Tag Archive 链球菌

肠道细菌四大“门派”——拟杆菌门,厚壁菌门,变形菌门,放线菌门

谷禾健康

一般在肠道菌群健康检测报告中,会有主要菌属构成比例,类似下图:

图源:谷禾肠道菌群健康检测报告我们可以看到图中列举了拟杆菌门,厚壁菌门…等。很多小伙伴拿到报告之后,对于这些细菌门表示困惑。

这些细菌门都代表了什么意思?

某个细菌门比例高了会怎么样?

某个细菌门比例高,是好是坏?

是不是与某些疾病相关?

…….

实际上,这几大类门的丰度和构成比例变化与人类健康和疾病发生息息相关。

两个主要门类,拟杆菌门和厚壁菌门,构成人类肠道细菌的大部分。七岁以后,拟杆菌和厚壁菌之间的比例相对稳定,而它们比例紊乱可能会导致肥胖和糖尿病等代谢综合征。

本文,我们就给大家详细介绍一下这其中最常见的几大细菌门:

拟杆菌门、厚壁菌门、变形菌门、放线菌门。

为什么选这四大细菌门?

依据自然属性分类,人类肠道菌群已经鉴定出细菌的几十个门,包括:拟杆菌门、厚壁菌门、变形菌门、放线菌门、疣微球菌门、梭杆菌门、蓝藻菌门、螺旋体门等。 但是其中98%的肠道菌可以归属为前四类,拟杆菌门、厚壁菌门、变形菌门和放线菌门,大多数人这4个门的菌占据肠道细菌数量的99%。 了解这四大细菌门,可以说你对大部分人体内肠道菌群的有了一定的了解。

01 拟杆菌门 Bacteroidetes

▲ 拟杆菌 :革兰氏阴性菌

不形成孢子 厌氧菌 杆菌 ▲

它们具有外膜、肽聚糖层和细胞质膜。它们无氧呼吸的主要副产物是乙酸、异戊酸和琥珀酸。

△ 拟杆菌参与人体结肠中许多重要的代谢活动

包括碳水化合物的发酵、含氮物质的利用以及胆汁酸和其他类固醇的生物转化。大多数肠道细菌是糖酵解的,这意味着它们通过碳水化合物分子的水解获得碳和能量。

  • △ 多糖是拟杆菌的主要能量来源

据估计,只有约 2% 的单糖通过上消化道到达结肠。因此,单糖可能不是拟杆菌的主要能量来源。然而,来自植物纤维的多糖,如纤维素、木聚糖、阿拉伯半乳聚糖和果胶,以及植物淀粉,如直链淀粉和支链淀粉,在结肠中更为普遍。

多糖还被证明可以诱导来自拟杆菌的多种葡糖苷酶活性,包括负责海带多糖降解的 β-1,3-葡糖苷酶活性以及多种 α、β-1,4 和 α、β–1,6 木糖苷酶和葡糖苷酶活性。大部分拟杆菌成员蛋白质组包括水解这些多糖的蛋白质。

  •  拟杆菌是肠道生态系统中非常成功的竞争者

表现出相当大的营养灵活性和对宿主和肠道环境施加的压力做出反应的能力。很难说肠道拟杆菌是否对宿主产生负面或正面影响。拟杆菌能够通过预防可能定植和感染肠道的潜在病原体感染来使宿主受益。由但是,在短链脂肪酸存在下,弱酸性 pH 值会抑制生长。诸如脆弱拟杆菌之类的致病物种已经开发出逃避宿主免疫系统的策略。

  • △ 拟杆菌有好有坏

作为多糖降解联盟的成员,它们有助于从膳食纤维和淀粉中释放能量,它们很可能是丙酸盐的主要来源;然而,它们也参与了蛋白质分解过程中有毒产物的释放,这个群体的成员有一些可能有助于抑制炎症的活动,但他们也有可能促进炎症,有些是已知的机会性病原体。

将复杂的多糖转化为可用化合物的能力可能使拟杆菌比必须依赖其他能源的细菌更具竞争力。

此外,拟杆菌实际上会刺激肠道内壁产生岩藻糖基化聚糖。这种细菌还会刺激新生儿上皮的血管生成(血管的形成),从而增强人体对营养物质的吸收。因此,拟杆菌细菌与其宿主有着复杂且普遍有益的关系——只要它们保留在肠腔内。

  • △ 目前研究较充分的拟杆菌属,与饮食有关

目前,拟杆菌门中研究得最充分的,包括拟杆菌属拟杆菌属和普氏菌属以及卟啉单胞菌属。它们是专性或严格的革兰氏厌氧菌,它们的组成和代谢活动在很大程度上受饮食调节。拟杆菌与高脂肪和蛋白质的摄入量有关,而普雷沃氏菌与富含植物的饮食(高水平的复合碳水化合物和水果和蔬菜的摄入量)有关,因此,拟杆菌属和普雷沃氏菌属物种在人体内具有其特定的栖息地,因为它们大多数是拮抗的。

  • △ 影响食物的代谢

其活动在食物和饲料成分的分解和转化中起着重要作用。在人类结肠中,拟杆菌属被认为对植物和宿主来源的多糖的代谢做出了非常重要的贡献,而普氏菌属有助于瘤胃中植物材料的利用。这两个属在蛋白质代谢中都起着重要作用,并且可能也参与致癌物和异生物质的代谢。

在患有非酒精性脂肪性肝炎的人类中,微生物群组成中拟杆菌的比例较低,这与高脂肪饮食和 BMI 无关。

  • △ 拟杆菌属是最耐氧的厌氧菌之一

能够耐受大气中的氧气浓度长达 3 天。在腹内感染开始期间,氧耐受性被认为允许细菌在腹腔的含氧组织中存活,直到大肠杆菌和其他协同生物能够降低感染部位的氧化还原电位。

  • △ 当拟杆菌离开肠道,会导致多种感染和脓肿

这些感染和脓肿可能发生在全身,包括中枢神经系统、头部、颈部、胸部、腹部、骨盆、皮肤和软组织。组织。广泛接受的腹部感染模型如下:肠壁破裂,细菌菌群渗入腔内,需氧菌(感染中最活跃的部分)如大肠杆菌开始初步破坏组织并降低含氧菌的氧化还原电位(低氧化还原电位有利于厌氧菌生长),厌氧拟杆菌开始复制,然后拟杆菌主导感染。

除了腹泻和脓肿,已知拟杆菌与脑膜炎和分流感染病例有关,尤其是在儿童中。任何通常没有被拟杆菌定植的组织在接触到含有拟杆菌的粘液或其他材料时都有可能被感染。

此外,拟杆菌作为胃肠手术过程中的感染源是一个巨大的问题。因此,必须采取适当措施和有效的手术引流,以降低感染风险。

  • △ 主要的致病拟杆菌属物种是脆弱拟杆菌属

脆弱拟杆菌与B. distasonis、卵形双歧杆菌、B. thetaiotaomicron和B. vulgatus一起,在临床感染中发生得最多,它们几乎普遍对青霉素具有抗药性,主要是由于产生了 β-内酰胺酶。这些细菌普遍存在于胃肠道区域并且是大多数腹腔内感染的原因,例如直肠周围脓肿和褥疮溃疡。

当从结肠释放到血液中时,脆弱拟杆菌迅速繁殖,导致菌血症。 如果脆弱拟杆菌被引入到腹腔,可能导致腹膜炎,和/或腹部脓肿。

  • △ 与拟杆菌属相关的感染
  1. 泌尿生殖系统感染,包括产褥脓毒症
  2. 手术或腹部损伤后的阑尾炎和腹部感染和伤口感染
  3. 脑、肺和肝脓肿通常为混合菌感染
  4. 褥疮,通常与其他病原微生物
  5. B. melanogenicus导致文森特心绞痛的组织损伤和炎症。
  6. 腹内感染:80%以上由脆弱拟杆菌引起。
  7. 妇科感染:脆弱拟杆菌的多种微生物厌氧菌感染经常引起脓肿。
  8. 最常与脆弱拟杆菌相关的皮肤和软组织感染
  9. 呼吸道感染:包括非脆弱类杆菌在内的多种微生物感染。

以下为本门当中比较著名的种属及其所属的纲目

拟杆菌目 Bacteroidales

嗜细胞菌目 Cytophagales

黄杆菌目 Flavobacteriales

拟杆菌纲 Bacteroidia

黄杆菌属 Cytophagia

鞘氨醇杆菌 Sphingobacteriia

拟杆菌科 Bacteroidaceae

噬纤维菌科 Cytophagaceae

黄杆菌科 Flavobacteriaceae

普雷沃氏菌属 Prevotella

拟杆菌属 Bacteroides

红棕色单胞菌属 Porphyromonas

产黄菌属 Flavobacterium

金黄杆菌属 Chryseobacterium

普氏菌 Prevotella copri

普通拟杆菌 Bacteroides vulgatus

粪便拟杆菌 Bacteroides stercoris

单形拟杆菌 Bacteroides uniformis

平常拟杆菌 Bacteroides plebeius

脆弱拟杆菌 Bacteroides fragilis

类杆菌 Bacteroides xylanisolvens

多形拟杆菌 Bacteroides thetaiotaomicron

杜雷拟杆菌 Bacteroides dorei

迪氏副拟杆菌 Parabacteroides distasonis

粪拟杆菌 Bacteroides caccae

腐烂别样杆菌 Alistipes putredinis

芬氏拟杆菌 Bacteroides finegoldii

马赛拟杆菌 Bacteroides massiliensis

卵形拟杆菌 Bacteroides ovatus

粪副拟杆菌 Parabacteroides merdae

产酸拟杆菌 Bacteroides acidifaciens

粪普雷沃氏菌 Prevotella stercorea

内脏臭气杆菌 Odoribacter splanchnicus

埃格尔硫拟杆菌 Bacteroides eggerthii

肠拟杆菌 Bacteroides intestinalis

拟杆菌 Bacteroides coprophilus

产黑普雷沃氏菌 Prevotella melaninogenica

约氏副拟杆菌 Parabacteroides johnsonii

二路拟杆菌 Prevotella bivia

芽孢杆菌 Alistipes indistinctus

中间普氏菌 Prevotella intermedia

变黑普雷沃氏菌 Prevotella nigrescens

牙龈二氧化碳嗜纤维菌 Capnocytophaga gingivalis

人体拟杆菌 Prevotella corporis

口普雷沃氏菌 Prevotella oris

齿龈拟杆菌 Prevotella oulorum

牙龈卟啉单胞菌 Porphyromonas gingivalis

栖牙拟杆菌 Prevotella denticola

短稳杆菌 Empedobacter brevis

纤维素类杆菌 Bacteroides cellulosilyticus

水生黄杆菌 Flavobacterium aquatile

谭氏普雷沃氏菌 Prevotella tannerae

萨氏拟杆菌 Bacteroides salanitronis

口腔普雷沃氏菌 Prevotella oralis

黄杆菌属 Flavobacterium sp

栖组织普雷沃氏菌 Prevotella histicola

02 厚壁菌门 Firmicutes

厚壁菌门(Firmicutes)是一最大的细菌群,多数为革兰氏阳性,表现为球状或者杆状,有细胞壁结构。

然而,一些例如菌 Megasphaera、Pectinatus、Selenomonas 和 Zymophilus,有一个多孔的假外膜,使它们革兰氏染色阴性。少数如柔膜菌纲(Mollicutes)(如支原体),缺乏细胞壁而不能被革兰氏方法染色,但也和其余的革兰氏阳性菌一样缺乏第二层细胞膜。

原本包括所有革兰氏阳性菌,但目前仅包括低G+C含量的革兰氏阳性菌,而高G+C含量的则被划入放线菌门(Actinobacteria)。

  •  厚壁菌门的许多成员都是有益菌

乳酸杆菌是一种常见于酸奶和其他发酵乳制品中的益生菌,属于这一门。这些微生物产生乙酸盐(另一种促进健康的短链脂肪酸)、乳酸盐和抗菌物质,可防止病原体干扰健康。

乳杆菌生产各种发酵产品:

布鲁氏乳杆菌 用于制作酸奶,而 嗜酸乳杆菌 在生产嗜酸乳杆菌中很重要。其他物种有助于生产泡菜、酸菜和青贮饲料。

除了乳酸杆菌外,厚壁菌门的其他有益成员也以产生丁酸盐而闻名,特别是粪杆菌、真杆菌、罗氏杆菌。

瘤胃球菌——“第三种肠型”

被称为“第三种肠型”的谷物爱好者,通常以瘤胃球菌为主,瘤胃球菌是厚壁菌门的成员。

肠型通常可以追溯到 长期的饮食习惯。瘤胃球菌微生物组类型的人倾向于摄入更多全谷物中的抗性淀粉和膳食纤维。

如果想增加肠道中厚壁菌的数量,那么应该多吃高纤维食物,如苹果,大蒜,大麦,燕麦,洋葱等。

  • △ 厚壁菌门下也有致病菌

许多厚壁菌门能够形成孢子,处于不活动、严重脱水和对环境压力具有高度抵抗力的休眠阶段。

注:“endospore”这个名字暗示了一种孢子或种子状形式,但它不是真正的孢子(即不是后代)。它是一种精简的休眠形式,细菌可以将自身还原成这种形式。这些内生孢子能够抵抗干燥并且可以在极端条件下存活。很多环境中都可找到内生孢子,一些著名的病原菌都能产生孢子。

——表皮葡萄球菌

表皮葡萄球菌是从人类皮肤中分离出来的最常见的细菌。它是非致病性的,所以没有人真正担心它。

但是金黄色葡萄球菌是通常与许多疾病有关,例如疖子、丘疹、肺炎、骨髓炎、脑膜炎和关节炎。

——链球菌

化脓性链球菌导致许多人类疾病。例如猩红热、风湿热和链球菌性咽炎。大约 50% 的严重喉咙痛病例是由化脓性链球菌引起的。化脓性链球菌也可引起脓疱病。

肺炎链球菌会导致肺炎球菌肺炎,如果不治疗,30%的病例可能会导致死亡。

  • △ 厚壁菌门下最大的菌属:梭菌

梭菌属厌氧菌。通常,它们生活在土壤中,由于有机物质的正常分解而在那里形成的厌氧栖息地的小块区域。

重要的固氮剂:Clostridium pasteurianum

重要的纤维素降解剂:

Clostridium cellobioparum 和 Clostridium thermocellum

有几个物种可能对人类致病,其中包括 导致肉毒杆菌中毒的肉毒梭菌和导致破伤风的破伤风梭菌。

然而,如果对其加以利用也可以对人类有利。肉毒杆菌毒素被分离出来时,可以控制剂量用作肌肉松弛剂,以帮助治疗患有多发性硬化症和帕金森病的人。

  •  分枝杆菌属包含许多对人类致病的物种

其中最主要是 结核分枝杆菌,引起结核病。

麻风分枝杆菌 引起汉森氏病(麻风病)。

其他致病菌包括牛分枝杆菌,它是奶牛的病原菌,可通过未经高温消毒的牛奶感染人类并引起结核病。

Mycobacterium avium,也会引起结核病,尤其是在艾滋病患者中。

堪萨斯分枝杆菌Mycobacterium kansasii 和 龟分枝杆菌Mycobacterium chelonae,也在人类中引起疾病。

光镜下痰中结核分枝杆菌

  • △ 厚壁菌门下其他特殊的菌

八叠球菌属Sporosarcina

Sporosarcina是独特的,因为它是一种球状细菌,而不是杆状细菌。

产叶绿素的菌

Heliobacillus,Heliobacterium,Heliophilum都是产生独特形式的细菌叶绿素的光养生物。

棒状杆菌

棒状杆菌是厚壁菌门中的明星菌之一。它包括许多对植物和动物具有致病性的物种。其中最重要的是白喉棒状杆菌,顾名思义,它是引起白喉的病原菌。

丙酸细菌

它们在瑞士埃曼塔尔乳酪中形成孔洞中所起的作用。乳脂最初是用链球菌和乳酸杆菌以及丙酸菌的混合物接种的。这两个物种将乳脂中的乳糖转化为乳酸。凝乳排干后,丙酸细菌将乳酸氧化成丙酮酸,然后将其转化为丙酸。在此过程中,会释放二氧化碳。正是这种二氧化碳在凝固的奶酪中聚集在气泡中,形成了瑞士埃曼塔尔乳酪中的特征孔。

痤疮丙酸杆菌

是人体皮肤中的常驻菌,通常无害,但它会加剧痤疮(痘痘)的病症。

硫酸盐还原菌(SRB)

硫酸盐还原菌 (Sulfate-Reducing Bacteria,简称SRB)存在于厚壁菌门和变形菌门中。它们通过含硫化合物(如粘蛋白和氨基酸)的代谢产生硫化氢 (H2S)。H2S 在超出严格控制的生理范围后是剧毒的。H2S水平升高与结肠细胞凋亡、绒毛萎缩、粘膜耗竭和反应性隐窝细胞增生有关。H2S会损害结肠细胞中丁酸盐的氧化,尤其在溃疡性结肠炎中的作用明显更大。

以下为厚壁菌门当中比较著名的属及其所属的纲目:

芽孢杆菌纲(Bacilli)

芽孢杆菌目(Bacillales)

芽孢杆菌属(Bacillus)

李斯特氏菌属(Listeria)

葡萄球菌科(Staphylococcaceae)

葡萄球菌属(Staphylococcus)

乳杆菌目(Lactobacillales)

肠球菌属(Enterococcus)

乳杆菌属(Lactobacillus)

乳球菌属(Lactococcus)

明串珠菌属(Leuconostoc)

链球菌属(Streptococcus)

梭菌纲(Clostridia)

梭菌目(Clostridiales)

梭菌属(Clostridium)

优杆菌属(Eubacterium)

太阳杆菌属(Heliobacterium)

Halanaerobiales

Natranaerobiales

Thermoanaerobacterales

丹毒丝菌纲(Erysipelotrichia)

丹毒丝菌目(Erysipelotrichales)

丹毒丝菌属(Erysipelothrix)

Negativicutes

Selenomonadales

香蕉孢菌属(Sporomusa)

Thermolithobacteria

Thermolithobacterales

柔膜菌纲(Mollicutes)

支原体目(Mycoplasmatales)

支原体属(Mycoplasma)

螺原体属(Spiroplasma)

脲原体属(Ureaplasma)

03 变形菌门 Proteobacteria

变形菌门(Proteobacteria)是细菌中主要的一门,主要是由核糖体RNA序列定义的,它的名字也很有趣,取自希腊神话中能够变形的神普罗透斯(这同时也是变形菌门中变形杆菌属的名字),因为该门细菌的形状具有极为多样的形状。

变形菌门包括很多病原菌,如大肠杆菌、埃希氏菌、沙门氏菌、弧菌、螺杆菌、志贺氏菌、绿脓杆菌、霍乱弧菌、鼠疫杆菌、脑膜炎双球菌、淋球菌、空肠弯曲菌、幽门螺杆菌等著名的属。也有自由生活(非寄生)的种类,包括很多可以进行固氮的细菌。

所有的变形菌门细菌都是革兰氏阴性菌,其外膜主要由脂多糖组成。很多种类利用鞭毛运动,但有一些非运动性的种类,或者依靠滑行来运动。

还有一类独特的粘细菌,可以聚集形成多细胞的子实体。

变形菌门包含多种代谢种类。大多数细菌营兼性或者专性厌氧及异养或者自养化能生物生活,但有很多例外。很多并非紧密相关的属可以利用光合作用储存能量。因其多数具有紫红色的色素,被称为紫细菌。

变形菌门根据rRNA序列被分为五类(通常作为五个纲),用希腊字母α、β、γ、δ和ε命名。其中有的类别可能是并系的。

  • α-变形菌纲 (Alphaproteobacteria)
  • β-变形菌纲 (Betaproteobacteria)
  • δ-变形菌纲 (Deltaproteobacteria)
  • ε-变形菌纲 (Epsilonproteobacteria)
  • γ-变形菌纲 (Gammaproteobacteria)

Part 1 α-变形菌

α-变形菌(Alphaproteobacteria)的统一特征是它们是寡营养细菌,能够生活在低营养环境中的生物,例如深海沉积物、冰川冰或深层地下土壤。

包括大多数光养菌属,但也包括一些代谢 C1 化合物的属(例如,甲基杆菌属)、植物(例如,根瘤菌属)和动物的共生体,以及一组病原体立克次氏菌科。科学家们经常使用农杆菌属的 α-变形菌将外源 DNA 转移到植物基因组中。

在 α-变形菌 中有两个分类群,衣原体和立克次体,它们是专性细胞内病原菌,这意味着它们生命周期的一部分必须发生在称为宿主细胞的其他细胞内。当不在宿主细胞内生长时,衣原体和立克次体在宿主细胞外代谢失活。它们无法合成自己的三磷酸腺苷 (ATP),因此,它们的能量需求依赖于细胞。

  • △ 立克次氏体属

立克次氏体属包括许多人类病原菌。例如,立克次氏立克次体引起落基山斑疹热,这是一种危及生命的脑膜脑炎(包裹大脑的膜发炎)。

另一种立克次体,R. prowazekii,通过虱子传播。它会导致流行性斑疹伤寒,这是一种在战争和人口大规模迁移期间常见的严重传染病。R. prowazekii感染人类内皮细胞,导致血管内壁发炎、高烧、腹痛,有时还会出现谵妄。

R. typhi,会引起一种不太严重的疾病,称为鼠伤寒或地方性斑疹伤寒,在温暖的季节,这种疾病在美国西南部仍然存在。

  • △ 衣原体

衣原体是 α-变形菌 的另一个分类单元。该属的成员对细胞防御具有极强的抵抗力,使它们能够通过基本体在宿主之间快速传播。代谢和生殖不活跃的基本体是细胞内细菌的内生孢子样形式,进入上皮细胞,在那里它们变得活跃。

沙眼衣原体是导致沙眼的人类病原体,沙眼是一种眼睛疾病,通常会导致失明。沙眼衣原体还会引起性传播疾病性病淋巴肉芽肿。这种疾病常有轻微症状,表现为局部淋巴结肿大,也可能无症状,但传染性极强,在大学校园里很常见。

Part 2 β-变形菌

β-变形菌 (Betaproteobacteria )是一类都是革兰氏阴性的变形菌,由几组需氧或兼性细菌组成,它们的降解能力通常具有高度的多样性,但也包含化学光营养属(例如,氨氧化属Nitrosomonas)和一些光养菌(Rhodocyclus和Rubrivivax属的成员)。

α-变形菌只能靠最少量的营养物质生存,而β-变形菌是富营养菌,这意味着它们需要大量的有机营养物。β-变形菌通常生长在需氧和厌氧区域之间(例如,在哺乳动物肠道中)。

  • △ 多种类可以在环境样品中发现

如废水或土壤中。该纲的致病菌有奈氏球菌目(Neisseriales)的中一些细菌(可导致淋病和脑膜炎)和伯克氏菌属(Burkholderia)。在海洋中很少能发现β-变形菌。

  •  一些菌属引起严重疾病

一些属包括作为人类病原体的物种,能够引起严重的、有时危及生命的疾病。

奈瑟氏球菌,例如包括细菌淋病奈瑟氏球菌和脑膜炎奈瑟氏球菌的病原体细菌性脑膜炎。

Burkholderia是一种变形菌属,可能以其致病成员最为人所知:Burkholderia mallei,导致鼻疽,一种主要发生在马和相关动物身上的疾病;鼻疽伯克霍尔德菌,类鼻疽的病原体;

洋葱伯克霍尔德菌,在人与囊性纤维化(CF)肺部感染的重要病原菌。

伯克霍尔德(先前的一部分假单胞菌)属名是指一组几乎无处不在的革兰氏阴性,能动,专性需氧棒状细菌的包括动物/人和植物病原体以及一些环境重要的物种。

导致百日咳(百日咳)的病原体也是 β-变形菌的成员。百日咳杆菌博德特氏菌,属伯克氏菌目,产生几种毒素麻痹纤毛在人呼吸道的移动和直接损伤呼吸道的细胞,导致严重的咳嗽。

Part 3 γ-变形菌

最多样化的革兰氏阴性细菌是γ-变形菌,它包括许多人类病原体。包括几个医学和科学上重要的细菌群,例如肠杆菌科、弧菌科和假单胞菌科。

许多重要的病原体属于这一类,例如沙门氏菌属。(肠炎和伤寒)、鼠疫杆菌(鼠疫)、霍乱弧菌(胃肠道疾病霍乱)、铜绿假单胞菌(住院或囊性纤维化患者的肺部感染)和大肠杆菌(食物中毒)。

  • △ 铜绿假单胞菌

例如,一个庞大而多样的科,假单胞菌科,包括假单胞菌属。在该属内是铜绿假单胞菌,它是一种病原体,负责身体不同部位的各种感染。铜绿假单胞菌是一种严格需氧、不发酵、高度运动的细菌。

它经常感染伤口和烧伤,可能是慢性尿路感染的原因,并且可能是囊性纤维化患者或机械呼吸机患者呼吸道感染的重要原因。铜绿假单胞菌感染通常难以治疗,因为该细菌对许多抗生素具有抗性,并且具有形成生物膜的非凡能力。

  • △ 肠杆菌科

肠杆菌科是属于γ-变形菌 的一大类肠道(肠道)细菌。它们是兼性厌氧菌,能够发酵碳水化合物。在这个家族中,微生物学家认识到两个不同的类别。

第一类,大肠杆菌,以其原型细菌种类大肠杆菌命名。大肠菌能够完全发酵乳糖(即产生酸和气体)。

第二类,非大肠杆菌,要么不能发酵乳糖,要么不能完全发酵(产生酸或气体,但不能同时产生两者)。非大肠菌群包括一些值得注意的人类病原体,例如沙门氏菌属,志贺氏菌,和鼠疫耶尔森氏菌。

显微镜下的大肠杆菌自 1886 年由 Theodor Escherich首次描述以来,大肠杆菌可能是研究最多的细菌。许多大肠杆菌菌株与人类存在共生关系。

然而,一些菌株会产生一种称为志贺毒素的潜在致命毒素,它会穿透大肠中的细胞膜,导致血性腹泻和腹膜炎(腹腔内壁发炎)。其他大肠杆菌菌株可能会导致旅行者腹泻,这是一种不太严重但非常普遍的疾病。

沙门氏菌属属于肠杆菌科的非大肠菌群,其有趣之处在于它包括多种尚未达成共识。科学家们已经将他们曾经认为是物种的许多群体重新分类为血清型(也称为血清型),它们是同一细菌物种的菌株或变异。它们的分类是基于动物抗血清对细菌细胞表面分子的反应模式。许多血清型沙门氏菌可引起沙门氏菌病,其特征是小肠和大肠发炎,伴有发烧、呕吐和腹泻。

S. enterobacterica(血清型伤寒沙门氏菌)导致伤寒,随着症状,包括发烧,腹部疼痛,皮疹。

Part 4 δ-变形菌

δ-变形菌(Deltaproteobacteria )包括主要需氧属的一个分支,形成子实体的粘细菌,在不利的环境中释放粘孢子。

它是严格厌氧菌属的一个分支,其中包含大多数已知的硫酸盐还原菌(脱硫弧菌属(Desulfovibrio)、脱硫菌属(Desulfobacter)、脱硫球菌属(Desulfococcus)、脱硫线菌属(Desulfonema),硫还原菌(如除硫单胞菌属Desulfuromonas),以及具有其它生理特征的厌氧细菌,如还原三价铁的地杆菌属(Geobacter)和共生的暗杆菌属(Pelobacter)和互营菌属(Syntrophus)。

最近发现了一种细胞内致病菌 Deltaproteobacteria。

如此命名是因为它们使用硫酸盐作为在电子传递链中的最终电子受体。很少有 SRB 是致病性的。然而,SRB Desulfovibrio orale与牙周病(牙龈疾病)有关。

  • △ 蛭弧菌属

δ-变形菌还包括蛭弧菌属,Bdellovibrio侵入宿主细菌的细胞,将自身定位在周质中,即质膜和细胞壁之间的空间,以宿主的蛋白质和多糖为食。这种感染对宿主细胞是致命的。

  •  粘细菌

粘细菌(“粘液细菌”)是一组主要生活在土壤中并以不溶性有机物质为食的细菌。与其他细菌相比,粘细菌具有非常大的基因组,例如 9-1000 万个核苷酸。Sorangium cellulosum 拥有最大的已知(截至 2008 年)细菌基因组,有 1300 万个核苷酸。

粘细菌可以通过滑行主动移动。它们通常成群结队(也称为狼群)旅行,其中包含许多通过细胞间分子信号保持在一起的细胞。个体受益于聚集,因为它允许用于消化食物的细胞外酶的积累。这反过来又提高了喂食效率。

粘细菌产生许多在生物医学和工业上有用的化学品,例如抗生素。他们将这些化学物质输出到细胞外。

Part 5 ε-变形菌

ε-变形菌(Epsilonproteobacteria) 是革兰氏阴性微需氧细菌(意味着它们在其环境中只需要少量氧气)。多数是弯曲或螺旋形的细菌,如沃林氏菌属(Wolinella)、螺杆菌属(Helicobacter)和弯曲菌属(Campylobacter)。它们都生活在动物或人的消化道中,为共生菌(沃林氏菌在牛中)或致病菌(螺杆菌在胃中或弯曲菌在十二指肠中)。

  •  弯曲杆菌

变形杆菌中最Epsilonproteobacteria 的两个临床相关属是弯曲杆菌属和螺杆菌属,它们都包括人类病原体。弯曲杆菌可引起食物中毒,表现为严重的肠炎(小肠发炎)。这种由空肠弯曲杆菌引起的疾病在发达国家相当普遍,通常是因为食用了受污染的家禽产品。鸡通常携带空肠弯曲杆菌在他们的胃肠道和粪便中,他们的肉在加工过程中可能会受到污染。

  •  螺杆菌

螺杆菌是ε-变形菌的一个属,具有特征性的螺旋形状。它们最初被认为是弯曲杆菌属的成员,但自 1989 年以来,它们被归入了自己的属中。螺杆菌属属于 Epsilonproteobacteria,弯曲杆菌目,螺杆菌科,已经有超过 35 种。已经发现一些菌生活在上胃肠道的内壁,以及哺乳动物和一些鸟类的肝脏中。

该属中最广为人知的物种是幽门螺杆菌,它感染多达 50% 的人口。这种细菌的某些菌株对人类具有致病性,因为它与消化性溃疡、慢性胃炎、十二指肠炎和胃癌密切相关。它也作为该属的模式种。

幽门螺杆菌在胃的高酸性环境中存活的能力有些不同寻常。它产生脲酶和其他酶来改变其环境以降低其酸性。

幽门螺杆菌也有它存在的意义,可能抑制引起结核的细菌(结核分枝杆菌),预防哮喘,克罗恩病,食管反流,腹泻病以及食道癌。

04 放线菌门 Actinobacteria

放线菌是丝状革兰氏阳性细菌,在其发育的某个阶段形成分枝细丝。放线菌最初由费迪南德·科恩 (Ferdinand Cohn) 在 1875 年描述,当时他在人泪管的凝结物中观察到一种丝状生物,并将其命名为Streptothrix foersteri,后来在1878年将一例牛块状颌骨中分离出的生物命名为放线菌。放线菌这一术语在希腊语中的意思是“射线真菌”。

曾经由于放线菌的形态,人们认为它们是介于细菌和霉菌之间的物种,因此原来它们被分类为“放线菌目”(Actinomycetes)。但因为放线菌没有核膜,且细胞壁由肽聚糖组成,和其它细菌一样。目前透过分子生物学方法,放线菌被确定为细菌的一个大分支。放线菌用革兰氏染色可染成紫色(阳性),和另一类革兰氏阳性菌——厚壁菌门相比,放线菌的GC含量较高。

  • △ 放线菌在有机物质分解中发挥重要作用

放线菌在土壤、水生环境、植物凋落物、堆肥和食品等不同栖息地中以孢子或营养形式出现。它们还与植物、动物和人类有关。

放线菌包括一些最常见的土壤生物、淡水生物和海洋生物,在有机物质(如纤维素和几丁质)的分解中发挥重要作用,从而在有机物质周转和碳循环中发挥重要作用。这补充了土壤中养分的供应,是腐殖质形成的重要组成部分。其他放线菌栖息在植物和动物中,包括一些病原体,如分枝杆菌、棒状杆菌、诺卡氏菌、红球菌和一些链霉菌。

  • △ 导致食物变质

放线菌介导几丁质、木质素和纤维素等复杂聚合物的降解,通过产生抗微生物剂帮助其他细菌和真菌的生物防治,并导致储存的食品变质。

  • △ 放线菌中的有益菌——双歧杆菌

双歧杆菌(Bifidobacterium)是一种厌氧的革兰氏阳性杆菌,末端常常分叉,故名双歧杆菌。是人和动物肠道的重要生理菌群。是母乳喂养婴儿中发现的第二大菌。

肥胖、糖尿病和过敏等各种疾病都与生命各个阶段的双歧杆菌数量减少有关。

双歧杆菌有助于改善消化问题,改善血糖控制,降低血脂水平,提高免疫力,表现出抗氧化活性,有助于预防湿疹,缓解压力和过敏。

  •  放线菌中的致病菌

它们是重要的原核生物群能够合成代谢产物,如抗生素、色素、酶抑制剂和生物技术相关酶。它们对植物、动物和人类也具有致病性。甘薯腐烂等植物病害和肺结核、副结核菌病、足菌肿、放线菌病、过敏性肺炎等人类疾病和各种类型的脓肿都是由放线菌引起的。

  • △ 放线菌具有巨大的药理学潜力

放线菌是众所周知的次级代谢产物,因此具有很高的药理和商业价值。1940 年,塞尔曼·瓦克斯曼 (Selman Waksman) 发现他所研究的土壤细菌产生了放线菌素,他因此获得了诺贝尔奖。从那时起,在这些陆生微生物中发现了数百种天然抗生素,尤其是链霉菌属。

此外,放线菌广泛分布于海绵、鱼类、软体动物、红树林和海藻等海洋环境中。因此海洋放线菌被认为是次生代谢物的宝库,大量的这些生物活性代谢物属于放线菌科,包括链霉菌属、放线菌属和松杆菌属,其他生物活性代谢物由于能够产生新的生物活性分子而在商业上可用。

例如,抗氧化剂、抗肿瘤、免疫抑制和心血管药物,这也为治疗药物的合成提供了强大的基础。该放线菌群具有巨大的药理学潜力,在其他微生物群中仍然无人能敌。

放线菌已分为150多个属。该分类基于形态学和化学标准。

放线菌门重要的菌属有:

双歧杆菌属(Bifidobacterium)

放线菌属(Actinomyces)

节杆菌属(Arthrobacter)

棒杆菌属(Corynebacterium)

弗兰克氏菌属(Frankia)

微球菌属(Micrococcus)

微单孢菌属(Micromonospora)

分枝杆菌属(Mycobacterium)

诺卡氏菌属(Nocardia)

丙酸杆菌属(Propionibacterium)

链霉菌属(Streptomyces)

胃肠道疾病和癌症中的口腔-肠道微生物群轴

谷禾健康

微生物群失调与人体中的多种疾病有关。在个体中,每个微生物栖息地都表现出不同的微生物种群模式。迄今为止,关于微生物组相关疾病的研究集中在器官特异性微生物组上。然而,器官间微生物网络正在成为生理功能和病理过程中的重要调节剂

口-肠

口腔和肠道是两个最大的微生物栖息地,在微生物组相关疾病中起主要作用。即使口腔和肠道是通过胃肠道相连的连续区域,由于口腔-肠屏障的原因,口腔和肠道的微生物群分布很好的分离

然而,在口腔-肠道屏障功能障碍的情况下,口腔微生物群可以转移到肠粘膜。相反,肠道至口腔的微生物传播也以人际和社区传播发生。

最近,有报道说口腔和肠道微生物组相互依赖地调节生理功能和病理过程。口腔到肠道和肠道到口腔的微生物传播可以塑造和/或重塑两个生境中的微生物生态系统,最终调节疾病的发病机理。

在这里,我们将讨论总结口腔-肠道微生物组轴胃肠道疾病和癌症中的作用, 更好地了解肠道-肠道微生物组轴在发病机理中的作用将有利于精确的诊断/预后和有效的治疗。

1.1 口腔和肠道:通过胃肠道相连

人体消化系统胃肠道和包括肝和胰腺在内的辅助消化器官组成。 胃肠道的粘膜排列整齐,从口腔开始,直到肠道(更准确地说是肛门)结束。 因此,口腔和肠道是通过胃肠道连接的解剖学连续区域

此外,由于唾液和消化后的食物都通过胃肠道,因此这两个位置也是化学相连的。

通常,由于中空的运河结构,胃肠道被认为在人体外部。 口腔是消化道的通道,直接暴露于外部环境,例如微生物,营养物和其他外源性物质。 在这方面,口腔和肠道都为不同的微生物繁衍提供了适当的环境

HMP(第一阶段人类微生物组计划)揭示了人体中一半以上的细菌位于胃肠道(29%)和口腔(26%)中。 除了这些丰富的生物外,口腔和肠道微生物群也高度多样化,并同时显示出与每个生境区分开的独特特征。

1.2  口腔微生物群组成

根据人类口腔微生物组数据库(HOMD),口腔中大约有700种微生物。口腔中的共生菌包括厚壁菌门、变形杆菌门、拟杆菌门、放线杆菌门、梭杆菌门、奈瑟菌门和TM7。口腔有几种不同的微生物环境,包括:颊粘膜、龈下菌斑、龈上菌斑、角化牙龈、硬腭、唾液、扁桃体、舌头和喉咙。口腔和腭粘膜的多样性低于其他口腔栖息地。

无论小生境的位置如何,健康受试者的所有口腔部位在属水平上的菌如下:

双歧杆菌 Gemella链球菌 Streptococcus

韦荣氏菌 Veillonella嗜血杆菌 Haemophilus

奈瑟菌 Neisseria卟啉单胞菌 Porphyromonas

放线菌 Actinomyces梭菌 Fusobacterium

普雷沃氏菌  Prevotella

除了这些常见的细菌进化枝外,每个小生境还具有分化良好的细菌组成。 

根据微生物群落结构,口腔生态位可分为三组

第一组:颊粘膜、角化牙龈和硬腭

第二组:唾液、舌头、扁桃体和喉咙

第三组:龈下和龈上菌斑

生态位对口腔微生物组的隔离可能归因于多种因素,例如pH,盐度,氧化还原电位,氧气和营养。 此外,牙齿卫生是影响口腔微生物组的另一个重要因素,因为口腔是直接向外界开放的。

1.3 肠道微生物组构成

肠道是人体内最大、最具特征的微生物生态系统,在50多个不同的门中有大约500到1000个物种。

五个主要拟杆菌门、厚壁菌门、放线菌门、变形菌门疣状菌门组成,但以两个拟杆菌厚壁菌门为主,占90%以上。

属的水平上,拟杆菌是最丰富的。已知人类肠道微生物群在生命早期就已建立,然后可以随着年龄和环境(如饮食和营养)而改变,类似于人类口腔微生物群。因此,口腔和肠道微生物组直接反映了宿主的健康状况。

尽管肠道与口腔相连,但肠道微生物群的组成可与口腔微生物群的组成区分开来。在的水平上,口腔主要由厚壁菌门控制,而粪便微生物群主要富含拟杆菌。这种分离可归因于胃中的胃酸和十二指肠中的胆汁酸

据报道,长期使用质子泵抑制剂(PPI)会增加肠道感染的风险。值得注意的是,PPIs降低胃酸可以减少肠道微生物生态系统的多样性,改变肠道微生物组的组成。

此外,胆汁酸可引起肠细菌膜和/或DNA完整性的破坏,在口腔和肠道之间起有效的抗菌屏障作用。 因此,胃酸度和胆汁酸池负责肠道和口腔微生物组的独特模式

1.4  肠道微生物群的生理功能:来自无菌小鼠的经验

人类肠道微生物组的概况可以根据健康状况,环境因素,遗传学甚至生活方式而改变

宏基因组学分析表明,人类肠道菌群调节代谢途径,例如碳代谢和氨基酸合成。微生物显示出保守的分子基序,称为微生物相关的分子模式和病原体相关的分子模式(PAMP),宿主可通过模式识别受体(PRRs)识别这些基序,如toll样受体。

这种微生物与宿主的相互作用可以刺激人体的免疫系统和炎症反应。 这意味着肠道菌群可以调节人体的主要生物学功能,新陈代谢和免疫力,因此肠道菌群失调与多种人类疾病有关,从传染病到阿尔茨海默氏病。然而,要证明肠道微生物群是人类健康状况的原因还是后果是一个挑战。

另外,无菌(GF)动物为肠道微生物组的生理功能提供了深刻的线索。与无特定病原体(SPF)的小鼠相比,GF小鼠的肠重量减少,绒毛更短,小肠的总表面积减少,表明胃肠道发育存在缺陷

与此相一致,GF小鼠显示出代谢异常,例如胆固醇代谢改变和肠道内短链脂肪酸的减少,短链脂肪酸是重要的能量来源之一。 

因此,与SPF小鼠相比,GF小鼠显示出较低的体内脂肪含量和对高脂饮食诱导的体重增加的抵抗力。 但是,通过应用SPF小鼠的盲肠含量,通过GF小鼠的常规化可以恢复体内脂肪含量。

在免疫方面,GF小鼠在Peyer斑块和肠系膜淋巴结发育方面存在缺陷,CD4,CD8和Foxp3 T细胞数量减少,B细胞分泌的免疫球蛋白A产生减少。

通过与SPF小鼠共栖或口服SPF小鼠粪便中的成分,可以通过微生物群重建来恢复这些疾病。 两者合计,很明显,肠道菌群在维持生理稳态方面起着至关重要的作用,主要是代谢和免疫

1.5 口腔微生物组的生理功能:局部和全身作用

尽管口腔是人体第二大的微生物栖息地,但是累积的知识不足以完全了解口腔微生物组对人类健康的影响。 毫无疑问,口腔微生物组与牙齿健康直接相关。

口腔疾病中有许多已被确认的关键病原体,如龋齿的变形链球菌(Streptococcus mutans )和牙周炎的牙龈卟啉单胞菌(Porphyromonas gingivalis)。此外,与健康受试者相比,口腔鳞状细胞癌患者的口腔微生物组发生了改变。根据口腔微生物群分析,口腔鳞状细胞癌(OSCC)患者中的梭杆菌属(Fusobacterium)水平较高。

口腔微生物组会影响全身健康状况,而不仅限于牙齿健康(下图)。

Park Se-Young, et al., Cancers (Basel),2021

流行病学和实验证据支持口腔菌群失调与全身性疾病密切相关,包括阿尔茨海默氏病,糖尿病和心血管疾病。 与此相符,阿尔茨海默氏病的口腔微生物群特征发生了显着变化,例如莫拉氏菌属(Moraxella),纤毛菌属(Leptotrichia)和鳞球菌属(Sphaerochaeta)的患病率。口腔不良反应的改变与阿尔茨海默氏病的进展有关。

I型糖尿病患者的放线菌门和厚壁菌门的丰度更高。此外,据报道,在有症状的动脉粥样硬化患者的口腔微生态环境中,厌氧菌属的富集已被报道。

在牙周炎(一种口腔失调疾病)的情况下,其标志性病原体牙龈卟啉单胞菌(P. gingivalis)感染可引起局部以及全身慢性炎症

此外,口腔异位症可以诱导PAMP信号的产生,例如脂多糖(LPS),导致系统性刺激先天免疫应答和炎症转录因子,包括核因子κB。 这些全身性炎症和免疫反应被认为是主要机制之一,强调口腔微生物组调节远端器官的发病机理。

值得注意的是,口腔微生物群可以转移到其他器官,这被认为是口腔生物失调引起的全身性疾病的另一种机制。

短期死后阿尔茨海默氏病患者的脑组织中已检测到口腔致病菌牙龈卟啉单胞菌(P. gingivalis)。 口腔病原体直接转移到大脑可以通过诱导神经炎症和神经变性而加剧阿尔茨海默氏病。

此外,在冠心病患者的动脉粥样硬化斑块中检测到许多口腔共生细菌,这进一步表明口腔细菌可能转移到远端器官。 由于物理和化学联系口腔微生物向胃肠系统的迁移可能更频繁

在某些致病条件下,一些口腔细菌类群定居并富含胰腺和肠道,表明口腔和肠道菌群之间存在直接的串扰。

2.1 口腔到肠道微生物易位

由于存在肠-肠屏障,物理距离以及化学障碍(例如胃酸和胆汁),因此口腔和肠道微生物组被很好地隔离了。 然而,口腔-肠道屏障损伤会导致器官间的易位和交流

一般来说,新生儿和老年人体内存在不成熟或功能性障碍较少。双歧杆菌是新生儿肠道中最丰富的细菌属。有趣的是,在新生儿的口液中发现了肠道内的双歧杆菌

同样,与健康成年人相比,老年人肠道内口腔细菌的检出率也较高,如:

卟啉单胞菌(Porphyromonas)、梭杆菌(Fusobacterium) 和假分枝杆菌 (Pseudoramibacter)

此外,低胃酸使肠道微生物群的组成向口腔微生物群转移。已在体外证明,通过分别引入人类粪便和唾液微生物群的GF小鼠组,口腔微生物群可以侵入肠道并重塑肠道微生物群。

综上所述,这些数据表明口腔微生物可以在某些情况下克服口腔与肠道之间的物理和/或化学障碍,并有可能转移到肠道中。

值得注意的是,在胃肠道的病理条件下已检测到典型的口腔驻留物种。 例如,炎症性肠病(IBD)患者的肠道粘膜中有大量嗜血杆菌Veillonella富集,已知它们是口腔共生微生物

在结肠癌患者中,他们的肠道微生物群包含几种口腔类群,包括梭菌。这意味着正常的人口腔微生物群可以在肠粘膜稳态中破坏并在肠道粘膜中定植,并成为条件致病菌

而且,这种经口-粪便传播也可以在生理条件下发生,而不仅仅是病理或屏障破坏的情况下。HMP联盟的数据被划分为每个身体部位的群落类型时,口腔和肠道微生物群类型显示出强烈的关联,尽管它们在分类上不同。

在唾液细菌中,普雷沃氏菌(Prevotella)大量存在于粪便样本中。与此相一致,从同一健康受试者的口腔和粪便样本中同时检测到几个属。通过分析470名个体口腔和粪便微生物群中的310种,唾液和粪便样本中普遍存在125种,包括链球菌(Streptococcus)、韦荣氏球菌属(Veillonella)、放线菌(Actinomyces)嗜血杆菌(Haemophilus)菌株

综上所述,很明显口腔微生物群可以比预期更广泛地进入肠道,即使在健康状态下,而不仅仅是在病理情况下

2.2 粪便至口腔微生物移位

肠道微生物可通过粪-口途径通过直接接触或通过受污染的液体和食物间接接触传播。人的手部微生物群口腔和肠道微生物群模式高度重叠,表明人的手是粪便到口腔微生物传播的载体。因此,在发展中国家,由于卫生状况不佳,如缺乏清洁供水和公共卫生系统,微生物的粪-口途径经常被报道。

此外,免疫功能低下的个体也容易通过粪-口传播。在头颈部癌症患者中,放射治疗与革兰氏阴性杆菌的口腔定植高度相关,不良的口腔卫生状况会进一步加剧这种情况。因此,不良的卫生和/或免疫损害条件可能会促进同一个体的粪-口途径。

除了体内传播外,粪-口途径也被认为是病原体在人与人之间传播的重要机制。众所周知,甲型肝炎病毒(HAV)和戊型肝炎病毒(HEV)等肠道病毒通过粪-口途径传播,因此很容易通过人与人之间的接触传播,特别是在不卫生的条件下。

肠道病毒可以直接和间接地与肠道微生物群相互作用,对肠道微生物生态系统造成破坏性影响。据报道,戊型肝炎病毒感染会增加急性肝衰竭患者粪便样本中乳酸杆菌科(Lactobacillaceae)伽马蛋白杆菌( Gammaproteobacteria)的丰度

添加益生菌粪肠球菌NCIMB 10415(Enterococcus faecium NCIMB 10415) 可有效促进感染猪的HEV清除

除了肠道病毒外,幽门螺杆菌(Helicobacter pylori)是严重胃十二指肠疾病的主要致病菌,也可以通过粪-口途径传播,显示出与甲型肝炎感染的相关性。

虽然需要进一步的研究来了解粪-口传播在口腔和肠道微生物群中的作用,但令人信服的是,口腔和肠道微生物群通过口-肠和粪-口途径紧密相连(下图)。

Park Se-Young, et al., Cancers (Basel),2021

这种双向相互作用可以相互塑造和/或重塑两个栖息地的微生物生态系统,最终调节胃肠系统的生理和病理过程。因此,口腔-肠道和粪便-口腔方向在以下中统称为“口腔-肠道微生物群轴”。

3.1 炎症性肠病

IBD代表结肠和小肠的慢性炎症性疾病,包括克罗恩病(CD)和溃疡性结肠炎(UC)。因此,IBD与肠道微生物群失调密切相关。IBD患者的肠道微生物组显示出细菌组成的多样性降低和变化,包括厚壁菌门的丧失和变形菌门和拟杆菌门的丰度增加。在肠道粘膜组织活检中而不是在粪便中更深刻地观察到了这些不良生物事件。与健康受试者相比,在肠黏膜表面,IBD患者经常检测到细菌入侵和生物膜形成,表明肠屏障功能障碍与IBD发病有关

在健康状态下,由于完整的粘膜屏障,肠道微生物群很少受到来自其他栖息地的微生物的入侵和定植。然而,IBD患者由于粘膜屏障受损而表现出肠上皮通透性增加。

值得注意的是,口腔内细菌菌株是从IBD患者的肠道微生物组中分离出来的,这可能是由于肠道渗漏造成的。具核梭杆菌( Fusobacterium nucleatum )通常存在于口腔中,但很少存在于健康人的肠道中。

有趣的是,IBD患者在肠道中出现了F. nucleatum,比其他F. nucleatum菌株更具侵袭性,表明IBD患者存在肠道-肠道微生物组轴。这一点已在体外通过将口腔微生物群移植到动物模型中得到证实。

在大鼠中,F.nucleatum的侵袭导致肠道微生物组发生转移并加重内脏超敏性。 此外,CD患者的唾液微生物群成功地定居在GF小鼠的肠道中。

克雷伯菌(Klebsiell)是最流行的定植菌,可促进肠道Th1细胞的诱导和炎症,这是IBD发病机理中的关键事件。 这些结果进一步支持了口腔微生物群,无论是共生的还是病原菌,都可以传播到肠道,通过肠道失调促进IBD的发病

因此,口腔失调可以通过募集口腔-肠轴来直接调节IBD的发病机制。牙周炎是一种慢性炎性口腔疾病,与口腔微生物群的改变密切相关,特别是与其关键性病原体牙龈卟啉单胞菌过度生长有关。

在C56BL/6小鼠中,口服牙龈卟啉单胞菌通过下调紧密连接蛋白来减弱肠道屏障功能,从而导致肠道微生物组发生重大变化,包括梭菌科的丰富

此外,接种牙龈卟啉单胞菌的小鼠表现出肠道以及全身性炎症,这可以由牙龈卟啉单胞菌衍生的内毒素例如LPS介导。 与动物实验一致,荟萃分析表明牙周炎分别与IBD,CD和UC的两种主要形式密切相关。

两者合计,口腔病原体可以干扰肠屏障功能并侵入肠粘膜,从而引起肠道失调和慢性炎症,从而导致IBD发病。 值得注意的是,IBD患者以及结肠炎引起的小鼠唾液微生物群组成发生变化,这与炎症反应有关,表明口腔-肠道微生物相互作用可能是双向的。

3.2 结直肠癌/大肠癌

大肠癌(CRC)是世界上最常见的癌症类型之一,也是导致癌症死亡的第二大原因。IBD是CRC发生和发展的最公认的危险因素。因此,IBD和CRC在发病机理中共享病因,包括肠道微生物组的明显变化。 与IBD相似,CRC与肠道失调密切相关。与健康个体相比,CRC患者在粪便和肠粘膜样品中均显示出不同的微生物组成模式。

一直以来,在结肠炎相关和化学诱导的大肠癌小鼠模型中都发现了肠道微生物群的深刻变化,支持肠道失调和大肠癌之间的关系。使用GF小鼠的研究进一步证明,肠道微生物群的改变可以直接促进炎症相关的结直肠癌的发展。

有趣的是,在大肠癌患者的肠道中发现了几种口腔分类群,包括细小单胞菌(Parvimonas)、消化链球菌(Peptostreptococcus)和梭形杆菌(Fusobacterium),表明大肠癌中存在口腔-肠道微生物群轴。

在这些口腔常驻细菌中,具核梭杆菌 (F.nucleatum)与健康人相比,结直肠癌患者的肿瘤组织和粪便中普遍存在细胞核,这与IBD一致

在小鼠结肠炎模型中,口服具核梭杆菌(F.nucleatum) 细胞核引起的炎症以及小肠和大肠的肿瘤发生。具核梭杆菌 (F.nucleatum)细胞核似乎很容易附着在表达内皮钙粘蛋白的宿主CRC细胞上,然后刺激促炎症反应和细胞增殖。与IBD相似,结直肠肿瘤显示肠道屏障功能受损,这可能解释了口腔微生物群的肠道定植

此外,据报道,具核梭杆菌 (F.nucleatum) 与口腔病原体牙龈卟啉单胞菌共聚并共感染。尽管体外方法存在局限性,但牙龈卟啉单胞菌仍侵袭CRC细胞并促进癌细胞增殖,这表明牙周病原体参与了结直肠肿瘤的发生。 与此相一致,牙龈卟啉单胞菌血清抗体水平CRC患者的死亡率相关。

此外,一项荟萃分析表明,牙周炎与CRC风险增加有关。 综上所述,这些研究可以证明口腔失调,口腔-肠道微生物组轴与CRC发病机理之间存在关联

3.3 慢性肝病

肝硬化是由慢性肝脏疾病引起的晚期肝病,例如非酒精性脂肪肝疾病(NAFLD)和非酒精性脂肪性肝炎(NASH)。 健康对照组相比,NAFLD、NASH或肝硬化患者粪便样本中的变形杆菌门显著增加,表明肠道微生物组与肝脏发病机制相关。在这方面,与SPF小鼠相比,GF小鼠免受高脂饮食诱导的脂质在肝脏中的蓄积。此外,定居于NAFLD易感肠道微生物的GF小鼠发生了严重的肝脂肪变性,进一步支持了肠道失调可能是慢性肝病的直接病因

由于肠道和肝脏通过胆道和门静脉进行物理连接,如果粘膜屏障受损,肠道微生物可以转移到肝脏胆汁酸具有抗菌活性,在肠道和肝脏之间循环循环,具有屏障和桥梁的双重功能。

慢性肝病通常与胆汁酸形成和/或分泌不良有关,会增加肠道通透性。 因此,胆道梗阻促进了细菌从肠道到肝脏的移位。 在胆结石患者中,与正常对照组(例如富集变形杆菌)相比,胆道和肠道中的微生物组成均发生了变化,这支持了慢性肝病中肠道-肝脏微生物组轴的存在。

通过与肠-肝微生物串扰的融合,口腔-肠道微生物组轴正在成为慢性肝病的重要调节剂

值得注意的是,宏基因组学分析已证明肝硬化患者肠道内的口腔粘膜有侵袭和定植。另一项研究还显示,酒精依赖型肝硬化患者的肠道中口腔微生物的富集。 这些数据支持口腔微生物的肠道迁移与肝硬化有关。 但是,其潜在机制尚不清楚。如前所述,由于胃酸度低,PPI促进了从口腔到肠道的微生物转化。 同样,PPI治疗改变了肝硬化患者的肠道菌群组成,特别是肠道内口腔细菌的过度生长。 相同的研究小组已经证明了肝硬化患者唾液和粪便微生物组的伴随变化,进一步表明口腔-肠道微生物组轴调控肝脏的发病机制。

因此,口腔失调可能会通过改变肠道微生物组加重慢性肝病。 确实,牙周炎与NASH,NAFLD和肝硬化显着相关。 在来自NAFLD和与病毒感染相关的肝硬化患者的口腔样本中已经检测到牙龈卟啉单胞菌,一种牙周基石病原体。

在高脂饮食喂养的小鼠中,牙龈卟啉单胞菌的牙源性感染通过脂质积累,纤维化和肝脏炎症促进了NAFLD和NASH的进展。 总体而言,口腔失调可能会通过调节肠道生态系统而加剧慢性肝病。 同时,口腔失调可能反映了由肝病驱动的肠道失调生态系统。

3.4 肝癌

肝细胞癌(HCC)的发展经历了一个逐步的过程,从NAFLD/NASH到肝硬化,最后发展为HCC。在小鼠肝癌发生模型中,SPF小鼠比GF小鼠更易发生肝癌,类似于慢性肝病。

在生态型小鼠模型中,某些类型的肠道细菌,如大肠杆菌和粪链球菌,可显著增加肝肿瘤的发生,表明肠道微生物群直接参与了肝癌的发病机制。与这一观点一致,与健康对照组相比,HCC患者的丁酸产生菌属减少,如反刍球菌(Ruminococcus)、大肠杆菌(Oscillibacter)、粪杆菌(Faecalibacterium)、梭状芽孢杆菌IV(Clostridium IV)和粪球菌(Coprococcus),而LPS产生菌属增加,包括粪便样本中的克雷伯菌(Klebsiella)和嗜血杆菌(Haemophilus )。 

此外,随着HCC的发展,肠道失调的水平趋于增加。 在患有肝硬化的HCC患者中,粪便微生物群的成分与没有HCC的肝硬化患者的粪便微生物群成分有所不同,例如大肠杆菌Fusobacteriia的大量富集。 在化学诱导的HCC小鼠模型中,已在肿瘤内发现了一种肠道细菌幽门螺杆菌(Helicobacter hepaticus),它直接引起HCC的发展和进程,进一步支持肠道失调可以诱导HCC的发病机理。 然而,在人类HCC样品中未检测到肝炎性肝炎,而确诊存在其他幽门螺杆菌,例如幽门螺杆菌。因此,肝癌的发展与肠道失调密切相关。

有趣的是,据报道,与健康受试者相比,肝癌患者的口腔微生物群发生了变化。肝癌患者唾液微生物群中嗜血杆菌属卟啉单胞菌属Filifactor的丰度较高。在肝硬化的HCC患者中,根据舌苔的微生物组学特征,颤杆菌克属(Oribacterium)梭形杆菌属(Fusobacterium)普遍存在

此外,慢性牙周炎与晚期HCC相关,提示口腔失调与HCC相关。值得注意的是,肝硬化HCC患者的口腔和肠道微生物群中都富含梭杆菌,这表明口腔微生物可能通过口腔-肠道微生物群轴调节HCC发病机制,但需要进一步研究。

3.5 胰腺导管腺癌

胰腺消化系统的一部分,分泌分解脂类、蛋白质和碳水化合物的酶。主胰管与胆总管相结合,两者都与十二指肠相连。在正常健康条件下,胰腺被认为是一个无菌器官。

然而,胰腺导管腺癌(PDAC)患者的细菌数量增加,如肿瘤内的γ-变形菌纲(Gammaproteobacteria)和胰液和胰腺组织中的粪肠球菌(Enterococcus faecalis)

此外,肿瘤内微生物组多样性与PDAC的预后相关。从更全面的角度来看,PDAC患者在胰腺组织、肿瘤以及粪便样本中表现出不同的微生物群模式,表明肠-胰腺微生物串扰参与了PDAC发病机制。特别是,PDAC患者的肠道和胰腺中同时富集了变形菌(Proteobacteria)

在实验小鼠中,肠道通透性增加与肠道到胰腺的微生物易位有关,这可能加速PDAC的进展。在肠道菌群清除的小鼠中,用PDAC荷瘤小鼠的粪便菌群重新填充可显著促进胰腺肿瘤的发生,表明肠道菌群对PDAC进展的直接贡献。因此,肠道微生物组似乎与胰腺微生物生态系统密切相关,而胰腺生态系统在PDAC发病机理中起着至关重要的作用。

惊讶的是,口腔微生物组也与PDAC的发病机理有关。 根据元流行病学研究,牙周炎是一种主要的口腔菌群失调疾病,可以显着增加PDAC的风险和死亡率。

携带其关键病原体牙龈卟啉单胞菌与PDAC患者的较高风险和死亡率正相关。 在小鼠PDAC模型中,口服牙龈卟啉单胞菌可加速细胞增殖和上皮-间质转化,最终促进PDAC进程。

有趣的是,细胞内牙龈卟啉单胞菌直接促进人胰腺癌细胞系中肿瘤细胞的生长。 这些表明口腔菌群失调可能是直接的病因,也是诊断和预后PDAC发病机理的有用标志

与健康受试者相比,PDAC患者的口腔微生物组有明显变化。 值得注意的是,尽管在人类PDAC组织中已发现了一种广为人知的口腔细菌群Fusobacterium,但其与PDAC预后的关系仍存在争议

此外,PDAC患者的胰腺微生物组与肠道微生物组高度重叠。胰腺和肠道菌群均表现出口腔类群富集细菌和卟啉单胞菌的相对丰度。因此,某些类型的口腔微生物可能迁移到肠道,甚至进一步迁移到胰腺,这可能通过肠道和胰腺微生物群的协调调节促进PDAC的发病。

为了支持这一观点,在PDAC患者的口腔,肠道和胰腺微生物群之间发现了相关性,尤其是口腔起源的F. nucleatum subsp. vincentii亚种的丰度

这些数据表明,口腔-肠道微生物组轴可以调节PDAC的发病机制,甚至进一步创造口腔-肠道-胰腺的微生物途径。

口腔和肠道是人体内最大的两个微生物栖息地。累积证据表明,口腔微生物群可以通过口腔细菌分泌体的直接易位和/或间接地改变整个肠道微生物生态系统。

肠道到口腔的微生物传播也可能发生,特别是在某些情况下,如卫生条件差和免疫功能低下。总之,口腔和肠道微生物群之间的双向串扰可以形成口腔-肠道微生物群轴,它在调节各种人类疾病的发病机制中起着关键作用,主要是在胃肠道系统(见下表)。

结肠疾病中的口腔-肠道微生物群轴

Park Se-Young, et al., Cancers (Basel),2021

肝脏疾病中的口腔-肠道微生物轴

Park Se-Young, et al., Cancers (Basel),2021

胰腺疾病的口腔-肠道微生物组轴

Park Se-Young, et al., Cancers (Basel),2021

值得注意的是,口腔-肠道微生物组轴改善了胃肠道系统的发病机理和预后的预测。荟萃分析表明,口腔微生物组的变化与胃肠道癌的风险有关,包括CRC,PDAC和HCC,这可能是早期发现的潜在指标。已经验证了PDAC特定的口腔微生物模式作为PDAC生物标志物。两种口腔细菌物种长奈瑟菌Neisseria elongata 和 轻型链球菌Streptococcus mitis

同时富集可以将PDAC患者与健康受试者区分开来。

口腔微生物分析的情况下,所述样品可从棉拭取,唾液和口腔冲洗获得。与肠道菌群的采样方法相比,无论健康状况如何,口腔菌群的收集实际上更为方便和可用,没有任何侵袭或卫生问题。因此,结合肠道微生物组,口腔微生物组还提供了作为诊断/预后工具以及治疗靶标的可行优点

未来我们谷禾也将考虑口腔和肠道微生物组的相结合,结合口腔和肠道微生物组数据可以显着提高预测和检测息肉和/或肿瘤的敏感性。尽管揭示微生物组与疾病之间的因果关系具有挑战性。

参考文献:

Zhang, Z.; Yang, J.; Feng, Q.; Chen, B.; Li, M.; Liang, C.; Li, M.; Li, Z.; Xu, Q.; Zhang, L.; et al. Compositional and Functional Analysis of the Microbiome in Tissue and Saliva of Oral Squamous Cell Carcinoma. Front. Microbiol. 2019, 10, 1439

Wypych, T.P.; Wickramasinghe, L.C.; Marsland, B.J. The influence of the microbiome on respiratory health. Nat. Immunol. 2019, 20, 1279–1290

Park Se-Young,Hwang Byeong-Oh,Lim Mihwa et al. Oral-Gut Microbiome Axis in Gastrointestinal Disease and Cancer.[J] .Cancers (Basel), 2021, 13

Bathini, P.; Foucras, S.; Dupanloup, I.; Imeri, H.; Perna, A.; Berruex, J.L.; Doucey, M.A.; Annoni, J.M.; Auber Alberi, L. Classifying dementia progression using microbial profiling of saliva. Alzheimers Dement. 2020, 12, e12000.

Seedorf, H.; Griffin, N.W.; Ridaura, V.K.; Reyes, A.; Cheng, J.; Rey, F.E.; Smith, M.I.; Simon, G.M.; Scheffrahn, R.H.; Woebken, D.; et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 2014, 159, 253–266.

人类肠道核心菌属——韦荣氏球菌属(Veillonella)

谷禾健康

01 简介

韦荣氏球菌属(Veillonella)是革兰氏阴性厌氧性微小球菌,直径0.3~0.5μm,初期培植为革兰氏阳性,过夜转为阴性。光学显微镜下为双球状、片状和短链状,无荚膜,无鞭毛,无芽孢。最适生长温度37℃,最适pH6.5~8.0。

Veillonella该属的成员是非发酵的,它们无法使用碳水化合物或氨基酸,不发酵无法葡萄糖或任何其他碳水化合物(除了有一个种发酵果糖外)或氨基酸,但它们会积极发酵发酵丙酮酸、乳酸、苹果酸、富马酸和草酰乙酸。胰蛋白酶-葡萄糖-酵母提取物肉汤中的主要代谢终产物是乙酸和丙酸。能代谢乳酸产生丙酸、CO2和H2。一些物种产生一种缺乏卟啉的非典型过氧化氢酶。大多数菌株产生气体,如H2S。

在动物和人的自然腔道中大量存在,是分布于口腔、咽部、呼吸道、消化道的常见菌群。其粘附于表面或与其他细菌并形成生物膜的能力对于肠道和口腔微生物群组成和功能至关重要,尤其是在口咽和肠道中。 在一些严重的感染过程中,如菌血症、骨髓炎和心内膜炎,在各种混合感染中起作用。常从软组织脓肿及血液中检出。青霉素已被建议作为韦韦氏菌属病原体感染的治疗选择 。

02 发展史和分类

Veillonella属最早于1898年被Veillon和Zuber分离。Prevot在1933年进一步描述了这些细菌,并提出了目前的分类法。

大多数Veillonella菌是从脓肿,吸入性肺炎,烧伤,叮咬和鼻窦中回收的。在95%例患者中感染是多菌种,但在5%例患者中,纯培养物中回收Veillonella。与该菌检出相关的诱因条件是先前的手术,恶性肿瘤,类固醇治疗,异物和免疫缺陷。。

已知的Veillonella属中已描述了超过10种

人类样品分离出(齿状Veillonella denticariosi,Veillonella dispar,Veillonella montpellierensis,Veillonella rogosae 和 Veillonella tobetsuensis)

非人类动物样品分离出(Veillonella caviae,Veillonella criceti,Veillonella magna,Veillonella ratti和Veillonella rodentium)

Veillonella atenty 从人和其他动物来源分离出。

它们的表型特征,包括形态,主要代谢终产物,产气,硝酸盐还原和琥珀酸脱羧,这些菌株被鉴定为Veillonella属的成员。 多基因座序列分析和相应的系统发育基于16S rRNA,dnaK和rpoB基因,以及新近提出的gltA基因

其中一个重要的菌种,小韦荣球菌(Veillonella parvula)在120年前,当Veillon和Zuber将其从阑尾炎脓肿中分离出来时被发现并被描述。六十年后,同样的微生物被用于第一次观察外膜(OM),从而证明了革兰氏阴性和革兰氏阳性细胞包膜结构之间的关键区别。目前在包括口腔、肺、胃肠道和阴道内的人体多个生态位中发现了Veillonella parvula菌。Veillonella parvula可能在许多环境中发挥重要作用,但其主要生态位是作为口腔中的第二殖民者

03 临床研究结果

与口腔疾病

Veillonella是牙周炎的重要病原体,是舌苔中的本土口腔细菌,而且Veillonella附着在舌头上的能力很高,已被确定为硫化氢(H2S)的主要生产者,H2S是口腔恶臭的主要成分之一。并且在1份报告中,它是慢性上颌窦炎中最常见的厌氧性病原体。

口腔生物膜是一个多物种的社区,敌对双方共存,以保持社区成员的生态平衡。 在早期的口腔生物膜形成的各个阶段中,Veillonella作为早期定居物种可以与许多细菌形成聚集,包括最初的定居者戈登链球菌和牙周病原体Fusobacter nucleatum。 除了为许多微生物提供结合位点外,Veillonella还能为牙周病原体的生存和生长提供营养。 这些发现表明,Veillonella在口腔生物膜的发育和人类口腔生态学中起着重要的“架桥”作用。

Veillonella和链球菌在生态系统(如口腔和结肠)中发生代谢相互作用并经常共生,共存可能部分取决于它们在代谢中的相互作用的潜力。链球菌属参与糖的发酵,产生乳酸作为其主要发酵终产物。反过来,Veillonella也以利用乳酸作为碳和能源的能力而闻名。

全世界龋齿的患病率仍然很高。 当牙齿暴露于产酸微生物通过碳水化合物代谢产生的酸(如乳酸)环境下时,就会引发龋齿。 Veillonella是主要的口腔微生物之一,由于它们具有将乳酸转化为弱酸并从NO3产生NO2的能力,而NO2可以抑制链球菌的生长和代谢。因此,Veillonella被认为对预防龋齿有好处。但是Veillonella代谢乳酸的能力受口腔环境因素(即pH和乳酸)的调节。

与免疫相关

肠道是肠道菌群与粘膜免疫系统相互作用的关键部位。近年来,人们发现Veillonella对人类微生物组,感染和免疫发育的重要影响。研究发现Veillonella parvula是细胞因子和TLR2 / 6信号转导的有效诱导。链球菌与韦永氏菌的组合似乎可以抵消IL-12p70的产生,同时增强IL-8,IL-6,IL-10和TNF-α的反应。

Veillonella的存在与疾病缓解或疾病稳定相关。这些特定的细菌属可能是免疫检查点抑制剂的生物标志物。在单抗治疗的患者中,或许它们可能成为晚期胃癌的特异性生物标志物。

一项研究指出对免疫治疗有响应的患者体内,富含屎肠球菌(Enterococcus faecium),产气柯林斯菌(Collinsella aerofaciens),青春双岐杆菌(Bifidobacterium adolescentis),肺炎克雷伯菌(Klebsiella pneumonia),小韦荣球菌(Veillonella parvula), Parabacteroides merdae, 乳酸杆菌(Lactobacillus species)和长双歧杆菌(B longum)8个菌种。

最近的数据表明,Veillonella parvula可能在儿童早期免疫系统发育中起到保护作用和帮助作用。对婴儿的流行病学研究表明,Veillonella parvula的存在与哮喘、毛细支气管炎和自闭症呈负相关。在有哮喘风险的儿童中,肠道中相对丰富的细菌属Veillonella的相对丰度显著降低。

Prevotella  作为革兰氏阴性菌,产生 LPS 进而诱发炎症反应。与此同时,该菌代谢产生的丙酸盐可以发挥抗炎症的作用。产生相互矛盾的结论背后或许是由于肠道微环境以及菌群构成的不同所导致的。当在肠道中 Veillonella 与唾液链球菌菌株 1 共培养时可降低炎性细胞因子的产生,而与菌株 2 共培养时炎性细胞因子的产生比各自单独培养时显著增加。

链球菌 和Veillonella在肠道微生物群的高丰度和种内遗传多样性,可能是这些菌对由于食物摄入量变化引起的营养物利用率变化而引起的高种群动态的主要驱动因素。这些动态的种群可能会深刻影响当地宿主与微生物之间的相互作用,从而调节肠道的生理和免疫系统功能。

与运动耐力相关

当我们跑步速度较慢时,糖和脂肪可以充分氧化分解成二氧化碳和水,并提供能量。但是,高强度运动后往往会出现肌肉酸痛现象,这是因为运动超过了有氧运动强度,导致葡萄糖通过无氧呼吸在体内代谢产生了乳酸,乳酸堆积会引起局部肌肉酸痛。

体内堆积的乳酸一部分继续分解成丙酮酸,再进一步被分解为二氧化碳和水,一部分则进入肝脏,乳酸可以再次合成糖原,这个过程称为糖异生。

Scheiman及其同事发表在《自然医学》(Nature Medicine)上文章研究了肠道微生物组对精英跑步者运动表现的影响,并确定了属于Veillonella属的一种能增强性能的微生物。比赛结束后,马拉松长跑运动员中富集了非典型的Veillonella atypica菌种。Veillonella 利用乳酸作为碳源, 分析发现乳酸到丙酸的代谢通路的运动后运动员中富集。

图片来源:慧跑

与其他厌氧菌不同,Veillonella atypica具有通过三羧酸循环的乳酸代谢的完整途径。Veillonella细菌可以将乳酸变成丙酮酸,而且体内产生的乳酸可以穿过上皮屏障进入肠腔,也就是说运动中体内积累的乳酸可以运输到肠道,肠道中的veillonella细菌就可以分解乳酸了。

在这个过程中,会产生丙酸,而丙酸可以提高小鼠心率和氧气利用率,丙酸还可以促进人体的新陈代谢。为了验证丙酸是否可以改善运动性能,研究人员给一些小鼠使用丙酸灌肠。与喂食Veillonella atypica 菌株的小鼠相同,这些使用丙酸灌肠的小鼠的运动时间也明显增加了。科学家们还给小鼠注射了可以追踪的乳酸,发现这些乳酸会进入到肠道。 而且乳酸有助于这种微生物的生长。

总的来说,葡萄糖因肌肉运动产生乳酸,一部分乳酸通过血液循环进入肝脏,在肝脏中通过糖异生作用重新合成葡萄糖;一部分乳酸通过血液循环进入肠道,肠道中的Veillonella属细菌迅速将乳酸分解成丙酸,从而降低乳酸浓度,改善运动表现。

哺乳动物肠道微生物组可能会通过肌肉衍生的乳酸代谢为丙酸酯来为其宿主提供额外的跑步耐力能力提升。 此外,由于在多个独立的人体研究中,相对于久坐的控制者,经常运动者中的Veillonella菌增加了,这增加了这些微生物通过利用独特的代谢环境(L-乳酸代谢)而在运动员的肠道中具有适应性优势的可能性。 这可能会导致积极的反馈循环,从而以较小的能力加强锻炼。 换句话说,由于预期重复运动会导致肠道L-乳酸浓度增加,L-乳酸代谢物的代谢位扩大,因此,这些L-乳酸代谢物反过来有望提高运动的耐力。  

与其他疾病

原发性硬化性胆管炎

原发性硬化性胆管炎(PSC)是一种罕见的、以肝内外胆管受损为主要特征的原发疾病,易导致胆管炎症和肝纤维化的发生而原发性硬化性胆管炎。

PSC患者肠道菌群某些菌群丰富度也会产生相应变化。特别是韦荣球菌(Veillonella)、肠球菌(Enterococcus)和链球菌(Streptococcus),其丰度显著升高。Veillonella可以通过肠道淋巴细胞进入肝脏。而肠球菌则是一种对万古霉素敏感的细菌,它可以通过分泌金属蛋白酶分解上皮钙黏蛋白破坏肠屏障。

肝病

在NAFLD和NASH中有几项研究确定,随着纤维化的进展,微生物群结构和功能恶化。晚期纤维化和NASH与碳水化合物和脂质代谢的变化有关,因为他们观察到相应功能的细菌含量增加。酒精性肝炎患者或肝脏疾病患者Veillonella和Enterococcus丰度显著增加,而Veillonella parvula的丰度与白蛋白和血小板计数呈负相关。事实上,在所有3项肝硬化研究中,患者体内的几种Veillonella species的丰度都发生了改变。

肺癌

与对照组相比,肺癌患者的口腔菌群增加,特别是Streptococcus和Veillonella。口腔菌群的增加与PI3K和ERK上调有关。在体外实验中,气道上皮细胞暴露于Veillonella,Prevotella和Streptococcus也会导致ERK和PI3K通路上调(Tsay et al,2018)。PI3K通路被认为是肺癌发生的早期事件,因此共生微生物群失调会上调该通路促进肺癌发生。

胰腺癌

结果显示患有胰腺癌的病人组中三种口腔微生物Streptococcus,Treponema和Veillonella的组分显著低于其他组别。

其他

子痫前期患者会富集 Fusobacterium, Veillonella,Clostridum 等这些细菌。剖腹产的新生儿粪便微生物群富含Veillonella dispar/V这表明皮肤、口腔微生物以及出生过程中周围环境中的细菌是第一批在这些婴儿中定殖的细菌。

与对照组相比,后发展为T2D的研究对象Veillonella dispar的丰度较低,结果表明肠道菌群中的该物种可能与参与宿主血糖调节。

在肥胖的男性中观察到韦荣氏球菌属(Veillonella)和产甲烷短杆菌属(Methanobrevibacter)高于女性。 在吸烟人群中,Veillonella dispar的脂多糖生物合成通路相关的基因出现频率较高。

04 结 语

口腔,捏着呼吸道的脉搏,牙好胃口好,也不是句空话。Veillonella作为口腔和肠道的重要“居民”,它的定植,丰度以及与其他菌落共存的能力决定和影响着人体的口腔和消化道甚至肝肺胃疾病。

相关阅读:

正确认识幽门螺杆菌

细菌大盘点(二) | 葡萄球菌、沙门氏菌、弯曲杆菌

细菌大盘点 | 大肠埃希氏菌、血链球菌、李斯特菌

主要参考文献:

Yu Sunakawa, et al. Genomic pathway of gut microbiome to predict efficacy of nivolumab in advanced gastric cancer: DELIVER trial (JACCRO GC-08). ASCO GI. Jan 15-17, 2021. ABSTRACT 161.

Jackson, M.A., Goodrich, J.K., Maxan, M.-E., Freedberg, D.E., Abrams, J.A., Poole, A.C., Sutter, J.L., Welter, D., Ley, R.E., Bell, J.T. et al. (2015) Proton pump inhibitors alter the composition of the gut microbiota. Gut, 65, 749-756.

Shi, Y.-C., Cai, S.-T., Tian, Y.-P., Zhao, H.-J., Zhang, Y.-B., Chen, J., Ren, R.-R., Luo, X., Peng, L.-H., Sun, G. et al. (2019) Effects of Proton Pump Inhibitors on the Gastrointestinal Microbiota in Gastroesophageal Reflux Disease. Genom Proteom Bioinform, 17, 52-63.

Bajaj, J.S., Acharya, C., Fagan, A., White, M.B., Gavis, E., Heuman, D.M., Hylemon, P.B., Fuchs, M., Puri, P., Schubert, M.L. et al. (2018) Proton Pump Inhibitor Initiation and Withdrawal affects Gut Microbiota and Readmission Risk in Cirrhosis. 113, 1177-1186.

Wang L, Yu X, Xu X, Ming J, Wang Z, Gao B, Xing Y, Zhou J, Fu J, Liu T, Liu X, Garstka MA, Wang X and Ji Q (2021) The Fecal Microbiota Is Already Altered in Normoglycemic Individuals Who Go on to Have Type 2 Diabetes. Front. Cell. Infect. Microbiol. 11:598672. doi: 10.3389/fcimb.2021.598672  

Wong-Rolle A, Wei HK, Zhao C, Jin C. Unexpected guests in the tumor microenvironment: microbiome in cancer. Protein Cell. 2020 Dec 9. doi: 10.1007/s13238-020-00813-8. Epub ahead of print. PMID: 33296049.

Metagenomic analysis of bacterial species in tongue microbiome of current and never smokers 03-13, doi: 10.1038/s41522-020-0121-6 

Scheiman J, Luber JM, Chavkin TA, MacDonald T, Tung A, Pham LD, Wibowo MC, Wurth RC, Punthambaker S, Tierney BT, Yang Z, Hattab MW, Avila-Pacheco J, Clish CB, Lessard S, Church GM, Kostic AD. Meta-omics analysis of elite athletes identifies a performance-enhancing microbe that functions via lactate metabolism. Nat Med. 2019 Jul;25(7):1104-1109. doi: 10.1038/s41591-019-0485-4. Epub 2019 Jun 24. PMID: 31235964; PMCID: PMC7368972.

Djais AA, Theodorea CF, Mashima I, Otomo M, Saitoh M, Nakazawa F. Identification and phylogenetic analysis of oral Veillonella species isolated from the saliva of Japanese children. F1000Res. 2019 May 3;8:616. doi: 10.12688/f1000research.18506.5. PMID: 31448103; PMCID: PMC6688723.

Mashima I, Theodorea CF, Djais AA, Kunihiro T, Kawamura Y, Otomo M, Saitoh M, Tamai R, Kiyoura Y. Veillonella nakazawae sp. nov., an anaerobic Gram-negative coccus isolated from the oral cavity of Japanese children. Int J Syst Evol Microbiol. 2021 Jan;71(1). doi: 10.1099/ijsem.0.004583. Epub 2020 Dec 2. PMID: 33263509.

Rovery C, Etienne A, Foucault C, Berger P, Brouqui P. Veillonella montpellierensis endocarditis. Emerg Infect Dis. 2005 Jul;11(7):1112-4. doi: 10.3201/eid1107.041361. PMID: 16022792; PMCID: PMC3371781.

Maqsood A. Bhatti, Michael O. Frank, Veillonella parvula Meningitis: Case Report and Review of Veillonella Infections, Clinical Infectious Diseases, Volume 31, Issue 3, September 2000, Pages 839–840, 0人

1