Tag Archive 饮食

这7种类型的食物可能引起 “痘痘”

谷禾健康

痤疮(俗称“痘痘”)是一种常见的皮肤病,会影响全球近10%的人口。导致痤疮发展的因素很多,包括皮脂和角蛋白的产生,引起痤疮的细菌,激素,毛孔阻塞和炎症。

饮食与痤疮之间的联系一直存在争议,但最近的研究表明饮食在痤疮的发生中可以发挥重要作用。

本文将列举以下7种可能引起痤疮的食物,并提供一些相应的饮食建议。

精制的谷物和糖  

吃大量精制碳水化合物可能会增加血糖和胰岛素水平,并促进痤疮的发生。

与很少或没有痤疮的人相比,有痤疮的人往往消耗更多的精制碳水化合物。

富含精制碳水化合物的食物包括:

用白面粉制成的面包,饼干,谷类食品或甜点;

白面粉意面;

白米饭和米粉;

苏打水和其他含糖饮料;

甜味剂,如蔗糖,枫糖浆,蜂蜜;

一项研究发现,经常食用添加糖的人患痤疮的风险增加30%,而那些经常吃糕点和蛋糕的人患痤疮的风险则增加20%

这可以通过精制碳水化合物对血糖和胰岛素水平的影响来解释。

精制的碳水化合物会迅速吸收到血液中,从而迅速提高血糖水平。当血糖升高时,胰岛素水平也会升高,以促进血糖从血液中传出并进入细胞。

但是,高水平的胰岛素对痤疮患者并不友好。胰岛素可使雄激素更加活跃,并增加胰岛素样生长因子1(IGF-1)。通过使皮肤细胞更快生长并促进皮脂生成,这有助于痤疮的发展。

另一方面,低升糖指数饮食法不会显著提高血糖或胰岛素水平,却可以减少痤疮的严重程度。

当然,仍需要进一步研究,来了解精制碳水化合物如何促进痤疮。

乳制品   

经常食用乳制品与痤疮严重程度的增加有关

许多研究发现,乳制品与青少年痤疮严重程度之间存在关联。

两项研究还发现,经常食用牛奶或冰淇淋的年轻人粉刺的几率是不经常吃的人的 4 倍

但是,迄今为止的研究主要集中在青少年和年轻人,并且仅显示了牛奶和痤疮之间的相关性,而不是因果关系。尚不清楚牛奶如何促进痤疮的形成,但是有几种理论:

已知牛奶会增加胰岛素水平,而不受其对血糖的影响,这可能会使痤疮严重程度恶化。

牛奶还含有刺激肝脏产生更多IGF-1的氨基酸,这与痤疮的发生有关。

需要进行更多的研究,以确定是否存在特定数量或类型的乳制品,可能加剧痤疮。

   西式快餐   

经常吃西式快餐与痤疮发生的风险增加有关

痤疮与进食富含卡路里,脂肪和精制碳水化合物的西式饮食密切相关。

西式快餐食品,例如汉堡,矿块,热狗,炸薯条,苏打水和奶昔,是典型西方饮食中常见的食物,可能增加痤疮的风险。 

一项针对 5000 多名中国青少年的研究发现,高脂饮食会使痤疮发生风险增加43%。定期吃西式快餐会增加17%的风险。

另一项针对 2300 名土耳其男子的单独研究发现,经常吃汉堡或香肠与痤疮发生风险增加24%有关。

目前尚不清楚为什么吃西式快餐会增加患痤疮的风险,但一些研究人员提出,它可能以促进痤疮发展的方式影响基因表达改变激素水平

必须要说明的是,大多数有关西式快餐和痤疮的研究都使用了自我报告的数据。这种类型的研究仅显示饮食习惯和痤疮风险的关联,而不能证明西式快餐会直接导致痤疮。因此,需要更多的研究。

 富含Omega-6脂肪的食物 

富含omega-6脂肪酸和omega-3含量低的饮食具有促炎作用,并且可能使痤疮恶化。

跟典型的西方饮食一样,含有大量omega-6脂肪酸的饮食与炎症和痤疮的增加有关。

这可能是因为西方饮食中含有大量的玉米和豆油,它们富含omega-6脂肪,而很少包含omega-3脂肪的食物,例如鱼和核桃。

omega-6和omega-3脂肪酸的这种不平衡会促使人体进入炎症状态,这可能会加剧痤疮的严重性。相反,补充omega-3脂肪酸可降低炎症水平,并可减轻痤疮严重程度。

尽管Omega-6脂肪酸和痤疮之间有关联,但尚未对此主题进行随机对照研究,需要进行更多研究。

   巧克力   

研究支持食用巧克力和痤疮之间的联系

自上世纪二十年代以来,巧克力就一直被认为是痤疮的诱因,但到目前为止,尚未达成共识。

多项非正式调查已将食用巧克力与增加痤疮的风险联系起来,但这不足以证明巧克力会引起痤疮。

最近的一项研究发现,易长粉刺的男性每天食用25克99%黑巧克力,仅在两周后出现了更多的痤疮病变。

另一项研究发现,与服用安慰剂的男性相比,每天服用100%可可粉胶囊的男性,在一周后的痤疮病变明显更多。

至于巧克力为什么会增加痤疮的确切原因还不太清楚,有一项研究发现,吃巧克力会增加免疫系统对引起痤疮细菌的反应,这可能有助于解释上述发现。

   乳清蛋白粉   

少量数据表明,服用乳清蛋白粉与痤疮之间存在联系。

乳清蛋白粉是一种流行的膳食补充剂。

它是氨基酸、亮氨酸和谷氨酰胺的丰富来源。这些氨基酸可使皮肤细胞生长和分裂更快,这可能有助于痤疮的形成。

乳清蛋白中的氨基酸还可以刺激人体产生更高水平的胰岛素,这与痤疮的发生有关。

一些案例研究报告了男性运动员乳清蛋白消耗与粉刺之间的联系。另一项研究发现痤疮严重程度与乳清蛋白补充剂天数之间的直接相关性。

这些研究支持乳清蛋白和痤疮之间的联系,但需要更多的研究来确定乳清蛋白是否引起痤疮。

  个人过敏食物  

食物敏感性反应可增加体内的炎症程度,理论上可能会加剧痤疮。

有人提出,痤疮从根本上说是一种炎症性疾病。事实证明,抗炎药如皮质类固醇是治疗严重痤疮的有效方法,而且痤疮患者血液中的炎症分子水平升高

食物导致炎症的一种方法是通过食物敏感性,也称为迟发型超敏反应。

当免疫系统错误地将食物识别为威胁并对其发起免疫攻击时,就会出现食物过敏。这会导致高水平的促炎分子在体内循环,从而加剧痤疮

尽管炎症和痤疮之间似乎存在联系,但尚无研究直接调查食物敏感性在其发展中的特定作用。这是一个值得研究的领域,有助于更好地了解食物,免疫系统和炎症如何影响痤疮的发生。

知道自己对哪些食物过敏,就别吃了吧~

以上7种是可能引起痤疮的食物,那么到底该吃什么呢?

以下建议可供参考。

 Omega-3脂肪酸 

Omega-3具有抗发炎作用,经常食用富含Omega-3的食物可降低痤疮的发生风险。

 益生菌 

益生菌可促进健康的肠道和平衡的微生物组,这与减少炎症和降低痤疮发生的风险有关。

 绿 茶 

绿茶含有多酚,与减少发炎和降低皮脂产生有关。绿茶提取物被发现可以减少痤疮的严重程度。

 姜 黄 

姜黄含有抗炎多酚姜黄素,可帮助调节血糖,提高胰岛素敏感性并抑制引起痤疮细菌的生长,从而减少痤疮。

 维生素A,D,E和锌 

这些营养物质在皮肤和免疫健康中起着至关重要的作用,可能有助于预防痤疮。

 旧石器时代饮食 

旧石器时代饮食富含瘦肉,水果,蔬菜和坚果,而谷物,奶制品和豆类则少。与降低血糖和胰岛素水平有关。

 地中海式饮食 

地中海式饮食富含水果,蔬菜,全谷物,豆类,鱼和橄榄油,而乳制品和饱和脂肪则少。它也与降低痤疮严重程度有关。

结  语

你可以不必完全避免与痤疮有关的所有食物(一般也做不到

),但应与上述其他营养丰富的食物一起,保持均衡饮食。

 小 妙 招 

如果有时间,可以坚持把吃的东西记录下来,看看某些症状是否与特定食物有关联。

长此以往,你可以慢慢去寻找正在吃的食物和皮肤健康之间的某种关系,那也将会是属于你个人的饮食宝典。

主要参考文献:

向上滑动阅览

Burris J, Rietkerk W, Woolf K. Acne: the role of medical nutrition therapy. J Acad Nutr Diet. 2013 Mar;113(3):416-30. doi: 10.1016/j.jand.2012.11.016. PMID: 23438493.

Burris J, Rietkerk W, Shikany JM, Woolf K. Differences in Dietary Glycemic Load and Hormones in New York City Adults with No and Moderate/Severe Acne. J Acad Nutr Diet. 2017 Sep;117(9):1375-1383. doi: 10.1016/j.jand.2017.03.024. Epub 2017 Jun 9. PMID: 28606553.

Blasbalg TL, Hibbeln JR, Ramsden CE, Majchrzak SF, Rawlings RR. Changes in consumption of omega-3 and omega-6 fatty acids in the United States during the 20th century. Am J Clin Nutr. 2011 May;93(5):950-62. doi: 10.3945/ajcn.110.006643. Epub 2011 Mar 2. PMID: 21367944; PMCID: PMC3076650.

Khayef G, Young J, Burns-Whitmore B, Spalding T. Effects of fish oil supplementation on inflammatory acne. Lipids Health Dis. 2012 Dec 3;11:165. doi: 10.1186/1476-511X-11-165. PMID: 23206895; PMCID: PMC3543297.

Aksu AE, Metintas S, Saracoglu ZN, Gurel G, Sabuncu I, Arikan I, Kalyoncu C. Acne: prevalence and relationship with dietary habits in Eskisehir, Turkey. J Eur Acad Dermatol Venereol. 2012 Dec;26(12):1503-9. doi: 10.1111/j.1468-3083.2011.04329.x. Epub 2011 Nov 10. PMID: 22070422.

Adebamowo CA, Spiegelman D, Danby FW, Frazier AL, Willett WC, Holmes MD. High school dietary dairy intake and teenage acne. J Am Acad Dermatol. 2005 Feb;52(2):207-14. doi: 10.1016/j.jaad.2004.08.007. PMID: 15692464.

Melnik BC, John SM, Schmitz G. Milk is not just food but most likely a genetic transfection system activating mTORC1 signaling for postnatal growth. Nutr J. 2013 Jul 25;12:103. doi: 10.1186/1475-2891-12-103. PMID: 23883112; PMCID: PMC3725179.

Vongraviopap S, Asawanonda P. Dark chocolate exacerbates acne. Int J Dermatol. 2016 May;55(5):587-91. doi: 10.1111/ijd.13188. Epub 2015 Dec 29. PMID: 26711092.

Bar-Peled L, Sabatini DM. Regulation of mTORC1 by amino acids. Trends Cell Biol. 2014 Jul;24(7):400-6. doi: 10.1016/j.tcb.2014.03.003. Epub 2014 Mar 31. PMID: 24698685; PMCID: PMC4074565.

Silverberg NB. Whey protein precipitating moderate to severe acne flares in 5 teenaged athletes. Cutis. 2012 Aug;90(2):70-2. PMID: 22988649.

Pietschmann N. Food Intolerance: Immune Activation Through Diet-associated Stimuli in Chronic Disease. Altern Ther Health Med. 2015 Jul-Aug;21(4):42-52. PMID: 26030116.

饮食与抑郁症密不可分

谷禾健康

焦虑,抑郁,双相情感障碍,这类词越来越多出现在我们的生活。

你也许不知道,饮食可以通过多种途径影响心理健康

即便知道了饮食干预可以改善抑郁,那么如何进行饮食干预呢?

饮食干预措施有好几大类,包括:营养干预措施(例如锌,omega-3脂肪酸);食品干预措施(例如绿茶,橄榄油);全饮食干预措施(例如地中海饮食)

什么样的饮食干预措施有效?

对哪些人有效?

在什么情况下有效?

……

要探索这些问题的答案

就需要了解支持这种关系的关键生物学机制。

将饮食与健康结果相关联的作用机制是复杂的,多方面的,相互作用的,并不局限于任何一种生物途径。

饮食可能影响心理和脑部健康的基本作用机制

Wolfgang Marx,et al, Mol Psychiatry, 2020

01

发 炎 反 应

有人说,抑郁和发炎有什么关系?

——大约25%的精神疾病患者(包括情绪障碍和精神分裂症)表现出较高的炎症水平。

炎症反应如何引起的?

免疫系统的这种过度激活是由多种因素引起的。生活中的困境,来自社会的压力,不良生活习惯(吸烟,缺少锻炼)等,都会引起炎症反应增加,从而促进抑郁症状。

典型的炎症反应包括三个主要成分:

炎症诱导剂(例如病原体或与受损相关的分子模式); 

检测诱导物的传感器(例如免疫细胞表达的受体);

传感器诱导的炎症介质,包括细胞因子,趋化因子和前列腺素。

一旦被激活,这些炎症分子就可以影响与情绪障碍相关的生理领域,包括神经递质代谢,神经内分泌功能和大脑活动功能等。

抗炎剂可能辅助治疗抑郁症

用于医疗目的的细胞因子给药(如干扰素α注射)可引起情绪和行为的改变,例如情绪低落,疲劳,焦虑,睡眠障碍,快感缺乏和认知功能障碍,所有这些都与抑郁症的症状非常相似。Meta分析得出结论:抗炎剂,如细胞因子抑制剂、非甾体抗炎药和抗生素,包括米诺环素,可能是抑郁症的有效辅助治疗法。

健康饮食的抗炎特性

健康的饮食习惯(和单独的饮食成分)已显示出可能与精神疾病有关的抗炎特性。在慢性代谢疾病人群中进行的纵向观察研究和临床试验均表明,采用健康的饮食方式(例如地中海饮食)可以减少全身性炎症

最近的研究还证实,患有严重精神疾病的个体比一般人群具有高得多的“饮食炎症”,即,促炎食物(如精制碳水化合物和反式脂肪)的摄入量较高,而抗炎食物的摄入量(主要来源于天然食品和植物)较低。

深度解析 | 炎症,肠道菌群以及抗炎饮食

对纵向研究的Meta分析表明,具有炎性饮食模式的个体随着时间的推移发展为抑郁症风险更大

因此,促炎饮食改变为地中海或其他抗炎饮食模式,可能提供一种对抗与精神障碍的发作和严重程度相关的炎症状态的新策略。

抗炎食物

健康的饮食习惯会帮助摄入许多营养成分,可以减轻炎症。其中,蓝莓,可可和姜黄素等存在的植物化学物质(例如多酚)具有很强的抗炎特性,可能有助于治疗多种精神疾病。

Omega-3脂肪酸二十碳五烯酸和二十二碳六烯酸,多不饱和脂肪酸在鲑鱼等海洋食品中含量很高,具有抗炎特性,可以改善并延缓细胞因子诱发的抑郁症的发作。

02

氧 化 应 激

氧化应激(氧化和抗氧化过程的不平衡)可能导致细胞对脂质,蛋白质和DNA的损伤。

持续的氧化应激是抑郁症和其他精神疾病的一种潜在的作用机制。

抑郁症氧化应激指标升高

对115项研究的Meta分析报告显示,与健康对照组相比,抑郁症患者的氧化应激指标(如丙二醛和8-F2-异前列腺素)升高,而抗氧化剂指标(如总抗氧化剂含量)较低。

此外,据报道抗抑郁药治疗后氧化应激标志物降低,证实了因果关系。一项验尸研究也显示,与健康对照相比,抑郁症、躁郁症和精神分裂症患者大脑中的氧化应激标志物升高。

除了氧化应激对细胞损伤的直接影响外,活性氧和氮的增加会导致线粒体功能障碍、炎症和色氨酸代谢改变,这些都与精神健康障碍有关。

西式饮食增加氧化应激的标志

饮食可以通过剥夺或增加具有抗氧化特性的饮食化合物的供应来加剧和改善氧化应激。动物研究表明,高脂肪西式饮食可以增加氧化应激的标志,如大脑和外周的蛋白质氧化和脂质过氧化反应。

提高膳食质量是可行的干预措施

营养丰富的饮食富含一系列具有直接和间接抗氧化特性的化合物与氧化应激标志物(如f2 -异前列腺素和血浆氧化低密度脂蛋白)的降低有关。

维生素,例如抗坏血酸(维生素C)和α-生育酚(维生素E)具有直接清除自由基的特性。

营养素(例如硒,锌和半胱氨酸)是抗氧化剂系统(例如谷胱甘肽过氧化物酶和超氧化物歧化酶)的辅助因子。初步证据表明,补充抗氧化剂如n-乙酰半胱氨酸可以改善抑郁症状。

临床前研究表明,多酚还可以通过上调抗氧化防御系统来降低氧化应激,包括诱导核因子红细胞相关因子(Nrf)-2和调节炎症途径核因子κB(NFkB)和有丝分裂激活蛋白激酶(MAPK)。

03

肠 道 微 生 物 群

肠道微生物群是饮食和大脑健康之间潜在的关键中介途径。

大量研究表明,肠道微生物群通过微生物群-肠-脑轴来调节生理过程,包括认知功能,神经精神疾病和行为。动物模型表明饮食、微生物群和与抑郁症相关的机制之间存在直接联系。

Wolfgang Marx,et al, Mol Psychiatry, 2020

高脂饮食导致焦虑样行为增加,记忆力下降

饮食引起的肠道微生物群的改变会导致行为改变,焦虑和抑郁。例如,在啮齿动物模型中,高脂肪西式饮食导致厚壁菌门/拟杆菌门比例增加,探索行为减少,焦虑样行为增加,记忆力下降。

其他临床前研究表明,高热量饮食会增加梭状芽孢杆菌 Clostridiales,疣微菌科 Ruminococcaceae 和拟杆菌目 Bacteroidales 的丰度,并导致认知灵活性,社会和物体识别能力受损

益生元逆转慢性应激引起的肠道菌群变化

益生元补充剂(低聚果糖和低聚半乳糖)通过防止有益微生物(如双歧杆菌或乳杆菌)的减少抑制正常的慢性应激诱导的促炎性细胞因子和小鼠的抑郁样行为的出现

已经提出:肠道微生物群的多种直接间接途径可以调节大脑功能和行为,包括微生物代谢产物(例如纤维细菌发酵产生的短链脂肪酸),神经元途径(例如迷走神经),神经活性途径(如5-羟色胺等神经递质和神经活性代谢物),下丘脑-垂体-肾上腺(HPA)轴,免疫和内分泌途径以及微生物群的直接神经活性代谢潜能。

饮食模式影响肠道菌群,影响情绪改变行为

短期营养摄入和长期饮食模式都是影响肠道菌群多样性,组成和代谢功能的因素。

迄今为止,只有一项不受控制的饮食干预研究的人类数据表明,富含菊粉的蔬菜饮食增加了双歧杆菌,导致饱腹感个人能力水平的改善(但在情绪或感知压力方面没有差异)。

类似地,最近的一项研究表明,在老年参与者中,通过1年的地中海饮食干预,菌群变化与认知功能的改善和炎症标志物C反应蛋白和白细胞介素-17的减少有关。

营养素通过直接影响菌群调节大脑健康

例如,由肠道微生物群发酵膳食纤维产生的短链脂肪酸具有重要的免疫调节功能。这种关系也可能是双向的,肠道微生物群参与了这些化合物的生物利用度。

由此,我们可以想到,通过膳食补充剂(益生菌和益生元)和食物(例如发酵食品:泡菜,酸奶和酸菜等)来调节肠道菌群,以此作为调节菌群-肠-脑轴的一种手段。

益生菌和益生元

益生菌和益生元对精神健康影响的证据有限且变化很大。

研究表明,单独乳酸菌或与双歧杆菌联合使用——可能会改善抑郁和焦虑

但也有Meta分析表明,与对照组相比,补充益生元后的抑郁或焦虑症状没有显著差异。然而,这是在大部分非临床参与者的有限样本(n = 4-5个)中进行的,一般来说,生物干预可能在临床参与者中显示疗效,而不是在非临床参与者中。

发酵食品是另一种具有操纵肠-脑交流的食品

研究表明,食用发酵食品后,有望改善情绪。由于益生菌的生存能力和可变定居能力,这可能解释了物种/菌株及其组合之间的效力不一致;包括各种植物食物来源的饮食模式,可能更有利于促进各种益生元底物和益生菌菌株消耗。

菌群通过食物过敏来介导饮食与大脑健康的联系

自我报告食物过敏在抑郁症患者中更为常见:

抑郁症vs.健康对照(13% vs. 9%)

真正的食物过敏,则饮食中的过敏原会触发胃肠道粘膜中肥大细胞的IgE致敏,导致一系列炎症介质,从而削弱肠道通透性。肠道通透性的提高与革兰氏阴性肠杆菌的易位性增强和免疫激活有关,可能导致全身性炎症,包括神经炎症,这是抑郁症的特征。 

需要进一步对真正的食物过敏者进行大规模研究,以阐明其促进抑郁症的发展。对非IgE介导的食物超敏感(即食物不耐受)的研究(如麸质和酪蛋白),也可能揭示饮食诱导的肠道微环境变化如何影响情绪。

生命早期微生物接触和过敏风险:如何预防

04

下丘脑-垂体-肾上腺轴

HPA轴由大脑(下丘脑),垂体和肾上腺组成,调节糖皮质激素的产生,并与精神疾病的病理生理有关。

超过60%的抑郁症患者表现出过多的皮质醇产生或对HPA系统产生其他干扰,例如对地塞米松抑制试验的反应改变和促肾上腺皮质激素水平降低。在临床恢复后,观察到HPA轴活性改变的一些指标的正常化,表明其在疾病病理生理学中发挥作用。

此外,儿童早期创伤可能会导致HPA轴永久失调,从而导致整个生命周期内出现精神疾病的风险增加。例如,与母亲分离的动物改变了HPA轴,从而表现出对成年期压力和记忆力障碍的反应。

营养素(例如维生素C)的临床干预试验报告显示,皮质醇对急性反应性降低健康成年人的生理压力。

Omega-3脂肪酸干预研究还表明,健康成年人和抑郁症患者的皮质醇水平都有改善。

同样,使用富含多酚的食物(如石榴汁和黑巧克力)进行的干预研究也报告了健康个体皮质醇水平的降低。

这种影响可能是通过心理应激后对下丘脑激活的促炎反应的调节而介导的。由于肠脑轴在心理健康中的新角色,益生菌也已被研究为针对HPA轴的潜在干预措施。

在健康成年人中进行的初步临床干预研究证实了这些结果。例如,在一项双盲,随机,对照试验中,与安慰剂相比,在健康个体中,多菌株益生菌干预24小时无尿皮质醇和自我报告的应激改善的结果。但在一项针对60名抑郁症患者的类似益生菌临床试验中,两组之间的血液皮质醇水平无显著差异。

肠道微生物(菌群)与脑神经(中枢神经)到底如何联系?

05

成人海马神经发生和BNDF

成年海马体的神经发生水平与认知和情绪直接相关。

抑郁症患者的血清BDNF水平降低。

海马体是边缘系统的关键组成部分,在学习,记忆形成和情绪中起着核心作用。 

啮齿类动物功能研究表明,成年海马体的神经发生水平与认知和情绪直接相关。例如,在小鼠中,海马神经发生水平增加与学习和记忆能力的改善有关,而海马神经元的减少通常与抑郁症某些方面行为有关。  

BDNF(脑源性神经营养因子)是一种神经营养蛋白,在海马体中高度表达,并参与关键的细胞功能

确实,BDNF是典型的分子,可以解释饮食,运动和抗抑郁疗法对抑郁症和焦虑症行为的作用。重型抑郁症患者的血清BDNF水平降低,而BDNF对抑郁症发病机制的保护作用已获得了一些实验性支持。

证据表明,可以通过饮食调节BDNF和成人海马神经发生的调控。动物模型表明,高脂肪和高糖的西式饮食会损害神经发生降低海马体内的BDNF水平,并对认知能力产生不利影响

在动物模型中的大量研究表明,饮食成分(例如omega-3脂肪酸,益生菌和维生素)的有益作用。在精神病理,衰老和疾病的情况下,诸如白藜芦醇,蓝莓,绿茶,姜黄素和可可等多种多酚化合物,也已被证明可以逆转不良变化并保持成年海马神经发生的完整性。

此外,动物模型表明,其他饮食指标(包括卡路里摄入,进餐频率和进餐质地)可能会调节海马神经发生水平。

观察性研究提供了进一步的证据,表明健康的饮食习惯与较大的海马体积之间存在直接的联系,而不受多种解释因素(例如年龄,性别,教育程度)的影响。其他饮食范例,例如通过持续减少每日总食物摄入量或间歇性禁食(例如,每隔一天进食)来限制热量,也可能影响BDNF的表达。

最近的人类干预研究表明,西式饮食会损害海马依赖性学习和记忆能力。

当然,也可以通过本文中提到的其他途径,例如通过肠道菌群炎症途径来调节神经发生。

06

色氨酸——犬尿氨酸 代谢

色氨酸的主要生理途径是沿着犬尿氨酸途径,它会产生神经毒性的喹诺林酸和神经保护性的神经氨酸。

色氨酸是饮食中必须提供的一种必需氨基酸,是许多关键神经活性分子的重要组成部分。

在精神病学中,对色氨酸的可用性和代谢的关注主要集中在其转化为血清素,血清素是绝大多数抗抑郁药和一线抗焦虑药的治疗目标。

然而,色氨酸的主要生理途径是犬尿氨酸途径,它会产生神经毒性的喹诺林酸和神经保护性的神经氨酸。人们越来越多认识到导致犬尿氨酸产生增加的外周机制的重要性,并且认识到沿该途径产生的代谢物是一系列神经和精神疾病的重要神经生物学介质,包括但不限于抑郁症和精神分裂症。

此外,这种代谢级联反应的启动可能是由于压力或免疫系统和炎症途径的激活。这使得色氨酸在这一途径上的代谢可用性成为心理健康管理中的一个重要考虑因素

我们日常生活中很多食物都含有色氨酸,包括鸡肉,金枪鱼,燕麦,花生,香蕉,牛奶,奶酪和巧克力。

尽管大部分来自摄入蛋白质的色氨酸都在小肠中吸收,但也还有大量可能到达结肠,肠道菌群在其命运和活动中起着关键作用

在使用饮食干预措施进行心理健康预防和治疗的背景下,了解色氨酸的可用性和新陈代谢可能很重要。例如,增加的蛋白质摄入量可导致色氨酸的利用率增加,碳水化合物摄入量的变化会影响游离色氨酸的水平,非酯化脂肪酸可从生理上置换白蛋白中的色氨酸。 

与色氨酸竞争通过血脑屏障运输的其他氨基酸的可用性波动也会影响中枢神经系统的代谢库。已经尝试了直接补充色氨酸作为抑郁症患者的一种干预措施,以改善血清素能信号传导。

还有一个研究调查了饮食干预通过其他方式调节尿氨酸代谢的作用,包括调节吲哚胺2,3双加氧酶(IDO)活性。体外和动物模型已经报道了个别的饮食成分,如姜黄素和绿茶,以及饮食方案,包括生酮饮食和禁食来调节尿氨酸途径的活性。

初步干预研究还表明,饮食方案,如热量限制和个人饮食成分,包括益生菌干预、白藜芦醇和红茶可能会调节尿氨酸代谢。例如,在最近一项针对60名抑郁症患者的试验中,与安慰剂相比,益生菌干预显著降低了尿氨酸水平,增加了3-羟基尿氨酸水平。

07

线粒体功能障碍

抑郁症的许多核心症状,如疲劳和认知障碍,都与中枢和外周线粒体功能障碍和生物发生减少相一致。

抑郁症和其他原发性精神疾病,包括双相情感障碍和精神分裂症一样,与线粒体功能障碍有关。

氧化磷酸化的破坏和线粒体ATP生成的受损可能导致神经可塑性失调神经发生的减少,这两者都是抑郁症神经生物学的核心要素

最近的一项研究显示,小鼠的线粒体移植恢复了海马体的ATP生成,逆转了脂多糖诱导的抑郁症模型,这一新证据支持了抑郁症的病理生理学因素。

大量临床前证据表明,不良饮食可能导致线粒体功能障碍。高脂饮食与线粒体生物发生异常有关,也与自由基生成增加、炎症和胰岛素抵抗有关。

高热量高碳水化合物饮食和高盐饮食有相似的作用,这些都是劣质西式饮食的核心成分。也有可能是由不良饮食引起的线粒体功能障碍的跨代遗传。在人类中,关于热量限制对线粒体功能的潜在有益影响,有不同的数据。

一些人类研究表明,限制热量的线粒体生物发生的标记物增加。

另一项研究显示,柠檬酸合成酶(一种线粒体含量的标志物)水平的提高和其他动物研究表明线粒体解偶联蛋白活性增强。到目前为止,还没有关于抑郁症患者热量限制的研究来测量线粒体功能障碍。

生酮饮食

有人提出了一种饮食模式来逆转线粒体功能障碍,特别是抑郁症患者从有氧到糖酵解能量的转变,就是生酮饮食。尽管在人类身上评估这一假设的临床试验仍在等待。生酮饮食增加线粒体解偶联蛋白的活性和水平。

注:生酮饮食(ketogenic-diet,简称KD)是一个超低碳,高脂肪饮食法。主要原理是用脂肪来替换碳水化合物,身体消耗完葡萄糖后,慢慢开始燃烧脂肪,给自己身体供能,身体慢慢进入生酮状态,最终,让身体进入一个高速燃脂的状态。

线粒体生物发生的改变在多大程度上介导了健康地中海饮食对抑郁症的有益影响尚不清楚。一些食物衍生物也有增加线粒体生物发生的假定作用,槲皮素,n -乙酰半胱氨酸和白藜芦醇都有一些支持的证据。

08

表观遗传学、早期生命和母亲/父亲饮食暴露

表观遗传过程可以影响DNA甲基化年龄,这与成年人的抑郁症有关以及许多其他神经发育结局和合并症,包括认知功能,酒精依赖,躁郁症和减少的海马体积,但不减少精神分裂症。 

表观遗传学描述了在不改变基础DNA序列的情况下控制基因活性并使发育发生的分子机制。 

极少有研究评估营养干预对甲基化年龄的影响,但已有研究发现其降低的证据。表观遗传状态受遗传序列,内部和外部环境以及发育过程中发生的随机过程的影响。产前发育,配子形成和青春期敏感时期的环境影响与患有与抑郁症有共同途径的慢性疾病风险有关,包括心脏代谢和神经发育障碍。这种现象被称为“健康与疾病的发展起源”(DOHaD)。

在DOHaD环境中,营养是对表观遗传学研究最多的环境影响因素。检验荷兰饥荒影响的研究表明,由于早期发育期间的营养不良,表观遗传失调与成人疾病风险有关

很少有观察性的人类研究评估过表观遗传变化在介导早期营养对神经发育结局的影响中的作用,并且大多数是横断面的。最近的一项综述得出的结论是,有证据表明,某些早期营养摄入(例如母乳喂养和母亲肥胖)会影响表观遗传状态,进而可能介导儿童和青少年的心理病理学,例如内在化和外在化行为。

另外一项研究发现由于蛋白质和能量不足而在婴儿期住院的成年人在神经精神病风险基因中表现出DNA甲基化变化。体外细胞培养实验和啮齿动物研究表明,大量营养素的限制或过量存在对许多不同基因的多种表观遗传机制具有可再现的作用,包括与代谢和行为有关的基因。代谢扰动已成为基因组和表观基因组改变的驱动力,通过饮食,饮食中的影响得以保存在基因中。

营养丰富的饮食成分,包括叶酸,生物素,B6和B12等维生素;多酚,如姜黄素,白藜芦醇和染料木黄酮;脂肪酸和ω-3脂肪酸已通过多种机制影响表观遗传状态。此外,丁酸通常被认为是膳食纤维发酵过程中产生的有益微生物代谢产物,也可以影响宿主细胞的表观遗传状态。

你吃的膳食纤维对你有帮助吗

09

肥胖是情绪障碍的因和果

饮食、情绪障碍和肥胖之间的多因素关系是双向和复杂的。Meta分析数据显示,肥胖症的男性和女性患抑郁症的风险增加55%,而抑郁症的个体患肥胖症的风险增加58%。 

最近的一篇综述报道了饮食,情绪障碍和肥胖之间关系的几种相互关联的途径。途径包括HPA轴,其异常调节,过度活化以及糖皮质激素的过度合成和分泌与情绪障碍和肥胖症有关。  

此外,研究表明接触高脂饮食(包括5-羟色胺和多巴胺)后,参与调节神经系统奖励回路,情绪和饮食摄入的各种神经递质水平降低。 

为了减轻与压力有关的焦虑(由于被称为情感饮食和舒适食物的现象),长期压力和HPA轴过度活化可能导致过多食用西式食物和随后的肥胖。

情绪障碍和肥胖症中都显示较高水平的炎症和相关细胞因子,提示其潜在病因之间存在另一个共同的联系。

在一项横断面研究中,肥胖在抑郁症与炎症标志物(即白介素6和C反应蛋白)之间的介导作用中,推测关系的因果关系是由抑郁症导致肥胖,炎症标志物升高。肥胖的这种发炎作用反过来推动体重增加和高复发率之间的关系。

不过这也说明了,限制热量和减肥饮食可能是减轻炎症状态和抑郁症状的可靠方法。同时,SMILES临床试验的结果表明,为期12周的地中海饮食干预对在没有体重变化的情况下降低临床抑郁症的症状。同样,前瞻性观察性研究反复报道了饮食质量与常见精神障碍之间的关联性证据,这些关联性与体重的测量无关。

体重增长:目前为止我们所知道的一切(更新你的减肥工具箱)

性别差异也不能忽视

最近的一项Meta分析表明,饮食干预可能男性比女性受益。进一步的Meta分析显示,肥胖降低了男性患抑郁症的风险,而女性则增加了风险。可能有许多生物行为机制负责这种潜在的性别特异性效应,需要进一步研究。

首先,女性可能具有更大的改变脂肪或葡萄糖代谢的能力,以应对饮食干预。

其次, 男性在食物选择上更加以快乐为导向(这可能是由于多巴胺受体的差异所致),使得坚持健康饮食变得更加困难。

第三,男人更倾向于与男性气质相关的食物(例如红肉),而不是被认为更“女性化”的水果和蔬菜。

10

总 结

越来越多的证据支持饮食干预作为精神障碍的辅助治疗方法的潜在用途。本文主要讨论了饮食,肥胖和抑郁之间的相互作用(9种途径),当然饮食也可能通过其他慢性疾病影响抑郁,这些疾病通常与抑郁并存,包括糖尿病,代谢综合征和心血管疾病。

营养精神病学领域还处于萌芽状态。现有文献主要是临床前动物研究。还需要进一步的研究来确定可能影响饮食干预措施和饮食习惯的个体因素(例如年龄,BMI,共病),行为(例如改变的动机)和生物学(例如氧化应激,炎症)因素,可能影响治疗反应的因素等。 

营养精神病学研究领域的扩展,使人们了解在什么情况下,哪类干预,适合什么人,为精神疾病患者制定新的针对性策略和临床指南,更加个性化地解决每个人的需求。

如果你深陷抑郁,请寻求专业治疗;

如果你朋友抑郁,那么请记得尊重。

相关阅读:

健康的人类微生物组

益生菌的简单入门指南

菌群结合临床干预治疗案例分析

最新研究速递 | 柳叶刀:肠道微生物群在神经系统疾病中的作用

参考文献:

Lassale C, Batty GD, Baghdadli A, Jacka F, Sanchez-Villegas A,Kivimaki M, et al. Healthy dietary indices and risk of depressiveoutcomes: a systematic review and meta-analysis of observational studies. Mol Psychiatry. 2019;24:965–86.

Khalid S, Williams CM, Reynolds SA. Is there an associationbetween diet and depression in children and adolescents? Asystematic review. Br J Nutr. 2016;116:2097–108.

Borge TC, Aase H, Brantsæter AL, Biele G. The importance ofmaternal diet quality during pregnancy on cognitive and behavioural outcomes in children: a systematic review and metaanalysis. BMJ Open. 2017;7:e016777.

Hepgul N, Pariante CM, Baraldi S, Borsini A, Bufalino C,Russell A, et al. Depression and anxiety in patients receivinginterferon-alpha: the role of illness perceptions. J Health Psychol.2018;23:1405–14.

Köhler‐Forsberg O, Lydholm CN, Hjorthøj C, Nordentoft M,Mors O, Benros ME. Efficacy of anti‐inflammatory treatment onmajor depressive disorder or depressive symptoms: meta‐analysis of clinical trials. Acta Psychiatr Scand. 2019;139:404–19.

Rapaport MH, Nierenberg AA, Schettler PJ, Kinkead B, CardoosA, Walker R, et al. Inflammation as a predictive biomarker forresponse to omega-3 fatty acids in major depressive disorder: aproof of concept study. Mol Psychiatry. 2016;21:71–9.

Borsini A, Alboni S, Horowitz MA, Tojo LM, Cannazza G, SuKP, et al. Rescue of IL-1beta-induced reduction of human neurogenesis by omega-3 fatty acids and antidepressants. BrainBehav Immun. 2017;65:230–8.

Reichelt AC, Loughman A, Bernard A, Raipuria M, Abbott KN,Dachtler J, Van TT, Moore RJ. An intermittent hypercaloricdiet alters gut microbiota, prefrontal cortical gene expression andsocial behaviours in rats. Nutritional neuroscience.2020;23:613–27.

Long-Smith C, O’Riordan KJ, Clarke G, Stanton C, Dinan TG,Cryan JF. Microbiota-gut-brain axis: new therapeutic opportunities. Annual review of pharmacology and toxicology. 2020;60(Jan):477–502.

Marx Wolfgang,Lane Melissa,Hockey Meghan et al. Diet and depression: exploring the biological mechanisms of action.[J] .Mol Psychiatry, 2020

Liu RT, Walsh RF, Sheehan AE. Prebiotics and probiotics fordepression and anxiety: a systematic review and meta-analysis ofcontrolled clinical trials. Neuroscience & BiobehavioralReviews. 2019;102(Jul):13–23.71. Aslam H, Green J, Jacka FN, Collier F, Berk M, Pasco J,Dawson SL. Fermented foods, the gut and mental health: amechanistic overview with implications for depression andanxiety. Nutritional neuroscience. 2020;23(Sep):659–71.

Lerner BA, Green PH, Lebwohl B. Going against the grains:gluten-free diets in patients without celiac disease—worthwhileor not? Dig Dis Sci. 2019;64:1740–7.

健康的人类微生物组

谷禾健康


识别和纠正疾病患者微生物组的重要第一步,就是要了解健康微生物组的特性,及没有明显疾病情况下的许多不同的微生物生态。

我们知道体内DNA的细微差异引起巨大的表型多样性,也就是说大家都能区分彼此。相比之下,人体微生物的宏基因组(微生物在我们体内的总DNA含量)变化更大,只有三分之一的组成基因存在于大多数健康个体中。所以要理解健康微生物组这些差异是重大的挑战。

本文,我们将对以下方面展开讨论分析:

人类对健康人微生物组的理解史;

健康人肠道微生物群的组成和功能;

健康人微生物多样性的范围;

可能的驱动因素,如地理,饮食和生活方式等;

健康微生物群的核心标志;

微生物群的抵抗力,弹性和稳定性;

有助于人类健康和疾病预防的微生物代谢途径和种类;

现代农业与人类健康肠道微生物。

01

健康微生物组

健康” 是指没有任何明显的疾病。

微生物组” 指人体的整个微生物组,但目前大部分可获得的数据描述的都是肠道微生物组,因此这里讨论的许多发现都来自肠道微生物组。

关于健康微生物组,有两种假设:

第一种假设

试图确定在健康个体中普遍存在一组“核心”微生物群,其假设是不存在此类微生物就表明失调。但健康个体之间的生态多样性研究表明,健康人的微生物组本来就有足够的差异,无法支持这样的假设。

第二种假设

健康的“功能核心”:一种代谢和其他分子功能的补充,由特定栖息地内的微生物群执行,但不一定由不同人体内相同的生物体提供。

这样的核心:

可能要作为遗传潜能存在,就像人类基因组一样必须严格,不能编码出严重的有害突变才能健康;

或者可能要在个体内部有良好的表达和调控,以保持健康(也就是说,它必须由RNA转录组编码或以蛋白质或小分子产物的形式存在);

当然也可能是这两者组合。

当然,功能核心:

必须至少包括个体微生物生命所必需的内部管理功能,这些功能必须通过基因组正确表达;

还可能包括特定于人类生态系统中微生物生态位的功能;

可能包括人类细胞无法完成的过程,因此代表了共生宿主与微生物关系的潜在基础。 

核心功能的适应性

健康的微生物组可能会进一步通过其随时间变化表现出来。直白地说,一个健康相关的微生物群必须对外界或内部变化有一定程度的适应性。外界例如饮食或药物等干扰,内部变化例如年龄的改变。

即使某个特定的群落结构提供了所有必要的核心功能,但如果没有这种适应性,就不能长期保证核心功能。

因此,微生物组对压力和干扰的抵抗力及其之后恢复健康功能的能力是表征健康微生物组的潜在特性之一。

02

对健康微生物组的理解不断发展

早期的研究试图通过培养和表征菌的生理特性来确定正常的微生物群,主要在肠道中。这类研究最能突出在实验室环境中生长良好的生物,例如大肠杆菌。这种偏见导致人们认为大肠杆菌是人类肠道微生物组中丰富而普遍的成员。

在1970年代引入了严格的厌氧技术,仅肠道就可以回收300多种细菌。此外,对选择性培养基中标准系列稀释液中活细胞的计数可以对这些物种进行定量。 

对该时代的四项大型研究的总结,研究了141名美国人在不同饮食下的粪便样本,发现拟杆菌(Bacteroides)和厌氧球菌(anaerobic cocci)属细菌普遍存在且数量丰富,而梭菌属细菌则普遍存在,但丰度较低,尽管没有在所有受试者中均观察到单一物种。其他普遍但含量较低的细菌包括双歧杆菌属(Bifidobacterium),真细菌属(Eubacterium),乳杆菌属(Lactobacillus)和链球菌属(Streptococcus),以及兼性厌氧菌如大肠埃希氏菌(Escherichia)。

当时已经有人怀疑,还有大量与人类有关的微生物种类没有被发现,一项研究估计在一个健康的结肠中同时存在大约400种微生物。然而,发现它们也有很多障碍,比如某些微生物的培养要求严格,以及培养所需的劳动密集型性质等。

此外,并不是所有的微生物都可以通过在选择性培养基上单独培养而被很好地区分为物种或菌株。例如,不同种类的高产拟杆菌属特别难以解开。另外,这种关于群落组成的研究甚至更难扩展到非细菌性微生物,例如病毒和真菌,对于微生物含量低于肠道的人体栖息地的研究更加不切实际。需要新方法来研究健康微生物组的这些方面。

DNA测序和荧光原位杂交(FISH)等与传统培养无关的技术现已广泛使用,它们的民主化使微生物样品的DNA含量得以直接研究。使用针对16S核糖体RNA基因的FISH进行的早期研究表明,在西欧队列中,至少三分之二的肠道细菌可归因于大约六个物种/属水平的一组六组细菌:两个拟杆菌,两个梭菌,链球菌 /乳球菌和直肠细菌。从那以后,这被证明是乐观的,甚至在当时,这些样本之间的丰度也观察到了很大的差异(标准偏差为均值的〜60–80%)。

某些直接从样品中直接测序16S rRNA基因的早期努力表明,对应于已知物种的85%至95%的细菌丰度可归因于与拟杆菌,梭状芽孢杆菌XIVa和梭状芽孢杆菌第四类有关的三个细菌群。16S研究还显示,健康人之间以及一个人内紧密联系的生物地理位点(例如粘膜和粪便样本)之间的生物分类组成存在很大差异。然而,在所有这些研究中,当时的大多数(75–80%)序列簇与任何文献记载的物种都不匹配,这解释了以前工作中对多样性的低估很多。

随着数据库的完善和技术的进步,目前16s尤其是在肠道菌群方面分辨率也已经达到很高了,种方面能达到70%以上,40%左右能分到菌株。而且肠道菌群检测远不是检出了每种菌的含量,还需要大规模人群队列和疾病样本的训练以及模型构建,因此16s有其标准化和相对适合的成本,在肠道菌群中还是首选的方案。

此外,大规模并行shotgun测序(高通量测序技术)的出现已基本解决了这种微生物“暗物质”的分类学组成,虽然功能多样性的显著百分比(高达50%)和非参考群体的组成仍有待确定。 

最初的发现印证了人与人之间的巨大差异(甚至在双胞胎之间),但也暗示了存在着所有个体共有的一组微生物基因。 这有助于建立这样一种模式:就好比在每个生物体中保存的管家基因一样,“核心微生物群”可以在功能层面而不是在分类学层面上被定义。

03

历史上微生物群落的变化

人类和人类文明有上千年的变化,人类肠道微生物群也随着饮食的变化而变化。例如,狩猎-采集社会的肠道微生物群落在一年中显示出剧烈的变化,反映了食物供应的变化。此外,在这些社会中,女性和男性成员的微生物群也存在重大差异,女性的微生物群更像食草动物,而男性成员的微生物群更像食肉动物。

从早期文明到现代文明,肠道微生物群的变化也反映了卫生的变化,这在城市和农村社区之间仍然存在。

在过去的几十年里,随着卫生条件的改善、加工食品和药物(尤其是抗生素)的广泛使用,现代生活方式似乎对人类肠道微生物群落的多样性产生了重大影响,总体上减少了其多样性

人们吃的东西对肠道微生物组成的影响要比基因强得多。设想这样两种情况:

没有血缘关系却生活在一起的人(有相似的饮食习惯和生活方式);

生活在不同地方的有血缘关系的人;

后者的微生物组表现出更大的差异。

04

人口规模基准队列

此后,在测序和其他分子测定法的通量和成本效益仍在不断提高的基础上,开展了大规模项目,以表征微生物成分的多样性及其功能潜力。  

2010年,人体肠道基因组(MetaHIT)研究报告了来自124个欧洲成年人(主要是“健康”人群)粪便样本的肠道基因组,当时该序列超过了以往所有微生物组研究的测序量近200倍。

2012年,人类微生物组计划(HMP)报告了对242位来自美国的健康成年人进行16S谱分析的结果,并对139个人的亚组进行了宏基因组测序,结果代表了分布在五个主要身体区域之间的18个身体栖息地。一项针对2型糖尿病的大型中国研究很快贡献了145个肠道宏基因组,其中大约一半来自非糖尿病对照组。此后,MetaHIT协会继续发布来自欧洲成年人的新的肠道宏基因组。

人类微生物组群项目(HMP)和人类肠道宏基因组学(MetaHIT)倡议是第一个定义健康人体微生物组组成和功能的大型微生物组项目。这些努力为了解宿主相关微生物群落的生理和功能特性提供了基础。

随着新一代测序、全基因组鸟枪测序、全球代谢组学、先进的计算策略以及人性化动物模型和基于培养的人类类器官系统等新技术的出现,对微生物组的理解正在迅速进步。

05

微生物组的典型组成和多样性

健康的肠道菌群因为个体差异较大,很难有一个精确的定义,但通过大量人群样本数据的了解我们可以明确什么样的肠道菌群是不健康的。

# 多样性

首先从多样性的角度,一般除了2岁以下婴幼儿,大部分的健康人的肠道菌群构成大概有200~2000种菌,如果数量过低或过高都不算健康。过低表明饮食结构过于单一或经历了抗生素等处理。过高表明可能出现了很多不属于肠道环境的菌。

# 核心肠道菌群的占比

另外主要从核心肠道菌群的占比来评估。健康的肠道菌群虽然构成多样,但是存在一部分核心的肠道菌群,它们是肠道菌群的基石,如果这些菌的占比不足30%表示肠道菌群环境已不由这些健康菌占主导,很可能为病原菌提供生存环境。

这些核心的肠道菌群包括:

拟杆菌属(Bacteroides)

柔嫩梭菌属 (Faecalibacterium),

普雷沃氏菌属 (Prevotella),

瘤胃球菌属 (Ruminococcus);

此外, 粪球菌属(Coprococcus),Blautia,

Dorea,毛螺菌属(Lachnospira)

罗氏菌属(Roseburia)也属于常见菌属,但占比通常不会很高。

在婴幼儿的肠道菌群中核心菌包括:

双歧杆菌属(Bifidobacterium),韦荣氏球菌属(Veillonella),通常2岁以下婴幼儿的肠道菌群这两种菌一般至少占比30%以上。

如果你的肠道菌群构成中基本见不到这些核心菌或占比很小,那么肠道菌群很可能已经出现问题。

古细菌,病毒,真菌和其他真核生物

古细菌

人类微生物组除了我们关注最多的细菌外,还包括古细菌,病毒和真核生物。在健康的人类微生物组(主要是肠道)中,已鉴定出少量古细菌属。其中产甲烷菌属在肠道中最多,特别是史密斯甲烷短杆菌(Methanobrevibacter smithii)非常适合人类肠道,可优化其他微生物对膳食多糖的消化,并在常见肠道细菌(如多形拟杆菌,Bacteroides thetaiotaomicron)存在的情况下适应其基因表达。

病毒

人类的病毒特别广泛是健康人类生态系统不可或缺的一部分。病毒有高变特性,因此每个人都有一个独特的病毒,主要由噬菌体组成(估计有5%的肠道细菌基因编码原噬菌体蛋白)。噬菌体还提供了另一种途径,在其他亲缘较远的细菌之间进行水平基因转移。由于古细菌,病毒和真核生物的分子谱分析技术仍不及细菌,这些生物的分子功能信息仍然有限。

真核微生物

在人体中发现的最著名的真核微生物(主要是真菌和原生生物)虽然通常是致病菌,但此类真核生物在健康人群中也普遍存在,特别是念珠菌(Candida),马拉色菌(Malassezia) 和Saccharomyces。

不同部位的相互作用至少负责健康微生物组的部分生态和免疫平衡。例如,在皮肤生化环境中细菌和真菌之间存在明显的竞争,或是乳酸菌控制肠道和阴道真菌。

人类与真菌之间存在直接的相互关系:其中最典型的特征是益生菌(Saccharomyces boulardii),最初是为了对抗霍乱而分离的。一些原生动物甚至是健康微生物群落的常见物种,变异比细菌更大。此外,某些原生动物的存在,例如常见的芽囊原虫属Blastocystis,与降低胃肠道疾病的风险有关。

健康微生物组的地理变异

对比来自不同国家的肠道微生物组的研究,已经确定了微生物组成的系统差异。比较欧洲的MetaHIT,美国的HMP和中国的糖尿病队列这三大块,发现国家间的生物分类组成差异大大超过了个体间的差异,这不止是由于技术差异或者实验方法造成的,地理学因素也是微生物组大规模变化的原因之一,包括北美和南美,欧洲和非洲,韩国和日本以及俄罗斯和中国的农村和城市人口之间的差异。

在这种变化的可能驱动因素中,主要因素是饮食,以及其他因素,包括地理,早期生命暴露和遗传等。还没有一项研究表明健康微生物群大量种群间差异的原因是这些因素其中的任何一个。

有意思的是菌株水平上也存在地理差异,特别是当菌株特征比微生物丰度曲线表现出更大的时间稳定性。该领域的研究是初步的,但表明国家或大洲之间的菌株差异不是特别明显。诸如拟杆菌属(Bacteroides coprocola)和普雷沃氏菌(Privotella copri)之类的物种在跨越人群的抗生素抗性基因中表现出最大的差异和菌株水平变异。

06

健康标志(核心功能)

虽然在所有地点的微生物组的分类组成中有巨大的个体间差异,但在一个特定地点,个体间代谢途径的丰富程度相当一致。

此外,微生物组的组成在生命的最初几年发生了巨大的变化,但这种功能性特征在生命早期就已经建立,并在此后保持稳定,至少在肠道。这表明,“核心”健康微生物群的一个定义是,它们的组合、代谢模块和调节途径共同促进了与宿主相关的稳定生态。

这个核心包括至少三类功能

第一,也是最简单的,所有微生物生命所必需的管家功能,例如转录和翻译、能量生产和结构成分。

第二,这一核心包括人体相关的微生物群在身体部位的特定过程,如与宿主细胞表面的黏附,以及与宿主与微生物相互作用有关的化合物的产生(包括必需的维生素,如维生素K和免疫刺激化合物)。

第三,不同的身体栖息地各有其特殊的核心功能。例如,在肠道中,核心功能包括糖胺聚糖的生物降解、几种短链脂肪酸的产生、特定脂多糖的富集以及维生素和必需氨基酸的产生。在一个特定的人群中,哪种功能趋于丰富,会受到长期的选择压力(如饮食)的影响。

健康微生物群的另一个标志是生态系统的恢复力。

07

微生物群的抵抗力,弹性和稳定性

从微生物生态学角度来看,健康的其他标志是抵抗干扰(可能是由于病原体进入,饮食或药物治疗而引起)以及随后恢复健康状态的能力。这些特性分别被称为阻力和回弹力。

系统在冲击(阻力)期间持续存在的能力以及在干扰影响(恢复)后恢复到基线的能力决定了整体的弹性。从概念上讲,下图对此进行了说明。

S. K. Dogra et al., Front. Microbiol.2020

例如,经过抗生素治疗后,健康的肠道菌群通常会在几周到几个月后恢复到以前的状态。因此,微生物健康的最新定义明确地不包括单一静态,而是动态平衡

原生状态、扰动、回到原始状态或过渡到新状态概念图解

S. K. Dogra et al., Front. Microbiol.2020

一个有弹性的微生物群在受到扰动后将恢复到原来的平衡状态,而非弹性微生物群将转向一个改变后的新状态。

在这种观点下,健康的微生物组相当于潜在动力系统的吸引子。吸引子同时捕获抵抗力和弹性,因为系统将抵抗吸引者的偏离,并且除非波动(可能是由于外部扰动或内部随机性引起的)足够大,否则它将倾向于返回到稳态区域。

Lloyd-Price et al. Genome Medicine (2016)

人类微生物组中最明显的例子可能是健康阴道中的群落状态类型之间的转换。不是所有菌群类型都具有相同的稳定性。肠道微生物组也在不断变化,随着时间的流逝而增加和减少物种,不同的分类单元具有不同的稳定性,并且某些微生物在肠道中持续存在多年

特定分类群持续存在的机制还不明确,但是有趣的是推测这种机制是否可能与微生物组组装背后的驱动原理有关。如果特定的群落确实主要是为了组装来填补一组适合栖息地的功能生态位,那么在特定的组装中提供关键的代谢,信号传导,免疫调节或其他作用的物种可能比功能外围的物种在时间上更稳定。

因此,动力学与微生物组的分类学多样性和巨大的分子功能潜力之间的耦合,提醒了人类微生物组的复杂性,因此也难以定义简单的微生物健康概念。

08

现代农业与人类健康肠道微生物

植物和人类微生物群是相互关联的。

健康土壤,健康植物与健康肠道微生物

人类的肠道微生物群和植物的土壤和根茎微生物群在相似的环境条件下存在

Heribert Hirt, EMBO Reports (2020)

最近的研究表明,根部和肠道微生物群落的存在条件相似。

两者都是开放系统,其特征在于氧气,水和pH的梯度会产生多种不同的生态位。 

两种系统都从环境中继承其微生物物种:分别是人类的食物和植物的土壤。植物和肠道系统由大量相似的细菌门组成(Firmicutes,Bacteroidetes,Proteobacteria,Actinobacteria

与人类粪便转移类似,从抑制疾病的土壤中移植有益微生物可以保护植物免受各种疾病的侵害。

 对不同的哺乳动物食草动物和食肉动物的研究表明,肠道微生物组从食用原始植物材料中吸收纳入了一些成员。

根与肠微生物合成必需的氨基酸,维生素和许多其他调节其宿主免疫系统的次生代谢产物。

因此,植物和肠微生物群可以被视为对宿主健康至关重要的代谢器官

植物微生物群对人体肠道微生物群的直接和间接影响

Heribert Hirt, EMBO Reports (2020)

饮食与微生物组

西方饮食中肉类消费量增加,蛋白质的高输入也极大地影响了肠道微生物组,某些微生物会抑制有益菌并改变我们的饮食习惯,以偏爱更不健康的食物。

人类少数必需化合物是由微生物产生的,微生物本身是必需氨基酸和维生素的重要生产者。例如,钴胺素(维生素B12)不能由植物或动物产生;它是由植物微生物群或反刍动物肠道中的微生物合成的。

土壤、气候对菌群的影响

土壤侵蚀和气候变化也影响微生物多样性,并导致大面积耕地及其微生物群的损失。因此,今天的作物缺乏许多重要的共生菌来生产或增加维生素、矿物质、抗氧化剂和其他对植物和人类健康有益的代谢物。

农药对菌群的影响

大量研究表明许多常用农药对人体健康的负面影响。例如,大多数铜基杀真菌剂对固氮细菌具有有害作用。

许多新鲜水果,蔬菜长期保存和运输用到农药,这些化学物质不仅会通过食物进入人体肠道,还会杀死植物微生物。

除草剂——草甘膦杀灭杂草,确保作物高产。然而草甘膦对人类的急性毒性较低,但草甘膦对于人类而言是潜在的致癌物质。草甘膦对土壤、植物和肠道有益微生物的抑制浓度远低于致病微生物。就人体肠道微生物组而言,对有益菌双歧杆菌(Bifidobacterium sp.)以及肠球菌属的抑制作用比致病菌梭状芽孢杆菌和沙门氏菌的抑制作用大

农业抗生素影响微生物组

农业使用的抗生素大约是人类医学的四倍。 

在农场中滥用抗生素来促进牲畜的生长,这极大地促进了耐药细菌的出现; 

动物排出的抗生素会改变微生物的功能和土壤,水道及其他生物群落的组成;

食用抗生素处理过的动物的肥料施肥的田地上的新鲜农产品的消费可以将抗性基因传播到人类肠道微生物组,并进一步出现具有多重耐药性的人类病原体。

09

总  结

人体胃肠道微生物组对于维持人体健康至关重要。鉴于健康个体中微生物群落结构的复杂性和多样性,目前可能难以界定基线“健康”微生物群的特征属性。随着人类微生物组研究取得了技术进步,需要利用大样本人群来确定这个边界以及哪些关键因素会影响和塑造肠道微生物。重要的是更好地了解数万种不同微生物物种在与宿主之间的复杂相互作用网络中的功能和作用。

此外,减少肥料,杀虫剂和除草剂的使用量提供健康的绿色食品有助于人类建立和维持健康的肠道微生物组。因此,有关微生物群落对宿主代谢和健康的整体作用的研究不应仅仅停留在人体肠道微生物组上,而应扩展到植物的微生物群及其在植物生长发育中的功能。

参考文献:

Ruan Wenly,Engevik Melinda A,Spinler Jennifer K et al. Healthy Human Gastrointestinal Microbiome: Composition and Function After a Decade of Exploration.[J] .Dig Dis Sci, 2020, 65: 695-705.

Reza Musarrat Maisha,Finlay B Brett,Pettersson Sven,Gut microbes, ageing & organ function: a chameleon in modern biology?[J] .EMBO Mol Med, 2019, 11: e9872.

Lloyd-Price et al., The healthy human microbiome. Genome Medicine (2016) 8:51

Heribert Hirt, Healthy soils for healthy plants forhealthy humans.EMBO Reports (2020) 21: e51069

Haahtela T. A biodiversity hypothesis. Allergy. 2019 Aug;74(8):1445-1456. doi: 10.1111/all.13763. Epub 2019 Apr 4. PMID: 30835837.

Roslund MI, Puhakka R, Grönroos M, Nurminen N, Oikarinen S, Gazali AM, Cinek O, Kramná L, Siter N, Vari HK, Soininen L, Parajuli A, Rajaniemi J, Kinnunen T, Laitinen OH, Hyöty H, Sinkkonen A; ADELE research group. Biodiversity intervention enhances immune regulation and health-associated commensal microbiota among daycare children. Sci Adv. 2020 Oct 14;6(42):eaba2578. doi: 10.1126/sciadv.aba2578. PMID: 33055153; PMCID: PMC7556828.

相关阅读:

深度解析 | 炎症,肠道菌群以及抗炎饮食

肠道菌群的恢复力:定义,与健康的关系以及干预策略

菌群结合临床干预治疗案例分析

抑郁症,恐惧,压力和肠道微生物群脱不开的关系

123
客服