谷禾健康
爱格氏菌属(Eggerthella),厌氧、不产生孢子、不活动的革兰氏阳性杆菌,是人类肠道微生物组的常见成员,人群检出率比较高,属于放线菌门。
大多数时候,Eggerthella与多种疾病相关
Eggerthella存在于人类结肠和粪便中,并被认为是溃疡性结肠炎、肝和肛门脓肿以及全身性菌血症的原因。
研究表明Eggerthella还与多种人类慢性疾病有关,包括哮喘、抑郁、肾病、多发性硬化症和类风湿性关节炎,尽管Eggerthella在这些疾病中的因果作用尚未确定。
哮喘
出生队列研究和大型国际研究发现哮喘与生命早期抗生素使用之间存在关联,特别是关于头孢菌素类和大环内酯类药物。研究发现,在大环内酯类暴露后观察到的Eggerthella水平增加了10倍。大多数Eggerthella是病原体并可能促进炎症反应。来自动物模型的实验证据表明,生命早期使用抗生素会破坏微生物群,从而破坏免疫系统的发育,导致易感个体的气道反应过度。
神经系统疾病
多项研究表明在抑郁,情感障碍以及精神分裂患者中Eggerthella丰度富集。
有16项观察到重度抑郁症患者和健康对照者之间的肠道微生物群组成存在显著差异。与健康对照相比,重度抑郁症患者的Eggerthella、Atopobium、Bifidobacterium的相对丰度增加,粪杆菌的相对丰度降低。
在患有认知障碍的老年人肠道中,Lachnospiraceae、Eggerthellaceae、Dorea、Blautia、Eggerthella的丰度减少,而Veillonellaceae增加。然而,在衰老过程中,这些变化并没有出现。表明衰老过程中和认知障碍特有的微生物群变化是独立于年龄的。
用于早期诊断肝细胞癌的微生物标志物
一项研究评估中国人群乙型肝炎病毒相关肝病(包括慢性乙型肝炎、肝硬化和肝细胞癌)肠道微生物组的改变,Eggerthella的相对丰度随着HC向慢性乙型肝炎和肝硬化的进展而逐渐降低,但在肝细胞癌中显著增加。
肌肉减少症合并肝硬化
肌肉减少症肝硬化患者的肠道微生物群缺乏与身体功能相关的细菌(甲烷杆菌、普雷沃氏菌和阿克曼菌),并且富含Eggerthella,这是一种虚弱的肠道微生物标志物。
肾病
在肾病中该菌的增加或减少有争议,在人类肾脏疾病的肠道微生物群数据库中发现 Eggerthella 属减少。然而,一项横断面研究,评估了中国原发性IgA肾病患者粪便菌群特征,与健康对照组相比,IgA肾病组中显著增加的属为Escherichia-Shigella、Hungatella、Eggerthella。
影响药物吸收和脂质水平
Eggerthella和相关的人类肠道Coriobacteriaceae 细菌还参与多种代谢转化,包括广泛使用的心脏药物地高辛的灭活、膳食植物化学物质的各种反应、儿茶酚的脱羟基以及胆汁的代谢酸。
一些Eggerthella菌株负责将地高辛转化为一种无活性的微生物代谢产物,限制了10%左右的患者吸收到系统血流中的活性药物的数量。 最近的研究证明,地高辛与抗生素或富含精氨酸的饮食共同给药,都会导致全身地高辛水平升高和药物水平的临床相关波动。
注:地高辛(Digoxin)是一种强心苷类药物,主要用于治疗心力衰竭和某些心律失常。
此外,Eggerthella与甘油三酯增加和高密度胆固醇减少存在相关性,它可通过将胆固醇转化为不可吸收的粪甾醇和粪甾酮,或将胆固醇转移至胆汁酸代谢过程中,直接限制体循环中的胆固醇水平,从而影响脑血管的发展。Eggerthella 也被证明参与生物活性次生植物化合物的代谢,例如葡萄中的白藜芦醇或大豆中的大豆苷元。
Eggerthella作为有潜在保护菌
谵妄被定义为一种突然、精神状态下降的临床综合征,其特征是意识模糊和认知状态波动,一项
大规模孟德尔随机化研究显示,Eggerthella属与谵妄的风险降低有关(P = 0.047)。
代表菌种:迟缓埃格特菌
该属的典型菌种是Eggerthella lenta(迟缓埃格特菌)。Eggerthella lenta 可引起血流感染,被认为是一种机会性人类病原体。
越来越多的研究表明,它也可能是人类的重要病原体,甚至在某些条件下引起危及生命的感染。Eggerthella lenta已从血液、脓肿、伤口、皮肤溃疡、产科和泌尿生殖道感染以及腹腔内感染中分离出来。
危险因素
危险因素包括免疫功能受损状态(类固醇使用、近期化疗、终末期肾病和糖尿病)、恶性肿瘤和胃肠道疾病,如溃疡性结肠炎和克罗恩病。
Eggerthella lenta菌血症最常见的潜在健康状况是实体癌或血液器官癌、糖尿病和心血管疾病。而所有这些患者的主要感染源是胃肠道、皮肤和软组织和脓肿。
在所有首发症状中,阑尾炎所占比例最高,远高于第二大的结肠炎。阑尾炎常伴有穿孔甚至腹膜炎。
Eggerthella lenta通常存在于消化道中,但可能会导致因胃肠道疾病导致粘膜内层破坏的患者或免疫系统受损的患者发生全身感染。然而,其他研究表明,患有癌症、褥疮、阑尾炎和糖尿病的患者更容易患迟缓埃格特菌菌血症。
Eggerthella lenta 非运动型革兰氏阳性杆状体和革兰氏染色形态
这些生物体能够扩展人类超级生物体的代谢潜力,在多糖的消化、维生素和氨基酸的合成以及内源性化合物的修饰中发挥重要作用。此外,它们在外源物质(包括药物、膳食化合物和环境毒素)的代谢中发挥着重要作用,影响这些化合物的生物利用度、活性和毒性。
例如,某些Eggerthella lenta菌株还可以使药物 L-多巴(一种用于治疗帕金森病的多巴胺的氨基酸前体)失活,因为该细菌能够将 L-多巴代谢物多巴胺脱羟基为间酪胺。
此外,Eggerthella lenta还会把白藜芦醇转化为二氢白藜芦醇。
有研究从人类肠道菌群中分离出一种能够有效代谢白藜芦醇的细菌Eggerthella lenta J01,通过诱导富集转录组学和生物信息学分析,研究人员进一步鉴定了来自 E. lenta J01 的白藜芦醇还原酶 (RER),该酶特异性催化白藜芦醇的 C9-C10 双键氢化并启动白藜芦醇的体内代谢。
注:RER及其同系物代表了一类新型的烯还原酶。健康个体肠道菌群中RER的丰度显著高于炎症性肠病患者,表明其至关重要的生理功能。
关于白藜芦醇和二氢白藜芦醇:
• 白藜芦醇
白藜芦醇是一种强抗氧化剂,可以中和自由基,减少氧化应激对细胞的损害。
潜在健康益处:
1.心血管健康:研究表明白藜芦醇有助于降低低密度脂蛋白胆固醇(LDL-C)水平,增强动脉弹性,减少心血管疾病的风险。
2.抗炎作用:白藜芦醇具有抗炎特性,可以减少炎症反应,对抗慢性炎症相关的疾病。
3.抗癌潜力:白藜芦醇的抗癌作用在实验室研究中得到了很大关注,它能抑制癌细胞的生长和扩散。
4.延缓衰老:白藜芦醇可能通过激活某些基因(如SIRT1)来延缓衰老过程。
• 二氢白藜芦醇
二氢白藜芦醇是白藜芦醇的代谢产物,通常通过肠道微生物的代谢活动生成。
潜在健康益处:
1.抗氧化作用:与白藜芦醇一样,二氢白藜芦醇也具有抗氧化特性,可以保护细胞免受氧化损伤。
2.抗炎作用:也具有抗炎特性,可能对抗慢性炎症。
3.肠道健康:作为肠道微生物代谢的产物,二氢白藜芦醇可能对肠道健康有益。
大多数研究集中在白藜芦醇上,而关于二氢白藜芦醇的研究相对较少。因此,更广泛且深入的研究可能仍需要对二氢白藜芦醇的确切健康益处进行验证。从现有研究来看,白藜芦醇因其广泛的健康效益被更多地关注和研究。
超过五十种不同的药物化合物已被确定对这种代谢改变敏感。参与这些生物转化过程的一种人类肠道共生细菌是迟缓埃格特菌(Eggerthella lenta) (以前称为迟缓真杆菌)。
该菌的名字来源于 Arnold Eggerth,他于 1935 年首次描述了这种细菌。从历史上看,由于该生物体生长缓慢且物种形成需要营养密集型,因此很难培养和鉴定。16S rRNA 基因测序的出现使得鉴定变得更加快速和准确。鉴于其高死亡率,由这种微生物引起的菌血症始终具有重要的临床意义,并需要立即寻找其来源。
干预
抗生素
尽管缺乏临床指南,但是治疗成功案例报告对抗迟缓肠球菌感染最有效的抗菌药物是甲硝唑、阿莫西林克拉维酸和碳青霉烯类;它对头孢曲松具有耐药性。
但之前的病例报告也报道使用广谱 β-内酰胺(例如碳青霉烯或哌拉西林-他唑巴坦)单一疗法或甲硝唑加 β-内酰胺联合疗法取得成功。
注:哌拉西林他唑巴坦 (TZP) 是一种覆盖厌氧菌的广谱联合抗菌剂,通常用于腹腔内感染的经验性治疗。
此外,头孢唑肟,也显示出良好的疗效。
中药
对抗生素诱导腹泻小鼠进行七味白术散灌胃3天后发现,可特异性地产生门乳糖酶的肠道菌群如放线菌门、厚壁菌门和变形菌门,具有明显的检测水平。与其他组相比,来自治疗组小鼠Acidovorax sp.KKs102、Stenotrophomonas sp. LMG11000、Pseudomonas oleovorans、 Eggerthella 、Burkholderia的乳糖酶基因表达更丰富。七味白术散治疗对腹泻的疗效可能与其促进新的或一些关键的乳糖酶产生菌株的生长有关。
一项随机对照研究显示,益肾化湿颗粒可降低慢性肾病患者蛋白尿,减轻肠道菌群失调,益肾化湿颗粒干预4个月后,Faecalibacterium、Lachnospiraceae、Lachnoclostridium、Sutterella等对机体有益的细菌相对丰度明显增加,而Eggerthella和Clostridium innocuum组等致病菌相对丰度降低。
益生菌
在12周植物乳杆菌Q180干预后,Eggerthella的丰度趋向于减少。Eggerthella所属的放线菌门在内源性脂质代谢中起作用,并且与血浆胆固醇呈正相关。此外,有研究通过年龄、性别和宿主基因分析了肠道微生物群与脂质水平的关系,发现Eggerthella属的丰度与其有显著正相关。在上述研究中,Eggerthella属被证明会增加血液甘油三酯水平并降低HDL胆固醇。因此,目前的结果表明,摄入植物乳杆菌Q180可能通过减少Eggerthella的水平来改善血脂。
长双歧杆菌(B.longum)可改善心血管疾病。研究人员通过体外厌氧发酵研究了从健康人粪便中分离的长双歧杆菌L556在冠心病患者中的作用。结果显示,在冠心病患者的肠道微生物群中,长双歧杆菌L556增加了乳酸杆菌、粪杆菌、普雷沃氏菌和Alistipes,同时减少厚壁菌/拟杆菌门、Eggertella、Veillonella、Holdemanella、Erysiperotrichacee_UCG-003。长双歧杆菌 L556还通过调节肠道微生物群和SCFAs等代谢产物来增强抗炎作用。此外,它还调节冠心病组发酵代谢产物中的脂质和氨基酸代谢。
饮食
调查研究发现健康饮食分数越高,该菌的丰度相对更低。■
•◆
Flavonifractor(解黄酮菌属)属于厚壁菌门,梭菌目,通常为革兰氏阳性,大多数物种形成椭圆形/球形内孢子,通常为过氧化氢酶阴性,大多数物种是专性厌氧的,尽管对氧气的耐受性差异很大。
肠道微生物群中 Flavonifractor 丰度升高与较高的情感障碍相关,吸烟和女性是造成这种关联的原因之一,可能导致氧化应激增强,以及儿茶酚途径和低度炎症有关。此外,肠癌或息肉病人该菌富集。
该菌的典型菌种是 Flavonifractor plautii ,是人类肠道微生物中一种常见的专性厌氧菌,通常黏附在肠壁上,在粪便中可提取得到。 Flavonifractor plautii可以通过裂解类黄酮分子的 C 环来降解类黄酮。黄酮类化合物是人类饮食的重要成分,主要由具有广谱药理活性的多酚类次级代谢产物组成。
几种常见的黄酮类食物,如茶、咖啡、苹果、番石榴、榄仁树皮、葫芦巴籽、芥菜籽、肉桂、红辣椒粉、丁香、姜黄和豆类,都含有大量的类黄酮。因此为了最大限度发挥类黄酮潜在有益作用和生物利用度,需要控制Flavonifractor plautii其丰度。
Flavonifractor 作为有益菌
肥胖
Flavonifractor 是肠道健康的重要菌群,其含量与肥胖呈负相关。
口服Flavonifractor plautii可减轻肥胖脂肪组织的炎症反应,F. plautii可能参与抑制炎症环境中的 TNF-α 表达。
前列腺癌
PRACTICAL 和 FinnGen 联盟汇总的数据结果表明,Eubacterium fissicatena和Odoribacter与前列腺癌风险增加有关。相反,Adlercreutzia、Roseburia、Holdemania、Flavonifractor、Allisonella属则是预防前列腺癌的潜在保护因素。
过敏(哮喘)
针对690名参与者生命第一年期间肠道微生物 (16S rRNA 测序)与随后的哮喘风险相关联研究显示,Veillonella与 5 年内较高的哮喘风险相关;而罗斯氏菌、Alistipes和Flavonifractor的相对丰度较高,与哮喘风险较低有关。
糖尿病
两项或以上研究中一致报告的变化,可以明显看出下列细菌在糖尿病前期和新发糖尿病中有所增加,包括乳杆菌、链球菌、埃希氏菌、Veillonella 、Collinsella等,而普拉梭菌、Roseburia、Dialister、Flavonifractor、 Alistipes、Haemophilus 、Akk菌则减少。这些菌作为健康生物标志物的作用已被广泛认可,其有益效果主要归因于其生产短链脂肪酸,尤其是丁酸盐的能力,这对于维持肠道屏障的完整性、能量稳态、减轻炎症和调节血糖反应起着重要作用。
其他
个别研究报道,口服 Flavonifractor plautii(一种在绿茶摄入量中增加的肠道细菌)可通过抑制 IL-17 信号传导促进小鼠急性结肠炎的恢复。
口服 Flavonifractor plautii 可有效抑制小鼠的 Th2 免疫反应,可能有助于减轻抗原诱导的 Th2 免疫反应。
与Flavonifractor 过高相关的疾病
神经系统疾病(抑郁、认知障碍)
肠道微生物群中Flavonifractor 丰度升高与较高的情感障碍相关,Flavonifractor属的种类增加和抑郁症相关。
注:一项研究显示,在重度抑郁症和所有个体中,Flavonifractor 与疲劳呈正相关。
Flavonifractor与新诊断的双相情感障碍有关。
NEAD 研究 (左) 和BIO研究 (右) 中情感障碍 (AD) 患者、其未受影响的亲属 (UR)和健康个体 (HC) 中Flavonifractor的流行率
doi.org/10.1016/j.pnpbp.2021.110300
一项双样本孟德尔随机化研究显示,鞘磷脂水平与Flavonifractor呈负相关 (p = 0.026, beta 95%CI = -0.218 [-0.411, -0.026]) 。鞘磷脂代谢异常可能与阿尔茨海默病的发病机制有关。在患有认知障碍的老年个体中, Flavonifractor 属也被发现有所增加。
结直肠癌
肠癌或息肉病人该菌富集。
来自江南大学食品科学与技术国家重点实验室团队的对 85 名接受结肠镜检查的结直肠癌患者的样本进行了 16S rRNA 测序、代谢组学和蛋白质组学研究,结果发现Catabacter、Mogibacterium的相对丰度从粘膜内癌到晚期持续增加,而Clostridium、Anaerostipes、Vibrio、Flavonifractor、Holdemanella和Hungatella仅在中期病变中发生显著改变。
血清代谢组学发现,在中期病变阶段,胆素、甘油酯和核苷水平最高,而胆汁酸和氨基酸水平最低。
食管癌
食管癌是目前全球最常见的恶性肿瘤之一,发病率位居第九位。食管癌可分为两种主要病理亚型:食管鳞状细胞癌(ESCC)和食管腺癌(EAC)。
一项双样本孟德尔随机化研究显示,在食管腺癌 (EAC) 的情况下,Flavonifractor表现出正相关性。
慢性心力衰竭合并心房颤动
小型研究显示,慢性心力衰竭合并心房颤动患者肠道菌群显著富集在Flavonifractor属(p=0.003,FDR p adj =0.12)和 L-赖氨酸生物合成途径(p=0.04,FDR p adj =0.26),而Alistipes属(p=0.02,FDR p adj =0.29)和淀粉降解(p=0.02,FDR p adj =0.26)和糖酵解(p=0.03,FDR p adj =0.26)途径,相对缺乏。
慢性肾病
根特大学医院招募的 110 名非慢性肾病和慢性肾病患者,Flavonifractor属在慢性肾病个体中的水平高于非慢性肾病个体。
泌尿道结石
泌尿道结石可引起一系列并发症,如尿路阻塞、感染、不适以及对肾脏的潜在不可逆损害。
一项双向双样本孟德尔随机化研究显示,Flavonifractor 属丰度增加(IVW OR = 0.69,95%CI 0.53-0.91,P = 8.57 × 10-3)与尿路结石形成风险降低之间存在因果关系。
肌肉减少症
肌肉减少症是一种与年龄相关的全身性骨骼肌疾病,其特征是肌肉质量损失和肌肉功能下降,它会增加跌倒、骨折、残疾等有害后果的风险。与 正常骨骼肌质量组相比,低骨骼肌质量组中的Flavonifractor属大幅增加。
酒渣鼻(红斑痤疮)
一项横断面对照试点研究显示,与年龄和性别匹配的对照者相比,红斑痤疮中的Flavonifractor plautii显著增加(coef. 0.011,p = 0.037)。
注:被认定为诱发红斑痤疮的食物比有益食物多。主观上认为酒精是主要的饮食诱因,其次是香料、精制糖、油炸/油腻食物、热食、咖啡、乳制品、肉类和糖替代品。而蔬菜、水果、鱼、益生菌、茶、全麦和豆类被认为是最有利的。
典型菌种 Flavonifractor plautii
Flavonifractor plautii,是人类肠道微生物中一种常见的专性厌氧菌,通常黏附在肠壁上,在粪便中可提取得到。这个细菌还有一个超能力,它可以「吃掉」红细胞的 A 抗原。
Flavonifractor plautii可以通过裂解类黄酮分子的 C 环来降解类黄酮。黄酮类化合物是人类饮食的重要成分,主要由具有广谱药理活性的多酚类次级代谢产物组成。从流行病学、临床前和临床研究中积累的证据支持这些多酚在预防癌症、心血管疾病、2 型糖尿病和认知功能障碍方面的作用。
Flavonifractor plautii 改善动脉硬化程度
人类粪便宏基因组测序显示,在正常对照组中,F. plautii丰度显著较高,并在微生物群落中处于中心地位,而在动脉僵硬度升高的受试者中,F. plautii缺失。此外,血压只部分介导了F. plautii对降低动脉僵硬度的影响。
正常对照组的微生物组表现出增强的糖酵解和多糖降解能力,而动脉僵硬度增加的受试者的微生物组则以脂肪酸和芳香族氨基酸的生物合成增加为特征。
整合代谢组学分析进一步表明,顺式乌头酸的增加是F. plautii对动脉硬化保护作用的主要效应物,通过抑制基质金属蛋白酶-2的激活,维持弹性纤维网络,缓解动脉功能障碍。
doi.org/10.1161/CIRCRESAHA.122.321975
如何调节
★ 增加
一项随机、单盲、平行组、安慰剂对照研究显示,红茶摄入增加了肠道中Flavonifractor plautii的数量,尤其是在基线水平较低的个体中。
一项交叉研究显示,乳制品摄入会改变高胰岛素血症个体的肠道微生物群组成,其中Faecalibacteria(p = 0.05)和Flavonifractor(p = 0.06)丰度增加,Flavonifractor的丰度变化与HOMA-IR的变化呈负相关。
注:HOMA-IR为胰岛素抵抗的稳态模型评估
在一项小鼠实验中,帕金森患者在7天的利福昔明治疗在治疗6个月后导致Flavonifractor的相对丰度增加,血浆促炎细胞因子水平的变化与基线血浆白细胞介素-1α水平呈负相关。
膳食纤维改善了结肠炎引起的肠道微生物种类减少问题。其中可溶性膳食纤维的效果更明显:大豆壳膳食纤维通过调节肠道菌群和抑制TLR-4/NF-κB信号通路来缓解BALB/C小鼠的炎症,在属水平上Barnesiella、乳杆菌、瘤胃球菌、Flavonifractor的相对丰度都比正常对照组更高。
在结肠癌模型中,小蘖碱治疗改善了隐窝的发育不良和粘膜中的腺瘤增生,并减少了结肠癌的发生。此外,小蘖碱治疗后放线菌门、疣微菌门、双歧杆菌、Barnesiella和Odoribacter的相对丰度减少,而Alloprevotella、Flavonifractor、 Oscillibacter和副拟杆菌的相对丰度增加。
★ 减少
一项研究显示,灰树花杂多糖在喂食高脂饮食的大鼠中改善非酒精性脂肪肝的能力。与高脂饮食组相比,补充灰树花杂多糖组的大鼠肠道菌群中Flavonifractor显著降低。
一项多中心、随机、双盲、安慰剂对照临床试验的结果显示,与安慰剂相比,乳香树提取物治疗后,非酒精性脂肪肝患者Flavonifractor相对丰度较低。
贝特类药物治疗后,非酒精性脂肪肝患者肠道菌群中的Flavonifractor下降。
注:关于非酒精性脂肪肝患者黄酮类化合物特征的数据是矛盾的,与健康人相比,其水平要么增加,要么减少。
一项针对复发性尿路感染女性的安慰剂对照研究,长期每日食用蔓越莓,研究组之间检测到的唯一显著差异是Flavonifractor属 OTU41,与安慰剂消费者相比,蔓越莓消费者的OTU41相对丰度显著降低。
注:有研究表明,24 周内每天饮用蔓越莓饮料的复发性复发性尿路感染患者中,复发性尿路感染症状减少了 39%。
一项随机对照实验显示,食用油炸肉的受试者的IGI值(胰岛素生成指数)低于对照组,但胰岛素和脂多糖、TNF-α、IL-10和IL-1β水平的MIRI(肌肉胰岛素抵抗指数 )和AUC值较高(P < 0.05)。油炸肉摄入降低了Lachnospiraceae、Flavonifractor,增加了Dialister、Dorea 、Veillonella丰度 (FDR <0.05)。油炸肉类的摄入会影响肠道菌群和微生物宿主共代谢物,从而损害血糖稳态并增加肠道内毒素和全身炎症水平。
注:该研究中共 117 名超重成年人被随机分为两组。59 名参与者每周提供四次煎炸肉类,58 名参与者被限制食用煎炸肉类。
一项随机临床试验比较低FODMAP黑麦面包与普通黑麦面包对肠易激综合征患者肠道菌群的影响,结果显示食用低FODMAP黑麦面包减少了拟杆菌、Flavonifractor、Holdemania、Parasutterella和克雷伯菌的丰度,并显示出双歧杆菌增加的趋势。Flavonifractor利用γ-氨基丁酸(GABA)作为生长基质,因此该菌过多的话可能减少肠道中的GABA含量。由于GABA在肠道中具有多种调节作用,包括减少通便时间和缓解疼痛,增加谷物纤维摄入会减少IBS患者体内“食GABA”菌Flavonifractor的数量。通过饮食调整减少Flavonifractor丰度并增加双歧杆菌丰度可能有助于缓解IBS患者的腹痛或加速通便时间。
注:在患有功能性胃肠道疾病的自闭症儿童的直肠黏膜中发现了较高水平的Flavonifractor,尤其是那些报告有腹痛的儿童。Flavonifractor的数量与组织活检样本中的5-羟色胺水平呈线性相关。在抑郁成年人的粪便中也检测到了较高水平的Flavonifractor。这些都加强了进一步研究的理由,以阐明Flavonifractor、肠道疼痛和情绪障碍之间的联系。
主要参考文献:
Wang J, Guo R, Ma W, Dong X, Yan S, Xie W. Eggerthella lenta Bacteremia in a Middle-Aged Healthy Man with Acute Hepatic Abscess: Case Report and Literature Review, 1970-2020. Infect Drug Resist. 2021 Aug 19;14:3307-3318.
Wong D, Aoki F, Rubinstein E. Bacteremia caused by Eggerthella lenta in an elderly man with a gastrointestinal malignancy: A case report. Can J Infect Dis Med Microbiol. 2014 Sep;25(5):e85-6.
James A S, Chaudhari D S, Jain S, et al. Specific Microbiome Signature Dynamics Could Predict Aging Continuum and Cognitive Impairment in Older Adults[J]. Physiology, 2024, 39(S1): 1991.
Hu, X., Du, J., Xie, Y. et al. Fecal microbiota characteristics of Chinese patients with primary IgA nephropathy: a cross-sectional study. BMC Nephrol 21, 97 (2020)
Vázquez-Martínez ER, García-Gómez E, Camacho-Arroyo I, González-Pedrajo B. Sexual dimorphism in bacterial infections. Biol Sex Differ. 2018;9(1):27.
Cho G.-S., Ritzmann F., Eckstein M., Huch M., Briviba K., Behsnilian D., Neve H., Franz C.M.A.P. Quantification of Slackia and Eggerthella spp. in human feces and adhesion of representatives strains to Caco-2 cells. Front. Microbiol. 2016;7:658.
Haiser H.J., Seim K.L., Balskus E.P., Turnbaugh P.J. Mechanistic insight into digoxin inactivation by Eggerthella lenta augments our understanding of its pharmacokinetics. Gut Microbes. 2014;5:233–238.
Yu H, Wan X, Yang M, Xie J, Xu K, Wang J, Wang G, Xu P. A large-scale causal analysis of gut microbiota and delirium: A Mendelian randomization study. J Affect Disord. 2023 May 15;329:64-71.
Gupta RS, Chen WJ, Adeolu M, Chai Y. Molecular signatures for the class Coriobacteriia and its different clades; proposal for division of the class Coriobacteriia into the emended order Coriobacteriales, containing the emended family Coriobacteriaceae and Atopobiaceae fam. nov., and Eggerthellales ord. nov., containing the family Eggerthellaceae fam. nov. Int J Syst Evol Microbiol. 2013 Sep;63(Pt 9):3379-3397.
Korpela, K., Salonen, A., Virta, L. et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun 7, 10410 (2016).
Koppel N., Bisanz J.E., Pandelia M.-E., Turnbaugh P.J., Balskus E.P. Discovery and characterization of a prevalent human gut bacterial enzyme sufficient for the inactivation of a family of plant toxins. eLife. 2018;7:e33953.
Dong X, Zhang J, Li W, et al. Yi-Shen-Hua-Shi regulates intestinal microbiota dysbiosis and protects against proteinuria in patients with chronic kidney disease: a randomized controlled study[J]. Pharmaceutical Biology, 2024, 62(1): 356-366.
Ponziani FR, Picca A, et al., GuLiver study group. Characterization of the gut-liver-muscle axis in cirrhotic patients with sarcopenia. Liver Int. 2021 Jun;41(6):1320-1334.
Park, Y.E.; Kim, M.S.; Shim, K.W.; Kim, Y.-I.; Chu, J.; Kim, B.-K.; Choi, I.S.; Kim, J.Y. Effects of Lactobacillus plantarum Q180 on Postprandial Lipid Levels and Intestinal Environment: A Double-Blind, Randomized, Placebo-Controlled, Parallel Trial. Nutrients 2020, 12, 255
Yang, L., Wu, Y., Zhao, X. et al. An In Vitro Evaluation of the Effect of Bifidobacterium longum L556 on Microbiota Composition and Metabolic Properties in Patients with Coronary Heart Disease (CHD). Probiotics & Antimicro. Prot. (2024).
Claus S.P., Ellero S.L., Berger B., Krause L., Bruttin A., Molina J., Paris A., Want E.J., de Waziers I., Cloarec O., et al. Colonization-induced host-gut microbial metabolic interaction. mBio. 2011;2:e00271-10.
Bode L.M., Bunzel D., Huch M., Cho G.-S., Ruhland D., Bunzel M., Bub A., Franz C.M.A.P., Kulling S.E. In vivo and in vitro metabolism of trans-resveratrol by human gut microbiota. Am. J. Clin. Nutr. 2013;97:295–309.
Kawada Y., Goshima T., Sawamura R., Yokoyama S., Yanase E., Niwa T., Ebihara A., Inagaki M., Yamaguchi K., Kuwata K., et al. Daidzein reductase of Eggerthella sp. YY7918, its octameric subunit structure containing FMN/FAD/4Fe-4S, and its enantioselective production of R-dihydroisoflavones. J. Biosci. Bioeng. 2018;126:301–309.
Gardiner B.J., Tai A.Y., Kotsanas D., Francis M.J., Roberts S.A., Ballard S.A., Junckerstorff R.K., Korman T.M. Clinical and microbiological characteristics of Eggerthella lenta bacteremia. J. Clin. Microbiol. 2015;53:626–635.
Ugarte-Torres A., Gillrie M.R., Griener T.P., Church D.L. Eggerthella lenta bloodstream infections are associated with increased mortality following empiric piperacillin-tazobactam (TZP) Monotherapy: A Population-based Cohort Study. Clin. Infect. Dis. 2018;67:221–228.
Koh A., Molinaro A., Ståhlman M., Khan M.T., Schmidt C., Mannerås-Holm L., Wu H., Carreras A., Jeong H., Olofsson L.E., et al. Microbially produced imidazole propionate impairs insulin signaling through mTORC1. Cell. 2018;175:947.e17–961.e17.
Luo S, Zhao Y, Zhu S, Liu L, Cheng K, Ye B, Han Y, Fan J, Xia M. Flavonifractor plautii Protects Against Elevated Arterial Stiffness. Circ Res. 2023 Jan 20;132(2):167-181.
Karpat I, Karolyi M, Pawelka E, Seitz T, Thaller F, Wenisch C. Flavonifractor plautii bloodstream infection in an asplenic patient with infectious colitis. Wien Klin Wochenschr. 2021 Jul;133(13-14):724-726.
Pan Y, Su J, Liu S, Li Y, Xu G. Causal effects of gut microbiota on the risk of urinary tract stones: A bidirectional two-sample mendelian randomization study. Heliyon. 2024 Feb 14;10(4):e25704.
Amerikanou C, Kanoni S, Kaliora AC, Barone A, Bjelan M, D’Auria G, Gioxari A, Gosalbes MJ, Mouchti S, Stathopoulou MG, Soriano B, Stojanoski S, Banerjee R et al., Effect of Mastiha supplementation on NAFLD: The MAST4HEALTH Randomised, Controlled Trial. Mol Nutr Food Res. 2021 May;65(10):e2001178.
Coello K, Hansen TH, Sørensen N, Ottesen NM, Miskowiak KW, Pedersen O, Kessing LV, Vinberg M. Affective disorders impact prevalence of Flavonifractor and abundance of Christensenellaceae in gut microbiota. Prog Neuropsychopharmacol Biol Psychiatry. 2021 Aug 30;110:110300.
Mehrotra, I, Snyder, M, Mamic, P. CHARACTERIZING THE GUT MICROBIOTA AND THEIR INTERACTIONS WITH THE HOST IN THE CHRONIC HEART FAILURE-ASSOCIATED ATRIAL FIBRILLATION. J Am Coll Cardiol. 2024 Apr, 83 (13_Supplement) 1033.
Stokholm J, Blaser MJ, Thorsen J, Rasmussen MA, Waage J, Vinding RK, Schoos AM, Kunøe A, Fink NR, Chawes BL, Bønnelykke K, Brejnrod AD, Mortensen MS, Al-Soud WA, Sørensen SJ, Bisgaard H. Maturation of the gut microbiome and risk of asthma in childhood. Nat Commun. 2018 Jan 10;9(1):141.
Wang, L., Zheng, Yb., Yin, S. et al. Causal relationship between gut microbiota and prostate cancer contributes to the gut-prostate axis: insights from a Mendelian randomization study. Discov Onc 15, 58 (2024).
Jian Gao, Xiaoyu Guo, et al., The Association of Fried Meat Consumption With the Gut Microbiota and Fecal Metabolites and Its Impact on Glucose Homoeostasis, Intestinal Endotoxin Levels, and Systemic Inflammation: A Randomized Controlled-Feeding Trial. Diabetes Care 1 September 2021; 44 (9): 1970–1979.
Mavrogeorgis, E.; Valkenburg, S.; Siwy, J.; Latosinska, A.; Glorieux, G.; Mischak, H.; Jankowski, J. Integration of Urinary Peptidome and Fecal Microbiome to Explore Patient Clustering in Chronic Kidney Disease. Proteomes 2024, 12, 11.
Hong, C.-T.; Chan, L.; Chen, K.-Y.; Lee, H.-H.; Huang, L.-K.; Yang, Y.-C.S.H.; Liu, Y.-R.; Hu, C.-J. Rifaximin Modifies Gut Microbiota and Attenuates Inflammation in Parkinson’s Disease: Preclinical and Clinical Studies. Cells 2022, 11, 3468.
Yang L, Lin Q, Han L, et al. Soy hull dietary fiber alleviates inflammation in BALB/C mice by modulating the gut microbiota and suppressing the TLR-4/NF-κB signaling pathway[J]. Food & function, 2020, 11(7): 5965-5975.
Tomioka R, Tanaka Y, Suzuki M, et al. The Effects of Black Tea Consumption on Intestinal Microflora—A Randomized Single-Blind Parallel-Group, Placebo-Controlled Study[J]. Journal of Nutritional Science and Vitaminology, 2023, 69(5): 326-339.
Cheng H, Liu J, Tan Y, Feng W, Peng C. Interactions between gut microbiota and berberine, a necessary procedure to understand the mechanisms of berberine. J Pharm Anal. 2022 Aug;12(4):541-555.
He, L., Liu, Y., Guo, Y. et al. Diversity of intestinal bacterial lactase gene in antibiotics-induced diarrhea mice treated with Chinese herbs compound Qi Wei Bai Zhu San. 3 Biotech 8, 4 (2018)
Straub, T.J., Chou, WC., Manson, A.L. et al. Limited effects of long-term daily cranberry consumption on the gut microbiome in a placebo-controlled study of women with recurrent urinary tract infections. BMC Microbiol 21, 53 (2021).
Laatikainen, R., Jalanka, J., Loponen, J. et al. Randomised clinical trial: effect of low-FODMAP rye bread versus regular rye bread on the intestinal microbiota of irritable bowel syndrome patients: association with individual symptom variation. BMC Nutr 5, 12 (2019).
Xu YJ, He Y, Chen C, Shi J, He M, Liu Y, Zhang Y, Liu Y, Zhang Y. Multiomics Analysis Revealed Colorectal Cancer Pathogenesis. J Proteome Res. 2024 Apr 18.
谷禾健康
人体的肠道粘膜内层形成物理屏障和免疫防御系统,以防止微生物入侵。当身体受到感染或细胞遭受损伤时,免疫系统会启动炎症反应来应对这些情况。炎症是对感染和组织损伤的一种急性反应,以限制对身体的伤害,这种反应是身体自然的防御机制,旨在清除病原体并修复受损细胞或组织。
先天免疫系统包含多种种系编码的模式识别受体(PRRs),这些受体可以检测由细胞损伤或组织损伤产生的微生物抗原,称为病原体相关分子模式(PAMPs)或损伤关联分子模式(DAMPs)。
这些PRRs包括位于细胞膜上的Toll样受体(TLRs)和C型凝集素受体(CLRs),以及细胞内PRRs如RIG样受体。NOD样受体(NLRs)是其他可以识别来源于病原体和受损细胞的分子模式的PRRs。
炎性小体的概念在2002年首次被提出,它是细胞内多种蛋白质组成的复合体,处在免疫防御和代谢控制十字路口,是细胞完整性的守护者并调控各种关键细胞功能。主要介导宿主对微生物感染和细胞损伤的免疫反应,在骨髓细胞中产生,是免疫系统的重要组成部分。
在感知外界病原体或损伤后,传递信号给免疫系统,启动炎症。它们形成大型多蛋白信号传导平台来裂解和激活caspase-1,这是一种主要的炎症途径。活性caspase-1可以将非活性形式的促炎细胞因子白细胞介素1β(IL-1β)和IL-18裂解为活性形式来调节炎症和宿主防御反应,这些相关细胞因子介导针对感染的多种局部和全身免疫反应,包括诱导发热、白细胞迁移至损伤或感染部位,以及Th1、Th2和Th17反应的激活和极化。
此外,炎性小体激活与细胞焦亡有关,细胞焦亡又称细胞炎性坏死,是一种程序性细胞死亡。在对抗感染中发挥重要作用。研究发现其参与宿主防御鼠伤寒沙门菌(Salmonella typhimurium)、土拉热弗郎西丝菌(Francisella tularensis)和炭疽芽孢杆菌(Bacillus anthracis)。
各种内源性和外源性刺激已被证明可以激活炎性小体。由于大量微生物寄居在粘膜表面,维持人体和微生物群之间的稳定需要与炎性小体的共生相互作用。
炎性小体主要充当复杂的传感器,使宿主能够区分有益细菌和有害细菌,但它们也充当宿主与其肠道微生物群之间沟通的介质。肠腔的环境状态持续影响宿主反应,导致通过产生IL-1β或IL-18产生特定信号,进而调节肠道微生物群。
随后,调节的微生物群可以通过短链脂肪酸和胆汁酸衍生物等微生物副产物增强宿主反应。但是炎性小体的激活需要受到严格调节,以限制异常激活和对宿主细胞的损害。如果失调,可能会导致不同的疾病。包括自身免疫疾病、癌症、胃肠道(GI)疾病和炎症性疾病。
因此,炎性小体对于协调体内精确的相互作用是不可或缺的。通过针对与炎症小体信号传导相关的结构来研究炎症小体活性的适当调节和治疗干预,可能是一个有前途的研究领域。
本文旨在使人们更清晰地认识炎性小体,讨论了不同炎性小体在人体内的功能、外来细菌、病毒等病原体入侵时,炎性小体在抵抗感染的作用。此外,炎性小体的失调或异常激活可能与人体一些疾病相关。炎性小体和微生物群的相互作用影响着人类健康。
✦
炎性小体(inflammasome)是由多种蛋白质组成的复合体,也称炎症小体,是免疫系统的重要组成部分,此概念由于2002年首次提出。
炎性小体可识别多种炎症诱导的刺激,包括病原体相关分子模式(PAMPs)和损伤相关分子模式(DAMPs),并控制重要的促炎细胞因子如白细胞介素-1β(IL-1β)和IL-18的产生。
▼
炎性小体的功能
炎症小体是细胞内多聚蛋白复合物,是细胞完整性的守护者并控制各种关键细胞功能的完整性。具体来说,炎症小体的功能包括以下几个方面:
▸ 参与免疫反应,加工IL-1β和IL-18
在体内,炎性小体已被证明参与抗微生物先天免疫反应。在这方面研究最广泛的炎症小体是NLRP3炎性小体,它参与了抗菌、病毒、真菌和寄生虫的免疫反应。
caspase-1的激活受炎症小体调节,caspase-1的激活会导致IL-1β和IL-18的加工。
在非经典途径中,小鼠体内caspase-11(人类直系同源物包括caspase4和5)的裂解会激活NLRP3炎症小体,该炎症小体在维持肠道免疫稳态中发挥着关键作用。
doi: 10.1038/nature10759.
需要注意的是,在急性炎症中,炎症小体的激活有助于去除死细胞并启动组织修复。然而,在慢性炎症中,炎症小体的持续激活是有害的,因为它会损伤组织。
▸ 促进细胞焦亡
此外,炎症小体激活与细胞焦亡有关。细胞焦亡是一种程序性细胞死亡,表现为细胞不断胀大直至细胞膜破裂,导致细胞内容物的释放进而激活强烈的炎症反应,是机体一种重要的天然免疫反应,在抗感染中发挥重要作用。
细胞焦亡最常发生在细胞内病原体感染时,并且可能形成抗菌反应的一部分。焦亡是caspase-1依赖性的,并且独立于促凋亡caspase发生。
注:尽管细胞焦亡被认为是程序性细胞死亡的一种形式,但它与细胞凋亡所呈现的免疫沉默细胞死亡不同。焦亡伴随着质膜破裂、水流入、细胞肿胀、渗透溶解和促炎细胞内容物的释放。焦亡还伴随着DNA裂解和核浓缩,这与细胞凋亡的DNA阶梯特征不同,因为核完整性并未受到损害。
细胞焦亡的调控尚不明确;然而,细胞焦亡的程度似乎随着炎症体刺激的增加而增加。细胞焦亡是否在产生更活跃的炎症小体途径(下文讨论)的遗传性自身炎症疾病中发挥病理作用尚待确定。
▸ 与炎症性疾病相关,调节肠道稳态
炎性小体激活需要严格调节,以限制异常激活和对宿主细胞的损害。炎症小体活性失调与多种炎症性疾病有关,包括自身免疫、癌症和胃肠道疾病。
尽管炎症小体主要充当复杂的传感器,使宿主能够区分有益细菌和有害细菌,但它们也充当宿主与其肠道微生物群之间沟通的介质。
肠腔的环境状态持续影响宿主反应,导致通过产生IL-1β或IL-18产生特定信号,进而调节肠道微生物群。
随后,调节的微生物群可以通过短链脂肪酸和胆汁酸衍生物等微生物副产物增强宿主反应。因此,炎症小体对于协调体内精确的相互作用是不可或缺的。在这方面,通过针对与炎症小体信号传导相关的结构来研究炎症小体活性的适当调节和治疗干预,可能是一个有前途的研究领域。
炎症小体调节微生物感染和自身炎症性疾病期间的炎症
doi: 10.1038/nature10759.
a.鼠伤寒沙门氏菌通过肠上皮屏障进入宿主。M细胞是一种特殊的上皮细胞类型,分布在Peyer’s斑块上,特别参与沙门氏菌的胞吞作用和Peyer’s斑块中巨噬细胞的感染。炎症小体和caspase-1参与了几种细胞类型和感染的几个步骤。将细菌效应蛋白SopE注射到上皮细胞中,通过涉及GTPase Rac1的过程诱导caspase-1独立于NLRP3和NLRC4的激活。由此产生的粘膜炎症依赖于非造血细胞产生的IL-1β和IL-18。在巨噬细胞感染时,细菌蛋白鞭毛蛋白和PrgJ (T3SS的一部分)通过NLRC4被感知。这导致caspase-1的激活,导致IL-1β/IL-18加工和焦亡,从而限制全身感染。NLRP3通过识别未知信号参与这些过程。
b.巨噬细胞吞噬尿酸钠(MSU)晶体诱导nlrp3依赖性caspase-1激活和IL-1β释放,刺激非造血细胞产生IL-6和趋化因子(CXCL1和CXCL8),吸引中性粒细胞。然后,活化的中性粒细胞引起组织损伤。治疗性阻断人IL-1β可改善痛风的炎症发作。
▸ 和自噬途径的相互调节
自噬是一种细胞保护过程,细胞通过该过程将受损的蛋白质、细胞器或病原体隔离在双膜室(自噬体)中,靶向这种细胞材料在溶酶体中降解,并回收组成分子。
自噬发生在正常生理条件下,但可以通过细胞应激(如饥饿、促炎信号传导(例如 IFNγ)或细菌感染)上调。
最近的报告揭示了炎症小体和自噬途径之间复杂的相互作用。在没有污染配体的情况下,用TLR4激动剂脂多糖处理不会诱导野生型巨噬细胞中的炎症小体活化。然而,通过自噬调节因子Atg16L1或 Atg7 的基因消融来阻断自噬,可以实现LPS依赖性炎症小体激活,这表明自噬通常会对抗LPS引起的炎症小体激活。
另一项研究发现,炎症小体对自噬有负向调节作用,这使炎症小体和自噬之间的联系更加复杂。
!
炎性小体是好是坏
“抛开剂量谈毒性都是耍流氓”——炎症小体过少或过于活跃对健康都是不利的。炎症小体的活动是需要严格控制的,不能随意抑制和刺激,以避免产生过多的炎性细胞因子导致细胞死亡,伤及自身。
所以正常情况下,炎症小体,特别是NLRP3的表达在许多细胞中相对较低,需要诱导去引发信号。
先天免疫系统包含多种编码的模式识别受体(PRR),可检测微生物抗原,称为病原体相关分子模式(PAMP)或损伤相关分子模式(DAMP),由细胞或组织损伤产生。
炎症小体如何被激活尚不清楚。由于激活炎症小体的PAMP、DAMP和病原体具有不同的性质,因此可能存在多种途径。
炎性小体在感知到PAMPs和DAMPs的结构多样性后进行组装。已经提出了几个模型来解释这些信号是如何被感知的,包括基于一般细胞应激识别的模型(图a和b)或基于激活信号的直接和间接识别的模型(图c-e)。
doi: 10.1038/nature10759.
(a) NLRP3感知细胞内(可能由线粒体)直接或间接由NLRP3炎症小体激活剂产生的活性氧(ROS)。硫氧还蛋白和硫氧还蛋白相互作用蛋白(TXNIP)的复合物可以感知ROS的增加,从而导致该复合物的解离。
随后,TXNIP与NLRP3结合导致NLRP3的激活,ASC和前caspase-1的募集,以及活性炎性体复合物的形成。
(b) 溶酶体失稳后,NLRP3被激活。特定晶体和颗粒结构的吞噬可导致溶酶体不稳定和溶酶体内容物(包括蛋白酶)的释放。这些蛋白酶可导致负调节因子的蛋白水解失活或NLRP3正调节因子的蛋白水解激活,导致炎性小体组装。
(c, d) NLRP1和AIM2直接感知配体。特异性配体(muramyl二肽(MDP)和双链DNA (dsDNA))的直接结合可导致NLRP1和AIM2的构象改变,导致炎性小体活化。
(e) NLRP1炎症小体的形成不依赖于ASC。NAIP蛋白感知细菌蛋白,导致NLRC4的募集和NLRC4炎症小体的组装。
此外,构成信号的限制因子如pro-IL1β和-IL18的转录上调是炎症小体激活的先决条件。除了编码原细胞因子的基因的诱导转录之外,NLRP3转录的激活也由NF-κB 激活剂(例如TLR配体)诱导。
doi: 10.1146/annurev-immunol-031210-101405.
大部分炎性小体主要由受体蛋白(NLR或ALR家族的成员),衔接蛋白ASC和效应蛋白caspase组成。
炎性小体作为一种重要的细胞结构,它在炎症和免疫反应中发挥着关键作用。不同类型的炎性小体在形态和功能上都有所不同,对于了解炎症过程和治疗炎症性疾病具有重要意义。下面将探讨不同类型的炎性小体的特点和对肠道微生物群的作用机制。
Manshouri S,et al.Cell Commun Signal.2024
NLRP1炎症小体
NLRP1是第一个报道的形成炎症小体的分子,对caspase-1、caspase-5和ASC的需求最低。
NLRP1在结构上与其他NLR的不同之处在于其额外的C端延伸,由具有未知功能的结构域和CARD结构域组成。
NLRP1炎症小体在小鼠和人类中是不同的。小鼠NLRP1炎症小体由Nlrp1a、b和c的三个旁系同源物组成,其中包含NR100结构域,而不是人类中看到的PYD。
▸ NLRP1会影响产生丁酸盐的菌群
研究发现NLRP1炎症小体可以影响肠道微生物群。Nlrp1缺陷的小鼠表现出产生丁酸盐的细菌数量增加。丁酸盐已被证明通过促进肠道屏障的功能(例如粘液产生和紧密连接)对炎症性肠病(IBD)具有有益作用。
NLRP1炎症小体可能通过减少肠道微生物群的丁酸盐产生而对IBD产生负面影响。IBD有两种主要的临床形式,包括克罗恩病和溃疡性结肠炎。短链脂肪酸(SCFA)是由有益肠道细菌通过高纤维饮食发酵产生的。这些SCFA在减少炎症、调节免疫功能和防止过度活跃的免疫反应方面发挥着至关重要的作用,从而减缓IBD的临床进展。
NLRP3炎症小体
NOD样受体蛋白3(NLRP3)炎性小体包括N末端的热蛋白结构域(PYD)、中央NACHT结构域(包括带有核苷酸三磷酸腺苷/三磷酸鸟苷 (ATP/GTPase) P 环的七个基序和Walker A 和 B 结合位点),以及C端的9个富含亮氨酸的重复序列 (LRR)。
▸ 与其他炎症小体相比,NLRP3炎症小体需要两个信号
信号1(启动)由微生物分子或内源性细胞因子或 PRR(例如 TLR)的激活提供,导致经典和非经典 NLRP3 炎性体成分的转录上调。
它由NLRP3和pro-IL-1β的转录上调以及非转录机制组成,例如N端 PYD 内残基的去磷酸化、PYD 和 NACHT 结构域之间关键丝氨酸残基的磷酸化和 NLRP3 去泛素化。
Caspase-8和FAS相关死亡结构域蛋白(FADD)通过调节NF-kB通路介导此步骤。Lys-63 特异性去泛素酶 BRCC36 (BRCC3) 和 IL-1 受体相关激酶 1 (IRAK1) 调节 NLRP3 的激活。
信号2(激活)由PAMP或DAMP、成孔毒素、K +外流、溶酶体破坏、线粒体活性氧产生、心磷脂重新定位到线粒体外膜以及氧化线粒体DNA的释放提供,然后Cl -流出。
NLRP3炎症小体的经典和非经典激活机制
Manshouri S,et al.Cell Commun Signal.2024
经典途径涉及TLR信号传导,通过NF-κB途径诱导IL-1β、IL-18和NLRP3的转录。非规范途径涉及脂多糖等刺激,需要caspase-11来激活caspase-1。
▸ 微生物与NLRP3炎症小体的相互作用
一些共生肠道微生物可能会激活肠粘膜巨噬细胞中的NLRP3炎性小体。据报道,奇异变形杆菌(Proteus mirabilis)可能通过产生溶血素成为 NLRP3 激活剂。肠杆菌(Enterobacter)和克雷伯菌属(Klebsiella spp)在口腔定植可能会触发NLRP3炎症小体。存在于小鼠口腔中的产气克雷伯菌(K.aerogenes)通过巨噬细胞分泌IL-1β导致牙周炎。
研究还报道了肠道微生物群异常积累对年龄相关性心房颤动的因果影响,表明微生物群-肠道屏障-心房NLRP3炎性体相互作用可能作为治疗年龄相关性心律失常的潜在靶点。
在临床前研究中,研究人员发现金黄色葡萄球菌将线粒体与吞噬体隔离开,以逃避杀菌活性氧。这种巨噬细胞死亡的逃避依赖于NLRP3炎性体。使用小干扰RNA(siRNA)靶向NLRP3可以改善感染金黄色葡萄球菌的小鼠的细菌清除率。研究人员还发现,NLRP3 抑制和电子传递链复合物 II 抑制相结合,可以提高对人类单核细胞中金黄色葡萄球菌的杀伤力。
最近,证明了NLRP3炎性体在接触香烟烟雾后被激活,从而为肺部造成铜绿假单胞菌引起的急性损伤做好准备。这项研究表明,靶向NLRP3炎性体可能是治疗香烟烟雾引起的肺损伤的潜在治疗方法。
NLRP6炎症小体
NLRP6,也称为 PYPAF5,被描述为大多数免疫细胞中NF-κB和caspase-1表达的调节剂。这种蛋白质存在于肠上皮细胞中。研究表明,NLRP6对于调节肠道微生物组的组成和功能至关重要。
▸ 调节肠道微生物的组成和功能
NLRP6通过炎症小体依赖性和炎症小体独立途径、结肠炎相关肿瘤发生和杯状细胞中的粘液分泌来协调宿主与肠道病毒和细菌感染的相互作用。肠上皮细胞中的NLRP6缺陷与IL-18产生和caspase-1激活中断有关。NLRP6缺陷小鼠表现出普氏菌科和 TM7 的生长,以及乳杆菌和厚壁菌门的减少。
这些不平衡会引发结肠炎和肠道自发炎症。微生物群相关代谢物,例如牛磺酸和肠道共生细菌,可以激活NLRP6炎性体产生抗菌肽。杯状细胞可以通过 TLR-Myd88 信号传导激活 NLRP6 炎症小体,从而产生muc2。革兰氏阳性病原体产生脂磷壁酸,通过ASC募集激活NLRP6炎症小体,导致全身感染。应激诱导的促肾上腺皮质激素释放激素(CRH)抑制NLRP6炎症小体的激活,后者会导致肠道炎症和肠道微生物组的改变。
▸ NLRP6缺陷会导致胃肠道生态失调
NLRP6 缺陷的小鼠容易发生炎症。NLRP6 炎症小体在正常条件下是自我抑制的。脂磷壁酸和双链 RNA (dsRNA) 可以直接与 NLRP6 结合,从而产生可能的构象变化,以帮助液-液相分离(LLPS),这是炎症小体组装所必需的早期步骤。
此外,脂多糖可以直接与NLRP6结合,这可能导致LLPS的形成。然后,它与ASC相互作用激活 caspase-1或 caspase-11,从而激活 GSDMD 并导致质膜中孔的形成以及促炎细胞因子和细胞内内容物的释放。如果与ASC的相互作用不形成 NLRP6 炎症小体,则 LLPS 中的 NLRP6 通过诱导干扰素 (IFN) 和 IFN 刺激基因,诱导替代的炎症小体独立途径。
总而言之,在强烈的炎症反应具有破坏性的情况下,NLRP6可能通过 TLR 轴发挥保护作用,而其作用对于维持肠道稳态是必要的。NLRP6炎症小体与胃肠道的稳态有关。先前的研究表明NLRP6失调可能导致胃肠道生态失调。
此外,NLRP6炎症小体刺激抗菌肽(AMP)的表达,包括血管生成素-4(Ang4)。一些微生物代谢物,包括牛磺酸、精胺和组胺,似乎可以诱导NLRP6依赖性IL-18和AMP的产生。
NLRP12炎症小体
NLRP12,也称为Nalp12和Pypaf-7,与ASC和胱天蛋白酶1形成炎症小体,使IL-1β成熟。它是最早与衔接蛋白ASC共定位并相互作用形成炎症小体的NLR之一。人类基因组中NLRP12编码序列的突变与IL-1介导的炎症性疾病有关。
▸ 识别鼠疫耶尔森氏菌等病原菌
尽管我们对NLRP12在健康和疾病中的作用的了解有限,但最近的数据表明,NLRP12对于识别鼠疫耶尔森氏菌(鼠疫病原体)至关重要。
NLRP12在巨噬细胞感染鼠疫杆菌后控制caspase-1裂解以及IL-1β和IL-18分泌。然而,NLRP12可以抑制骨髓源性巨噬细胞产生IL-12,并负向调节宿主对流产布鲁氏菌的防御。
NLRP12的确切配体目前未知;然而,它的激活需要一个功能正常的T3S系统。这表明细菌毒力因子进入宿主细胞质可能是直接激活NLRP12或改变宿主信号通路所必需的。无论激活机制如何,NLRP12驱动的IL-18分泌和相关的IFN-γ产生在小鼠抵抗鼠疫耶尔森氏菌感染方面发挥着关键作用。NLRP12缺陷小鼠在感染后表现出更高的死亡率和细菌载量。
▸ 抑制肠道炎症和肿瘤
除了形成炎症小体之外,NLRP12还通过负向调节NF-kB信号传导来抑制肠道炎症和肿瘤发生。几项独立研究表明,NLRP12 在生化检测、结肠癌和结肠炎模型中对经典和非经典NF-κB信号传导有负向调节作用。
NLRP12被认为在鼠伤寒沙门氏菌感染期间独立于炎症小体抑制宿主防御,因为Nlrp12缺陷小鼠比WT对照对鼠伤寒沙门氏菌感染具有更强的抵抗力,并且炎症细胞因子水平较低。
NLRP12在造血细胞中发挥抑制肿瘤发生的作用,但它不是造血细胞,而是非造血细胞,这对于限制肿瘤数量至关重要。尽管如此,两项研究都表明NLRP12在控制结肠炎症反应中发挥着重要作用。
NLRC4炎症小体
NLRC4(以前称为IPAF,Card12)在感染各种革兰氏阴性菌后可形成炎症小体,如鼠伤寒沙门菌(S.typhimurium)、嗜肺军团菌、福氏志贺菌和铜绿假单胞菌。NLRC4在髓系中表达,其基本作用是防止细菌入侵。
与其他炎症小体不同,NLRC4与另一种NLR蛋白NAIP结合被激活,NAIP作为NLRC4激活剂的受体。
▸ 有效抵御铜绿假单胞菌和伤寒沙门氏菌
几项研究表明,NLRC4在宿主防御有鞭毛的铜绿假单胞菌方面是有效的。在缺乏NLRC4或胱天蛋白酶-1激活的情况下,含有军团菌的吞噬体不能与溶酶体融合。相反,鞭毛蛋白突变的军团菌不能激活巨噬细胞中的胱天蛋白酶1。
鼠伤寒杆菌可以激活NLRC4和NLRP3,这导致ASC的形成和胱天蛋白酶向炎症小体的募集。NLRC4炎症小体感知PrgJ,一种III型分泌系统(T3SS)的成分,并通过CARD-CARD与胱天蛋白酶-1的相互作用启动炎症小体组装。
▸ 与婴儿期肠炎伴自体炎症相关
研究人员证明, NLRC4的功能获得性突变与一种极其罕见的疾病有关,这种疾病称为婴儿期肠炎伴自体炎症(AIFEC)。这种疾病的特点是巨噬细胞激活和胃肠道严重炎症。常驻肠道单核吞噬细胞(iMP),例如树突状细胞和巨噬细胞,可以对抗肠道病原微生物,同时保持对共生微生物的耐受性。
由于胃肠道的免疫细胞主要与许多共生微生物发生反应,它们应用多种机制来限制针对胃肠道共生微生物的不受控制的免疫反应。iMP中的NLRC-4激活后,分泌IL-1β诱导内皮细胞中粘附分子的表达。这些粘附分子促进中性粒细胞募集到肠粘膜和外来微生物的摄入。
PYHIN炎症小体
另一类与NLR不同的炎症小体已被鉴定为PYHIN家族。PYHIN是由四个人类基因(AIM2、IFI16、MNDA和IFIX)和13个小鼠基因组成的家族,并包含一个PYD和一个或两个HIN-200DNA 结合域。
AIM2和IFI16已被证明可形成caspase-1激活炎症小体。与NLR不同,AIM2和IFI16在这两种情况下都直接与其配体dsDNA结合。ASC是招募pro-caspase-1所必需的,因为AIM2和IFI16缺乏 CARD。
▸ AIM2对于肠道微生物群稳态非常重要
在感染过程中,AIM2感知来自鼠巨细胞病毒、牛痘病毒、土拉弗朗西斯菌和单核细胞增生李斯特菌的 DNA 。
AIM2炎症小体的一个功能是调节肠道微生物群。研究表明,AIM2炎症小体的激活导致肠道中IL-18和AMP的产生。Aim2缺陷小鼠的IL-18和AMP(例如REG3c和REG3b)减少。AIM2 的缺乏会导致肠道菌群失调,从而增加对结肠炎的易感性。
同时研究发现, Aim2缺陷小鼠粪便中肠杆菌科成员(例如大肠杆菌)的数量比普通小鼠高数百倍。当新杀弗朗西丝菌(F.novicida)(一种胞质病原体)从液泡逃逸到细胞质时,AIM2炎性小体就会受到刺激。缺乏逃离液泡的关键基因的F. novicida突变体无法触发AIM2炎症小体。
与NLRP6类似,AIM2炎性小体对于维持肠道微生物稳态至关重要。在胃肠道中,未经治疗的Aim2缺陷小鼠显示,Akkermansia muciniphila和 Anaeroplasma的数量较高,而双歧杆菌、普雷沃菌、Anaerostipes和Paraprevotella的数量较低。
Pyrin炎症小体
Pyrin是一种高分子量(86kDa)蛋白质,主要存在于免疫细胞中,包括中性粒细胞、单核细胞和树突状细胞。
与其他免疫传感器不同,pyrin通过细胞骨架重塑而不是微生物化合物来检测细菌毒力。
Pyrin在识别病原体对RhoA GTPase的失活修饰后,以ASC依赖性方式介导caspase-1炎症小体组装。小鼠pyrin有两个功能性磷酸化位点:Ser-205 和Ser-241,它们通过与14-3-3蛋白结合而使pyrin 失活。当毒素刺激或细菌感染时,导致Rho修饰,Ser-205和Ser-241去磷酸化,导致14-3-3解离。该级联导致吡啶激活并形成寡聚吡啶-ASC炎性体复合物。
▸ 在维持肠道稳态中发挥作用
尽管关于肠道微生物群产生的特定pyrin炎症小体激活剂的知识很少,但最近的研究揭示了它们在维持肠道稳态中的作用。在一项使用小鼠结肠炎的研究中,pyrin炎症小体信号可防止生物失调,促进肠道屏障完整性,并改善结肠炎症和肿瘤发生。
最近一项使用全基因组合并CRISPR筛选技术的研究中,两种胆汁酸类似物(BAA485和BAA473)被鉴定为在髓系和IEC系中诱导pyrin炎症小体信号传导的特异性配体。由于肠道细菌是胆汁酸代谢的丰富来源,类似的微生物组衍生的pyrin炎症小体激活配体可能有助于调节肠道稳态。
总体而言,pyrin炎症小体为与细胞骨架结合的先天免疫成分提供了新的范例,为细胞免疫的结构调节提供了新的机制。
✦
炎症小体正在成为宿主针对微生物病原体反应的关键调节因子。当微生物侵入组织或引起细胞损伤时,这些胞质多蛋白复合物会招募并激活半胱氨酸蛋白酶caspase-1。
炎症小体激活的caspase-1通过将促炎细胞因子IL-1β和IL-18裂解为其生物活性形式并将高迁移率族蛋白B1(HMGB1)释放到细胞外环境中来诱导炎症。此外,炎症小体通过称为细胞焦亡的炎症细胞死亡程序来对抗细菌复制并清除受感染的免疫细胞。
跟着谷禾一起来深入了解炎症小体在宿主与微生物相互作用中所扮演的重要角色,探讨其对免疫调节和疾病防御的影响,以及在维持体内微生物稳态和免疫平衡方面的关键功能。
炎症小体的组装和caspase-1的激活在病原体特异性方式下发生,尽管不同的炎症小体在感染过程中可能具有相似的作用。
▸ Nlrp1b炎症小体
Nlrp1b炎症小体识别细胞质中存在的炭疽芽孢杆菌致死毒素,Nlrp1b基因突变被确定为炭疽致死毒素诱导巨噬细胞死亡的关键易感位点。值得注意的是,Nlrp1b炎性体诱导的细胞焦亡赋予体内对炭疽芽孢杆菌孢子感染的抵抗力,突显了细胞焦亡对于宿主防御病原体的重要性。
▸ Nlrp3炎症小体
NLR家族成员Nlrp3的激活包括一个两步过程,需要用TLR和NLR配体启动以增强NF-κB驱动的Nlrp3转录,然后将巨噬细胞暴露于微生物毒素和离子载体(例如尼日利亚菌素和蓖麻毒素)或内源性毒素。
在巨噬细胞分别感染细菌、病毒和真菌病原体如金黄色葡萄球菌、肺炎链球菌、流感病毒和白色念珠菌的过程中,可以结合Nlrp3启动和激活步骤。类似于Nlrp1b炎症小体在炭疽杆菌感染中的作用,Nlrp3炎症小体激活缺陷使小鼠对念珠菌病高度敏感。
▸ Nlrc4炎症小体
Nlrc4炎性体可检测沙门氏菌(Salmonella)、假单胞菌(Pseudomonas)、军团菌(Legionella)和志贺氏菌(Shigella spp.)的III型和IV型细菌分泌系统的细菌鞭毛蛋白和基体杆成分。
除了分泌IL-1β和IL-18之外,最近还确定诱导焦亡细胞死亡是一种关键的体内机制,Nlrc4炎性体通过该机制清除表达鞭毛蛋白的细菌,例如嗜肺军团菌和伯克霍尔德菌。
人们认为细胞焦亡使细胞内细菌暴露于细胞外免疫监视,从而使它们被抗菌肽、免疫球蛋白和补体系统破坏,并被中性粒细胞和其他免疫细胞摄取。
▸ AIM2炎症小体
最后,AIM2响应土拉热弗朗西斯菌(F.tularensis)、单核细胞增多性李斯特菌和某些DNA病毒(例如CMV和痘苗病毒)以诱导caspase-1激活。caspase-1缺陷型小鼠对土拉菌病(土拉菌病的病原体)感染的敏感性增加,说明AIM2炎性小体在宿主对微生物病原体的防御反应中发挥着关键作用。
细菌和病毒效应物对炎症小体途径的调节
doi: 10.4049/jimmunol.1100229.
细菌、病毒和真菌病原体感染巨噬细胞和树突状细胞会诱导炎性体复合物的组装。这些多蛋白复合物驱动诱导caspase-1的激活,从而使IL-1β、IL-18和高迁移率族蛋白B1(HMGB1)释放到细胞外。
鉴于炎症小体在控制微生物病原体复制和传播中的重要性,细菌进化出一套机制来对抗炎症小体组装并干扰caspase-1效应机制的诱导也就不足为奇了。
▸ Yop蛋白等毒力因子抑制IL-1β分泌
例如,肠道病原性小肠结肠炎耶尔森氏菌通过专用的III型分泌系统将称为Yop蛋白的毒力因子注入宿主细胞胞浆中。在这些效应蛋白中,YopE和YopT抑制caspase-1激活以及随后成熟IL-1β的分泌。
这些Yop蛋白是Rho GTP酶和Rho介导的过程(例如细胞骨架重组和吞噬作用)的负调节因子。
尽管目前尚不清楚Yop效应蛋白和细胞骨架过程如何干扰炎症小体信号传导,但显性失活蛋白和化学抑制剂导致Rho GTPase Rac1失活表明该Rho GTPase在caspase-1激活和IL-1β分泌中发挥着关键作用。
假结核耶尔森氏菌使用名为YopK的第三种效应蛋白来掩盖细菌III型分泌系统并阻止其被Nlrp3和Nlrc4炎性体识别。这导致宿主巨噬细胞中的细菌存活率增加,说明炎症小体在控制侵入性耶尔森氏菌细胞内增殖中的重要性。
▸ 毒力因子外酶抑制caspase-1激活
表达毒力因子外酶(Exo)U的铜绿假单胞菌分离株使用不同的策略来抑制人类吞噬细胞中caspase-1的激活。这种革兰氏阴性病原体编码一种名为ExoU的具有磷脂酶A2活性的酶,可抑制Nlrc4炎性体驱动的受感染巨噬细胞分泌IL-1β和IL-18。
ExoS是另一种假单胞菌毒力因子,可干扰炎症小体诱导的IL-1β产生。该效应蛋白通过涉及其ADP-核糖基转移酶活性的不完全表征过程抑制caspase-1激活。
▸ 干扰炎性小体的信号传导
嗜肺军团杆菌(L.pneumophila)代表了革兰氏阴性病原体如何干扰炎症小体信号传导的另一个例子。Nlrc4炎性小体限制体外培养的巨噬细胞和受感染小鼠肺部的军团菌生长。该病原体干扰炎性小体接头ASC的转录上调,以保护其在人单核细胞中的增殖。
F.tularensis利用假定的脂质II翻转酶mviN来抑制AIM2炎症小体的激活。mviN突变株感染小鼠,由于AIM2炎性体介导的IL-1β分泌增强和巨噬细胞焦亡,导致体内毒力受损。
革兰氏阳性病原体(例如结核分枝杆菌)也已进化出干扰炎性体功能的机制。被称为Zmp1的推定Zn2+金属蛋白酶对Nlrc4炎性体激活和IL-1β分泌的抑制使这种人类结核病病原体在骨髓细胞中增殖。
炎症小体信号传导的调节并不局限于细菌病原体。事实上,病毒提供了一些最具特征的机制,通过这些机制影响炎症小体。
▸ 牛痘病毒编码的丝氨酸蛋白酶抑制剂抑制 Caspase-1
牛痘病毒细胞因子反应修饰物A(CrmA)及其在牛痘病毒中的同源物直接靶向影响Caspase-1的酶活性。
CrmA和其他丝氨酸蛋白酶抑制剂在增强痘病毒毒力方面的重要性通过以下观察得到证实:CrmA的缺失会减弱BALB/c和C57BL/6小鼠鼻内和颅内感染的毒力。同样,感染缺乏CrmA同源Serp2的粘液瘤病毒突变体的兔子的病毒滴度显著降低。
此外,正痘病毒、痘苗病毒和副痘病毒产生可溶性IL-18结合蛋白,可防止细胞因子诱导的IL-18受体激活。因此,正痘病毒通过丝氨酸蛋白酶抑制剂和清道夫受体分别对caspase-1活性和下游炎症体效应子的联合抑制作用来增加毒力。
注:清道夫受体是吞噬细胞表面的一组异质性分子
▸ 病毒诱饵蛋白对炎症小体组装的抑制作用
除了直接靶向caspase-1的酶活性并干扰IL-1和IL-18受体的连接外,病毒还部署了阻止炎症小体组装的分子。
卡波西肉瘤相关疱疹病毒(KSHV)Orf63的作用很好地说明了这一点,Orf63是一种病毒Nlrp1同源物。KSHV Orf63与人Nlrp1和Nlrp3相互作用,以阻止其各自炎症小体的组装以及随后的caspase-1依赖性先天免疫反应。
KSHV Orf63表达的转录下调降低了病毒复制率,这是由于Nlrp1和Nlrp3介导的IL-1β分泌增强以及KSHV感染的人单核细胞和293T细胞中焦亡诱导的结果。
吡啶结构域蛋白(POP),例如粘液瘤病毒M013L和纤维瘤病毒S013L,代表了病毒诱饵蛋白抑制炎性体的另一个例子。由于宿主炎症反应增加和病毒复制减弱,缺乏编码M013L基因的粘液瘤病毒突变体的病毒血症显著减少,从而强调了粘液瘤病期间病毒POP的重要性。
此外,人类CARD蛋白ICEBERG、COP、INCA和CASP12 S被认为通过与caspase-1前结构域中的CARD基序的同型CARD相互作用来清除caspase-1,从而干扰炎症小体组装。然而,与病毒POP不同,人类CARD-only蛋白的病毒对应物仍有待鉴定。
炎症小体的抑制
doi: 10.1146/annurev-immunol-031210-101405.
▸ 流感病毒抑制炎症小体信号传导
有趣的是,流感病毒使用与上述正痘病毒无关的机制来阻止caspase-1的激活并干扰炎症小体信号传导。人类流感A/PR/8/34(H1N1)的突变病毒,其中流感NS1基因被删除,触发受感染宿主细胞分泌显著增加的IL-1β和IL-18水平,并未能阻止巨噬细胞中caspase-1的成熟。
这些突变病毒在体外被减毒,但caspase-1依赖性和非依赖性机制在多大程度上促成了这种表型尚不清楚。流感NS1驱动的caspase-1激活抑制似乎仅依赖于NS1的N-末端RNA结合/二聚化结构域,而羧基末端效应结构域对于抑制IL-1β和IL-18分泌是可有可无的。对流感病毒NS1抑制胱天蛋白酶-1激活的分子机制的进一步分析可能揭示病毒靶向炎症小体的有趣的新机制。
我们的观点
总体而言,宿主-病原体相互作用本质上是动态的。病毒利用了人体的基因,并利用它们来规避免疫系统。细菌也进化出了复杂的机制。病原体对炎症小体的特异性靶向强调了其在先天免疫中的重要性。
✦
炎症小体是一种在人体免疫系统中起关键作用的多蛋白复合物,其异常活化或抑制与多种炎症性疾病的发生和发展密切相关。炎症小体在调节炎症反应、细胞焦亡和免疫调节中发挥重要作用。
但由于炎症小体成分的遗传突变以及调节缺陷而导致的不适当的炎症小体反应与多种人类疾病有关。研究表明,炎症小体的功能异常与自身免疫疾病、感染性疾病和肿瘤等的发生有关。
1
在肠道炎症和肿瘤发生中的作用
结直肠癌是一种常见的恶性肿瘤,发病率和死亡率在全球范围内居高不下。据统计,结直肠癌是全球第三常见的癌症,也是溃疡性结肠炎和克罗恩病等炎症性肠病的主要并发症。炎症性肠病和结直肠癌通常与炎症细胞因子的过度产生有关。
IL-1α/β、IL-6和TNF-α等炎症细胞因子在炎症促进的肿瘤发生中发挥重要作用。基于炎症小体在IL-1β加工中的关键作用,研究了NLRP3炎症小体在结肠炎和结肠炎相关癌症(CAC)中的作用。
▸ 炎症小体在控制肠道稳态和预防肿瘤中起作用
多个研究小组意外地发现炎症小体的成分在控制肠道稳态和预防肿瘤发生方面发挥着保护作用。
NLRP3、ASC或caspase-1缺陷的小鼠更容易患结肠炎和CAC。这种表型与局部和全身IL-1β和IL-18分泌减少有关。数据表明,NLRP3负责防止肠道炎症和肿瘤发生增加。
此外,观察到caspase-1对DSS诱导的结肠炎具有类似的保护作用。Casp1−/−小鼠在DSS治疗后表现出肠道炎症和NF-κB激活增强以及组织修复受损。
▸ IL-18可能介导了炎症小体对肠道的保护作用
IL-18是肠道稳态和炎症所必需的。研究发现,IL-18信号传导可防止DSS诱导的结肠炎和DSS+氧化偶氮甲烷诱导的CAC动物模型中的组织损伤。此外,外源性IL-18使Casp1−/−小鼠免受结肠炎诱发的体重减轻影响。因此,IL-18似乎负责NLRP3炎性体介导的针对肠道炎症、组织损伤和肿瘤发生的保护作用。
▸ NLRP3炎症小体在化疗抗肿瘤反应中起作用
还研究了NLRP3炎症小体在肿瘤发生中的作用。研究指出,NLRP3炎症小体对化疗诱导的抗肿瘤反应是必不可少的。从机制上看,化疗诱导的垂死肿瘤细胞释放的ATP激活了NLRP3炎症小体,进而通过IL-1β的分泌进一步激活产生IFN-γ的CTL。
考虑到用于激活NLRP3炎症小体的外源性ATP浓度远高于化疗诱导的垂死肿瘤细胞释放的ATP浓度(mM与μM),其他内源性NLRP3激活剂,如尿酸,可能在化疗期间释放,从而激活体内的NLRP3炎性小体。
2
NLRP3炎症小体和代谢紊乱
近几十年来,肥胖、2型糖尿病、动脉粥样硬化等代谢性疾病的发病率急剧上升,严重威胁人类健康。
▸ 肥胖患者的促炎细胞因子上调
在过去的十年中,人们已经清楚地认识到慢性炎症是代谢紊乱的一个关键预测因素。例如,肥胖与细胞因子产生的上调和炎症信号通路的激活有关。
肥胖状态下,脂肪组织中的炎症小体活化会导致促炎细胞因子的过度分泌,如IL-1β和IL-18等。这些促炎细胞因子的释放会引发炎症反应,进而影响胰岛素信号传导、葡萄糖代谢和脂质代谢,加剧肥胖相关的代谢紊乱。
▸ 炎症小体分泌IL-1β破坏胰岛素调节
NLRP3炎症小体在2型糖尿病(T2D)中扮演着重要角色。它作为代谢应激传感器,在治疗T2D的临床试验中加强了IL-1β受体拮抗作用。
IL-1β升高是发生T2D的危险因素,并通过拮抗胰岛素信号传导导致胰岛素抵抗。IL-1β还介导胰岛中长期高血糖(糖毒性)的毒性作用,导致β细胞破坏并调节葡萄糖诱导的胰岛素分泌。
最近的一项研究描述了慢性高血糖期间小鼠胰岛中IL-1β的分泌情况:高细胞外葡萄糖通过NLRP3炎症小体触发IL-1β分泌。
此外,NLRP3结合蛋白TXNIP作为胰腺β细胞死亡和外周葡萄糖摄取失败的介质,与T2D密切相关。
炎性小体在代谢综合征中的作用
doi: 10.1038/nature10759.
▸ NLRP3炎症小体在动脉粥样硬化中起重要作用
最近的研究还表明NLRP3炎症小体在动脉粥样硬化中发挥着核心作用。动脉粥样硬化是一种慢性炎症性疾病,其特征是动脉粥样硬化病变中炎性成分的积累和免疫细胞的募集。
观察到在早期饮食引起的动脉粥样硬化病变中存在微小胆固醇晶体的沉积,这与巨噬细胞的募集有关。体外生成的胆固醇晶体在脂多糖引发的人外周血单核细胞和小鼠巨噬细胞中诱导NLRP3/ASC炎性体激活和caspase-1/IL-1β/IL-18裂解。
此外,使用骨髓嵌合体的体内实验表明,骨髓细胞来源的NLRP3、ASC和IL-1β/β在动脉粥样硬化病变的发展中发挥着关键作用。由于活性氧(ROS)还促进动脉粥样硬化的发展,因此测试ROS在胆固醇晶体诱导的NLRP3炎性体激活中的参与将很有意义。
3
炎症小体和适应性免疫
NLRP3炎性小体除了在先天免疫反应中的促炎作用外,最近的研究强烈表明NLRP3炎性体介导的细胞因子(IL-1β和IL-18)在形成适应性免疫反应中发挥着重要作用。
▸ IL-1β调节早期TH17细胞分化
据报道,IL-1β信号传导可调节早期Th(辅助性T)17细胞分化,并在实验性变态反应性脑脊髓炎(EAE)诱导中发挥重要作用。
从机制上讲,IL-1β信号传导诱导IRF4和RORγt的表达,这是参与Th17分化的两个重要转录因子。IL-1β 还被证明可以与IL-23协同作用,诱导产生IL-17的 γδ T 细胞的发育,从而促进EAE的发展。因此,人类Th17细胞的分化需要IL-1β的存在。
▸ IL-18协同其他细胞因子影响T细胞的反应
与IL-1β相反,IL-18信号在Th细胞分化中的作用取决于其他协同细胞因子。例如,IL-18与IL-12的协同作用诱导产生IFN-γ的Th1细胞,而IL-18与IL-2的组合增强了IL-13(一种Th2细胞因子)的产生。
通过与IL-23协同作用,IL-18扩增极化Th17细胞产生的IL-17。因此,与IL-1β相比,IL-18在形成适应性T细胞反应方面表现出更灵活的功能,这可以解释IL-1β和IL-18在某些疾病模型(如肠道炎症和2型糖尿病)中的不同功能。
基于IL-1β和IL-18在T细胞分化和自身免疫性疾病中的作用,几个研究了炎症小体在T细胞介导的疾病中的作用。数据表明NLRP3在加剧EAE发展中发挥着重要作用。这是由于抗原呈递巨噬细胞和DC需要NLRP3才能最佳地激活初始T细胞形成Th1和Th17效应细胞。
总之,NLRP3炎症小体介导IL-1β和IL-18的产生,IL-1β和IL-18与其他炎症细胞因子配合调节T效应细胞的产生并影响疾病进展。这些研究将炎症小体的作用扩展到适应性免疫的调节。
4
炎症小体和痛风
痛风是一种自身炎症性疾病,其特征是严重的关节炎症,导致关节病和相当大的疼痛。痛风与代谢紊乱密切相关,导致血尿酸水平升高(高尿酸血症)和 尿酸盐(MSU)晶体在关节中沉积。
▸ 尿酸盐是NLRP3炎症小体的有效激活剂
最近的研究阐明了尿酸盐(MSU)依赖性关节炎症的潜在机制。MSU在体外是NLRP3炎症小体的有效激活剂,并且MSU依赖性中性粒细胞募集在体内依赖于ASC衔接子、caspase-1和IL-1R。
IL-1β拮抗剂在临床试验中的成功支持了炎症小体调节的IL-1β在人类痛风和密切相关的假痛风中的致病作用。
5
炎症小体和肝损伤
尽管NLRP3炎性体在DSS诱导的结肠炎期间的组织损伤中发挥保护作用,但对乙酰氨基酚(APAP)诱导的肝损伤动物模型的研究表明,NLRP3炎性体会放大免疫反应并加剧肝损伤。
▸ NLRP3可能是造成肝损伤的关键介质
APAP治疗通过有毒代谢中间产物诱导肝毒性,导致肝细胞死亡。最近的一项研究发现TLR9和NLRP3炎症小体是APAP诱导的肝损伤和炎症的关键介质。TLR9检测APAP诱导的肝细胞死亡后释放的内源DNA,并上调pro-IL-1β和pro-IL-18的产生,这些物质进一步被NLRP3炎性小体裂解。
因此,TLR9和NLRP3炎症小体在APAP诱导的肝损伤和炎症过程中发挥着作用。然而,NLRP3炎症小体的刺激尚未得到充分研究。基于APAP治疗诱导的急性和强烈的细胞死亡,从死亡细胞释放的尿酸、ATP、线粒体或透明质酸可能会激活TLR9或激活巨噬细胞中的NLRP3炎症小体。
此外,AIM2最近被鉴定为介导caspase-1激活和IL-1β/IL-18加工的胞质DNA传感器。需要进一步的研究来测试AIM2在肝损伤和其他涉及广泛细胞死亡的疾病模型(如脓毒症)中的作用。
▸ 拓展:其他炎症小体可能影响的疾病
NLRP3以外的NLRP突变与人类疾病相关。NLRP12突变与一种名为FACS2的类似FCAS的发热综合征有关。
研究人员认为,这些患者的NLRP12突变可能破坏了该蛋白的NF-κB抑制活性。然而,考虑到NLRP12和NLRP3之间的高度同源性以及FCAS和FCAS2患者症状的相似性,这些患者的炎症小体活性可能存在失调。
NLRP1的突变与白癜风等多种自身免疫性疾病有关。最近,NLRP2突变被发现与一例家族性Beckwith-Wiedmann综合征有关,这是一种导致胎儿过度生长和印记障碍的疾病。
此外,NLRP7突变与家族性和复发性葡萄胎有关,这是一种异常妊娠状态,胎盘绒毛退化,受精卵无法存活。这些基因突变参与的疾病机制以及炎症小体途径的潜在参与仍有待进一步阐明。
检测炎症小体激活的方法
激活炎症小体具有多个重要特征,包括ASC斑点的形成、促炎性细胞死亡、具有生物活性IL-1β/IL-18细胞因子的分泌以及HMGB1的表达。一般可以通过以下几种方法检测:
1.使用RT-qPCR检测NF-κB诱导的pro-IL-1β和NLRP3是否上调;
2.使用荧光显微镜或流式细胞术监测细胞系中ASC斑点的形成;
3.使用Western blot检测caspase-1的裂解或pro-IL-1β/IL-18的成熟;
4.使用ELISA测定IL-1β、IL-18或HMGB1的释放;
5.使用乳酸脱氢酶(LDH)测定或碘化丙啶(PI)染色法检测细胞焦亡;
6.使用检测IL-1β、IL-18分泌的报告基因功能细胞系。
以上方法各有利弊,可以适当的结合这些方法来检测炎症小体的激活。
✦
越来越清楚的是,炎症小体激活caspase-1以多种方式有助于保护宿主免受入侵微生物的反应。例如通过分泌IL-1β和IL-18诱导炎症,介导HMGB1等“警报素”的释放,并触发受感染宿主细胞的焦亡以消除微生物病原体。
炎症小体与肠道微生物群之间的相互作用在维持肠道稳态和调节免疫反应中也发挥着至关重要的作用。然而炎症小体的功能具有两面性(有害与有益)。这种相互作用的失调可能导致各种胃肠道疾病的发生。因此,必须对其进行严格监管,以限制异常激活和对宿主细胞的损害。
NLRP6炎性小体缺乏被证明与促进自身炎症的微生物群的扩张有关,如普氏菌科(Prevotellaceae)。炎症小体可以感知微生物群成员或群落,调节组织修复和再生,以及在稳态和炎症状态下协调粘膜免疫反应。
在之前的研究中发现,炎症小体缺乏和肠道菌群的改变都与人类代谢综合征(如肥胖和动脉粥样硬化)的发展倾向有关。炎症小体对肠道菌群的调节是否会影响体重、代谢和炎症,预计将成为该领域的主要研究方向。
主要参考文献
Manshouri S, Seif F, Kamali M, Bahar MA, Mashayekh A, Molatefi R. The interaction of inflammasomes and gut microbiota: novel therapeutic insights. Cell Commun Signal. 2024 Apr 2;22(1):209.
Liang Z, Damianou A, Di Daniel E, Kessler BM. Inflammasome activation controlled by the interplay between post-translational modifications: emerging drug target opportunities. Cell Commun Signal. 2021;19:1–12.
Sim J, Park J, Moon J-S, Lim J. Dysregulation of inflammasome activation in glioma. Cell Commun Signal. 2023;21(1):239.
Pellegrini C, Antonioli L, Lopez-Castejon G, Blandizzi C, Fornai M. Canonical and non-canonical activation of NLRP3 inflammasome at the crossroad between immune tolerance and intestinal inflammation. Front Immunol. 2017;8:36.
Davis BK, Wen H, Ting JP. The inflammasome NLRs in immunity, inflammation, and associated diseases. Annu Rev Immunol. 2011;29:707-35.
Carriere J, Dorfleutner A, Stehlik C. NLRP7: From inflammasome regulation to human disease. Immunology. 2021 Aug;163(4):363-376.
Lamkanfi M, Dixit VM. Modulation of inflammasome pathways by bacterial and viral pathogens. J Immunol. 2011 Jul 15;187(2):597-602.
Strowig T, Henao-Mejia J, Elinav E, Flavell R. Inflammasomes in health and disease. Nature. 2012 Jan 18;481(7381):278-86.
Próchnicki T, Latz E. Inflammasomes on the Crossroads of Innate Immune Recognition and Metabolic Control. Cell Metab. 2017 Jul 5;26(1):71-93. doi: 10.1016/j.cmet.2017.06.018. PMID: 28683296.
谷禾健康
编辑在老龄化过程中,生理功能逐渐衰退,伴随着多种疾病的发生,对老年人的身心健康构成重大威胁。
衰老是一个渐进、持续的过程,受到多种因素的影响,包括遗传、饮食、运动、生活方式等生理因素,也有社会、文化等复杂因素的交互影响,目前,越来越多的证据支持肠道菌群在衰老过程中的作用。
自然或“健康”的衰老,伴随着普雷沃菌属、粪杆菌属和双歧杆菌属以及直肠真杆菌属等减少,被其他共生微生物群所取代,如Butyricimonas、Akkermansia、Odoribacter等,尤其Akk菌与百岁老人的健康有关。而不健康衰老,则意味着致病菌或条件致病菌增多,包括肠杆菌科、放线菌属等。
肠道菌群与衰老相关的变化与认知能力下降、肌肉质量下降、骨质减少、皮肤稳态、血管老化、免疫衰老、代谢改变、肺和肝功能下降等密切相关。这些身体机能的衰退往往伴随着心理健康的变化,尤其是晚年抑郁症的发病率增高,约4%的老年人被诊断患有晚年抑郁症。
与成年人抑郁症相比,晚年抑郁症更多表现为生理症状突出,认知功能损害更严重,晚年抑郁症可能是老年痴呆的先兆。
经常看我们文章的朋友都知道,肠-脑轴与神经精神疾病的发病机制密切相关。这一双向调节轴通过神经免疫、神经内分泌等通路,以及肠道屏障、微生物代谢物和血脑屏障等,影响大脑功能,当然也包括认知水平。
近期几项研究(包括纵向跨诊断研究,横截面研究等)表明,肠道菌群可以预测未来的认知能力下降和抑郁症状,未来认知功能下降与较低的Intestinibacter相对丰度、较低的谷氨酸降解以及较高的组胺合成水平相关。关于谷氨酸和组胺可以详见我们之前的文章:
晚年抑郁症中总游离脂肪酸部分介导了Akkermansia与认知功能之间的关系,IL-6、IFNγ、疣微菌门和Akkermansia水平与抑郁严重程度相关。
本文我们通过这几项研究,来更深入具体地了解肠道菌群对老年人认知能力下降和抑郁症状的当前和未来影响,同时也包括其他老年神经系统疾病相关合并症,营养不良住院老年人的肠道菌群紊乱和临床结果,以及针对衰老的相关干预措施的介绍。希望为大家提供更多关于肠道菌群在老年健康领域重要作用的见解。
doi.org/10.14336/AD.2024.0331
在人类的整个生命周期中,肠道微生物群的变化和转变伴随着衰老过程。
婴儿从出生起就接触各种环境微生物,导致肠道微生物群逐渐丰富和多样性增加。
新生儿肠道最初定植主要涉及兼性厌氧微生物,如肠杆菌科和链球菌,其次是专性厌氧微生物,如双歧杆菌、梭菌和拟杆菌。
Prausnitfaecali和喜爱粘蛋白的Akkermansia muciniphila等细菌在婴儿早期要么不存在,要么以非常低的水平存在,并在 1-2 岁左右增加到成人水平。
共生且稳定的肠道微生物群通常在9至36个月大的婴儿中形成,常见的分类群包括拟杆菌门、厚壁菌门和放线菌门。
3-5岁儿童的肠道菌群组成逐渐向成人趋同。一旦建立,肠道微生物群的组成在整个成年期保持相对稳定。
成年人的肠道菌群包括拟杆菌型、普雷沃氏菌型等几种常见肠型。个体间差异与饮食、生活方式、运动频率、种族、文化习惯等许多因素相关。
在中老年人中,肠道微生物群多样性下降。某些核心肠道微生物类群在老年人中也会发生变化。例如,拟杆菌属和大肠埃希氏菌的比例较高。
DOI: 10.14336/AD.2024.0331
自然或“健康”的衰老会导致肠道微生物组组成的特定变化,例如某些共生菌属的丧失,包括普雷沃菌属、粪杆菌属和双歧杆菌属以及直肠真杆菌属。在老年阶段,这些菌群被其他共生微生物所取代,如丁酸杆菌属(Butyricimonas)、Akkermansia、Odoribacter等。
特别是Akkermansia muciniphila,已知其有助于肠道中的粘蛋白降解。研究人员推测,AKK菌的水平可以指示健康状况,其相对丰度增加(高于健康老化时的水平)与百岁老人的极佳健康状况相关,而相对丰度降低则与肠道粘液层变薄和酰基甘油减少有关。
注:酰基甘油是一种调节肠道通透性和减少肠道炎症的内源性大麻素。
长寿人群的肠道菌群特征
研究发现,与100岁以下人群相比,百岁老人体内有益细菌(如拟杆菌属、Desulfovibrio suis、Pameliagodonibacterium pamelaeae、瘤胃球菌科、乳杆菌、Akkermansia、 甲烷短杆菌属)含量更高,而Faecalibacterium 、普雷沃特菌属、克雷伯氏菌属、链球菌属、肠杆菌属、肠球菌属含量较低。
百岁老人肠道菌群多样性有所增加。百岁老人肠道微生物群中有益细菌占主导地位,可能有助于抵消与年龄相关的健康问题和衰老。
长寿人群的肠道菌群功能分析
2019年,一项对百岁老人肠道微生物功能的分析显示,中枢代谢能力增强,特别是在产生短链脂肪酸的糖酵解和发酵途径中。此外,百岁老人还表现出更高水平的磷脂酰肌醇信号系统、鞘脂生物合成和不同水平的n-聚糖生物合成。
2020年,一项对肠道微生物组的功能研究揭示,随着年龄的增长,与异养降解代谢相关的途径增加,与碳水化合物代谢相关的通路减少。
2021年进行的一项研究,包括吲哚和苯乙酰谷氨酰胺在内的七种微生物代谢产物与百岁老人肠道微生物群的不同组成之间存在显著关联。这两种代谢产物先前被证明可以延长小鼠的寿命,在百岁老人的血液中发现了高水平的代谢产物。
总之,肠道微生物群不仅是衰老的标志,而且在维持人类健康和寿命方面发挥着至关重要的作用。
肠道微生物群与年龄相关的变化不仅影响肠道健康,而且还延伸到其他生理系统。
炎症衰老
早在20世纪60年代的研究就表明老年人的免疫功能有所下降,这一过程现在被称为免疫衰老,与免疫系统功能下降有关,从而导致促炎细胞因子的积累。
老年人群中炎症状态的增加现在通常被称为“炎症衰老”。促炎症状态使患者面临多种疾病的更高风险,例如自身免疫性疾病、心血管疾病、感染。
doi: 10.1186/s12979-020-00213-w
在胃肠道内,维持功能性上皮和粘液屏障对于预防感染和疾病至关重要。肠道通透性增加可导致微生物易位至宿主循环中,加剧促炎状态。
科学家还发现了几种在“不健康”衰老过程中会增加的致病生物或条件致病微生物,这一过程的特点是身体和精神迅速衰退,并与疾病进展和身体虚弱有关。其中一些病原体包括埃格特菌属(Eggerthella)、放线菌属、肠杆菌科,它们的存在和数量可以帮助预测寿命和疾病结果。
老龄化人群:微生物组本身的变化导致促炎状态
在无菌小鼠模型中进行的实验表明,老龄化人群中微生物组本身的变化导致了促炎状态,无菌小鼠的寿命比传统小鼠要长得多。此外,与灌胃其他年轻小鼠微生物组的小鼠相比,灌胃老年小鼠微生物组的年轻无菌小鼠表现出更大的肠道通透性和循环肿瘤坏死因子。
与各种器官和疾病相关的年龄相关肠道菌群
DOI: 10.14336/AD.2024.0331
肠道微生物群与年龄相关的变化与认知能力下降、肌肉质量和能力下降、骨质减少、皮肤稳态、血管老化、免疫衰老、代谢改变、肺和肝功能下降密切相关。
表1 不健康衰老过程中的肠道微生物组
doi.org/10.14336/AD.2024.0331
一个越来越受关注的领域是通过可能影响认知功能的微生物群-肠-脑轴。神经精神疾病的病因复杂,肠道菌群和炎症可能是神经系统疾病发病机制的关键因素。接下来我们通过几项近期的研究队列,来了解老年人的肠道菌群与神经系统疾病关联。
随着全球人口预期寿命的增加,晚年抑郁症的患病率显著上升,约4%的老年人被诊断患有晚年抑郁症。晚年抑郁症更多表现为明显的躯体症状,而情感症状不突出,认知功能障碍也更严重。
有认知障碍的老年人抑郁会增加痴呆的进展。微生物群与当前的情绪和认知有关,近日,几项关于肠道菌群与老年抑郁、认知能力下降关联的研究发表,这些有助于我们更好地理解和应对老年抑郁和认知能力下降,一起来看一下:
literature 1
肠道菌群对老年人认知能力下降和抑郁症状的当前和未来影响
从268名有不同认知和抑郁症状的参与者中收集临床评估和粪便样本。
70名参与者接受了为期2年的随访。
肠道菌群多样性↑ 认知↓ 抑郁严重程度↑
更大的微生物群落多样性,表明群落中物种的数量更高,分布更均匀,与样本中当前认知功能更差以及未服用抗抑郁药的参与者抑郁严重程度更高有关。
认知功能差与双歧杆菌的相对丰度较低有关。
GABA↓ 抑郁症严重程度↑
在功能水平上,GABA 降解程度越高,基线抑郁症严重程度越高。
GABA 是一种主要的抑制性神经递质,抑郁症患者表现出较高的GABA降解和较低的 GABA 生物合成,GABA功能的减少在认知功能中起着至关重要的作用,影响抑郁和衰老过程中出现的症状,微生物衍生的GABA会影响全身的GABA 水平,并与行为和功能连接的变化相关。
未来认知能力下降 与下列因素有关:
未来抑郁症状的增加 与下列因素有关:
doi: 10.1038/s41380-024-02551-3
这是第一项纵向跨诊断研究,它代表着在精神病学、衰老和微生物组的交叉点上迈出了重要的一步。
微生物组可以预测未来的认知能力下降和抑郁症状,有可能为识别可能经历认知能力或情绪下降的人提供生物标志物。
literature 2
晚年抑郁中,总游离脂肪酸与肠道菌群组成和认知功能相关性的的中介分析
近日,来自浙江省人民医院精神病科康复医学中心廖峥娈团队的相关研究成果发表在《Lipids in Health and Disease》期刊上。这也是谷禾健康开放基金合作项目,一起来看一下。
晚年抑郁症是指60岁以上老年人出现的抑郁障碍,包括老年首发抑郁和老年复发的抑郁。该研究纳入来自老年抑郁认知结果队列研究的29名晚年抑郁症患者。
Spearman相关分析显示,Akkermansia丰度、总游离脂肪酸和MoCA评分之间存在显著相关性(P<0.05)。多元回归分析表明Akkermansia和总游离脂肪酸能显著预测MoCA评分(P<0.05)。
肠道微生物群、认知评估和脂质代谢指标之间的相关性
doi: 10.1186/s12944-024-02056-6.
调解分析显示,晚年抑郁症患者中Akkermansia相对丰度降低与认知功能下降的关系,部分由总游离脂肪酸介导(Bootstrap 95%CI: 0.023-0.557),占相对效应的43.0%。
肠道微生物群、脂质代谢产物和认知功能评分之间的相关性
doi: 10.1186/s12944-024-02056-6.
这些发现表明,晚年抑郁症中认知功能与Akkermansia及总游离脂肪酸存在显著关系。总游离脂肪酸部分介导了Akkermansia与认知功能之间的关系。
晚年抑郁症患者的认知功能与总游离脂肪酸呈负相关,尤其是视觉空间/执行功能。
游离脂肪酸作为非酯化脂肪酸,是甘油三酯分解的产物,具有脂毒性,可通过被动转运或蛋白介导的内吞作用进入大脑,从而影响血管内皮功能。它们被认为可预示II型糖尿病(T2DM)患者阿尔茨海默的发生。有研究报告,在II型糖尿病合并轻度认知障碍的患者中,游离脂肪酸与注意力和执行功能呈负相关。另有研究发现,健康人群中游离脂肪酸水平升高与认知功能下降相关。这些发现揭示了游离脂肪酸对晚年抑郁症患者认知功能的影响。
总游离脂肪酸在阿克曼症和认知功能之间关系中作用的中介模型
这是首次评估晚年抑郁症患者中认知功能、肠道菌群和脂质代谢关系的研究。这些结果有助于理解肠道微生物-宿主脂质代谢轴在晚年抑郁症认知功能中的作用。
literature 3
晚年抑郁症患者肠道微生物群失调和信息功能障碍的横断面观察分析
这项研究也是来自浙江省人民医院精神病科康复医学中心廖峥娈团队的,其相关研究成果已于近日发表在《Neuropsychiatric Disease and Treatment》期刊上。
这也是谷禾健康开放基金合作项目,该研究分析了晚年抑郁患者的肠道菌群特征和血清炎症细胞因子,探讨这两个因素在晚年抑郁潜在生物标志物中的联合作用。一起来看一下。
收集29名晚年抑郁患者和33名性别年龄匹配的健康对照(HC)的粪便样本和外周血,检测肠道菌群和12种炎症因子。
晚年抑郁症患者存在系统性炎症细胞因子水平升高和肠道菌群失调。
晚年抑郁症和健康对照的LEfSe分析
doi: 10.2147/NDT.S449224.
值得注意的是,IL-6、IFNγ、疣微菌门和Akkermansia水平与抑郁严重程度相关。
IL-6是神经元和胶质细胞表达的一种促炎症细胞因子,对免疫和急性期反应至关重要。有研究人员提出,高IL-6水平可促进5-羟色胺降解和减少5-羟色胺产生,从而损害神经可塑性,导致海马和前额叶萎缩等脑结构异常,这些异常已被证实与晚年抑郁症及其引起的认知障碍相关。与该研究一致。
IFNγ是一种参与中枢神经系统炎症的促炎因子,并激活大脑中的小胶质细胞以诱导促炎反应。研究表明,IFNγ激活的小胶质细胞改变了海马神经原生态位,抑制神经干细胞和祖细胞的增殖,并促进未成熟神经元的凋亡,从而导致小鼠的抑郁症状和认知障碍。该研究在临床上证实了这一观点,并证明IFNγ水平与晚年抑郁严重程度有关。简而言之,这项研究表明,晚年抑郁是一种促炎和抗炎细胞因子共存的炎症状态,IL-6和IFNγ与疾病严重程度有关。
既往研究发现,焦虑和抑郁患者中疣微菌门丰度降低,而Akkermansia丰度增加可降低焦虑,增强老年小鼠的认知功能。这与研究结果一致。回归分析显示,Akkermansia丰度是预测晚年抑郁概率的一个风险因素。但Akkermansia丰度与炎症因子水平无相关性,提示Akkermansia可能不通过炎症通路参与晚年抑郁的发病机制。
有趣的是,有研究发现,Akkermansia的外膜蛋白Amuc_1100可直接与TLR2结合,促进5-HT合成率限速酶Tph1的表达,并降低肠上皮细胞中5-HT转运体的表达,从而增加5-HT的生物合成和胞外可用性,这提示Akkermansia可能通过直接调节肠屏障的神经递质释放来影响晚年抑郁。
肠道菌群改变、临床变量和炎症因子之间的关联(Spearman相关分析)
doi: 10.2147/NDT.S449224.
研究确定了IL-6、Akkermansia和Sutterella为晚年抑郁症的预测因子,它们的组合在区分晚年抑郁症患者和健康对照方面的曲线下面积为0.962。
通过回归分析,Sutterella可作为预测晚年抑郁的指标。Sutterella是一种重要的肠道共生菌。既往研究发现,Sutterella丰度在重度抑郁和广泛性焦虑障碍患者中显著增加。许多研究也发现Sutterella与肥胖以及体重和脂肪增加呈正相关。
肥胖和抑郁之间存在双向关系,研究表明,促使垂体肾上腺皮质轴(HPA轴)过度激活、导致皮质醇失调可能是两者的共同机制。因此推测Sutterella可能通过影响HPA轴,从而影响皮质醇的释放,进而触发晚年抑郁的发生。
利用差异丰度属作为晚年抑郁症诊断因子的灵敏度和特异性的ROC曲线分析
doi: 10.2147/NDT.S449224.
这是一项横断面观察研究。该研究提供了晚年抑郁中肠道菌群和系统性炎症变化的证据。重要的是,将肠道菌群和炎症标志物结合使用,可以增强其作为晚年抑郁症潜在生物标志物的预测能力。这些发现有助于阐明肠道菌群和系统性炎症在晚年抑郁发展中的作用,并为临床实践中晚年抑郁的生物标志物提供新思路。
其他合并症相关的研究:
轻度认知障碍(MCI)在老年人中高度普遍,影响了大约10%的70-74岁老人和25%的80-84岁老人。此外,轻度认知障碍患者更有可能进展为痴呆。迄今为止,药物治疗只能减缓轻度认知障碍的进展,但不能逆转它。
注:轻度认知障碍、阿尔茨海默虽然都涉及认知功能下降,但严重程度有所不同,轻度认知障碍是认知功能较正常人有轻微下降,但日常生活功能基本正常。阿尔茨海默是认知功能严重下降,严重影响日常生活。
虽然对微生物群改变是否会影响认知功能仍有分歧,但正在进行的长期项目,如MOTION(衰老肠道的微生物群及其对人类肠道健康和认知的影响),研究健康老龄化的认知和微生物群变化,为解释清楚这些相互作用提供了希望。
表2 选择随机对照试验和观察性研究(2019-2023)
评估老年人认知功能和肠道微生物组
DOI: 10.1007/s11894-024-00932-w
痴呆症:促炎菌增多
2019 年的一项鸟枪法宏基因组序列研究将 57 名患有痴呆症(包括阿尔茨海默病)的疗养院居民与 51 名未患有阿尔茨海默或其他形式痴呆症的老年人进行了比较,结果发现痴呆症患者体内的促炎性肠道细菌水平较高。
阿尔茨海默:产丁酸菌减少,α 多样性降低
作者还注意到,与没有痴呆症的受试者和患有阿尔茨海默病以外的其他痴呆症的受试者相比,阿尔茨海默组中丁酸合成细菌的种类(例如丁酸弧菌属Butyrivibrio和真细菌属Eubacteria)有所减少。
随后的系统回顾和荟萃分析同样发现,与健康对照者相比,阿尔茨海默患者肠道微生物组的 α 多样性有所降低,但轻度认知障碍 (MCI) 患者与健康对照者之间的差异并未降低。
阿尔茨海默病、轻度认知障碍和健康样本之间微生物组组成的差异(即β多样性)并没有一致改变。研究与痴呆症相关的肠道微生物组的一个挑战是缺乏明确、客观和非侵入性的测试来最终确定诊断和疾病阶段,从而使研究结果的解释进一步复杂化。虽然超出了肠道微生物组的范围,但阿尔茨海默病脑组织的尸检研究已经确定了大脑内存在微生物,这表明存在与神经退行性疾病相关的大脑微生物组。
促炎Collinsella菌和APOE风险的强相关性
一项大型全基因组关联研究确定了几个与载脂蛋白E ε4 (APOE ε4) 基因高风险等位基因相关的微生物组属,载脂蛋白E ε4 是阿尔茨海默的一个公认的危险因素。这项研究的一些最重要的发现包括促炎Collinsella菌和 APOE 风险等位基因之间的强相关性,以及提出对Eubacterium fissicatena的保护作用。
帕金森病 (PD) 是另一种神经系统疾病,在老年人中更为常见,人们越来越关注肠道微生物组作为其生物标志物或治疗方法。
帕金森:产丁酸菌如Roseburia、粪杆菌减少
2020 年对来自日本、美国、芬兰、俄罗斯和德国的 16S 测序数据进行荟萃分析发现,帕金森病患者的Roseburia和粪杆菌相对减少,这两者都是丁酸盐的重要生产者。
帕金森:普雷沃氏菌里的致病菌种增加
2022 年对 490 名帕金森病和 234 名健康对照者进行的鸟枪法测序研究证实了这些发现,并确定了帕金森病患者中发生改变的其他几个属,例如普雷沃氏菌里的致病菌种增加。
帕金森:阿克曼氏菌属增加
有趣的是,多项研究指出,帕金森病患者中阿克曼氏菌属(AKK菌)的数量有所增加,考虑到阿克曼氏菌通常与健康衰老相关,并且在超级百岁老人中尤其丰富,这一点令人惊讶。一些科学家推测阿克曼氏菌是健康衰老的重要组成部分,但数量的增加使患者面临神经认知疾病的风险。
进一步假设,阿克曼氏菌丰度的变化可能继发于便秘的发生,便秘是帕金森病的常见胃肠道并发症,并且在多项其他研究中与阿克曼氏菌增加独立相关。由于帕金森病和阿克曼氏菌之间的联系是一个不一致的发现,因此需要进一步的研究来确定该属在帕金森病和更广泛的衰老中的确切作用。
在过度表达 α-突触核蛋白聚集体(PD 患者大脑中常见的现象)的帕金森病小鼠模型中,与移植有健康供体微生物群的小鼠相比,移植有 6 名人类帕金森病患者肠道微生物组的小鼠的身体运动障碍和便秘有所增加。
粪菌移植改善帕金森病患者便秘和神经系统症状
基于帕金森病微生物群改变的这些早期发现,一项随机对照试验发现,健康捐赠者的粪便以冻干药丸形式每周两次服用,持续 12 周,可以改善便秘和肠道蠕动,并暂时提高轻度至中度帕金森病患者的客观运动技能。虽然仍需要大量的转化和临床数据开发,但这些初步发现表明肠道微生物组调节可能改善帕金森病的胃肠道和/或神经系统症状,并提供对疾病病理生理学的更深入了解的希望。
需要更多协助完成日常活动(ADL)的老年人,可能会从社区生活过渡到长期护理机构。这种迁移会由于环境、饮食和医疗因素的推测变化而导致微生物群的变化。
在一般成年人群研究中,家庭表面的微生物与肠道微生物群组成相关,这在过渡到长期护理环境时需要考虑。此外,老龄化和接触医疗机构(如长期护理机构)都与艰难梭菌感染(CDI)的风险增加有关,CDI是医疗相关性炎性腹泻的主要原因。
无论年龄如何,都有强有力的证据表明,特定的饮食可以引起微生物组的独特改变以及相应的血清和粪便代谢物的变化。
相对而言,高纤维受试者微生物组恢复能力最好
一项严格对照的研究跟踪了 30 名受试者,他们被随机分为纯素食(高纤维)、杂食(中纤维)和配方饮食(无纤维)。 6 天后,受试者接受口服抗生素和聚乙二醇的组合进行“肠道净化”。
研究人员发现,与其他群体相比,纯素食受试者的微生物组在“净化”后恢复得更快,在更短的时间内恢复了更大的多样性。另一方面,坚持配方饮食的受试者的恢复期最长。
不同生活方式下,微生物多样性的差异
在一项横断面研究中,将以前未接触过的亚诺马米美洲印第安人的肠道微生物组与居住在美国和和半跨文化人群的个体微生物组进行了比较,与美国人相比,亚诺马米人的肠道微生物群多样性明显更高,而半跨文化人群的多样性水平居中。然而,值得注意的是,不仅仅是饮食,其他社会和医学因素,也可能导致多样性增加。
从社区生活转向长期护理机构,饮食变化如何影响肠道菌群及功能?
微生物组中与年龄相关的变化的一个组成部分似乎与饮食和进食明确相关,特别是因为老年人在获取营养食物方面,出现牙列不良或咀嚼困难、食欲下降以及缺乏社会支持的风险增加。
例如,会导致微生物组改变的最显著的饮食变化之一,是从独立的社区生活转向长期护理机构内的辅助生活。
这种转变通常会导致从高纤维、低脂肪饮食向低纤维、高脂肪饮食的转变,与社区居民相比,长期护理居民的微生物组多样性较低。值得注意的是,这些长期护理居民和社区居民之间的差异与长期护理所花费的时间相关。
在消化过程中,纤维被代谢为短链脂肪酸,它可以作为保护性微生物群的能量来源,协助抗炎反应并维持肠道屏障完整性,从而为胃肠道带来许多好处。因此,转移到长期护理机构时因饮食改变而导致的短链脂肪酸缺乏,可能会间接导致肠道功能障碍。
营养不良住院老年人的肠道菌群紊乱和临床结果
营养不良是住院患者尤其是老年人中最普遍和最具威胁性的综合征之一。营养不良表现为身体成分改变和生物功能减弱,导致体力下降和恢复速度减慢。此外,它降低了对医疗干预的耐受和反应能力,使受影响的人容易出现并发症和预后较差。
一项研究对来自入院时和住院 72 小时评估的前瞻性队列中的 108 名急性重症老年患者进行了二次纵向分析。收集了临床、人口统计、营养和 16S rRNA 基因测序肠道微生物群数据。
严重营养不良患者α多样性较差
与住院期间营养良好的患者相比,营养不良患者 (51%) 的微生物群组成不同 (ANOSIM R = 0.079,P = 0.003)。
严重营养不良患者在入院时(Shannon P = 0.012,Simpson P = 0.018)和随访时(Shannon P = 0.023,Chao1 P = 0.008)表现出较差的α多样性。
营养不良与特定菌群的关联
Lachnospiraceae NK4A136组、Subdolilegum和普拉梭菌的差异丰度显着降低,与营养不良呈负相关,而棒状杆菌(Corynebacterium)、Ruminococcaceae Incertae Sedis和Fusobacter的差异丰度显着升高,与营养不良呈正相关。
棒状杆菌(Corynebacterium)、Ruminococcaceae Incertae Sedis及其总体组成是住院期间营养不良患者重症监护的重要预测因子。
doi.org/10.1016/j.nut.2024.112369
总的来说,营养不良的老年急症患者肠道菌群组成不同,多样性较差,潜在有益菌丰度较低,住院期间机会致病菌增多。 “营养不良的肠道微生物群”可能能够预测不良的医院结果。为与疾病相关的营养不良进行更大规模的临床研究和临床前机制探索开辟了新的视角。
★ 地中海饮食
除了特定的补充剂外,某些饮食也与肠道健康有关。地中海饮食由植物性食品、全谷物和健康脂肪组成,已被证明可以预防所有年龄段的心血管疾病,这种饮食的影响可能是由肠道微生物组介导的。
一项研究发现,坚持地中海饮食至少一年,肠道内的普氏杆菌、人型杆菌、直肠杆菌、埃里根杆菌、嗜木杆菌、多形杆菌、普氏杆菌、哈德鲁斯杆菌相对增加。此外,坚持饮食还与认知功能的改善相关,以及高敏 C 反应蛋白 (hsCRP) 和IL-17水平等全身炎症标志物的降低。
饮食习惯(尤其是地中海饮食)与肠道菌群和衰老病理生理学方面的联系机制
doi.org/10.1007/s40520-024-02707-9
如何理解肠道微生物群介导的地中海饮食抗衰老作用?
短链脂肪酸的微生物合成
患有虚弱、肌少症、认知能力下降的老年人肠道微生物组的一个关键特征,是产短链脂肪酸的菌减少,包括普拉梭菌、罗氏菌属、丁酸弧菌属(Butyrivibrio)、琥珀酸弧菌属(Succinivibrio)等。而身体健康的百岁老人粪便中短链脂肪酸水平通常高于 60-70 岁的受试者。
地中海饮食刺激短链脂肪酸合成细菌生长和提高短链脂肪酸的能力很重要,然而,肠道细菌有效释放短链脂肪酸的功能能力不仅取决于饮食中的纤维含量,还取决于细菌之间复杂的交叉喂养相互作用以及细菌与宿主之间的相互作用,例如,只有在肠道环境中存在大量双歧杆菌的情况下,普拉梭菌才能产生足够的丁酸。
注:丁酸可以促进肠道粘膜完整性;调节炎症反应;改善胰岛素抵抗,并具有整体促合成代谢功能。
降低肠粘膜通透性
衰老,即使具有健康的活动模式,也与肠通透性增加相关,血清生物标志物连蛋白水平升高就证明了这一点。荟萃分析表明,虚弱者的血清连蛋白水平平均高于健康老年受试者,反映出肠粘膜屏障功能的逐渐丧失。这种情况与健康或患有慢性阻塞性肺病和痴呆等慢性疾病的老年受试者的骨骼肌力量丧失、肌少症等有关。
肠粘膜通透性增加与细菌毒素(包括脂多糖LPS)增加有关,这些化合物激活先天免疫反应和适应性免疫的抗原刺激,最终导致典型的衰老和虚弱的持续性亚临床炎症,也就是炎症衰老。 LPS 毒素增加在与年龄相关的认知衰退和阿尔茨海默病的病理生理学中起着关键作用,并且被认为是肠-脑轴失调的主要原因之一。
在患有慢性疾病的成年受试者和老年人中,较高的地中海饮食依从性与胃肠粘膜通透性生物标志物和循环 LPS 水平呈负相关。
食品生物活性物质的生物转化
地中海饮食中通常建议大量摄入水果和蔬菜、全麦谷物、坚果、豆类和特级初榨橄榄油,这其中含有丰富的多酚或酚类化合物,膳食多酚和肠道微生物组之间的相互作用能够产生多种具有抗衰老作用的生物活性代谢物,特别是在骨骼肌和中枢神经系统水平上。
尿石素 A、异尿石素 A 和尿石素 B 是肠道微生物在摄入鞣花酸和鞣花单宁(核桃、石榴和草莓中常见的多酚)后释放的代谢物。
尿石素 A 的潜在抗衰老作用包括:改善肌肉力量和运动耐力、调节神经炎症和细胞凋亡并改善认知、促进胰岛素敏感性、调节脂质代谢和炎症反应。
地中海饮食与尿液中尿石素排泄的平均增加有关,即使分析没有考虑代谢型。同样,在两个不同的随机对照试验中,尿石素的尿液排泄与内脏脂肪减少和磁共振测量的海马占用评分显着相关,这些随机对照试验测试了长期地中海饮食干预的效果。
除鞣花单宁外,肠道微生物群衍生的多酚亚类代谢型鲜为人知。在饮食中摄入黄烷酮(一种特别以柑橘为代表的多酚亚类)后,已确定了橙皮苷的高排泄者和低排泄者。橙皮苷具有抗氧化、抗炎和促合成代谢作用,促进肌肉蛋白合成并减少阿尔茨海默病动物模型中的淀粉样蛋白沉积和神经炎症。
在一项测试地中海饮食对2型糖尿病受试者的影响的干预研究中,12周后检测到橙皮苷和其他黄烷酮衍生物的血浆水平增加,炎症生物标志物显著减少。
同样,雌马酚是大豆异黄酮大豆苷元肠道生物转化后释放的生物活性化合物,但它仅由一部分具有特定微生物特征的群体产生。雌马酚在体外表现出针对痴呆症发作的神经保护作用,但在体内,只有在存在雌马酚产生微生物组代谢型的情况下,它才与更好的认知表现相关。
多酚对衰老过程中肠道菌群的影响
doi.org/10.3390/nu16071066
扩展阅读:
★ 高脂肪和高钠的西方饮食
小鼠研究还表明,高脂肪和高钠的西方饮食会导致肠道微生物组的“预测年龄”增加,该模型基于对雄性 C57BL/6 J 小鼠进行贝叶斯模型训练,这些小鼠的微生物组从第 9 周起就已被表征到生命第 112 周。一旦小鼠恢复标准饮食,这些微生物组紊乱就会逆转。因此,鉴于老年人易受认知能力下降和不健康衰老的影响,评估老年人肠道微生物群和临床结果的干预性饮食研究很有意思。
★ 模拟禁食饮食
模拟禁食饮食(FMD)是一种日益流行的热量限制模式。研究人员发现模拟禁食饮食显著延长了过早衰老小鼠的寿命。在自然衰老的小鼠中,模拟禁食饮食改善了认知和肠道健康。
在肠道中,模拟禁食饮食循环增强了肠道屏障功能,减少了衰老标志物,并维持了固有层粘膜中 幼稚T细胞的记忆平衡。模拟禁食饮食重塑了肠道细菌组成,显著增加了约氏乳杆菌Lactobacillus johnsonii的丰度。模拟禁食饮食作为一种抗衰老干预手段,具有进一步研究的价值。
粪便菌群移植(FMT)是一种越来越多地被纳入复发性艰难梭菌治疗的疗法,并且还针对炎症性肠病和抗生素后菌群失调进行了研究。这使得研究人员猜测是否可以将来自年轻健康捐赠者的微生物组移植到老年人体内,以逆转不健康衰老的一些影响。
粪菌移植用于延缓衰老和改善认知功能
一项研究证明,“老年”微生物组从老年小鼠转移到年轻小鼠会导致多种与年龄相关的表型,包括晚期中枢神经系统恶化和视力缺陷。重要的是,在一组相关实验中,用年轻小鼠的粪便进行微生物组移植后,老年小鼠的年龄相关变化得到改善。这项工作提供了强有力的临床前证据,表明年轻和老年小鼠之间的微生物组特征不仅不同,而且这些微生物组的相关生理效应是可转移的。其他研究人员也重复了这些和类似的发现,证明将老年小鼠的微生物组转移给年轻小鼠可能会导致认知缺陷。
粪菌移植在早衰症模型研究中的应用
早衰症是一种特别独特的疾病,可以用来研究微生物组和衰老,因为受影响的个体携带编码层粘连蛋白 A 的基因突变,从而导致快速衰老。尽管出生时外观正常,受影响的个体通常会在青少年或成年早期出现致命的疾病并发症,主要是心血管疾病。
菌群移植延长小鼠寿命并逆转肠粘膜变薄
早衰症小鼠模型研究表明,在早衰小鼠模型中发现肠道微生物群中变形菌和Cyanobacteria丰度增加,疣微菌丰度减少。某些人类百岁老人富含的细菌菌株,例如Akkermansia muciniphila,可以通过移植来延长小鼠寿命并逆转肠粘膜变薄。
接受长寿菌群小鼠α多样性↑ 产短链脂肪酸菌↑
与普通老年组的小鼠相比,接受长寿个体肠道微生物群的小鼠表现出更长的小肠绒毛、更低的脂褐质和β-半乳糖苷酶(衰老标志)的积累;更高的α多样性,乳酸杆菌、双歧杆菌和产短链脂肪酸菌丰度更高。
恢复外周免疫,改善记忆、学习和行为缺陷
通过粪菌移植,老年小鼠部分恢复了外周免疫(尤其是肠系膜淋巴结免疫细胞)并改善了海马小胶质细胞的缺陷。小鼠海马代谢组(包括维生素 A、GABA、Neu5Gc、精氨酸和相关途径)和谷氨酰胺合成酶表达发生有益变化,从而改善与年龄相关的记忆、学习和行为缺陷。
尽管这些发现仍处于临床前阶段,但它们为使用年轻捐赠者的 FMT 或其治疗成分来逆转不健康衰老的某些方面带来了希望。
扩展阅读:
随着年龄的增长,老年人的饮食习惯通常会发生变化,这会导致微生物组的变化。与衰老相关的饮食变化中研究最多的一项是纤维摄入量的减少。然而,补充纤维的临床试验在微生物群组成和炎症状态的变化方面产生了相互矛盾的结果,一些研究人员假设饮食干预和补充剂的功效可能取决于宿主的初始微生物组特征。
阿拉伯木聚糖
在一项对 21 名 60 岁以上健康志愿者进行的双盲交叉试验中,他们补充了麦麸衍生的阿拉伯木聚糖,结果发现,所产生的微生物组组成因受试者最初的普雷沃氏菌丰度而异。尽管有限,但这些研究结果表明,需要采取个体化的方法来操纵微生物组,并且需要检测患者的初始微生物组,以调整实现预期结果所需的干预措施。
益生菌干预措施已在老年人中进行了专门研究。可惜,与一般人群的研究类似,临床可操作数据的生成因研究产品和结果的巨大异质性以及大量动力不足的研究而受到抑制。虽然尚未发现单一或组合的益生菌能够明确改善或逆转衰老迹象,但越来越多的研究正在评估特定的微生物菌株及其对客观生理效应的影响。
罗伊氏乳杆菌ATCC PTA 6475
在一项双盲、安慰剂对照研究中,骨矿物质密度较低的老年女性补充罗伊氏乳杆菌ATCC PTA 6475 可改善胫骨总体积 BMD (vBMD)。
干酪乳杆菌
在衰老加速SAMP8小鼠模型中,益生菌干酪乳杆菌代田株(Lactobacillus casei Shirota)的给药可减少与年龄相关的肌肉退化和线粒体功能障碍。
研究发现补充干酪乳杆菌 LC122或长双歧杆菌 BL986可改善小鼠外周组织氧化应激和炎症反应,增加海马神经变性和神经营养因子表达,并增强学习和记忆能力。
乳杆菌和双歧杆菌等细菌以光保护方式与真皮成纤维细胞结合,表现出抗衰老特性。
在人类中,一些小型但双盲随机对照试验已经确定了特定的益生菌改善老年人的认知功能,尤其是包括双歧杆菌和乳杆菌在内的益生菌。因此,随着对微生物组操纵和客观健康措施之间更加严格理解的发展,益生菌疗法可能需要定制微生物混合物,以针对个性化护理方法中的特定缺陷或状况。
扩展阅读:
多项研究报告了实施锻炼计划后肠道微生物组发生了变化,早期结果表明老年人群中也是如此。
2020 年的一项研究利用美国肠道项目的粪便样本,其中还包括患者报告的体重指数和运动习惯信息。该研究包括 1,589 名具有健康 BMI(18.5 ≤ BMI ≤ 25)的成年人(年龄 18-60 岁)和 897 名老年患者(年龄 > 60)的样本,他们根据 BMI 进一步分层为正常体重(n = 462),超重(BMI > 25,n = 413)和体重不足(BMI < 18.5,n = 22),并按运动频率分层。
研究人员发现,随着老年患者运动频率的增加,基于特定分类群和常见途径的相对丰度,老年患者的微生物组越来越接近健康BMI成年人的微生物组。例如,与不运动的老年人相比,运动的老年人中放线菌的相对丰度有所增加,并接近健康体重指数成年人的水平。此外,运动的老年患者的Cyanobacteria相对丰度有所下降,再次接近健康体重指数成人的水平。然而值得注意的是,Cyanobacteria产生的毒素如 β-N-甲基氨基-l-丙氨酸 (BMAA) 与阿尔茨海默病和渐冻症等神经退行性疾病有关。
一项小型研究中,招募了 15 名久坐的老年患者(50-75岁),参加一项为期 24 周、每周三次的心血管和阻力运动计划,干预前后收集粪便样本进行16S测序。研究人员观察到,经过 24 周的锻炼计划后,双歧杆菌的相对丰度有所增加,丁酸盐水平也有所增加。考虑到双歧杆菌在极端衰老和改善认知功能中的作用,这些研究结果表明,与运动相关的健康益处也可能是通过肠道微生物组介导的。
虽然有这些结果,但运动时的微生物组变化也存在显著的个体差异。此外,当前的许多研究没有对照组、缺乏严谨性和/或样本量较小。未来的研究需要确定运动与健康的衰老微生物群之间是否确实存在关系,以及可以影响肠道微生物群的体育活动类型。
扩展阅读:
一项研究观察艾灸“足三里”对亚急性衰老模型大鼠氧化应激和肠道菌群的影响,足三里组艾灸双侧“足三里”,每日 1 次,每次每穴 3 壮,连续 28天。
与模型组比较,足三里组大鼠Chao1、Shannon指数升高(P<0.01,P<0.05)。经艾灸干预后大鼠肠道菌群多样性改善。
与模型组比较,足三里组厚壁菌门、密螺旋体属_2相对丰度降低 (P<0.01),拟杆菌门、乳杆菌属、普雷沃氏菌科UCG-003相对丰度及B/F值升高 (P<0.05,P<0.01)。
注:
与模型组比较,足三里组大鼠血清SOD(血清超氧化物歧化酶)含量增加(P<0.01),MDA(丙二醛)含量减少(P<0.01)。
艾灸“足三里”可有效改善衰老大鼠氧化应激水平,调节肠道菌群结构,维持肠道菌群微生态平衡,从而起到延缓衰老的作用。
肠道菌群在预测及辅助治疗的应用
肠道微生物组可预测晚年的认知功能和抑郁症状;肠道微生物群和炎症标志物的组合,可能成为老年抑郁症的潜在生物标志物,具有更强的预测力。这些发现为老年认知下降和抑郁症的诊断和治疗提供了新的策略方向。
总游离脂肪酸在Akkermansia和认知功能之间的重要中介作用,为肠道微生物-脂质代谢轴在晚年抑郁症认知功能中的作用提供了新的视角。
营养不良的老年人肠道菌群可能能够预测不良的临床结果,肠道微生物群及其与宿主的相互作用,可能成为辅助个性化治疗/预防干预的新兴目标,有助于优化传统疗法的疗效。
基于肠道菌群的干预
益生菌、粪菌移植等方法,可能通过调节肠道菌群,改善免疫功能,为衰老提供新的解决方案。
地中海饮食中的多酚因其抗炎、抗氧化和免疫调节作用,与肠道微生物群的复杂互作也日益受到重视,多酚化合物可能是抵御这些与年龄相关表观遗传变化的关键。未来有望通过多酚化合物调节肠道菌群,利用生物活性化合物的功能属性,巧妙地调节和重新调整与衰老相关的过程。
随着对肠道菌群的研究不断深入,这些都可能成为未来抗衰老领域的突破口。
主要参考文献
Kolobaric A, Andreescu C, Jašarević E, Hong CH, Roh HW, Cheong JY, Kim YK, Shin TS, Kang CS, Kwon CO, Yoon SY, Hong SW, Aizenstein HJ, Karim HT, Son SJ. Gut microbiome predicts cognitive function and depressive symptoms in late life. Mol Psychiatry. 2024 Apr 25.
Chen Y, Li J, Le D, Zhang Y, Liao Z. A mediation analysis of the role of total free fatty acids on pertinence of gut microbiota composition and cognitive function in late life depression. Lipids Health Dis. 2024 Feb 29;23(1):64.
Chen Y, Le D, Xu J, Jin P, Zhang Y, Liao Z. Gut Microbiota Dysbiosis and Inflammation Dysfunction in Late-Life Depression: An Observational Cross-Sectional Analysis. Neuropsychiatr Dis Treat. 2024 Feb 27;20:399-414.
Chen LA, Boyle K. The Role of the Gut Microbiome in Health and Disease in the Elderly. Curr Gastroenterol Rep. 2024 Apr 20.
Muñoz-Fernandez SS, Garcez FB, Alencar JCG, Bastos AA, Morley JE, Cederholm T, Aprahamian I, de Souza HP, Avelino-Silva TJ, Bindels LB, Ribeiro SML. Gut microbiota disturbances in hospitalized older adults with malnutrition and clinical outcomes. Nutrition. 2024 Jun;122:112369.
Wu YL, Xu J, Rong XY, Wang F, Wang HJ, Zhao C. Gut microbiota alterations and health status in aging adults: From correlation to causation. Aging Med (Milton). 2021 Jun 24;4(3):206-213.
Pereira, Q.C.; Fortunato, I.M.; Oliveira, F.d.S.; Alvarez, M.C.; Santos, T.W.d.; Ribeiro, M.L. Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging. Nutrients 2024, 16, 1066.
Wang XM, Fan L, Meng CC, Wang YJ, Deng LE, Yuan Z, Zhang JP, Li YY, Lv SC. Gut microbiota influence frailty syndrome in older adults: mechanisms and therapeutic strategies. Biogerontology. 2024 Feb;25(1):107-129.
Wang Q, Xu J, Luo M, Jiang Y, Gu Y, Wang Q, He J, Sun Y, Lin Y, Feng L, Chen S, Hou T. Fasting mimicking diet extends lifespan and improves intestinal and cognitive health. Food Funct. 2024 Apr 22;15(8):4503-4514.
Wang Y, Qu Z, Chu J, Hun S. Aging Gut Microbiome in Healthy and Unhealthy Aging. Aging Dis. 2024 Apr 9.
谷禾健康
人体内的各个部位,如皮肤、口腔、肠道和阴道等,都是微生物的重要栖息地,这些微生物与人体健康紧密相关,并能反映人体的疾病状态。这些部位因受基因、环境和生活方式等影响,具有独特的菌群特征。
女性生殖系统包括卵巢、输卵管、子宫和阴道等主要器官,阴道微生态对女性生理健康、生殖健康和妊娠过程至关重要。随着高通量测序技术的进步,阴道微生物检测已被广泛应用于临床妇科感染的辅助诊断和治疗,以及科研。
阴道微生物群是维护阴道健康的关键,健康的阴道生态主要由乳杆菌组成,这些细菌通过产生乳酸、过氧化氢来保护阴道,并释放细菌素等化合物以防止有害细菌定植。
然而,阴道生态系统的失衡可能导致病原体过度生长,引发如细菌性阴道病(BV)、性传播感染(STI)和外阴阴道念珠菌病(VVC)等复杂的阴道感染。
阴道还可能受到多种病原体如人乳头瘤病毒(HPV)和人类免疫缺陷病毒(HIV)的感染。流行病学研究显示,这些因素与不良健康结果的风险增加有关。
本文旨在探讨阴道菌群的类型和阴道微生态的重要性,并探索如何通过微生物检测辅助妇科感染问题的诊断和治疗,从而为女性生殖系统健康提供更多精准的个性化方案。
阴道微生物群被定义为在阴道内定殖的共生和病原微生物群,阴道微生物群从女性出生的最初几个小时开始就开始定居,伴随女性一生。
随着测序技术的普及,近年来对女性阴道微生态结构有了更全面的了解并进一步做细分。
✦ 健康的阴道菌群以乳杆菌为主导
最主要的阴道种群是乳杆菌,在阴道中已检测出超过20种乳酸菌,占细菌群落的近70%。包括下列菌群等:
-Lactobacillus crispatus(卷曲乳杆菌)
-Lactobacillus gasseri(格氏乳杆菌)
–Lactobacillus rhamnosus(鼠李糖乳杆菌)
–Lactobacillus iners(惰性乳杆菌)
–Lactobacillus acidophilus(嗜酸乳杆菌)
–Lactobacillus jensenii(詹氏乳杆菌)
此外,其他细菌种群等也存在于健康个体的阴道中,例如下列几种:
–Prevotella bivia(普雷沃氏菌)
–Atopobium vaginae(阴道阿托波菌)
–Streptococcus aureus(金黄色链球菌)
–Bifidobacteriaceae(双歧杆菌科)
–Mobiluncus(里拉微球菌)
✦ 阴道菌群变化的影响因素
人类阴道微生物群组随着不同的年龄阶段发生变化,包括婴儿、青春期、怀孕和更年期等阶段。而其他方面包括激素水平、免疫力、细菌感染、抗生素治疗、月经、生活方式等是影响人类阴道微生物群构成变化的常见因素。
在2011年,美国Ravel教授首次通过16S rRNA基因的测序技术根据微生物组成和丰度的不同,将健康女性阴道微生物群落定义了5种不同的群落状态类型(community-state types, CSTs),并分别命名为CST I、II、III、IV、V。其中有四个以乳杆菌为主。
✦ CST-I、CST-II、CST-V——健康型
健康阴道中主要乳杆菌的相对丰度决定了细菌群落群的类型,绝大多数健康育龄女性的阴道菌群组成中以CST-I(卷曲乳酸杆菌)、CST-II(加氏乳酸杆菌)、CST-V(詹氏乳酸杆菌)这三种类型较为常见。
CST-I型:在所有的阴道菌型中,CST-I型被认为是最健康的一种类型,它表明阴道处于一个稳定的状态,抵制病原菌能力较强。
CST-I型以卷曲乳杆菌(L. Crispatus)为主。卷曲乳杆菌能产生大量的乳酸(D型和L型,但研究表明D-乳酸的抑菌效果更好)以及过氧化氢,有利于阴道维持弱酸性的环境。卷曲乳杆菌还可分泌抗菌化合物,如细菌素、类细菌素等,从而抑制病原菌的生长和繁殖。
此外,卷曲乳杆菌对阴道上皮细胞的黏附作用最强,与加氏乳杆菌相比,它更能竞争性抑制阴道加德纳菌等与阴道上皮细胞的黏附,最终维持阴道微生态的平衡。
注:CST I型又可细分为两个亚型,CST I-A型和CST I-B型。两者之间唯一明显的区别是I-A型中卷曲乳杆菌的比例高于CST I-B型。
虽然卷曲乳杆菌丰度更高可能更有益,但这两种亚型都表明阴道处于一个比较健康的状态。需要注意的是该种类型在月经期、孕期、性生活等影响下可能会转变为CST III型。
CST-II型:CST-II型也被认为是一种健康的阴道菌型,该种类型的阴道菌群以加氏乳杆菌(Lactobacillus gasseri)为主。与卷曲乳杆菌相似,加氏乳杆菌也能产生D-乳酸,使阴道维持弱酸性的环境,并生成过氧化氢抑制杂菌。
虽然它们产生的乳酸含量略低于卷曲乳杆菌,但CSTII型对病原体仍显示出较强的防御能力。CST-II型在围绝经期的女性中较为常见。当女性进入围绝经期,体内雌激素水平逐渐下降,阴道菌群结构容易发生变化,此时的加氏乳杆菌在维持阴道微生态平衡中可能发挥重要的作用。
注:CST-II型在某些情况下可转变为CST-I型(如妊娠期)。
CST-V型:被认为是一种健康的阴道菌型,以詹式乳杆菌(Lactobacillus jensenii)为主。与卷曲乳杆菌类似,詹式乳杆菌也能产生D-乳酸,降低阴道pH值,维持弱酸性环境,此外还可通过黏附于阴道上皮细胞和产生细菌素来维持一个阴道微生态的平衡。
相较其他CST类型,CST-V型较为少见,研究表明该种类型仅占不到10%。目前还未见该种类型能转变成其他CST型的报道。
✦CST-III 型——可能预示阴道免疫力下降
CST-III型:以惰性乳杆菌(Lactobacillus iners)为主。当惰性乳杆菌与其他乳杆菌在阴道内共存时,它可能参与维持阴道微生态的平衡;它也可能在阴道菌群失调后与多种厌氧菌共同参与细菌性阴道病的发展过程。
惰性乳杆菌具有较弱的过氧化氢产生能力,分泌的乳酸主要为L型,因此对阴道的保护作用不如其他几种乳杆菌(卷曲,加氏和詹式)强。研究发现,与其他种类的乳杆菌相比,惰性乳杆菌对性传播感染和妊娠并发症的防护能力较低。它有更复杂的营养需求,是阴道免疫力下降的标志,可能引发阴道感染。
注:CST III型又可细分为两个亚型,CST III-A型和CST III-B型。两者之间的区别是III-A型的惰性乳杆菌丰度比III-B型更高。CST III型代表了一种转变或者不稳定状态,容易收到宿主自身或者外界环境条件下的影响从而转变成病理状态。
✦CST-IV型——阴道生态失调
CST IV的特点是乳杆菌的相对丰度低,混合多种兼性厌氧菌,厌氧菌的多样性和丰富性增加,包括普雷沃菌属(Prevotella)、加德纳菌属(Gardnerella)、巨型球菌属(Megasphaera)、斯尼斯菌属(Sneathia)、气球菌属(Aerococcus)等。
CST IV型通常在细菌性阴道病患者中较为常见。该种类型与性传播疾病的感染风险增加、妊娠并发症、盆腔炎、早产、不孕不育等有较强的相关性。注:并不是所有的CST IV型阴道菌群都是由相同的细菌组成的。根据存在细菌比例不同,CST IV型可被分为A、B、C三个亚型。IV-A型的特点是阴道加德纳菌和细菌性阴道病相关细菌占比中等偏高。IV-B型的特点是阴道陌生菌(Atopobium vaginae)和阴道加德纳菌(Gardnerellavaginalis)占优势。A.vaginae可与G. vaginalis结合可形成生物膜,这也是BV发病及复发的主要原因。
IV-C又可细分为五个亚型(C0、C1、C2、C3、C4),IV-C0型菌群多样性最高,其中普雷沃菌较为常见。普雷沃菌也能形成生物膜,是另一种常与细菌性阴道病有关的微生物。Ⅳ-C1型以链球菌为优势菌,Ⅳ-C2型以肠球菌为优势菌,Ⅳ-C3型以双歧杆菌为优势菌,Ⅳ-C4型以葡萄球菌为优势菌。
与肠道微生物组相比,阴道微生物组的物种多样性相对较低,阴道微生物群通常由兼性和专性厌氧菌组成,以乳杆菌为主导的阴道微生物群是女性泌尿生殖系统健康的主要决定因素。
以乳杆菌为主导的健康人体阴道中通常有益细菌群落与人类宿主之间存在共存关系,通过保护宿主阴道环境免受病原微生物的定植,同时宿主为细菌生长提供营养。
✦ 阴道微生物的保护作用
阴道微生物群在保护阴道上皮免受病原微生物污染方面发挥着重要作用。这种保护机制基于三种机制:
1)天然微生物群与病原体的竞争
乳杆菌粘附到阴道上皮,通过竞争性占领过程形成抵抗病原微生物的保护层。
2)针对这些不良微生物的抗微生物物质的生产
生产三种不同类型的物质:乳酸、过氧化氢和细菌素。
•乳酸:维持阴道的pH值在酸性,抑制病原微生物的生长。
•过氧化氢:由于其氧化能力而具有抗菌作用。
•细菌素:是蛋白质来源的毒素,具有抗菌功能,它们的作用是通过在细菌的细胞质膜中产生孔来溶解或破坏细菌的细胞质膜。
3)病原物种的共聚集能力以提高抗微生物能力
病原微生物被来自天然阴道微生物群的细菌包围的机制。
✦ 阴道菌群失衡与一些疾病相关
乳杆菌的定植和优势是健康阴道微生物群的基本特征。正常情况下,二者处于动态平衡状态。当阴道环境、宿主等因素发生变化的时候,上述平衡状态改变,则为阴道微生态失调。
阴道细菌比例失衡被认为会导致生殖器官容易受到感染或并发症。阴道微生物的组成与感染和传播人类免疫缺陷病毒(HIV)的风险增加有关。并且感染其他性传播感染的风险增加,包括淋病、衣原体、滴虫、单纯疱疹病毒2(HSV-2)和梅毒。非最佳微生物群还与人乳头瘤病毒(HPV)的发病率和患病率以及宫颈上皮内瘤变的相关发展和进展以及宫颈癌风险增加有关。
阴道微生物群的组成还与尿路感染、外阴阴道念珠菌病和盆腔炎等疾病相关。有证据支持阴道微生物群的组成与生殖健康(包括早产、自发性早产和早产胎膜早破)之间存在关联。
细菌性阴道炎(BV)是一种在全球育龄妇女中非常普遍的阴道微生物群疾病。全世界23%–29%的女性患有此病。
✦ 细菌性阴道炎的微生物特征
乳杆菌总数的减少或急剧下降,同时兼性或专性厌氧微生物的浓度增加数倍,如Gardnerella、Prevotella、Atopobium、Mobiluncus、双歧杆菌、Sneahia、Leptotrichia,以及梭状芽胞杆菌目中的一些新细菌,称为BV相关细菌。
✦ 细菌性阴道炎的危害
细菌性阴道炎(BV)与不良生殖健康结果相关,例如性传播感染(STI)和盆腔炎(PID)。此外,早产(PTB)、低出生体重、流产以及其他不良产科结局也与BV相关。
✦ 需氧性阴道炎也存在生态失调
此外,另一种称为需氧性阴道炎(AV)的生态失调疾病经常与BV相混淆。这是因为,两者都与阴道微生物的CST-IV相似,即缺乏大量的乳杆菌,pH>4.5。
然而,根据微生物多样性对这两种情况进行了区分。 BV是指存在严格厌氧菌;而AV是指存在需氧肠道细菌,包括大肠杆菌、金黄色葡萄球菌、B族链球菌(无乳链球菌)或肠球菌。
需氧性阴道炎除了具有病原体复杂的特点外,还易合并其他阴道感染。AV不仅可导致患者外阴阴道不适,还与盆腔炎症性疾病、不孕症以及流产、早产、胎膜早破、绒毛膜羊膜炎、新生儿感染、产褥感染等不良妊娠结局有关。
越来越多的证据表明阴道微生物组与自发性早产风险有关。
阴道微生物群在妊娠健康和结局中起着重要作用,阴道菌群失调的增加(通常以CST IV菌群的丰度较高和乳酸杆菌的丰度较低为特征)导致妊娠并发症和早产风险增加。
✦ 足月分娩的妇女阴道微生物群稳定
足月分娩妇女的阴道微生物群落通常是稳定的,在怀孕早期以乳杆菌为主;而经历早产的女性通常阴道菌群以厌氧菌为主。
在大多数足月分娩中,阴道微生物群的特点是厚壁菌门成员占优势,放线菌门、变形菌门、拟杆菌门和梭杆菌门成员的丰度较低,而在早产的情况下,厚壁菌的数量减少。
✦ 低丰度的乳杆菌与早产风险增加相关
对至少三种不同CST中的阴道微生物组进行分类以评估早产风险的纵向研究。所有17项研究均在2014年至2021期间发表,包括38-539例妊娠和8-107例早产。与脆乳杆菌占优势的女性相比,具有“低乳杆菌”阴道微生物组的女性早产风险增加(OR 1.69,95%CI 1.15–2.49)。
网络荟萃分析支持微生物组可以预测早产,其中低丰度的乳酸菌与最高的风险相关,而L. crispatus优势菌群的早产风险最低。
越来越多的证据表明,每个女性独有的阴道微生物群在决定生殖健康许多方面起着重要作用。
✦ 与不孕相关的阴道菌群失调
研究表明,L. iners 、L . crispatus、L. gasseri可以区分特发性不孕女性与健康女性或阴道病患者。
乳杆菌主导的阴道菌群通常被视为正常的标志。然而,许多研究表明,并非所有类型的乳杆菌都是有益菌,例如,L.crispatus 似乎具有有益特性,而L.iners 则没有。
患有特发性不孕的女性似乎更容易出现阴道菌群失调。研究人员将阴道微生物群分为两类:低乳酸杆菌阴道微生物群(LL-VMB)和高乳酸杆菌阴道微生物群(HL-VMB)。研究人员开始评估女性不育与阴道微生物群之间的统计关联,结果如下:
DOI: 10.1007/s00404-020-05675-3
数据显示,细菌性阴道炎与女性不孕症呈正相关,并且细菌性阴道炎阳性者的影响大于细菌性阴道炎中间值者。
✦ 低乳酸杆菌阴道微生物群或细菌性阴道病 可能对受精过程产生影响
女性不孕症可根据不同的标准分为不同的类型,其中与阴道微生物群的关联可能有所不同。从病因学的角度来看,输卵管性不孕症是与阴道微生物群相关的最常见疾病。
由细菌性阴道炎引起的慢性炎症反应也可能是输卵管粘连的原因,至少是部分原因。
✦ 阴道微生物群对怀孕影响的其他研究
多囊卵巢综合征(PCOS)被广泛定义为一种内分泌和代谢紊乱,伴有雄激素过多(多毛症或高雄激素血症)和卵巢功能障碍(少排卵或多囊)的体征和症状,如今变得越来越常见。
由于健康女性的微生物群落处于动态平衡状态,因此不平衡的微生物群组成被认为与多囊卵巢综合症女性有关。许多研究人员已广泛证明,PCOS动物模型和患有PCOS的女性中会发生微生物群组成的变化和菌群失调。
✦ 多囊卵巢综合征患者的乳杆菌显著减少
据报道,青春期前女性和绝经后女性的阴道微生物组存在很大差异。这主要是由于下生殖道微生物组会受到年龄、性激素水平、生活习惯等的影响。
其中,月经不规律和激素水平异常被认为是导致PCOS女性阴道微生物组改变的两个主要原因。正常的月经伴随着雌激素和孕激素的规律变化,会带动生殖道表皮细胞的生理变化,维持微环境(包括平衡的微生物群落)的平衡。相反,PCOS女性的月经不调会导致下生殖道微生物组的组成发生变化。
通过 16S rRNA 基因测序分析的 194 个微生物样本的结果 表明,PCOS 和健康女性在阴道微生物组和宫颈管微生物组中的类群丰度存在显著差异。在多囊卵巢综合症女性中,结果发现乳杆菌的成分显著减少。
另一方面,其他一些微生物群,如阴道加德纳菌 (Gardnerella vaginalis)、沙眼衣原体 (Chlamydia trachomatis) 和普雷沃氏菌 (Prevotella) 同时增加。此外,这些增加的微生物群被认为是阴道和宫颈管中潜在的致病类群。
✦ PCOS中的微生物组和性激素
研究表明,性激素影响微生物组的组成,包括肠道微生物组和阴道微生物组。激素水平不平衡可能与多囊卵巢综合症的微生物组“失衡”有关。
越来越多的研究表明,雌激素对于建立女性平衡的微生物群落结构至关重要。众所周知,雌激素在增加阴道上皮细胞糖原的产生并随后促进乳杆菌的生长方面发挥着关键作用。尽管有研究表明高淀粉饮食是乳酸菌占主导地位的原因,但雌激素仍然被认为是这一过程的核心因素。
更重要的是,微生物组还调节多囊卵巢综合症的性激素。据报道,患有PCOS的女性体内雄激素水平较高与代谢失调有关。由于性激素受到微生物组的影响,因此可以合理地推测微生物失衡是导致多囊卵巢综合症的原因。多项研究报告称,多囊卵巢综合症与肠道微生物群组成的异常波动有关。这些波动可以概括为β多样性的异常变化和α多样性的下降,不仅包括物种丰富度,还包括系统发育多样性。
更重要的是,性激素、阴道以及肠道微生物群之间的相互作用是一个多步骤的过程。肠道微生物群调节雌激素水平,雌激素调节阴道微生物群。因此,异常的肠道微生物组或阴道微生物组可能在 PCOS 中相互影响,包括调节微生物组的组成和调节激素的变化。免疫稳态有利于女性建立健康的微环境。
▸ 为什么要进行阴道菌群检测?
1. 全面了解菌群结构:高通量二代测序和 16S 测序能够更全面、精确地分析阴道菌群,提供更丰富的信息,有助于深入了解阴道微生态环境。
2. 早期发现异常:有助于早期发现潜在的菌群失衡,为细菌性阴道炎及不良妊娠结果的诊断和干预提供依据。
3. 个性化治疗:根据检测结果可以制定更有针对性的治疗方案,提高治疗效果。
以分子生物学和DNA测序技术的发展为生殖道微生态研究提供了可靠的技术支持,通常采用16S rRNA基因扩增子进行测序。
▸ 谷禾阴道菌群检测
谷禾健康运用高通量测序技术,得到阴道中大多数微生物的信息,并通过生信统计学对微生物菌群数据进行处理,通过分析阴道微生物的组成及相对丰度,对阴道微生物群落状态类型(CST)进行分型,可帮助监测和分析女性阴道的健康状况,并对不同疾病及条件的分组进行CST聚类,分析不同分组条件下的阴道菌群的特征差异,为临床科研分析做指导。
▸ 面向人群特点及解决问题
1. 面向有不良妊娠史或疑似细菌性阴道炎的人群:帮助这些人群更准确地评估阴道微生态状况,找出可能导致不良妊娠结果的原因。
2. 解决问题:明确菌群失衡情况,为治疗提供科学依据,提高妊娠成功率,改善女性生殖健康。
需要注意的是,在实际应用中,应结合临床症状、其他检查结果等进行综合分析和判断。
▸ 细菌性阴道炎极易复发
细菌性阴道炎是一种常见的妇科疾病,以阴道内细菌失衡为主要特征。尽管当前的治疗方法可以有效缓解症状,但该病症的复发率依然较高。复发的原因多种多样,包括但不限于抗生素治疗后的菌群失衡、个人卫生习惯、激素水平变化以及性行为等因素。
因此,对于细菌性阴道炎的管理,除了治疗初发感染外,更需重视疾病的长期预防和控制策略。阴道微生物的生态平衡对于治疗极为重要。
▸ 关注阴道微生物有助于提高治愈率
一项研究纳入了46名接受甲硝唑治疗的细菌性阴道炎患者,其中仅20名患者被治愈,在治疗前后检测阴道菌群后发现:在治愈的患者中,其在甲硝唑治疗前惰性乳杆菌富集,并且在治疗后保持较高的丰度。
惰性乳杆菌(L.iners)主导的阴道菌型与较差的抗细菌性阴道炎(BV)能力有关,且常规甲硝唑治疗并不会减少L.iners的丰度。而卷曲乳杆菌(L.crispatus)有较高抗BV的潜力。
与L.crispatus不同,L.iners的生长依赖于半胱氨酸;半胱氨酸抑制剂与甲硝唑联用,在体外通过可抑制L.iners,并促进L.crispatus的丰度。用最佳菌种进行补充治疗,或靶向治疗这些非最佳细菌,可能有助于减少细菌性阴道炎复发的概率。
▸ 针对不同的阴道微生物组成用药也不同
1.乳酸杆菌部分携带 (>5%)
口服或局部使用甲硝唑或替硝唑,因为乳杆菌对甲硝唑、替硝唑不敏感,且能杀灭其他厌氧菌。
2.乳酸杆菌几乎不携带 (<1%),厌氧型
口服或局部使用甲硝唑或替硝唑或克林霉素,因为
甲硝唑、替硝唑不敏感,且能杀灭其他厌氧菌。
3.乳酸杆菌几乎不携带 (<1%),需氧型
口服或局部克林霉素或卡那霉素为主,因为克林霉素对主要的好氧菌敏感。
▸ 阴道微生物移植
France M,et al.Nat Microbiol.2022
现有的治疗方法包括甲硝唑等抗生素、雌激素疗法、乳酸和硼酸以及阴道乳酸杆菌益生菌。然而,这些干预措施的成功率各不相同,并且不能有效预防复发性/顽固性 BV。
阴道微生物移植 (VMT) 是治疗BV的一种有前景的干预措施。确定了具有乳杆菌优势阴道微生物群的合适供体。从捐赠者处收集阴道分泌物,筛查各种性传播感染并进行处理。然后将处理后的阴道分泌物引入通常患有复发性/顽固性 BV 的接受者的阴道中。接受者在移植前可能会或可能不会接受抗生素治疗。成功的定义是受体细菌性阴道炎的持久解决以及其阴道微生物群向乳杆菌占主导地位的转变。
阴道微生物群的平衡对女性健康至关重要。因此,阴道菌群检测在评估女性健康状况方面具有重要意义。通过检测阴道微生物群的组成,可以及早发现潜在的问题,并采取相应的干预措施,以改善女性的生殖健康和妊娠成功率。这不仅有助于提高辅助生殖技术的效果,还可以降低早产、新生儿并发症等不良妊娠结局的风险,对于优化女性健康管理和具有重要意义。
主要参考文献
Gupta S, Kakkar V, Bhushan I. Crosstalk between Vaginal Microbiome and Female Health: A review. Microb Pathog. 2019 Nov;136:103696.
France M, Alizadeh M, Brown S, Ma B, Ravel J. Towards a deeper understanding of the vaginal microbiota. Nat Microbiol. 2022 Mar;7(3):367-378.
Chee WJY, Chew SY, Than LTL. Vaginal microbiota and the potential of Lactobacillus derivatives in maintaining vaginal health. Microb Cell Fact. 2020 Nov 7;19(1):203.
Shen L, Zhang W, Yuan Y, Zhu W, Shang A. Vaginal microecological characteristics of women in different physiological and pathological period. Front Cell Infect Microbiol. 2022 Jul 22;12:959793.
Chen X, Lu Y, Chen T, Li R. The Female Vaginal Microbiome in Health and Bacterial Vaginosis. Front Cell Infect Microbiol. 2021 Apr 7;11:631972.
Bayar E, Bennett PR, Chan D, Sykes L, MacIntyre DA. The pregnancy microbiome and preterm birth. Semin Immunopathol. 2020 Aug;42(4):487-499.
Chen T, Wu R, Cheng L, Liao Q, Chen Z. Editorial: Vaginal microecological disorder and gynecological diseases. Front Cell Infect Microbiol. 2023 Oct 18;13:1292815.
Gu Y, Zhou G, Zhou F, Li Y, Wu Q, He H, Zhang Y, Ma C, Ding J, Hua K. Gut and Vaginal Microbiomes in PCOS: Implications for Women’s Health. Front Endocrinol (Lausanne). 2022 Feb 23;13:808508.
Kalia N, Singh J, Kaur M. Microbiota in vaginal health and pathogenesis of recurrent vulvovaginal infections: a critical review. Ann Clin Microbiol Antimicrob. 2020 Jan 28;19(1):5.
Han Y, Liu Z, Chen T. Role of Vaginal Microbiota Dysbiosis in Gynecological Diseases and the Potential Interventions. Front Microbiol. 2021 Jun 18;12:643422.
Fettweis JM, Serrano MG, Brooks JP, Edwards DJ, Girerd PH, Parikh HI, Huang B, Arodz TJ, Edupuganti L, Glascock AL, Xu J, Jimenez NR, Vivadelli SC, Fong SS, Sheth NU, Jean S, Lee V, Bokhari YA, Lara AM, Mistry SD, Duckworth RA 3rd, Bradley SP, Koparde VN, Orenda XV, Milton SH, Rozycki SK, Matveyev AV, Wright ML, Huzurbazar SV, Jackson EM, Smirnova E, Korlach J, Tsai YC, Dickinson MR, Brooks JL, Drake JI, Chaffin DO, Sexton AL, Gravett MG, Rubens CE, Wijesooriya NR, Hendricks-Muñoz KD, Jefferson KK, Strauss JF 3rd, Buck GA. The vaginal microbiome and preterm birth. Nat Med. 2019 Jun;25(6):1012-1021.
谷禾健康
革兰氏阴性菌,非运动性、杆状、可在厌氧条件下生长。普雷沃氏菌包括50多个不同的物种,大多数可以从口腔和肠道中分离出来。还可以通过结合或附着在上皮细胞以外的其他细菌上定植,在以前感染的区域产生更大的感染。
普雷沃氏菌有助于分解蛋白质和碳水化合物食物,普雷沃氏菌通常被认为是一种与健康的植物性饮食相关的菌。普雷沃氏菌擅长从阿拉伯木聚糖和低聚果糖中提取短链脂肪酸丙酸。
肠道中普雷沃氏菌较低与以下疾病有关:自闭症、过敏、多发性硬化症。普雷沃氏菌丰度的增加也与局部和全身性疾病有联系,包括肠易激综合征 (IBS)、牙周炎、细菌性阴道病、高血压、类风湿性关节炎、代谢紊乱和低级别全身性炎症。以及一些神经系统疾病中普雷沃氏菌的丰度也较高:例如精神分裂症、脑瘫。痛风/高尿酸血症中普雷沃氏菌也偏高。阴道粘膜普雷沃氏菌增多与细菌性阴道病有关。这种细菌会破坏阴道的酸度,更容易受到感染。
低脂高纤维饮食可以提升普雷沃氏菌的丰度。
革兰氏阳性菌,厌氧,呈球状,不产生孢子。瘤胃球菌通过分解宿主消化系统的纤维素来获取营养,也能够发酵葡萄糖和木糖以及抗性淀粉。
瘤胃球菌在婴儿过敏、脑瘫、溃疡性结肠炎展现出一定的健康益处。
然而,瘤胃球菌也与一些疾病相关,包括肠道疾病(IBS,IBD,克罗恩等)、免疫性疾病(过敏、湿疹、哮喘等)、神经系统疾病(自闭症,抑郁症、肌萎缩性脊髓侧索硬化症等)、代谢疾病(II型糖尿病、肥胖(超重))和一些肝病中瘤胃球菌的丰度过高。
瘤胃球菌属包括有益菌和有害菌。当长期食用水果和蔬菜时,瘤胃球菌属能够发酵复合糖类,产生乙酸酯、丙酸盐以及具有抗炎效益的丁酸盐。而过量食用肉类会增加有害的瘤胃球菌。益生菌如嗜酸乳杆菌和长双歧杆菌显著促进瘤胃球菌生长。
革兰氏阴性、不形成孢子、厌氧和杆状细菌,是人类常驻菌群。拟杆菌参与人体结肠中许多重要的代谢活动,包括碳水化合物的发酵、含氮物质的利用以及胆汁酸和其他类固醇的生物转化。无氧呼吸的主要副产物是乙酸、异戊酸和琥珀酸。
拟杆菌作为对人类有益的菌,具有消化膳食纤维多糖和宿主聚糖的能力,通过产生乙酸盐和丙酸盐对维持肠道内稳态很重要。是维生素K的主要合成菌,它可以通过增加骨矿物质密度来预防或治疗骨质疏松症。拟杆菌属含量高的婴儿认知和语言方面发育更好,而缺乏拟杆菌与抑郁症、冠状动脉疾病、炎症性肠病相关。
但当拟杆菌能够逃到肠道以外的身体其他部位时,它们就会充当致病菌,导致脓肿和其他感染。脆弱拟杆菌丰度较高与结直肠癌的发病率增加有关,而多形拟杆菌与自身免疫性疾病存在关联。
增加肠道中拟杆菌数量的最好方法是增加纤维和抗性淀粉的摄入量——所以多吃含低聚果糖的多叶蔬菜、豆类、种子、坚果等。
又名普拉梭菌,革兰氏阴性,对氧极度敏感。是丁酸的重要生产者之一,具有抗炎作用,维持细菌酶的活性,保护消化系统免受肠道病原体的侵害。通过产生丁酸,由助于保持肠道内壁的完整性,丁酸盐可以通过抑制 NF-κB 转录因子激活、上调 PPARγ和抑制干扰素γ来减轻肠黏膜炎症,对维持肠道稳态非常重要。
患有慢性便秘、乳糜泻、肠易激综合征和炎症性肠病(包括克罗恩病和溃疡性结肠炎)的个体中这种微生物的数量减少。此外,在2型糖尿病、结直肠癌和银屑病患者中观察到较低水平的F. prausnitzii。
高肉、高脂肪、高糖、高度加工食品和低纤维饮食会降低F. prausnitzii 的数量,而高纤维、低肉的饮食会增加 F. prausnitzii 的数量。除此之外,菊粉型果聚糖和阿拉伯木聚糖等益生元可增加F. prausnitzii的数量。
革兰氏阳性细菌,杆状,不形成孢子。它们可以是能动的或不能动的,如果能动,它们就有鞭毛。该细菌从碳水化合物或蛋白质中产生有机酸混合物,其可能包括大量的丁酸、乙酸和甲酸。
真杆菌通过产生丁酸,促进肠道完整性,抑制促炎细胞因子,上调抗炎细胞因子,预防肠道炎症、有助于肠道健康。然而少数菌种可与其它兼性厌氧菌造成混合感染,引起人心内膜炎,盆腔炎等疾病。真杆菌属还通过胆汁酸代谢促进肠道和肝脏健康。真杆菌可以改善自闭症儿童症状和肠道问题、以及有助于避免患上痴呆症,重度抑郁症的真杆菌水平较低。
Eubacterium的减少或缺乏与很多疾病相关,比如抑郁或疲劳、肥胖、炎症性肠病、II型糖尿病、心脑血管、结直肠癌、自闭症、老年肌少症、肠道健康以及肿瘤预后良好和肠道稳态状态等。
真杆菌属会随着饮食中蛋白质/脂肪百分比的增加而减少,地中海饮食可以增加肠道中真杆菌属(Eubacterium)的数量。
属于革兰氏阳性菌,专性厌氧、形成孢子、能动。Lachnoclostridium属包括来自Lachnospiraceae科和几个梭菌簇的生物,例如梭菌XIVa。这类细菌能够发酵多糖类物质产生短链脂肪酸,如丁酸和乙酸等。这些物质对肠道上皮细胞的生长和肠道屏障功能的增强具有积极作用,同时也具有抗炎作用。
Lachnoclostridium属的相对丰度在一些疾病中有所变化,如:在肠炎病变和肠道肿瘤中相对丰度增加,在肝脏脂肪变性和代谢性疾病中相对丰度增加;
在自身免疫性疾病以及肌肉减少症、桥本甲状腺中相对丰度降低。Lachnoclostridium的丰度降低与蛋白质处理和营养物质转运等功能通路的下调有关。
一些天然化合物有助于增加Lachnoclostridium的丰度:包括甜菜碱、蓝莓和蔓越莓花青素提取物、西藏茶多糖、白藜芦醇、红曲米、黄芩素、人参皂苷 Rg1;增加水果和蔬菜的摄入量、地中海饮食、高粗粮饮食、低热量饮食也有助于增加Lachnoclostridium的丰度。
革兰氏阳性、严格厌氧,通常为球形或椭圆形、不能运动。所有Blautia菌株都可以利用葡萄糖,但不同菌株对蔗糖、果糖、乳糖、麦芽糖、鼠李糖和棉子糖的利用能力不同。Blautia发酵葡萄糖的最终产物是乙酸、琥珀酸、乳酸和乙醇,乙酸盐可以抑制病原菌,有抗炎作用。
Blautia属目前根据公布的有效名称物种共计20个,包括:B. Hydrogenotrophica、B. coccoides、B. wexlerae、B. hansenii、B. producta。
Blautia 与宿主生理功能障碍具有显著相关性,例如肥胖、糖尿病、癌症和各种炎症性疾病。Blautia与内脏脂肪面积负相关,研究还确定了Blautia luti 和Blautia wexlerae 的减少与肥胖个体的胰岛素抵抗有关。Blautia菌通过产生细菌素来防止病原体的定植,并通过上调调节性 T 细胞和 SCFA 的产生而表现出抗炎特性和维持葡萄糖稳态作用。
该属中的物种水平在老年患者中经常减少,在结直肠癌患者的黏膜样本中水平降低,在肠易激综合征 (IBS) 患者中水平升高。
可以通过食物(富含 Omega-3 的食物、糙米、大麦、迷迭香、黄酮类、高谷物饮食)或者益生元(二甲双胍、黄连素、小檗碱、红花油、丁酸钠、抗性淀粉(II、IV型)、橙子(果胶/黄烷酮)、葡萄籽多酚/酒、亚麻籽、维生素 D3)来增加,而抗生素(氟喹诺酮和克林霉素)、高胆汁酸、饮酒、缺乏乳酸菌会导致减少Blautia。
是小的、厌氧或微需氧的革兰氏阴性球状或杆状菌,因次也被翻译成小杆菌属。大部分菌种不形成孢子、不运动。属于厚壁菌门,韦荣氏球菌科,代谢碳水化合物,产生琥珀酸和乙酸,丙酸,丁酸,产生组胺,过氧化氢酶。
该菌属物种被发现出现在人体全身各个部位,包括骨骼和血液,但是主要从人体粪便,口腔以及上呼吸道,阴道等部位分离或发现,属于人体肠道核心菌。当在肠道中检出“Dialister invisus”与疾病无关,但是当在尿液中发现时,可能与尿路感染有关;当在口腔中检出“Dialister invisus”,它通常与冠周炎、边缘和根尖周炎、龋齿、口臭和牙髓感染有关。特别是“Dialister pneumosintes”被认为是一种新的牙周病病原体。
抑郁症、自闭症患者缺乏Dialister,关节炎患者Dialister丰度较高,Dialister 属的丰度与强直性脊柱炎疾病活动评分呈正相关。除此之外Dialister还与情绪控制、口腔疾病、减肥、不同组织部位的感染,肾病等相关。
酸奶、胡桃、芽孢杆菌补充、双歧杆菌补充、菊粉以及运动可增加肠道Dialister 属的丰度。
属于专性革兰氏阳性厌氧菌, 轻微弯曲,杆状,并通过多个亚末端鞭毛运动。罗氏菌属代谢膳食成分,刺激其增殖和代谢活动。产生短链脂肪酸(乙酸,丙酸,丁酸),从可发酵的膳食碳水化合物中产生了大量的丁酸盐。影响结肠运动,具抗炎特性。
罗氏菌属可以分泌各种分子,与宿主和消化道的其他细菌相互作用。罗氏菌属可以改善肠道生物多样性,提高葡萄糖耐受性,帮助减肥,使结肠细胞恢复活力。Roseburia也可以作为症状性病理(如胆石形成)的生物标志物,或作为益生菌修复有益菌群。
罗氏菌属的失调(过少)可能影响多种代谢途径,并与多种疾病相关。在溃疡性结肠炎、慢性便秘患者、结直肠癌患者中,发现患者罗氏菌属丰度较低;肥胖、2型糖尿病、动脉粥样硬化、高血压患者中罗氏菌属丰度也过低;一些神经系统疾病如帕金森病、肌痛性脑脊髓炎/慢性疲劳综合征中的罗氏菌属比例也较低;罗氏菌属较少可能还与慢性风湿病、幼年特发性关节炎、食物过敏、白塞氏综合征有关。
植物性食物(例如水果和蔬菜)、全谷物、豆类和坚果可以促进罗氏菌属的增加,β-葡聚糖(蘑菇、燕麦)、几丁质、青香蕉粉、菊粉、膳食多酚等益生元也被证明可以增加罗氏菌属的丰度。
是一种专性厌氧、革兰氏阴性、能动的细菌,细胞呈现棒状形,可形成圆形菌落。鞭毛排列单质的,在35到39℃、PH为7的生长最佳。能够从苦杏仁苷、l-阿拉伯糖、熊果苷、纤维二糖、纤维二糖苷、d-果糖、α-半乳糖苷、龙胆二糖、d葡萄糖,糖原,菊粉,麦芽糖,鼠李糖和蔗糖获取营养,主要发酵产物为丁酸盐、乙酸盐、氢气和乳酸盐。
患有睡眠障碍的自闭症儿童表现出粪便细菌和直肠真杆菌的丰度下降;粪链球菌和直肠真杆菌的丰度可能会影响ASD儿童睡眠障碍和自闭症核心症状的严重程度。Agathobacter菌、半胱氨酸甘氨酸和焦磷酸盐具有显著相关性,从而调节谷胱甘肽代谢和氧化磷酸化的代谢水平,并参与消化性溃疡的进展。
革兰氏阴性菌,这些细菌发酵各种糖类以产生甲酸、丁酸和乳酸。似乎有两组Gemmiger,一种主要产生乳酸,另一种产生甲酸盐作为主要发酵代谢物。维生素的单一缺失(来自确定的维生素混合物)表明泛酸、核黄素和硫胺素在含有瘤胃液和胰蛋白酶作为维生素来源的培养基中高度刺激生物体的生长。
吉米菌属(Gemmiger)在多种精神疾病中显著减少;Gemmiger与女性样本中的雌性脂肪比率呈正相关,而在男性样本中呈负相关。肠道中的 Gemmiger 和瘤胃球菌越多,便秘症状越轻,相反,这两种菌越少,便秘症状也越重,所以,这两种菌可能具有保护作用。
炎症性疾病中Gemmiger的丰度显著较低,Gemmiger和粪球菌被确定为克罗恩病和健康人分类的重要特征。研究表明Lachnospira可能对炎症有保护作用。
菌体呈梭状,又称梭状芽孢杆菌属或厌氧芽孢杆菌属,芽孢常比菌体大,是一类能产生内生孢子的厌氧性革兰氏阳性菌。除了产气荚膜梭菌无鞭毛外,大多有鞭毛,专性厌氧。大部分的梭菌属可以水解糖、蛋白质,又可产生外毒素,成为一些疾病的原因。
多数为非致病菌,少数为致病菌。常见致病厌氧芽孢梭菌主要有破伤风梭菌、产气荚膜梭菌、肉毒梭菌和艰难梭菌等。破伤风梭菌是破伤风的病原菌;产气荚膜梭菌广泛存在于自然界及人和动物的肠道中,引起气性坏疽和食物中毒的主要病原菌。肉毒梭菌在在厌氧条件下产生肉毒毒素,人体的胃肠道很适于肉毒杆菌居住,而肉毒毒素对酸的抵抗力特别强,胃酸溶液24小时内不能将其破坏,食入和吸收这种毒素后发生食物中毒,神经系统将遭到破坏,出现恶心、呕吐、头晕、呼吸困难和肌肉乏力等症状,死亡率极高。
该属的模式种为丁酸梭菌,丁酸梭菌(Clostridium butyricum)是人类胃肠道的天然居民。它是肠道中发酵膳食纤维并产生有益的短链脂肪酸丁酸盐的众多细菌之一。丁酸盐作为结肠上皮细胞的能量来源,有助于维持肠道屏障,具有抗炎作用,并可预防结肠癌。
革兰氏阴性、专性厌氧、不形成孢子、不活动、呈杆状,中等大小的细菌,已经鉴定分离出20多个物种。一些报道证实P.distasonis拥有N-聚糖的代谢途径,并在体外粪便发酵中具有木葡聚糖降解能力。P. distasonis的发酵可以产生甲烷。副拟杆菌属有助于消化我们无法以其他方式处理的高纤维饮食,并且在抗性淀粉饮食中丰度增加。
副拟杆菌具有致病性和益生作用的双重潜力,在炎症性肠病中的二分作用,既出现了抗炎特性也出现了促炎特性;P.distasonis被证实对结直肠癌有益。粪便中P. distasonis的水平与肠道肿瘤的存在呈负相关。还被证明对肥胖的改善作用,患有肥胖和代谢综合征的儿童的肠道微生物组中P.distasonis的丰度降低。人类多发性硬化症患者中P.distasonis的水平较低,副拟杆菌被证明促进多发性硬化症中的T细胞分化。
P. distasonis也可能对许多其他类型的疾病具有调节或保护作用:在强直性脊柱炎(AS)患者的粪便样本中,P.distasonis的丰度显著增加;在银屑病患者中,P.distasonis的存在显著减少;斑秃患者的肠道微生物组中P.distasonis的丰度更高;P. distasonis的水平升高与宫颈癌的进展呈正相关;两种副拟杆菌属物种都被显示出能促进生酮饮食的有益抗癫痫效应
属于拟杆菌门的一种革兰氏阴性细菌,专性厌氧,呈直或略微弯曲的棒状,末端为圆形。不会形成孢子。细胞通常单独或成对出现,偶尔以较长的细丝出现。不运动,可将色氨酸水解为吲哚。葡萄糖代谢终产物是琥珀酸和少量的乙酸,丙酸。
Alistipes可能对包括肝纤维化、癌症免疫治疗和心血管疾病有保护作用。相比之下,其他研究表明Alistipes在结直肠癌中具有致病性,并且与抑郁症有关。
肝纤维化中Alistipes减少,在NASH 和 NAFLD 等其他纤维化疾病中也可以看到肝纤维化患者的Alistipes丰度降低。心房颤动患者Alistipes减少,Alistipes和链球菌之间存在潜在的拮抗作用。高血压中Alistipes有助于炎症和上皮细胞的改变。已发现Alistipes作为潜在的病原体可能会诱发结直肠癌。
然而Alistipes的增加也与一些疾病有关,抑郁患者中Alistipes增加,Aistipes丰度的增加还可能与GABA增加有关。
该菌可以在高脂肪饮食中茁壮成长,并且在肥胖患者的肠道微生物群中生长得特别好,表明与肥胖相关。
革兰氏阳性,严格厌氧,呈直的或略微弯曲的棒状细胞,有的可能呈螺旋状。存在于大多数健康人的肠道里,可能是一种潜在的有益菌,参与多种碳水化合物的代谢,尤其水果蔬菜中的果胶的能力很强。
发酵果胶、聚半乳糖醛酸、果糖和纤维二糖等。乙酸盐、甲酸盐、乙醇和CO2是聚半乳糖醛酸和果胶发酵的主要最终产物。也可能产生少量的H2 。果胶发酵时也会产生甲醇,不产生琥珀酸盐、丁酸盐和丙酸盐。
毛螺菌属过多可能影响睡眠、在一些肝病(非酒精性脂肪肝)中发现毛螺菌属的富集。而毛螺菌科过少可能与哮喘、抑郁症、自闭症、阿尔兹海默症、慢性肾病、食管鳞状细胞癌、系统性红斑狼疮、慢性自发性荨麻疹、2 型糖尿病、白塞病等疾病相关。
增加的方法:食用富含纤维的植物性饮食,摄入果胶、β-胡萝卜素、维生素 E、洋车前子、茶多糖等植物性化学物质。而食用油炸食品、吸烟会使毛螺菌属减少。
革兰氏阴性专性厌氧菌,多形棒状杆菌,不运动、不形成孢子。可产生短链脂肪酸,包括乙酸盐和丙酸盐,并可能与宿主的代谢状态和情绪有关。随着年龄的增长(1至60岁),该菌数量逐渐增加,维持在高水平,但随着年龄继续增加,老年人(> 60岁)的其数量反而减少。
已发现体重和脂肪量与Phascolarctobacterium丰度呈负相关,因此可以帮助预测肥胖风险。早期肝癌患者中考拉杆菌属明显减少,而在重度抑郁、阿尔茨海默病(AD)、自闭症等疾病中发现Phascolarctobacterium高度富集。
考拉杆菌属(Phascolarctobacterium)还有助于阻止艰难梭菌定植、帮助减肥和有助于肺癌的免疫治疗。
菊粉、岩藻多糖、中等剂量木糖醇可以增加Phascolarctobacterium 的丰度,但是低聚果糖的补充会降低Phascolarctobacterium。此外,小檗碱和二甲双胍可以显著增加这种菌。
革兰氏阴性,专性厌氧,嗜中温,亲糖,杆状,不产芽孢,不运动。发酵各种碳水化合物,终产物是乙酸、丙酸和乳酸。属内成员有三个种:Megamonas hypermegas(趋巨巨单胞菌)、Megamonas funiformis(单形巨单胞菌)、Megamonas rupellensis。
巨单胞菌作为肠道核心种,可能是亚洲人种的特征。与炎症性肠病、结直肠癌、强制性脊柱炎(AS)、自闭症谱系障碍(ASD)、肥胖等疾病密切相关。炎症性肠病、结直肠息肉患者巨单胞菌属度显著降低,巨单胞菌属在强制性脊柱炎(AS)、自闭症谱系障碍(ASD)、注意缺陷/多动障碍 (ADHD)、肥胖、急性缺血性脑卒中(AIS)、抑郁患者中丰度较高。
而巨单胞菌属减少与一些疾病也相关(证据不充分),包括老年人虚弱、白塞病,肝病等。
动物脂肪摄入过多会导致巨单胞菌属丰度降低,而玉米,马铃薯等富含抗性淀粉的食物以及燕麦阿拉伯木聚糖、桑叶粉可以增加巨单胞菌的丰度。
细胞呈球状,有时椭圆形,成对或短链,革兰氏阳性,不运动,严格厌氧。最适生长温度约为37℃。
丁酸的重要生产者之一。粪球菌可用作评估人体胃肠道健康状况的微生物生物标志物,Coprococcus属的细菌可能有助于抑制免疫反应,降低过敏反应的严重程度;Coprococcus的细菌还有助于对 ACE 抑制剂产生耐药性,ACE 抑制剂是用于治疗高血压的主要药物类别之一。
在抑郁、帕金森病(PD)、幼儿语言发育障碍,认知、自闭症、睡眠、便秘、慢性肾病、早期乳腺癌、慢性广泛性肌肉骨骼疼痛、慢性疲劳等疾病中粪球菌属(Coprococcus)的丰度较低。
而在体重,胆固醇过高和银屑病患者中粪球菌属(Coprococcus)丰度过高。
使用小檗碱、二甲双胍、甘草甜素,以及补充维生素D、抗性淀粉可以使粪球菌属丰度增高。
严格厌氧的革兰氏阳性多形性杆状细菌,不运动、过氧化氢酶阴性、不形成孢子。末端常常分叉,故名双歧杆菌。该属比较典型的特征是单糖的分解代谢(即所谓的果糖 6-磷酸途径),主要发酵葡萄糖产生乳酸和乙酸和少量乙醇。
双歧杆菌产生硫胺素(维生素B1)、核黄素(维生素B2)、维生素 B6和维生素 K。可能还具有合成叶酸、烟酸(维生素B3)和吡哆醇(维生素B6)的能力。双歧杆菌代谢产物还包括γ-氨基丁酸(GABA)和生物素。
肥胖、糖尿病和过敏等各种疾病都与生命各个阶段的双歧杆菌数量减少有关。双歧杆菌有助于改善消化问题,抗菌和病毒、抗炎、改善血糖控制,降低血脂水平,提高免疫力,表现出抗氧化活性,有助于预防湿疹,缓解压力和过敏。在肝病、过敏性疾病、精神性疾病、代谢性疾病中具有一定的有益作用。然而双歧杆菌侵入其他组织可能造成感染或败血症。
导致减少的因素包括:年龄(年龄增加)、饮食(精制碳水化合物,加工食品等,缺镁铁饮食、高脂肪饮食)、疾病(肠病,炎症,代谢性疾病)、生活方式(缺乏运动、过度使用抗生素、酗酒等)、其他因素(比如感染,菌群失衡)
增加双歧杆菌的因素包括:补充益生菌、吃发酵食品、增加特定膳食补充剂,比如低聚果糖,抗性淀粉,白藜芦醇、镁、绿茶、水苏糖,杏仁/杏仁皮、岩藻多糖、大麦、菊芋、阿拉伯木聚糖、菊粉等;多样性饮食;合理运动和良好睡眠,清洁的水源等。
革兰氏阳性兼性厌氧或微需氧的棒状细菌,呈细长的杆状,但无分枝,无芽孢,不具有鞭毛或纤毛,能够在无氧或微氧条件下进行发酵,主要产生乳酸作为碳水化合物发酵的主要代谢终产物。乳杆菌属的成员已有超过200种,主要有德氏乳杆菌保加利亚亚种(保加利亚乳杆菌)、嗜酸乳杆菌、干酪乳杆菌、罗伊氏乳杆菌、惰性乳杆菌等。
乳杆菌是一种益生菌,对人体健康有着重要的作用:包括维护肠道菌群平衡,改善消化功能,提高免疫力,缓解过敏反应,降低胆固醇,改善口腔健康。乳杆菌对于肠道健康尤为重要,乳杆菌通过促进粘液分泌增强胃肠道屏障,诱导抗菌肽表达,通过产生短链脂肪酸刺激紧密连接的形成,细菌素抑制或杀死其他细菌,竞争结合位点抵抗病原体。
乳杆菌属不仅在人体肠道健康中起着重要作用,在女性阴道健康与相关疾病中的作用也不容忽视。健康阴道中主要乳杆菌的相对丰度决定了细菌群落群的类型,乳杆菌的丰度与阴道健康有关,乳杆菌种类显著减少或消失可能导致细菌性阴道病。除此之外乳杆菌的丰度还会影响月经周期、妊娠健康。
乳杆菌在其他疾病中也有一定作用,包括在特应性皮炎、牙周疾病、呼吸系统疾病、系统性红斑狼疮中具有一定保护作用。
然而,乳杆菌可能也是一种机会病原体,可引起脓肿、菌血症、心内膜炎、肺部感染和新生儿脑膜炎等多种感染。
饮食中富含益生元的食物,如蔬菜、水果、全麦面包等,以及食用发酵食品和一些天然生物活性成分包括绿茶与异麦芽低聚糖、姜黄素、白藜芦醇、葡萄多酚可以促进乳杆菌的生长。
相反,高脂肪、高糖、高盐等不健康的饮食习惯会抑制乳杆菌的生长。长期使用抗生素、非甾体抗炎药等药物会破坏肠道菌群平衡,抑制乳杆菌的生长。 缺乏运动、长期处于压力状态等生活方式也会抑制乳杆菌的生长。
是一种厌氧(但具有一定的耐氧性)、革兰氏阴性、无运动、没有内生孢子的卵圆形肠道细菌,其最适生长温度是37℃,最适生长pH为6.5。该菌的生长繁殖需要蛋白质,可降解黏蛋白和粘液层。能够使用粘蛋白作为碳、氮和能量的唯一来源,并发酵产生乙酸盐、丙酸盐和乙醇。也可以利用人乳寡糖作为能量来源。
阿克曼菌属具有促进肠道屏障完整性、调节免疫反应、抑制炎症、防止体重增加、降低某些心脏病风险,如胰岛素抵抗、总血胆固醇和脂肪组织储存等健康特性;有助于改善糖尿病和肥胖个体的代谢功能。缺乏或减少与多种疾病(如肥胖、糖尿病、肝脂肪变性、神经退行性疾病、炎症和对癌症免疫治疗的反应)有关。
然而Akkermansia 增殖异常,从而可能导致肠道屏障损伤,诱发肠道炎症、脂多糖进入血液的增加、自身免疫性疾病,神经退行性疾病等有关。
含有高水平多酚和鱼油的食物是提高A. muciniphila菌最好的食物。例如红酒中的白藜芦醇、辣椒中的辣椒素、百里香中的百里酚、肉桂中的肉桂酸、迷迭香中的迷迭香酸。其他常见的高多酚食物包括葡萄、橄榄、菠菜、李子和桃子等。一般来说,颜色越深越好。此外,补充补充膳食纤维,选择有机产品,避免高脂肪饮食和酒精都有助于 提升阿克曼菌属的丰度。
革兰氏阴性细菌,适生长温度约为37°C,大多数为好氧生物,埃希氏菌属细菌既能够利用氧气进行呼吸代谢,产生能量。也可以进行发酵代谢,利用糖类等有机物产生能量。它可以与厌氧菌共生,分解单糖、二糖和复杂多糖,为肠道提供能量和营养物质。
它的存在和代谢活动间接影响短链脂肪酸的生成,大肠杆菌可以产生多种神经递质,如去甲肾上腺素、多巴胺、5-羟色胺和乙酰胆碱。这些神经递质可以通过影响神经元活动和调节情绪、压力反应等方式,对神经系统功能产生影响。
大肠杆菌在正常情况下对人体无害,但某些菌株也可能引起感染和疾病。例如,某些产生肠毒素的毒力菌株的大肠杆菌可引起食物中毒,导致胃肠道症状,如腹泻、呕吐和腹痛。还会破坏肠道屏障完整性,激活肠道黏膜免疫。炎症性肠病(IBD)和结直肠癌中大肠杆菌的数量显著上升。
此外,大肠杆菌也可能引起泌尿系统感染和其他感染性疾病。动脉粥样硬化患者中,埃希氏菌属的丰度明显增加;糖尿病患者的埃希氏菌属相对丰度较高;非酒精性脂肪肝病 (NAFLD)和多动症(ADHD)中埃希氏菌属也较高。
埃希氏菌属的增加与二甲双胍的副作用有关,二甲双胍的使用会导致埃希氏菌属的丰度增加,埃希氏菌属的增加还可能与肠道炎症和代谢紊乱有关。肉桂皮油、抗性淀粉(III型)、
甘草酸、维生素D、石榴、大蒜(大蒜素)、黄芪属、蔓越莓低聚糖、乳铁蛋白、黄芩汤、苍耳精油等饮食或补充剂有助于减少埃希氏菌属过度生长。
链球菌属(Streptococcus)是革兰氏阳性菌,呈球形或卵形,通常成链排列或成对排列,广泛存在于人类粪便和鼻咽中。大多数不致病。医学上重要的链球菌主要有化脓性链球菌、草绿色链球菌、肺炎链球菌、无乳链球菌等。
Streptococcus LJ-22表达β-葡萄糖醛酸酶将甘草酸代谢为18β-甘草次酸-3-O-β-D-葡萄糖醛酸(GAMG)。GAMG对脂多糖诱导的RAW264.7细胞具有抗过敏活性。SGG可能通过消除单宁酸对肿瘤细胞的毒性来促进结直肠癌的发展。S.thermophilus GIM 1.321很高的β-葡萄糖苷酶生产能力,可以降低血压并发挥抗氧化作用。
肺炎链球菌是引起人类疾病的重要病原菌,肺炎链球菌通过胞外酶系统获得大量的碳和氮,胞外酶系统允许多糖和己糖胺的代谢,并对宿主组织造成损害并使其定植。
血链球菌是口腔生物膜发育的开拓者和关键角色。除了在口腔中作为主要定居者的作用外,血链球菌还被广泛认为是感染性心内膜炎,心脏瓣膜或心内膜感染的病因。在一般条件下血链球菌定植于牙菌斑中,对人体无害,但当其通过口腔内的微小创口进入血液循环引起菌血症,就有可能引发感染性心内膜炎。
一种厌氧或微需氧的、耐胆汁、降解糖 、非运动性且不形成孢子和球杆菌形的短杆状革兰氏阴性球杆菌。肠道Sutterella中主要分为两大类,分别为华德萨特菌(Sutterella wadsworthensis)和粪链球菌(Sutterella stercoricanis)。
Sutterella通常与人类疾病有关,例如自闭症、唐氏综合症和炎症性肠病 (IBD),但这些细菌对健康的影响仍不清楚。 Sutterella 属的成员是肠道重要的共生菌,在健康成人的十二指肠中含量丰富,朝向结肠的梯度逐渐减小。在人类胃肠道中具有轻度促炎能力,Sutterella会过分泌IgA蛋白酶,降解IgA,从而降低肠粘膜中IgA的浓度,损害肠道抗菌免疫反应功能。
Sutterella属与抗生素性腹泻的病情呈正相关,被诊断患有自闭症和胃肠道紊乱的儿童中,超过一半的肠道活检组织中存在 Sutterella菌,而通常发育中的胃肠道紊乱儿童的活检组织中没有 Sutterella。唐氏综合症与大量的Sutterella显著相关。
体重和脂肪量的增加与Sutterella 呈负相关,而高效有氧健身锻炼与Sutterella丰度增加和物种多样性呈正相关。
补充低聚半乳糖(GOS)以及低聚果糖(FOS)和维生素D有助于增加Sutterella的丰度,而岩藻多糖具有降低Sutterella丰度的作用;此外,Sutterella显示对甲硝唑的耐药性。
也被称为硫酸盐还原菌,非发酵性、厌氧性、革兰氏阴性杆菌,在25至40摄氏度之间的温度下生长速率理想。已有12个属40多个种,一般具有产生乙酸,消耗乳酸特征中的一种或多种。四种脱硫弧菌种均与人类感染有关(主要是腹部):Desulfovibrio. fairfieldensis、 Desulfovibrio. desulfuricans、 Desulfovibrio. Piger、 Desulfovibrio. Vulgaris。
一些脱硫弧菌物种的存在与慢性牙周炎、细胞死亡和炎症性肠病如溃疡性结肠炎和克罗恩病有关,或者至少增加复发的风险。Desulfovibrio的相对丰度与体重指数、腰围、甘油三酯水平和尿酸水平呈负相关。肥胖和超重儿童Desulfovibrio显著低于正常体重儿童。脱硫弧菌物种的浓度与帕金森的严重程度相关,此外在系统性硬化症、关节炎 、结直肠癌、妊娠期糖尿病中脱硫弧菌的丰度增加。
革兰氏阴性、不形成孢子的厌氧菌,球状、多形性小球(坏死梭杆菌)到杆状的一系列细胞形态。梭杆菌细胞通过发酵碳水化合物和蛋白获得能量。这种发酵产生丁酸盐,在某些情况下产生乙酸作为主要的代谢副产物。其中具核梭杆菌是少数利用氨基酸分解代谢来提供能量的非产孢厌氧物种之一,能使用谷氨酸、组氨酸和天冬氨酸。
F. nucleatum在有助于牙周健康和疾病的生物膜中发挥不可或缺的有益作用。在牙菌斑生物膜中,具核梭菌作为桥梁生物在结构上起到支持作用,将主要定植菌(如链球菌属)与主要厌氧的次级定植菌连接起来,梭杆菌细菌素可以通过去除特定的口腔或肠道微生物来促进其他微生物的生长。
梭杆菌作为主要病原体侵入人类宿主的能力很强,其中具核梭杆菌和坏死梭杆菌是可怕的厌氧病原体之一,最常存在于口腔、牙菌斑中,与牙周病、急性坏死性牙龈炎、口腔癌、溃疡性结肠炎、克罗恩病和结直肠癌有关。 结直肠癌患者粪便样本中,具核梭杆菌高,此外在肿瘤复发患者中肠菌具核梭杆菌含量明显升高。
此外,痛风患者中梭杆菌丰度增加,胰腺导管腺癌中梭杆菌fusobacteria 较少。
梭杆菌属对粘菌素和卡那霉素敏感,一些菌株产生β-内酰胺酶并对青霉素耐药。
一组呈黄色、杆状的革兰氏阴性菌。是兼性厌氧菌,氧化酶阴性。非包膜、非孢子形成的活动杆菌,具有周毛鞭毛。可以利用 D-木糖、D-核糖、麦芽糖、D-半乳糖、D-甘露糖、D-果糖、海藻糖和 D-甘露醇作为能量代谢的碳源。
泛菌属有 20 多个物种,其中90%以上的感染与2个物种有关:Pantoea agglomerans、Pantoea dispersa。这种细菌会导致新生儿 ICU 中的机会性血流感染。Pantoea 可作为社区获得性感染(包括职业接触)或医院获得性感染引起人类感染。Pantoea引起的感染的临床结果包括感染骨骼、关节、滑膜引起化脓性关节炎、骨髓炎或滑膜炎,包括但不限于心内膜炎、眼内炎和皮肤感染。
成团泛菌已表现出对多种抗生素的耐药性,包括早代青霉素、早代头孢菌素、广谱头孢菌素和抗假单胞菌青霉素、氟喹诺酮类、氨基糖苷类、TMP-SMX和四环素。许多泛菌菌株显示出惊人的环境多功能性和适应性,并具有多种生物合成和生物降解能力,可用于农业、环境和临床环境中的潜在有用应用。
为肠杆菌科中一类有荚膜的革兰氏阴性杆菌,不运动,兼性厌氧,氧化酶为阴性,并从乳糖产生酸和气体。是一种机会性病原体,本属中肺炎克雷伯氏菌与人类关系密切。肺炎克雷伯菌可以自然存在于健康个体的肠道和呼吸道中,具有健康免疫系统的人很少发生感染疾病。
但当细菌直接进入人体内时,通常会发生克雷伯菌感染。这种细菌都与脑膜炎,腹膜炎,败血病和肺炎有关。肺炎克雷伯菌是引起肺炎的人类呼吸系统的主要病原体之一。甚至还会导致鼻部、眼部、尿道感染。
K. ozaenae被认为是萎缩性鼻炎的病因;K. rhinoscleromatis可导致缓慢进展的疾病,称为鼻硬化症;K.oxytoca与新生儿菌血症有关。
克雷伯菌感染通常发生在由于年龄,酒精滥用或糖尿病等导致免疫功能低下人群,并且通常以医院感染的形式出现。此外,易感因素包括营养不良,接触程度,不卫生的环境和遗传易感性等。
一般可用阿扎坦(aztreonam);喹诺酮类;第三或第四代头孢菌素,例如罗芬(头孢曲松);碳青霉烯类,例如Primaxin(亚胺培南/西司他丁);青霉素,例如佐辛(哌拉西林-他唑巴坦)等抗生素进行治疗。
该属的典型菌种是Eggerthella lenta(迟缓埃格特菌)。Eggerthella lenta是一种正常的人类微生物菌群,它是厌氧的、不产生孢子的、革兰氏阳性的。然而,Eggerthella lenta(迟缓埃格特菌)可引起血流感染,被认为是一种机会性人类病原体。越来越多的研究表明,它也可能是人类的重要病原体,甚至在某些条件下引起危及生命的感染。Eggerthella lenta已从血液、脓肿、伤口、皮肤溃疡、产科和泌尿生殖道感染以及腹腔内感染中分离出来。
危险因素包括免疫功能受损状态(类固醇使用、近期化疗、终末期肾病和糖尿病)、恶性肿瘤和胃肠道疾病,如溃疡性结肠炎和克罗恩病。Eggerthella lenta菌血症最常见的潜在健康状况是实体癌或血液器官癌、糖尿病和心血管疾病。而所有这些患者的主要感染源是胃肠道、皮肤和软组织和脓肿。在所有首发症状中,阑尾炎所占比例最高,远高于第二大的结肠炎。阑尾炎常伴有穿孔甚至腹膜炎。Eggerthella lenta通常定植于胃肠道,更容易侵入血液。因此,肿瘤、糖尿病、阑尾炎患者更应关注迟缓埃格特菌的血行感染。
多项研究表明在抑郁,情感障碍以及精神分裂患者中Eggerthella丰度富集。还证明eggerthella有可能成为与慢性失眠相关的独特属种。在重度抑郁症中,eggerthella的增加和sutterella的减少也得到证实。此外,埃格特氏菌 (eggerthella)与甘油三酯增加和高密度胆固醇减少存在相关性。
用药:对抗迟缓肠球菌感染最有效的抗菌药物是甲硝唑、阿莫西林克拉维酸和碳青霉烯类;它对头孢曲松具有耐药性。头孢唑肟,也显示出良好的疗效,健康饮食分数越高,该菌的丰度相对更低。
Flavonifractor(解黄酮菌属)属于厚壁菌门,梭菌目的,通常为革兰氏阳性,大多数物种形成椭圆形/球形内孢子,通常为过氧化氢酶阴性,大多数物种是专性厌氧的,尽管对氧气的耐受性差异很大。肠道微生物群中 Flavonifractor 丰度升高与较高的情感障碍相关,吸烟和女性是造成这种关联的原因之一,可能导致氧化应激增强,以及儿茶酚途径和低度炎症有关。此外,肠癌或息肉病人该菌富集。
Flavonifractor是肠道健康的重要菌群,其含量与肥胖呈负相关,Flavonifractor plautii改善动脉硬化程度。Flavonifractor属的种类增加和抑郁症相关。Flavonifractor(参与微生物儿茶素代谢并影响宿主免疫,它的增加可能与葡萄粉中儿茶素的含量有关)。Flavonifractor 还在慢性肾病、终末期肾病中显著增加。
该菌的典型菌种是 Flavonifractor plautii ,是人类肠道微生物中一种常见的专性厌氧菌,通常黏附在肠壁上,在粪便中可提取得到。 Flavonifractor plautii 及其主要效应物顺乌头酸可以通过改善动脉功能和减少炎症来防止动脉僵硬。这个细菌还有一个超能力,它可以「吃掉」红细胞的 A 抗原。
Flavonifractor plautii可以通过裂解类黄酮分子的 C 环来降解类黄酮。黄酮类化合物是人类饮食的重要成分,主要由具有广谱药理活性的多酚类次级代谢产物组成。从流行病学、临床前和临床研究中积累的证据支持这些多酚在预防癌症、心血管疾病、2 型糖尿病和认知功能障碍方面的作用。
几种常见的食物,如茶、咖啡、苹果、番石榴、榄仁树皮、葫芦巴籽、芥菜籽、肉桂、红辣椒粉、丁香、姜黄和豆类,都含有大量的类黄酮。因此为了最大限度发挥类黄酮在结直肠癌中的潜在有益作用和生物利用度,需要控制Flavonifractor plautii其丰度。
但是,个别研究报道口服 Flavonifractor plautii(一种在绿茶摄入量中增加的肠道细菌)可通过抑制 IL-17 信号传导促进小鼠急性结肠炎的恢复。 口服 Flavonifractor plautii 可有效抑制小鼠的 Th2 免疫反应,可能有助于减轻抗原诱导的 Th2 免疫反应。
Oscillibacter革兰氏染色阳性,酰基类型是乙酰基。主要的细胞壁糖是半乳糖,属于厚壁菌门,主要的菌种有Oscillibacter ruminantium、Oscillibacter valericigenes。
Oscillibacter属代谢和降解胆固醇。对心脑血管疾病有影响,中风和短暂性脑缺血发作患者增多,在各种研究中被指出与神经发育和抑郁症的关系。此外,Oscillibacter属在各种研究中被指出与神经发育和抑郁症的关系。Oscillibacter属与抑郁症显著相关,抑郁症患者中的丰度较高,并且与抑郁行为和神经递质紊乱相关。
Holdemania是一种厌氧细菌属,主要存在于人类肠道中。Holdemania属于芽胞细菌,可形成芽胞以抵御不利环境,细胞呈棒状或杆状,大小约0.5-1.2μm × 1.5-6μm,厌氧生长,需要无氧环境。是丹毒菌科的一员,其丰度与脂质代谢紊乱的严重程度呈显着正相关。之前的报告还表明,肠道中高丰度的霍尔德曼尼亚有助于诱导炎症反应。
Holdemania通常被认为是人体肠道正常菌群的一部分,在维持肠道微生态平衡中起一定作用,大多数情况下,Holdemania属菌不会引起疾病,是人体共生的细菌。但在某些情况下,如免疫功能下降等,Holdemania可能会导致机会性感染,如腹泻等。
有研究显示Holdemanella属与脂质和葡萄糖代谢受损有关,其在II型糖尿病和肥胖等代谢性疾病中具有潜在危害作用。此外研究发现妊娠晚期母体肠道微生物群中霍尔德曼菌的丰度较高,与婴儿食物过敏的发生率较低有关。另外中国帕金森病患者的粪便中富含霍尔德曼菌。鸭肉、羊肉、乳制品和藻类蔬菜等饮食因素会增加Holdemanella属的相对丰度。锌过载时Holdemania的丰度也会增加。
弯曲杆菌属,是革兰氏阴性螺旋,杆状或弯曲细菌,是引起肠道感染的细菌,是引起全世界腹泻病最常见的细菌原因之一。其可以急性肠炎(腹泻、恶心、呕吐、腹痛、发热等),肠外感染,严重会导致并发症,包括格林-巴利综合征。
弯曲杆菌可以使未煮熟的鸡肉、蔬菜水果、各类熟食品、牛奶、海鲜类等受到污染,还可以感染宠物,通过动物粪便对水源的污染或人和动物的接触传播,从而引起腹泻或者中毒。
任何人都可能感染,婴儿和儿童感染弯曲杆菌的几率比成人高,大多数弯曲杆菌感染是自限性的,也就是说大多数弯曲杆菌病无需任何其他治疗即可痊愈,严重时需抗生素如阿奇霉素治疗。
预防弯曲杆菌感染需注意饮食卫生,加强食品加工过程的卫生控制,避免生食易感染动物产品等。
谷禾健康
2024年4月24日,杭州市科学技术局发布《关于2024年杭州市企业高新技术研究开发中心拟建名单的公示》。
经专家严格评审、现场考察等程序,杭州谷禾信息技术有限公司设立的“杭州谷禾肠道健康精准检测技术企业高新技术研究开发中心”符合建设条件,并成功入选该名单。
企业高新技术研究开发中心是设在企业内部相对独立的研发机构,是促进企业技术创新和成果转化,提高企业核心竞争力的重要创新力量。
这是继谷禾迈入国家高新技术企业行列之后,取得的又一项重要政府资质认定。此外,谷禾在高通量基因测序领域研发大量技术,申请多项专利,通过ISO19001认证,并建有二级病原微生物安全实验室。
谷禾持续加大研发投入力度,加快科研成果向临床及大健康产业的转化,推动企业技术进步,在促进高新技术产业化的路上稳步向前迈进。
谷禾建立的二级病原微生物安全实验室,不仅配备了PCR仪、测序仪等多种必要设备,同时严格按照国家标准和规范进行实验室设计、建设和管理,包括《病原微生物实验室生物安全通用准则 WS 233-2017》、《实验室生物安全通用要求 GB 19489-2008》、《ISO13485:2016》等各类体系标准,确保实验环境的安全性和数据的可靠性。
硬件配置水平直接影响到研发效率和成果质量,研发中心的顺利获批,为高通量检测技术的应用奠定了质量保障,也为肠道健康精准检测技术的研发应用提供有力支撑。
技术负责人在指导建立检测环境、检测物品保管环境、消耗品贮存环境控制时应考虑不同仪器设备在不同检测作业时、不同检测物品在同一个贮存区域和不同消耗品之间的相互影响。
谷禾检测实验室分为四个单独的工作区域:
为避免交叉污染,实验室布局设计遵循检测对象“单方向工作流程”原则。
1、试剂配制与贮存区
该实验区主要进行的操作为保存液的制备、灌装,此区域不需要严格控制气流压力,但应注意材料的存放,以防止交叉污染。
2、核酸提取区
用于样本核酸的提取,将核酸加入至扩增反应管。为了防止邻近区域的空气进入本区,应设置正压梯度。
3、核酸扩增区
这个区域用于DNA扩增和将实验试剂制成反应混合液。由于本区域的污染指数较高,应设置负压梯度,以防止气溶胶从本区泄漏,尽量减少在本区内的不必要的走动。涉及加样等操作应在超净工作台内进行。
4、扩增产物分析区
该区域用于测定相关扩增片段。如果实验室设计中有预设的全自动封闭分析仪器,则本区域可以与扩增反应混合物配制和扩增区合并。本区的压力梯度应设置为负压,以防止扩增产物扩散至其他区域。
这四个区域在空间上是完全相互独立的。
谷禾检测实验室从事检测活动的人员,不得在其他同类型实验室从事同类的检测活动。
从事检测的人员至少具有微生物、生物或相关专业专科以上学历,或者具有至少3年的相关检测工作经历。
数据分析人员需微生物、生物信息或其他相关专业或相关领域从业经验。
谷禾设有人员培训计划和监督方案,所有人员均须通过岗位相关的培训和考核,并进行定期能力评估方能上岗。
实验室除了基本的内务管理之外,谷禾设有安全管理员负责维护责任区内安全措施的完好性;检测人员严格按照检测方法、作业指导书、规程要求进行操作试验。
实验室配备满足生物安全等级要求的生物安全柜,检测人员需进行生物安全柜的使用培训才能操作。
注:生物安全柜是能防止实验操作处理过程中某些含有危险性或未知性生物微粒发生气溶胶散逸的箱型空气净化负压安全装置,是实验室生物安全中一级防护屏障中最基本的安全防护设备。
检测人员严格遵守《实验室生物安全管理手册》的规定,化学品、试剂管理规范,记录在册。
对样品的接收、标识、运输、储存、保护保留和清理的严格管理,保证样品的有效性,可溯源,确保检测结果的准确性和公正性。
谷禾检测实验室设有清晰标识检测或校准物品的系统,相关检测人员需完成《样品登记表》、《样品存储登记表》、《异常样品处理情况登记表》等各项记录。
从样本采集、处理、检测到报告生成,每个环节都有严格的操作规程和质控标准,保证了检测结果的可靠性和一致性。
通过ISO9001等认证,建立了完善的质量管理体系,确保了检测服务的高质量和数据的安全性。
谷禾检测尊重并且保护在合作过程中受客户或第三方委托的机密信息,全体员工都须遵守员工手册和相关检验责任追究制度,对信息负有保密责任。
在特定实验区,设置门禁和进出权限,对出入人数进行了授权和控制。
项目管理系统清晰地分配和跟踪每个项目成员的任务,确保每个项目有效开展,方便团队成员及客户随时沟通和协作,资料上传方便随时查阅,规范项目各环节的操作标准和权限控制,提高项目管理的规范性和可追溯性。
为建立良好的检测工作环境,确保工作的安全、有效,防止污染环境、增强抗风险能力、确保文件的有效和保密,谷禾还设有相关记录管理、文件管理、风险管理、内务管理、危险废弃物处理、改进工作、内部审核等多项制度。
与多家科研院所、医疗机构等建立了广泛的合作关系,促进了技术交流和成果转化,不断提升肠道菌群检测的临床应用价值。
以上是谷禾基于多年肠道菌群健康检测及科研项目的相关经验,逐步完善的设备及各项管理体系,为肠道菌群检测项目的开展提供了坚实的基础和有力的保障。
✦
•
✦
谷禾利用16srRNA高通量测序技术,在肠道菌群检测方面已经深耕十多年,积累了丰富的经验和海量数据。
16s rRNA测序技术是一种基于细菌16s rRNA基因的微生物鉴定方法,可以快速、准确地分析肠道菌群的组成和多样性,是目前肠道菌群研究广泛使用的一种方法。
在此基础上,谷禾最新又推出肠道微生态宏基因组精准检测报告。
宏基因组测序也就是shotgun测序,以环境中所有微生物基因组为研究对象,通过对环境样品中的全基因组DNA进行高通量测序,获得单个样品的饱和数据量,基于denovo组装进行微生物群结构多样性,深度全面的了解微生物群体的构成,甚至获得单个菌株的完整基因组。
优点:
宏基因组可以更加精细化开展其基因构成、分布,次生代谢合成,抗生素耐药基因及其演化,微生物群体基因组成及功能等分析。
<来源:谷禾宏基因组精准检测报告>
缺点:
总的来说,宏基因组测序仍存在技术瓶颈和生物学解释的局限性。然而,针对某些特殊情况研究需要,宏基因组测序也是一种有用的微生物组学研究工具。
对于一些复杂的多菌种感染,宏基因组能够更精细化鉴定感染菌群的构成,为临床辅助诊疗提供依据。
与传统方法相比,宏基因组学诊断真菌感染的敏感性和特异性更高,适用于一些真菌感染疾病。也可能鉴定出可疑的新病原体,为后续的病原学研究、药物和疫苗开发奠定基础。
<来源:谷禾宏基因组精准检测报告>
肠道菌群在人体健康和疾病中扮演着重要角色,因此构建一个完善的肠道菌群宏基因组数据库对于研究人体菌群的组成和功能具有重要意义。
宏基因组数据库的物种涵盖范围和菌株构成,直接影响着宏基因组物种鉴定分类的准确性和分类精度。
在选择合适的算法方面也是至关重要的,谷禾整合了最新的NCBI refseq数据库中包含所有细菌、病毒、真菌和寄生虫等微生物物种信息。
<来源:谷禾宏基因组精准检测报告>
✦
接下来,我们结合谷禾宏基因组精准检测报告中的一些重要模块,包括不同微生物的相对丰度、抗生素耐药、毒力基因等重要信息,更全面的了解宏基因组精准检测报告,包括其在个性化的健康管理和治疗方案制定方面的潜力。
我们将在90%人群检出,人群平均丰度1%以上的菌属为核心菌属,属于人体肠道菌群中最常见和主要的菌属。核心菌属及有益菌累加占总肠道菌群比例低于60%的可能出现肠道菌群紊乱。
<来源:谷禾宏基因组精准检测报告>
肠道内的有益菌能够调节肠道内生态平衡,促进人体健康,如双歧杆菌和乳酸杆菌,保持肠道菌群的平衡对于全面提升整体健康水平至关重要。
对于肠道菌群多样性降低、有益菌减少的肠道疾病患者,可根据其菌群特征,定制个性化的益生菌组合,精准调控肠道菌群。
<来源:谷禾宏基因组精准检测报告>
了解与疾病相关的有害菌,为辅助诊断和治疗提供依据。例如,对于肠道菌群失衡、有害菌明显增多的患者,可根据其菌群特征,结合其已有的症状,采取个性化的饮食、益生菌、靶向抗菌等综合干预措施,精准调控干预,恢复菌群平衡。
<来源:谷禾宏基因组精准检测报告>
机会致病菌在肠道内广泛分布,是正常肠道菌群的一部分,但当这类菌过多或免疫力下降时有可能会引发疾病,如大肠埃希氏菌。
<来源:谷禾宏基因组精准检测报告>
宏基因组对抗生素耐药研究也有意义,可以加深对耐药机制的认识,为临床上抗生素干预的选择提供帮助。
分析耐药基因
宏基因组测序可获得细菌群体的全部基因组信息,通过序列比对和功能注释,可鉴定出各种已知和新型耐药基因,全面评估耐药基因的种类和数量。例如,在人体肠道宏基因组中发现了大量β-内酰胺酶等耐药基因。
<来源:谷禾宏基因组精准检测报告>
追踪耐药基因的传播途径
通过比较不同环境(如土壤、水体、动物和人体)中耐药基因的分布情况,可推测耐药基因的来源和传播途径。
辅助指导耐药风险评估和防控策略
宏基因组学评估环境和宿主中耐药基因的分布特点,识别高风险区域和人群,为制定针对性的监测和干预措施提供依据。
宏基因组检测技术在病原微生物毒力基因研究中具有独特优势,可在基因组水平系统分析其毒力基因组成及调控网络,加深对致病机理的理解。
<来源:谷禾宏基因组精准检测报告>
以上是谷禾宏基因组精准检测报告的一些节选,其全面、精准、个性化分析肠道菌群的组成和功能,可帮助评估菌群失衡的风险和预后,为个性化诊疗和健康管理提供科学依据。
✦
•
✦
为推动肠道/阴道菌群的健康及临床应用,谷禾基于自身检测和数据分析优势设立开放基金,希望联合来自各个领域和方向的研究人员以及合作者,帮助完成大样本队列的实验和检测以及后续的深度分析。最终早日实现肠道菌群在现实生活和临床应用中的落地。
开放基金主要支持方向
基于上述目的和定位,支持方向为人体肠道菌群研究,具有实际临床意义或健康检测价值的实验设计或设想。不仅限于科研人员,也面向公众、团体和机构。
方向可以包括:传染病、肿瘤、慢性病、药物、营养、生殖发育等,并不仅限于疾病或诊疗,也可包括饮食、生活方式、生长发育或认知心理等方向。
注意:本基金仅支持人体肠道菌群研究,且研究目标为实际应用导向。
基金支持内容
基金为长期开放,随时申请,申请通过后签订项目合同,并随时公布入选项目清单,并会同时定期公布项目进展情况。
项目会分三个阶段,根据项目进展情况逐步推进,由谷禾专家团队评议是否进入下一个阶段。
三个阶段分别是:
基金不直接提供资金,谷禾会免费提供包括:
已开展申请项目(更新日期20240430):
有需要申请谷禾开放基金可在谷禾健康官网“开放基金”栏目操作。
谷禾开放基金已发表文章:
Lan J, Zhang Y. Jin C, et al.(2024)Gut dysbiosis drives IBD-like conditions through the CCL4L2-VSIR axis in glycogen storage disease. Advanced Science. Accept. (幼儿肠道炎症)
Chen Y, Li J, Le D, et al. (2024) A mediation analysis of the role of total free fatty acids on pertinence of gut microbiota composition and cognitive function in late life depression. Lipids Health Dis. 29;23(1):64. (晚年抑郁症)
Yan X, Yan J, Xiang Q, et al. (2023) Early-life gut microbiota in food allergic children and its impact on the development of allergic disease. Ital J Pediatr. 9;49(1):148. (儿童食物过敏)
Xu S, Liu W, Gong L, et al. (2023) Association of ADRB2 gene polymorphisms and intestinal microbiota in Chinese Han. Open Life Sciences. ( 中国汉族青少年胃肠病相关 )
Qian X, Liu A, Liang C, et al. (2022) Analysis of gut microbiota in patients with acute myocardial infarction by 16S rRNA sequencing. Ann Transl Med. 10(24):1340. ( 急性心肌梗死 )
Chen C, Shen J, Du Y, et al. (2022)Characteristics of gut microbiota in patients with gastric cancer by surgery, chemotherapy and lymph node metastasis. Clin Transl Oncol. 24(11):2181-2190 . (胃癌和化疗)
Chen C, Du Y, Liu Y, et al. (2022)Characteristics of gastric cancer gut microbiome according to tumor stage and age segmentation. Applied Microbiology and Biotechnology. 106(19): 6671-6687. (胃癌)
Lou M, Cao A, Jin CL, et al. (2021) Deviated and early unsustainable stunted development of gut microbiota in children with autism spectrum disorder. Gut. 71(8):1588-1599 ( 自闭症谱系障碍 )
Shen J, Jin CL, Zhang YY, et al. (2022)A multiple-dimension model for microbiota of patients with colorectal cancer from normal participants and other intestinal disorders. Applied Microbial and Cell Physiology. 106(5-6):2161-2173(结直肠病,腺瘤,息肉)
Yu T, Ji L, Lou L, et al. (2022)Fusobacterium nucleatum Affects Cell Apoptosis by Regulating Intestinal Flora and Metabolites to Promote the Development of Colorectal Cancer. Frontiers in microbiology. 18;13:841157 (结直肠癌, 具核梭杆菌 )
Zhang M, Miao D, Ma Q, et al. (2022) Underdevelopment of gut microbiota in failure to thrive infants of up to 12 months of age. Front. Cell. Infect. Microbiol. 12:1049201 (幼儿生长发育迟缓、生长不足 )
Zhang Y, Shen J, Shi X, et al. (2021) Gut microbiome analysis as a predictive marker for the gastric cancer patients. Applied Microbiology and Biotechnology. 105(2), 803-814(胃癌)
Li X, Huang J, Yu, T, et al. (2021) Fusobacterium nucleatum Promotes the Progression of Colorectal Cancer Through Cdk5-Activated Wnt/β-Catenin Signaling. Frontiers in microbiology. 11, 545251(结直肠癌)
Xiong L, Li Y, Li J, et al. (2021) Intestinal microbiota profiles in infants with acute gastroenteritis caused by rotavirus and norovirus infection: a prospective cohort study. Int J Infect Dis.111:76-84(轮状病毒和诺如病毒感染)
Huang L, Cai M, Li L, et al. (2021) Gut microbiota changes in preeclampsia, abnormal placental growth and healthy pregnant women. BMC Microbiol. 4;21(1):265 (先兆子痫、胎盘生长异常)
Wan C, Zhu C, Jin G et al. (2021) Analysis of Gut Microbiota in Patients with Coronary Artery Disease and Hypertension. Evid Based Complement Alternat Med. 7195082 (心脑血管疾病,高血压,冠心病)
Liu H, Pan LL, Lv S, et al. (2019) Alterations of Gut Microbiota and Blood Lipidome in Gestational Diabetes Mellitus With Hyperlipidemia. Front Physiol. 10:1015(妊娠糖尿病)
徐山茸,龚莉,储文文,周多奇. (2021) 12 周高强度间歇性训练对人体肠道菌群的影响. 微生物学通报. 48(4): 1215−1226 (运动)
✦
✦
✦
谷禾专注于高通量检测技术和人工智能的结合,通过精确、便捷、无创的检测方式,以肠道菌群为核心,结合蛋白质及代谢物检测的多组学检测,开发多模态表征和大模型框架,支持重大疾病,营养状况进行临床筛查和辅助诊断。谷禾会持续推进检测技术的改进和数据推动的智能分析,目前谷禾已建立有PII生物安全实验室,杭州市研发中心,并通过多项标准化认证。包括宏基因组检测,生殖道菌群检测以及tNGS等多项新服务将满足更多应用场景的需求。
谷禾健康
日常生活中大部分人都可能碰到过食用了不卫生或过期变质食物以及水源后,出现过恶心、腹痛,并伴有腹泻、食欲不振、呕吐等症状?如果有就要当心,这可能是病原体感染引起的胃肠道炎症。
但是,即使食用了同样食物水源,不同人表现不一样。有的人表现无严重症状,有的人却症状严重,那么是什么因素导致病原体进入肠道后定植或无法定植,什么因素影响其进一步的感染?
胃肠道感染,也称作胃肠炎,是指病毒、细菌或其他病原微生物侵入消化道,引起的一系列消化系统症状的疾病。
这些微生物主要是通过食物或水进入人体后,在胃肠内繁殖并产生毒素,导致黏膜损伤和免疫细胞浸润,进而引发一系列病理生理变化。胃肠道感染的症状包括腹泻、腹痛、恶心呕吐以及食欲减退等。严重时还可能出现脱水、电解质紊乱甚至死亡。
有人可能会问:我们胃肠道中有那么多的微生物,为什么稍微一点外来的微生物就会让我们生病呢?的确,人体肠道内栖息着大量微生物,包括数万亿细菌,统称为肠道微生物群。微生物群的各种细菌成员在多个复杂层面上参与合作和竞争的生理网络。在过去10年中,测序技术领域的进步极大地增进了我们对共生微生物群影响的各种生理和病理过程的理解。
越来越多的人类疾病,如炎症性肠病、2型糖尿病、肥胖、心血管疾病、过敏和结直肠癌等被发现与微生物群组成的改变有关。此外,关于健康个体中人类微生物群的组成、其随时间和不同人之间的差异以及环境因素(即饮食)和遗传背景如何塑造微生物群的也正在变得更加清晰。
正常、健康的肠道微生物群可以在肠道中产生不利于肠道病原体定植的条件,这被称为定植抗性。肠道微生物群通过多种机制提供针对感染的保护,包括抗菌物质的分泌、营养竞争、上皮屏障完整性的支持、噬菌体和免疫激活。这些机制共同有助于抵抗外源微生物的定植。
当微生物群稳态受到干扰时,定植抗性可能会暂时受到破坏,病原体就有机会生长到高水平。这种破坏可能是由接触抗生素、饮食变化、益生菌和药物的应用以及各种疾病引起的。定植抗性的减弱会促进内在病原体的定植或增加对感染的易感性。
病原体扩张的后果之一是引发宿主炎症反应和病原体介导的疾病。同时在肠道炎症患者中,通常会观察到微生物群组成异常,称为“生态失调”。这通常的特征是兼性厌氧细菌(例如肠杆菌科、芽孢杆菌)的相对丰度增加,同时,拟杆菌属等专性厌氧细菌的减少。不过到目前为止,尚不清楚生态失调是肠道炎症的原因还是结果,但我们有充分的理由证明两者之间存在显著的相关性。
除了肠道微生物外,宿主营养通过影响宿主免疫系统和病原体资源的可用性,进而影响感染结果。从宿主角度看,维持活跃的免疫反应需耗费大量精力。营养状况的降低可能削弱宿主抵抗感染的能力,并在其他条件不变的情况下增加病原体的危害。
另一方面,从病原体角度看,宿主营养的数量(食物量)和质量(特定营养成分)的变化可能影响感染期间病原体生长资源的可用性和类型。在此情况下,生长较快的病原体或更高的病原体适应性/负载量可能导致更大的毒力。
Pike VL,et al.Proc Biol Sci.2019
在本文中,我们将讲述健康人体肠道微生物的抗感染作用;讨论了营养与感染的关联。此外,本文重点关注肠道感染中炎症与微生物群的双向作用、发炎肠道中肠道病原体和肠道微生物群的竞争,以及最后提出了通过营养与微生物作用有助于预防和治疗感染的方法。
▸ 如何区分病原菌和共生菌
在感染医学中,共生菌和致病菌之间的区分仍然是一个重要标准,有益的共生现象和对立的致病性代表了细菌行为范围的两个极端,尽管很少有细菌微生物组成员表现出真正的致病行为。多细菌物种或菌株可以根据其环境背景和宿主生理状态动态改变其作为共生体或病原体的能力。
例如,微生物组失调和宿主免疫缺陷,可以将肠球菌(Enterococcus faecium)从一个几乎无害的肠道微生物组成员转变为血流感染的原因。
单个水平基因转移事件可以改变共生生活方式和致病生活方式之间的平衡,例如,当预测的编码毒素成为肠出血性大肠杆菌或皮肤定植和口咽定植的白喉杆菌的主要毒力因子时。这意味着,原本可能是相对无害的微生物,在获得某些特定基因后,其生物学性质和行为可能发生显著变化,从而增加了其致病潜力。这种基因的转移和表达可以使这些微生物在宿主体内表现出更强的侵袭性和病原性,从而对宿主健康构成更大的威胁。
扩展阅读:
在这篇文章中,我们将常规引起感染的外来细菌称为病原体,而不常引起感染的细菌称为共生菌,越来越多的证据表明,一些共生细菌对人类健康至关重要。
▸ 稳定的肠道共生菌对健康至关重要
而健康的肠道内有一个稳定的微生物群落,可以抵抗外来细菌和病原体的侵袭,这就是所谓的“定植抵抗”,这个概念至少从上世纪50年代就被认识到了。
不成熟的微生物群落(比如婴儿的微生物群落)或者受到抗生素或者饮食破坏的微生物群落可能会失去这种保护作用。
在健康个体中,共生稳定的肠道微生物群通过多种机制提供针对感染的保护,包括抗菌物质的分泌、营养竞争、上皮屏障完整性的支持、噬菌体和免疫激活。这些机制共同有助于抵抗外源微生物的定植。
肠道微生物介导的定植抵抗机制
Ducarmon QR,et al.Microbiol Mol Biol Rev.2019
肠道微生物群能产生各种具有抗菌作用的产物,包括短链脂肪酸、次级胆汁酸和细菌素。每一种都以特的方式抵抗外源微生物的定植。它们的作用机制如下所述。
// 短链脂肪酸影响细胞内pH值和代谢功能来抑制细菌生长
短链脂肪酸(SCFA)主要由细菌通过不易消化的碳水化合物发酵产生。三种主要的SCFA是乙酸盐、丙酸盐和丁酸盐,占总量的90%至95%。在稳态条件下,丁酸盐是肠上皮细胞的主要营养物质,并通过β-氧化进行代谢,可以维持肠道内的厌氧环境。
短链脂肪酸通过影响细胞内pH值和代谢功能来抑制细菌生长。研究表明,SCFA浓度与肠道不同区域的pH值呈负相关。在较低pH值下,短链脂肪酸以其非离子形式更为普遍,这些非离子酸可以穿过细菌膜,扩散到细胞质中。在细胞质内,它们解离,导致阴离子和质子积聚,从而降低细胞内pH值。
短链脂肪酸已被确认为抑制鼠伤寒沙门氏菌(Salmonella typhimurium)生长的关键因素,并且对致病性大肠杆菌和艰难梭菌具有抑制作用。这些SCFA主要由拟杆菌和梭菌等厌氧共生细菌产生,这些细菌是成年哺乳动物微生物群中的重要成员。
短链脂肪酸还可以影响病原体的毒力:例如,丙酸和丁酸可以抑制鼠伤寒沙门氏菌的毒力因子。短链脂肪酸还可以作用于宿主,降低氧气浓度,为病原体生长创造一个不利环境。
// 胆汁酸具有抗菌作用,减少病原体定植
胆汁酸是分泌到小肠中的两亲性胆固醇衍生分子。它们的主要功能是乳化脂肪和脂溶性维生素以供吸收,但它们也具有抗菌特性。
大部分结合的初级胆汁酸(50%至90%)在远端回肠中被重吸收,而其余部分可以在结肠中进行细菌代谢。一些细菌(主要是梭状芽胞杆菌)通过复杂的生化途径进行 7α-脱羟基作用,将解离的初级胆汁酸转化为两种主要的次级胆汁酸:脱氧胆酸和石胆酸。
一些胆汁酸对许多细菌具有杀菌作用,包括金黄色葡萄球菌、多形拟杆菌、艰难梭菌等。证据如下:
-其中一种细菌,C. scindens ,通过产生次级胆汁酸与对艰难梭菌的定植抗性相关。C.scindens能够保护小鼠免受艰难梭菌的侵害,并恢复次级胆汁酸水平。
-使用HT-29细胞系,石胆酸已被证明可以增强肠上皮中抗菌肽LL-37的转录。
-此外,初级胆汁酸鹅去氧胆酸通过激活小肠FXR受体,间接启动先天防御机制,具有保护作用。
// 细菌素通过多种机制发挥其抗菌作用
细菌素是由特定细菌物种产生的短有毒肽,能够抑制其他物种的定殖和生长。细菌素通过多种机制发挥其抗菌作用,主要方式包括直接杀死目标细菌或抑制其生长。这些机制具体如下:
-细胞膜破坏:许多细菌素可以通过插入到细菌的细胞膜中,形成孔洞。这些孔洞破坏了细胞膜的完整性,导致细胞内容物的泄漏,最终引起细菌细胞的死亡。
-干扰细胞壁合成:某些细菌素能够干扰细菌细胞壁的合成。例如,它们可能会抑制细胞壁的主要构建块(如肽聚糖)的形成,从而阻止细胞壁的正常建造和修复,导致细菌无法在分裂或生长过程中维持其结构的完整性。
-抑制核酸合成:直接或间接影响DNA和RNA的合成或功能。例如,它们可能会阻止核酸的复制或转录,或者干扰核酸的修复过程,从而抑制细菌的生长和繁殖。
-蛋白质合成抑制:细菌素还可能通过抑制蛋白质的合成来发挥作用。这通常是通过与细菌的核糖体结合,阻断蛋白质合成的关键步骤来实现的。
-代谢途径干扰:此外,一些细菌素可能会干扰细菌的代谢途径,如阻断能量产生的关键酶的活性,从而削弱细菌的生存能力。
细菌会在肠道中竞争营养物质,这对于同一物种的不同菌株尤为重要,因为它们通常需要相同的营养物。多项研究使用不同的大肠杆菌菌株已经证明了营养竞争在细菌定植抵抗中的重要性。以下是一些研究证据:
// 利用相同营养物的菌株竞争有助于抑制病原菌
本土大肠杆菌菌株与致病性大肠杆菌O157:H7 竞争氨基酸脯氨酸。在粪便悬浮液中,高脯氨酸利用率的菌株通过耗尽脯氨酸池抑制致病菌的生长,而添加脯氨酸可逆转此抑制效果,证实了菌株间的营养竞争。
除氨基酸外,不同的大肠杆菌菌株还利用肠粘液中的不同糖类。当小鼠肠道中存在两种大肠杆菌菌株共同利用与O157:H7相同的糖时,O157:H7无法在小鼠中定植。但若只有一种共生菌株存在,O157:H7则能成功定植,显示这两种共生体能共同耗尽所有致病菌所需的糖。
营养竞争还涉及微量营养素,如铁。已知鼠伤寒菌在感染过程中从发炎的肠道吸收大量铁。益生菌大肠杆菌Nissle能高效清除铁,单次给药可显著降低鼠伤寒菌的水平。对铁的竞争可能是大肠杆菌Nissle 能够减少鼠伤寒沙门氏菌在小鼠体内定植的另一种解释。
总之,这些研究表明,通过营养竞争吸收病原体所需的关键营养物质,可以有效地抵抗病原体定植。因此,未来的策略可能会集中在培养能在特定营养素上胜过病原体的益生菌菌株,这在肠道微生物群紊乱时尤为重要,如抗生素治疗期间及其后,因为这是外源细菌最易定植的时期。
// 对粘附位点的空间竞争可以预防感染
除了基于营养的功能性生态位外,细菌还必须竞争物理空间。有些物种更喜欢以内腔或外粘液层的食物为生,或更罕见的是上皮表面的食物。
与上皮细胞的密切身体接触是某些病原体生活方式的重要组成部分(例如弯曲杆菌、某些致病性大肠杆菌、鼠伤寒沙门氏菌),因此对粘附位点(通常是聚糖结构)的物理竞争有助于预防感染或病理。
定植抵抗的直接和间接机制
Pickard JM,et al.Immunol Rev.2017
肠道屏障由内外粘液层、上皮屏障及其相关的免疫屏障组成。内部粘液层不可穿透且牢固地附着在上皮层上,形成了一道防止细菌直接接触上皮层并引发潜在炎症的物理屏障。
// 缺乏可利用营养物质时粘液降解细菌会消耗外粘液层
共生肠道微生物居住在非附着的外粘液层中并代谢营养物。粘液层变薄会增加对病原体定植的敏感性,这可能由于西式饮食中缺乏微生物可利用的碳水化合物(MAC)引起。
当MAC稀缺时,粘液降解细菌如Akkermansia muciniphila和Bacteroides caccae会消耗外粘液层,使细菌更接近上皮层。宿主通过增加粘蛋白(MUC2)的表达来适应,但这种适应往往不足。
然而,内粘液层的损伤可以通过施用长双歧杆菌逆转,这可能因其刺激粘液生成。
// 肠道微生物对于维持粘液屏障的完整性非常重要
一方面,有益的微生物如乳酸菌和双歧杆菌可以通过产生短链脂肪酸等代谢产物来增强粘液层的保护作用,这些代谢产物能刺激粘液的产生和分泌,从而增强屏障功能。
另一方面,某些条件下如不健康的饮食习惯导致有益微生物减少,而粘液降解细菌的比例增加,可能会导致粘液层被过度消耗,粘液屏障变薄,从而使肠道更容易受到病原体的侵袭。
总之,粘液层是抵御外源微生物定植的首要屏障。研究已证明饮食是维持屏障正常功能的重要因素,这表明通过饮食干预或特定的益生元和益生菌可能成为未来的治疗选择。
目前,肠道微生物影响全身免疫反应的最佳机制可能是其对适应性免疫系统T细胞的影响。
// 肠道微生物影响T细胞的分化、影响炎症反应
研究表明,胃肠道微生物群可以影响T细胞群分化为辅助性T(Th)Th1、Th2和Th17细胞或具有调节表型的T细胞。具体来说,丁酸盐作为短链脂肪酸促进外周诱导的调节性T细胞的分化,并以这种方式能够抑制全身炎症的发展。
SCFA还能够重新编程细胞的代谢活动,从而诱导调节性B细胞并通过戊酸抑制Th17细胞的生成,这可能与炎症性肠病和自身免疫性疾病有关。
此外,微生物来源的ATP可以诱导Th17细胞的扩增,色氨酸分解产物可以导致上皮内CD4+ CD8αα+ T细胞的增加,细菌来源的多糖可以启动调节性T细胞。通过其诱导调节群体的能力,微生物组可以支持抑制炎症反应。
噬菌体是地球上最丰富的微生物,也在人类肠道中大量存在。噬菌体已被提议作为抗生素的潜在替代品,因其高度特异性,仅针对单一或少数细菌菌株,从而极大地减少对微生物群共生成员的影响。
// 使用噬菌体有效减少了霍乱弧菌感染
在实验中,使用小鼠和兔子的预防性噬菌体混合物可以有效控制霍乱弧菌感染。这种预防性混合物在体外能够杀死霍乱弧菌,减少其在小鼠肠道中的定植,并预防兔子的霍乱样腹泻。
研究表明,肠道中噬菌体的浓度是预防感染成功的关键因素,噬菌体的给药时间与霍乱弧菌接种的时间间隔与治疗效果密切相关。空肠弯曲杆菌在鸡体内的定植也通过噬菌体混合物显著降低。
// 噬菌体为肠道共生细菌提供竞争优势
噬菌体还可以提供共生体竞争优势。例如,粪肠球菌V583含有能够感染并杀死其他粪肠球菌菌株的噬菌体,为粪肠球菌V583创造了竞争优势。
噬菌体在排除特定肠道细菌方面发挥重要作用,对肠道健康具有潜在贡献。噬菌体的人类治疗应用尚未广泛进行,主要是因为缺乏足够的安全性和有效性证据。然而,最近的病例报告显示,噬菌体治疗在对抗多重耐药细菌方面展现出明显的潜力。
VI 型分泌系统(T6SS)是在一些革兰氏阴性细菌中发现的蛋白质易位复合物,其与一些噬菌体蛋白质具有相似的机制,具有注射毒素到邻近细胞的能力,这一功能使其在微生物间的竞争以及宿主与病原体间的相互作用中发挥关键作用。
T6SS的结构类似于细菌噬菌体的尾部,能够将效应蛋白直接转运到靶细胞中,这些效应蛋白能够破坏靶细胞的细胞结构或功能,从而抑制或杀死竞争对手。
T6SS 示意图
Cherrak Y,et al.Microbiol Spectr.2019
// T6SS通过注射毒素杀死或抑制病原细菌
在抵抗病原体感染方面,T6SS可以被视为一种防御机制。一些非病原性或共生细菌利用T6SS对抗侵入的病原细菌,通过直接向病原体注射毒素来抑制其生长或直接杀死这些病原体。
注:这种机制不仅限于细菌间的相互作用,也可能影响更高级生物的细胞,如真核宿主细胞,进而影响病原体的感染能力和宿主的免疫反应。
最近,在拟杆菌门成员中发现了一个新的T6SS蛋白家族,该门与厚壁菌门一起在哺乳动物肠道中占主导地位。多项研究表明,T6SS及其相关效应子和免疫蛋白的存在在小鼠肠道内拟杆菌属物种之间的竞争中发挥着重要作用。重要的是,T6SS 介导的竞争是接触依赖性的,可以涉及效应子和免疫蛋白的多种组合,并且可以具有比其他杀伤机制更广泛的目标范围。
// T6SS能够调节宿主的免疫系统
此外,T6SS还能够调节宿主的免疫系统。一些研究表明,T6SS可以通过调控炎症反应和影响免疫细胞的活性来影响宿主的免疫环境。例如,T6SS可以影响巨噬细胞的吞噬作用和炎症因子的释放,从而调节宿主的免疫反应。
因此,T6SS不仅是细菌间相互作用的武器,也是细菌与宿主互作的重要因素,对于维持微生物群落的平衡、抵抗病原体侵袭以及调节宿主免疫反应具有重要作用。
通过进一步研究T6SS的具体机制和作用,可以为开发新的抗感染策略提供理论基础和潜在靶点。
营养与感染之间存在密切的相互关系。首先,营养直接影响人体免疫系统的发展。此外,营养状况还会影响感染的发生,包括胃肠道感染、食物中毒、肠道疾病以及其他全身性传染病。
营养与感染的关系可分为以下几种:
(1)营养对人体免疫系统发育的影响;
(2)营养对感染(如胃肠道感染)、食物中毒、肠道疾病(如微生物性腹泻)和全身感染性疾病(如布鲁氏菌病、伤寒)发生的影响;
(3)营养不良与感染的关系;
(4)严重联合免疫缺陷患者的营养;
(5)暴饮暴食与感染的关系。
// 营养对免疫系统的发育至关重要
营养从胚胎阶段起就对人体免疫系统的发育产生影响。怀孕期间,尤其是前三个月,如果母亲摄入足够的蛋白质、维生素和矿物质,胚胎组织将得到良好的发育。胎儿营养不良会对免疫系统的正常发育造成不利影响,如果免疫系统在这一关键时期未能有效发展,将来对抗病原体的能力会受到影响。
// 营养不良抵抗病原体的能力会受到影响
母乳喂养是建立强健免疫系统的关键步骤。未经母乳喂养的营养不良婴儿,容易因缺乏蛋白质和维生素而易感染疾病,并且对疫苗的反应也不佳。因此,良好的营养是提高人体对环境病原体防御能力的基石。
广泛的研究已经证实了营养在增强抵抗感染能力方面的重要作用。例如,研究显示,相比仅接种结核疫苗的儿童,饮食充足的儿童患结核病的风险更低。同时保证营养健康和接种疫苗的人,患结核病的风险显著减少。
进行了一项研究来显示儿童感染与营养不良之间的关系。结果显示,营养不良的儿童经常出现腹泻。这些儿童的腹泻发生率和严重程度较高。结果表明,营养不良程度与腹泻风险之间存在直接关系。另一项研究评估了婴儿从出生到24个月大期间腹泻的影响。结果显示,腹泻发生率每增加 5%,生长障碍就会增加(约16%)。
营养不良和菌血症风险之间存在可变关系,营养不良儿童更有可能患革兰氏阴性菌血症。在坦桑尼亚进行的一项血培养研究结果表明,假单胞菌属、肠杆菌属和金黄色葡萄球菌的患病率很高。
溶组织内阿米巴寄生虫引起的阿米巴病与营养不良儿童腹泻的发生率和严重程度增加之间存在密切关系。据观察,溶组织内阿米巴感染可导致发展中国家儿童腹泻的发生率为2%–10%。全球每年由阿米巴病引起的死亡率和感染率估计分别约为100000例和5000万例。分泌性抗体(免疫球蛋白A)可促进针对溶组织阿米巴腹泻的免疫保护。营养不良儿童中IgA分泌细胞的减少会增加溶组织内阿米巴感染的发生率。
// 受污染的食物和水会导致人体发生感染
食物是人体的主要能量来源,但如果受到微生物污染,可能会引发消化系统疾病和食物中毒等问题。在不同季节,人们可能会遭遇不同程度的食物中毒。尤其在炎热天气中,肠道疾病的发生率较高。
// 受霍乱弧菌污染的食物会使人感染霍乱
其中霍乱是最危险的一种,霍乱是由一种叫做霍乱弧菌(Vibrio cholerae)的细菌引起的急性肠道传染病。这种病主要通过饮用或食用被霍乱弧菌污染的水和食物传播。人们在卫生条件差、饮用水处理不当或个人卫生习惯不佳的环境中更容易感染霍乱。
// 布鲁氏菌病
此外,通过水和食物传播的微生物污染可能导致儿童严重腹泻和传染病。布鲁氏菌病是通过摄入受布鲁氏菌(Brucella)污染的食物和水引起的传染病,这是人类和动物之间的常见疾病。
布鲁氏菌可感染绵羊、山羊、牛、猪和狗,人类则可能通过食用未经高温消毒的牛奶或未煮透的感染动物肉类而感染。密切接触受感染动物的分泌物也可能将病菌传播给人类。
// 其他可能通过食物导致人体的感染
阿米巴原虫病主要通过摄入受污染的水和食物引起,而弓形虫病则是通过食用生或未煮熟的肉类传播。当寄生虫包囊进入人体胃部,胃酸作用下释放,通过肠粘膜传入肝脏和淋巴结。
蛲虫感染是一种通过食物传播的寄生虫病,在全球范围内普遍存在,儿童的感染率高于成人。其他如带虫病和钩虫感染也常由不良营养引起。
注:由于病原体可能具有抗生素耐药性,这给治疗带来了挑战。
1968年,世界卫生组织报告就指出,感染可能会加剧人类营养不良,这种现象被称为协同作用。感染通常会对人的营养状态产生负面影响,从而导致营养不良,反过来又可能加重感染。
// 感染期间代谢和吸收功能会被削弱
多种因素可能削弱人体对抗感染的能力并引发营养不良。例如,厌食可能导致营养不良,从而削弱免疫系统。某些传统行为也会加剧营养不良和感染问题,如在一些文化中,发烧或腹泻的人被禁止进食。肠道感染可能导致肠道吸收功能降低,蛋白质、碳水化合物和脂肪的吸收量可能分别减少43%、42%和72%,具体数值取决于感染类型。
感染期间,如蛋白质丢失等代谢损伤会增加膳食蛋白质的需求。脂质和碳水化合物的代谢紊乱(如脂肪酸自身代谢紊乱、酮体和甘油三酯的变化)在各种感染中可见。此外,感染期间,通过糖异生途径,氨基酸可转化为葡萄糖。在呼吸道感染期间,血液中的维生素A浓度可能降低,肝炎、急性扁桃体炎、类风湿性关节炎等疾病也会降低血清维生素A浓度。
// 感染时体内许多营养素过低
感染时,血液中维生素C浓度降低,而尿液中维生素C浓度增加,即使是接种过麻疹和天花疫苗的人也会出现。感染后,体内维生素B2(核黄素)含量会减少,这种减少具有统计学意义。
铁是感染期间体内减少的另一种营养素,铁的有效利用有助于降低病原体活性并治疗感染。锌和铜是感染时浓度可能降低的其他元素,研究显示感染中铜和锌的平衡呈负值,尽管血液中铜浓度可能增加,但感染者体内铜水平可能显著降低。
有人说,营养不良会增加感染的风险,那我尽量多吃行不行,其实这也是不可取的。
// 暴饮暴食会降低抗感染能力
暴饮暴食可能会对人体的免疫系统造成负面影响,从而降低抗感染的能力。当人体摄入过量的食物,尤其是高脂肪、高糖的食物时,可能会导致炎症反应增强,肠道微生物失衡,这些都可能削弱身体的免疫功能。
因此,暴饮暴食不仅对健康有害,还可能增加感染的风险,包括消化系统的感染如胃肠炎等。合理的饮食习惯和适量的食物摄入对维护免疫系统和预防感染至关重要。
此外,肥胖的人有患糖尿病的潜力,所有糖尿病人都对感染敏感。一些研究还表明,超重的人患呼吸道感染的风险更大。
炎症和感染之间存在密切的关系,炎症通常是身体对感染的一种防御反应。当病原体如细菌、病毒或寄生虫侵入人体时,免疫系统会激活,产生炎症反应以抵抗感染。这种反应包括血液中的白细胞和其他免疫分子到达感染部位,以消灭病原体。
人类肠道微生物群的组成表现出很大的个体差异。而感染和肠道炎症可导致肠道微生物群组成发生改变,称为生态失调。
关于微生物群如何参与肠道炎症发病机制,人们提出了不同的理论:
(1)导致粘膜屏障功能缺陷(例如粘液层、先天杀伤、抗菌肽)的突变涉及共生细菌的过度易位和促炎信号的触发;
(2)宿主免疫调节异常会引起针对内在共生菌的过度免疫反应;
(3)不明病原体的存在会导致疾病的诱发;
(4)失调的微生物群,其特征是“有益”和“潜在有害”共生细菌之间的不平衡,是疾病的触发因素或驱动因素。
慢性结肠炎或肠道病原体感染过程中的炎症可能会破坏正常的微生物群组成,诱发生态失调,并有利于病原体和共生菌的过度生长,并增加毒力潜力。因此,菌群失调不仅被认为是肠道炎症的原因,而且也是肠道炎症的结果。
炎症相关的菌群失调有哪些特点?越来越多的证据表明,感染病原体导致肠道微生物群落的扰动可能会助长丰度较低的有害细菌大量繁殖,从而进一步加剧肠道炎症。
这些研究使用分子、独立于培养的技术,如16S rRNA 基因测序和宏基因组学。
事实上,远端肠道的生态失调通常以特定专性厌氧革兰氏阳性菌(如瘤胃球菌科、毛螺菌科)的丰度降低,同时兼性厌氧菌(如肠球菌和链球菌)以及革兰氏阴性变形菌(特别是肠杆菌科成员)也随之增加。
已提出将人类肠道中丰富的丁酸盐生产菌——普氏栖粪杆菌(F. prausnitzii)的减少作为活动性疾病的微生物标志物。
// 肠杆菌的大量增加可能是肠道炎症的一个重要标志物
肠杆菌科(Enterobacteriaceae)是革兰氏阴性兼性厌氧菌的一个大家族,由于它们对从上皮屏障扩散的氧气具有相对较高的耐受性,因此通常位于靠近肠道上皮的位置。事实上,肠杆菌科仅占远端肠道微生物群落的一小部分,大约为0.1%。然而,它们在各种肠道炎症环境中过度生长,例如炎症性肠病、乳糜泻和结肠癌。
肠道炎症是由病原体感染后产生的,炎症引起的环境和营养变化可能赋予肠杆菌科细菌生长优势。例如在克罗恩病(CD)和溃疡性结肠炎(UC)(炎症性肠病的两种主要形式)患者中观察到肠杆菌科细菌(包括粘附性侵袭性大肠杆菌)的患病率增加。
// 许多肠道病原体利用炎症环境来促进自身生长
许多肠道病原体能够利用炎症反应来谋取自身利益。在健康的肠道中,复杂的厌氧微生物群有效地阻止主要人类肠道病原体的定植和感染。这种“定植抵抗”在肠道炎症存在时会减弱,从而使病原体过度生长。
一个典型的例子是啮齿类柠檬酸杆菌(Citrobacter rodentium),一种引起鼠类传染性结肠增生的病原体;空肠弯曲杆菌;以及引起人类小肠结肠炎的鼠伤寒沙门菌(S. Typhimurium)。
许多研究已经表明,其他病原体如肺炎克雷伯菌、奇异变形杆菌、霍乱弧菌、艰难梭菌和肠球菌属也可能从肠道炎症环境中获益。因此,肠道中的炎症环境能够改变肠道病原体及其相关共生物种的存活、附着或生长情况。
细菌转录组的分析揭示了炎症对微生物功能及其在炎症环境中生存能力的影响。
// 病原菌粘附能力的增强使之持续存在并诱导肠道炎症
粘附性侵袭性大肠杆菌(AIEC)能够通过常见的1型菌毛粘附素FimH粘附到回肠肠上皮细胞,并识别在克罗恩病(CD)回肠上皮细胞上异常表达的癌胚抗原相关细胞粘附分子6(CEACAM6)。
最近的DNA序列分析表明,AIEC菌株主要表达带有新近氨基酸突变的FimH。这些新突变显著增强了AIEC对表达CEACAM的肠上皮细胞的粘附能力,使其能在遗传易感宿主中持续存在并诱导肠道炎症。
// 在不同炎症条件下表达特定的蛋白来促进生存
在另一项研究中,分析了从IBD和非IBD儿科患者中分离的粘膜相关大肠杆菌菌株的FimH基因突变模式,发现了每种大肠杆菌特征(即状态、门群和粘附类别)的不同FimH突变模式。溃疡性结肠炎(UC)患者的大肠杆菌菌株显示出突变数量增加,而克罗恩病(CD)患者的分离株显示出突变率增加,但出现了不同的FimH突变。
这些结果表明,在特定的选择压力下,FimH蛋白会发生选择性氨基酸突变以维持细菌的生存,并暗示大肠杆菌在不同炎症条件下(如CD和UC)采用独特的生存策略。
因此,可以想象,炎症环境可能会选择表达特定的微生物蛋白,从而促进细菌存活并进一步维持炎症。
许多文献已经提出了导致发炎肠道中一些有害细菌大量繁殖的机制,包括营养变化、粘蛋白利用、抗菌剂的产生、无氧/有氧呼吸和金属利用。我们这里主要以肠道炎症中的标志物种肠杆菌(Enterobacteriaceae)为例来介绍。
// 炎症下的营养变化使病原菌更具竞争优势
居住在远端肠道的微生物群落竞争有限的食源性碳水化合物或宿主粘液源性聚糖。因此,饮食对肠道微生物群的组成起着关键作用,饮食的变化可能导致肠道微生物群落结构的扰动。
在健康肠道中,专性厌氧梭菌和拟杆菌仍然保持对兼性厌氧肠杆菌科的主导地位。在正常情况下,梭状芽胞杆菌和拟杆菌利用糖苷水解酶分解复杂的碳水化合物,并通过结合蛋白质增加其表面的碳水化合物浓度,最终通过主动转运系统将碳水化合物转运穿过梭状芽胞杆菌的细胞质膜和拟杆菌的外膜。相比之下,肠杆菌科因缺乏糖苷水解酶,其分解复杂碳水化合物的能力较差,只能通过外膜扩散通道被动运输寡糖。
因此,在健康状态下肠杆菌科细菌在与专性厌氧菌竞争高能营养物质时处于劣势,这种竞争性生长劣势解释了健康远端肠道中梭状芽胞杆菌和拟杆菌对肠杆菌科细菌的优势。
而在炎症过程中,肠上皮损伤导致死亡上皮细胞脱落增加,增强了上皮细胞膜衍生磷脂(如磷脂酰胆碱和磷脂酰乙醇胺)的可用性。特别是,乙醇胺可被变形菌门中的某些细菌及病原菌(如沙门氏菌和假单胞菌)作为唯一的碳或氮源利用。这种利用乙醇胺的能力有助于这些细菌在肠道中成功定植并维持其致病机制。
// 粘蛋白的分解促进发炎肠道中病原菌的定植
肠杆菌科细菌在发炎肠道中扩张的另一个机制是利用粘蛋白。粘液层覆盖肠上皮,分为两层;外层可移动,被细菌定殖,通常限制共生菌的定殖,而内层牢固地附着在上皮上,基本上无细菌。
分泌的凝胶形成粘蛋白MUC2是人结肠粘液的主要成分。值得注意的是,MUC2缺陷小鼠表现出细菌对表面上皮的粘附增强、肠道通透性增加以及发生自发性或DSS诱导的结肠炎和结直肠癌的易感性增加。
最近的一篇论文强调了粘蛋白衍生的唾液酸在DSS治疗诱导小鼠肠道炎症期间促进肠杆菌科细菌扩张的作用。唾液酸是粘蛋白中的主要碳水化合物之一,可以被无法从头合成这些糖的细菌(如大肠杆菌)摄取,并掺入细菌荚膜和脂寡糖中。
此外,鼠伤寒沙门氏菌和艰难梭菌在肠道内扩张期间,采用了一种常见策略来分解代谢微生物群释放的粘膜糖,如岩藻糖和唾液酸。这些观察结果表明,唾液酸的分解代谢可能为发炎肠道中肠杆菌科细菌的生长提供优势。
// 肠杆菌产生大肠杆菌素来抑制其他细菌
肠杆菌科细菌还可以通过产生抗菌分子来战胜其他细菌,更利于自身在肠道中的繁殖。例如,大肠杆菌素是由某些大肠杆菌菌株产生的细菌素,对系统发育上的近亲致命。在发炎肠道中,大肠杆菌素Ib(col1B)的产生赋予鼠伤寒沙门氏菌相对于敏感大肠杆菌菌株的竞争优势。
col1B的表达受到低铁可用性和SOS反应的正向调节,这两种情况通常由中性粒细胞募集和氧化应激诱导的DNA损伤在发炎肠道中引发。
因此,肠道中的炎症环境似乎创造了一种有利的条件,可以增强大肠杆菌素的作用,大肠杆菌素作为适应因素,为肠杆菌科细菌的大量繁殖提供竞争性生长优势。
// 肠杆菌科的呼吸灵活性使其在炎症条件下更好地生长
导致肠杆菌科细菌在发炎的远端肠道中扩张的进一步机制是宿主在这种基本上厌氧的环境中诱导的生长条件的变化。
炎症期间血流量和血红蛋白升高而产生的高水平氧气,可以为兼性厌氧菌(如肠杆菌科)提供比专性厌氧菌(如梭菌属和拟杆菌属)更有利的生长优势。肠道炎症期间产生的新呼吸电子受体可能通过无氧呼吸(包括硝酸盐呼吸)支持细菌生长。
已经证明硝酸盐是作为宿主炎症反应的副产物而产生的。这种源自宿主的硝酸盐的富集可以为肠杆菌科(例如大肠杆菌和鼠伤寒沙门氏菌)带来适应性优势,因为编码硝酸还原酶的基因存在于大多数肠杆菌科细菌中,但在属于梭菌属和拟杆菌属的专性厌氧菌中基本上不存在。
由宿主炎症反应产生的活性氧(ROS)可以与内源性硫化合物(即硫代硫酸盐)反应,产生一种新的呼吸电子受体,称为四硫酸盐。这种新产生的电子受体为伤寒沙门氏菌提供了选择性生长优势,而不是发炎肠道中竞争的发酵肠道微生物。这些观察结果表明,病原体可以利用宿主反应来超越肠道微生物群。
肠杆菌科的呼吸灵活性使它们能够对肠道内不同的氧气供应量做出反应。例如,在没有氧气的情况下,大肠杆菌可以使用硝酸盐、亚硝酸盐、三甲胺-N-氧化物(TMAO)、二甲基亚砜(DMSO)和富马酸盐作为电子受体,而在氧气存在下,大肠杆菌表达使用氧作为电子受体的末端氧化酶。
此外,链霉素治疗导致小鼠体内产生丁酸的共生梭状芽孢杆菌的耗竭,导致丁酸水平降低,上皮氧合升高,伤寒沙门氏菌有氧繁殖。鼠类柠檬酸杆菌(C.rodentium)使用III型分泌系统(T3SS)促进小鼠结肠隐窝增生,这反过来增加了表面上皮的氧化,并促进了C.rodentim在结肠中的有氧扩张。
鼠类柠檬酸杆菌(C.rodentium)感染是常用的模型之一。
// 许多病原体进化出了高亲和力的金属摄取机制
肠杆菌科细菌在肠道炎症中大量繁殖的另一机制是金属获取。铁是宿主和病原菌重要的营养物质,大部分储存在细胞内,使得病原体难以获取。
然而,为了克服这种铁限制,许多病原体已进化出高亲和力的铁摄取机制,与宿主的限制性铁环境竞争。这些机制包括释放铁螯合铁载体、血红素获取系统和转铁蛋白/乳铁蛋白受体。
例如,大肠杆菌能产生肠杆菌素,一种儿茶酚铁载体,有效抑制中性粒细胞的杀菌髓过氧化物酶,使大肠杆菌在发炎肠道中具有明显的生存优势。因此,大肠杆菌释放的铁载体既能获取铁,也能抵御宿主源性氧化应激。
此外,粘附性侵袭性大肠杆菌(AIEC)生长依赖铁,chuA(血红素铁获取)的存在与其在巨噬细胞内持续存在的能力相关。这些结果支持铁载体需氧菌素增强巨噬细胞内存活及AIEC NRG857c (O83:H1)在小鼠肠道中的定植,该菌株是从CD患者回肠分离的AIEC临床菌株。
总体来看,这些研究突显了铁获取在促进发炎肠道中毒性更强的肠杆菌科细菌扩张的关键作用。肠杆菌科细菌也进化出了获取其他金属(如锌和锰)的策略,以利于它们在发炎肠道中的生长。
!
注意
肠道炎症通常会促进毒性更强的肠杆菌科细菌的出现,这些细菌已进化出多种策略来逃避宿主免疫反应、战胜共生细菌,并在发炎的肠道中茁壮成长。
众所周知,营养对肠道微生物群和免疫系统具有显著影响,在健康与疾病的发展中扮演着关键角色。例如,西方饮食通过诱导骨髓祖细胞的表观遗传和转录重编程,与炎症反应的增强有关,这直接影响了多种疾病的发展。
增强对肠道微生物群、宿主反应及其他微生物间关系的理解,为通过营养调节这三者之间的互动提供了可能,帮助维护肠道稳态和抵抗感染。
应考虑到不同的饮食成分,如矿物质、碳水化合物、维生素、脂质和蛋白质,它们具有特定的功能特性,能够以直接或通过微生物组间接的方式影响宿主与病原体的相互作用。在这些营养素之间建立机制联系为影响健康提供了多种可能。
因此,饮食干预应视为一种调节感染风险、预防病原微生物入侵、减轻感染严重程度及支持感染治疗的重要手段。尽管已知多种营养化合物对宿主微生物组和免疫系统有影响,但膳食纤维、益生元和益生菌仍然是研究的热点。
益生元是不易消化的食物成分,通过选择性刺激结肠中一种或有限数量的细菌的生长或活性,对宿主产生有益影响。典型的益生元是人乳低聚糖、菊粉、低聚果糖和低聚半乳糖。
膳食纤维不是典型的益生元,但具有益生元特性,例如,β-葡聚糖、阿拉伯木聚糖、果胶和抗性淀粉。益生元和特定的膳食纤维通过充当发酵底物促进肠道中有益细菌的生长,同时通过生态位排除抑制病原体的生长。
// 益生元与膳食纤维的代谢产物具有抗菌活性有助于预防胃肠道感染
主要发酵产物是短链脂肪酸,如上所述,它对免疫系统具有重大影响,因此可以抑制感染的发展。除短链脂肪酸外,益生元和膳食纤维还可以通过排除和抗菌活性直接预防胃肠道感染。
// 与免疫细胞作用预防感染、并减轻感染后的炎症
此外,益生元和膳食纤维与上皮细胞和免疫细胞的直接相互作用也有助于预防感染。β-葡聚糖和阿拉伯木聚糖等膳食纤维已被证明可以激活CLR dectin-1,这是一种参与诱导训练免疫的重要受体,可增强针对继发感染的免疫反应。
人乳低聚糖、阿拉伯木聚糖和果胶还与Toll 样受体 (TLR)相互作用,从而提高树突状细胞(DC)的功效,通过肠上皮细胞诱导耐受性DC,并保护胃肠道免受过度的TLR信号传导影响,而且还支持解决胃肠道感染后的炎症。
饮食改变与肠道炎症相关的肠道微生物群
Lobionda S,et al.Microorganisms.2019
益生菌是活细菌,当摄入足够量时,可为宿主提供健康益处。使用益生菌的基本原理主要是基于它们改变肠道微生物群的能力,支持共生菌的生长而不是致病菌的生长。它们能够通过提供短链脂肪酸、维生素和其他通过粘蛋白降解产生的食物来源等代谢物来刺激常驻细菌的生长。
在一项关于益生菌治疗急性腹泻功效的研究中,益生菌通过缩短急性感染性腹泻的持续时间和减少平均排便次数具有明显的积极作用。
许多研究探讨了益生菌在预防和治疗感染方面的潜在作用,包括以下几种机制:
// 竞争性抑制
益生菌可以与病原菌竞争肠道黏膜的结合位点。通过占据这些位点,益生菌阻止病原菌的附着和进一步的入侵。此外,益生菌还能竞争肠道内的营养资源,限制病原菌的生长和繁殖。
// 产生抗菌物质,营造病原菌生存不利的环境
许多益生菌能产生抗菌物质,如细菌素、过氧化氢等。这些物质能直接杀死或抑制病原菌的生长,帮助清除肠道中的感染。
乳酸菌(LAB)可以通过产生抗菌肽(例如细菌素)来防止病原体入侵,抗菌肽可以通过在细菌细胞壁上形成孔并抑制细胞壁合成来消灭病原菌。此外,益生菌通过产生乳酸和乙酸来降低pH值,创造酸性环境,具有抗菌作用,不利于细菌病原体的生长。
// 增强肠道屏障功能
肠道完整性的损害可以解释胃肠道感染的发展。因此,益生菌增强肠道屏障的能力可能会对感染提供一些保护。
据报道,乳酸杆菌通过调节参与紧密连接信号传导的基因表达来改善肠道屏障功能。VSL3(益生元和益生菌的混合物)治疗可促进MUC2的表达和粘液分泌,有助于增强肠道屏障。这种屏障的增强有助于减少病原体的侵袭和内毒素的吸收,从而减轻感染的严重程度。
乳杆菌(尤其是L.reuteri)和动物双歧杆菌亚群,通过乳酸产生促进粘液粘附的蛋白质,称为粘液结合蛋白(MUBs),增强益生菌与宿主之间的相互作用。
// 调节免疫系统
宿主免疫系统和细胞因子谱的调节可能是益生菌有益的主要机制之一。益生菌和宿主免疫系统之间的相互作用在微生物相关分子模式中可见,包括细胞壁成分,如多糖、肽聚糖、脂蛋白和脂磷壁酸,这些成分可被上皮或宿主免疫细胞中表达的模式识别受体 (PRR) 识别。
Toll样受体2(TLR2)是一种跨膜受体,可在多种细胞类型(包括小胶质细胞、单核细胞、巨噬细胞和树突状细胞)中表达,在先天免疫反应中起着重要作用
益生菌还可以刺激肠道免疫系统产生特定的抗体(如IgA),这些抗体能够中和病原体,减少其感染性。
// 调节炎症反应
益生菌能够调节宿主的炎症反应,减少由过度免疫反应引起的组织损伤。它们通过产生抗炎细胞因子(如IL-10)和降低促炎细胞因子(如TNF-α)的水平来实现这一点。
除了单独使用益生元和益生菌外,还有将益生元和益生菌组合成合生元混合物的营养概念。考虑到上述临床研究的局限性,合生元已显示出临床成功,因此有望成为未来的治疗选择。
!
通过营养治疗感染需要注意的
与药物化合物的靶向作用相比,饮食治疗可能更加多因素。个体对营养化合物的反应受到个体遗传特征的影响。例如,炎症基因(如IL-1B、IL-6和TNF-α)中的单核苷酸多态性(SNP)会导致不同的炎症反应,这可以部分解释观察到的对营养化合物反应性的差异。
此外,越来越多的证据表明,每个人的肠道微生物群都是独一无二的,这种多样性使得个体对营养和治疗感染的反应存在显著差异。
研究显示,肠道微生物的组成可以影响营养物质的吸收和代谢,同时也会影响宿主的免疫系统功能。因此,了解个体的肠道微生物组成对于制定个性化的营养和治疗策略至关重要。
通过针对特定肠道微生物群优化的营养干预,可以更有效地预防和治疗各种感染,提高治疗的精准性和效果。这一新兴领域的研究不仅有助于推动精准医疗的发展,同时也为临床实践提供了新的视角和方法。
肠道感染仍然在全世界范围内造成沉重的疾病和经济负担。如何更好的预防和治疗胃肠道感染成了许多百姓和临床工作者关心的问题。
大量研究表明营养不良与感染之间存在双向作用。总体而言,营养影响人体免疫系统发育,而某些因素会导致营养不良并削弱人体抵抗感染的能力。包括厌食、肠道吸收减少、代谢损伤、脂质和碳水化合物代谢紊乱、维生素、铁、锌、铜减少。需要注意的是暴饮暴食可能也会增加感染风险。
与此同时,肠道微生物群在抵抗肠道病原体定植、生长和促进宿主免疫系统成熟以及影响宿主代谢方面发挥着不可或缺的作用。一些人类疾病被确定与特定微生物群的改变具有相关性或因果关系。
越来越多的人类疾病被确定与特定微生物群的改变具有相关性或因果关系。肠道中的炎症免疫反应(炎症性肠病和病原体诱导的)也可以直接塑造微生物群的组成并引发菌群失调。这一发现具有深远的影响。它从根本上改变了我们对人类肠道炎症发病机制的理解。
肠道微生物群在帮助宿主应对全身感染方面可能还有许多其他功能尚未被发现。越来越多的证据表明肠道菌群失调与慢性肠道炎症相关疾病的表现有关,尤其是炎症性肠病。抑制肠道炎症、利用益生菌或调整营养变化(如益生元和金属)可能是未来限制肠杆菌等致病细菌大量繁殖的潜在方法。
主要参考文献
Stecher B. The Roles of Inflammation, Nutrient Availability and the Commensal Microbiota in Enteric Pathogen Infection. Microbiol Spectr. 2015 Jun;3(3).
Pike VL, Lythgoe KA, King KC. On the diverse and opposing effects of nutrition on pathogen virulence. Proc Biol Sci. 2019 Jul 10;286(1906):20191220.
Cristofori F, Dargenio VN, Dargenio C, Miniello VL, Barone M, Francavilla R. Anti-Inflammatory and Immunomodulatory Effects of Probiotics in Gut Inflammation: A Door to the Body. Front Immunol. 2021 Feb 26;12:578386.
Ducarmon QR, Zwittink RD, Hornung BVH, van Schaik W, Young VB, Kuijper EJ. Gut Microbiota and Colonization Resistance against Bacterial Enteric Infection. Microbiol Mol Biol Rev. 2019 Jun 5;83(3):e00007-19.
Wiertsema SP, van Bergenhenegouwen J, Garssen J, Knippels LMJ. The Interplay between the Gut Microbiome and the Immune System in the Context of Infectious Diseases throughout Life and the Role of Nutrition in Optimizing Treatment Strategies. Nutrients. 2021 Mar 9;13(3):886.
Lobionda S, Sittipo P, Kwon HY, Lee YK. The Role of Gut Microbiota in Intestinal Inflammation with Respect to Diet and Extrinsic Stressors. Microorganisms. 2019 Aug 19;7(8):271.
Farhadi, Sedigheh1; Ovchinnikov, Roman S.2,. The Relationship between Nutrition and Infectious Diseases: A Review. Biomedical and Biotechnology Research Journal (BBRJ) 2(3):p 168-172, Jul–Sep 2018.
Cherrak Y, Flaugnatti N, Durand E, Journet L, Cascales E. Structure and Activity of the Type VI Secretion System. Microbiol Spectr. 2019 Jul;7(4).
Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017 Sep;279(1):70-89.
谷禾健康
细菌耐药性
抗生素耐药性细菌感染的发生率正在上升,而新抗生素的开发由于种种原因在制药行业受重视程度下降。
最新在《柳叶刀-微生物》(The Lancet Microbe)上,科学家提出了基于细菌适应性、竞争和传播的生态原则的跨学科研究方法,可能开辟新途径来对抗抗生素耐药性感染。
许多兼性细菌病原体使用人类粘膜表面作为其主要储藏库,并在微生物组和宿主的某些病理状态下诱发传染病,以帮助其横向传播到新的宿主生物体。
有益的细菌共生体可以战胜特定的病原体,从而降低病原体传播和引起严重感染的能力。然而,尽管具有临床相关性,但对其自然栖息地中的共生-病原体相互作用的了解仍然很少。
本文将在人类微生物组和宿主生物学背景下讨论细菌病原体和共生体之间相互作用的研究最新内容,为预防和治疗传染病提供一些新视角。
The Gut Microbiome
对人类微生物组完整性作为健康需求的日益认可,正在极大地改变人们对细菌微生物组成员及其相互作用的评价,无论是微生物之间的互动还是与宿主的互动。这种理解的变化使得微生物生态学的原则成为了预防和治疗主要人类疾病的创新方法的核心。
从海量数据中分析推断出的微生物组特征正被考虑作为不同疾病诊断中的生物标志物,这些疾病包括各种类型的癌症,如结肠癌或乳腺癌,以及自身免疫性疾病,如类风湿性关节炎或银屑病。
粪便微生物移植在治疗艰难梭菌感染方面已被有效使用,而补充微生物组成员(例如AKK菌)或微生物组产品(例如短链脂肪酸),已显示出在改善代谢紊乱和癌症的健康结果方面的潜力。
然而,环境与人类相关的微生物生态系统之间存在根本性差异。许多环境微生物组代表了广阔、不受限制的生态系统,通常具有无限的生命周期,对微生物扩散几乎没有障碍。相比之下,与宿主相关的微生物组,如人类肠道中的微生物组,是受限的生态系统,具有较短的生命周期。
与宿主相关的微生物组需要特定的细菌机制来在个体和世代之间传播,并在其首选的生活条件之外暂时持续存在。
此外,宿主将微生物定殖者暴露于环境栖息地以外的压力源中,特别是通过其粘膜免疫系统。
Microbial Symbiosis and Pathogenicity
▸ 过去,对共生体和病原体的理解不全面
从历史上看,对与宿主相关的微生物生态系统的研究,曾局限于不同研究团队分别对中性或共生的细菌共生体和有害病原体进行的独立调查。因此,对这些不同组的与宿主相关细菌的当前理解高度不对称,且存在对病原体的强烈偏见,这阻碍了对人类微生物组生态的全面理解。
虽然这些细菌组在自然栖息地中有广泛的相互作用,但关于共生菌和病原体相互作用的实验研究却很少。例如,典型的病原体可以被发现几乎是人类微生物组的驯化成员,而共生菌则可以与病原体勾结,这会像多重微生物感染中那样。
▸ 共生菌和致病菌的区分较复杂
尽管在感染医学中,共生菌和致病菌之间的传统区分仍然是一个重要标准,但在生态学上下文中,这两组微生物固有的属性重叠使得这种区分变得不够充分。
有益的共生现象和对立的致病性代表了细菌行为范围的两个极端(下图),尽管很少有细菌微生物组成员表现出真正的致病行为。多细菌物种或菌株可以根据其环境背景和宿主生理状态动态改变其作为共生体或病原体的能力,这进一步使区别变得复杂。
Maier L, et al. Lancet Microbe. 2024
例如,微生物组失调和宿主免疫缺陷,可以将肠球菌(Enterococcus faecium)从一个几乎无害的肠道微生物组成员转变为血流感染的原因。
单个水平基因转移事件可以改变共生生活方式和致病生活方式之间的平衡,例如,当预测的编码毒素成为肠出血性大肠杆菌或皮肤定植和口咽定植的白喉杆菌的主要毒力因子时。这意味着,原本可能是相对无害的微生物,在获得某些特定基因后,其生物学性质和行为可能发生显著变化,从而增加了其致病潜力。这种基因的转移和表达可以使这些微生物在宿主体内表现出更强的侵袭性和病原性,从而对宿主健康构成更大的威胁。
Redefining “Infection”
条件性细菌病原体之间的共生与致病性的动态变化,这挑战了当前对“感染”一词的使用,这种使用往往不一致。
《柳叶刀-微生物》全体作者建议仅将“感染”这个术语,保留用于由特定器官组织中出现的细菌菌株引起的病理状态。例如下列情况:
因此,在这篇个人观点文章中,我们也建议将常规引起感染的细菌称为病原体,而不常引起感染的细菌称为共生菌,尽管这些术语有其局限性,并不能适当描述所有类型的微生物与宿主之间的对抗关系。
目前病原体与共生菌之间的界限模糊,也挑战了科赫的假说,该假说提出了特定微生物与相应疾病之间的单一因果关系。然而,实际上,有些疾病是由多种细菌种类的间接效应引起的,当微生物群落失衡而不仅仅是这些种类的存在,导致了一种特定的病理状态,而这种状态目前并不被视为典型的感染。
Understanding of Bacterial Pathogens and Symbiotic Bacteria
微生物组科学,尤其测序技术的快速进展以及新技术的出现,为微生物学开启了一个新阶段,这一阶段的研究将细菌病原体和共生菌整合在一起,超越了简化的研究方法。
为了探究环境变化如何影响细菌微生物组成员的动态行为变化,来自不同背景的微生物学家应当合作,并结合系统生物学、天然产物化学、粘膜免疫学和临床传染病等互补学科的专业知识。这些新方法可能有助于回答一些最相关和明显的问题:
Future Research on Commensal Bacteria
由于其高度的临床相关性以及培养和操控相对容易,像S. flexneri(志贺氏菌)、S. aureus(金黄色葡萄球菌)和 S. pneumoniae(肺炎链球菌)这样的主要细菌病原体已经被研究了几十年,远超过典型的宿主相关共生菌。相比之下,主要的人类相关共生菌,例如来自属如拟杆菌属、梭菌属(Clostridium)、Cutibacterium,仅被少数实验室研究。
实际上,大多数人类微生物组成员仍然难以培养,并且在遗传上不易处理。在特定情况下可以成为偶发性病原体的一些共生菌,如医院获得性大肠杆菌、粪肠球菌(E.faecium)或表皮葡萄球菌(Staphylococcus epidermidis),已经在一定程度上被研究。但为什么这些特定的细菌比其他更无害的共生菌更频繁地引起侵袭性感染,这一点仍然不清楚(如下表)。
Maier L, et al. Lancet Microbe. 2024
The Important Role of Symbiotic Bacteria in Human Health
越来越多的证据表明,一些共生细菌对人类健康至关重要。
▸ Blautia producta 抑制粪肠球菌
例如,Blautia producta 的共生菌株通过产生特定的抗菌化合物,可以抑制并排除粪肠球菌(E.faecium),而Staphylococcus lugdunensis的共生菌则可以抑制并排除金黄色葡萄球菌。
▸ 枯草芽孢杆菌阻止金黄色葡萄球菌
肠道中的枯草芽孢杆菌(Bacillus subtilis)释放一种抑制性化合物,可以阻止金黄色葡萄球菌的定植能力,或抑制肠球菌(Enterococcus faecalis)的毒力因子表达。
一些共生菌还能产生对宿主有直接益处的化合物,例如促进肿瘤疗法的成功。病原体的研究可以帮助理解这些有益共生菌的生物学特性,并利用它们来对抗细菌感染。
共生菌的许多重要特性在不同菌株间可能会有所不同,这取决于例如获得或丢失移动遗传元素,如编码抗性或适应性特征的基因岛。用于病原体菌株特异性分类的现有方法,如序列分型方案,也可以应用于共生菌。这些方法可以帮助提升当前的诊断策略,达到个性化感染医学的新水平,不仅监测特定有害病原体的存在,还监测如那些保护免受潜在病原体定植的特定有益共生菌的缺失。
bacterial pathogens and symbiotes
▸ 共生菌的宿主特异性适应
与许多主要的细菌病原体一样,很多共生菌也特定于特定的宿主物种。这种适应过程导致宿主特异性,可能作为一种策略来增加细菌在与其他适应性较差的微生物竞争中的生存能力。这些基础机制对于病原体来说理解得很少,对于非致病性共生菌来说则基本上是不清楚的。
▸ 共生菌的粘附与持续定殖机制
特定宿主的持续定殖往往依赖于有效地粘附到上皮细胞的结合基序,如表面蛋白、蛋白多糖或糖脂。尽管在许多主要病原体中已经在一定程度上研究了相应的细菌粘附素,但现在才开始探索共生微生物中的这些机制。
▸ 共生菌与宿主免疫系统的相互作用
细菌在上皮表面的生存受到粘膜宿主防御机制的限制,这些机制包括IgA、抗菌肽和脂质以及活性氧和氮化合物的产生。先天和适应性免疫机制,通过感知与微生物相关的分子模式分子或通过粘膜白细胞检测微生物抗原来启动,有助于粘膜免疫过程,导致促炎或抗炎信号和效应分子的释放。
宿主的持续定殖依赖于细菌耐受抗菌免疫效应分子的能力或通过诱导免疫耐受来减少它们的表达。具有对抗菌宿主效应分子增强耐受性的细菌甚至可以诱导和利用抗菌宿主反应来消除更易感的竞争者。
根据宿主免疫反应,与微生物群其他成员的拮抗干扰已在表皮葡萄球菌和鼠伤寒沙门氏菌中得到记录。广泛的研究揭示了主要病原体的免疫逃避机制,但共生菌是否使用类似或不同的策略仍然未知。
▸ 共生菌免疫调节的复杂性及其潜在影响
例如,一些肠道共生菌通过产生非炎症性鞭毛蛋白来钝化先天免疫反应,这些蛋白抑制人类的Toll样受体5,或产生可以在粘膜表面诱导调节性T细胞的短链脂肪酸,以促进免疫耐受。然而,这些潜在的控制机制可能会被干扰,并可能在宿主无法启动耐受并以炎症反应的情况下导致疾病,例如当口腔共生菌异位定殖在肠道时。
doi.org/10.1016/S2666-5247(24)00049-1
总的来说,宿主相关生态系统中的细菌间的相互作用很大程度上依赖于分泌的因子,这些因子可以通过专门的分泌系统以单独的可溶性分子的形式释放出来,或者作为膜囊泡的组成部分释放出来(上图)。
因此,细菌病原体的分泌毒力因子已经被广泛研究。相比之下,共生菌分泌的初级或次级代谢产物或蛋白质介质如何调节与病原体和宿主的相互作用的研究较少。这些研究显示,例如一些共生菌可以释放杀菌素等分子,消灭金黄色葡萄球菌等病原体,或产生营养物促进艰难梭菌等病原体的扩展,由此凸显了宿主相关微生物生态系统中的一个新的复杂层面。
Fitness mechanisms of facultative human pathogens
许多主要的人类细菌病原体不是专性病原体,而是作为常见微生物组成员定植于人类或动物体表面,但不会引起疾病(下表)。
doi.org/10.1016/S2666-5247(24)00049-1
事实上,在大多数兼性病原体的共生生活方式中,急性感染是罕见的。然而,研究主要集中在S.flexneri、金黄色葡萄球菌、肺炎链球菌等病原体的毒力机制上,而在共生行为期间引导这些生物体与其他微生物组成员竞争的适应性的机制仍然被忽视。
从微生物的角度来看,感染是否以及哪些类型确实对细菌有利,或者应该被视为偶然事件,而不利于它们在几代宿主中的长期进化成功,目前尚不清楚。
Importance of a Deep Understanding of Bacterial Infections
现在比以往任何时候都更需要深入理解细菌感染,因为全球抗菌药物抗性和细菌感染的负担日益增加。目前对细菌感染的了解主要限于少数模型病原体,如金黄色葡萄球菌和肺炎链球菌。相比之下,一些臭名昭著的抗生素抗性细菌种类,根据以下病原体种属的首字母被命名为ESKAPE病原体,包括粪肠球菌、金黄色葡萄球菌、肺炎克雷伯菌、鲍曼不动杆菌、假单胞菌和肠杆菌,这些病原体的研究细节远不够充分。
▸ ESKAPE病原体的持久抗性与适应性进化
抗生素抗性机制在某些情况下可能会给细菌带来适应性的负担,即抗性可能会影响细菌的其他生存能力,但在没有抗生素的环境中,这种抗性通常会消失。然而,一些被称为ESKAPE病原体的细菌已经进化出了一种能力,使它们能够在医疗环境之外保持这种抗性特征。补偿性突变可以帮助这些细菌克服由于抗性而带来的适应性负担,从而促进抗性菌的成功和抗性的传播。
▸ 社区相关的抗性细菌扩散
这就是为什么社区相关的甲氧西林抗性金黄色葡萄球菌(MRSA)和万古霉素抗性屎肠球菌(VRE)等细菌,能够如此有效地在社区中扩散和扩张,甚至以牺牲它们对抗生素敏感的同类为代价,这一现象仍然是科学界未解之谜。这表明这些细菌可能已经发展出了一些未知的机制来维持和增强其抗性,即使在抗生素使用减少的环境中也是如此。这种现象需要进一步的研究来解明其背后的具体机制和因素。
The Relationship Between Bacterial and Ecological Success
生态学概念在普通微生物学和环境微生物学领域很常见,但尚未广泛应用于对病原菌的理解。
细菌在与其他微生物组成员的竞争中的成功依赖于多种机制,包括利用生长限制性营养物质的能力,从其他细菌那里获取促进生长的共同物质如聚合物水解酶或微量金属捕获剂,抵抗由微生物群体成员释放的抗菌分子,或者附着在少数上皮细胞附着点上。
一个细菌种类或菌株的长期生态成功来自于该种类在特定宿主体内的增殖和向新宿主体传播的综合效应。为了研究一个种类在特定宿主体内的增殖,应采用一系列研究策略,从共生菌的研究到对主要专业和偶发病原体的调查。
细菌有两种主要的传播方式:垂直传播和横向传播。
每个人体内都有大量细菌,它们组成了独特的微生物组。这些细菌有的倾向于垂直传播,有的倾向于横向传播,不同细菌的传播方式和速度是不一样的。
2022年的一项研究就发现,微生物组中的细菌在这两种传播方式的偏好上有所不同。我们已经对一些常见的致病细菌的横向传播有了较多了解,比如幽门螺杆菌、肺炎链球菌、金黄色葡萄球菌等。它们能在人群中快速传播,传播过程也被很好地监测和记录。但目前对这些细菌是如何在人体外存活,又是如何进入新的人体的,还不太清楚。
The association between the epidemic spread of pathogens
主要病原体的流行扩散很可能与它们引起的感染类型和严重程度有关(下图)。
▸ 感染类型
疾病特性对细菌传播的贡献在引起腹泻的病原体(如志贺氏菌)中最为明显,这类病原体通过污染的污水传播而获益。
其他常见的感染表现可能也具有类似的作用。例如,金黄色葡萄球菌引起的典型感染——化脓性皮肤和伤口感染,会导致大量的S.aureus细胞在体表出现,从而支持通过皮肤接触的宿主间传播。
类似的机制也可以使尿生殖道病原体,如淋病奈瑟菌Neisseria gonorrhoeae在宿主间迅速传播。引起呼吸道感染的病原体,如百日咳博德特氏菌Bordetella pertussis、化脓性链球菌Streptococcus pyogenes或肺炎链球菌S pneumoniae则通过咳嗽或打喷嚏的个体释放的气溶胶传播。
▸ 严重程度
关于疾病的严重程度如何通过支持传播来增强病原体的适应性已有讨论,例如在SARS-CoV-2的背景下,但尚未对细菌病原体进行系统性评估。值得注意的是,大多数专业化的细菌病原体并非人类微生物组的核心成员,它们只是暂时性地定植在人类体内(见表1),这就需要它们具备有效的横向传播机制。
专业人类病原体(如志贺氏菌和淋病奈瑟菌N.gonorrhoeae)的持续定植在人群中较为罕见,或仅在人群的一小部分(如金黄色葡萄球菌)或特定年龄组(如化脓性链球菌或肺炎链球菌)中发现,这表明维持广泛的致病力涉及与其他微生物组成员竞争时的重大适应性负担。
诸如粪肠球菌(E.faecium)和表皮葡萄球菌( S.epidermidis )等偶然病原体表达的因子有助于其免疫逃避能力,但几乎不表达任何侵袭性毒素,这可能导致这些病原体在人类微生物组中比大多数专业病原体具有更高的患病率和持久性。
由于偶发性病原体主要在免疫力低下的个体中引起感染,它们也常被称为机会性病原体。然而,这一术语也经常用于诸如金黄色葡萄球菌和肺炎链球菌等专业病原体,这些病原体在免疫力低下的个体中引起的感染类型不同且更为严重(通常是血流感染),而在免疫力正常的个体中则不然。因此,专业病原体有时也可能引起偶发性感染,这种感染并不促进病原体的传播。偶发性人类感染也可以由适应于非人类宿主的病原体如军团菌(Legionella pneumophila)或霍乱弧菌引起,这些病原体只在特定的环境条件下感染人类。
The association between the epidemic spread of pathogens
在自然环境中同时研究共生菌和病原体,可以帮助我们更好地控制微生物,对抗感染以及其他与微生物组相关的疾病。
共生细菌对传染病的影响远比先前假设的要复杂得多。一些共生菌种采用主动防御策略,如释放抗菌肽或通过依赖接触的V型、VI型或VII型分泌系统消除其他细菌,这些系统在针对特定目标物种的特异性上可能有很大差异。此外,共生菌还可以使用更微妙的抑制策略来增加其在抗击病原体定植方面的生态成功,这基于代谢干扰。
共生细菌群落可以以依赖于群落多样性及其与病原体的代谢重叠的协作方式,阻止诸如克雷伯肺炎菌和鼠伤寒沙门氏菌等病原体获取营养物。
病原体的排除可能是由于共生菌释放的金属载体螯合必需的微量金属,或产生抑制性代谢产物而产生的。例如,一些肠道共生菌可以将原生胆酸转化为抑制肠道病原体艰难梭菌C difficile孢子生长的次生胆酸代谢产物。
Challenges in Fecal Microbiome Transplantation Treatment
粪便微生物组移植(FMT)是治疗艰难梭菌感染的一种有效策略。粪便微生物组移植成功至少部分是由于恢复了有益细菌群及其代谢产物,这些代谢产物能抑制艰难梭菌的生长。然而,粪便微生物组移植难以标准化,其对抗其他病原体的效果仍不明确。
目前,临床前和临床试验正在评估使用基于共生菌的生命治疗产品来预防处于风险中的个体被抗生素耐药病原体定植。然而,那些防止病原体定植的共生菌往往比目标病原体更易受抗生素影响,这可能会消除共生菌的有益效果,并在抗生素治疗期间加剧与菌群失调相关的疾病。
因此,研究人员需要平衡使用共生菌治疗产品的风险和好处。深入了解不同共生菌菌株对抗生素的敏感性,以及这些菌株如何与目标病原体相互作用。只有通过深入的研究和严格的监测,才能确保共生菌的治疗潜力得到充分发挥,同时避免不良后果的发生。
系统评估关键共生菌群的抗生素敏感性,并将这些知识纳入个性化的、基于微生物组的抗生素管理方案中,对于最小化广谱抗生素对微生物组的附带伤害至关重要。
除了我们通常使用的抗生素之外,许多针对人类的其他药物也可能意外地影响到人体肠道中的有益细菌。这种药物的副作用在未来的医疗实践中需要被特别注意,特别是对于那些需要同时使用多种药物治疗多种疾病的患者。此外,人体内的微生物群体本身可能是一种新型抗菌剂的重要来源。通过系统地研究和描述这些微生物产生的创新化合物,我们可能会发现新的药物,这些药物有望用于预防或消除病原体在人体内的定植。
Antibiotic Resistance Issues in Treatment
在现代医疗中,我们常用的广谱抗生素不仅攻击病原体(引起病症的微生物),还会影响到人体内的有益共生细菌。这种广泛的攻击会导致细菌之间的抗药性基因传递,特别是通过一些可以在不同细菌间转移的元素,如质粒和噬菌体。这种基因的传递可能导致抗生素更难以消灭病原体。
由于这种抗药性基因的传递,需要更好地监控不仅是病原体的抗药性发展,也要监控那些可能是抗药性传播者的共生菌。这样可以更有效地控制病原体的传播和抗药性的发展。
此外,通过理解这些微生物之间的生态关系,可以更好地发现病原体的弱点,从而开发出新的治疗方法。
这些方法不仅限于传统的抗生素,还包括能够利用有益共生菌或宿主防御机制的新型药物。这些新药物的开发需要在模拟真实生态环境的实验模型中进行,比如使用人类挑战模型,这种模型允许我们在受控的环境中测试病原体和治疗方法。
总之,通过更好地理解微生物之间的相互作用和生态平衡,可以开发出更有效的策略来对抗病原体,同时减少对有益共生菌的损害。这种方法有助于限制病原体的传播和疾病的爆发。
主要参考文献:
Maier L, Stein-Thoeringer C, Ley RE, Brötz-Oesterhelt H, Link H, Ziemert N, Wagner S, Peschel A. Integrating research on bacterial pathogens and commensals to fight infections-an ecological perspective. Lancet Microbe. 2024 Apr 9:S2666-5247(24)00049-1. doi: 10.1016/S2666-5247(24)00049-1. Epub ahead of print. PMID: 38608681.
谷禾健康
幽门螺杆菌(helicobacterpylori,H.pylori)是革兰氏阴性,螺旋形,微需氧细菌,是一种独特的,能持续定植于人类胃粘膜并能引起胃感染的细菌。
世界上有超过一半的人感染了幽门螺杆菌,但很多没有临床症状。幽门螺杆菌与人类宿主之间有着很复杂的关系。
21年的时候谷禾整理总结过一篇关于正确认识幽门螺杆菌(H.pylori)的文章,内容包括了幽门螺杆菌感染症状,其与人体微生物群的关系,宿主和环境决定因素,细菌定植和持久性决定因素,免疫机制等多方面信息。详见:
目前临床普遍指出幽门螺杆菌是一种比较难处理的感染,因为会复发而且通常对治疗有抵抗力。幽门螺杆菌的标准抗生素治疗根除成功率低于60%,且存在多种长期副作用。研究发现营养和补充策略可能有助于支持传统抗生素治疗。一些营养素可以降低细菌定植水平并改善胃损伤症状。营养还可以增强标准抗生素治疗的疗效,同时预防抗生素副作用。
因此哪些食物和补充剂可能有助于支持传统疗法也是很多感染者关注的事情,所以本文主要讨论幽门感染的症状,及其感染后对健康或营养等正面和负面影响,以及有证据发现了哪些天然补充剂可以对抗幽门螺杆菌。
但是要注意,一些食物和补充剂与减少幽门螺杆菌负荷或改善对传统疗法的反应有关。但是不要使用以下任何策略来代替医生的建议,虽然其中一些策略与处方药一起使用可能会有所帮助。
幽门螺杆菌(H. pylori) 是一种定植于胃中的革兰氏阴性螺旋状致病菌。
这种细菌是第二大最常研究的病原体(仅次于大肠杆菌)。马歇尔(Barry Marshall)和沃伦(Robin Warren)因将幽门螺杆菌的存在与胃部炎症(胃炎)和消化性溃疡病联系起来而荣获2005年诺贝尔医学奖。
幽门螺杆菌感染最常见于儿童早期,并持续终生。幽门螺杆菌感染人体的具体途径和机制还不清楚,研究人员推测可能存在以下几种传播途径:
•口腔-口腔传播:幽门螺杆菌可以通过唾液传播,例如在亲密接触或共用餐具时,细菌可以从一个人的口腔传播到另一个人的口腔。这是最常见的传播途径。
•通过被污染的食物和水传播:食用被感染幽门螺杆菌的食物或水也是感染的途径之一。如果食物或水受到污染,细菌可以进入消化系统。
•粪口传播:如果正常人接触了感染者的粪便,再通过进食、洗脸等方式接触自身的口腔,也可能感染幽门螺杆菌。
•医源性感染:还有一类特殊的感染途径,主要是感染者经过消化内镜检査后,未经彻底灭菌,可导致其他人检查时感染幽门螺旋杆菌,
注:感染期间会触发偏向Th1的特异性免疫反应。其中Th1代表T细胞辅助型1细胞,是一种参与细胞免疫应答的淋巴细胞亚群。在这种情况下,Th1细胞会释放干扰素γ等细胞因子,促进巨噬细胞的活化和细胞毒性T细胞的增殖,以帮助清除幽门螺杆菌感染。
尽管存在免疫反应,幽门螺杆菌通常不会从体内完全清除,因为该细菌具有一系列机制,使其能够逃避或抑制宿主反应。
幽门螺杆菌是最常见的人类病原体之一,感染超过50%的人口。幽门螺杆菌存在于发展中国家大约70–80%的人口中,以及发达国家13%–50%的人口中。近年来,发达国家幽门螺杆菌感染率有所下降。
研究表明,幽门螺杆菌至少自大约6万年前人类迁出非洲以来就已经存在了。
▸ 典型症状
一些感染幽门螺杆菌的患者不会出现症状。然而,在几乎所有感染者中,感染都会对胃内壁造成进行性损伤。
当患者无法清除感染时,可能会导致胃酸产生增加、胃组织损伤和终生慢性炎症。据报道有以下症状 :
胃灼热
打嗝和腹胀
腹泻或便秘
上腹部或中腹部疼痛
长期并发症
大约20%的幽门螺杆菌感染者会患上幽门螺杆菌相关疾病。这些疾病包括胃炎和胃或十二指肠溃疡。
感染还可能引起或加剧的其他问题包括:
缺铁性贫血
特发性血小板减少性紫癜(容易瘀伤)
维生素B12缺乏症
这些问题可能是由于感染期间胃中某些维生素的代谢能力下降所致。
幽门螺杆菌也被认为是非胃肠道疾病的危险因素,如动脉粥样硬化(动脉硬化)、缺血性心脏病(心脏供血减少)和中风。需要更多信息来确定这些关联的重要性和原因。
尽管大多数人都没有注意到幽门螺杆菌感染,但其他人可能会出现胃部不适或疼痛、胃灼热和腹胀。从长远来看,幽门螺杆菌可能会增加维生素B12缺乏的可能性。
▸ 儿童感染
幽门螺杆菌感染主要在儿童早期获得,并且主要在家庭内传播。受感染的母亲和兄弟姐妹是幽门螺杆菌最常见的家族来源。
大多数感染儿童不会出现任何并发症。与成人相比,儿童期幽门螺杆菌感染引起的胃部炎症和溃疡较少。然而,一些儿童会出现胃部烧灼感、恶心、呕吐和食欲不振等症状。
在成人中,幽门螺杆菌感染与Th1/Th17反应升高相关。然而,在儿童中,幽门螺杆菌感染与营养不良、缺铁性贫血、腹泻以及生长、体重和认知功能受损有关,尤其是在食物摄入不足时。
▸ 饮食不卫生
食用受污染的水或食物可能导致感染。食用没有完全熟透的肉,其中含有大量的细菌,也会导致幽门螺杆菌进入肠道。
与感染者密切接触可增加感染风险。与患有幽门螺杆菌感染患者共餐,不使用公筷,也容易导致病菌传染。
▸ 高盐高脂饮食
较高的盐摄入量与幽门螺杆菌感染率增加有关。研究发现,幽门螺杆菌在高盐条件下生长得更好,这可能解释了这种相关性。此外,高脂肪食物的摄入也增加了感染风险。
▸ 刺激性食物
经常食用辛辣刺激性食物,比如辣椒、花椒、生姜等,刺激胃肠道黏膜,从而降低机体抵抗力,使幽门螺杆菌更容易侵入并感染。
▸ 吸烟
幽门螺杆菌感染在吸烟者中更为常见,根除治疗效果较差。尼古丁会增加胃中幽门螺杆菌的毒性活性。
患有毒性更强的幽门螺杆菌感染的吸烟患者患胃癌的风险大大增加。众所周知,吸烟会导致许多不良的健康结果和不良影响。
▸ 本身有消化道疾病
患有慢性胃炎、消化性溃疡等消化道疾病的人群胃黏膜防御功能存在一定缺陷,更易受到幽门螺旋杆菌感染。
大多数生物体液中都可以检测到幽门螺杆菌。除了细菌在胃内壁的主要居住部位之外,这还包括唾液、血液、呼气气体、粪便和尿液。
幽门螺杆菌检测可以通过多种方法进行,常见的方法包括:
•呼气测试
无创13C-尿素呼气试验(13C-UBT),患者服用标记了尿素的药物后,通过呼气样本检测呼气气体中的尿素分解产物,以确定是否存在幽门螺杆菌感染。是检测幽门螺杆菌感染的首选方法。
•血清抗体检测
通过检测患者血清中的抗幽门螺杆菌抗体水平来判断是否感染幽门螺杆菌。
•粪便抗原检测
通过检测患者糞便样本中的幽门螺杆菌抗原来确认感染情况。
•胃镜检查
通过胃镜检查取得胃黏膜组织标本,进行组织学检查或快速尿素酶试验以确认是否感染幽门螺杆菌。
此外通过分子靶向基因也可以检测,并且能区分幽门螺杆菌是否携带毒力基因。这种方法可以帮助医生更准确地诊断幽门螺杆菌感染,并制定更有效的治疗方案。
▸ 不同测试方法的效果如何
幽门螺杆菌检测的不同方法及其有效性有所不同(敏感性和特异性),具体如下表:
较高的灵敏度(真阳性率)表明,在幽门螺杆菌真实存在的情况下,该测试能够更好地检测幽门螺杆菌。较低的特异性(真阴性率)表明该测试可能将那些没有幽门螺杆菌的人显示为患有幽门螺杆菌。在大约20%的幽门螺杆菌感染者中,胃活检和血液检测可能无法检测到幽门螺杆菌。
幽门螺杆菌血清测试可以在活动性感染的个体中或在感染被根除后检测到针对幽门螺杆菌的抗体。因此,血清学检测并不是幽门螺杆菌治疗后随访的良好检测方法。
▸ 标准根除治疗
对于出现胃溃疡等感染症状的人来说,必须根除毒性的幽门螺杆菌。然而,对于无症状幽门螺杆菌阳性儿童和成人是否应该接受治疗,存在着相互矛盾的观点,主要是因为抗生素治疗本身具有很强的副作用。
幽门螺杆菌的传统治疗方法称为标准三联疗法,包括短期疗程的两种抗生素(通常是克拉霉素和阿莫西林)以及质子泵抑制剂(胃酸减少药物,例如奥美拉唑或兰索拉唑)。
注:14天三联疗法优于同等的7或10天三联疗法。
由于幽门螺杆菌适应酸性环境,因此用质子泵抑制剂减少胃酸可以抑制幽门螺杆菌的生长,并且在短期标准三联疗法期间是有益的。然而,长期使用 质子泵抑制药(PPI)可能会导致胃壁萎缩。
幽门螺杆菌感染的标准治疗可能会改变健康的肠道微生物群,导致腹胀、腹泻和恶心。据估计,这些副作用会影响超过50%的患者,并与依从性下降和治疗失败相关。
对抗生素的耐药性或残留幽门螺杆菌的再感染也可能导致清除幽门螺杆菌的治疗失败。据统计,标准三联疗法的有效性在60%到80%之间。
▸ 影响幽门螺杆菌治疗效果的因素
•遵守处方与否
不遵守医生处方是根除失败的主要原因。治疗依从性低于80%会降低治疗成功率。
•药物代谢酶的突变
根除失败的另一个原因是细胞色素 P450 2C19(CYP2C19)的突变。CYP2C19 是参与质子泵抑制剂(奥美拉唑或兰索拉唑)代谢的主要酶。当 CYP2C19 比平时更有效地发挥作用时,药物降解速度更快,疗效更低。
影响质子泵抑制剂有效性的CYP2C19 SNP包括rs4244285(A)和rs4986893(A)。
•口腔中的幽门螺杆菌储存
牙菌斑可以作为幽门螺杆菌的储存库,因此保持适当的口腔卫生对于预防再次感染至关重要。多项研究表明,未经治疗的牙周病会增加根除幽门螺杆菌后再次感染的风险。建议使用抗菌漱口水或牙周治疗来减少口腔幽门螺杆菌的数量,以提高抗生素治疗后的根除率。
例如,在一项研究中,口腔感染的治疗将胃内幽门螺杆菌根除的成功率从61%提高到82%。
•抗生素耐药性
对抗生素克拉霉素的耐药性增加导致全世界标准三联疗法的疗效急剧下降。替代抗生素治疗方案已被证明可以克服克拉霉素耐药性,并且现在是实现提高根除率(超过 90%)的首选治疗方法。
患者依从性、抗生素耐药性和CYP酶活性等因素都可能影响幽门螺杆菌治疗的有效性。
有限的数据表明幽门螺杆菌可能会改变维生素吸收、肠道微生物组和食欲相关激素。需要更多的研究来证实这些假设。
▸ 对营养的影响
幽门螺杆菌感染会损害铁和维生素B12的吸收。
幽门螺杆菌感染者的维生素C浓度降低20%。
胃中β-胡萝卜素和维生素E的浓度也降低。
一些研究还报告感染者的叶酸吸收减少。
▸ 影响调节食欲的激素
多项研究表明,受感染者的生长素释放肽水平较低,而瘦素浓度较高。
由于瘦素会降低食欲,而生长素释放肽会刺激生长激素的释放,因此幽门螺杆菌感染可能会导致生长减缓,特别是对于已经面临营养不良风险的儿童。
在一些针对感染儿童的研究中,根除幽门螺杆菌会增加胃饥饿素水平,并导致体重和身高的增长。
然而,关于幽门螺杆菌和瘦素之间的联系的研究在某些情况下是相互矛盾的。大多数研究发现亚洲和欧洲幽门螺杆菌阳性受试者的循环生长素释放肽水平较低,但在美洲地区结果却不一样。
当评估根除幽门螺杆菌对生长素释放肽水平的影响时,也得到了相互矛盾的结果。在一项针对受感染退伍军人的研究中,生长素释放肽水平比根除前高出近六倍,但瘦素水平在根除后七个月也显着增加。
▸ 与肠道微生物群
幽门螺杆菌改变胃细菌群落,增加变形菌门、螺旋菌门和酸杆菌门的细菌,减少放线菌门、拟杆菌门和厚壁菌门的细菌。
幽门螺杆菌感染也会改变儿童粪便中双歧杆菌/大肠杆菌的比例,但这可以通过摄入酸奶形式的益生菌来改善。
幽门螺杆菌对微生物群的影响
doi: 10.1007/s12038-020-00078-7.
与幽门螺杆菌阳性患者相比,幽门螺杆菌阴性患者的微生物群更加复杂和多样化。
尽管幽门螺杆菌感染胃,但它对消化系统内部和外部的健康都有影响。
幽门螺杆菌的毒力和发病机制
doi: 10.1007/s42770-021-00675-0.
幽门螺旋杆菌的定植、疾病形成和感染取决于四个主要阶段:(1)适应胃粘膜的酸性环境; (2)利用鞭毛向上皮细胞移动; (3)穿透上皮细胞细胞屏障和对特定受体的附着,以及(4)组织损伤和其他有害的健康影响。
1
胃炎和消化不良
尽管大多数感染幽门螺杆菌的患者不会出现症状,但感染仍然会对胃壁造成进行性损害,这种损害可能是不可逆转的。幽门螺杆菌感染是慢性胃炎(胃内壁炎症或刺激)的主要原因。
消化不良,是一组与上消化道有关的症状。它本身并不是一种疾病,但它与多种疾病有关。每年大约25%的西方人口患有消化不良,消化不良是就胃肠道疾病咨询医生的最常见原因之一 。
据估计,少数10%至12%的消化不良患者在幽门螺杆菌根除后获得显著改善,并且缓解可能会在根除后延迟数月至一年。
2
胃溃疡
研究表明,大约一半的消化性(胃)溃疡是由幽门螺杆菌感染引起的,另一半主要由非甾体抗炎药(NSAID)引起的。
感染幽门螺杆菌的患者患消化性溃疡病的风险要高出3.5倍。
大约15 – 20%感染幽门螺杆菌的受试者会出现消化性溃疡,这与炎症加剧、胃泌素水平升高和盐酸分泌增加有关。
幽门螺杆菌感染成功治疗的患者十二指肠或胃溃疡复发率显著降低。
3
胃癌
世界卫生组织(WHO)已将幽门螺杆菌列为I类致癌物。幽门螺杆菌感染已被确定为胃癌的主要危险因素。
许多试验已经证明通过幽门螺杆菌筛查和根除来预防癌症的可能性,特别是在高危人群中。六项临床试验显示,在根除治疗后,无症状成人的胃癌发病率从2.4%下降至1.6%。
然而,即使根除幽门螺杆菌后,胃癌有时也可能发生。尽管缺乏持续的幽门螺杆菌感染,但幽门螺杆菌特异性Th17细胞仍然存在于血液和胃粘膜中,尽管幽门螺杆菌被根除,但这种持续的炎症可能导致胃癌风险持续增加。
4
MALT淋巴瘤
持续的幽门螺杆菌定植也是粘膜相关淋巴组织 (MALT) 淋巴瘤的最强危险因素,并且存在于超过90%的病例中。
根除幽门螺杆菌已被证明可以使大约80%的早期胃MALT淋巴瘤患者得到持久缓解。
5
儿童营养不良
如果在儿童时期很早就感染幽门螺杆菌,可能会导致营养不良和生长迟缓,特别是当食物摄入量或品种较差时。
在儿童中,幽门螺杆菌感染与缺铁性贫血、腹泻病以及生长和认知功能受损有关。
幽门螺杆菌感染与成人和儿童的主要胃酸之一盐酸分泌减少有关。低盐酸会损害多种营养素的吸收,并增加对有害微生物肠道感染的易感性。缺乏微生物保护可能会增加营养不良的发生率并降低儿童的生长速度。
6
缺铁性贫血
幽门螺杆菌是缺铁性贫血的常见原因。许多研究报告了幽门螺杆菌感染与缺铁性贫血(IDA)之间的关联。
即使在幽门螺杆菌患病率较低的国家,幽门螺杆菌引起的IDA也多于乳糜泻(另一种被认为是IDA主要原因的疾病)引起的IDA。
注:幽门螺杆菌感染与缺铁性贫血的关联在儿童中比成人更常见。
幽门螺杆菌通过多种机制引起IDA:
(1)由于胃炎、消化性溃疡病或胃癌引起的出血导致铁丢失增加;
(2)由于炎症导致胃酸和抗坏血酸分泌减少;
(3)竞争,因为铁是幽门螺杆菌的重要生长因子,它与宿主竞争铁的吸收。
缺铁性贫血和幽门螺杆菌感染之间的关联如此密切,以至于欧洲强烈建议对所有不明原因的IDA患者采用幽门螺杆菌感染的检测和治疗策略。
与单独口服铁补充剂相比,幽门螺杆菌根除疗法与铁补充剂一起施用显著增加了铁、铁蛋白和血红蛋白水平。即使对于未接受铁补充剂治疗的患者,根除幽门螺杆菌也能改善缺铁性贫血的症状。
7
维生素B12缺乏症
幽门螺杆菌感染与维生素B12缺乏之间存在关联。幽门螺杆菌感染会损害食物中维生素B12的吸收,导致恶性贫血。
根除幽门螺杆菌已被证明可以改善维生素B12的吸收。
8
特发性血小板减少性紫癜
特发性血小板减少性紫癜(ITP)的特点是血小板的自身免疫性破坏,从而导致瘀伤。重要证据表明幽门螺杆菌是某些ITP病例的病原体。
ITP患者幽门螺杆菌感染的患病率高于健康个体。而根除幽门螺杆菌后,ITP患者的血小板计数显著增加。这种效应在几份报告中得到证实。
幽门螺杆菌相关ITP的长期预后良好。在一项为期8年的随访研究中,成功根除后未见复发。目前美国血液学会建议对感染幽门螺杆菌的ITP患者进行根除治疗。
9
自身免疫性甲状腺疾病
幽门螺杆菌感染会显著增加格雷夫斯病的风险,但不会增加桥本甲状腺炎的风险。
Graves病又称毒性弥漫性甲状腺肿,是一种自身免疫性甲状腺疾病,是由于机体免疫系统紊乱,导致甲状腺激素分泌过多而出现的临床综合征。
甲状腺功能正常但有甲状腺结节(甲状腺异常生长)的患者比没有甲状腺结节的患者更容易感染幽门螺杆菌。
在接受根除治疗的幽门螺杆菌阳性患者中,抗甲状腺过氧化物酶(TPO)和甲状腺球蛋白的自身抗体显著下降,但在拒绝治疗的患者中则没有显著下降。
此外,幽门螺杆菌感染可能会降低甲状腺功能减退患者甲状腺素治疗的疗效。
10
类风湿性关节炎
当B细胞(一种白细胞)受到幽门螺杆菌产生的脲酶的长期刺激时,它们可以获得产生自身抗体的潜力,包括IgM类风湿因子抗体。
类风湿性关节炎患者发生消化性溃疡的风险增加,但尚不清楚这是否与幽门螺杆菌感染率增加直接相关,还是由于大量使用非甾体抗炎药(NSAID)所致。还可能导致溃疡。
根除幽门螺杆菌后,一些研究发现关节炎症状有所改善,而另一些研究则报告关节炎症状没有变化。目前,数据是相互矛盾的,幽门螺杆菌和类风湿性关节炎之间的联系似乎很弱。
11
其他自身免疫性疾病
一些小型研究发现格林-巴利综合征患者的幽门螺杆菌细菌载量较高。尤其是急性炎性脱髓鞘性多发性神经病(AIDP) 型吉兰-巴利综合征患者的相关性特别强。
系统性硬化症患者中幽门螺杆菌感染与胃肠道、皮肤和关节症状恶化有关,表明这种关联可能很重要。
幽门螺杆菌感染似乎是发生抗水通道蛋白4(AQP4)抗体阳性视神经脊髓炎的危险因素之一,根除幽门螺杆菌可能是该疾病的一种可能的辅助治疗。
12
血糖和胆固醇
幽门螺杆菌感染与胆固醇升高、糖化血红蛋白(HbA1c)升高和较高的BMI相关。然而,其他研究并未发现这种关系,幽门螺杆菌的这些影响仍然是一个争论的话题。
在一些研究中,成功根除幽门螺杆菌可显著降低空腹胰岛素、HbA1c 和 HOMA-IR 水平。然而,也有报告显示根除幽门螺杆菌对平均HOMA-IR和CRP水平或HbA1c水平没有影响。
幽门螺杆菌对体重指数和肥胖的影响尚不确定。一项研究表明,患有幽门螺杆菌的成年人的BMI水平较高,而另一项研究表明,根除幽门螺杆菌会增加消化性溃疡病患者的BMI和肥胖发生率。然而另一组研究表明幽门螺杆菌感染与体重指数之间没有关联。
13
糖尿病
2型糖尿病患者更容易感染幽门螺杆菌。
有几个因素可以解释这种关系:
1)糖尿病引起的免疫力受损可能会增强个体对幽门螺杆菌感染的敏感性;
2)糖尿病引起的胃肠蠕动和胃酸分泌减少可能会促进病原体在肠道定植和感染;
3)葡萄糖代谢的改变可能会在胃内壁产生化学变化,从而促进幽门螺杆菌定植;
4)糖尿病患者比健康人更容易接触病原体,因为他们经常去医院。
5)糖尿病患者对常见的抗幽门螺杆菌治疗也更有抵抗力,并且再次感染的风险也更高。
另一方面,幽门螺杆菌会导致胰岛素抵抗和糖尿病并发症。幽门螺杆菌可能通过增加氧化应激和降低血液的总抗氧化能力来加剧糖尿病。幽门螺杆菌还可能通过诱导慢性炎症和影响胰岛素调节胃肠激素来促进胰岛素抵抗。
在一项以医院为基础的研究中,幽门螺杆菌感染与45岁以下参与者的胰岛素分泌和敏感性下降有关。
一项针对日本患者的大型研究揭示了幽门螺杆菌感染与代谢综合征(糖尿病的前兆)之间存在显著关系。
最后,2型糖尿病患者根除失败的风险较高。因此,一些研究不鼓励糖尿病患者治疗幽门螺杆菌感染,以避免感染恶化。
14
心血管疾病
心血管疾病患者是否应该接受幽门螺杆菌检测并进行治疗仍然是一个争论的话题。有迹象表明幽门螺杆菌感染与心血管疾病有关,但有关这种关联的原因和机制的研究尚无定论。
多项研究已将幽门螺杆菌感染与胆固醇水平的变化联系起来。研究表明,低密度脂蛋白胆固醇升高与胃部炎症程度相关,根除幽门螺杆菌可使胆固醇水平正常化 。幽门螺杆菌感染还与动脉硬化有关,在一些研究中会增加外周动脉疾病的风险,但在其他研究中则不然。
在年轻的急性心肌梗死(AMI)幸存者和死于AMI的患者中,幽门螺杆菌感染的患病率较高。幽门螺杆菌感染也与较高的中风发病率相关。
在一些研究中,幽门螺杆菌与过早冠状动脉疾病有关,但在其他研究中则不然。
15
阿尔茨海默病
一项非常大的横断面研究发现,幽门螺杆菌感染与60-90岁成年人的认知能力较差密切相关。
幽门螺杆菌的一种蛋白质在实验室中被证明可以形成淀粉样蛋白结构,因此有可能在阿尔茨海默病中发挥作用。这是否真的发生在体内还有待研究。
一些研究发现阿尔茨海默病与幽门螺杆菌感染之间存在相关性,一项针对阿尔茨海默病患者的小型研究发现,根除幽门螺杆菌可改善认知状态和五年生存率。
16
帕金森病
幽门螺杆菌可以结合左旋多巴,左旋多巴是治疗帕金森病的主要药物之一。这会降低药物的吸收并可能降低治疗效果。
丹麦的一项大型研究发现,帕金森病诊断与帕金森病诊断前5年或更长时间的幽门螺杆菌根除治疗之间存在关联。这表明过去的幽门螺杆菌感染可能与当前的帕金森病相关。
一些研究表明,根除幽门螺杆菌可以减少帕金森病的运动波动。一项研究发现,根除治疗后,步幅有所改善,但刚性却恶化。令人担忧的是,经历根除失败并在治疗后仍保持幽门螺杆菌阳性的患者的运动功能迅速下降。
目前,不建议对帕金森病患者进行幽门螺杆菌治疗,因为根除失败可能会导致运动功能恶化。
17
皮肤病
在一项研究中,100%的中度或重度银屑病患者幽门螺杆菌阳性,而只有37%的轻度银屑病患者感染。当银屑病治疗中加入根除幽门螺杆菌时,银屑病症状的改善更快。此外,仅接受根除治疗的患者的银屑病也得到改善。
在一项研究中,81%也有胃部不适的红斑痤疮患者体内存在幽门螺杆菌。在接受根除治疗的幽门螺杆菌阳性患者中观察到红斑痤疮严重程度显著改善。
幽门螺杆菌可能还是慢性自发性荨麻疹(荨麻疹)的多种原因之一。在慢性荨麻疹患者中,根除幽门螺杆菌后的总体缓解率为31%。
18
偏头痛
多项研究表明,成功根除治疗幽门螺杆菌后偏头痛症状有所改善。然而,这种关联的强度因研究而异,需要更多的研究来解释这些差异。
例如,在一项研究中,观察到17%的患者偏头痛完全消失,其余患者报告根除幽门螺杆菌后临床有所改善。另一项研究发现,感染清除后,84%的患者临床偏头痛发作的严重程度显著改善。
并且在其他研究中,偏头痛受试者中幽门螺杆菌感染的患病率更高。
幽门螺杆菌感染通常被认为与一些疾病的发生风险增加有关,例如消化道溃疡和胃癌。然而,一些研究表明幽门螺杆菌感染也可能对某些疾病具有预防作用,虽然这种观点仍在科学界存在争议。
1
胃食管反流病
幽门螺杆菌可减少胃酸分泌,从而防止胃酸反流,胃酸过多会导致持续性胃灼热和其他并发症。
一些研究和荟萃分析得出的结论是,根除幽门螺杆菌会加重胃食管反流病(GERD),而另一些研究则报告没有效果。幽门螺杆菌感染还与巴雷特食管和食管腺癌等GERD相关疾病的较低发病率有关。然而,这种关联受到质疑,因为世界上一些地区显示出这种关联,而另一些地区却没有。
2
炎症性肠病
多项研究表明幽门螺杆菌感染与较低的炎症性肠病发病率相关。
当小鼠被注射幽门螺杆菌DNA或感染活细菌时,它们对结肠炎和结肠炎相关症状(如出血和体重减轻)的抵抗力更强。
亚洲炎症性肠病患者的幽门螺杆菌感染率显著低于非炎症性肠病患者,表明幽门螺杆菌感染可能可以预防炎症性肠病的发展。这种相关性尚未得到充分解释,可能需要更多的研究来确定。
3
乳糜泻
乳糜泻与幽门螺杆菌感染较低有关。这就提出了一个问题:幽门螺杆菌感染是否可以预防乳糜泻。需要进一步的研究来确定潜在的机制及其意义。
4
哮喘和过敏
虽然由于卫生和生活条件的改善,许多国家幽门螺杆菌感染的患病率正在下降,但西方人群中哮喘和鼻炎等过敏性疾病的患病率却增加了32%。
多项流行病学研究表明,幽门螺杆菌感染与哮喘等过敏性气道疾病的发病率较低有关。
携带幽门螺杆菌的个体患有伴随过敏性疾病(包括哮喘、湿疹和过敏性鼻炎)的可能性降低了30%。然而,对于幽门螺杆菌在这种情况下是否确实具有保护作用,或者其他潜在因素是否共同降低了幽门螺杆菌感染率并增加了哮喘和过敏症的发生率,科学家们存在分歧。
动物研究
幽门螺杆菌使适应性免疫反应偏向免疫耐受而非免疫,一方面促进持续感染,另一方面抑制自身攻击性和过敏性T细胞反应。
特应性皮炎、过敏性鼻炎和哮喘是通过Th2途径细胞因子介导的,包括IL-4、IL-5、IL-9和IL-1。Tregs抑制Th2反应和过敏相关的IgE产生。小鼠早期感染幽门螺杆菌会增加气道中Treg细胞的数量,从而预防哮喘的发生。
有趣的是,与成年期感染的小鼠相比,新生儿时感染幽门螺杆菌的小鼠对过敏原的反应表现出较低水平的过敏性气道炎症。
儿童的联系
一项针对人类的研究发现,儿童过敏与幽门螺杆菌感染之间存在负相关,但成人则不然。
儿童期感染幽门螺杆菌似乎与哮喘和过敏风险降低有关。与轻度过敏或无过敏的儿童相比,严重过敏的儿童幽门螺杆菌阴性或感染毒性较低菌株的可能性明显更高。对这种现象的一种解释可能是“卫生效应”,即生命早期接触微生物可以防止以后发生过敏性疾病。
然而,在世界某些地区,幽门螺杆菌感染的低发病率与儿童过敏患病率较高并不相关。一些研究人员认为,幽门螺杆菌感染很可能只是几种传染性病原体之一,与不良的卫生习惯有关,这可以降低发生过敏的可能性。
5
多发性硬化症
令人惊讶的是,一些研究表明幽门螺杆菌感染对多发性硬化症具有保护作用。
与健康对照或视神经多发性硬化症患者相比,传统多发性硬化症患者的幽门螺杆菌感染频率明显较低。
然而,迄今为止,很少有可靠的流行病学数据支持幽门螺杆菌对多发性硬化症发展的保护作用。目前,这种联系纯粹是推测性的。
在大多数情况下,补充和营养疗法不能永久根除幽门螺杆菌。话虽这么说,一些食物和补充剂与减少幽门螺杆菌负荷或改善对传统疗法的反应有关。虽然我们建议不要使用以下策略来代替医生的治疗,但其中一些策略与处方药一起使用可能会有所帮助。
以下的一些补充和营养疗法可能有效:
▸ 使用乳酸菌和酵母菌益生菌
在许多临床研究中,在针对幽门螺杆菌的抗生素治疗中添加某些益生菌可以提高整体疗效并减少胃肠道副作用。
•有助于提高根除率,减轻不良反应
使用益生菌乳杆菌、双歧杆菌和布拉氏酵母菌可将幽门螺杆菌根除率提高约10%,并将治疗不良反应减少约15%。
•有助于对抗幽门螺杆菌的益生菌
研究表明有益于对抗幽门螺杆菌定植的益生菌包括:嗜酸乳杆菌、罗伊氏乳杆菌、德氏乳杆菌 (L.delbrueckii ssp) 。保加利亚乳杆菌与嗜热链球菌、L.gasseri、L.johnsonii 、L.salivarius、L.brevis、保拉迪酵母(Sboulardii)和婴儿双歧杆菌。
•减少治疗副作用的益生菌
有效减少幽门螺杆菌治疗副作用的益生菌包括:鼠李糖乳杆菌、罗伊氏乳杆菌、布拉氏链球菌、动物双歧杆菌属、乳酸菌、丁酸梭菌和枯草芽孢杆菌。
益生菌改善感染率的具体作用机制目前尚不清楚。研究表明,益生菌降低了幽门螺杆菌在胃中有效定殖的能力,但尚不清楚这种影响是否是通过空间和营养物质的竞争、胃pH值的变化、其他细菌产生的化学物质或其他变化来解释的。
益生菌补充剂通常被认为是安全的,它们很少会对免疫系统受损的人产生副作用。为了避免任何不良反应或意外的相互作用,请在开始使用新的益生菌之前咨询您的医生。
▸ 发酵食品和饮料
某些发酵饮料——尤其是葡萄酒、啤酒和发酵奶——在支持幽门螺杆菌治疗方面已经产生了有希望的临床结果。
•发酵产生的微环境不利于幽门螺杆菌定植
一项对英国10,000多人进行的横断面研究发现,适量饮用葡萄酒和啤酒在一定程度上可以预防幽门螺杆菌感染。作者认为,适量饮用葡萄酒和啤酒可能会在胃中产生一个对幽门螺杆菌不利的环境,从而更容易根除细菌。
然而,另一项研究发现,饮酒与幽门螺杆菌感染呈正相关,这表明葡萄酒和啤酒中除酒精之外的某种成分可能是其明显益处的原因。
酸奶和开菲尔等发酵乳制品也被发现可以预防幽门螺杆菌感染。此外,在一项针对347名患者的试验中,在常规疗法中添加酸奶可提高根除率。
▸ 西兰花芽和芸苔类蔬菜
萝卜硫素是西兰花和西兰花芽中发现的一种化合物,可以抑制幽门螺杆菌的生长。
•萝卜硫素保护胃黏膜有助于减少炎症
研究人员认为萝卜硫素可以保护胃粘膜,从而减少炎症。粘膜健康状况的改善也可能使幽门螺杆菌更难在胃中有效定植,这解释了一些研究中发现的定植率降低的原因。
在确诊幽门螺杆菌感染的无症状患者中,每天食用70克西兰花芽可导致定植强度显着降低。另一项研究还报告称,在接受西兰花芽苗处理后,九名受试者中有四名幽门螺杆菌定植消失。
在感染幽门螺杆菌的2型糖尿病患者中,除了标准三联疗法外,西兰花芽粉在幽门螺杆菌根除方面显示出相当大的改善,并且还显示出受试者的心脏健康状况得到改善。在小鼠中,注射萝卜硫素可有效消除幽门螺杆菌感染。
其他芸苔类蔬菜(卷心菜、菜花、大白菜、小白菜、油菜、甘蓝、芥菜)也含有与萝卜硫素类似的化合物,称为异硫氰酸盐。摄入大量异硫氰酸盐的患者患胃癌的风险较低。
▸ 铋
有重要的临床证据支持使用铋作为抗幽门螺杆菌“四联疗法”的一部分,与四环素、硝基咪唑和质子泵抑制剂(PPI)一起使用 。
您的医生可能会或可能不会推荐铋作为幽门螺杆菌治疗的一部分。在尝试使用铋之前请先咨询您的医生,因为仅批准铋用于治疗腹泻,大量使用可能会对肾脏产生毒性。
在有限的、低质量的临床研究中,以下物质显示出对抗幽门螺杆菌感染的前景,然而目前没有足够的证据支持它们在这种情况下的使用,并且不应该用它们来代替医生开出的处方。
▸ 蔓越莓
在蔓越莓汁公司赞助的一项研究中,定期饮用蔓越莓汁可有效降低幽门螺杆菌定植水平。
蔓越莓汁中含有的化学物质会降低细菌粘附细胞的能力,从而降低它们在这些细胞上定殖的能力。这可以解释为什么补充能够改善幽门螺杆菌感染的治疗结果。
当给感染幽门螺杆菌的小鼠喂食酸果蔓汁后,80%的小鼠在治疗后痊愈。治疗后4周根除率为20%。在约15%的无症状定植儿童中,服用蔓越莓汁三周可抑制幽门螺杆菌定植率。然而,在大多数幽门螺杆菌呈阴性的受试者中,清除效果在停止食用后并未持续存在。
与传统的抗幽门螺杆菌抗生素(例如甲硝唑和克拉霉素)结合使用,蔓越莓的食用可以提高幽门螺杆菌危险人群的根除率并抑制感染。
▸ 其他浆果
蓝莓、覆盆子、草莓、黑莓、越橘和接骨木浆果提取物可增强幽门螺杆菌对克拉霉素的敏感性,并对克拉霉素耐药的幽门螺杆菌菌株表现出强大的抑菌活性。
当幽门螺杆菌感染的成年人在90天的时间内饮用蓝莓汁时,14%的人在第35天的尿素呼气测试呈阴性。这种效果在第90天也得以维持。
▸ 大蒜
长期食用大蒜并不影响幽门螺杆菌感染的发生,但摄入大蒜的患者幽门螺杆菌定植率明显低于未摄入大蒜的患者。
在中国西部地区,吃生大蒜的人幽门螺杆菌感染水平明显较低。多项研究证明,食用大蒜科蔬菜与降低胃癌风险相关,支持大蒜中的化合物可能对胃健康或幽门螺杆菌定植有益的理论。
大蒜含有称为硫代亚磺酸盐的化学物质,例如大蒜素,已被证明对细菌有毒,这可能解释了补充剂如何能够改善治疗效果。这些化学物质还具有很强的抗氧化能力。因此,摄入抗氧化剂的下游益处也可以解释补充大蒜对感染和其他免疫过程的积极影响。
其他研究表明大蒜抑制细菌群体感应,这也可以解释感染率下降的原因。生大蒜或大蒜粉片的提取物可以在实验室中杀死幽门螺杆菌。在动物研究中,大蒜提取物还可以预防幽门螺杆菌引起的胃炎。
▸ 多不饱和脂肪酸
多不饱和脂肪酸、omega-3和-6在实验室中可抑制幽门螺杆菌的生长,并降低胃炎的患病率。
补充8周的多不饱和脂肪酸(PUFA)可以诱导53%的患者细菌清除,6个月后这一比例为20%。多不饱和脂肪酸可减少幽门螺杆菌感染引起的氧化应激和炎症,并减少小鼠胃癌的形成。
然而,一项研究表明,在基于铋的四联疗法中添加 PUFA 对根除幽门螺杆菌或炎症标志物没有影响。
一种名为二十二碳六烯酸(DHA)的特定omega-3化合物可降低幽门螺杆菌在50%小鼠胃内壁定殖的能力。将DHA与标准三联疗法相结合可降低小鼠幽门螺杆菌感染的复发率。月见草油(富含omega-6不饱和亚油酸)可治愈大鼠溃疡。
与传统根除方案相比,鱼油的幽门螺杆菌根除率明显较差,但无论幽门螺杆菌状态如何,它都能改善非溃疡性消化不良患者的症状。
▸ 人参
在一项早期临床研究中,将人参添加到传统的幽门螺杆菌根除方案中可显著提高根除率。
一些研究人员认为,人参可以改善抗体分子的反应,从而保护身体免受微生物的侵袭。这可能有助于解释治疗中所见的改善。
▸ 姜黄素
姜黄素已被用于治疗消化性溃疡以及预防幽门螺杆菌的生长。姜黄治疗4周后,48%的患者消化性溃疡痊愈,治疗12周后,76%的患者痊愈。第一周和第二周期间腹痛和不适明显减轻。
姜黄素可预防溃疡并抑制细菌群体感应。这可能有助于解释幽门螺杆菌治疗的保护作用。姜黄素能够根除小鼠体内的幽门螺杆菌,但似乎不能完全根除人类体内的细菌。姜黄素在人体中的吸收不良可能导致这种无效。
▸ 乳香胶
乳香胶是由黄连木植物产生的树脂,目前正在研究其用于治疗胃病的效果。
乳香胶治疗幽门螺杆菌的临床试验显示出消极和积极的结果,表明益处可能是有限的或纯粹是互补的。
在一些研究中,乳香胶无法根除小鼠或人类的幽门螺杆菌感染。其他研究表明,乳香可以预防患者体内与幽门螺杆菌相关的炎症,并在某些情况下实现根除。
▸ 乳铁蛋白
乳铁蛋白与铁离子结合,从而限制细菌对铁的利用。测试口服乳铁蛋白效果的临床试验有阳性和阴性结果。除抗生素和质子泵抑制剂治疗外,补充乳铁蛋白可提高有效根除率并降低副作用严重程度。
另一项针对幽门螺杆菌阳性患者的研究表明,单独使用乳铁蛋白可有效抑制幽门螺杆菌在胃中的定植。
在小鼠中,乳铁蛋白可减少细菌定植和幽门螺杆菌诱发的胃炎。
▸ 蜂胶和蜂蜜
蜂胶和生蜂蜜具有抗幽门螺杆菌活性。蜂胶还具有抗炎和免疫刺激活性——这两种机制在幽门螺杆菌感染的病理生理学中显然很重要。
橡树和麦卢卡蜂蜜具有很强的抗幽门螺杆菌活性。在消化不良患者中,每周至少摄入一次蜂蜜可降低幽门螺杆菌感染的患病率。
没有临床证据支持下面列出的对抗幽门螺杆菌感染的方法。以下是现有基于动物和细胞的研究的总结,这应该指导进一步的研究工作。然而,下面列出的研究不应被解释为支持任何健康益处。
▸ 姜
姜根传统上用于治疗各种胃肠道疾病,包括消化不良、消化性溃疡、晕动病和炎症。
生姜提取物可以保护胃免受压力引起的胃壁损伤,并抑制胃酸分泌,从而限制幽门螺杆菌的生长。
在动物研究中,生姜提取物可预防和治疗幽门螺杆菌引起的感染和炎症。研究表明生姜抑制细菌群体感应,这可以解释感染率下降的原因。
▸ 绿茶
在恒河猴的小型试验中,绿茶提取物显示出抗幽门螺杆菌粘附作用。绿茶提取物还被证明可以部分抑制细菌使用的酶,从而限制其生长。
在动物研究中,服用绿茶儿茶素可根除36%的幽门螺杆菌。同样,在动物研究中,在饮用水中添加绿茶多酚可以剂量依赖性地抑制幽门螺杆菌感染。
▸ 其他物质
超过80种植物提取物具有抗幽门螺杆菌活性。然而,在大多数情况下,缺乏对人类的研究。这意味着没有临床证据建议使用它们来对抗幽门螺杆菌感染。目前正在调查的一些植物、化合物和补充剂如下:
主要参考文献:
Hołubiuk Ł, Imiela J. Diet and Helicobacter pylori infection. Prz Gastroenterol. 2016;11(3):150-154.
Matsushima K, Nagai S. Unraveling the mystery of the hygiene hypothesis through Helicobacter pylori infection. J Clin Invest. 2012 Mar;122(3):801-4.
Kalali B, Mejías-Luque R, Javaheri A, Gerhard M. H. pylori virulence factors: influence on immune system and pathology. Mediators Inflamm. 2014;2014:426309.
Biljana Novkovic, 17+ Ways to Naturally Support H. pylori Treatment. 2021, November 3, selfhacked.
Malfertheiner P. Diagnostic methods for H. pylori infection: Choices, opportunities and pitfalls. United European Gastroenterol J. 2015 Oct;3(5):429-31.
Malfertheiner P. Diagnostic methods for H. pylori infection: Choices, opportunities and pitfalls. United European Gastroenterol J. 2015 Oct;3(5):429-31.
Taj Y, Essa F, Kazmi SU, Abdullah E. Sensitivity and specificity of various diagnostic tests in the detection of Helicobacter pylori. J Coll Physicians Surg Pak. 2003 Feb;13(2):90-3.
Talebi Bezmin Abadi A. Helicobacter pylori: A Beneficial Gastric Pathogen? Front Med (Lausanne). 2014 Aug 25;1:26.
Joe Cohen, Nattha Wannissorn. What is H. Pylori? Test & Treatment,December 15, 2022. Selfhacked
Suarez G, Reyes VE, Beswick EJ. Immune response to H. pylori. World J Gastroenterol. 2006 Sep 21;12(35):5593-8.
Malnick SD, Melzer E, Attali M, Duek G, Yahav J. Helicobacter pylori: friend or foe? World J Gastroenterol. 2014 Jul 21;20(27):8979-85.
Yang YJ, Sheu BS. Metabolic Interaction of Helicobacter pylori Infection and Gut Microbiota. Microorganisms. 2016 Feb 16;4(1):15.
Testerman TL, Morris J. Beyond the stomach: an updated view of Helicobacter pylori pathogenesis, diagnosis, and treatment. World J Gastroenterol.
2014 Sep 28;20(36):12781-808.Al Sayed A, Anand PS, Kamath KP, Patil S, Preethanath RS, Anil S. Oral Cavity as an Extragastric Reservoir of Helicobacter pylori. ISRN Gastroenterol. 2014 Feb 20;2014:261369.
Hołubiuk Ł, Imiela J. Diet and Helicobacter pylori infection. Prz Gastroenterol. 2016;11(3):150-154.
Nair MR, Chouhan D, Sen Gupta S, Chattopadhyay S. Fermented Foods: Are They Tasty Medicines for Helicobacter pylori Associated Peptic Ulcer and Gastric Cancer? Front Microbiol. 2016 Jul 25;7:1148.
Safavi M, Sabourian R, Foroumadi A. Treatment of Helicobacter pylori infection: Current and future insights. World J Clin Cases. 2016 Jan 16;4(1):5-19.
Yang YJ, Chuang CC, Yang HB, Lu CC, Sheu BS. Lactobacillus acidophilus ameliorates H. pylori-induced gastric inflammation by inactivating the Smad7 and NFκB pathways. BMC Microbiol. 2012 Mar 19;12:38.
Canducci F, Armuzzi A, Cremonini F, Cammarota G, Bartolozzi F, Pola P, Gasbarrini G, Gasbarrini A. A lyophilized and inactivated culture of Lactobacillus acidophilus increases Helicobacter pylori eradication rates. Aliment Pharmacol Ther. 2000 Dec;14(12):1625-9.
Sakamoto I, Igarashi M, Kimura K, Takagi A, Miwa T, Koga Y. Suppressive effect of Lactobacillus gasseri OLL 2716 (LG21) on Helicobacter pylori infection in humans. J Antimicrob Chemother. 2001 May;47(5):709-10.
Holz C, Busjahn A, Mehling H, Arya S, Boettner M, Habibi H, Lang C. Significant Reduction in Helicobacter pylori Load in Humans with Non-viable Lactobacillus reuteri DSM17648: A Pilot Study. Probiotics Antimicrob Proteins. 2015 Jun;7(2):91-100.
Takagi A, Yanagi H, Ozawa H, Uemura N, Nakajima S, Inoue K, Kawai T, Ohtsu T, Koga Y. Effects of Lactobacillus gasseri OLL2716 on Helicobacter pylori-Associated Dyspepsia: A Multicenter Randomized Double-Blind Controlled Trial. Gastroenterol Res Pract. 2016;2016:7490452.
Cruchet S, Obregon MC, Salazar G, Diaz E, Gotteland M. Effect of the ingestion of a dietary product containing Lactobacillus johnsonii La1 on Helicobacter pylori colonization in children. Nutrition. 2003 Sep;19(9):716-21.
Pantoflickova D, Corthésy-Theulaz I, Dorta G, Stolte M, Isler P, Rochat F, Enslen M, Blum AL. Favourable effect of regular intake of fermented milk containing Lactobacillus johnsonii on Helicobacter pylori associated gastritis. Aliment Pharmacol Ther. 2003 Oct 15;18(8):805-13.
Linsalata M, Russo F, Berloco P, Caruso ML, Matteo GD, Cifone MG, Simone CD, Ierardi E, Di Leo A. The influence of Lactobacillus brevis on ornithine decarboxylase activity and polyamine profiles in Helicobacter pylori-infected gastric mucosa. Helicobacter. 2004 Apr;9(2):165-72.
Zhao HM, Ou-Yang HJ, Duan BP, Xu B, Chen ZY, Tang J, You JY. [Clinical effect of triple therapy combined with Saccharomyces boulardii in the treatment of Helicobacter pylori infection in children]. Zhongguo Dang Dai Er Ke Za Zhi. 2014 Mar;16(3):230-3.
Zhang L, Eslick GD, Xia HH, Wu C, Phung N, Talley NJ. Relationship between alcohol consumption and active Helicobacter pylori infection. Alcohol Alcohol. 2010 Jan-Feb;45(1):89-94.
Shimbo I, Yamaguchi T, Odaka T, Nakajima K, Koide A, Koyama H, Saisho H. Effect of Clostridium butyricum on fecal flora in Helicobacter pylori eradication therapy. World J Gastroenterol. 2005 Dec 21;11(47):7520-4.
Kim MN, Kim N, Lee SH, Park YS, Hwang JH, Kim JW, Jeong SH, Lee DH, Kim JS, Jung HC, Song IS. The effects of probiotics on PPI-triple therapy for Helicobacter pylori eradication. Helicobacter. 2008 Aug;13(4):261-8.
Islek A, Sayar E, Yilmaz A, Artan R. Bifidobacterium lactis B94 plus inulin for Treatment of Helicobacter pylori infection in children: does it increase eradication rate and patient compliance? Acta Gastroenterol Belg. 2015 Jul-Sep;78(3):282-6.
Yanaka A, Fahey JW, Fukumoto A, Nakayama M, Inoue S, Zhang S, Tauchi M, Suzuki H, Hyodo I, Yamamoto M. Dietary sulforaphane-rich broccoli sprouts reduce colonization and attenuate gastritis in Helicobacter pylori-infected mice and humans. Cancer Prev Res (Phila). 2009 Apr;2(4):353-60.
Cengiz N, Uslu Y, Gök F, Anarat A. Acute renal failure after overdose of colloidal bismuth subcitrate. Pediatr Nephrol. 2005 Sep;20(9):1355-8. doi: 10.1007/s00467-005-1993-7.
Chey WD, Leontiadis GI, Howden CW, Moss SF. ACG Clinical Guideline: Treatment of Helicobacter pylori Infection. Am J Gastroenterol. 2017 Feb;112(2):212-239. doi: 10.1038/ajg.2016.563. Epub 2017 Jan 10. Erratum in: Am J Gastroenterol. 2018 Jul;113(7):1102.
Harjai K, Kumar R, Singh S. Garlic blocks quorum sensing and attenuates the virulence of Pseudomonas aeruginosa. FEMS Immunol Med Microbiol. 2010 Mar;58(2):161-8. doi: 10.1111/j.1574-695X.2009.00614.x. Epub 2009 Sep 18.
Jakobsen TH, van Gennip M, Phipps RK, Shanmugham MS, Christensen LD, Alhede M, Skindersoe ME, Rasmussen TB, Friedrich K, Uthe F, Jensen PØ, Moser C, Nielsen KF, Eberl L, Larsen TO, Tanner D, Høiby N, Bjarnsholt T, Givskov M. Ajoene, a sulfur-rich molecule from garlic, inhibits genes controlled by quorum sensing. Antimicrob Agents Chemother. 2012 May;56(5):2314-25.
Castro M, Romero C, de Castro A, Vargas J, Medina E, Millán R, Brenes M. Assessment of Helicobacter pylori eradication by virgin olive oil. Helicobacter. 2012 Aug;17(4):305-11.
Park SH, Kang JS, Yoon YD, Lee K, Kim KJ, Lee KH, Lee CW, Moon EY, Han SB, Kim BH, Kim HM, Park SK. Glabridin inhibits lipopolysaccharide-induced activation of a microglial cell line, BV-2, by blocking NF-kappaB and AP-1. Phytother Res. 2010 Jan;24 Suppl 1:S29-34.
Sarkar A, De R, Mukhopadhyay AK. Curcumin as a potential therapeutic candidate for Helicobacter pylori associated diseases. World J Gastroenterol. 2016 Mar 7;22(9):2736-48.
Dabos KJ, Sfika E, Vlatta LJ, Giannikopoulos G. The effect of mastic gum on Helicobacter pylori: a randomized pilot study. Phytomedicine. 2010 Mar;17(3-4):296-9.
Takeuchi H, Trang VT, Morimoto N, Nishida Y, Matsumura Y, Sugiura T. Natural products and food components with anti-Helicobacter pylori activities. World J Gastroenterol. 2014 Jul 21;20(27):8971-8.
Okuda M, Nakazawa T, Yamauchi K, Miyashiro E, Koizumi R, Booka M, Teraguchi S, Tamura Y, Yoshikawa N, Adachi Y, Imoto I. Bovine lactoferrin is effective to suppress Helicobacter pylori colonization in the human stomach: a randomized, double-blind, placebo-controlled study. J Infect Chemother. 2005 Dec;11(6):265-9.
Salem EM, Yar T, Bamosa AO, Al-Quorain A, Yasawy MI, Alsulaiman RM, Randhawa MA. Comparative study of Nigella Sativa and triple therapy in eradication of Helicobacter Pylori in patients with non-ulcer dyspepsia. Saudi J Gastroenterol. 2010 Jul-Sep;16(3):207-14.
Nakamura M, Haruma K, Kamada T, Mihara M, Yoshihara M, Sumioka M, Fukuhara T, Chayama K. Cigarette smoking promotes atrophic gastritis in Helicobacter pylori-positive subjects. Dig Dis Sci. 2002 Mar;47(3):675-81.
谷禾健康
牛奶蛋白过敏(CMPA)是婴儿最常见的食物过敏类型之一。粪便病原菌培养显示产气荚膜梭菌阳性率超过30%,明显高于其他细菌。因此推测产气荚膜梭菌定植可能是婴儿牛奶蛋白过敏的发病因素之一。
一项真实世界的研究,杨敏团队从我国一家大型三甲医院(广州市妇女儿童医疗中心)招募患有腹泻、粘液便和/或血便的 0-6 个月婴儿的研究中,通过飞行质谱法证实了用于检测产气荚膜梭菌的粪便病原体培养物,并通过PCR鉴定了潜在的毒素基因。随访12个月后,记录牛奶蛋白过敏和食物过敏的诊断。通过Pearson相关分析评估相关性。
这项研究表明产气荚膜梭菌肠道定植在婴儿中很常见,与婴儿牛奶蛋白过敏和食物过敏的发生有关。
产气荚膜梭菌是一种厌氧、革兰氏阳性芽孢杆菌,是一种可引起胃肠道或皮肤和深层组织感染的细菌。产气荚膜梭菌的定植可能导致侵袭性胃肠道感染,产生肠毒素,可能破坏肠上皮细胞间的紧密连接,造成上皮损伤,引起肠道菌群失衡,导致宿主免疫反应异常。
本文我们来详细看一下这项研究过程及相关结果,结合产气荚膜梭菌的生物学特性、毒素等相关知识,深入探讨产气荚膜梭菌定植对婴幼儿过敏相关疾病及其他健康问题的影响,了解这些可以帮助我们更好地了解其在婴幼儿免疫系统发育中的作用,为临床上预防和治疗相关疾病提供新的思路和方法。
在这项广州妇女儿童医疗中心的研究中,共招募了358名0-6个月的婴儿。对这些婴儿粪便样本进行病原培养,其中128名产气荚膜梭菌呈阳性。
共有270名婴儿(44.07% 为女孩;平均年龄为 2.78 ± 2.84 个月)参加了为期 12 个月的跟踪调查。
注:
▪ 2020年1月1日至2021年12月31日期间因胃肠道症状住院或门诊的所有0-6个月大的婴儿
▪ 排除先天性代谢性疾病、免疫缺陷性疾病和恶性肿瘤的患者
doi: 10.1186/s13099-023-00572-x
专门针对食物过敏和牛奶蛋白过敏的临床诊断,其中包括湿疹、过敏性鼻炎以及食物蛋白诱导的过敏性直肠结肠炎等相关病症。食物过敏是根据症状、饮食排除和口服食物挑战进行临床诊断的。
病程差异
产气荚膜梭菌阴性组与产气荚膜梭菌阳性组显著差异(P < 0.001)。
喂养方式
纯母乳喂养组、母乳添加配方奶喂养组和纯配方奶喂养组产气荚膜梭菌定植阳性率分别为 32.14%、46.43%、21.43%(P<0.05)(下表)。
doi: 10.1186/s13099-023-00572-x
主要症状及诊断
主要症状是腹胀、腹泻和粘液便和/或血便。
有或没有产气荚膜梭菌定植的婴儿,腹胀和粘液样便和/或血便的发生率存在显著差异(P<0.05)。
与产气荚膜梭菌阴性组相比,阳性组NEC(坏死性小肠结肠炎)和FPIAP(食物蛋白诱发的过敏性直肠结肠炎)发生率显著升高(下表)。
抗生素
甲硝唑给药率:产气荚膜梭菌阳性组高于阴性组(33.9% vs. 10.76%)(P < 0.0001)。
血常规检查 (231名患者)
两组之间白细胞增多、血小板增多和中性粒细胞减少事件的数量存在显著差异。
粪便常规检查 (267次)
粪便潜血阳性率为37.45%(100/267),
粪便白细胞阳性率为8.2%(22/267)。
两组比较差异有显著性(P <0.001)(下表)。
在 30 名患者不同时间点(0、2、4、12 和 24 周)的 85 份粪便样本中检测到了潜在的特异性毒素基因。
产气荚膜梭菌携带潜在特异性毒素基因的出现率如下:
没有携带其他毒素的分离株。
对83份样本进行基因型鉴定,其中:
17例患者中同时检测到A基因型和C基因型。
经过12个月的随访调查,根据症状、饮食排除和口服食物挑战,临床诊断如下:
24.44%的病例(66/270)食物过敏,其中18.5%的儿童(50/270)患有牛奶蛋白过敏。
在产气荚膜梭菌阳性组队列中:
这两个比例都显著高于产气荚膜梭菌阴性组 [分别为7.59%(12/158)和5.06%(8/158)] (P<0.0001)
(下图)。
共有8.52%(23/270)的儿童被诊断为过敏性疾病,其中:
共有20.37%(55/270)的儿童喂养氨基酸配方奶粉(AAF)或深度水解配方奶粉(eHF),其中8.89%(24/270)喂养时间超过12个月。
产气荚膜梭菌阳性组氨基酸配方奶粉/深度水解配方奶粉利用率为35.71%,高于阴性组9.49%(P < 0.0001)。两组中喂养氨基酸配方奶粉和/或深度水解配方奶粉超过12个月的儿童人数分别为 16.07%和 3.79%(P = 0.0005)
为了探索产气荚膜梭菌阳性与食物过敏之间的相关性,进行了皮尔逊相关分析,生成了热图,显示食物过敏与产气荚膜梭菌阳性显著相关,粪便潜血、粪便中的白细胞、抗生素使用、血小板增加,血红蛋白减少(P <0.0001)。
据报道,血小板与食物过敏反应有关,并且与过敏反应的严重程度相关。我们的研究显示食物过敏与血小板之间呈正相关(P<0.0001),这与报道的研究一致。婴儿食物过敏的常见症状包括腹泻和血便,常被误诊为急性或慢性肠炎而采用抗生素治疗。持续便血可能导致贫血,这可以解释本研究中食物过敏与抗生素使用(P<0.0001)和血红蛋白水平(P=0.0001)之间的相关性。
这项真实世界研究结果首次表明,产气荚膜梭菌在有胃肠道症状的中国婴儿中定植率很高,并且与食物过敏和牛奶蛋白过敏的发生有关。
产气荚膜梭菌广泛存在于健康人和动物的胃肠道中。
本研究显示,有胃肠道症状的婴儿中有33.52%有产气荚膜梭菌定植,新生儿和1~6月龄婴儿产气荚膜梭菌阳性率分别为30.25%和45.88%。不同的定植率可能是由于不同的患者群体、分娩方式、喂养方法和胃肠道疾病状况所致。
产气荚膜梭菌和艰难梭菌是可能与婴儿胃肠道感染和过敏相关的致病性梭菌。
先前的研究表明,产气荚膜梭菌定植可能导致多种病理状况,从无症状感染到严重危及生命的败血性休克,例如气性坏疽、食物中毒、坏死性肠炎、抗生素相关性腹泻、菌血症、肠毒血症和严重血管内感染溶血。
研究重点是产气荚膜梭菌感染及其产生一系列致命毒素(七种主要毒素型 A-G)和酶(例如卵磷脂酶、纤维蛋白酶、透明质酸酶、胶原酶和 DNA 酶)的能力,这些酶有助于其侵袭性。
大多数已确定的腹泻相关病原体是病毒,但在近 80% 的报告病例中并未发现特定病原体。这些病例的病因可能包括产气荚膜梭菌胃肠道感染和饮食/环境因素。
目前还没有关于产气荚膜梭菌定植是否影响儿童食物过敏发生的报道。在112名确诊产气荚膜梭菌定植婴儿队列中,其中 48.21% 出现食物过敏,37.5% 出现牛奶蛋白过敏,这两种患病率均显著高于产气荚膜梭菌阴性组(7.59% 和 5.06%),并且显著高于一般儿科人群中报告的水平。
此外,相关分析显示,食物过敏与该研究队列中产气荚膜梭菌定植、抗生素使用、粪便潜血、粪便白细胞、血小板和血红蛋白水平显著相关。该研究结果清楚地表明,产气荚膜梭菌在出生后第一年定植可能会促进食物过敏和牛奶蛋白过敏的发生。
研究表明,产气荚膜梭菌肠毒素(CPE)在促进紧密连接分解和诱导上皮损伤方面发挥着关键作用,从而导致微生物群变化并触发宿主免疫反应。免疫细胞群的变化很大程度上是由环境和微生物抗原驱动的。
关于产气荚膜梭菌定植与食物过敏的研究很少,但结果并不一致。有报道,过敏婴儿的拟杆菌和/或克雷伯氏菌定植率较高,而产气荚膜梭菌/丁酸梭菌定植率较低。
总之,研究人员推测产气荚膜梭菌定植会因其肠毒素而引起侵袭性胃肠道感染,导致紧密连接分解、上皮损伤、微生物群变化、宿主免疫反应异常,并最终导致食物过敏。
需要进一步的研究来阐明产气荚膜梭菌定植的婴儿发生食物过敏的潜在免疫学和分子机制。
总的来说,产气荚膜梭菌定植为婴儿牛奶蛋白过敏和食物过敏提供了一个思路,应用肠道菌群检测可以帮助识别食物过敏的风险,从而采取相应的预防措施。
此外,对于产气荚膜梭菌定植的抵抗力、空间和特定营养物质的竞争或毒素功能的研究,也能为进一步探索肠道菌群与过敏关系及预防和治疗提供了新的视角。
通过深入研究肠道菌群的变化及其与过敏疾病的关联,这可能涉及有效的药理学抑制剂/化合物的合理设计,调节补充剂/益生菌等各种方式对肠道菌群加以改善,有望为未来开发更加个性化的过敏预防和治疗策略提供重要参考。
这里我们来系统地了解一下产气荚膜梭菌。
产气荚膜梭菌是一种革兰氏阳性,产毒厌氧细菌,有荚膜、非运动、无鞭毛,属于梭菌属,是人类和动物肠道固有的机会病原体。
芽胞形成能力强,可在不利环境下存活
可以形成在传播过程中至关重要的孢子。产气荚膜梭菌孢子对高温、氧气或低营养水平等应激环境具有极强的抵抗力。当遇到有利条件时,内生孢子迅速萌发,产气荚膜梭菌的世代时间最短,为 6.3 分钟。在缺氧环境下生长迅速,能快速繁衍和侵袭宿主组织。对抗生素和化学消毒剂具有一定耐受性。
这些特征有利于其在不同的环境生态位中生存,包括土壤、粪便、污水、食物以及人类和动物的肠道。
这种“生存能力”意味着产气荚膜梭菌与许多感染和疾病有关,包括食源性细菌性疾病等。
具有多种水解酶
可分解蛋白质、脂肪等营养物质,为自身生长提供营养。
产气荚膜梭菌产生大量胞外降解酶,例如蛋白酶(例如梭菌蛋白酶)、透明质酸酶(mu毒素)、胶原酶和糖苷内切酶。
内切-N-乙酰半乳糖酰胺酶 EngCP,在 A 型菌株引起的气性坏疽期间很重要,而两种锌金属蛋白酶则导致 G 型菌株引起的禽坏死性肠炎。
最广为人知的产气荚膜梭菌降解酶是神经氨酸酶,它从宿主细胞表面或粘液中的各种唾液酸糖结合物上产生游离的神经氨酸。产生三种神经氨酸酶,分别为NanJ、NanI、NanH。
产生多种细胞外毒素
已知它能分泌超过20 种毒素,每种毒素类型都与特定疾病相关
A型和C型毒素被认为会引起人类疾病。
A型毒素是导致大多数与产气荚膜梭菌相关的食物中毒和非食源性腹泻疾病的主要因素。根据CDC对食源性疾病暴发的流行病学监测数据,产气荚膜梭菌占5%的暴发事件,10%的疾病病例,4%的住院率。
男性的发病率略高(65%),大多数病例发生在20-49岁人群中。
C型毒素与1944年-1949年在德国战后出现的地方性坏死性肠炎,以及在巴布亚新几内亚高地出现的猪痢有关。严重营养不良会增加对 C 型感染的易感性。
CPE基因,在孢子形成后细胞裂解时产生肠毒素CPE,可能会导致胃肠炎。
产气荚膜梭菌主要毒素的结构域示意图
doi.org/10.1080/22221751.2024.2341968
(A) CPA 毒素:CPA毒素与GM1a相互作用,水解磷脂酰胆碱(PC)和鞘磷脂(SM),导致二酰甘油(DAG)和神经酰胺(CER)的形成,并激活原肌球蛋白激酶A受体(TrKA),并触发细胞内信号级联与IL-8释放。磷脂酰肌醇 3 (IP3) 的激活促进细胞质内钙 (Ca+) 进入。
(B) CPB 毒素:CPB 与血小板内皮细胞粘附分子 1 (PECAM-1) 结合,随后释放三磷酸腺苷 (ATP) 并形成允许离子交换进出细胞的孔。
(C) ETX 毒素:ETX 毒素与蛋白质“髓磷脂和淋巴细胞”(MAL) 相互作用,形成活性孔,诱导离子跨细胞膜运输和交换。
(D) ITX 毒素:Ib与脂解刺激脂蛋白受体(LSR)受体的结合介导其进入宿主细胞,通过内吞作用促进Ia进入通道的形成,随后肌动蛋白丝解聚,产生形态变化和改变细胞通透性。
(E) CPE 毒素:CPE毒素与紧密连接蛋白受体结合,通过离子交换和渗透失衡促进细胞表面孔的形成。
(F) NetB 毒素:通过形成允许 Na+、Cl–y 和 Ca2+等离子进入的七聚体亲水孔来识别细胞膜中的无胆固醇区域。
有研究培养从 333 名婴儿的粪便样本中分离出的产气荚膜梭菌,其中29.4% 的婴儿在出院前已被产气荚膜梭菌定植。
三个因素与携带概率呈负相关:
产气荚膜梭菌在母乳中生长不良,说明母乳喂养在早产新生儿护理中的重要性。
长期使用抗生素或持续气道正压通气(CPAP)氧气治疗会在早产儿肠道中为产气荚膜梭菌创造一个不利的环境,从而降低携带的可能性。
产气荚膜梭菌分离物在营养丰富的培养基或母乳中生长,可以作为单一培养物,也可以与婴儿双歧杆菌共培养,婴儿双歧杆菌被选为代表典型的竞争性肠道物种。
食源性疾病
产气荚膜梭菌是食源性疾病(食物中毒)的常见原因,产生肠毒素导致急性胃肠炎。食源性产气荚膜梭菌会导致:腹泻、腹部绞痛、胀气和腹胀。
通常,人们在摄入细菌及其孢子后,当微生物在肠道中形成孢子时,就会形成毒素,通常在 6-24 小时内就会出现症状。腹泻突然发生,但通常症状会在 24-48 小时内消失。
非食源性胃肠道感染
这种类型的感染通常归因于抗生素的使用。但有些人即使不服用抗生素,也会因产气荚膜梭菌而出现偶发性胃肠道症状。免疫系统较弱的人患此类疾病的风险最大。
非食源性产气 荚膜梭菌胃肠道感染导致:
这种类型的产气荚膜梭菌感染通常发生在最近服用过抗生素的60 岁以上成年人中。症状与食源性梭菌感染相似,但持续三天到几周不等。
这种类型的梭菌感染可导致严重脱水(体内水分流失)。然而,人们通常会康复。
一项研究表明,与健康个体 [5%] 相比,IBD 成年患者[19-27%] 产气荚膜梭菌的患病率更高,这表明与 IBD 存在潜在关联。
产气荚膜梭菌具有大量HMO消化所需的糖苷水解酶,表明它具有婴儿肠道机会性定植的可能性,从而导致临床疾病。
皮肤和深层组织感染
产气荚膜梭菌与严重外伤后可能发生的严重皮肤和深层组织感染(气性坏疽)有关。
从受污染的伤口(例如复合性骨折、产后子宫)开始,感染会在 1-3 天内扩散。
皮肤或深层组织产气荚膜梭菌感染(气性坏疽)会导致:
有时,感染仅导致厌氧性筋膜炎或蜂窝织炎。
其他感染
如乳腺炎、子宫内膜炎等。
促进定植
定植能力,即体内持续和增殖/存活的能力,是一些产气荚膜梭菌感染(例如F型菌株非食源性人类胃肠道疾病)的重要特征,产气荚膜梭菌定植通常涉及生长/生存和粘附所需的营养获取。例如,F型非食源性胃肠道疾病即使在腹泻时也能持续长达数周,这表明肠道粘附和营养获取对于这些 F型菌株在腹泻时稳定定植于肠道是必需的。
肠道粘附
为了在胃肠道中定殖,产气荚膜梭菌使用多种分子策略,包括产生唾液酸酶。虽然产气荚膜梭菌产生三种唾液酸酶,但 NanI 是由持续存在于肠道中的 F 型非食源性胃肠道疾病菌株产生的。这种相关性表明 NanI 对产气荚膜梭菌慢性肠道疾病有重要贡献。
NanI 的蛋白酶激活可能进一步促进产气荚膜梭菌菌株引起的定植。
增加营养物质的获取
多项体外研究支持 NanI 对与肠道感染相关的产气荚膜梭菌菌株的生长和存活的贡献。例如,NanI在宿主粘蛋白或培养的 Caco-2 细胞存在的情况下支持F 型非食源性疾病菌株 F4969 的体外生长和存活。这种生长促进涉及 NanI 生成的唾液酸的产生和利用,然后唾液酸可以被产气荚膜梭菌代谢。
可能涉及几种潜在的机制:
NanI 可能通过修饰肠细胞表面来促进产气荚膜梭菌粘附,从而允许暴露用于结合的未知受体,和/或减少该表面上唾液酸的负电荷。
大批量烹制并在不安全温度下保存的食物,通常会导致产气荚膜梭菌食物中毒的爆发。通常与产气荚膜梭菌食物中毒有关的特定食物包括:
产气荚膜梭菌食物中毒的爆发往往发生在为大量人群提供服务并且将食物保持在适当温度可能很困难的环境中,例如医院、学校食堂、监狱、疗养院和提供餐饮的大型活动。
组织感染
食物中毒
将食物煮至安全的内部温度杀死细菌。使用食物温度计进行检查,尤其是整只家禽和大块烤肉。
如果煮熟的食物不尽快食用,请将其保持在60 ℃或更高温度或4℃或更低温度。
烹饪食物或将其从保持安全内部温度的器具中取出后 2 小时内,将剩菜冷藏在4℃或更低的温度下。如果食物暴露在32℃以上的温度下(例如炎热的汽车或野餐),请在 1 小时内冷藏。
热食可以直接放入冰箱。
将大锅食物(例如汤和炖菜)和大块肉类(例如烤肉)分成小份,以帮助其在冰箱中快速冷却。
食用前将剩菜重新加热至74℃或更高温度。
主要参考文献
Huang KY, Liang BS, Zhang XY, Chen H, Ma N, Lan JL, Li DY, Zhou ZW, Yang M. Molecular characterization of Clostridium perfringens isolates from a tertiary children’s hospital in Guangzhou, China, establishing an association between bacterial colonization and food allergies in infants. Gut Pathog. 2023 Oct 8;15(1):47.
Yao PY, Annamaraju P. Clostridium perfringens Infection. [Updated 2023 Aug 8]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2024 Jan-.
McDonald AG, Lisacek F. Simulated digestions of free oligosaccharides and mucin-type O-glycans reveal a potential role for Clostridium perfringens. Sci Rep. 2024 Jan 18;14(1):1649.
Low KE, Smith SP, Abbott DW, Boraston AB. The glycoconjugate-degrading enzymes of Clostridium perfringens: Tailored catalysts for breaching the intestinal mucus barrier. Glycobiology. 2021 Jun 29;31(6):681-690.
Mehdizadeh Gohari I, A Navarro M, Li J, Shrestha A, Uzal F, A McClane B. Pathogenicity and virulence of Clostridium perfringens. Virulence. 2021 Dec;12(1):723-753.
Camargo A, Rámirez JD, Kiu R, Hall LJ, Muñoz M. Unveiling the pathogenic mechanisms of Clostridium perfringens toxins and virulence factors. Emerg Microbes Infect. 2024 Apr 9:2341968.
Arjomand Fard N, Wine E. Clostridium perfringens: A Potential Pathobiont in Inflammatory Bowel Disease. J Crohns Colitis. 2024 Feb 16:jjae019.
Kiu R, Shaw AG, Sim K, Acuna-Gonzalez A, et al., Particular genomic and virulence traits associated with preterm infant-derived toxigenic Clostridium perfringens strains. Nat Microbiol. 2023 Jun;8(6):1160-1175.