Tag Archive 肠道菌群

排便困难?反复便秘?不要忽视肠道菌群

谷禾健康

便秘是世界范围内高度流行的功能性胃肠道疾病,患病率为 2-20%.
根据罗马 IV 标准,慢性便秘的典型症状是排便困难、不频繁或不完全排便便秘的症状总是连续不断、反复出现,严重影响患者的身心健康和生活质量。

慢性便秘与多种因素有关,如肠道神经细胞的变化、菌群改变、肌病、神经递质和生态失调。此外,部分原因是其久坐的生活方式,情绪、饮食方式和液体摄入偏少,用药物(例如磷酸盐结合剂)和多种合并症(例如糖尿病,甲状腺疾病等),
长期便秘会使人心情烦躁、容貌衰老,还可能造成肛肠疾患、胃肠道功能紊乱、心血管疾病和性生活障碍等,同时还会增加溃疡性结肠炎、患结肠癌等疾病的患病率。


最近的流行病学研究表明,便秘与许多不良临床结局相关,例如结直肠癌、肝性脑病、乳腺疾病、阿尔茨海默病、终末期肾脏疾病(ESRD),心血管(CV)疾病和死亡率等。
便秘严重影响生活质量,耗费大量金钱与医疗资源,但目前临床治疗效果却不尽如人意,往往停药便复发,因此寻找新的治疗方法或改进现有的治疗方法,可改善患者生活质量与减少社会医疗负担。

01 定义/什么是便秘

临床上认为一周小于3次的排便就叫便秘,尽管很多患者想力求每天一次才舒适。此外,判别便秘的其他特征和症状还包括:

  • 块状或坚硬的大便
  • 排便费力困难
  • 感觉直肠有阻塞,排便困难
  • 排不彻底的感觉
  • 腹胀,胃痛或痉挛

02 便秘的流行病学/便秘有多常见

结直肠癌防治新策略——微生物群

谷禾健康

2020年8月的一则消息让人深感痛惜,漫威系列电影《美国队长3》中饰演黑豹的演员查德维克·博斯曼因患结肠癌去世,享年43岁。

结直肠癌 (CRC) 是全球第三大常见癌症,每年有超过 100 万新病例和 600,000 例死亡。更糟糕的是,该病有越来越年轻化的趋势,有报告称,与1950 年出生的人相比,1990 年之后出生的人患结肠癌的可能性是其两倍,患直肠癌的可能性是其四倍

科学家正在研究其原因,遗传因素在癌症发展中的作用相对较小(<10% 至 30%);而某些环境因素,例如食用大量加工食品、高脂饮食、纤维摄入不足、压力、炎症,甚至在儿童时期过度使用抗生素,这些可能是导致年轻一代结直肠癌风险显著增加的潜在原因。

以上所有因素都会改变肠道微生物群并诱导肠道微生态失调,从而导致宿主免疫系统低下进而发展为各种疾病。

肠道生态失调可分为三种类型:

有益菌的丧失

病原体或潜在有害物种的扩张

整体微生物多样性的丧失

在结直肠癌患者中这三种类型的失调都存在。

本文主要围绕肠道微生物群的改变与结直肠癌的关系展开讨论,也包含益生菌、益生元、合生元、后生元在结直肠癌中发挥的重要作用,以及结直肠癌的预防措施。

01 结直肠癌的症状

结直肠癌早期可能不容易被发现,很多情况直到晚期才引起症状。最常见的症状包括:

排便习惯的改变,例如腹泻、便秘或大便变窄,持续数天以上;

腹泻与便秘交替;

一种需要排便的感觉,但排便后也依然不能缓解这种感觉;

直肠出血,伴有鲜红色血液;

大便中带血,使粪便看起来发黑;

痉挛或腹痛;

虚弱或疲劳;

不明原因的体重减轻

02 结直肠癌中微生物群的变化

结直肠癌患者具有独特的粘膜相关微生物群。例如,结直肠癌对微生物群的影响通常以微生物多样性的增加为特征,这似乎随着癌症的发展而进展——晚期结直肠癌样本(III 期和 IV 期)通常比早期结直肠癌样本(I 期)表现出更高的丰度

黏 膜 菌 群

结直肠癌患者中,黏膜菌群变化如下:

在癌变状态出现之前,也可以观察到黏膜相关微生物群的差异。来自息肉受试者健康对照组的粘膜相关微生物群之间存在显着差异,这表明肠道微生物群从很早的阶段就参与了癌症的发展。

* 关于息肉和腺瘤:细胞的分化速度超过正常速度就会形成息肉,广义上来说,腺瘤就是息肉的恶变。

腺瘤组织的特征是变形杆菌梭杆菌的丰度增加

另一个大型队列多组学数据集表明,微生物组和代谢组的变化发生在结直肠癌发展的早期阶段,这可能具有病因学和诊断重要性。在成年早期至中期长期(≥2 个月)接触抗生素60 岁时患结直肠腺瘤的风险增加有关。在结直肠癌患者中观察到的微生物群改变不仅限于肿瘤部位;也可以在周围的健康组织中看到。

正常和腺瘤患者体内微生物群主要细菌科的分布

Aprile, F. et al., Cancers,2021  

婴幼儿过敏有望改善,与肠道菌群密切相关

谷禾健康

现如今,有过敏症状的宝宝越来越多,如何防治孩子过敏成了颇受关注的公共健康问题之一。

过敏的原因除了遗传因素外,还与宝宝肠道菌群失调,自身的免疫系统发育不成熟,环境因素等息息相关。

本文列举的最新研究进展,从过敏早期识别干预,耐药基因,食物过敏及其因果关联等方面,展示了微生物群如何在其中发挥作用,为儿童过敏的防治提供新思路。

#1  过敏,早期识别干预

新生儿的第一次大便可能揭示发生过敏的风险

微生物群的成熟免疫系统的发育同时发生,两者都与一系列疾病有关,包括过敏、花粉热、哮喘和湿疹

发表在Cell Reports Medicine 通过分析 100 名新生儿的粪便,研究人员发现婴儿第一次粪便的成分可以决定儿童在以后的生活中是否有可能患上过敏症和其他疾病。研究小组发现,缺乏特定分子与一年后过敏的风险增加有关。这些化学物质的减少与在微生物群成熟中起关键作用的细菌的变化有关。

Petersen Cet al., Cell Rep Med. 2021

新生儿的第一次粪便,称为胎粪。胎粪是一种粘稠的深绿色物质,在怀孕 16 周左右开始在胎儿肠道中形成,含有羊水、皮肤细胞以及婴儿摄入的其他物质和分子。

胎粪也是出生后在肠道中定殖的第一批微生物的最初“食物来源”。胎粪就像一个时间胶囊,揭示了婴儿在出生前接触过的东西。

 过 敏 

为了评估胎粪成分是否会影响以后发生过敏的风险,研究人员研究了新生儿第一次粪便中存在的代谢物。然后,当孩子们满一岁时,该团队进行了一项皮肤测试,以测量免疫系统的反应性。

分析表明,婴儿胎粪中不同类型的分子越少,孩子在出生后第一年内发生过敏的风险就越高

一些代谢途径,包括那些涉及氨基酸代谢的途径,在后来出现过敏性疾病的婴儿的胎粪中最少

没有发生过敏反应的新生儿相比,在一岁时发生过敏反应的新生儿在出生时的胎粪代谢多样性降低

 早 期 干 预 

接下来,研究人员分析了胎粪成分是否会影响肠道微生物群的成熟。胎粪“代谢组”较少的婴儿的细菌丰度平较水平低,如肠杆菌科,这在微生物群的成熟中起着关键作用。

最后,研究人员将有关胎粪和微生物群组成的信息与新生儿及其母亲的临床数据相结合,以准确预测婴儿是否会在 1 岁时出现过敏反应。

这项工作表明,健康的免疫系统和微生物群的发展实际上可能在孩子出生之前就开始了——这表明婴儿在子宫内接触的微小分子未来的健康起着至关重要的作用。

研究人员说,调节子宫内关键代谢物的早期干预措施有助于促进微生物群和免疫系统的健康发育,从而预防过敏性疾病的症状。

这些发现可能有助于识别有患过敏症或哮喘风险的婴儿,并制定有助于预防这些疾病的早期干预措施。

参考文献:

Petersen C, Dai DLY, Boutin RCT, Sbihi H, Sears MR, Moraes TJ, Becker AB, Azad MB, Mandhane PJ, Subbarao P, Turvey SE, Finlay BB. A rich meconium metabolome in human infants is associated with early-life gut microbiota composition and reduced allergic sensitization. Cell Rep Med. 2021 Apr 29;2(5):100260. 

#2 生命早期,耐药基因

婴儿的肠道微生物群包含数百个抗生素抗性基因

人类肠道微生物群已成为细菌的储存库,这些细菌含有帮助它们抵抗抗生素的基因。

发表在Cell Host & Microbe的一项研究通过分析丹麦 650 多名一岁儿童的粪便样本,发现婴儿的肠道细菌有数百个抗生素抗性基因

“隐藏高手” 胰腺癌的新出路——微生物

谷禾健康

胰腺癌是致命的癌症之一,其特点是:

难发现(发现多为晚期),病程,发展恶化速度,中位生存期为3-6个月,正所谓 “无声杀手”

胰腺癌为什么难发现?这要从胰腺癌的位置说起。

胰腺位于人体后腹部深处,被胃、肝等层层围绕,且体积小,胰腺癌早期几乎没有不适。普通检查手段较难发现。

随着胰腺肿瘤的生长,出现的许多症状看起来与其他疾病的症状很像,比如:发冷和出汗、发热、腹胀、腹泻、恶心、疲劳、食欲不振、不明原因体重减轻、上背部或上腹部疼痛、手臂或腿部肿胀、黄疸迹象等。这就容易导致误诊。

胰腺癌的发病率近年来呈快速上升的趋势,死亡率排在首位,因此也被称为“癌中之王”。

胰腺癌的诊断难,治愈也难,应对胰腺癌治疗这样的难题,科学界在不断努力中。

胰腺癌独特的免疫抑制微环境是免疫治疗面临的最大障碍,而微生物群的改变也被认为是塑造肿瘤局部微环境并影响免疫治疗的重要因素

科学家发现微生物群在调节代谢和免疫反应中起着关键作用。通过维持相对健康的微生物群类型,提高胰腺癌化疗药物和免疫治疗的有效性,为胰腺癌患者带来新的希望。

接下来,本文详细列举口腔、肠道和胰腺微生物群在胰腺癌发展中的作用的关键信息,讨论不同类型的微生物群,它们在调节药物代谢、耐药性、免疫反应和胰腺癌治疗潜力中的潜在作用,以及相关预防措施。

图源:知易社

一般说的胰腺癌主要是指胰腺导管腺癌,简称PDAC,下同:

01 微生物群与胰腺导管腺癌的关系

从临床和解剖学的角度来看,胰腺与肠道微生物群没有直接的物理联系,因此胰腺被认为是无菌组织。但微生物可以通过消化道中的胆管迁移到胰腺

Pandya Gouri,et al., Semin Cancer Biol, 2021

许多研究表明,口腔、胃肠道、粪便和器官特异性(胰腺)微生物群的组成与PDAC高度相关。

PDAC的口腔、唾液、舌苔微生物群

口腔和唾液微生物群组成的改变与PDAC的风险相关。最近的研究表明,口腔中参与PDAC肿瘤发生的主要致病菌有:

牙龈卟啉单胞菌(Porphyromonas gingivalis)、梭杆菌(Fusobacterium)、缓症链球菌(Streptococcus mitis )、长奈瑟氏球菌(Neisseria elongata ).

牙龈卟啉单胞菌和Aggregatibacter actinomycetemcomitans 与胰腺癌高风险之间的相关性,表明口腔微生物群可能是导致PDAC肿瘤发生的危险因素。据推测,牙龈卟啉单胞菌可能分泌肽基精氨酸脱亚胺酶,通过引起KRASTP53基因突变降解精氨酸代谢

 唾液微生物群 

在胰腺癌患者的唾液样本中,与健康对照组相比,PDAC患者的长奈瑟氏球菌缓症链球菌的水平明显降低,而Granulicatella adiacens的水平明显升高

——作为预测胰腺癌的非侵入性生物标志物

在区分PDAC病患者和健康个体时,长奈瑟氏球菌和缓症链球菌的组合显示出96.4%的敏感性和82.1%的特异性。这项研究的结果表明,唾液微生物群可以作为预测胰腺癌的非侵入性生物标志物。

有研究对胰腺癌患者的唾液样本进行了微生物鉴定,发现纤毛菌Leptotrichia的丰度较,而卟啉单胞菌和奈瑟氏球菌的比例相对较。因此,唾液中纤毛菌Leptotrichia卟啉单胞菌的显著比率(L/P比率)可用作PDAC的预测标记

 口腔微生物组 

PDAC和对照组在相关类群的平均相对比例上观察到差异。

PDAC患者  :高水平厚壁菌门和相关类群,包括:乳杆菌科(Lactobacillales)、嗜热链球菌(Bacillli Streptococcus thermophilus)、链球菌科(Streptococcaceae)

对照组:具有相对较高水平变形菌和相关分类群,包括:γ变形菌(Gammaproteobacteria)、巴氏杆菌科(Pasteurellaceae)、副流感嗜血杆菌(Haemophilus parainfluenzae);β变形菌(Betaproteobacteria),奈瑟氏球菌(Neisseria),黄奈瑟氏球菌(Neisseria flaviscen)

舌苔微生物群 

胰头癌患者优势菌群如下:梭杆菌属Fusobacterium, 纤毛菌属Leptotrichia, 放线菌属Actinomyces, 罗氏杆菌属Rothia, 奇异菌属Atopobium, 棒状杆菌Corynebacterium, 莫拉氏菌属Moraxella, 消化链球菌属Peptostreptococcus, 产线菌属Filifactor, Oribacterium,坦纳菌属Tannerella

对照组优势菌群如下:嗜血杆菌Haemophilus, 卟啉单胞菌属Porphyromonas,Paraprevotella

在健康对照组和胰头癌患者中分别观察到嗜血杆菌、卟啉单胞菌纤毛杆菌、梭杆菌的富集量有显著差异。

类似地,在胰头癌患者中观察到链球菌罗氏菌属相对较的富集,而在肝癌患者中SR1的相对丰度较高。因此,SR1和链球菌可用于区分肝癌和胰头癌

*SR1:SR1 genera incertae sedis

对PDAC与微生物群的变化在多样性组成方面的关联研究非常有限。需要在一个大队列中进一步的调查证实这些发现,从而得出确切的结论。

PDAC的胃肠道微生物群

——肠道微生物群可以直接影响胰腺微环境

给WT小鼠口服荧光标记的粪肠球菌Enterococcus faecalis,有趣的是,在这些小鼠的胰腺中观察到荧光,这表明细菌从肠道向胰腺迁移

在另一项研究中,将抗生素混合物口服给药于PDAC、结肠癌和黑色素瘤的小鼠模型,观察到在所有受试模型中肠道微生物群的减少显著减弱了肿瘤的生长。

几个小组观察到,吸烟是胰腺癌的一个关键风险因素,可导致微生物群的显著变化,特别是在人类的肠道中。吸烟者肠道中厚壁菌门放线菌门减少菌门、拟杆菌门、变形菌门的数量显著增加

——胰腺癌患者和健康对照者粪便样本显著差异

 微生物谱分析  (胰腺癌患者粪便样本,基于属水平的线性鉴别分析)

显著富集普雷沃菌属(Prevotella)、韦荣球菌属(Veillonella)、肠杆菌属(Enterobacter)、克雷伯氏菌属(Klebsiella)、哈氏菌属(Hallella)、月形单胞菌属(Selenomonas)、Cronobacter spp.

显著减少双歧杆菌属(Bifidobacterium)、芽孢杆菌属(Gemmiger)、梭状芽孢杆菌属(Clostridium IV)、Coprococcus、经黏液真杆菌属(Blautia)、Flavonifractor、丁酸球菌属(Butyricicoccus)、厌氧菌属(Anaerostipes)、Dorea spp.

这种粪便微生物群组成的显著差异表明,胰腺癌的胃肠道微生物是独一无二的。此外,本研究的数据表明,与脂多糖(LPS)生产类异戊二烯和亮氨酸的生物合成相关的微生物有显著的富集/定殖,而已观察到产丁酸菌益生菌减少。

 16S rRNA测序分析 

分析PDAC患者和对照的粪便标本微生物群,观察到不同的优势菌:

PDAC患者:变形菌门(Proteobacteria),互养菌门(Synergistetes),广古菌门(Euryarchaeota),Akkermansia,韦荣氏菌科Veillonellaceae,Odoribacter

健康肠道:Clostridiacea,瘤胃球菌科,Ruminococcaceae,毛螺科Lachnospiraceae

除此之外,幽门螺杆菌感染和胰腺癌之间也呈正相关。在胃癌(69%)和胰腺癌(65%)患者的血液样本中,幽门螺杆菌感染率异常高。Meta分析和前瞻性队列研究表明,幽门螺杆菌感染的患者患胰腺癌的风险明显较高。然而,为了明确解决幽门螺杆菌在PDAC的影响,需要进行更多的人群和动物研究。

PDAC的胰腺微生物群

过去几十年科学家一直认为,在胰腺中存在蛋白酶,且胰腺环境是高碱性的,那么微生物无法生存。

胰腺中存在细菌,PDAC患者细菌更多 

用16S rRNA基因特异性PCR对胰腺囊肿液体标本进行分析,发现优势菌:氨基酸球菌属Acidaminococcus, 埃希氏杆菌属Escherichia, 拟杆菌属Bacteroides, 志贺氏杆菌Shigella。这表明胰腺囊液可能是微生物群分析的良好来源。

最近,对PDAC样本进行的16S rRNA荧光探针和qPCR实验都证实,与正常人相比,PDAC患者的胰腺组织中存在细菌(约为正常人的1000倍)。

 PDAC的标本中的主要菌 

对人类PDAC肿瘤标本进行16S rRNA测序,发现了13个不同的门。

PDAC患者:变形菌门 (45 %);拟杆菌门(31 %);厚壁菌门 (22 %);放线菌门 (1%);假长双歧杆菌Bifidobacterium;

·pseudolongum【Kras(G12D)介导的胰腺癌小鼠模型】;假单胞菌属 Pseudomonas;Elizabethkingia;梭杆菌 Fusobacterium

对照组:乳酸菌 Lactobacillus

梭杆菌——预后生物标志物 

PDAC肿瘤内梭杆菌Fusobacterium的定殖与PDAC患者的预后更差相关。这项研究的结果表明,梭杆菌属可以作为PDAC的预后生物标志物。

 耐药患者的组织标本中 γ -变形菌定植 

从耐受”吉西他滨”的PDAC中获得的组织标本中,γ-变形菌门Gammaproteobacteria定植,表明γ -变形菌可能干扰吉西他滨的代谢,并产生耐药性。

 男女患者菌群差异 

男性和女性患者之间微生物群组成的差异,各自的主导菌群如下:

男性患者:A. ebreus,Acinetobacter baumannii 

女性患者:Geobacillus kaustophilus HTA426 ,Escherichia coli 55989 

吸烟与非吸烟差距

此外,吸烟PDAC患者与非吸烟PDAC患者的对比,鲍曼不动杆菌A. baumannii M. hyopneumoniae高度富集,且与不良临床结果相关。这些微生物显示出富集的致癌信号抑制肿瘤和免疫信号

 胰腺癌转移相关菌群 

胰腺组织中微生物群的丰度与患者的转移总生存率相关。M. hyopneumoniae、Sitophilus zeamais、宋内志贺菌Shigella sonnei、肠道沙门氏菌Salmonella enteric高丰度转移呈正相关。

更具体地说,Acidovorax ebreus与PDAC患者的转移和高肿瘤分级相关。

 长期、短期生存的菌群不同 

对长期和短期生存的PDAC患者的肿瘤标本进行了16S rRNA测序,肿瘤内微生物群:

PDAC长期生存者:多样性高;以下菌丰富:Pseudoxanthomonas, Saccharopolyspora, Bacillus clausii, Streptomyces

PDAC短期生存者:拟杆菌,梭状芽孢杆菌

上述数据表明,确定微生物群进入胰腺的机制以及这些微生物与胰腺癌的进展和转移之间的关系还有很大的研究空间。

02 微生物群在新陈代谢中的潜在作用

宿主和微生物群形成共生关系。宿主可以通过其遗传、饮食摄入和生活方式影响微生物群的组成和生物量,而微生物群可以通过分泌微生物代谢物、代谢营养物、合成维生素和消化酶来影响宿主。

细菌成分及其代谢物可以渗透到宿主的体循环中,并被运输到发挥激素样作用的部位。这些生物活性代谢物调节宿主中的信号转导,以调节基因表达调节中涉及的各种途径。

 代谢物对肿瘤的发生有促进和抑制作用 

丁酸盐、乙酸盐和丙酸盐是主要的短链脂肪酸(SCFAs),由结肠中的粪肠球菌、双歧杆菌和梭状芽孢杆菌 等细菌产生,可发挥抗癌作用。

短链脂肪酸通过与游离脂肪酸受体(FFAR2/FFAR3)结合发挥作用,游离脂肪酸受体通常在癌细胞、基质细胞和肠细胞上表达,刺激G蛋白偶联受体,通过激活致癌途径(包括PDAC的AKT、ERK、mTOR和STAT3)促进肿瘤生长和转移

对微生物代谢物在PDAC和胰腺中刺激FFAR2/3的作用的理解需要进一步详细研究。

改变的微生物群在PDAC免疫反应调节中的作用

Pandya Gouri,et al., Semin Cancer Biol, 2021

体外研究表明,丁酸盐可以减少PDAC细胞的增殖,同时诱导它们向分泌表型分化。

此外,透明质酸与丁酸盐的共轭物显示出在PDAC细胞中诱导细胞抑制作用。据报道,丙戊酸(一种合成SCFA)结合5-FU对PDAC细胞有抑制细胞生长的作用。

PDAC患者多胺代谢失调

在PDAC患者中,益生菌和产丁酸的细菌被大量抑制。细菌可以合成多种多胺,如腐胺、精胺、亚精胺和尸胺。据报道,在PDAC患者中,多胺代谢严重失调。在小鼠模型和患者血清样本中,多胺均上调,并随着肿瘤的进展而进一步增多。

 微生物代谢物可作为非侵入性生物标志物 

罗伊乳酸杆菌Lactobacillus reuteri 在4个月大的KPC(K-rasLSL.G12D; p53R172 H/+; Pdx1-Cre)小鼠肿瘤标本(K-rasLSL)中定殖。罗伊乳酸杆菌参与多胺代谢。与2个月大的KPC鼠血清标本相比,4个月大的KPC鼠血清标本中多胺的浓度显著高。这些结果表明,微生物代谢物可被开发并用作潜在的非侵入性生物标志物,用于PDAC病的诊断,尤其是在肿瘤变得可见和明显之前的早期阶段

脂多糖是与炎症、代谢性疾病和胰腺癌相关的关键因素

在PDAC患者中,脂多糖存在于高度富集的革兰氏阴性菌的细胞壁上。

脂多糖与线粒体的代谢重编程有关,从而有助于糖酵解、活性氧炎症导致肿瘤发生。

脂多糖如何导致免疫抑制?

脂多糖可以有效地与免疫细胞上的toll样受体相互作用,并募集MyD88/TRIF分子来刺激NF-κB和MAPK信号产生炎性细胞因子,从而导致免疫抑制。

代谢产物——脱氧胆酸(DCA)

一些肠道相关细菌代谢原始胆汁并形成脱氧胆酸(DCA)。DCA通过与TGR5 (G蛋白偶联的细胞表面BA受体)结合发挥作用,TGR5反过来刺激PDAC细胞中的EGFR、MAPK和STAT3信号,并进一步导致细胞周期的进展。

代谢产物——熊去氧胆酸

与此相反,熊去氧胆酸通过抑制PDAC细胞系上皮细胞向间充质细胞的转化而显示出抗癌作用。

γ -变形菌科合成酶将化疗药代谢成不活跃形式

肿瘤内细菌属γ -变形菌科,能够合成胞苷脱氨酶(CDD),该酶能有效地将化疗药物吉西他滨代谢成2′,2′-difluorodeoxyuridine(不活跃的形式)。

说到化疗药物,为什么同样的药物治疗,有些人有效,有些人无效?这与微生物会有什么样的联系?

我们将在接下来的章节详细阐述。

03 微生物群在化疗中的作用 

肠道微生物群在改变癌症治疗中药物治疗的疗效方面发挥着既定的关键作用。当然,化疗药物也会使肠道微生物群失调。

二十多年来,吉西他滨单独和/或与化疗剂/药物联合用于治疗PDAC病患者。

引起化疗耐药性——猪支原体

人皮肤成纤维细胞中猪支原体(Mycoplasma hyorhinis)的存在,在体外和小鼠模型中导致了对吉西他滨的抗性,其中它被代谢为其非活性和脱氨代谢物,名为2’,2’-二氟脱氧尿苷。

引起化疗耐药性——γ – 变形菌

除此之外,γ – 变形菌能够通过表达胞苷脱氨酶(CDD)的长形式灭活吉西他滨。分析113个PDAC患者组织样本时,86个样本(76%)显示了γ – 变形菌的存在。

在结肠癌小鼠模型中,γ – 变形菌诱导的吉西他滨耐药可通过联合应用环丙沙星抗生素逆转。表明这种耐药是可逆的。

引起化疗耐药性——大肠杆菌

大肠杆菌可导致几种药物如克拉屈滨、吉西他滨、CB1954、氟达拉滨的原始化学结构发生改变。

在体外和体内小鼠模型中,非致病性大肠杆菌菌株引起了对吉西他滨治疗的化学抗性。

改变微生物群——更好的抗癌效果

最近,FOLFRNOX已被用于针对PDAC患者的多中心试验。结果报告了比吉西他滨更好的长期生存率。在这些试验中,患者腹泻和恶心的发生率很高。表明药物可以改变微生物群以产生更好的抗癌效果。

其他代谢疾病与胰腺癌的相关性

另一方面,肥胖、2型糖尿病和胰腺癌病例增加之间有很强的联系。

在KC小鼠中,高脂肪热量饮食(HFCD)显示完整腺泡的丧失和胰腺上皮内瘤形成的发展。此外,在小鼠模型中,高脂肪热量饮食显示出明显的微生物群组成变化,特别是梭状芽胞杆菌

二甲双胍对这些小鼠的治疗与KC小鼠中PDAC的抑制相关,Akkermansia的定植显著增加,梭状芽胞杆菌的丰度显著减少。二甲双胍通过降低循环中脂多糖的水平来促使HFCD-KC小鼠模型的肠道菌群失调。这可以进一步抑制胰腺中M1巨噬细胞的脂多糖依赖性极化,从而抑制上皮内瘤的形成。

药物联合益生菌抗癌

吉西他滨与益生菌联合给药后,随着波形蛋白和Ki-67表达的抑制,上皮内瘤PanIN的形成明显减少。

鼠伤寒沙门氏菌与吉西他滨和贝伐单抗的组合在PDAC异种移植模型中产生了协同抗肿瘤作用

肠道微生物群在调节化疗反应、将药物代谢成非活性形式,甚至对某些药物产生化学抗性方面起着不可避免的作用,越来越多的临床研究证明了微生物群对化疗的影响。这为癌症患者的治疗目的操控肠道菌群提供了基础。

04 PDAC的微生物群和免疫调节

免疫系统和微生物群之间的健康互动对于健康的生活方式和身体稳态至关重要。微生物群的失调会导致全身炎症和细菌代谢物介导的免疫反应,这可能进一步促进免疫调节,从而促使癌症发生和发展。

在胰腺癌的发展过程中,已经观察到胰腺组织内的微生物群和免疫细胞之间存在复杂的关系癌症免疫可以通过微生物群的存在来改变

菌群与胰腺癌发生的关系

Thomas R M, et al.,Nature Reviews Gastroenterology & Hepatology, 2019

详见: 微生物,或许是下一个癌中之王(胰腺癌)诊断和干预治疗的新出路

微生物群对免疫系统的影响

当粘膜内层受到任何损伤时,微生物往往会进入肠道固有层,然后迁移到远处的淋巴器官,激活宿主免疫系统。PDAC肿瘤微环境基本上与免疫细胞交织在一起,其中免疫细胞与某些炎症因子一起负责促进肿瘤发生、免疫细胞浸润和疾病进展。

微生物衍生产物或代谢物,如脂蛋白、脂多糖、脂肽、单链或双链DNA,甚至CpG DNA可以有效地结合PPRs以激活TLRs,TLRs通过抑制胰腺癌的免疫反应在炎症和肿瘤发生过程中起关键作用。这与NF-κB和MAPK信号通路的激活有关,导致产生促进肿瘤的细胞因子和其他促炎分子,从而导致癌症的发展。

假长双歧杆菌促进肿瘤发生(TLRs)

假长双歧杆菌Bifidobacterium pseudolongum在肠道和肿瘤区域高度占优势,通过TLR介导的信号传导促进侵袭性肿瘤发生,TLR4和TLR7在PDAC的肿瘤微环境中特别强有力地表达。有研究显示,刺激TLRs会导致胰腺炎,并与K-ras协同促进胰腺癌在动物模型中的发展。

TLR7在人和鼠胰腺癌标本中有强有力的表达,并显示出刺激MAPK、NF-κB、STAT3和Notch信号以增强致癌作用。TLR7阻断可以通过阻止以上通路刺激,从而抑制胰腺癌

肠道微生物群影响抗癌免疫治疗反应

肠道微生物群(脆弱双歧杆菌、双歧杆菌)的组成通过阻断CTLA-4和PD-1影响抗癌免疫治疗反应。

PDAC肿瘤微环境的产生在小鼠模型中具有免疫抑制作用,这归因于特定的肠道和胰腺内微生物。这也证明了随着免疫治疗抗性的增强,癌症进展的增强。

此外,微小核糖核酸与PDAC患者的生长、血管生成、化疗耐药性和转移增加有关。已知某些微生物如幽门螺杆菌鼠伤寒沙门氏菌也能调节上述微小核糖核酸的表达,而这些微小核糖核酸又能调节宿主的免疫反应。

这表明肠道微生物群控制宿主免疫反应,从而提高免疫疗法的有效性,并在与PDAC相关的癌症领域具有巨大的意义。

05 基于微生物的治疗潜力是PDAC患者的希望

微生物具有巨大的潜力,可用于设计不同的治疗方法,以对抗疾病的发展和进展。更具体地说,新出现的证据表明,微生物可能导致人类对恶性肿瘤的易感性,也可能影响对治疗的反应,还可能影响治疗相关的毒性。

用有益菌如拟杆菌和伯克霍尔德氏菌Burkholderiales恢复肠道提高了CTLA-4封闭的治疗效果。

双歧杆菌的存在增强了PDL-1阻断的抗癌潜力。

因此,微生物群的保护和恢复对改善治疗效果至关重要。

粪便微生物群移植(FMT)是一种直接有效的方法。肿瘤小鼠接受了来自短期生存期PDAC患者、长期生存期无疾病证据(LTS-NED)和健康对照组的粪便微生物群,发现肿瘤生长明显减少。这表明,在PDAC鼠模型中,来自长期存活者的FMT比来自短期存活者或没有PDAC的那些接受FMT的人对肿瘤有更好的保护作用

此外,FMT在应对化疗的副作用方面显示出潜力,化疗会导致其他恶性肿瘤如转移性肾细胞癌的腹泻。这表明,用益生菌恢复肠道是一种可行的方法,可以与其他治疗方案一起使用,并且在治疗癌症方面可能非常有效

目前这些研究探索了微生物群的多样性和组成,以及患者的菌群失调,与健康人的差异等,尽管还需要做深入研究,但这个方向的探索对于癌症治疗无疑是很有希望的。

06 关于胰腺癌的预防 

虽然说没有完全避免胰腺癌的特定方法,但以下方法可以降低风险:

■  戒烟

可避免的最重要的风险因素,戒烟有助于降低患胰腺癌风险

■ 维持正常体重

如果你现在正处于超重或肥胖阶段,减肥有助于降低胰腺癌风险;适当进行锻炼

■ 健康饮食

加工过的红肉和含糖饮料也可能增加患胰腺癌的风险。美国癌症协会建议遵循包括大量水果、蔬菜和全谷物在内的健康饮食模式,并限制或避免红肉和加工肉类、含糖饮料和高度加工食品

■ 不酗酒

大量饮酒与胰腺癌有关,也可能患上慢性胰腺炎,后期有发展成为胰腺癌的风险

■  避免使用工作场所化学品

工作场所中的某些化学品会增加患胰腺癌和其他癌症的风险

■ 进行肠道菌群检测

维持一个相对健康的肠道菌群,监测健康状态,降低胰腺癌的风险

07 结语

微生物组是一个新兴的前沿领域,它为胰腺癌的诊断、预后和转移的新生物标志物等提供了新的方向。

微生物治疗的个性化在于每个个体微生物群具有独特性,微生物群又与日常饮食,生活习惯,慢性病等息息相关,通过这些方式的改变使菌群维持或恢复到相对健康的状态,这对于胰腺癌及其他癌症的预防、治疗具有重大意义。

主要参考文献:

G.A. Vitiello, D.J. Cohen, G. Miller, Harnessing the microbiome for pancreatic cancer immunotherapy, Trends Cancer 5 (11) (2019) 670–676. 

R. Mendez, K. Kesh, N. Arora, L. Di Martino, F. McAllister, N. Merchant, S. Banerjee, S. Banerjee, Microbial dysbiosis and polyamine metabolism as predictive markers for early detection of pancreatic cancer, Carcinogenesis 41 (5) (2020) 561–570. 

R.M. Thomas, R.Z. Gharaibeh, J. Gauthier, M. Beveridge, J.L. Pope, M.V. Guijarro, Q. Yu, Z. He, C. Ohland, R. Newsome, J. Trevino, S.J. Hughes, M. Reinhard, K. Winglee, A.A. Fodor, M. Zajac-Kaye, C. Jobin, Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models, Carcinogenesis 39 (8) (2018) 1068–1078.

Pandya Gouri,Kirtonia Anuradha,Singh Aishwarya et al. A comprehensive review of the multifaceted role of the microbiota in human pancreatic carcinoma.[J] .Semin Cancer Biol, 2021

B. Gupta, D. Sadaria, V.U. Warrier, A. Kirtonia, R. Kant, A. Awasthi, P. Baligar, J.K. Pal, E. Yuba, G.Sethi, M. Garg, R.K. Gupta, Plant lectins and their usage in preparing targeted nanovaccines for cancer immunotherapy, Semin. Cancer Biol.(2020). 

J. Chakladar, S.Z. Kuo, G. Castaneda, W.T. Li, A. Gnanasekar, M.A. Yu, E.Y. Chang, X.Q. Wang, W.M. Ongkeko, The pancreatic microbiome is associated with carcinogenesis and worse prognosis in males and smokers, Cancers 12 (9) (2020). 

J.S. Chang, C.R. Tsai, L.T. Chen, Y.S. Shan, Investigating the association between periodontal disease and risk of pancreatic Cancer, Pancreas 45 (1) (2016) 134–141.

H. Tilg, T.E. Adolph, Beyond digestion: the pancreas shapes intestinal microbiota and immunity, Cell Metab. 25 (3) (2017) 495–496. 

Can Pancreatic Cancer Be Prevented? American Cancer Society. May 31, 2016.

调节肠道菌群,利用好15种天然抗生素

谷禾健康

抗生素自问世以来挽救了无数生命

曾被誉为治病的“神药”,风靡全球。

然而,由于抗生素药物的滥用

它开始变得越来越无效

更可怕的是

一些药物抗生素还伴有有害的副作用,如呕吐、腹泻、过敏反应、皮疹,

甚至还会导致人的微生物群失调,并伴有免疫系统减弱及慢性炎症发展…

现如今,在“不要滥用抗生素”的呼吁下

很多人都知道吃抗生素对身体不好

明知不好却依然摆脱不了啊…

有没有别的方式可以帮助预防改善?

天然抗生素或许可以帮到你

其实在日常生活中常见的食物,一些植物或者提取物也能达到同样的效果,它们的杀菌特性展现其作为天然抗生素治疗的潜力,本期我们为大家介绍15种天然抗生素

01 大 蒜

大蒜在历史上一直被广泛用于治疗和预防疾病。最近的研究评估了大蒜的潜在益处,包括其抗菌、抗真菌和抗病毒活性。

 作用机理 

大蒜素是大蒜中的主要活性化合物,负责其大部分抗菌活性。它对多种细菌菌株有效,包括多药耐药菌株。

大蒜素通过阻断对能源生产至关重要的酶(乙醇脱氢酶、乙酰辅酶 A 合成酶和乙酸激酶)维持细胞结构来杀死细菌。

此外,大蒜素可以通过阻断生物膜的形成来阻止细菌和真菌的生长,人体内大多数持续性感染源于生物膜,能阻断生物膜的形成意义重大。

有关生物膜感染,详见:

 抗 细 菌 性 

在接受14天治疗的60名患者中,大蒜素单独或与标准抗生素联合帮助34名患者根除幽门螺杆菌感染。然而,在对17人进行的2次试验中,大蒜对这种感染无效。

此外,在对75名健康人群进行的临床试验中,一种大蒜提取物漱口水降低了口腔变异链球菌的水平。

* 变异链球菌具有分泌酸性物质腐蚀牙釉质的特点,为人类主要致龋齿菌之一。

大蒜提取物可能有助于治疗牙龈肿胀预防蛀牙,因为它们可以杀死试管中的口腔致病菌,

例如:龈卟啉单胞菌 Porphyromonas gingivalis、

中间普氏菌 Prevotella intermedia、

Aggregatibacter actinomycetemcomitans

它还提高了其他抗生素在试管中对铜绿假单胞菌的有效性。然而,在34人的临床试验中,它未能阻止铜绿假单胞菌在肺组织瘢痕中形成生物膜

大蒜提取物除了杀死金黄色葡萄球菌和化脓性链球菌,还能通过减少细菌毒素(如α-毒素和链球菌溶血素O)的产生来保护身体免受伤害。

 抗 真 菌 性 

大蒜素可以抑制试管中孢子的萌发和真菌的生长(白色念珠菌、隐球菌、曲霉和酿酒酵母)。

念珠菌可感染口腔粘膜,引起炎症性疾病,称为假牙炎或口腔念珠菌病。在对96名患有这种疾病的人进行的2项临床试验中,大蒜提取物(作为漱口水或牙膏使用)显示出与抗真菌药物制霉菌素和克霉唑相似的效果

在110名妇女的临床试验中,大蒜提取物片(Garcin)改善阴道念珠菌病的症状与氟康唑一样有效。然而,另一种配方(大蒜素)在63名感染但无症状妇女的试验中无效。

在两项对81人进行的临床试验中,大蒜中的另一种成分,大蒜烯Ajoene(0.4-1%乳膏)杀死了导致足癣的真菌。

 抗 病 毒 性 

大蒜提取物对流感病毒和疱疹病毒(单纯型1、2和3)也有效。

在对146名健康成年人和172名儿童进行的2项临床试验中,用一种含有大蒜素的大蒜补充剂(每天1粒胶囊,持续12周)可以预防普通感冒,并缩短症状持续时间

 副 作 用 

大蒜可能会引起恶心、胃灼烧和口臭。

★  小   结  

大蒜对蛀牙/牙龈疾病、口腔念珠菌病、脚气和普通感冒有效。

02 茶树油

茶树油是从茶树植物(互叶白千层)中提取的,是一种用于皮肤的广谱抗生素。它是许多用于治疗皮肤感染的制剂中的活性成分。

 作用机理 

茶树油中的一些化合物,称为单萜(萜品烯-4-醇,芳樟醇,α-蒎烯和α-萜品醇)负责抗菌。

单萜阻断能量产生(细胞呼吸),破坏细菌和真菌细胞的外层(膜)。

 抗 细 菌 性 

茶树油对导致皮肤感染、痤疮、肺炎、食物中毒等细菌有效。

部分菌株包括葡萄球菌(金黄色葡萄球菌和表皮葡萄球菌),疮疱丙酸杆菌,绿脓杆菌,金黄色葡萄球菌,沙门氏菌,和大肠埃希氏菌。

在一项对 236 名住院患者进行的临床试验中,含有茶树油(分别为 10% 和 5% 茶树油)的乳霜和沐浴露使用 5 天,有助于清除耐抗生素金黄色葡萄球菌皮肤感染。

在30名受试者的唾液中,0.2%茶树油溶液减少了变异链球菌和其他微生物。

 抗 真 菌 性 

茶树油对以下真菌有效:白色念珠菌、曲霉菌、小孢子菌、表皮癣菌等。这些真菌会导致皮肤病(例如脚气和癣)以及其他问题。

在一项对 117 名患者的研究中(25% 和 50% 茶树油),每天两次使用茶树油治疗脚趾甲感染(甲真菌病)6 个月。

在一项137名患者的研究中(100%茶树油),每天使用两次,连续4周,也有治疗足癣的作用。

在大鼠研究中,外用茶树油治愈了阴道念珠菌感染。

 抗 病 毒 性 

茶树油抑制疱疹病毒的生长(单面型1和2)

 副 作 用 

注意,食用茶树油是有毒的。

另外,在皮肤上使用时,茶树油也有可能会导致干燥、灼热、瘙痒、炎症和过敏反应。

小   结  

茶树油有助于治疗细菌和真菌性皮肤感染(包括痤疮、肺炎、脚趾甲感染、脚气等),预防蛀牙或牙龈疾病。

接下来介绍的也是天然抗生素,相对来说,证据不够充分,可以作为参考。

03 牛至油

牛至油(从牛至中提取)一直被用作食品添加剂。它以其抗菌、抗真菌和抗氧化特性而闻名。

 作用机理 

牛至油的抗生素和抗真菌活性来自两种化合物,香芹酚百里酚。百里酚和香芹酚破坏细胞外细菌(膜),杀死细胞。

 抗 细 菌 性 

在一项对40名外科手术伤口康复患者的临床试验中,牛至油软膏减少了金黄色葡萄球菌对伤口的污染,从而有助于愈合过程。

百里酚和香芹酚可以阻止导致蛀牙的细菌(变异链球菌Streptococcus mutans)的生长,在大鼠试验中,可以保护大鼠免受牙龈疾病的侵袭。

在试管中,牛至抑制并杀死以下细菌:导致食物中毒、尿路感染、腹泻、肺炎、葡萄球菌感染等的细菌。

这些细菌包括:大肠杆菌Escherichia coli、沙门氏菌Salmonella、肺炎克雷伯菌 Klebsiella pneumoniae、枯草芽孢杆菌Bacillus subtilis、金黄色葡萄球菌Staphylococcus aureus、铜绿假单胞菌Pseudomonas aeruginosa、荧光假单胞菌Pseudomonas fluorescens、液化沙雷菌Serratia liquefaciens、变异链球菌 Streptococcus mutans、粪肠球菌Enterococcus faecalis、梭菌Clostridium、鸟分枝杆菌Mycobacterium avium和腐败希瓦氏菌 Shewanella putrefaciens。

在试管中,墨西哥牛至油与百里香和芥子油一起对三种细菌单核增生李斯特菌,金黄色葡萄球菌和肠炎沙门氏菌有效

牛至油与丁香和肉桂油一起抑制鲍氏不动杆菌Acinetobacter baumannii、鲍氏不动杆菌 RCH、肺炎克雷伯菌、大肠杆菌和铜绿假单胞菌生长

 抗 真 菌 性 

百里酚和香芹酚可有效阻止试管中三种不同的引起感染的真菌(酵母、曲霉和皮肤癣菌)的生长。

 抗 病 毒 性 

在基于细胞的研究中,香芹酚和百里酚对以下病毒具有抗病毒活性:

疱疹病毒(单纯型1)、人呼吸道合胞病毒、人轮状病毒、小鼠诺如病毒

 抗 寄 生 虫  

在一项小型试验中,14人感染了三种导致消化问题的寄生虫(人芽囊原虫blastocystis hominis、哈氏阿米巴原虫Entamoeba hartmanni和微小内蜒阿米巴Endolimax nana),在大多数情况下,补充牛至油可使寄生虫完全消失,并改善症状。

 副 作 用 

虽然很少见,但牛至油会引起过敏反应,尤其是对唇形科(如百里香)过敏的人。

药物间相互作用

牛至可以阻断肝酶(细胞色素p450)清除血液中的有毒物质。这可能会增加某些药物的效果。

小   结  

只有几个小型临床试验表明牛至可能有助于治疗细菌和寄生虫感染。需要对更大人群进行更多的临床试验,以确定其对抗传染病的潜力。

04 紫锥菊

紫锥菊一直被用作草药。紫锥菊提取物以其潜在的抗菌和免疫保护特性而闻名。

 作用机理 

虽然紫锥菊的确切成分因物种而异,但主要成分是碳水化合物、咖啡酸蛋白质(糖蛋白)。

紫锥菊通过阻断细胞因子等炎症标志物的释放来减轻细菌感染的症状。其抑菌作用机制尚未明确。

 抗 细 菌 性 

紫锥菊可有效减少多种细菌菌株的生长,例如化脓性链球菌、流感嗜血杆菌、嗜肺军团菌、艰难梭菌和痤疮丙酸杆菌。

 抗 真 菌 性 

紫锥菊阻止多种真菌菌株的生长,并保护小鼠细胞免受致命感染(白色念珠菌和单核细胞增生李斯特菌)。它还对酿酒酵母有效。

 抗 病 毒 性 

在对 282 人进行的临床试验中,在出现感冒症状时服用紫锥菊补充剂 (Echinilin),可减轻症状的严重程度。

然而,在一项对 100 多人的临床试验和一项对 700 多人的试验中,含有紫锥菊提取物的药片无法预防。一项荟萃分析得出结论,紫锥菊产品对治疗普通感冒无效,但可能有助于预防

在对 95 名有早期感冒或流感症状的人进行的临床试验中,紫锥菊有助于缓解症状

在154人的临床试验中,一种结合了紫锥菊和鼠尾草的喷雾剂与一种含有氯己定和利多卡因的喷雾剂对治疗喉咙痛同样有效。

然而,在一项针对400多名儿童的试验中,紫锥菊未能治疗上呼吸道感染;在两项针对近400名成人的试验中,紫锥菊未能预防上呼吸道感染。

基于细胞的研究表明紫锥菊对这些病毒有抗病毒活性:

鼻病毒、疱疹病毒(单纯型1和2)、甲型和乙型流感、呼吸道合胞体病毒

 副 作 用 

食用紫锥菊的副作用包括皮疹和恶心、胃痛等轻微胃部问题,但很罕见

过敏反应可能发生,特别是对菊科其他植物(如甘菊)过敏的人。

★  小   结  

尽管在患有普通感冒和其他上呼吸道感染的人群中进行了广泛调查,但结果有效和无效都存在,因此紫锥菊的有效性尚无定论。需要更多的临床试验来阐明其治疗潜力。

05
麦卢卡 蜂蜜

麦卢卡蜂蜜是由以麦卢卡树(Leptospermum scoparium)的花为食的蜜蜂生产的,被认为是最具药用价值的蜂蜜,但需要更多数据。

 作用机理 

麦卢卡蜂蜜的主要活性抗生素成分是一种叫丙酮醛的化合物。

蜂蜜的另一种成分是蜂胶,它含有黄酮类化合物(如高良姜精和匹诺塞林pinocembrin)、酚酸和酯类物质,可能有助于增强免疫系统

麦卢卡蜂蜜还富含葡萄糖氧化酶,这种酶可以将葡萄糖转化为具有抗菌特性的过氧化氢。

另一种化合物葡萄糖内酯可以降低蜂蜜的pH值,并具有天然的抗菌特性。水无法在蜂蜜中流动,使得细菌难以在蜂蜜中生存。

 抗 细 菌 性 

麦卢卡蜂蜜是一种广谱抗菌剂,可以杀死以下细菌:大肠杆菌、金黄色葡萄球菌、几种肠球菌、铜绿假单胞菌、化脓性链球菌Streptococcus pyogenes、奇异变形杆菌Proteus mirabilis、鼠伤寒沙门氏菌Salmonella typhimurium等。

在 150 名有消化问题的患者中,每周食用蜂蜜降低感染幽门螺杆菌的风险有关。

在42名慢性鼻窦炎患者的临床试验中,术前用麦卢卡蜂蜜冲洗改善了结果,包括细菌计数。

在一项针对 30 名健康志愿者的试点试验中,咀嚼麦卢卡蜂蜜口香糖可减少牙菌斑积聚和牙龈出血

将麦卢卡蜂蜜外用于感染了耐抗生素金黄色葡萄球菌的腿部溃疡,促进了使用免疫抑制剂药物患者的伤口愈合

 抗 病 毒 性 

麦卢卡蜂蜜可抑制水痘-带状疱疹病毒在人类皮肤细胞中的生长。

它还能抑制甲型流感病毒在狗肾细胞中的生长。

 副 作 用 

麦卢卡蜂蜜在 20 名健康成人中服用 4 周后没有产生副作用。虽然没有观察到过敏反应,但建议对蜜蜂过敏的个体应谨慎。

★ 小   结  ★

很少有小型临床试验支持在细菌感染患者中使用麦卢卡蜂蜜,虽然结果很有希望。需要更大规模、更稳健的临床试验来验证这些初步结果。

06 肉 桂

肉桂(Cinnamomum zeylanicum和Cinnamomum cassia) 是一种广泛使用的草药,以其抗氧化、抗炎、抗病毒、抗菌和抗真菌特性而闻名。

 作用机理 

肉桂醛和丁香酚这两种化合物负责肉桂的抗菌和抗病毒特性。

 抗 细 菌 性 

在试管中,丁香酚和肉桂醛阻止了幽门螺杆菌的生长。然而,4周治疗肉桂(80毫克/天)对15例幽门螺杆菌没有改善。

肉桂提取物还阻止痤疮丙酸杆菌和表皮葡萄球菌的生长,这两种细菌会导致痤疮。

肉桂油和丁香油可阻止大肠杆菌、小肠结肠炎耶尔森氏菌Yersinia enterocolitica、铜绿假单胞菌Pseudomonas aeruginosa、猪霍乱沙门氏菌Salmonella choleraesuis、金黄色葡萄球菌Staphylococcus aureus、单核细胞增生李斯特菌Listeria monocytogenes、蜡样芽孢杆菌Bacillus cereus和粪肠球菌Enterococcus faecalis 在试管中的生长。

 抗 真 菌 性 

肉桂提取物对抗真菌的许多菌株,如珠菌,曲霉Aspergillus,青霉菌等都有效。

在一项为期 7 天的试点研究中,每天服用 8 片肉桂含片可改善5 名 HIV 患者中 3 名的口腔念珠菌感染症状。

在一项针对60名肠道念珠菌感染患者的临床试验中,肉桂和藿香油胶囊解决了72%的感染,改善了28%.

肉桂油、迷迭香油和百里香油的组合减少了Penicillium expansumBotrytis cinerea真菌的生长。

 抗 病 毒 性 

肉桂醛可阻止流感病毒(流感 (A/PR/8))的生长并提高大鼠的存活率

在一项细胞研究中,源自肉桂的 IND02(一种原花青素 A 型分子)可阻止丙型肝炎病毒细胞进入,因此可能是治疗丙型肝炎和肝病的有效疗法。

在另一项细胞研究中,肉桂提取物阻止了另一种类型的流感病毒 (H7N3) 进入细胞。

 副 作 用 

肉桂提取物可能引起恶心,胃疼痛,和便秘。

★ 小   结  ★

肉桂只在临床试验中对念珠菌病进行了测试,其中一个非常小。需要在更大的人群中进行更多的临床试验,才能确定肉桂是否对治疗念珠菌感染有任何作用。

07 姜 黄

姜黄( Curcuma longa )常用于印度美食,它不仅以其风味而闻名,而且还以其众多的健康益处而闻名。

 作用机理 

姜黄素是姜黄中活性最强的化合物。在试管中,它阻断了引起尿路感染的细菌生物膜,如大肠杆菌、铜绿假单胞菌、奇异变形杆菌Proteus mirabilis和粘质沙雷氏菌Proteus mirabilis

姜黄素还会干扰细菌细胞间通讯(群体感应)并阻止重要化合物(pyocyanin和酰基高丝氨酸内酯)的产生。

姜黄素还会破坏真菌中参与存活的蛋白质(ATP 酶活性、麦角甾醇和蛋白酶)的活性。

姜黄素抑制丙型肝炎病毒的复制(通过PI3K /Ak 途径)。

 抗 细 菌 性 

经过 7 周的治疗,姜黄素摄入量(30 毫克,2 次/天)仅治愈了 25 名幽门螺杆菌患者中的 3 名。但 2 个月后,其余患者的症状有所改善(临床试验)。

在大鼠和小鼠中,姜黄素的摄入减少了由幽门螺杆菌引起的胃部炎症

姜黄素可预防小鼠创伤弧菌引起的血液中毒。

当与抗生素联合使用时,姜黄素可减轻小鼠肺炎(肺炎克雷伯菌感染)。

 抗 真 菌 性 

姜黄素通过破坏存活蛋白来杀死念珠菌。

 抗 病 毒 性 

姜黄素抑制HIV病毒,丙型肝炎病毒,流感病毒A和流感肺炎。

★ 小   结  

一项小型临床试验的适度结果显然不足以支持使用姜黄治疗幽门螺杆菌感染。需要进一步的临床研究。

接下来介绍的也是天然抗生素,但没有临床证据支持其对抗感染,是对现有动物和细胞研究的总结,对进一步的研究工作具有指导意义。

08 辣 椒

辣椒的多种变型椒(Capsicum annuum),如红椒,辣椒粉,墨西哥辣椒等,具有抗菌性能的影响。

 作用机理 

辣椒素是辣椒中的主要活性化合物,使辣椒具有辣味,可通过降低胃部 pH 值来防止细菌感染。

此外,咖啡酸、槲皮素和山奈酚使细菌细胞的外层(膜)变硬,从而杀死它们。

辣椒中的一种化合物 ( CAY-1 ) 通过破坏细胞外层(增加细胞膜渗透性)来杀死真菌。

 抗 细 菌 性 

辣椒素限制了金黄色葡萄球菌α-毒素的产生并预防了小鼠的肺炎。

辣椒素可阻止细菌(霍乱弧菌)毒素的产生,并防止细菌(化脓性链球菌和金黄色葡萄球菌)在试管中侵入细胞。

 抗 真 菌 性 

CAY-1在试管中对许多真菌有效,如白色念珠菌、曲霉、小孢子菌等。其中一些真菌会引起皮肤病,例如脚气和癣。

 副 作 用 

适量的辣椒素被认为是安全的,但可能会引起胃部刺激。

药物相互作用

使用辣椒素可能会增加服用治疗高血压药物(ACE抑制剂)的患者出现咳嗽的风险。

★ 小   结  ★

辣椒限制限制了金黄色葡萄球菌α-毒素,霍乱弧菌毒素的产生,对引起脚气和癣的许多真菌有效,需要更多的临床研究。

09 姜

生姜是一种源自植物生姜根的香料。它常用于烹饪许多亚洲、阿育吠陀和中东美食。它以其许多治疗特性而闻名。

 作用机理 

生姜含有姜辣素、姜酚、姜油酮、萜类化合物、黄酮类化合物和其他具有抗菌和抗生物膜特性的化合物。姜酚和姜二醇是主要的抗真菌成分。

 抗 细 菌 性 

生姜在试管中对许多细菌菌株有效,其中一些是葡萄球菌、芽孢杆菌、沙门氏菌、大肠杆菌、铜绿假单胞菌、肺炎克雷伯菌、幽门螺杆菌等。

生姜提取物减少了胃中压力引起的损伤并抑制了胃酸的产生,从而限制了小鼠体内幽门螺杆菌的生长。

在一项细胞研究中,姜化合物杀死了这三种导致牙龈疾病的菌,分别是:牙龈卟啉单胞菌、牙髓卟啉单胞菌中间普氏菌

 抗 真 菌 性 

生姜对试管中的几种真菌菌株有效,包括导致皮肤病(如足癣)和食物腐败的真菌菌株:镰刀菌、曲霉属、白色念珠菌、酿酒酵母、石膏小孢子菌等。

 抗 病 毒 性 

新鲜生姜可防止人类呼吸道合胞病毒 (HRSV) 附着在人体细胞上,并阻止气道中斑块的形成。

此外,姜提取物抑制疱疹病毒(单纯型1和2)。

 副 作 用 

姜看起来几乎没有副作用。

药物相互作用

生姜中的一种活性成分(姜酚)会阻断一种分解药物的酶(细胞色素 p450)的活性,这可能会增加药物的作用。

  小   结  

姜对导致肠胃疾病,口腔疾病的细菌菌株有效,对导致皮肤病(如足癣)和食物腐败的真菌菌株有效,防止人类呼吸道合胞病毒附着,抑制孢疹病毒。也需要更多临床研究。

10 丁 香

丁香(Eugenia caryophyllata)以其抗氧化、抗菌、抗真菌和抗病毒特性而闻名。

 作用机理 

丁香会破坏细菌细胞的细胞和外层(膜)限制其生长以及 DNA 和关键蛋白质的产生。

 抗 细 菌 性 

丁香酚是丁香中最重要和最有效的成分,对试管中的空肠弯曲杆菌、大肠杆菌、单核细胞增生李斯特菌和肠沙门氏菌有效。

丁香阻止了许多细菌菌株的生长,包括金黄色葡萄球菌和大肠杆菌。它还可以杀死牙龈疾病患者唾液样本中的细菌。

此外,丁香油和肉桂油可抑制大肠杆菌、小肠结肠炎耶尔森氏菌、铜绿假单胞菌、猪霍乱沙门氏菌、金黄色葡萄球菌、单核细胞增生李斯特菌、蜡样芽孢杆菌和粪肠球菌的生长。

丁香、牛至和肉桂油的组合抑制鲍氏不动杆菌、鲍曼不动杆菌 RCH、肺炎克雷伯菌、大肠杆菌和铜绿假单胞菌的生长。

 抗 真 菌 性 

口服丁香提取物可防止口腔白色念珠菌的生长并减轻大鼠的感染症状。

丁香的主要成分丁香酚可对抗多种念珠菌属,可用于治疗口腔念珠菌感染(口腔念珠菌病)以及假牙使用引起的炎症和酸痛(假牙口炎)。

 抗 病 毒 性 

研究表明,丁香油可能有效对抗:

单纯疱疹病毒、丙型肝炎。

  小   结  

丁香对口腔疾病患者的许多菌株有效,需要更多的临床研究。

11 百里香

百里香(Thymus vulgaris)是地中海美食中使用的一种香料,也因其药用特性而闻名。

 作用机理 

百里香提取物和精油可阻断细菌的群体感应,如大肠杆菌和铜绿假单胞菌

 抗 细 菌 性 

百里香提取物和精油的抑制细菌的许多菌株,包括大肠杆菌,沙门氏菌属,假单胞菌属(荧光假单胞菌和铜绿假单胞菌),粪肠球菌等。

 抗 真 菌 性 

百里香油与迷迭香和肉桂油一起减少了Penicillium expansumBotrytis cinerea真菌的生长。

百里香、墨西哥牛至和芥子油可抑制单核细胞增生李斯特菌、金黄色葡萄球菌肠炎沙门氏菌的生长。

 抗 病 毒 性 

百里香抑制以下病毒:

疱疹病毒(单纯型 1, 2) 

12 迷迭香

迷迭香( Rosmarinus officinalis L. )是一种广泛使用的草药,以其抗氧化、抗炎、抗菌、抗真菌和抗病毒特性而闻名。

 作用机理 

迷迭香包含化合物(酚衍生物和二萜烯)等1,8-桉树脑,α蒎烯,莰烯,α萜品醇,和冰片,即具有抗氧化,抗微生物剂,抗癌作用。

迷迭香提取物和精油阻断细菌的群体感应,如大肠杆菌和铜绿假单胞菌。

 抗 细 菌 性 

迷迭香提取物有效地降低许多细菌菌株等的生长,如沙门氏菌,金黄色葡萄球菌,肺炎克雷伯氏菌,大肠杆菌,铜绿假单胞菌等。

 抗 真 菌 性 

迷迭香油与肉桂油和百里香油一起阻止了Penicillium expansumBotrytis cinerea真菌的生长。

 抗 病 毒 性 

迷迭香提取物鼠尾草酚(一种酚类二萜)具有抗 HIV 的抗病毒特性。

13 柠檬草

柠檬草(Cymbopogon citratus)以其抗炎、抗氧化、抗菌和抗真菌特性而闻名。它被广泛用于治疗和芳香目的。

 作用机理 

柠檬醛α和柠檬醛 β是柠檬草油的主要成分,可阻止不同种类细菌(革兰氏阳性和革兰氏阴性菌)的生长。

 抗 细 菌 性 

在试管中,柠檬草提取物可以有效减少金黄色葡萄球菌、沙门氏菌、大肠杆菌、铜绿假单胞菌和许多其他细菌的生长。

 抗 真 菌 性 

柠檬草提取物减少了白色念珠菌、曲霉、石膏小孢子菌和多种青霉菌的生长。

 抗 病 毒 性 

柠檬草精油降低了一种蛋白质(HIV-1 Tat蛋白)的功能,从而减少了HIV病毒的复制。

14 没 药

没药(Commiphora molmol)在古埃及被用于制作木乃伊。现在,没药被用于治疗伤病和感染,因为它具有抗细菌和抗真菌特性。

作用机理 

樟脑、冰片、芳樟醇和α-萜品醇是没药精油的主要成分,具有抗菌特性。

没药可防止生物膜的形成。

 抗 细 菌 性 

在试管,没药抑制细菌的生长,如金黄色葡萄球菌,大肠杆菌,沙门菌,铜绿假单胞菌,肺炎克雷伯氏菌。

 抗 真 菌 性 

没药提取物对白色念珠菌、黑曲霉和青霉菌有效。

 副 作 用 

据报道,没药引起皮肤过敏反应。此外,还报告了腹泻、鼻子刺激和心率变化等可能的副作用。

15 橄榄叶提取物

橄榄叶提取物仅攻击病原体而对人体共生的肠道细菌无害,这是其超越人造抗生素的一大优点,且广泛用于保健品和化妆品。

 作用机理 

橄榄叶提取物的抗菌活性是由于其多酚。

 抗 细 菌 性 

橄榄叶提取物抑制了三种食源性病原体(单核细胞增生李斯特菌、大肠杆菌和肠炎沙门氏菌)的生长。抑制了单核增生乳杆菌肠炎链球菌的生物膜,抑制了单核增生乳杆菌的运动(细胞研究)。

 抗 真 菌 性 

叶子的甲醇提取物抑制酵母菌株(白色念珠菌和酿酒酵母)。

 副 作 用 

橄榄叶提取物传统上已在多种培养物中以多种不同方式制备和使用。

在大鼠身上评估了橄榄叶提取物的毒性,并认为是安全的。需要进行人体研究来验证这一点。

■ 目前还缺乏支持这些天然抗生素益处的人体试验,支持它们安全性的研究也有限。在某些情况下,临床试验的结果好坏参半。还需要进一步的临床试验来证实其对人类的益处。

■  如有慢性病,应该遵循原有的治疗计划,而不是直接用来代替药物。或者与医生讨论这些是否可以作为补充方法。

附录:如何使用天然抗生素?

* 以下不作为临床验方使用,仅供参考

足部或指甲真菌感染

将几茶匙牛至油放入一桶水中,然后把脚浸泡。也可以将一滴牛至油与一茶匙椰子油或冷榨橄榄油混合来稀释油,涂抹在指甲或皮肤上。

鼻窦感染

在一大锅热气腾腾的水中滴几滴牛至油,吸入蒸汽(注意不要太热)。或者使用洗鼻壶(仅使用一小滴),感到有点闷之后结束,效果很好。

口腔感染(如鹅口疮)

用一茶匙冷压椰子油稀释一滴牛至油。漱口几分钟,然后冲洗干净。每天重复3-4次。

皮肤感染

用麦卡卢蜂蜜轻拍患处,并在患处涂抹泡沫,用纱布包上,或者用创可贴贴上。

也可以将1汤匙冷榨橄榄油和1瓣捣碎的大蒜混合。将大蒜放入油中,静置30分钟,然后过滤。如果你想加热的话,可以把它放在温水里(不是热水)。然后滴在感染的地方。

也可以用几滴高品质锡兰肉桂油。把它和麦卢卡蜂蜜混合在一起,然后把它涂抹在感染部位。这种方法非常有效,因为它是两种不同的天然抗生素的组合。

耳部感染

根据 Natasha Campbell-McBride MD 博士的说法,可以用上述注入大蒜油来治疗耳部感染。取油,稍微加热,每小时滴几滴在受影响的耳朵中。这也将有助于松动耳垢堆积。

感冒——增强免疫力

如果你或者周围人最近感冒了,可以每天服用1-2杯麦卡卢蜂蜜茶。可以帮助你预防或缩短病情持续时间。麦卡卢蜂蜜有点贵,不建议长时间每天都吃它,免疫力差时吃点。

压碎 1 瓣生大蒜,压碎比咀嚼要好(减少口臭),吞下大蒜,每天服用一次。

还可以将高质量的有机锡兰肉桂粉与麦卢卡蜂蜜或普通的有机生蜂蜜混合,每天两次。预防感冒,或显著缩短感冒的时间。

生姜可以缓解流感带来的恶心。比较糙吃不下的话,可以和别的(如蜂蜜,肉桂等)结合泡一泡。

主要参考文献:

Leng BF, Qiu JZ, Dai XH, Dong J, Wang JF, Luo MJ, Li HE, Niu XD, Zhang Y, Ai YX, Deng XM. Allicin reduces the production of α-toxin by Staphylococcus aureus. Molecules. 2011 Sep 15;16(9):7958-68.

Lu X, Rasco BA, Jabal JM, Aston DE, Lin M, Konkel ME. Investigating antibacterial effects of garlic (Allium sativum) concentrate and garlic-derived organosulfur compounds on Campylobacter jejuni by using Fourier transform infrared spectroscopy, Raman spectroscopy, and electron microscopy. Appl Environ Microbiol. 2011 Aug;77(15):5257-69.

Watson CJ, Grando D, Fairley CK, Chondros P, Garland SM, Myers SP, Pirotta M. The effects of oral garlic on vaginal candida colony counts: a randomised placebo controlled double-blind trial. BJOG. 2014 Mar;121(4):498-506

Salgueiro LR, Cavaleiro C, Pinto E, Pina-Vaz C, Rodrigues AG, Palmeira A, Tavares C, Costa-de-Oliveira S, Gonçalves MJ, Martinez-de-Oliveira J. Chemical composition and antifungal activity of the essential oil of Origanum virens on Candida species. Planta Med. 2003 Sep;69(9):871-4.

Valcourt C, Saulnier P, Umerska A, Zanelli MP, Montagu A, Rossines E, Joly-Guillou ML. Synergistic interactions between doxycycline and terpenic components of essential oils encapsulated within lipid nanocapsules against gram negative bacteria. Int J Pharm. 2016 Feb 10;498(1-2):23-31.

Foster BC, Vandenhoek S, Hana J, Krantis A, Akhtar MH, Bryan M, Budzinski JW, Ramputh A, Arnason JT. In vitro inhibition of human cytochrome P450-mediated metabolism of marker substrates by natural products. Phytomedicine. 2003 May;10(4):334-42.

Manayi A, Vazirian M, Saeidnia S. Echinacea purpurea: Pharmacology, phytochemistry and analysis methods. Pharmacogn Rev. 2015;9(17):63-72. doi:10.4103/0973-7847.156353

Carlos Tello, Jonathan Ritter, Puya Yazdi, 15 Natural Antibiotics and Side Effects, 2020

Mavric E, Wittmann S, Barth G, Henle T. Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res. 2008 Apr;52(4):483-9. 

Prabuseenivasan S, Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant essential oils. BMC Complement Altern Med. 2006 Nov 30;6:39. doi: 10.1186/1472-6882-6-39. PMID: 17134518; PMCID: PMC1693916.

Packiavathy IA, Priya S, Pandian SK, Ravi AV. Inhibition of biofilm development of uropathogens by curcumin – an anti-quorum sensing agent from Curcuma longa. Food Chem. 2014 Apr 1;148:453-60. doi: 10.1016/j.foodchem.2012.08.002. Epub 2012 Aug 10. PMID: 24262582.

Renault S, De Lucca AJ, Boue S, Bland JM, Vigo CB, Selitrennikoff CP. CAY-1, a novel antifungal compound from cayenne pepper. Med Mycol. 2003 Feb;41(1):75-81. doi: 10.1080/mmy.41.1.75.82. PMID: 12627807.

Aghazadeh M, Zahedi Bialvaei A, Aghazadeh M, et al. Survey of the Antibiofilm and Antimicrobial Effects of Zingiber officinale (in Vitro Study). Jundishapur J Microbiol. 2016;9(2):e30167.

Cameron Hooper, The Top 7 Most Effective Natural Antibiotics and How to Use Them, 2017,5

Chaieb K, Hajlaoui H, Zmantar T, Kahla-Nakbi AB, Rouabhia M, Mahdouani K, Bakhrouf A. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother Res. 2007 Jun;21(6):501-6.

Vattem DA, Mihalik K, Crixell SH, McLean RJ. Dietary phytochemicals as quorum sensing inhibitors. Fitoterapia. 2007 Jun;78(4):302-10. doi: 10.1016/j.fitote.2007.03.009. Epub 2007 Apr 11. PMID: 17499938.

Nikkhah M, Hashemi M, Habibi Najafi MB, Farhoosh R. Synergistic effects of some essential oils against fungal spoilage on pear fruit. Int J Food Microbiol. 2017 Sep 18;257:285-294. doi: 10.1016/j.ijfoodmicro.2017.06.021. Epub 2017 Jun 24. PMID: 28763743.

Mothana RA, Al-Rehaily AJ, Schultze W. Chemical analysis and biological activity of the essential oils of two endemic Soqotri Commiphora species. Molecules. 2010 Feb 1;15(2):689-98. doi: 10.3390/molecules15020689. PMID: 20335939; PMCID: PMC6263184.

Liu Y, McKeever LC, Malik NS. Assessment of the Antimicrobial Activity of Olive Leaf Extract Against Foodborne Bacterial Pathogens. Front Microbiol. 2017;8:113. Published 2017 Feb 2. doi:10.3389/fmicb.2017.00113

心血管疾病监测治疗新靶点?

谷禾健康

心血管疾病(CVD)已成为主要的健康问题,是导致发病率和死亡率高的主要原因,2型糖尿病(T2DM)患者发生CVD和重大心血管不良事件(MACE:心衰梗死、中风、死亡)风险更高,且预后较差。传统的CVD风险指标以及T2DM的血糖控制都不能很好地预测T2DM患者发生CVD的风险。

肠道菌群最近被认为是一种新型的内分泌器官,它通过产生生物活性代谢产物,在调节宿主的心脏代谢和肾脏功能中发挥关键作用。

肠道并不是第一个被用来研究心血管疾病病理生理学的器官。它不仅是处理食物消化吸收的器官,而且是体内最大的具有免疫活性的器官。

最近的研究表明,肠道菌群会产生并释放许多谢产物和毒素,其中一些代谢产物和毒素会吸收到宿主的体循环中,作为微生物影响宿主的媒介。

我们整理汇总了这篇综述调查来自数项临床和实验研究的证据,这些证据表明肠道微生物群来源的毒素CVD之间存在关联,包括脂多糖LPS氧化三甲胺TMAO苯乙酰谷氨酰胺PAGln。目前已经正在进行一些临床研究,旨在探索降低这些毒素水平以抑制心血管事件的有效性。

了解这些菌群相关代谢物是如何产生并如何影响心血管疾病有助于我们了解可能的风险和找到更好的生活方式来预防CVD。

缩略词:

01 脂多糖LPS

LPS的结构和特点

LPS,也称为内毒素,是革兰氏阴性细菌外膜的组成部分,主要存在于人体的肠道和口腔中。LPS的基本化学结构由亲水区和糖部分结合到疏水区组成,称为脂质A(下图A)。

LPS的亲水区域由内核和外部核以及O抗原(物种特异性重复寡糖亚基)组成,该区域对LPS的促炎活性影响最小(下图A)。

脂多糖(LPS)和脂质A的结构

Yamashita T,et al., Toxins,2021

疏水区脂质A在各种革兰氏阴性细菌中在结构上是保守的,由磷酸化的二葡萄糖胺主链组成,该主链具有4至7条相连的酰基链(上图B)。脂质A是Toll样受体4(TLR4)的配体和LPS的最关键“毒素”部分,它激活先天免疫系统,包括单核细胞和巨噬细胞,并引起宿主的炎症反应

宿主血液中的 LPS 是从哪里来的?

——从肠道菌群中来

LPS是革兰氏阴性细菌外膜的主要成分,因此肠道微生物群可能是血液LPS的主要来源。人类胃肠道中存在数百万亿细菌,实际上,粪便LPS水平通常反映了肠道菌群衍生的LPS量,这个量因人的菌群构成和总量而异。

此外肠道通透性的提高增强肠道菌群来源的LPS从肠道到血液的渗透。高脂饮食增加肠道的通透性。

Akkermansia菌可以加强肠道的紧密连接并防止代谢性内毒素血症,此外肠道菌群产生的短链脂肪酸可以保护肠屏障功能。

——从食物中来

除了肠道菌群以外,食物也是LPS的天然来源,因为食物和水总是含有少量LPS。饮食模式反映了血液中LPS的水平。

具体来说,选择健康的饮食食物(包括鱼,新鲜蔬菜和水果)可能会带来积极的健康结果,因为它们有助于减少内毒素血症。

02 LPS与CVD的联系

CVD与几种传统的危险因素有关,例如高血压,血脂异常,糖尿病,吸烟和肥胖。

炎性过程已知在心血管病的发展中扮演至关重要的角色,而LPS是一种众所周知的炎症物质。LPS被认为是包括CVDs在内的炎性疾病的一种毒素,并参与CVDs发病和进展的病理生理过程。

由于LPS刺激TLR4诱导释放关键的促炎性细胞因子,而这些因子是激活有效免疫反应所必需的,大量的流行病学证据表明,内毒素血症的血液中LPS处于高水平,是动脉粥样硬化的重要危险因素,并且是LPS与动脉粥样硬化疾病之间联系的纽带。

不同的菌群,其LPS结构不同

虽然肠道菌群可以是粪便LPS的主要来源,但不同的菌群构成其LPS的炎症效应是不同的。LPS的脂质A部分的结构在不同菌群之间有所不同(上一小节图B)。这些结构差异可能是决定LPS活性的主要因素。

例如,已知拟杆菌属具有四酰基和五酰基酰化的脂质A部分,而大肠杆菌具有六酰化类脂A部分。通常,四和五酰化脂质A部分相比六酰化类脂A部分会减少TLR4反应。这表明如拟杆菌的LPS其诱导的促炎性细胞因子生成要远低于大肠杆菌的LPS。

因此肠道细菌组成和这些细菌所拥有的脂质A部分的类型可能是影响肠道微生物LPS与CVD之间关联的重要因素。

越来越多的证据表明,全身性内毒素血症和肠道菌群衍生LPS参与心血管病和许多其它流行疾病的发作和进展,如炎性肠疾病,肥胖和相关代谢性疾病,和非酒精性脂肪性肝炎。

03 三甲胺N-氧化物(TMAO)

2011年,Hazen博士和他的同事使用代谢组学方法在动脉粥样硬化研究中取得了显著发现,并揭示了肠道衍生的代谢产物TMAO是心血管疾病大型临床队列中心血管事件的独立预测因子

TMAO是心血管疾病的危险因素

TMAO在伴有冠状动脉疾病、血栓形成、慢性肾病和心力衰竭的CVD患者中升高,并与不良心血管事件和全因死亡率相关。

据报道,TMAO水平升高与慢性肾病患者的肾功能程度全身炎症增加密切相关,而TMAO可作为该组严重慢性肾病患者死亡率的独立预测因子。可以合理地得出结论,TMAO是肠道菌群来源的尿毒症或心血管毒素,可导致全身性炎症

TMAO的产生

Brown J M, et al., Nature Reviews Microbiology, 2018

磷脂酰胆碱是一种在食品中发现的饮食成分,例如奶酪,蛋黄,肉和贝类,在肠道中被转化为胆碱,随后利用肠道微生物酶TMA裂解酶代谢为三甲胺(TMA)。TMA从肠道吸收进入门脉循环,然后通过肝脏中含黄素的单加氧酶(宿主酶)转化为TMAO 。

他们还证明,饮食中的左旋肉碱是红肉中的一种丰富营养物质,含有类似于胆碱的三甲胺结构,会促进血浆TMAO水平的升高并加速动脉粥样硬化。

 肠道微生物衍生的TMAO代谢

Yamashita T,et al., Toxins,2021

与TMA产生有关的三个关键的微生物功能基因簇是胆碱TMA裂解酶(cutC)及其激活物(cutD)(cutC/D),一种糖基自由基酶和一种糖基自由基激活蛋白;肉碱加氧酶A/B(cntA/B),是一种由两部分组成的Riesketype加氧酶/还原酶复合物;甜菜碱还原酶途径(上图A)。

04 苯乙酰谷氨酰胺(PAGln)

2020年Hazen团队通过代谢组学分析发现苯丙氨酸(Phe)与T2DM患者发生CVD风险升高有关,该物质被肠道微生物代谢生成苯乙酰谷氨酰胺(PAGln)。

对人群队列的代谢物检测发现,高PAGln水平MACE高风险显著相关,较高的PAGln水平仍是MACE风险的独立预测因子。

肠道菌群影响PAGln水平

通过检测基线(Pre-Abx)、7天广谱复合抗生素处理(Abx)和3周清除期菌群重塑(Post-Abx)的血浆PAGln水平,发现PAGln水平受肠道微生物影响

有研究表明,PAGln由苯乙酸(PAA)与谷氨酰胺(Gln)在肝酶的作用下形成,而PAA由苯丙氨酸(Phe)经菌群代谢产生。此外,PAA也可与甘氨酸(Gly)结合形成苯乙酰甘氨酸(PAGly)。

因此,在人类和小鼠体内,PAGln和PAGly都是通过肠道微生物群将饮食中的苯丙氨酸转化为PAA的元生物途径产生的,此时宿主与Gln(人类首选)或Gly(啮齿类动物首选)发生结合反应,分别产生PAGln和PAGly

Nemetet al. Cell , 2020

PAGln与血小板相互作用

根据人PAGln水平与血栓事件正相关性,提示PAGln可影响血小板功能和血管基质相互作用。研究结果显示,PAGln加速了胶原依赖性血小板粘附和扩散速度,并呈现剂量依赖性,表明PAGln可能与血小板直接相互作用,促进胞质内Ca2+浓度([Ca2+]i)呈现依赖性升高,并进行了相关验证。此外,在PAGly实验中也观察到类似结果。

因此,肠道菌群相关代谢产物PAGln和PAGly显著影响血小板功能,增强血小板与胶原基质的粘附,以及血小板刺激依赖性[Ca2+]i升高和对激动剂的聚集反应。

降低血栓形成

有研究报道Phe主要由生孢梭菌(Clostridium sporogenes)代谢为PAA(氧化途径)和苯丙酸(PPA)(还原途径),随后分别与Gln或Gly缩合形成PAGln或PAGly。其中参与反应的酶主要由porA或fldH基因编码。基因porA主要影响PAA产生,而fldH主要调节PPA产生,且敲除fldH会增加PAA水平继而影响PAGly水平从而显著降低血栓形成。

PAGln通过G蛋白偶联受体和ADRs介导细胞反应

Nemetet al. Cell , 2020

研究人员发现PAGln与儿茶酚胺结构相似(上图E),暗示PAGln通过肾上腺素能受体(ADRs)发挥作用。遗传和药理学方法的功能丧失和功能获得研究证实,PAGln可通过G蛋白偶联受体(包括α2A,α2B和β2-ADRs)介导细胞反应。而β受体阻滞剂(卡维地洛)可显著降低PAGln诱导的高血栓风险。

05 结 语

微生物代谢产物可以调节宿主的生理和病理生理过程,这一发现开启了多种可能性,特别是证明了许多微生物途径可以作为抑制心血管病的治疗靶点。

LPS和TMAO可用于开发有效的治疗策略,然而目前还不能证明这些毒素水平是如何在宿主体内被确定和调节的。因此,需要进一步研究阐明肠道微生物源毒素与心血管疾病之间的因果关系,进一步探索肠道微生物及其代谢产物,包括毒素之间的关系,以确定心血管疾病治疗干预的最佳方法及患者的预后。

相关阅读:

最新研究进展 | 肠道微生物群在冠心病中的作用

认识肠道微生物及其与高血压的关系

肠道菌群 —— 中风的关键参与者

主要参考文献:

Brown J M, Hazen S L. Microbial modulation of cardiovascular disease[J]. Nature Reviews Microbiology, 2018, 16(3): 171.

Yoshida, N.; Yamashita, T.; Kishino, S.; Watanabe, H.; Sasaki, K.; Sasaki, D.; Tabata, T.; Sugiyama, Y.; Kitamura, N.; Saito, Y.; et al. A possible beneficial effect of Bacteroides on faecal lipopolysaccharide activity and cardiovascular diseases. Sci. Rep. 2020, 10, 13009

Nemet et al. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. 2020, Cell 180, 862–877. 

Yamashita T, Yoshida N, Emoto T, et al. Two Gut Microbiota-Derived Toxins Are Closely Associated with Cardiovascular Diseases: A Review[J]. Toxins, 2021, 13(5): 297.

Cui, X.; Ye, L.; Li, J.; Jin, L.; Wang, W.; Li, S.; Bao, M.; Wu, S.; Li, L.; Geng, B.; et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci. Rep. 2018, 8, 635

Guo, C.J., Allen, B.M., Hiam, K.J., Dodd, D., Van Treuren, W., Higginbottom, S., Nagashima, K., Fischer, C.R., Sonnenburg, J.L., Spitzer, M.H., and Fisch-bach, M.A. (2019). Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science 366, eaav1282

铁—通过肠道菌群影响肥胖患者的非酒精性脂肪肝

谷禾健康

Science|180种野生动物肠道菌群测序结果有哪些信息值得我们关注

谷禾健康

导语

微生物在在地球上无处不在,适应了几乎所有可用的生态栖息。 微生物在不同物种和个体之间差异性很大,存在着广泛的微生物多样性

野生动物之所以能够耐受病原菌的感染和有毒食物的威胁以及抵御多种疾病,可能与其体内或体表生存的微生物密切关联。然而,与已被广泛研究的人类微生物群相比,野生动物的微生物群受到的关注较少

当宿主有着共同的饮食或共同祖先,尤其是哺乳动物,通常肠道菌群构成也更为相似,不过这种相关性在鱼类、两栖类、鸟类和非脊椎动物中较弱。在许多情况下,肠道微生物都参与宿主的关键生理过程,包括代谢特殊的饮食化合物。

近日,以色列魏茨曼科学研究院Eran Segal团队采用一致的方法从全球四大洲采集了406份动物粪便样品,包括121份养殖样品和285份野生样品。共涉及184个动物物种,包括哺乳类、禽类、两栖类、硬骨鱼类等的物种。这些物种在分类单元、觅食/取食行为、地理分布、性状等方面具有较高的多样性

使用宏基因组学来分析这180多个物种的肠道菌群,使用从头基因组组装,构建并在功能上注释了5000多个基因组的数据库,其中包括1209种细菌,但是其中75%未知

在这项研究中组装的1209个基因组的最大似然比的系统发育树。

内有色环和外有色环分别表示细菌门和宿主类别。先前未描述的基因组进化枝为深红色。

该研究的贡献:

一,坚持野外采样。野外采样,尤其对于动物采样存在很多挑战,但是证据表明圈养动物会改变微生物组,而且,过往大量有关哺乳动物的研究大部分来来自于是圈养动物,包括大小鼠。这次大规模全球野外采样,可以扩大和了解动物宿主栖息微生物的机会。

二,要获得广泛的野生动物代表性,需要在全球不同的生态环境采样,并从具有不同特征和喂养方式的多种动物中取样。此外,该研究为每个物种手工制定了特质,包括饮食适应性,活动时间和社会结构,使我们能够系统地研究微生物群组成与宿主表型之间的关系。

三,为未知物种的大规模注释细菌基因组数据库,并确定了与这些动物的性状和分类相关的多种微生物模式,并强调了其潜力作为发现新的工业酶和治疗剂的主要未开发资源。

微生物的组成,多样性和功能含量与动物分类,饮食,活动,社会结构和寿命相关。动物微生物群系是生物功能的丰富来源,可能会对生物技术产生影响,包括抗生素,工业酶和免疫调节剂。

此外,野外动物表现出适应性,例如安全食用腐烂,感染病原体的肉类和有毒植物,可以产生强效毒素、生物发光以及各种疾病和微生物病原体具有特异性免疫力、再生能力并且在某些物种中具有极长的寿命。这些适应性中的某些,例如毒素产生和生物发光至少部分是由生活在动物体内/上的微生物共生体赋予的。该研究构建和功能注释从自然栖息地的野生动物中提取的微生物群的综合数据库可以对动物性状与其微生物群之间联系的进行全面了解。

例如,为了证明在动物微生物群中可以发现新的细菌功能,作者在实验中验证了细菌毒素——食用腐肉的欧亚兀鹫(Gyps fulvus)的MAG中发现的代谢蛋白酶。这些蛋白酶可用作抗菌化合物,具有抗菌活性潜在的应用包括对抗人类食物中毒

欧亚兀鹫(学名:Gyps fulvus):体长95-105厘米,尾长24-29 厘米,翼展240-280厘米,体重6-11千克。是一种大型的褐色鹫。栖息在海拔高达2,500米的范围内。主要以山羊、鹿和瞪羚等野生动物,以及人类养殖的绵羊、山羊、牛和马为食。靠灵敏的嗅觉来找寻腐烂的动物尸体,并常常为抢一块肉而争个不停。而且习惯把头伸进动物尸体的腹腔内,啄食内脏和肌肉。分布范围非常广泛,遍布欧洲、中东和北非,也分布于印度、喜马拉雅山脉。在地中海沿岸国家最常见。

这项研究的最大贡献是其丰富的、系统生成的数据集。很容易想象,微生物保护和新出现的抗生素耐药性等不同领域的突破是由这些亚基因组的发现推动的。在欧亚兀鹫微生物群中发现的蛋白酶证明了从野生动物微生物群中进行生物勘探的原理,尽管尚不清楚该案例研究是否应被视为例外或预期的发现。

新发现的食腐肉的欧亚兀鹫(Gyps fulvus)的肠道细菌中的毒素代谢蛋白酶可能在抵抗食物中毒方面有应用。

这项研究仅仅触及了可以用这个数据集检验的假设的表面。未来方向包括:

01  微生物群如何帮助动物降解有毒的植物化学物质。

02  抵御食物中的病原体。

03  从多种食物来源中提取营养的问题。

四,丰富了许多未知物种的细菌门,并发现某些细菌进化枝相对于同一门中的其他细菌具有独特的功能特性。动物种类和已发现的动物种类(共存细菌的特定簇)之间的细菌状况有所不同。动物中这种未被探索的微生物多样性与被充分研究的人类微生物组形成了对比,而人类微生物组在参考数据库中表现得更好。未描述的物种中的富集度最高的是疣状菌属(Verrucomicrobia),这是一个存在于水、土壤和人类肠道中的门,但培养物种相对较少。

确定了多种途径和直系同源物,这些途径和直系同源物在特定的动物性状中显着丰富,并表明功能性景观与这些性状相关。这些功能中的一些功能提示了野生生物微生物群的新角色和特性。绘制野生动物的微生物群落图也可能有助于野生微生物的保护工作。

五,重述了首次通过扩增子测序发现的结果,包括食草动物微生物组比食肉动物微生物更加多样化。这是一个比较重要的发现,是否说明植物性饮食可以提高微生物多样性?此外,不同动物群体的微生物组编码的遗传途径因宿主饮食、体型和其他特征而不同。

六,野生动物的微生物区系也是动物和人类病原体的天然库,如当前的COVID-19大流行一样,通过对野生生物微生物景观的广泛的基因组集合可以阐明其传播到人群中的时间和途径。

该研究值得注意的问题:

一,使用MAGs(宏基因组组装的基因组)限制了研究其中一些目标的拓展,即保护医学和生态上重要的细菌菌株。有些微生物物种将需要分析未组装的读取、培养或富集技术,而不是本研究中使用的全基因组测序。

二,即使是那些基因组被MAG组装捕获的细菌,这些组装体也倾向于排除“辅助”基因组,即在不同菌株间存在的基因。然而,这些基因往往在适应特定的宿主和环境中发挥作用。例如,抗菌素抗性、致病性和能量收集是经常由移动元件或其他辅助基因编码的性状。

三,Levin等人检测到的大多数非特征微生物在宿主体内的活动,以及它们是稳定地定殖在动物体内还是短暂地通过它们的胃肠道的问题仍然存在。在这个庞大的数据集上测试每个假设需要大量的计算、解释和实验验证

参考文献:

Levin D, Raab N, Pinto Y, et al. Diversity and functional landscapes in the microbiota of animals in the wild[J]. Science, 2021, 372(6539).

Coleman M. Diagnosing nutritional stress in the oceans[J]. Science, 2021, 372(6539): 239-240.

L.-X. Chen, K. Anantharaman, A. Shaiber, A. M. Eren, J. F. Banfield, Genome Res. 30, 315 (2020)

E. C. Lindsay, N. B. Metcalfe, M. S. Llewellyn, J. Anim. Ecol. 89, 2415 (2020)

新冠肺炎患者肠道菌群改变,相关的营养干预措施

谷禾健康

我们知道,SARS-CoV-2感染引起的新型冠状病毒肺炎COVID-19,最常见的症状是发烧呼吸道不适。也有胃肠道感染的报道,症状包括腹泻、恶心、呕吐、腹痛和食欲不振等。

胃肠道感染SARS-CoV-2或其他病毒后,部分患者可能发生胃肠道微生物群改变。此外,部分新冠肺炎患者可能会接受抗生素治疗,这也可能会扰乱胃肠道稳态。

本文就以下问题,对COVID-19,胃肠道疾病,程度菌群,营养干预之间的联系进行探讨。

腹泻患者粪便样本中病毒RNA阳性率更高?

COVID-19和胃肠道疾病有什么联系?

肠-肺轴在COVID-19的发展中发挥作用?

肠道菌群在其中扮演什么角色?

针对COVID-19不同严重程度的措施?

营养干预是否有效?如何干预?

……

01 COVID-19和胃肠道疾病

SARS-CoV-2在鼻咽清除后仍能在粪便中呈阳性,并可能继续具有传染性。

Alberca GGFet al., World J Gastroenterol. 2021

COVID-19最常见的胃肠道症状是腹泻、恶心、腹痛和食欲不振。

在病毒性胃肠道感染后,一些患者可能会出现胃肠道微生物群的改变,如变形菌增加拟杆菌减少

最近的一份报告确定了COVID-19住院患者肠道微生物群的改变,有益共生细菌减少条件致病菌增加。

肠道组织和粪便也可能是一个贮存器。最近研究表明,即使鼻咽和口咽拭子检测SARS-CoV-2RNA呈阴性,患者粪便样本中仍然有可能含有SARS-CoV-2RNA.

另有研究指出,腹泻患者的COVID-19症状持续时间延长,而腹泻患者的粪便样本中病毒RNA的阳性率更高

目前的假设是可能涉及肠道组织上的直接病毒感染和对该病毒的局部免疫反应。实际上,在粪便COVID-19患者中检测到SARS-CoV-2 RNA可能表明粪-口传播。

除了SARS-CoV-2对肠道免疫反应的影响外,COVID-19患者还可能发生细菌共感染和继发感染,也就是说必须使用抗生素。即使COVID-19患者没有细菌共感染,对其抗生素的使用也是在临床上常见的做法。这也可能会破坏胃肠道微生物组。

02 肠道菌群

微生物群受环境因素,食物,药物和感染的影响。根据人体的部位不同,每个微生物群具有独特的特性。许多因素会影响微生物组的组成,例如局部pH值,温度和养分

微生物几乎可以在人体的每个小生境中发现,但胃肠道是宿主与人体中微生物之间最大的界面。大约有1013-1014胃肠道中的微生物,其基因组含量比人类基因组中更大。

微生物与人类有共生关系。共生微生物对于人类健康,调节许多生理功能,物质降解,代谢产物的产生和免疫反应至关重要。

微生物能激活和刺激T辅助细胞(Th)1、Th2、Th17和T调节细胞(Treg)的分化,从而调节免疫应答。肠道菌群多样性低会增加对局部和肺部疾病的易感性

微生物组的环境处于不断调节中,受到外部微生物和其他非细菌化合物(例如肠道菌群中的食物和病毒)的调节。微生物群的突然变化会导致共生细菌的失衡和/或条件致病菌增加,增加对疾病的敏感性。

微生物群对于人类免疫系统的发展至关重要,并且可以影响局部和非局部免疫反应,例如肠-肺轴。肠道菌群的改变可以调节呼吸系统疾病的发展。在患有肠道功能障碍的患者,例如已确诊的肠道炎性疾病的患者或肥胖患者中,肠道菌群可能是发生严重COVID-19的次要危险因素。

此外,患有COVID-19的患者可能会出现胃肠道菌群失调,且产短链脂肪酸的细菌减少

03 肠道微生物群失调

肠道菌群的破坏可以触发与代谢功能障碍,肥胖症,癌症,和神经障碍相关的炎症事件。某些微生物的增加或减少可以增加对先天性免疫受体的刺激,例如核苷酸结合寡聚化域样受体和Toll样受体。该受体的刺激触发几个促炎症信号细胞因子和趋化因子的产生,它们调节适应性免疫系统,影响局部和全身免疫反应。

微生物群激活免疫细胞上的Toll样受体可在宿主体内产生低度全身性炎症,这与代谢和免疫反应的改变有关。微生物组的改变疾病的发展有关,例如肥胖,炎症性肠病和癌症。

因此,SARS-CoV-2胃肠道感染和肠道稳态的改变可能与疾病的发展有关,并影响对口服疫苗和药物的免疫应答以及病原体的免疫应答。

04 营养干预

一些研究强调了营养物质在调节对SARS-CoV-2或直接抗病毒和/或抗SARS-CoV-2特性的免疫应答中的潜在作用。

营养方面如肥胖,营养不良,和微量营养素缺乏已经假定作为严重COVID-19的危险因素。然而,人类微生物群的组成受到许多因素的影响,包括饮食成分。一些细菌可以发酵不可消化的碳水化合物(益生元),例如可溶性纤维,以产生短链脂肪酸(SCFA)。

短链脂肪酸

短链脂肪酸可以刺激共生细菌的生长和/或活性,并与健康有关。短链脂肪酸可以诱导肠屏障的调节降低氧化应激控制腹泻,并调节肠能动性,并且还诱导局部和全身抗炎作用。

短链脂肪酸可诱导抗炎细胞因子的释放,如IL-10,促进Th细胞和炎症性疾病的调节,包括炎症性肠病。

短链脂肪酸分为乙酸,丙酸和丁酸。所有短链脂肪酸都具有潜在的抗炎作用,降低前列腺素E2和炎症因子。

乙酸盐能抑制含有3个炎症小体的NLR家族pyrin结构域的激活;

丙酸盐能抑制组蛋白脱乙酰酶,减轻脂多糖引起的炎症。

丁酸盐具有抗癌和减少肺部炎症的作用。

总的来说,研究表明短链脂肪酸有直接抗炎作用调节微生物群在局部(肠道)和非局部炎症中具有潜在的抗炎作用

更多点此查看短链脂肪酸的作用

益生菌

对于胃肠微生物的调节,另一个干预是通过益生菌。益生菌是可以被摄入并与宿主产生有益相互作用的细菌。

一些研究调查对肠道菌群益生菌的作用,但有关它们移植物于共生微生物群的能力的结果相互矛盾。

然而,益生菌产生代谢物可影响共生微生物群,肠屏障,免疫系统。益生菌还可以帮助预防或治疗细菌和病毒感染。益生菌的使用可以提高感染流感病毒的小鼠的存活率。除流感病毒外,研究还显示出对呼吸道合胞病毒感染的有益保护作用。

益生菌在呼吸道病毒感染中的健康益处是由于细胞因子的产生和氧化应激的调节; 因此,它们可能是严重COVID-19期间促炎性细胞因子,趋化因子和氧化应激异常释放的辅助治疗

最常用的益生菌是乳杆菌,双歧杆菌和肠球菌。尽管有大量研究表明它们具有健康益处,但目前在益生菌菌株之间涉及理想剂量和菌株之间比较的知识尚存在差距。

高纤维饮食

高纤维饮食可以诱导有益菌的繁殖,比如乳酸杆菌属和双歧杆菌属在胃肠道。实际上,高纤维饮食可能增加免疫球蛋白A的生产和调节干扰素-γ和白细胞介素(IL)-10的分泌,这有助控制胃肠道感染

益生元

益生元可以通过一种称为交叉喂养的机制改变微生物群的组成,当益生元的发酵产物可以被另一种微生物作为底物使用。

益生元可以改变微生物群的另一种机制是通过改变pH值

发酵产物主要是酸,这可能会导致肠道pH降低,抑制酸敏感细菌(如拟杆菌)的生长并促进产生丁酸的细菌生长

05 COVID-19、肠道菌群、营养干预

病毒感染可以改变胃肠道微生物群。一份报告确认了COVID-19患者粪便样本中乳酸杆菌和双歧杆菌的减少。同样,必要或不必要使用抗生素会干扰COVID-19患者的微生物组。 

肠道微生物组的改变包括在SARS-CoV-2清除后的30天内,柔嫩梭菌群Faecalibacterium prausnitzii、Eubacterium rectale和双歧杆菌的减少

COVID-19中的微生物群失调可能与炎症反应有关,并且可能是COVID-19解决后的一个持久性问题,这表明营养干预可能在抑制炎症反应和重建COVID-19患者胃肠道稳态方面发挥作用。

低纤维饮食增加胃肠道感染的易感性

饮食和营养干预可以调节免疫反应,增加或抑制抗病毒反应。西式饮食(低纤维含量)可增加拟杆菌和减少厚壁菌,并与肥胖的发展有关,后者是严重COVID-19的危险因素

虽然有报告指出肥胖者粪便样本中的短链脂肪酸增加,但短链脂肪酸与控制食欲和增加能量消耗有关。

此外,非常低纤维的饮食可以降低肠粘液的产生,增加胃肠道感染的易感性

饮食的改变可以改变微生物群的组成。微生物群落处于不断变化之中,并且还受到食物消耗的季节性影响。事实上,减少纤维的消耗可以在短短的1天内改变微生物群,减少短链脂肪酸的产生。

高纤维饮食减少肺部炎症,促进抗炎反应

相反,高纤维饮食增加了肠道微生物群中的厚壁菌和放线菌,并增加了短链脂肪酸的产生,这有助于通过肠-肺轴减少肺部炎症,并通过IL-10的产生和Treg细胞促进局部和全身的抗炎反应

益生菌治疗减少呼吸机相关肺炎

摄入益生菌可能会稳定或改变胃肠道微生物组,特别是在微生物组受到干扰后,如抗生素使用后或胃肠道感染。

使用枯草芽孢杆菌Bacillus subtilis粪肠球菌Enterococcus faecalis的益生菌治疗已被证明可减少呼吸机相关肺炎

鼠李糖乳杆菌Lactobacillus rhamnosus治疗可减少机械通气患者的呼吸机相关性肺炎艰难梭菌相关性腹泻,使其成为重症监护病房辅助机械通气患者治疗的可能补充。

使用乳酸杆菌治疗可能特别重要,因为呼吸道感染可能导致乳酸菌减少,肠杆菌科增加和肠道IL-17炎症。

调节免疫应答

靶向IL-17被认为是治疗COVID-19的一种方法,因为与中度COVID-19患者相比,重度COVID-19患者的IL-17增加。

IL-17和产生IL-17的辅助性T细胞(Th17)、三型固有淋巴细胞、不变的自然杀伤细胞和γδT细胞参与了COVID-19的免疫应答。IL-17受体表达于许多不同细胞的表面,如中性粒细胞、嗜酸性粒细胞、上皮细胞、角质形成细胞和成纤维细胞。此外,IL-17可直接影响ACE2、SARS-CoV-2入口受体的表达

IL-17阻断剂的使用,如针对IL-17A和/或IL-17受体A的单克隆抗体,可能代表了COVID-19的一种可能的治疗选择。尽管如此,IL-17在对抗肺炎链球菌Pseudomonas aeruginosa铜绿假单胞菌Pseudomonas aeruginosa(呼吸道和肠道感染中常见的病原体)的免疫反应中是一种重要的细胞因子

继发性细菌感染可发生在SARS-CoV-2感染后的呼吸系统,尤其是有创机械通气患者。IL-17对肠道内稳态尤其重要。因此,抗IL-17治疗应考虑呼吸道和肠道细菌感染易感性增加的可能风险。

增加短链脂肪酸辅助治疗

COVID-19患者也可能出现细胞因子风暴综合征,这可能导致多器官衰竭,并导致死亡或长期后果。在这种情况下,益生菌或益生元治疗通过增加短链脂肪酸在呼吸道感染中的抗炎作用已经被证实。

摄入高发酵纤维饮食、益生菌、口服三丁酸甘油酯(丁酸的前药)或直接服用短链脂肪酸等药物均可增加短链脂肪酸的生产和健康效益。

在这种情况下,摄入益生元和/或益生菌可代表COVID-19患者的显著预防性干预和/或康复。

06 结 语

显然,SARS-CoV-2可以感染胃肠道并影响肠道免疫反应和肠道微生物组。但胃肠道的SARS-CoV-2感染以及COVID-19在胃肠道稳态中的长期后果仍需进一步研究。

目前,尚无针对COVID-19的特异性治疗方法,但已对通过调节免疫应答或通过肠道微生物群进行营养干预的影响进行了研究,这可能是对COVID-19的重要干预和/或恢复的手段。

相关阅读:

认识肠道微生物及其与高血压的关系

身体气味与菌群——病因和管理

你认识细菌吗?一文带你读懂了解它

参考文献

Zuo T, Liu Q, Zhang F, et al., Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut. 2021;70:276-284.

Yeoh YK, Zuo T,et al., Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut . 2021

Alberca GGF, Solis-Castro RL, Solis-Castro ME, Alberca RW. Coronavirus disease–2019 and the intestinal tract: An overview. World J Gastroenterol 2021; 27(13): 1255-1266

Vieira RS, Castoldi A, Basso PJ, et al., Butyrate Attenuates Lung Inflammation by Negatively Modulating Th9 Cells. Front Immunol. 2019;10.

Zhang N, Gong Y, Meng F et al., Comparative study on virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients. Sci China Life Sci. 2020

人体肠道菌群有助于治疗癌症,肠道菌群和免疫系统关系密切

客服