

如何解读肠道菌群检测报告中的维生素指标?

维生素C

水溶性维生素C是最重要的非酶抗氧化剂之一,参与神经代谢。维生素C的膳食来源是水果和蔬菜

维生素C可能调节偏头痛过程中的神经炎症氧化应激活性的影响。

一项开放标签研究中,患者接受了含有120 mg粉红树皮提取物、60 mg维生素C和30 IU维生素E的胶囊(每粒胶囊)。在完成治疗期的患者中,得到了改善,包括头痛频率和头痛严重程度的降低。该研究人员还进行了一项开放标签研究,以检查维生素C(150 mg)和辐射松树皮提取物对偏头痛症状的影响。患者服用上述剂量的维生素C和辐射松树皮提取物3个月。治疗后,患者表现出显著改善:头痛频率和头痛严重程度减轻。

扩展阅读:

维生素C的功能、吸收代谢、与肠道菌群的关联

维生素D3

补充维生素D3会影响肠道微生物群的组成。为健康人补充8周维生素D3也显著减少了幽门螺杆菌的数量。几项研究报告称,血清维生素D水平可能与偏头痛/头痛风险增加有关。

偏头痛患者中这种维生素缺乏/不足的患病率可能更高。补充维生素D对偏头痛发作的强度频率也有良好的影响。

镁参与多种酶促反应,还维持细胞膜的平衡,影响其通透性并减少自发去极化的可能性。它影响外周和中枢神经系统的兴奋性和神经传导,因此在偏头痛病程中起着重要作用。

镁缺乏导致皮质扩散抑制或谷氨酸能神经传递异常是镁与偏头痛关系的一个可能机制。镁不足可能会影响 NMDA 受体阻断、钙通道、谷氨酸和 NO 活性,以及血清素受体的亲和力。

许多临床医生认为,以正确的剂量和形式补充镁可以成为预防偏头痛发作的治疗方法。补充镁也可以配合其他药物


益生菌

益生菌是偏头痛的另一种潜在疗法,它与饮食干预一样能够改变肠道微生物群。

在 NTG 诱导的偏头痛小鼠模型中,发现口服益生菌混合物显著抑制抗生素治疗引起的偏头痛样疼痛延长。

在一项随机双盲对照试验中观察到,与安慰剂对照相比,在 40 名发作性偏头痛患者和 39 名慢性偏头痛患者中,为期 8 周的益生菌试验显著降低了偏头痛的严重程度频率药物使用量

其中含有14种益生菌菌株:

  • Bacillus subtilis PXN 21
  • Bifidobacterium bifidum PXN 23
  • Bifidobacterium breve PXN 25
  • Bifidobacterium infantis PXN 27
  • Bifidobacterium longum PXN 30
  • Lactobacillus acidophilus PXN 35
  • Lactob. delbrueckii ssp. bulgaricus PXN 39
  • Lactob. casei PXN 37
  • Lactob. plantarum PXN 47
  • Lactob. rhamnosus PXN 54
  • Lactob. helveticus PXN 45
  • Lactob. salivarius PXN 57
  • Lactococcus lactis ssp. lactis PXN 63
  • Streptococcus thermophilus PXN 66

益生菌组偏头痛发作的平均频率显著降低(平均变化:-9.67 与 -0.22;p ≤ 0.001)。补充益生菌显著降低严重程度(平均变化为-2.69;p≤0.001.),降低慢性偏头痛患者的发作持续时间(平均变化:-0.59;p≤0.034),减少每天服用药物数量(平均变化为-1.02;p<0.001)。

doi.org/10.3390/neurolint15030073

芽孢杆菌、双歧杆菌、乳酸杆菌和链球菌菌株的混合物应用8-10周,可以降低发作性偏头痛患者的发作严重程度和频率,并降低慢性偏头痛患者的频率、严重程度、持续时间和每天服用的药物数量。


天然产物

姜黄素

姜黄素是从姜黄根茎中提取的主要姜黄素,也是最著名的植物多酚之一。姜黄素具有许多有益的特性,如抗氧化、抗动脉粥样硬化、抗菌、免疫调节、抗衰等特性。

姜黄素可以显著抑制 IL-1β 和 TNF-α 表达、氧化应激和蛋白质积累。

对偏头痛治疗进行了一项研究,比较了单独使用舒米曲普坦(ST)和与姜黄素一起使用的效果,采用了硝酸甘油诱导的偏头痛大鼠模型。

姜黄素以下面两种形式静脉注射,因为姜黄素的肠道吸收较低:

a)酒精溶液(用生理盐水稀释)

b)脂质体的形式

当姜黄素以脂质体的形式进行注射时,其氧化作用更为显著。作者将所得结果归因于姜黄素能够清除羟基或过氧自由基、直接与过氧化物自由基相互作用以及抑制参与炎症性因子NF-κBs的活性。

偏头痛发病机制的一个考虑的机制涉及肿瘤坏死因子α(TNF-α)的参与,通过引发神经元超兴奋性、刺激伤害感受器和前列腺素的产生,从而引发神经炎症

一项研究,旨在确定姜黄素ω-3脂肪酸对TNF-α基因表达的协同作用。接受两种物质治疗的患者在血浆中显示出TNF-α mRNA水平的降低(反映了TNF-α表达的减少)。在只接受其中一种分析物的患者中,没有发现这种情况。

辅酶Q10

除了抗氧化特性外,辅酶Q10还表现出抗炎特性,参与嘧啶合成(作为辅因子),进而参与DNA复制和RNA修复过程。由于其潜在的积极作用,是许多神经系统疾病的膳食补充剂。

酶Q10被列为预防偏头痛最常用的治疗方法之一。给予偏头痛患者辅酶Q10会导致CGRP的降低

儿童和青少年中研究了补充辅酶Q10与偏头痛发生之间的关系。患者每天服用100毫克辅酶Q10,为期4个月。结果显示,在主要结果方面,两组之间没有统计学上的显著差异。然而,与对照组相比,偏头痛患者的研究组头痛发作频率呈下降趋势。此外,在补充辅酶Q10的前四周,观察到发作性偏头痛患者头痛的严重程度降低

在辅酶Q10的抗氧化特性中有以下方面,即超氧化物歧化酶活性的调节(导致细胞抗氧化防御的改善)、氧化应激OS的减少或增加谷胱甘肽还原形式(用作抗氧化剂)浓度的能力。上述机制可缓解偏头痛,降低偏头痛发作的频率缩短偏头痛发作的持续时间。

银杏内酯B

银杏内酯B是从银杏叶中提取的一种草药成分。银杏叶提取物具有神经保护特性,对记忆有有益作用,也有抗氧化剂的某些特性。

一项为期六个月的开放标签多中心研究,证明了银杏内酯B对每月至少发作一次的偏头痛患者治疗先兆偏头痛的有效性

槲皮素和银杏内酯B对减轻偏头痛症状有特殊作用。银杏叶提取物成分可降低氧化应激,抑制血小板活化因子,并影响谷氨酸能传递。

所有生物学机制都会增加神经保护作用,从而降低偏头痛的频率,减轻偏头痛,缓解先兆症状。

小白菊

小白菊(Tanacetum parthenium)属菊科植物,广泛分布于南美洲。其特征是具有抑制醛糖还原酶活性的高潜力,并显示出必要的抗氧化特性。

小白菊用于治疗多种疾病,不仅可以缓解偏头痛的症状,还可以缓解另一种来源的疼痛,如炎症、恶心和呕吐。

一项双盲、多中心、安慰剂对照研究,以确定小白菊稳定提取物(MIG-99)在降低偏头痛发作频率方面的有效性。最显著的效果记录为6.25mg剂量的MIG-99。三年后,同一作者发表了剂量为6.25 mg的MIG-99制剂的有效性和安全性结果。在服用该制剂的组中,偏头痛发作频率每月减少1.9次(安慰剂组每月减少1.3次)。


粪菌移植

粪菌移植可以通过改变肠道菌群,帮助恢复肠道微生物平衡,使肠道微生物恢复更加有效和持久,理论上可减轻偏头痛发作和偏头痛严重程度,超过340项临床试验正在进行中。肠道菌群的改变可导致炎症介质和血清素途径的正常化,从而缓解偏头痛的频率和强度。

扩展阅读:

粪菌移植——一种治疗人体疾病的新型疗法


中医

吴茱萸汤是一种临床用于治疗和预防偏头痛的配方,可anaerostipes和acidifaciens丰度,以恢复细菌的比例。由于5-HT合成与微生物群、功能和代谢紊乱相关,吴茱萸汤可以通过影响中枢和外周5-HT缓解痛觉过敏。研究表明,在基因敲除小鼠和豚鼠中,5-HT1D受体具有抑制神经肽释放的作用,从而改变硬脑膜神经源性炎症反应。


生活方式

良好的生活习惯

建立规律的睡眠时间。每天同一时间起床和上床睡觉,甚至周末也是如此。一天结束时放松一下。

减少吸烟。偏头痛患病率与每日吸烟的相关性为正相关(Spearman系数,rs=0.49)。

定期运动

身体活动期间,身体会释放某些化学物质来阻隔脑部疼痛信号。这些化学物质还有助于缓解焦虑和抑郁症,这两种状况都可能加剧偏头痛。

肥胖也会增加慢性头痛的风险。通过运动和饮食维持健康体重可能也有助于管理偏头痛。

值得尝试的有氧运动可能包括快走或慢跑、骑自行车、瑜伽、游泳等。

缓解压力

简化生活,明确管理时间,适当休息,可以选择接触大自然,做深呼吸(专注且缓慢),冥想,瑜伽等放松的方式,保持积极心态,享受乐趣,每天抽出至少 15 分钟做自己喜欢的事。

写偏头痛日记

记下偏头痛发作时周围的环境条件。写下感官刺激(明亮的灯光、响亮的音乐、奇怪的气味等)、压力的原因、饮食习惯和睡眠习惯。几次发作后,回顾一下日记,找出偏头痛发作前通常存在的常见情况。这些情况可能是“触发因素”,下次尽量避免。

当偏头痛发作时的缓解小方法:

关灯、静音

光线和声音会使偏头痛加剧,尽量在昏暗且安静的房间里放松,闭目休息,能睡就睡吧,让眼睛和大脑得到放松,帮助缓解头痛的不适感。

找一个安静的环境,避免嘈杂的声音,减轻对偏头痛的刺激。

如果不能马上找到这样的地方,可以考虑戴上太阳镜和耳塞。或者尝试舒缓的音乐。

试试温度疗法

热敷或冷敷头部或颈部。

  • 冰袋有麻木作用,可能有助于缓解疼痛。
  • 热敷包和电热垫可以放松紧绷的肌肉。
  • 温水冲澡或泡澡也有类似的效果。

按摩、放松

用双手的食指和中指,以小幅度打圈的方式轻轻按摩太阳穴、颈侧、颈后。

通过深呼吸放松身体和心理,减轻紧张和疼痛感。适量饮水,保持身体水分平衡,有助于缓解头痛。

07
结 语

偏头痛是由多种因素共同引起的,由遗传、内分泌、代谢和/或环境因素相互交织促成的。基于各种初始因素,广泛接受的观点是皮质扩散抑制假说三叉神经血管假说。前者指出了大脑神经炎症之间的相互关系,后者指出神经血管是发生的关键因素。偏头痛复杂的机制和病理生理学仍在广泛研究中。

本文我们了解到,肠道微生物群通过参与肠-脑轴各个途径,肠道微生物群和大脑通过各种途径相互作用,包括免疫系统、色氨酸代谢、迷走神经和肠神经系统等,可能发挥着关键作用,或将作为偏头痛的有前途的生物标志物和治疗靶点。了解这种疾病的多系统联系,极大地扩展了对偏头痛机制的理解,并提供了更广泛的治疗蓝图

偏头痛本身会产生一些诊断问题,这些问题可能会因合并症而加剧,包括功能性胃肠道疾病等。同时,复杂的疼痛通路,食物和药物代谢、免疫反应等造成的个体差异,会给在偏头痛的临床管理治疗过程中带来难度,目前药物并不能完全缓解症状或满足要求。

考虑以互补的方式将临床前和临床研究结合起来,同时包括科研人员、临床医生、健康管理以及其他相关机构的成员之间的相互交流、协作,在此过程中纳入肠道菌群健康检测,集结众多力量的合作,从预防偏头痛辅助判别其潜在风险,到偏头痛发作的疾病管理,再到预后减少发病次数等多个阶段,帮助降低偏头痛和偏头痛合并的各种胃肠道疾病的风险,改善偏头痛患者的生活质量,为他们带来更多希望。

注:本账号内容仅作交流参考,不作为诊断及医疗依据。

主要参考文献

Ferrari MD, Goadsby PJ, Burstein R, Kurth T, Ayata C, Charles A, Ashina M, van den Maagdenberg AMJM, Dodick DW. Migraine. Nat Rev Dis Primers. 2022 Jan 13;8(1):2.

Khan J, Asoom LIA, Sunni AA, Rafique N, Latif R, Saif SA, Almandil NB, Almohazey D, AbdulAzeez S, Borgio JF. Genetics, pathophysiology, diagnosis, treatment, management, and prevention of migraine. Biomed Pharmacother. 2021 Jul;139:111557.

Arzani M, Jahromi SR, Ghorbani Z, Vahabizad F, Martelletti P, Ghaemi A, Sacco S, Togha M; School of Advanced Studies of the European Headache Federation (EHF-SAS). Gut-brain Axis and migraine headache: a comprehensive review. J Headache Pain. 2020 Feb 13;21(1):15.

Aurora SK, Shrewsbury SB, Ray S, Hindiyeh N, Nguyen L. A link between gastrointestinal disorders and migraine: Insights into the gut-brain connection. Headache. 2021 Apr;61(4):576-589.

Zhou Y, Pang M, Ma Y, Lu L, Zhang J, Wang P, Li Q, Yang F. Cellular and Molecular Roles of Immune Cells in the Gut-Brain Axis in Migraine. Mol Neurobiol. 2023 Sep 11.

He Q, Wang W, Xiong Y, Tao C, Ma L, Ma J, You C; International Headache Genetics Consortium. A causal effects of gut microbiota in the development of migraine. J Headache Pain. 2023 Jul 17;24(1):90.

Kim JH, Lee Y, Kwon YS, Sohn JH. Clinical Implications of the Association between Respiratory and Gastrointestinal Disorders in Migraine and Non-Migraine Headache Patients. J Clin Med. 2023 May 12;12(10):3434.

Cámara-Lemarroy CR, Rodriguez-Gutierrez R, Monreal-Robles R, Marfil-Rivera A. Gastrointestinal disorders associated with migraine: A comprehensive review. World J Gastroenterol. 2016 Sep 28;22(36):8149-60.

Slavin M, Li HA, Frankenfeld C, Cheskin LJ. What is Needed for Evidence-Based Dietary Recommendations for Migraine: A Call to Action for Nutrition and Microbiome Research. Headache. 2019 Oct;59(9):1566-1581.

Park CG, Chu MK. Interictal plasma glutamate levels are elevated in individuals with episodic and chronic migraine. Sci Rep. 2022 Apr 28;12(1):6921.

Sgro M, Ray J, Foster E, Mychasiuk R. Making migraine easier to stomach: the role of the gut-brain-immune axis in headache disorders. Eur J Neurol. 2023 Jun 17.

Do TP, Hougaard A, Dussor G, Brennan KC, Amin FM. Migraine attacks are of peripheral origin: the debate goes on. J Headache Pain. 2023 Jan 10;24(1):3.

Pleș, H.; Florian, I.-A.; Timis, T.-L.; Covache-Busuioc, R.-A.; Glavan, L.-A.; Dumitrascu, D.-I.; Popa, A.A.; Bordeianu, A.; Ciurea, A.V. Migraine: Advances in the Pathogenesis and Treatment. Neurol. Int. 2023, 15, 1052-1105.

Kappéter, Á.; Sipos, D.; Varga, A.; Vigvári, S.; Halda-Kiss, B.; Péterfi, Z. Migraine as a Disease Associated with Dysbiosis and Possible Therapy with Fecal Microbiota Transplantation. Microorganisms 2023, 11, 2083.

Yamanaka, G.; Suzuki, S.; Morishita, N.; Takeshita, M.; Kanou, K.; Takamatsu, T.; Suzuki, S.; Morichi, S.; Watanabe, Y.; Ishida, Y.; et al. Role of Neuroinflammation and Blood-Brain Barrier Permutability on Migraine. Int. J. Mol. Sci. 2021, 22, 8929.

Martami F, Togha M, Seifishahpar M, Ghorbani Z, Ansari H, Karimi T, Jahromi SR. The effects of a multispecies probiotic supplement on inflammatory markers and episodic and chronic migraine characteristics: A randomized double-blind controlled trial. Cephalalgia. 2019 Jun;39(7):841-853.

Fila, M.; Chojnacki, J.; Pawlowska, E.; Szczepanska, J.; Chojnacki, C.; Blasiak, J. Kynurenine Pathway of Tryptophan Metabolism in Migraine and Functional Gastrointestinal Disorders. Int. J. Mol. Sci. 2021, 22, 10134.

Goschorska, M.; Gutowska, I.; Baranowska-Bosiacka, I.; Barczak, K.; Chlubek, D. The Use of Antioxidants in the Treatment of Migraine. Antioxidants 2020, 9, 116.

Spekker, E.; Nagy-Grócz, G. All Roads Lead to the Gut: The Importance of the Microbiota and Diet in Migraine. Neurol. Int. 2023, 15, 1174-1190

抑郁、焦虑、压力的肠道故事——精神健康的改善新途径

谷禾健康

不知道大家有没有这样的体验:紧张时会想上厕所,伤心时会食欲不振。任何情绪变化,好像都会反映在消化系统

与此同时,你相不相信一个人的肠道微生物可以影响认知性格、气质、社交情况、甚至是责任心

有大量证据表明神经系统肠道微生物的组成和功能有关。目前,已经描述了各种肠-脑串扰途径,包括通过迷走神经途径的免疫、内分泌和神经回路。此外,中枢神经系统控制肠道菌群的失衡,构成双向通讯系统

肠道菌群失衡,也许是导致精神问题的潜在原因。一些研究发现,肠道菌群改变(生态失调)与阿尔茨海默病自闭症帕金森病神经精神疾病以及焦虑抑郁和认知功能障碍等其他心理疾病有关。

肠道菌群可以分泌神经递质,例如乙酰胆碱、γ-氨基丁酸(GABA)和色氨酸;此外肠道中有数百万个神经元,可以通过神经递质向大脑发送信号

肠脑轴功能障碍被认为是精神障碍的病理生理学;因此,恢复受干扰的微生物生态系统为管理或预防这些神经系统疾病提供了一种新颖且有前途的方法。

本文对人类肠道微生物群失调与几种精神和心理疾病之间联系进行了概述。此外,还展示了一些使用精神药物调节肠道微生物相结合的方式以改善精神疾病心理障碍的干预措施。肠道微生物群在未来可能成为缓解压力治疗精神疾病的新工具。

01
人体肠道微生物的成分及功能简述

人类肠道含有多样化的微生物群落,据估计,肠道中的微生物数量可以达到数万亿个。微生物群的密度在肠道不同部位也有所不同结肠和直肠的微生物密度较高,而小肠的微生物密度较低


成分

肠道微生物由多种微生物类群组成,包括细菌病毒真菌古细和原生动物,其中最主要的是细菌

•古细菌

在健康的人类肠道中,古细菌数量很少,其中史密斯产甲烷短杆菌(Methanobrevibactersmithii)是最常见的物种。

•真菌

肠道中最常检测到的真核微生物是真菌,例如念珠菌Candida)和酵母菌Saccharomyces)。这些真菌维持生态和免疫肠道微生物组的平衡。

•病毒

人体病毒组主要由噬菌体组成,它们在肠道中的作用是作为细菌组的调节剂

•原生生物

一些原生动物,例如芽囊原虫属(Blastocystis),已在人类肠道微生物群中检测到,它们的存在通常与胃肠道疾病有关。

✦细菌是人类肠道中最常见的微生物

细菌是人体肠道中最常见的微生物,一般属于以下8个门:放线菌门 (Actinobacteria)、芽孢杆菌门 (Bacillota)(又名厚壁菌门)、拟杆菌门 (Bacteroidetes)、弯曲菌门 (Campylobacterota)、梭杆菌门(Fusobacteria)、变形菌门(Proteobacteria)、热脱硫杆菌门(Thermodesulfobacteriota)和疣微菌门(Verrucomicrobia)。

下图显示了健康人肠道微生物群中主要的门、科和属。

Borrego-Ruiz A,et al.Prog Neuropsychopharmacol Biol Psychiatry.2023

✦肠道不同部位的微生物群组成具有差异

肠道区室中的微生物有特定的空间分布上消化道中最主要的是孪生球菌属(Gemella)、韦荣氏球菌属(Veillonella)、奈瑟菌属(Neisseria)、梭杆菌属(Fusobacterium)、链球菌属Streptococcus)、普雷沃氏菌属Prevotella)、假单胞菌属(Pseudomonas)和放线菌属(Actinomyces)。

而在下消化道中则有粪杆菌属Faecalibacterium)、拟杆菌属Bacteroides)和瘤胃球菌属(Ruminococcus)。

十二指肠

研究发现人类十二指肠粘膜富含芽孢杆菌Bacillus)、Solibacillus、赖氨酸芽孢杆菌(Lysinibacillus)、微小杆菌属(Exiguobacterium)、海洋芽胞杆菌属(Oceanobacillus)和类芽孢杆菌(Paenibacillus)。

空肠

在空肠中,变形菌门厚壁菌门最常见的门,而埃希氏菌属乳杆菌属肠球菌属是空肠中最常见的属。

回肠

链球菌属Streptococcus spp.)、大肠杆菌Escherichia coli)和梭菌属Clostridium spp.)回肠中最常见的物种。

结肠

结肠是一个厌氧环境,以拟杆菌门、放线菌门和厚壁菌门以及毛螺菌科(Lachnospiraceae)、瘤胃球菌科(Ruminococcaceae)、普雷沃氏菌科(Prevotellaceae)、拟杆菌科(Bacteroidaceae)和理研菌科(Rikenellaceae)为主,以及已鉴定的主要细菌属乳杆菌属双歧杆菌属粪杆菌属

研究了不同结肠区域的细菌属优势,他们发现乙状结肠中存在拟杆菌属肠球菌属。近端结肠和远端结肠为粪杆菌大肠杆菌

阑尾中微生物多样性较高,以放线菌门、梭杆菌门、变形菌门、拟杆菌门和厚壁菌门为主;以及毛螺菌科、肠杆菌科拟杆菌科、梭杆菌科和双歧杆菌科

尽管人类肠道微生物群的组成因年龄营养抗生素使用等因素而在分类学和功能上存在差异,但人类肠道微生物群主要是由乳杆菌属芽孢杆菌属、梭菌属、肠球菌属、瘤胃球菌属、粪杆菌属、罗氏菌属(Roseburia)、经黏液真杆菌属(Blautia)、Dorea属、拟杆菌属、普雷沃氏菌属、双歧杆菌属和埃希氏菌属。


功能

✦肠道微生物对于消化非常重要

肠道微生物群为人类宿主提供了多种积极影响,包括免疫代谢功能。肠道微生物是消化关键调节者,通过营养物质的吸收以及多种代谢物的合成,包括脂质、氨基酸、维生素和短链脂肪酸

✦肠道微生物有助于预防病原体感染

此外,肠道微生物群通过多种竞争过程在预防病原菌感染方面发挥着关键作用,并且还有助于维持肠上皮的完整性

✦肠道微生物产生的化合物可作为信号分子

肠道微生物群从未消化的食物中产生多种分泌化合物。其中一些可以作为细菌间通讯的信号分子,影响细菌调节稳态、生长、毒力和生物膜形成等。

色氨酸代谢物

细菌还可能分泌其他生物活性化合物,包括色氨酸分解代谢物短链脂肪酸、多胺和组胺。色氨酸的代谢产物[5-羟色胺(血清素)、犬尿氨酸和吲哚]与生理和神经元活动有关。

吲哚

吲哚调节肠促胰岛素的分泌,调节肠道屏障通透性,并且可以作为微生物和宿主细胞之间细胞间通讯的信号分子。此外,吲哚及其衍生物被描述为神经炎症的抑制化合物

短链脂肪酸

最重要的定量代谢物是由微生物降解不可消化的膳食纤维、蛋白质和糖蛋白产生的短链脂肪酸。如丁酸盐、乙酸盐和丙酸盐,可以作为信号分子局部调节从十二指肠到结肠的肠道功能,并且通过肠内分泌细胞,它们还可以控制肝脏、肌肉和大脑的代谢,影响肠道功能及宿主能量稳态

此外,短链脂肪酸通过诱导神经炎症反应呈现神经活性特性。短链脂肪酸是强大的表观遗传调节剂控制DNA甲基化遗传物质的可及性并抑制组蛋白脱乙酰化。

该机制依赖于10-11易位 (TET) 蛋白,该蛋白催化胞嘧啶残基羟基化为5-羟甲基胞嘧啶,介导主动DNA去甲基化。确定丁酸盐诱导前额皮质中许多行为相关基因的变化,特别是影响涉及神经元兴奋或抑制的基因。几种兴奋性神经递质和神经元激活标记基因的减少,以及抑制性神经递质基因的增加表明丁酸盐促进抑制途径转录物的转录。

✦细菌代谢产物会影响神经发育

最近的研究表明,细菌代谢产物会影响神经发育。一些研究人员还报道了短链脂肪酸影响神经发生基因的表达

使用无微生物的斑马鱼模型,观察到无微生物培养的胚胎中神经基因表达显著下降,并通过添加斑马鱼代谢物重新建立了该模型,识别出超过300个下调的基因。

基因分析表明,这些基因参与重要的神经发育途径,包括转录调控Wnt信号传导。事实上,Wnt信号通路在发育和疾病中发挥着重要作用,可以推测其调控与多细胞真核生物的细菌定植共同进化。

下图展示了肠道微生物群合成的一些关键神经递质及其与心理和精神疾病的关联。这些神经活性化合物通过内在或外在传入神经通路将信息从肠腔传输到肠神经系统肠神经胶质细胞中枢神经系统

Borrego-Ruiz A,et al.Prog Neuropsychopharmacol Biol Psychiatry.2023

02
肠道微生物与精神障碍疾病


阿尔茨海默病

阿尔茨海默病(AD)是一种慢性神经退行性疾病,其中记忆和执行功能进行性丧失,与突触损伤神经损失有关,主要发生在海马体大脑皮层

多项研究已明确β-淀粉样肽(Aβ)在阿尔茨海默病中的作用。最近的研究表明,细菌来源的淀粉样蛋白,例如curli、Csg A、tau、TasA、FapC和酚溶性调节蛋白,在Aβ寡聚体的聚集促进错误折叠中发挥作用。

细菌淀粉样蛋白通过与Toll样受体2相互作用激活宿主免疫系统,诱导促炎介质刺激大脑中神经元淀粉样蛋白的产生

•肠道微生物失调与阿尔兹海默病存在关联

其他证据表明肠道微生物群失调阿尔茨海默病的早期阶段有关,导致细胞因子分泌增强、免疫衰老、神经炎症和氧化应激

此外,肠道微生物失调会诱导脂多糖的分泌,从而破坏胃肠道通透性和血脑屏障,调节炎症途径,促进神经炎症认知能力下降,并导致阿尔茨海默病中的神经元死亡

在大鼠中,腹膜脂多糖给药导致炎症因子(例如IL-1、IL-6和TNF-α)水平升高,表明微生物组在阿尔茨海默病先天免疫反应的启动中发挥作用。

•阿尔兹海默病中短链脂肪酸水平降低

研究表明,阿尔茨海默病小鼠的微生物群组成多样性受到干扰短链脂肪酸水平降低,这预示着30多种代谢途径的改变,这可能与淀粉样蛋白沉积有关。

肠道菌群失调可能会增加氧化三甲胺(TMAO)浓度,这与不同的功能有关,例如β-淀粉样蛋白的形成、外周免疫反应的激活和氧化应激。此外,还与肠粘膜屏障功能障碍血脑屏障通透性以及胆汁酸和胆固醇进入大脑的通道增加有关。

•阿尔茨海默病患者体内促炎菌群比例增加

研究发现阿尔茨海默病患者中大肠杆菌/志贺氏菌等促炎菌群比例增加,而直肠真杆菌(eubacterium rectale)、霍氏大肠杆菌(E.hallii)、普拉梭菌(F. prausnitzii)和脆弱拟杆菌等产生丁酸的细菌则减少

这些细菌与外周炎症状态有关,这是轻度认知障碍(MCI)和脑淀粉样变性患者的典型症状。

注:淀粉样脑血管病主要是由淀粉样物质在软脑膜以及大脑皮质小动脉中层沉积所导致的疾病,多见于80岁以上的老年人,可能会导致血管壁受损。

•阿尔茨海默病患者肠道微生物多样性较低

据报道阿尔茨海默病患者肠道菌群的微生物多样性较低,厚壁菌门和双歧杆菌种类减少

此外,发现门水平上拟杆菌门细菌成员增加,放线菌门减少,以及科水平上瘤胃球菌科肠球菌科乳杆菌科增加,毛螺菌科、拟杆菌科和韦荣氏菌减少

促炎细菌类群增加,同时产生丁酸盐的细菌减少,例如丁酸弧菌(B.proteoclasticusB.Hungatei)、梭菌属、真杆菌属(E.Hallii、E.rectalE.eligens)、普拉梭菌和罗斯拜瑞氏菌 (R.hominis)。

几种精神障碍疾病中的肠道菌群失调

Borrego-Ruiz A,et al.Prog Neuropsychopharmacol Biol Psychiatry.2023


自闭症谱系障碍

自闭症谱系障碍(ASD)是一种大脑发育障碍,其特征是刻板行为以及沟通和社交互动缺陷

注:儿童自闭症是儿童精神类疾病当中最为严重的一种。

自闭症谱系障碍的确切病理学和病因很难确定,研究重点是调查遗传原因、免疫系统失调、环境毒物暴露以及肠道微生物群的改变

•自闭症儿童的肠道微生物多样性较高

据报道自闭症儿童的肠道微生物多样性较高。自闭症谱系障碍样本中最常见的属如下:

拟杆菌属(Bacteroides,

脱硫弧菌属(Desulfovibrio,

柯林斯氏菌属(collinsella),

棒状杆菌属 (Corynebacterium),

乳杆菌属(Lactobacillus,

普雷沃氏菌属(Prevotella),

萨特氏菌属(Sutterella,

八叠球菌(Sarcina,

罗氏菌属(Roseburia,

粪杆菌属(Faecalibacterium,

巨单胞菌(Megamonas),

Caloramator,

Dorea

此外以下属的存在减少

双歧杆菌(Bifidobacterium) ↓↓↓

另枝菌属(Alistipes) ↓↓↓

嗜胆菌属(Bilophila) ↓↓↓

韦荣氏球菌属(Veillonella) ↓↓↓

阿克曼菌(Akkermansia) ↓↓↓

粪球菌属(Coprococcus) ↓↓↓

埃希氏杆菌属-志贺氏杆菌 ↓↓↓

梭菌属(Clostridium) ↓↓↓

艾森伯格氏菌(Eisenbergiella) ↓↓↓

嗜血杆菌属(Haemophilus)↓↓↓

Dialister ↓↓↓

Parabacteroides ↓↓↓

Flavonifractor ↓↓↓

这些发现强烈表明肠道微生物群失调自闭症行为表现之间存在联系。

•有害菌会产生神经毒素影响自闭症

自闭症行为表现患者中发现双歧杆菌丰度较低,而双歧杆菌是产生GABA神经递质的关键,双歧杆菌丰度过低会导致焦虑、认知缺陷行为障碍

产生神经毒素的艰难梭菌溶组织梭菌的积累与自闭症谱系障碍症状相关。这些释放的有毒分子会影响血清素信号传导,可能导致自闭症谱系障碍行为模式,例如社交能力下降、对疼痛的反应减弱、语言异常以及自虐或重复行为。

自闭症行为表现影响的个体表现出其他潜在有毒化合物水平的改变,例如抑制多巴胺-β-羟化酶的对甲酚和对甲酚硫酸盐。此外,在受自闭症谱系障碍影响的个体中检测到梭菌衍生的代谢物3-(3-羟基苯基)-3-羟基丙酸增加,这可能反映了儿茶酚胺代谢的改变

•短链脂肪酸对自闭症的作用存在矛盾结果

短链脂肪酸在自闭症谱系障碍中的作用存在矛盾的结果丙酸盐诱导小胶质细胞激活、神经毒性细胞因子产生基因表达改变、海马组织学异常和神经行为异常,例如重复动作和社交互动受损。

然而,丁酸盐对一种自闭症谱系障碍样小鼠模型的社交重复行为具有有益影响。丁酸盐改善血脑屏障的不渗透性可能是丁酸盐可以恢复丙酸盐诱发的自闭症样疾病异常的另一种机制。


帕金森病

帕金森病(PD)是老年人中常见的一种痴呆症,其主要疾病症状包括神经炎症、中脑多巴胺能神经元丧失以及伴有非运动症状的异常运动

•微生物失调引起的炎症可能导致帕金森病发展

一些研究人员认为,微生物群失调引起的炎症反应可能会导致帕金森病病理学的发展或恶化。这些反应可以促进脂多糖和α-突触核蛋白在肠道和大脑中的积累,并且由于促炎细菌活性导致氧化应激增加,从而促进α-突触核蛋白病理学通过迷走神经从头侧向尾侧区域扩散。

•帕金森病患者体内短链脂肪酸显著减少

另一方面,微生物短链脂肪酸可以防止肠粘膜通透性增加,从而减少细菌移位。帕金森病中短链脂肪酸显著减少

短链脂肪酸在帕金森病病理学中的作用尚未完全阐明,报道短链脂肪酸的消耗导致肠神经系统中路易体的形成;相反,有研究表明短链脂肪酸能够降低血脑屏障的通透性

注:路易体主要是以帕金森病为代表的脑门特征性标志物,患者常常会出现功能障碍

考虑到短链脂肪酸缺乏神经炎症和小胶质细胞激活以及便秘、肠漏和结肠炎症等胃肠道特征有关,这些研究结果支持了这样的假设:短链脂肪酸缺乏可能是帕金森病的病因。

•帕金森病患者有抗炎作用的菌群减少

帕金森病患者经常出现属于乳杆菌科巴氏杆菌科肠球菌科的某些细菌种类水平升高

此外发现,帕金森病患者粪便和粘膜中产生抗炎丁酸的细菌水平显著降低(普雷沃氏菌、布氏菌、粪球菌属和罗氏菌属),以及粪杆菌属的水平显著降低

此外,像罗尔斯通氏菌(Ralstonia)这样的促炎细菌在帕金森病患者的肠粘膜中更为丰富

拓展

基于肠杆菌科细菌滴度与帕金森病症状严重程度之间的正相关性,这些作者认为肠道微生物群可能与帕金森病表型有关。

相关分析显示疾病严重程度帕金森病持续时间与纤维素降解剂呈负相关,但与致病生物呈正相关,可能导致短链脂肪酸产生减少以及神经毒素和内毒素增加,可能与帕金森病病理学的发展有关。

此外,普雷沃菌科丰度的降低乳杆菌科丰度的增加胃饥饿素浓度的降低有关,胃饥饿素是一种与维持正常多巴胺功能有关的肠道激素,帕金森病患者的胃饥饿素分泌发生了改变。


精神分裂症

精神分裂症是一种复杂的精神障碍,患者对现实的理解异常,经常出现焦虑严重抑郁症状

这种疾病的起源是有争议的,表明是遗传起源。然而,值得注意的是,通过表观遗传学机制,如神经传递基因甲基化、核苷酸修饰或非编码RNA的作用,一些环境因素可能在其易感性疾病的发展中发挥作用。

•肠道菌群代谢物影响精神分裂症风险

短链脂肪酸色氨酸分解代谢物神经递质(GABA、谷氨酸)的差异被称为精神分裂症相关的肠脑模块

微生物产生的多巴胺与精神分裂症有关,而与精神分裂症相关的胃肠道炎症增加强烈表明肠道微生物群可能在患精神分裂症或其表现的风险中发挥作用。

•精神分裂症患者肠道微生物群显著改变

研究表明抗生素治疗引起的肠道微生物群失调精神分裂症的发病率之间存在直接关系。精神分裂症患者中巨球型菌属、琥珀酸弧菌属、梭菌属、柯林斯氏菌属、甲烷短杆菌属和克雷伯菌属的丰度显著增加,而与健康人相比,精神分裂症患者中经黏液真杆菌属、粪球菌属和罗氏菌属的滴度下降

•抗精神病药物治疗后肠道微生物群发生改变

几项研究已经确定抗精神病药物治疗肠道微生物群之间的联系。精神分裂症患者在接受抗精神病药物治疗后发现微生物群丰度发生了显著变化

在其他研究中,接受抗精神病药物治疗的患者的厚壁菌门拟杆菌门比例逐渐增加,与体重指数的上升相关。此外,接受治疗的个体的肠道微生物群富含短链脂肪酸血清素代谢的基因。


注意力缺陷/多动障碍

注意缺陷与多动障碍(ADHD)是一种神经发育障碍,其特征是高度多动冲动注意力问题。尽管可能涉及环境和遗传因素,一些证据表明注意缺陷与多动障碍的发展或症状可能与饮食成分肠道微生物组的调节有关。

•ADHD儿童体内有害菌丰度较高,有益菌较少

最近发现,食用加工饮食的注意缺陷与多动障碍儿童体内有害细菌(如肠杆菌、大肠杆菌和梭菌菌株)的丰度明显较高,而有益细菌(如双歧杆菌和瘤胃球菌菌株)的丰度明显较低

食用加工食品的注意缺陷与多动障碍患者的肠道微生物群α多样性和短链脂肪酸水平显著低于对照组,研究人员认为不平衡的饮食会扰乱结肠微生物平衡,并可能成为多动症患病的潜在风险因素

•患者肠道菌群失衡影响激素和神经递质水平

宿主-微生物组的相互作用对激素神经递质水平产生影响,被认为与注意缺陷与多动障碍的病理生理学有关。肠道菌群失调加上持续接触微生物病原体引起的免疫功能障碍可能会导致受影响的多动症患者出现过度活跃的行为。

肠道菌群提供多巴胺和去甲肾上腺素的前体

注意缺陷与多动障碍与预测的多巴胺去甲肾上腺素合成异常有关,其前体由肠道细菌(主要是双歧杆菌)提供

03
肠道微生物与心理障碍


压力和广泛性焦虑症

压力被定义为由困难情况环境压力源引起的非特定情绪身体反应。这种反应与心理生物因素有关,例如性激素、高情绪反应性、被动应对技巧、糖皮质激素抵抗以及中枢和外周免疫激活

✦压力会影响肠道微生物组成与活动

不同类型的心理和社会压力源已被证明可以通过神经元免疫细胞结肠嗜铬细胞释放信号分子、激素神经递质调节肠道微生物群的组成和活动。

压力对肠道微生物群的影响可能直接通过宿主肠道微生物群信号传导介导,也可能间接通过肠道生态系统的变化介导,并涉及炎症反应、微生物栖息地的改变肠道运动和粘蛋白分泌。

✦产生短链脂肪酸的细菌减少可能是导致焦虑的关键

暴露于压力会导致肠道微生物群组成的实质性变化,肠杆菌科细菌的增加,而乳杆菌属的细菌减少拟杆菌属减少梭菌属增加。以及大肠杆菌和假单胞菌属的增加。

某些微生物群可能参与应激性焦虑和一般性焦虑症,其特征是社交和职业功能下降。研究人员报道,在一般性焦虑症患者中,粪杆菌Faecalibacterium)、直肠真杆菌(E.rectale)、毛螺菌属(Lachnospira)、丁酸球菌(Butyricicoccus)和萨特氏菌(Sutterella)较低。这些都是短链脂肪酸的重要生产者

应激性焦虑是指在强烈的精神或躯体应激事件的刺激下,产生的过度焦虑、恐惧等情绪。患者可出现紧张、坐立不安、心慌、呼吸急促等症状,还可伴有睡眠障碍、食欲改变等表现。

大胆猜想

短链脂肪酸产生菌的减少焦虑抑郁单胺类假说的关键。

单胺假说——指科学家在抗抑郁药领域提出的假说,即抑郁患者神经突触间隙可有效利用的单胺类神经递质浓度明显下降,而升高突触间隙单胺递质浓度(主要是血清素)能发挥抗抑郁作用


抑郁症和重度抑郁症

抑郁症是一种与压力相关的情绪障碍,涉及神经免疫-神经内分泌失调,与促炎细胞因子水平升高相关。

促炎细胞因子与高水平的皮质醇有关,通过抑制四氢生物蝶呤酶发挥重要作用,四氢生物蝶呤对于合成多巴胺、血清素和去甲肾上腺素至关重要。

多巴胺、血清素和去甲肾上腺素是人体内重要的神经递质,它们在神经系统中发挥着重要的作用。

✦肠道微生物的多样性与抑郁严重程度负相关

几项研究报告称,不同抑郁症患者的肠道微生物群组成差异较大,粪便微生物多样性的增加与抑郁症症状的严重程度呈负相关

研究人员发现,GelriaTuricibacterAnaerofilumParaprevotellaHoldemaniaEggerthella属在抑郁症患者中普遍存在,而普雷沃氏菌(Prevotella)和戴阿利斯特杆菌(Dialiste)的存在减少

抑郁症患者体内有益菌大量减少

后来的研究还发现,与对照组相比,抑郁症患者肠道微生物总体减少。肠道微生物群中的双歧杆菌乳酸菌减少Dorea瘤胃球菌属阿克曼氏菌属显著减少,以及副拟杆菌属(Parabacteroides)、普雷沃氏菌属(Prevotella)和放线菌属(Actinobacteria)的增加与抑郁个体相关。

✦短链脂肪酸有助于释放神经递质和调节血脑屏障

几项研究表明,重度抑郁症患者的丁酸盐乙酸盐丙酸盐减少,表明短链脂肪酸可能通过直接刺激神经通路或通过神经内分泌和免疫激活的间接中枢效应改变行为

短链脂肪酸也有助于结肠嗜铬细胞合成和释放外周神经递质(血清素和乙酰胆碱),并有助于交感神经元合成释放去甲肾上腺素

除了局部作用外,短链脂肪酸还可以直接作用于血脑屏障的中心受体。此外,体外研究表明,丙酸盐和丁酸盐,而不是乙酸盐,都可以调节血脑屏障的通透性,防止脂多糖引起的通透性增加。


强迫症

强迫症是一种慢性且持久的疾病,会被迫出现侵入性自我张力障碍的想法或冲动或重复行为。

尽管只有少数研究涉及肠道微生物群强迫症的关系,但压力抗生素治疗都会影响微生物群组成,已被认为是与强迫症症状同时发生的因素

✦强迫症患者肠道微生物丰富度较低

据报道,患有强迫症的个体肠道微生物群的物种丰富度较低,产生丁酸盐的属(颤旋菌属、OdoribacterAnaerostipes)的相对丰度较低

最近还报道强迫症患者粪便样本显示文肯菌科(Rikenellaceae)(另枝菌属)丰度增加,而普雷沃氏菌毛螺菌科(Lachnospiraceae)丰度降低

几种心理障碍中的肠道菌群失调

Borrego-Ruiz A,et al.Prog Neuropsychopharmacol Biol Psychiatry.2023

04
肠道微生物组与认知和人格特征

杏仁核在与压力相关的情绪行为反应情绪调节中发挥着关键作用,它显著受到肠道微生物群的影响。

杏仁核,又名杏仁体,呈杏仁状,是边缘系统的一部分。

√肠道微生物的变化可以调节认知功能

在动物模型中,有一些证据支持肠道微生物群组成的变化可以影响调节认知功能,尽管只有少数研究关注人类认知。

拟杆菌水平较高的人群拥有较好的认知表现

最近,根据粪杆菌(Faecalibacterium)、拟杆菌(Bacteroides)和瘤胃球菌科(Ruminococcaceae)的丰度建立了三组受试者,并得出结论,较好的认知表现较高水平的拟杆菌相对应。

使用抗生素会影响认知功能,故不可滥用

用抗生素治疗剥夺或破坏肠道微生物群也会影响认知功能,包括语言学习能力以及工作和空间记忆

√肠道微生物会影响一个人的气质和性格

由于人格特征行为模式以及生理和心理健康结果之间存在很强的关联,一些研究已经证明肠道微生物群气质性格之间存在关联,这些特征甚至可以通过粪菌移植在受试者之间传播。

研究了肠道微生物的组成儿童气质之间的关系,发现更大的暴躁/外向恐惧与系统发育多样性呈正相关,包括戴阿利斯特杆菌属 (Dialister)、文肯菌科(Rikenellaceae)、瘤胃球菌科(Ruminococcaceae)和约氏副拟杆菌(Parabacteroides)的丰度变化

产丁酸细菌更丰富的人可能有更高的责任心

发现高度神经质低外向性γ-变形菌纲丰度增加有关。低责任性与变形菌丰度增加毛螺菌科丰度减少有关,而开放程度高的人与更大的系统发育多样性和丰富度相关。

另一方面,高度的责任心与产生丁酸的细菌滴度的增加有关,这些细菌主要属于毛螺菌科

√多样化的肠道微生物有助于社交和好心情

最近有研究表明,特定细菌属的丰度与人格特征显著相关。对肠道微生物组多样性的分析表明,具有较高社交网络的个体呈现出多样化的肠道微生物组,而焦虑压力与肠道微生物组的组成改变和多样性降低有关。

研究还发现某些细菌属,包括阿克曼氏菌、脱硫弧菌、乳球菌颤螺菌和萨特氏菌可能与行为密切相关

05
通过微生物治疗精神和心理疾病

已经使用了几种方法来确定肠道微生物群中枢神经系统功能的作用,包括抗生素治疗、无菌动物模型和粪菌移植

此外,精神抗生素益生元已被用作精神和心理疾病的辅助治疗。精神抗生素的类别可以定义为“一种活的有机体,通过与共生肠道细菌相互作用,为患有精神疾病的患者带来心理健康益处”。这些药物通过调节和改善肠道微生物群发挥作用。

为了让大家有更清晰的认识,谷禾在下表整理了使用益生菌益生元治疗心理或精神疾病的影响。

Borrego-Ruiz A,et al.Prog Neuropsychopharmacol Biol Psychiatry.2023

•基因集富集分析展示下肠道菌群与精神疾病的关联

使用基因集富集分析 (GSEA) 能够检测肠道微生物群精神疾病之间的以下显著关联:注意力缺陷与多动障碍常伴有脱硫弧菌梭状芽孢杆菌富集;自闭症谱系障碍与拟杆菌属脱硫弧菌有关;对于重度抑郁障碍,观察到脱硫弧菌梭状芽孢杆菌目、钩端螺旋菌科和拟杆菌类的关联。

最近报道了普雷沃氏菌自闭症谱系障碍以及放线菌属精神分裂症之间的特定关联。还有一组研究人员提出了放线菌假单胞菌重度抑郁障碍之间的关系。

06
总结和未来展望

肠道微生物群中枢神经系统通过两条途径进行交流:

(1)通过迷走神经途径的神经免疫和代谢回路;

(2)通过微生物群合成的代谢产物肠道激素内分泌肽

先前的研究表明,肠道微生物群的失调是几种精神疾病的病理生理学。因此,恢复受干扰的微生物生态平衡可能为管理或预防神经系统疾病提供一种新的、有前景的方法。

另一方面,心理干预已证明在治疗功能性胃肠道疾病如肠易激综合征方面是有效的;然而还需要进一步的研究来确定心理干预肠道微生物群变化的具体影响。

通过粪菌移植健康的饮食生活方式或使用心理生物药物等干预措施重建失调的肠道微生物群,可能在未来调节微生物群肠脑轴功能促进心理精神健康方面具有重大潜力。

特别是,心理干预可能对某些神经系统疾病具有潜在的治疗作用。然而,这些干预措施的有效性并不相同,取决于给药方法干预时间、使用的微生物菌株的数量具体类型以及宿主的生理状况等因素。

在未来,单独或与抗精神病药物联合的个性化精神微生物干预可能成为临床患者的一种新的治疗策略

主要参考文献

Borrego-Ruiz A, Borrego JJ. An updated overview on the relationship between human gut microbiome dysbiosis and psychiatric and psychological disorders. Prog Neuropsychopharmacol Biol Psychiatry. 2023 Sep 8:110861.

Abuaish S, Al-Otaibi NM, Abujamel TS, Alzahrani SA, Alotaibi SM, AlShawakir YA, Aabed K, El-Ansary A. Fecal Transplant and Bifidobacterium Treatments Modulate Gut Clostridium Bacteria and Rescue Social Impairment and Hippocampal BDNF Expression in a Rodent Model of Autism. Brain Sci. 2021 Aug 5;11(8):1038.

Bear T, Dalziel J, Coad J, Roy N, Butts C, Gopal P. The Microbiome-Gut-Brain Axis and Resilience to Developing Anxiety or Depression under Stress. Microorganisms. 2021 Mar 31;9(4):723.

Ansari F, Pourjafar H, Tabrizi A, Homayouni A. The Effects of Probiotics and Prebiotics on Mental Disorders: A Review on Depression, Anxiety, Alzheimer, and Autism Spectrum Disorders. Curr Pharm Biotechnol. 2020;21(7):555-565.

Bharwani A, Mian MF, Foster JA, Surette MG, Bienenstock J, Forsythe P. Structural & functional consequences of chronic psychosocial stress on the microbiome & host. Psychoneuroendocrinology. 2016 Jan;63:217-27.

Cerovic M, Forloni G, Balducci C. Neuroinflammation and the Gut Microbiota: Possible Alternative Therapeutic Targets to Counteract Alzheimer’s Disease? Front Aging Neurosci. 2019 Oct 18;11:284.

Cryan JF, O’Riordan KJ, Sandhu K, Peterson V, Dinan TG. The gut microbiome in neurological disorders. Lancet Neurol. 2020 Feb;19(2):179-194.

客服