Tag Archive 肠道菌群检测

主要食源性人畜共患病病原菌

谷禾健康

食源性微生物是影响食品安全主要致病菌,因人类食用被致病菌或其毒素污染的食品(主要是动物制品)而引发全球范围的人类疾病。其中多数微生物具有人畜共患的特性,对公共卫生和经济领域产生重大影响。

细菌是全球三分之二人类食源性疾病的病原体。例如,金黄色葡萄球菌、沙门氏菌属、弯曲菌属、单核细胞增生李斯特菌大肠杆菌是引发食源性疾病和死亡的主要人畜共患细菌性病原体,与食用受污染产品有关。

近年来,食源性病原体已成为全球重要的公共卫生问题,其对健康(显著的发病率和死亡率)和经济的影响日益受到重视。不同报告显示,每年全球约有6亿人(全球人口的十分之一)因食用受污染的食物而患病。由于未被发现或未被报告的爆发,食源性疾病的统计数据有所增加

目前正值夏季,本文介绍食源性细菌性病原体的背景,并回顾常见的主要食源性人畜共患细菌性病原体。动物是许多食源性人畜共患细菌性病原体的主要储存宿主,动物源性食品是主要的传播载体。肉类、乳制品和蛋类是人类暴露于人畜共患细菌的主要途径。

人畜共患菌感染的现状

由于人口快速增长,城市化,人均收入提高,全球化以及消费者习惯的改变(偏爱高蛋白饮食),肉类、牛奶和鸡蛋等动物产品的消费量有所增加。这种情况导致对动物源性食物的需求量大增,并导致集约化动物生产和产品加工,尤其是大规模生产和产品在全球范围内的流通。在此期间,从农场到餐桌的任何环节都可能出现有缺陷的加工实践,从而增加了污染和食源性病原体传播的机会。

人类肉源性疾病进展

doi: 10.3389/fpubh.2022.1045599.

★ 食品在不同阶段都可能受到污染

食品可能在食品链的不同阶段受到污染,包括生产、加工、分销、制备或最终消费过程中。食品被污染的风险很大程度上取决于食品处理者的健康状况、个人卫生、知识以及食品卫生的实践

肉类供应链每一步都有污染风险

doi: 10.3389/fpubh.2022.1045599.

根据世界卫生组织(WHO)的定义,食源性疾病是指因食用食物或水引起的具有传染性或毒性的疾病。中毒(病原体产生的毒素引起食物中毒)、感染(摄入含有病原体的食物)和毒素感染(在人体肠道中生长时产生毒素)是食源性疾病的三种类型。

★ 动物食品是食源性感染的主要载体

大多数病原体具有人畜共患病的起源,动物源性食品被认为是食源性感染的主要载体。食用动物(牛、鸡、猪、鸭等)是许多食源性病原体的主要储存库。动物产品(肉、奶、蛋、鱼等)及其产品由于病原体含量、天然毒素、掺杂物和其他可能的污染物而具有高风险,当增加动物源性食品的消费时,人类患食源性疾病的风险也在增加

编辑​

doi: 10.3389/fpubh.2022.1045599.

图A描述了自1961年以来选定国家的个人肉类消费量。事实证明,人均收入较高的国家比人均收入较低的国家消费更多的肉类。世界每年生产近3.4亿公吨肉类,是50年前的三倍。图1B所示,到2050年,肉类消费量估计将增加至4.6亿-5.7亿公吨。病原性疾病,如狼疮性皮肤病,在主要畜牧国家越来越常见,对全球肉类和肉类产品的供应构成重大威胁。

在引起食源性中毒的细菌中,一些细菌在发病频率疾病严重性方面尤为重要。各种细菌(包括革兰氏阳性和革兰氏阴性细菌)会产生引起食源性中毒的毒素,导致的症状从胃肠紊乱瘫痪甚至死亡。据报道,革兰氏阴性细菌约占细菌性食源性疾病病例的69%

虽然目前已确定有31种病原体可导致食源性疾病,但包括金黄色葡萄球菌S.aureus)、非伤寒沙门氏菌弯曲杆菌属单核细胞增生李斯特菌L.monocytogenes)和大肠杆菌E.coli)在内的细菌性病原体,是全球食源性疾病和死亡的常见原因。下面我们就为大家一一介绍这些常见的食源性细菌病原体

非伤寒沙门氏菌
Nontyphoidal salmonellosis

★ 沙门氏菌是最常见的食源性病原体

沙门氏菌广泛分布于自然界,是人类和动物的主要致病菌。它们是食源性疾病爆发中最常见的细菌来源,每年在全球范围内导致约9380万例食源性疾病和15.5万例死亡。

沙门氏菌已被认为是食源性疾病的主要原因,也是一个严重的公共卫生问题,人们越来越关注包括工业化国家在内的抗菌素耐药菌株的出现和传播。人类和动物的耐药沙门氏菌感染是普遍关注的问题,尤其是在发展中国家。

除了给人类和动物带来的发病率和死亡率成本外,贸易限制丢弃受污染的食物也是该细菌造成的重要社会经济问题。

1

病原学特征 (Etiology)

分类: 沙门氏菌属包含超过2500种已识别的血清型,分属于肠道沙门氏菌 (Salmonella enterica) 和邦戈沙门氏菌 (Salmonella bongori) 两个种。其中,肠道沙门氏菌是人畜共患的主要病原体,又可细分为六个亚种。

常见致病菌株: 超过150种血清型可引起食源性沙门氏菌病,但鼠伤寒沙门氏菌 (S.typhimurium) 和肠炎沙门氏菌 (S.enteritidis) 是最常见的两种。

基本特性: 这类细菌属于肠杆菌科,是革兰氏阴性、兼性厌氧、不形成孢子、呈直杆状的细菌。在显微镜下或普通营养培养基上,它们与大肠杆菌无法区分。

2

流行病学特征 (Epidemiology)

全球公共卫生问题:沙门氏菌是全球主要的公共卫生问题之一,无论在发展中国家还是发达国家,它都是最常见的食源性疾病之一。

主要宿主与传染源
动物携带:动物是沙门氏菌食源性疾病的主要宿主,其在动物中的普遍携带是重要的流行病学因素。


自然栖息地:沙门氏菌的主要栖息地是动物(如农场动物、鸟类、爬行动物、昆虫)和人类的肠道。

导致暴发的因素:食用生或不安全的食物、交叉污染、不当的食品储存、不良的个人卫生习惯、食品冷却和再加热不充分,以及制备与食用间隔时间过长等,都是促使人类沙门氏菌病暴发的因素。


环境耐受性:它们能在典型的餐饮冷藏温度下存活,并在温度滥用(即不当的温度控制)的情况下繁殖。

高风险原因:不卫生的生活条件、人畜混居、以及食用生或未煮熟的动物源性食品,都增加了感染风险。

3

传播途径 (Transmission)

主要途径: 食源性传播被认为是沙门氏菌感染的主要原因。动物源性食品及其制品是沙门氏菌传播给人类的最常见载体。

其他途径: 传播也通过摄入被动物粪便污染的水、食物以及被污染的食品加工设备而发生。

主要污染食品: 禽类、猪、牛及其产品(如肉、蛋、奶)是导致人类沙门氏菌病暴发的最常见食品来源。尤其是鸡肉产品(包括鸡蛋)被公认为是沙门氏菌的重要宿主

非伤寒沙门氏菌(NTS)的宿主和传播

doi: 10.3389/fpubh.2022.1045599.

污染过程

屠宰环节: 受污染的动物产品通常源于受感染的动物本身,或在屠宰过程中胴体或可食用器官被污染。

蛋类污染: 蛋壳和蛋内容物可能在母鸡生殖系统内形成时或从环境中(如粪便接触)被污染。

粪便污染: 胴体的粪便或肠道污染是人类食源性感染的主要来源。

特定菌株: 最近出现的多重耐药性鼠伤寒沙门氏菌DT104型,主要通过摄入受污染的牛肉传播。

4

致病机理 (Pathogenesis)

影响因素: 致病性受菌株毒力、感染剂量、感染途径宿主易感性等因素影响。毒力质粒、毒素、菌毛和鞭毛等毒力因子有助于建立感染。

入侵过程

靶细胞: 微皱褶细胞(M细胞)是沙门氏菌致病性的靶细胞。

机制: 细菌首先利用菌毛(粘附结构)粘附于肠道上皮细胞,然后侵入上皮细胞引发肠胃炎。这一复杂的入侵过程由多种染色体基因产物介导。

宿主反应: 细菌入侵后,会诱导靶细胞膜起皱,将细菌内化到膜结合的液泡中。这个过程会引发一系列反应,包括中性粒细胞的募集和迁移上皮细胞分泌细胞因子以及液体和电解质的分泌。

定植与生存: 肠道正常菌群可以抵抗沙门氏菌定植,因此口服抗生素会促进感染的建立。沙门氏菌能够避开胃部的宿主防御,到达肠道进行感染。

5

临床症状 (Symptoms)

潜伏期: 潜伏期为12至72小时。

临床表现严重程度不一,从自限性肠胃炎败血症不等,这主要取决于宿主的易感性和菌株的毒力。

消化道症状: 通常为胃肠道症状,包括恶心、呕吐、腹部绞痛以及水样、绿色、有恶臭的腹泻或带粘液的血性腹泻。

其他症状: 还包括头痛、虚脱、疲劳(肌肉无力)和中度发烧。

预后与并发症: 该病通常是自限性的,不需要特殊治疗。但在幼儿、老人和免疫功能低下者中可能导致严重并发症。反应性关节炎、镰状细胞性贫血骨髓炎等并发症在普通人群中也较为常见。

6

检测方法 (Detection)

常规方法: 通常的程序是使用选择性增菌培养基(如沙门氏菌-志贺氏菌琼脂)进行细菌的培养和分离。

血清分型: 血清分型是区分沙门氏菌菌株的公认方法,是公共卫生的重要工具。

快速方法: 市售的快速检测方法包括新型选择性培养基、改良的传统程序、免疫学检测法和核酸检测法。

免疫学检测: 包括ELISA、乳胶凝集试验、免疫扩散和免疫层析法(试纸条)。

分子检测: 主要技术是直接杂交(DNA探针)和扩增(PCR)方法。

7

预防与控制 (Prevention and Control)

综合策略:需要建立生物安全和生物防护措施,改进食品加工方法以及制备和储存实践。减毒的DNA重组活沙门氏菌疫苗,结合对动物、饲料和动物食品的综合控制策略,将有助于减少沙门氏菌病。

食品安全实践:应采取安全的食品制备方法,包括彻底煮熟、重新加热食物、牛奶的巴氏消毒(煮沸)、充分冷藏,并避免宠物和其他动物进入食品处理区域。

高危人群建议:建议易感人群避免食用未煮熟的肉和家禽、生牛奶、生鸡蛋以及含有生鸡蛋的食物。

二次污染控制:通过清洁消毒、人员卫生和适当的加工来防止二次污染

金黄色葡萄球菌
(Staphylococcus aureus)

金黄色葡萄球菌是全球最常见的食源性病原体之一,其高发生率仅次于沙门氏菌。

它可以作为一种共生菌存在于健康人和动物的皮肤、鼻子和粘膜上。然而,它也是一种众所周知的机会性食源性病原体,可引起多种严重程度不一的感染性疾病,在人和动物中引起广泛的疾病。

★ 金黄色葡萄球菌是食源性中毒的重要原因

金黄色葡萄球菌在人类消费品中的存在对食品工业至关重要,因为某些菌株是食源性中毒的原因。它们是导致食品腐败、降低食品安全和保质期以及引起食源性中毒的原因。

金黄色葡萄球菌是因食用被葡萄球菌肠毒素污染的食物而导致食物中毒的主要原因。

并且由于与多重耐药性相关的死亡率不断上升,它引起了公众的关注。抗生素的广泛使用以及细菌快速发展和获得抗菌素耐药性的能力促进了耐药菌株的出现,例如耐甲氧西林金黄色葡萄球菌(MRSA)。

注:MRSA最早于20世纪60年代初被报道,现在被认为是全球主要的医院获得性病原体。MRSA是人和兽医医学中常见的病原体。

1

病原学特征 (Etiology)

基本分类:金黄色葡萄球菌(S.aureus)是一种革兰氏阳性、过氧化氢酶阳性、凝固酶阳性、氧化酶通常为阴性的兼性厌氧球菌

形态与生化特性: 这种细菌细胞呈球形,不运动,常形成葡萄状的菌落。它可以通过产生金色菌落、凝固酶、发酵甘露醇和海藻糖以及产生耐热核酸酶等特性,与其他葡萄球菌区分开来。

生存能力: S.aureus对环境有极强的适应能力,可在广泛的温度(7°C至48°C)、pH值(4.2至9.3)和高盐浓度(最高15% NaCl)下生长。这使其能够在多种食品中存活,尤其是在加工过程中需要较多人工操作的食品(如奶酪等发酵食品)。

2

流行病学特征 (Epidemiology)

重要性日益增加:由于其导致的感染增多(特别是MRSA菌株),在医学中的重要性,以及近年来发现其与动物相关的克隆谱系和人畜共患的潜力,该微生物在动物中的流行病学研究备受关注。

食源性疾病:S.aureus是全球食源性细菌性中毒的主要原因之一,也是全球报告的最常见的食源性疾病之一。

宿主与传播

人类携带:大约50%的健康人群在鼻腔、喉咙和皮肤中携带这种细菌。

动物来源:患有乳腺炎的奶牛是生牛奶中S.aureus的常见来源。该细菌广泛存在于多种宿主中,包括人类和猪、牛、山羊、鸡、鸭等食用动物。

污染途径:食品污染可能直接来自受感染的食用动物,也可能是由于食品生产、零售和储存过程中的卫生条件不佳所致。

耐甲氧西林金黄色葡萄球菌的风险因素:

免疫抑制

血液透析

外周灌注不良

高龄

长期住院

抗生素治疗不当

体内留置装置(如导管)

需要胰岛素治疗的糖尿病

褥疮溃疡等

3

传播途径 (Transmission)

主要来源:S.aureus主要通过受污染的动物源性食品传播。细菌有潜力在加工、制备、包装、切碎和储存过程中污染动物产品,从而进入食物链。

常见载体:污染可见于多种食品,如畜禽产品、海鲜以及烘焙产品。潮湿的、富含淀粉和蛋白质的食物特别容易被葡萄球菌肠毒素污染。牛奶、乳制品、猪肉、牛肉、羊肉、禽肉鸡蛋是导致葡萄球菌食物中毒的常见载体。生肉也是S.aureus存活和耐药菌株在社区传播的良好媒介。

人为污染:携带S.aureus的食品处理者,其身体或手套也可能污染食物。

4

致病机理 (Pathogenesis)

毒力因子:S.aureus拥有多种毒力因子,这些因子单独或共同作用可导致严重感染。它能表达多种分泌性和细胞表面相关的毒力因子,以促进其粘附于宿主细胞外基质、破坏宿主细胞对抗免疫系统

关键致病物质:其产生的胞外活性物质被认为是致病的关键,包括凝固酶、溶血素、核酸酶、酸性磷酸酶、脂肪酶、蛋白酶纤维蛋白溶酶肠毒素中毒性休克综合征毒素

产生条件:如果食物在室温下存放一段时间,食物中的细菌就能产生毒素。

毒素稳定性:肠毒素能抵抗蛋白水解酶,且耐热。因此,即使食物中的S.aureus细菌已被杀死,毒素仍可能存在

种类与作用:已分类出23种不同的葡萄球菌肠毒素(SEs)和SE样毒素。肠毒素会刺激中枢神经系统的呕吐中枢,并抑制小肠对水和钠的吸收,从而引起急性肠胃炎症状

5

临床症状 (Symptoms)

疾病谱:该细菌可引起多种疾病,症状从简单的皮肤感染到更严重甚至危及生命的感染,如败血症、坏死性筋膜炎、感染性心内膜炎、坏死性肺炎中毒性休克综合征

潜伏期:潜伏期很短,通常在食用被污染食物后2-4小时内出现临床症状。

典型症状:特征为恶心、呕吐,体温多为偏低,伴有寒战、头痛和腹部绞痛,可有或无腹泻,但通常不发烧。最常见的症状是腹部绞痛、恶心和呕吐

高危人群:儿童和老年人等易感人群中,偶尔可能导致死亡。

MRSA感染症状:MRSA或多重耐药S.aureus菌株可引起院内感染,导致快速进展且可能致命的疾病,如威胁生命的肺炎、坏死性筋膜炎、心内膜炎、骨髓炎、严重败血症以及中毒性休克综合征等毒素病。

6

检测方法 (Detection)

常规检测

培养基: 使用一系列选择性和诊断性培养基(如甘露醇盐琼脂)来检测和计数食品中的葡萄球菌。

鉴定标准: 鉴定致病性葡萄球菌最广泛接受的标准是其产生凝固酶的能力。标准方法包括选择性增菌、分离具有典型形态的菌落,并通过微生物学和生化方法确认。

细菌检测:实时荧光定量PCR (RT-PCR) 和定量PCR越来越多地用于临床实验室,以快速检测鉴定MRSA菌株。快速乳胶凝集试验也是一种常见的实验室测试。

肠毒素检测:检测食品中肠毒素最重要的方法是酶联免疫吸附试验(ELISA)。其他血清学测试如凝集试验和凝胶扩散法也可用于检测。近年来,核酸杂交、PCR和荧光免疫分析等分子生物学方法已成为最流行的检测手段。

7

预防与控制 (Prevention and Control)

基本原则: 葡萄球菌无处不在,无法从环境中根除。预防的关键在于切断其各种传播途径

预防措施

食品安全: 彻底煮熟食物、防止污染和交叉污染、控制关键控制点是有效的预防方法。

公众教育: 提高公众关于安全处理肉类的意识以及其他公共卫生干预措施是预防疫情的基石。

控制方案

卫生实践: 改善医护人员和食品处理者的个人卫生习惯。

环境控制: 对设备、表面、衣物进行消毒。

医疗相关: 明智地使用抗生素,并实施筛查计划。对MRSA患者所在的区域应使用消毒剂进行彻底清洁。

弯曲杆菌
Campylobacter

弯曲杆菌属(Campylobacter)是全球人类细菌性食物传播腹泻病的主要原因,主要源于动物源性食品的污染。弯曲杆菌属可以在大多数温血动物和家禽中定殖。

弯曲菌病人畜共患性质使其在全球范围内具有重要的临床和经济意义。它们导致了15%食源性疾病相关住院6%的食源性疾病相关死亡,据估计,每年有4亿例病例是由弯曲菌感染引起的。

1

病原学特征 (Etiology)

命名与形态:“Campylobacter”一词源于希腊语,意为“弯曲的杆菌”。这类细菌属于弯曲杆菌科,是微小(0.2–0.8μm×0.5–5μm)的革兰氏阴性、呈弯曲或螺旋状的微需氧菌。它们具有独特的“飞镖式”运动能力,过氧化氢酶和氧化酶呈阳性。当两个或多个细菌细胞聚集时,会形成“S”形或海鸥翅膀样的“V”形。

分类:弯曲杆菌属目前包含25个种和8个亚种。

主要致病菌:在众多弯曲杆菌中,空肠弯曲杆菌(C.jejuni)和结肠弯曲杆菌(C.coli),是重要的食源性病原体。其中,空肠弯曲杆菌是最常报告的种类(占80%至90%),其次是结肠弯曲杆菌(占5%至10%)。

2

流行病学特征 (Epidemiology)

动物宿主:它们广泛分布于自然界,被认为是人畜共患病原体,存在于众多动物宿主体内,尤其是鸟类。它们可以定植在野生和家养鸟类及哺乳动物(包括所有食用动物)的消化道中,也可存在于动物和人类的生殖器官、肠道和口腔中。

食品来源:散装牛奶、牛的组织标本和生碎牛肉中都可能发现这种细菌,但鸡蛋通常不被认为是该菌的重要来源。

暴发特点:弯曲杆菌病的暴发通常是散发性的,虽然不常导致死亡,但可能引起继发性并发症。

人类感染风险:旅行是导致人类感染弯曲杆菌病的最重要风险因素,其次是食用未煮熟的鸡肉、环境暴露以及与农场动物直接接触。

3

传播途径 (Transmission)

主要途径:人类感染弯曲杆菌的主要传播途径是处理、制备和食用受污染的食物,特别是禽肉产品。

其他途径:食品处理者在制备过程中对即食食品的交叉污染,以及与动物的直接接触也被确定为传播途径,或接触受污染的设备、水传播。

弯曲杆菌的储存库和传播

doi: 10.3389/fpubh.2022.1045599.

主要食品来源:感染主要来自食用受污染家禽牛肉、猪肉或其他动物肉类、肉制品、生(未经巴氏消毒)牛奶或奶酪等乳制品。

4

致病机理 (Pathogenesis)

关键毒力因子:细菌的运动能力、粘液定植上皮细胞入侵、毒素产生、附着、内化和易位在疾病发展中起着重要作用。

入侵过程
运动与附着:鞭毛使细菌能够到达肠道内的附着位点。病原体对肠道上皮的附着对于定植和增加细菌毒素的分泌至关重要。
细胞入侵:空肠弯曲杆菌在被摄入后,会在肠道中繁殖并损害粘膜上皮,侵入上皮细胞和固有层内的细胞,导致自限性腹泻和腹痛。腹泻病可能由其产生的一种不耐热毒素引起。

防御机制:弯曲杆菌能产生超氧化物歧化酶,这种酶可以分解超氧自由基,是细菌对抗氧化损伤的主要防御机制之一。

5

临床症状 (Symptoms)

潜伏期:潜伏期为3至5天

主要症状:人类弯曲杆菌病的特征是水样或血性腹泻、腹痛、痉挛、发烧、不适和呕吐。它也是“旅行者腹泻”的主要病原体。

高危人群: 这对幼儿尤其危险,因为腹泻会导致脱水和钠、蛋白质等营养物质的流失。在幼儿(<1岁)和免疫功能低下的患者中,可能会出现中毒性巨结肠、脱水和败血症。

感染后并发症:格林-巴利综合征(GBS)是最主要的感染后并发症,通常在感染后2-4周出现。其特征是周围神经的多发性神经炎,可能导致持续数周的肢体短期或长期麻痹

其他并发症还可能包括脑膜炎、尿路感染和短期反应性关节炎

6

检测方法 (Detection)

传统方法:传统上,鉴定方法包括使用选择性培养基(如Preston琼脂、木炭-头孢哌酮-脱氧胆酸盐琼脂等)结合生化测试。

分子技术:近年来,PCR已越来越多地应用于弯曲杆菌的检测和鉴定。

免疫学方法:作为替代方法,也可以使用免疫测定法等多种技术。

7

预防与控制 (Prevention and Control)

养殖场控制: 控制取决于畜舍的卫生设施和卫生状况,以减少动物环境中细菌的数量。

加工厂控制: 在肉类加工厂,可以通过实施HACCP体系,包括清洗、处理和冷冻胴体,来减少和控制细菌数量。

食品制备:提高餐馆和家庭厨房的食品处理技能将减少细菌的传播。 将家禽等生肉充分烹饪至内部温度达到82°C将能消灭该细菌

新型干预: 精油、益生元、益生菌、细菌素、噬菌体和免疫措施在控制弯曲杆菌方面也具有重要作用。

单核细胞增生李斯特菌
Listeria monocytogenes

它是一种主要的食源性人畜共患细菌,对公共卫生构成严重威胁,主要通过食用受污染的动物源性食品传播。单核细胞增生李斯特菌作为食源性病原体的出现可以追溯到1980年,当时发生了很多与食用受污染食品有关的李斯特菌病爆发和散发病例。

★ 李斯特菌感染病例死亡率较高

单核细胞增生李斯特菌是全球控制和监测机构一直试图控制的最具毒力的病原体之一,其病例死亡率约为30%远高于其他常见的食源性病原体。

此外,食品中存在单核细胞增生李斯特菌还会造成重要的经济后果,例如产品从消费者市场撤回以及涉案产品销量下降。由于李斯特菌属无处不在的特性,以及它们在包括pH、温度和盐度在内的广泛环境压力下生存的独特能力,它们被认为是重要的食源性病原体。

1

病原学特征 (Etiology)

基本特性:李斯特菌属的生物是嗜冷、革兰氏阳性、可运动、兼性厌氧、不形成孢子的杆状细菌。

分类:李斯特菌属目前包含10个种,包括单核细胞增生李斯特菌 (L.monocytogenes)、伊万诺夫李斯特菌 (L.ivanovii) 等。

主要致病菌:尽管李斯特菌属有多个种,但由人类李斯特菌病引起的病例几乎全部是由单核细胞增生李斯特菌(L.monocytogenes)引起的。它是人类和动物的主要病原体

生存能力:该细菌具有极强的环境适应能力,能够在冷藏条件、低pH值高盐浓度下存活。它是一种兼性胞内菌,可在0°C至45°C的温度和4.4至9.4的pH值范围内生长。

2

流行病学特征 (Epidemiology)

地理分布:单核细胞增生李斯特菌在世界范围内广泛存在。李斯特菌病在全球以散发或流行的形式出现。

环境分布:李斯特菌属细菌无处不在,广泛分布于正常环境中。它们最常见于被土壤和水污染的蔬菜等生食,以及生的动物产品中。

主要污染食品:单核细胞增生李斯特菌经常从动物源性食品中分离出来,如即食肉制品、碎牛肉、香肠、鱼和鱼制品、牛奶以及经过巴氏消毒的乳制品(如软奶酪和冰淇淋)。

注:尽管巴氏杀菌可以消灭生奶中的单核细胞增生李斯特菌,但并不能消除乳制品后续被污染的风险。

职业与高危人群:人类可能因职业原因从动物源感染李斯特菌病,特别是农民、屠夫、家禽工人和兽医

侵袭性李斯特菌病的主要风险人群是免疫功能低下者,如孕妇、未出生或新生婴儿器官移植接受者、癌症艾滋病患者以及老年人

3

传播途径 (Transmission)

主要途径: 人类感染的最常见途径是食用被单核细胞增生李斯特菌污染的动物源性食品

高危人群:孕妇、新生儿、老年人和免疫功能低下的人群感染风险更高。

单核细胞增生李斯特菌引起的宿主、传播和疾病

doi: 10.3389/fpubh.2022.1045599.

4

致病机理 (Pathogenesis)

独特毒力:李斯特菌拥有独特的毒力因子,使其能够侵入宿主、逃避免疫细胞并引起感染。

入侵过程

附着:L.monocytogenes 表面有D-半乳糖残基,可以附着到宿主细胞(通常是肠道粘膜的M细胞和派尔集合淋巴结)上的D-半乳糖受体。

穿透:附着后,细菌可以穿过肠道膜进入血液,成为血源性(败血性)病原体。

胞内生长:进入宿主的单核细胞、巨噬细胞或多形核白细胞后,细菌可以在其中生长。

跨越屏障: 作为一种胞内菌,它能够感染多种类型的细胞,并能穿过肠道、血脑和胎盘等生物屏障,引发感染。

5

临床症状 (Symptoms)

典型症状: L.monocytogenes通常表现为典型的“食物中毒”症状,包括流感样症状(如发烧、疲劳)和胃肠道症状(恶心、呕吐和腹泻)。

持续时间:李斯特菌病的症状通常持续7-10天。

严重感染:在高危人群中,它可能导致严重的、危及生命的感染,如败血症、脑膜炎、自然流产、死产胎儿感染

6

检测方法 (Detection)

传统方法:方法包括在选择性培养基中进行增菌,随后在琼脂平板上进行划线培养,并进行各种物种鉴定测试。

注:Christie–Atkinson–Munch–Peterson (CAMP) 试验有助于识别李斯特菌属的种类

分子方法:由于其准确、灵敏和特异,PCR和RT-PCR等分子方法越来越多地用于从食品中鉴定L.monocytogenes

免疫学方法:使用单克隆抗体的ELISA已被开发用于鉴定食品中的李斯特菌。

7

预防与控制 (Prevention and Control)

卫生措施

表面消毒:对食品接触表面进行有效的卫生处理可以预防李斯特菌病。

规范操作: 良好的卫生习惯、良好生产规范和卫生设施是操作程序中最合适的策略。

高危人群防护: 建议易感人群(孕妇、老年人和免疫抑制者)避免食用未经巴氏消毒的乳制品以降低风险。

法规与生产控制

法规:标准化的法律法规和对肉制品生产的控制应是保护食品免受L.monocytogenes污染的根本途径。

生产链控制:在食品生产链的不同阶段,防止细菌在加工厂传播是保护食品的最重要方法之一。

管理体系:实施HACCP方法并建立有效的关键控制点,可以显著降低许多加工食品中李斯特菌的污染水平。各国采用的冰淇淋/冷冻甜点巴氏杀菌标准对于减少李斯特菌病具有重要意义。

大肠杆菌
Escherichia coli

大肠杆菌是众多可进入动物源食品的病原微生物之一,被认为是粪便、土壤水污染的可靠指标。一种新兴的克隆差异型大肠杆菌最早于1982年被确定为重要的食源性人畜共患病原体,当时它与美国爆发的严重血性腹泻有关,而这种腹泻的源头被追溯到食用未煮熟的汉堡包。

大多数大肠杆菌是动物和人类胃肠道(回肠下段和大肠)的正常居民,而另一些则对人类具有致病性。大肠杆菌具有人畜共患性质,构成公共卫生危害。产志贺毒素大肠杆菌与全球范围内多起危及生命的食源性疫情相关。

1

病原学特征 (Etiology)

基本特性:大肠杆菌是一种属于肠杆菌科的革兰氏阴性杆状细菌,长度可达3微米,能发酵葡萄糖和其他糖类,有周生鞭毛使其能够运动,并常有菌毛。

致病性分组:根据其毒力特征,可分为五个致病性组:肠道集聚性大肠杆菌(EAEC)、肠道出血性大肠杆菌(EHEC)、肠道侵袭性大肠杆菌(EIEC)、肠道致病性大肠杆菌(EPEC)和肠道产毒性大肠杆菌(ETEC)。

主要致病血清型:O157:H7是最著名的血清型之一,其致病型可引起人类食源性感染。它是一种广为人知的产志贺毒素细菌,也是主要的食源性和人畜共患病原体

2

流行病学特征 (Epidemiology)

全球公共卫生问题:大肠杆菌O157:H7是最重要的食源性病原体之一,在世界各地报道日益增多,是导致全球暴发的新兴食源性病原体。据估计,仅在美国,每年就有约74000例病例和61例死亡归因于该菌。

主要宿主:是大肠杆菌O157:H7的主要宿主。其次是绵羊和山羊。一些研究报告称,小型反刍动物通过粪便排菌也是人类感染的来源之一。此外,也从马、狗鹿中分离出该菌。

主要传染源:未煮熟的牛肉、受污染的碎牛肉以及其他牛源性食品被确定为暴发中的主要感染来源。牛奶和乳制品也是其来源之一。

促发因素:大肠杆菌O157:H7感染发病率上升的主要促成因素包括饮食习惯的改变、大规模餐饮、复杂且漫长的食品供应链(国际流动增加)以及不良的卫生习惯

近期趋势:然而,最近关于该菌在牛肉和乳制品中出现水平的报告有增加的趋势。近年来已开展了一些研究来评估其在肉类和奶类等动物源性食品中的出现情况。

3

传播途径 (Transmission)

主要途径:人类感染大肠杆菌O157:H7最常见的传播方式是食用受污染的食物和水。它也可以通过人与人直接接触以及偶尔的职业暴露传播。

大肠杆菌O157:H7的储存库和传播

doi: 10.3389/fpubh.2022.1045599.

污染过程

屠宰环节:在加工厂的屠宰过程中,通过皮肤到胴体或粪便到胴体的转移导致胴体污染,这是人类感染的主要风险因素。


后续环节:交叉污染也可能在加工厂的后续加工、零售市场的牛肉分销和储存过程中发生。

4

致病机理 (Pathogenesis)

关键毒力因子:细菌的致病机制包括毒力因子、志贺样毒素和黏附因子

黏附与损伤
黏附素基因(Intimin gene):该基因负责细菌与肠道细胞的紧密黏附,导致出现黏附/清除(A/E)病变,并擦除肠细胞刷状缘的微绒毛。


细胞结构改变:细菌黏附后会破坏微绒毛,并改变肠细胞的细胞骨架结构。

志贺毒素(Shiga toxin):志贺毒素的产生是导致出血性腹泻和溶血性尿毒综合征的核心。O157:H7菌株产生志贺毒素1(stx-1)和志贺毒素2(stx-2)。毒素会刺激细胞分泌并杀死结肠上皮细胞

5

临床症状 (Symptoms)

潜伏期:潜伏期为2至10天

主要症状:感染后出现腹泻、腹痛、呕吐。最初可能是伴有腹部绞痛的腹泻,几天内可能转为严重的血性腹泻,通常没有发烧

严重并发症:可能导致出血性结肠炎、伴有急性肾衰竭的溶血性尿毒综合征(HUS)和血栓性血小板减少性紫癜(TTP)。

6

检测方法 (Detection)

金标准:大肠杆菌O157:H7的培养分离仍然是鉴定的金标准,并辅以生化测试。

选择性培养基:添加了头孢克肟和亚碲酸钾的山梨醇-麦康凯琼脂(SMAC)是分离O157:H7最灵敏和鉴别性的培养基之一。O157:H7不发酵山梨醇,因此在该培养基上会形成无色菌落。

免疫学方法:多种免疫测定技术和血清学技术可用于特异性诊断。


分子方法:PCR-ELISA、多种qPCR方法、环介导等温扩增(LAMP)等是检测志贺毒素的主要有效方法。

7

预防与控制 (Prevention and Control)

通用原则:预防由大肠杆菌引起的食源性疾病的方法与其他食源性细菌病相同,但由于其对幼儿的严重后果,需要特别注意。

养殖场策略:在养殖阶段采取干预措施,如使用益生菌、疫苗、抗菌剂、氯酸钠和噬菌体,以增加畜群对感染的抵抗力。

加工干预:开发了多种干预技术,如皮肤和胴体清洗、使用抗菌剂、蒸汽巴氏杀菌、伽马射线辐照等。


HACCP体系:在加工环节实施HACCP方法,该方法包括对产品进行微生物测试。

食品安全计划:证据表明,食品处理人员培训、食品经营场所检查以及旨在推广正确食品处理和制备技术的教育项目,是减少公众暴露于食源性病原体的有效组成部分。

结语

人畜共患疾病是一个严重的公共卫生问题。大多数人类传染病都是由动物引起的。这些病原体不仅在动物中引起疾病,而且还对人类健康构成严重威胁。本文详细介绍了五种主要的食源性细菌性病原体——非伤寒沙门氏菌、金黄色葡萄球菌、弯曲杆菌单核细胞增生李斯特菌和大肠杆菌O157:H7。这些病原体具有以下共同特点:

主要特征与危害:

-广泛分布于自然界,以动物为主要宿主;

-具有人畜共患特性,对公共卫生构成严重威胁;

-主要通过受污染的动物源性食品传播;

-可引起从轻微胃肠道症状到危及生命的严重并发症。

许多人畜共患病目前已得到控制,但我们对许多疾病的认识仍存在差距,特别是对疾病分布、病原学、病原体、宿主、媒介生物学、动力学、传播周期、易感因危险因素的认识。宿主、病原体环境之间的平衡可能在任何时候受到人类活动和自然活动的干扰,从而引起人畜共患病的发生。

除前述针对不同病原菌(沙门氏菌、弯曲杆菌等)的传统培养、血清分型、免疫学检测及分子诊断等常规方法外,高通量测序技术正逐步成为重要补充工具。

16S rRNA测序宏基因组测序为代表的新型技术,无需依赖传统培养流程,可直接对粪便、食品或环境样本中的微生物群落进行全面解析。

未来预防与控制建议:

1.建立”从农场到餐桌”的全链条防控体系

-在养殖阶段加强生物安全措施,使用益生菌、疫苗等预防手段;

-在屠宰加工环节严格实施HACCP体系,加强胴体清洗和消毒;

-在零售和消费环节加强食品安全教育和监管。

2.强化多部门协作的”一体化健康”理念

-建立兽医、公共卫生、食品安全等部门的协调机制;

-完善动物疫病监测预警系统;

-加强抗菌药物合理使用,遏制耐药菌株传播。

3.推进科技创新与检测技术发展

-开发更快速、准确的分子检测方法;

-研发新型疫苗和生物防控技术;

-利用人工智能等技术提升风险预测能力。

4.加强公众教育与意识提升

-普及食品安全知识,提高消费者自我保护能力;

-加强食品从业人员培训;

-建立食品安全社会共治格局。

5.完善法律法规与标准体系

-制定和完善食品安全法律法规;

-建立严格的食品安全标准和检测体系;

-加大对违法行为的处罚力度。

面对人畜共患病的复杂挑战,我们需要以科学的态度、系统的思维和协作的精神,构建覆盖全社会、全过程的食品安全防控网络。消化道病原菌直接关系到我们的饮食和健康,尤其夏季食物易腐败或受污染,其检测更为重要。只有通过持续的努力和创新,才能有效预防和控制食源性人畜共患病的传播,保障人类健康和食品安全

主要参考文献

Ali S, Alsayeqh AF. Review of major meat-borne zoonotic bacterial pathogens. Front Public Health. 2022 Dec 15;10:1045599.

Abebe E, Gugsa G, Ahmed M. Review on Major Food-Borne Zoonotic Bacterial Pathogens. J Trop Med. 2020 Jun 29;2020:4674235.

Rahman MT, Sobur MA, Islam MS, Ievy S, Hossain MJ, El Zowalaty ME, Rahman AT, Ashour HM. Zoonotic Diseases: Etiology, Impact, and Control. Microorganisms. 2020 Sep 12;8(9):1405.

Ed-Dra A, Giarratana F, White AP, Yue M. Editorial: Zoonotic bacteria: genomic evolution, antimicrobial resistance, pathogenicity, and prevention strategies. Front Vet Sci. 2024 Mar 8;11:1390732.

Ed-Dra A, Filali FR, Khayi S, Oulghazi S, Bouchrif B, El Allaoui A, Ouhmidou B, Moumni M. Antimicrobial Resistance, Virulence Genes, and Genetic Diversity of Salmonella enterica Isolated from Sausages. Eur J Microbiol Immunol (Bp). 2019 Apr 9;9(2):56-61.

Feng Y, Pan H, Zheng B, Li F, Teng L, Jiang Z, Feng M, Zhou X, Peng X, Xu X, Wang H, Wu B, Xiao Y, Baker S, Zhao G, Yue M. An integrated nationwide genomics study reveals transmission modes of typhoid fever in China. mBio. 2023 Oct 31;14(5):e0133323.

Mughini-Gras L, Kooh P, Augustin JC, David J, Fravalo P, Guillier L, Jourdan-Da-Silva N, Thébault A, Sanaa M, Watier L; Anses Working Group on Source Attribution of Foodborne Diseases. Source Attribution of Foodborne Diseases: Potentialities, Hurdles, and Future Expectations. Front Microbiol. 2018 Sep 3;9:1983.

Dhama K, Rajagunalan S, Chakraborty S, Verma AK, Kumar A, Tiwari R, Kapoor S. Food-borne pathogens of animal origin-diagnosis, prevention, control and their zoonotic significance: a review. Pak J Biol Sci. 2013 Oct 15;16(20):1076-85.

弓形菌属(Arcobacter)——一种新兴的食源性肠道病原菌

谷禾健康

随着夏季天气变得炎热,高温环境为病原微生物的繁殖创造了有利条件,同时也加速食品的腐败变质过程,从而导致食源性感染的数量呈现出明显的增加趋势

重要的食源性细菌病原体包括大肠杆菌、沙门氏菌弯曲杆菌小肠结肠炎耶尔森菌葡萄球菌肉毒杆菌等。近年来,弓形菌属(Arcobacter)已被确定为一种新兴的食源性人畜共患病原体。

弓形菌属(Arcobacter)是一类革兰氏阴性螺旋形不产芽孢的杆菌。其与弯曲杆菌属非常相似,但具有更强的耐氧性低温耐受性。该属已包含三十多个物种,广泛分布于土壤、淡水、海水以及人类和各种动植物中,大约7%的人群粪便中能够检出。

与人类疾病相关的主要是四个菌种:A.butzleri、A.cryaerophilus、A.skirrowiiA.cibarius,其中A.butzleri最常见,是腹泻患者粪便中第四大弯曲杆菌样生物。该菌可引起肠炎、严重腹泻、菌血症、败血症、心内膜炎、腹膜炎等疾病,还存在于肝硬化坏疽性阑尾炎患者的血液样本中。

Arcobacters对常用抗菌剂的耐药性也有所增加,研究显示,所有测试的Arcobacter菌株都对氨苄青霉素敏感,对氨基糖苷类四环素类也表现出敏感性。但A.butzleri氨苄西林耐药率为56%,其次是头孢噻肟(33%)和环丙沙星(33%),对恩诺沙星庆大霉素敏感,这些是治疗Arcobacter感染的首选药物。所有A.skirrowii和大多数A.cryaerophilus分离株对阿莫西林/克拉维酸敏感,对青霉素、万古霉素、夫西地酸、氯唑西林和头孢唑啉耐药,对阿米卡星、恩诺沙星、氧氟沙星、土霉素、氯霉素、呋喃妥因、红霉素、氨苄西林舒巴坦和阿莫西林中度敏感

本文全面介绍了这一重要食源性病原体的各个方面,包括不同Arcobacter物种的分布及临床相关性毒力因子感染症状和危害药物敏感性以及与人体和其他菌群的相互作用。并提出使用草药活性成分、精油、噬菌体、益生菌、禽蛋抗体、RNAi技术等新治疗方法有助于防止抗生素耐药性发展和Arcobacter传播。基于肠道菌群检测等技术将进一步深化对Arcobacter感染的理解。

弓形菌属(Arcobacter的基本属性

弓形菌属(Arcobacter)名称源自拉丁语”arcus”(弓形)和”bacter”(细菌),意为“弓形细菌”,反映了其弯曲的形态特征。其属于弯曲杆菌科(Campylobacteraceae)。这是一类革兰氏阴性螺旋形不产芽孢的杆菌。硝化弧菌(Arcobacter nitrofigilis)为其模式菌种

弓形菌属(Arcobacter)于1977年首次从流产牛胎儿中分离获得。1991年,该属被归类为非典型弯曲杆菌属中的一组耐氧细菌,随后增加了两个新种。基于核糖体RNA遗传相似性95%的截断标准,该属被确立为独立属

注:弓形菌属(Arcobacter)与弯曲杆菌属(Campylobacter)密切相关,两者都是Campylobacteriaceae家族的成员。它们的主要区别在于更高的耐氧性和在较低温度下生长的能力。

1

形态特征

弓形菌属(Arcobacter)的主要形态特征包括:

基本形态:革兰氏阴性、通常呈螺旋状、弯曲状或”S”形杆菌。

细胞大小:宽度0.2-0.9微米,长度0.5-3微米。

运动特性:具有单一的无鞘极性鞭毛,表现出独特的穿梭式螺旋运动。

特殊能力:能够通过0.45μm和0.65μm的膜过滤器,这一特性常用于分离培养。

doi.org/10.1111/j.1472-765X.2005.01841.x

2

生长环境

温度:弓形菌属(Arcobacter)的生长温度范围为15-37°C,最适温度30°C。该菌具有良好的低温耐受性,可在-20°C存活6个月,在-70°C存活24个月,但在55°C及以上温度下会迅速失活

注:A.butzlerii能够在10°C下生长,这是这种微生物的最低可检测生长温度,并且在40°C时没有生长。

氧气:Arcobacter能够耐受氧气,这一点可区分于严格微需氧的弯曲杆菌属(Campylobacter)。

pH和渗透压耐受性:该菌pH耐受范围为5.5-9.5最适pH为6.8-8.0,并能耐受高盐浓度和低水分

3

代谢能力

代谢类型:呼吸型代谢,Arcobacter能够耐受氧气环境,主要进行有氧呼吸代谢。

碳源利用:可利用有机酸氨基酸作为碳源,不发酵或氧化碳水化合物,但有新发现某些菌株能够代谢果糖

酶活性:氧化酶、过氧化氢酶、吲哚乙酸水解酶硝酸盐还原酶等均呈阳性。

4

主要菌种及分布

弓形菌属(Arcobacter)已包含三十多个物种,广泛分布于土壤、淡水、海水以及人类和各种动植物中。该属可在全球范围内从肉类、乳制品、蔬菜和海鲜中分离出来,被认为是新兴的人畜共患病原体。其致病菌种可引起人类急性持续性腹泻、恶心、呕吐和肠道功能紊乱,也可导致无腹泻的菌血症

Arcobacter物种基于16S rRNA 基因的关系

doi: 10.1128/CMR.00034-10.

• 与人类疾病密切相关的主要有四种:

A.butzleri(最常见,与人类疾病关联最强)

A.cryaerophilus(第二常见菌种)

A.skirrowii(水环境污染中检出率13%)

A.cibarius

• 人群中的检出率:

健康人群:大约7%的人群粪便中能够检出Arcobacter。

腹泻患者:在一些研究中,A.butzleri是第三或第四常见的弯曲菌样病原体

分布特点:遍布全球各大洲、发展中国家检出率相对较高、与环境卫生条件相关。

• A.butzleri—与人类疾病关联最强的

在所有Arcobacters中,A.butzleri是最常见的物种,与人类疾病有关,可引起肠炎、严重腹泻、菌血症败血症等疾病,是腹泻患者粪便中第四大弯曲杆菌样生物。

A.butzleri感染的主要临床表现包括:

胃肠道症状:

-持续性水样腹泻(与空肠弯曲杆菌的血性腹泻不同);

-急性腹泻持续3-15天;

-腹痛和恶心;

-血性粪便(部分病例);

-恶心和呕吐;

全身症状:

-发热和寒战

-虚弱和乏力

-厌食和体重减轻

在下面的章节中我们也会主要以A.butzleri为例阐述该致病菌对人体的危害

• A.cryaerophilus—新出现的食源性病原体

A.cryaerophilus是一种新兴的食源性病原体,与人类疾病也相关。A.cryaerophilus是人类粪便样本中第二常见的Arcobacter菌种,仅次于A.butzleri,并且在肠炎症状患者粪便样本中占43%,仅次于A.butzleri(55%)。

A.cryaerophilus主要引起人类传染性胃肠道疾病,症状包括急性或长期水样腹泻、腹痛、恶心、持续性腹泻,严重者可发生菌血症。

5

毒力因子

目前关于Arcobacter毒力基因/因子的研究信息有限。现有研究表明,粘附、病原体入侵、毒素分泌和促炎细胞因子(IL-8)在建立宿主感染中发挥主要作用。A.cryaerophilusA.butzleri是迄今为止在粘附性和侵袭性方面研究最多的两个主要Arcobacter物种。

• 损害结肠上皮功能

A.butzleri感染会损害人HT-29/B6结肠上皮单层的上皮功能。Claudin蛋白家族对屏障功能至关重要,其中claudin-1、5和8具有屏障密封特性A.butzleri感染期间,紧密连接蛋白claudin-1、-5和-8表达异常,导致上皮屏障功能障碍。类似的claudin-1功能障碍也在肠致病性大肠杆菌感染的人肠道T84单层中观察到。

据报道,血凝素特性也与A.butzleri有关,它与红细胞相互作用,因此有助于细菌的粘附

与弯曲杆菌和幽门螺杆菌一样,Arcobacter感染中IL-8的释放可能在引起腹泻中发挥作用。促炎细胞因子的释放是幽门螺杆菌和弯曲杆菌的主要毒力因子,同样,Arcobacter也能导致促炎细胞因子的释放

Arcobacter的毒力机制

编辑​

doi: 10.1128/CMR.00034-10.

• 可以产生肠毒素和液泡毒素

当在Vero细胞中培养时,Arcobacter分离物会产生细胞伸长,这表明它们具有产生肠毒素的能力,部分分离株还能在细胞中产生液泡,显示其具有液泡毒素产生能力。

 各种毒力基因参与不同的致病过程

目前已在A.butzleri ATCC 49616基因组中发现10个推定毒力基因:cadF、ciaB、cj1349、hecA、iroE、hecB、irgA、mviN、pldA和tlyA。这些基因分别编码外膜蛋白、侵袭蛋白、溶血素、磷脂酶A等,参与粘附、侵袭、溶血、铁获取等过程。

注:不同基因的功能包括: cadF基因cj1349基因编码外膜蛋白,通过粘附纤连蛋白促进肠上皮细胞间接触;ciaB基因参与宿主细胞的侵袭,pldA基因编码水解酰酯键的外膜磷脂酶 A,tlyA基因是溶血素基因,irgA基因编码肠杆菌素的外膜受体,hecA基因是丝状血凝素家族的成员,hecB基因编码溶血素激活蛋白。

一项研究揭示了Arcobacter spp中的6个毒力基因 (cadF、ciaB、cj1349、mviN、pldA 和 tlyA)存在于所有A.butzleri分离株中,而在A.cryaerophilusA.skirrowii中的分布存在差异。各种毒力基因负责不同的致病过程:CadF、HecA和Cj1349参与粘附,CiaB参与侵袭,HecB、TlyA和PldA参与红细胞裂解,IrgA和IroE参与铁获取,MviN参与肽聚糖生物合成

6

药物敏感性

关于Arcobacter的抗菌药物敏感性数据有限,A.butzleri是研究最多的物种。现有报告表明,这种新兴病原体的抗菌素耐药性增加,导致常用抗菌剂治疗失败。并且A.butzleriA.cryophilusA.skirrowi表现出更强的耐药性

Arcobacter的抗生素耐药性或检测到的基因组性状

Buzzanca D,et al.Antibiotics (Basel).2024

• 对氨苄青霉素敏感

研究显示,所有测试的Arcobacter菌株都对氨苄青霉素敏感,对氨基糖苷类四环素类也表现出敏感性。A.butzleri氨苄西林耐药率为56%,其次是头孢噻肟(33%)和环丙沙星(33%),对恩诺沙星庆大霉素敏感,这些是治疗Arcobacter感染的首选药物。

在一项研究中,所有A.skirrowii和大多数A.cryaerophilus分离株对阿莫西林/克拉维酸敏感,对青霉素、万古霉素、夫西地酸、氯唑西林和头孢唑啉耐药,对阿米卡星、恩诺沙星、氧氟沙星、土霉素、氯霉素、呋喃妥因、红霉素、氨苄西林舒巴坦和阿莫西林中度敏感

• 对头孢菌素和万古霉素具有耐药性

研究发现,Arcobacter头孢菌素、新生霉素和万古霉素耐药,但对阿奇霉素、萘啶酸和庆大霉素敏感。71种Arcobacter分离株的抗菌素敏感性测试显示,所有分离株对一种或多种抗菌剂具有耐药性,对头孢菌素和万古霉素的耐药性最常见(96%),其次是甲氧西林、阿奇霉素和氨苄西林。所有分离株都对庆大霉素、链霉素、四环素和卡那霉素敏感

比利时患者分离的A.butzleriA.cryaerophilus菌株研究显示,大多数菌株对庆大霉素(99%)和四环素(89%)敏感,红霉素(78%)、环丙沙星(72%)和多西环素(76%)显示中等活性,仅9%的菌株对氨苄西林敏感。大多数A.butzleri菌株对环丙沙星敏感(87%),而一半的A.cryaerophilus分离株(51%)表现出高水平耐药性

研究结果表明,大环内酯类药物不是Arcobacter感染的首选经验性抗生素,四环素类药物可用于治疗Arcobacter诱导的胃肠道感染。所有Arcobacter分离株均对万古霉素、利福平、甲氧苄啶、头孢曲松和头孢菌素耐药,而对土霉素、四环素、环丙沙星、红霉素、卡那霉素、阿米卡星、恩诺沙星和庆大霉素高度敏感。四环素类和氨基糖苷类药物可用于治疗人类Arcobacter感染

7

与人体和其他菌群的相互作用

• 细胞粘附与侵袭

粘附因子:cadF、cj1349、hecA等基因编码外膜蛋白;

侵袭机制:通过ciaB基因介导的细胞侵袭;

紧密连接破坏:影响claudin-1、claudin-5、claudin-8等紧密连接蛋白。

• 免疫相互作用

促炎反应:诱导IL-8、TNF-α、IFN-γ、IL-6等细胞因子释放;

TLR激活:激活Toll样受体4(TLR-4)依赖的免疫反应;

氧化应激:诱导活性氧产生,损伤细胞。

• 与肠道菌群的关系

生态竞争:Arcobacter会与有益菌竞争营养和定植位点;

菌群失调:Arcobacter感染可导致肠道菌群结构改变,并造成菌群失调;

代谢产物影响:影响短链脂肪酸等有益代谢产物产生。

• 菌群相互作用

增强:

Bacteroidales

Bacteroides

Odoribacter

Peptococcaceae

抑制:

Bifidobacterium

Coriobacteriales

Adlercreutzia

Collinsella

Porphyromonas

Prevotella

Clostridium

Clostridiales incertae sedis

Clostridiales Family XIII. Incertae Sedis

Blautia

Coprococcus

Dorea

Lachnospiraceae

Ruminococcaceae

Ruminococcus

Dialister

Campylobacteraceae

Erysipelotrichaceae

被抑制:

Bifidobacterium

Coriobacteriales

Adlercreutzia

Collinsella

Bacteroidales

Bacteroides

Porphyromonadaceae

Odoribacter

Parabacteroides

Porphyromonas

Prevotella

Rikenellaceae

Alistipes

Turicibacter

Streptococcus

Clostridiales

Catabacteriaceae

Clostridium

Clostridiales incertae sedis

Peptoniphilus

Clostridiales Family XIII. Incertae Sedis

Lachnospiraceae

Blautia

Lachnospiraceae

Coprococcus

Dorea

Eubacterium

Lachnobacterium

Lachnospira

Roseburia

Lachnospiraceae

Peptococcaceae

Ruminococcaceae

Ruminiclostridium

Acetivibrio

Eubacterium

Faecalibacterium

Oscillospira

Ruminococcus

Acidaminococcus

Dialister

Phascolarctobacterium

Veillonella

Rubrivivax

Alcaligenaceae

Oxalobacter

Bilophila

Desulfovibrio

Campylobacteraceae

Enterobacteriaceae

Escherichia

Erysipelotrichaceae

Holdemania

Akkermansia

弓形菌属(Arcobacter的临床重要性

1

感染的危害

多项研究表明,Arcobacter在世界不同国家的人类中普遍存在,已从人类粪便和血液样本中分离出来。而其中的致病菌种A.butzleriA.cryaerophilus已被多次证明与胃肠道疾病相关。持续性水样腹泻A.butzleri的主要症状,与空肠弯曲杆菌病例中的血性腹泻形成对比,其余微生物学或临床特征非常相似。

注:Arcobacter spp.也被认为是旅行者腹泻的一种细菌因子,与大肠杆菌、志贺氏菌、沙门氏菌和弯曲杆菌并列。

• A.butzleri是第三普遍的弯曲杆菌病原体

一项通过分子方法的研究发现,在322份粪便标本中,A.butzleri第三普遍的弯曲杆菌(6.2%),仅次于幽门螺杆菌(50.6%)和空肠弯曲杆菌(10.2%)。比利时和法国的两项独立研究显示,A.butzleri是从腹泻患者粪便中发现的第四种最常见的弯曲杆菌样生物。最近,该物种还被发现是美国和欧洲旅行者前往墨西哥、危地马拉和印度后发生旅行者腹泻的病因,患病率为8%,这是首次证明Arcobacter与此类感染关联的研究。

• 可引起肠炎,导致腹泻等症状

在所有研究中,A.butzleri的患病率往往最高,其次是A.cryaerophilusA.skirrowii,直接分子检测报告的值分别为6.2%、2.9%和1.9%。A.skirrowii仅在少数情况下与胃肠炎相关

A.butzleri近年来已被定位为一种新兴的人畜共患病原体,它被描述为急性细菌性胃肠炎的原因,伴有血便、大量腹泻、腹胀,在某些情况下是菌血症的原因。此外,A.butzleriA.cryaerophilus引起的病例也偶有报道。

Arcobacter中的致病菌种丰度过高会导致以下危害:

急性胃肠炎

症状:水样腹泻(持续3-15天,严重可达2个月)

伴随症状:腹痛、恶心、呕吐、发热、寒战

病程特点:通常自限性,但可发展为慢性感染

严重系统性感染

菌血症:可发生原发性或继发性菌血症

心内膜炎:罕见但严重的并发症

腹膜炎:腹腔感染的重要病原体

败血症:在免疫功能低下患者中易发生

肝硬化和阑尾炎患者中也存在

在患有肝硬化阑尾炎等临床疾病的患者的血液样本中也检测到弓形菌属(Arcobacter)。

• 诱导促炎细胞因子释放

A.butzleri感染会诱导小肠和大肠分泌更多促炎细胞因子,包括TNF、IFN-γ、IL-6和MCP-1。A.butzleri还以菌株依赖性方式诱导比共生大肠杆菌更明显的局部和全身免疫反应,表明A.butzleri不仅仅是人体中的共生体。

研究还发现miRNA在感染A.butzleri的巨噬细胞免疫信号中发挥作用。细菌感染期间有几种miRNA表达,其中miR-155、miR-212和miR-125等新型miRNA表达上调,它们在Toll样受体信号转导中起关键作用,参与免疫反应的产生。揭示了人类先天免疫细胞Arcobacter在感染过程中的相互作用。

2

疾病相关的发病机制

• 肠道屏障功能破坏

物理屏障:破坏肠道上皮细胞紧密连接;

化学屏障:影响胃酸和胆汁酸的保护作用;

生物屏障:干扰正常肠道菌群的保护功能;

免疫屏障:调节肠道免疫系统反应。

• 与炎症性肠病的关联

炎症介质:激活NF-κB信号通路,促进炎症因子释放;

氧化应激:诱导活性氧产生,加重肠道损伤;

自身免疫:可能触发自身免疫反应;

菌群失调:加重肠道菌群紊乱。

• 毒力因子与致病机制

粘附侵袭:cadF、cj1349、ciaB、hecA;

毒素产生:hecB、tlyA、pldA(溶血素和磷脂酶);

铁获取:irgA、iroE(铁离子转运);

细胞壁合成:mviN(维持细胞完整性)。

3

感染途径

人类中的Arcobacter主要引起肠道问题,通过粪口传播动物直接传播以及受污染的食物(蔬菜、鸡肉和猪肉)和水源等多种方式在宿主细胞中定植。

• 食源性传播

已从鸡肉、猪肉、牛肉海鲜等各种肉类样本中分离出Arcobacter。据报道,鸡肉的Arcobacter患病率最高,其次是猪肉和牛肉。

注:据报道,鸡肉的A.butzleri发病率最高,为83%,其次是牛肉(20%)和猪肉(15%)。从哥斯达黎加销售的家禽内脏样本中分离出17%的Arcobacter,其中大多数分离株对氯霉素氨苄青霉素具有耐药性

四种弓形菌属(A.butzleriA.cryaerophilusA.skirrowiiA.cibarius)已从肉类中大量分离,尤其是从鸡尸体中。从牡蛎、鱼类、贝类和蛤蜊等海鲜中也可分离出Arcobacter。

来自世界不同地区的报告显示从牛奶样本中分离出Arcobacter,表明牛奶在其传播中可能起作用。其中A.butzleri是最主要的物种(60%),其次是A.cryaerophilus(40%)。并且研究表明A.butzleriA.cryaerophilus在4°C和10°C储存的牛奶中存活了6天,因此牛奶可以作为人类Arcobacter感染的来源。

Arcobacter相关的人类胃肠炎的几次爆发与食用受污染的新鲜蔬菜有关,因此可能成为重要的感染源。最近,在生菜和胡萝卜加工厂上报告了一些Arcobacter物种。在预切即食蔬菜上出现Arcobacter的比率为28%,其中91%(40/44)分离株为A.butzleri9.1%(4/44)分离株为A.cryaerophilus。这些结果表明,直接食用生蔬菜可能存在健康风险

• 经受污染的水源传播

受污染的水被认为是人类Arcobacter感染的重要来源。据估计,63%的A.butzleri感染是通过食用或接触受污染的水在人类中获得的。已从河流、湖泊、地下水、海水以及浮游生物中检测到了Arcobacter。

在土耳其伊兹密尔,来自不同来源(66个污水、25个河流、16个泉水和8个饮用水)的水样本中,有36%(41/115)的Arcobacter呈阳性。其中,34%的样本(39/115;24个污水、13条河流和2个泉水)报告了A.butzleri。这些结果表明,环境水样是Arcobacter的常见来源。

4

易感因素

虽然宿主特征(如年龄和免疫状态)在Arcobacter感染中的作用尚未明确确定,但很可能发挥重要作用。研究显示,以下人群可能更易受到感染

• 免疫功能低下者

-慢性淋巴细胞白血病患者

-HIV感染者

-器官移植受者

-化疗患者

• 年龄相关易感性

-新生儿:可发生垂直传播

-老年人:易发生严重感染和并发症

-儿童:症状通常较轻但持续时间长

• 一些疾病患者中弓形菌属丰度也较高

弓形菌属(Arcobacter)还常见于患有其他潜在疾病的患者中,包括1型和2型糖尿病、肝硬化、坏疽性阑尾炎癌症、慢性肾功能衰竭、内部假体植入、高尿酸血症和酗酒等。

一项研究通过多重PCR检测发现,患有2型糖尿病但无胃肠道症状的老年受试者中,粪便携带弓杆菌的患病率高达79%(30/38)。

弓形菌属(Arcobacter的预防和控制

针对新兴食源性病原体Arcobacter,需要采取一些控制措施来降低其感染风险减轻疾病负担

1

食品加工控制措施

肉类、奶类、海鲜等烹饪不当和受污染的动物源性食品可能是人类弓形菌属(Arcobacter)感染的重要来源。因此,彻底和良好的烹饪方法是预防感染的关键。

• 物理处理方法

高温处理:A.butzleri对热敏感,50°C热处理后会产生致命的协同效应;

辐射处理:A.butzleri对辐射的抗性比空肠弯曲杆菌更强;

低温储存:低温可抑制Arcobacter生长,但不能完全杀死。

• 化学处理方法

柠檬酸:1.0%浓度可抑制A.butzleri生长;

乳酸:2.0%浓度有效抑制生长;

乳酸钠:2%浓度有效抑制;

苯甲酸、苹果酸和山梨酸:具有较强抑制活性。

链球菌素50 IU/ml可将A.butzleri存活率降低约500%。磷酸三钠和EDTA在纯培养中能有效减少A.butzleri存活

2

益生菌防控策略

• 益生菌菌株的抑制作用

植物乳杆菌(L.plantarum CFS)在12.5%浓度下完全抑制A. butzleri生长;

嗜酸乳杆菌(L.acidophilus)和罗伊氏乳杆菌(L.reuteri CFS)在25%浓度下完全抑制生长;

在TSB+MRS培养基中,所有乳酸杆菌在24-48小时内均能有效抑制A.butzleri

• 益生菌抑制机制

酸化环境:益生菌产生的乳酸创造酸性环境(pH<3.0时A. butzleri在20分钟内无法生长);

代谢产物抑制:细胞无培养上清液(CFS)中的抗菌物质;

细菌素产生:如罗伊氏乳杆菌产生的罗伊氏菌素(Reuterin);

竞争性排斥:通过置换和排斥机制减少A. butzleri的肠道粘附。

3

植物提取物

• 精油类抗菌剂

百里香精油:A.butzleri具有显著抗菌活性,抑制浓度为32-1024 μg/mL;

丁香精油:抑制浓度为512-1024 μg/mL;

其他精油:17种精油(迷迭香、大蒜、鼠尾草、熊果、多香果、黑胡椒、孜然、肉桂、香菜、百里香、丁香、茴香、甘草、圣约翰草、生姜、洋甘菊和薄荷等)均显示出抑制效果。

• 植物提取物

柠檬、甜橙和佛手柑油:可预防Arcobacter感染;

白藜芦醇植物提取物:通过抑制细菌代谢活动、影响DNA并阻断细胞分裂发挥杀菌作用;

草药提取物:洋甘菊、鼠尾草、肉桂、迷迭香、熊果提取物等。

4

环境控制和卫生措施

• 屠宰场和食品加工厂卫生

严格消毒:使用适当消毒剂,因为A.butzleri在常规消毒后仍可能存活;

HACCP体系:实施严格的胴体微生物监测、验证系统和良好生产规范;

表面处理:A.butzleri可在铜、不锈钢和塑料管道表面定植,需要加强清洁。

• 个人卫生

食品处理:彻底烹饪肉类、奶类、海鲜等动物源性食品;

交叉污染防控:避免生熟食品交叉污染。

• 水处理

氯化处理:尽管A.butzleri对氯敏感,但常规饮用水处理效果仍需加强;

水源保护:受污染的水是重要感染源,需要有效处理水资源。

5

新型治疗方案

面对抗生素耐药性上升,急需探索替代疗法,包括噬菌体疗法、益生菌禽蛋黄抗体、细胞因子、RNAi技术、群体感应抑制剂、草药和精油等。噬菌体疗法已成功用于预防沙门氏菌、李斯特菌等,在屠宰场控制Arcobacter进入食物链方面具有良好前景。

主要参考文献

Ramees TP, Dhama K, Karthik K, Rathore RS, Kumar A, Saminathan M, Tiwari R, Malik YS, Singh RK. Arcobacter: an emerging food-borne zoonotic pathogen, its public health concerns and advances in diagnosis and control – a comprehensive review. Vet Q. 2017 Dec;37(1):136-161.

Collado L, Figueras MJ. Taxonomy, epidemiology, and clinical relevance of the genus Arcobacter. Clin Microbiol Rev. 2011 Jan;24(1):174-92.

García-Salguero C, González-Corralejo C, Marroyo Laso J, Delgado-Iribarren García-Campero A. Acute gastroenteritis due to Arcobacter butzleri: an emerging pathogen. Gut Pathog. 2025 Apr 11;17(1):22.

Buzzanca D, Chiarini E, Alessandria V. Arcobacteraceae: An Exploration of Antibiotic Resistance Featuring the Latest Research Updates. Antibiotics (Basel). 2024 Jul 18;13(7):669.

Ferreira S, Queiroz JA, Oleastro M, Domingues FC. Insights in the pathogenesis and resistance of Arcobacter: A review. Crit Rev Microbiol. 2016 May;42(3):364-83.

Chieffi D, Fanelli F, Fusco V. Arcobacter butzleri: Up-to-date taxonomy, ecology, and pathogenicity of an emerging pathogen. Compr Rev Food Sci Food Saf. 2020 Jul;19(4):2071-2109.

Prouzet-Mauléon V, Labadi L, Bouges N, Ménard A, Mégraud F. Arcobacter butzleri: underestimated enteropathogen. Emerg Infect Dis. 2006 Feb;12(2):307-9.

Vieira A, Mateus C, Fonseca IM, Domingues F, Oleastro M, Ferreira S. The dual action of probiotic lactobacilli in suppressing virulence and survival of Arcobacter butzleri. Microb Pathog. 2025 Jul;204:107589.

Bachus A, Beyer S, Bücker R, Sharbati S, Alter T, Gölz G. Pathogenicity of Arcobacter cryaerophilus in two human intestinal cell lines. Gut Pathog. 2025 Jun 22;17(1):48.

Jiménez-Guerra G, Casanovas MorenoTorres I, Moldovan TD, Navarro-Marí JM, Gutiérrez-Fernández J. Arcobacter butzleri and intestinal colonization. Rev Esp Quimioter. 2020 Feb;33(1):73-75.

Gölz G, Karadas G, Alutis ME, Fischer A, Kühl AA, Breithaupt A, Göbel UB, Alter T, Bereswill S, Heimesaat MM. Arcobacter butzleri Induce Colonic, Extra-Intestinal and Systemic Inflammatory Responses in Gnotobiotic IL-10 Deficient Mice in a Strain-Dependent Manner. PLoS One. 2015 Sep 25;10(9):e0139402.

从“菌”入手,助力睡眠:灵芝、茯苓、酸枣仁等的助眠之道

谷禾健康

失眠是一种常见的睡眠障碍,近 40%的成年人表现出失眠症状,10.8%的成年人患有慢性失眠症。

失眠主要表现为睡眠质量差、入睡困难、睡眠时间不足等,并与认知能力下降焦虑、慢性疲劳、注意力不集中和记忆力减退等身心后果相关。睡眠不足也会增加慢病风险(如心血管疾病、糖尿病和肥胖),形成恶性循环,进一步威胁患者的整体健康状况。

目前的失眠疗法主要包括药物治疗心理治疗。然而,像苯二氮䓬类药物有不良影响,如过度的神经毒性、成瘾性和耐受性。心理疗法,如认知行为疗法,已显示出长期的有效性。然而,由于缺乏训练有素的理疗师和高昂的成本,其可用性有限。

近年来,随着微生物群-肠-脑轴理论的深入发展,研究人员发现了肠道微生物不仅参与消化代谢过程,还能通过多种途径影响脑功能和行为,为失眠的发病机制研究提供了全新的视角。

在这一背景下,中草药及其活性成分作为独特的益生元,展现出巨大的治疗潜力。它们不仅为肠道菌群的活动提供能量,还通过调节肠道菌群改善肠道微环境,从而影响身体的多种生理功能,特别是睡眠调节功能。例如:

  • 茯苓:其多糖和三萜类化合物能调节肠道微生物,增加神经递质,减少炎症,抑制特定信号通路,从而抗焦虑、改善睡眠。
  • 酸枣仁:能恢复肠道菌群平衡,增加有益菌,并调节氨基酸代谢、神经递质释放、炎症因子平衡和HPA轴稳态,从而改善睡眠,尤其对虚证和慢性失眠有效。

本文阐述了肠道菌群如何通过肠道-脑轴的复杂通信网络调节睡眠质量,也介绍了利用中药及其活性成分调节肠道微生物群来改善睡眠质量的潜力,同时探讨了基于肠道菌群的其他针对失眠的干预措施,为失眠治疗开辟了一条融合传统智慧与现代科学的创新路径。

01
失 眠

失眠意味着晚上难以入睡、难以保持睡眠,或两者都有,它是最常见的睡眠障碍之一。

仅数天的失眠发作称为短期(急性)失眠。当持续存在睡眠问题时,通常会被诊断为长期(慢性)失眠

注:慢性失眠有许多不同的定义。一个普遍接受的定义是:每周超过3晚,持续至少3个月,或持续一个月或更长时间的失眠。

急性和慢性失眠都非常普遍。大约每3个成年人中有1个有可能出现失眠症状。

症 状

失眠症状可能包括:

  • 初始入睡困难
  • 夜间醒来难以入睡
  • 过早醒来
  • 白天感到疲倦或嗜睡、精力不足
  • 情绪不稳定,感到烦躁、沮丧或焦虑
  • 难以集中注意力、完成任务或记住事情
  • 出错增多或有更多意外
  • 对睡眠持续感到担忧、紧张、焦虑

哪些人群更容易失眠?

几乎每个人偶尔都会有失眠的夜晚。但下列人群更可能出现失眠的情况:

  • 女性

月经周期和更年期期间激素变化可能起作用。更年期时,夜间盗汗和潮热常常会扰乱睡眠。失眠在怀孕期间也很常见。

  • 超过 60 岁

由于睡眠模式和健康状况的变化,随着年龄的增长,更有可能患有失眠。

可能是什么原因?

慢性失眠通常是由压力、生活事件或破坏睡眠的习惯引起的。慢性失眠的常见原因包括:

  • 压力

工作、学校、健康、金钱或家庭的担忧会使思绪在夜间保持活跃,难以入睡。压力性生活事件,如亲人的去世或疾病、离婚或失业或搬家,也可能导致失眠。

  • 旅行或工作日程

身体的“内部时钟”,即昼夜节律,指导着诸如睡眠-觉醒周期、新陈代谢和体温等。破坏这些节律可能导致失眠。比如跨越多个时区的旅行导致的时差反应、上晚班或早班、频繁轮班或三班倒等都可能引发失眠。

  • 不良的睡眠习惯

包括每天上床睡觉和起床的时间不同、午睡、睡前过于活跃以及睡眠区域不舒服

其他不良的睡眠习惯包括在床上工作、吃饭或看电视。在睡前使用电脑或智能手机、玩电子游戏或看电视可能会破坏睡眠周期。

  • 晚上吃太多

睡前吃点清淡的小零食是可以的。但如果吃太多,可能会在躺下时感到不舒服。很多人还会出现胃灼热的情况。这是指胃酸反流到从口腔到胃的食物管道中。胃灼热可能会让人无法入睡。

  • 心理健康问题

焦虑症,如创伤后应激障碍,可能会扰乱你的睡眠。过早醒来可能是抑郁的迹象。失眠常常与其他心理健康问题同时发生。

  • 药物

许多处方药会影响睡眠,例如某些抗抑郁药和用于治疗哮喘或高血压的药物。许多非处方药,如一些止痛药、过敏和感冒药以及减肥产品,含有咖啡因和其他兴奋剂,这些物质会干扰睡眠。

  • 慢病

与失眠相关的状况包括慢性疼痛、癌症、糖尿病、心脏病、哮喘、胃食管反流病(GERD)、甲状腺功能亢进、帕金森病和阿尔茨海默病。

  • 睡眠相关障碍

睡眠呼吸暂停症会导致在夜间有时停止呼吸,从而扰乱睡眠。不安腿综合征会在你试图入睡时引起强烈的、不适的移动双腿的欲望,这可能无法入睡难以再次入睡。

  • 咖啡因、尼古丁和酒精

咖啡、茶、可乐和其他含有咖啡因的饮料让人兴奋。在下午或晚上饮用会难以入睡。烟草产品中的尼古丁是另一种会破坏睡眠的兴奋剂。酒精可能会让你入睡,但它会阻止更深睡眠阶段,在半夜醒来。

  • 肠道菌群

肠道菌群可以通过肠-脑轴直接或间接地参与调节大脑的睡眠功能。肠道菌群的失调,通过减少肠道屏障完整性和短链脂肪酸含量以及增加触发炎症反应的炎症介质等机制,影响宿主的睡眠行为。详见下一章节。

02
失眠患者肠道菌群的特征

失眠会影响肠道菌群的丰富度和多样性

与正常组相比,睡眠缺乏小鼠的Akkermansia muciniphila拟杆菌和粪杆菌(Faecalibacterium)丰度显著降低,气单胞菌(Aeromonas)丰度显著增加

临床研究中的失眠或其他睡眠障碍菌群特征

与对照组相比,失眠患者Collinsella、Adlercreutzia、Clostridiales、Pediococcus、Erysipeltrichaceae、拟杆菌属、葡萄球菌属、CarnobacteriumOdoribacter、假单胞菌属、长双歧杆菌属、Phascolarctobacterium的丰度存在显著差异。

同样,阻塞性睡眠呼吸暂停患者在下列菌群丰度存在显著差异:乳杆菌属、瘤胃球菌科、 变形杆菌科、梭菌科(Clostridiaceae)、 颤螺菌科(Oscillospiraceae)、 克雷伯氏菌(Klebsiella)、脱硫弧菌科(Desulfovibrionaceae)、脆弱拟杆菌(Bacteroides fragilis)、普拉梭菌(Faecalibacterium prausnitzii)。

无论是与炎症相关的菌株的改变,如变形杆菌科、梭菌科、Oscillospiraceae、克雷伯氏菌,还是与肠道屏障完整性相关的菌株,如脱硫弧菌科、脆弱拟杆菌、F. prausnitzii,这些变化都与睡眠质量相关的参数显著相关

失眠不仅会降低肠道的抗氧化能力、抗炎细胞因子水平、粘蛋白2(MUC2)和紧密连接蛋白表达,还会增加促炎细胞因子的水平,导致肠道黏膜损伤和屏障通透性增加

实验证据:睡眠剥夺通过肠道菌群影响大脑功能

当睡眠剥夺动物的肠道微生物群移植到正常小鼠体内时,供体动物的肠道菌群发生了变化,导致脂多糖(LPS)和气单胞菌水平升高,丁酸盐和Lachnospiraceae_NK4A136水平降低,海马小胶质细胞活化和神经元死亡增加

然而,用植物乳杆菌124或A.muciniphila预处理可以恢复被破坏的肠道微生物群,减少肠道中的氧化应激、炎症和屏障损伤,增加乙酸和丁酸水平,并防止LPS刺激的小胶质细胞-神经元共培养中的突触损失。

因此,肠道微生物群的破坏通过降低肠道屏障完整性和短链脂肪酸含量,增加引发炎症反应的炎症介质等机制,影响宿主的睡眠行为。

下面章节我们就来详细看一下肠道菌群参与失眠症调节的相关机制。

03
肠道菌群参与失眠症调节的机制

下丘脑-垂体-肾上腺轴

失眠激活并导致HPA轴功能障碍。微生物可能通过神经信号传导、短链脂肪酸、表观遗传学、肠道屏障完整性或血脑屏障(BBB)通透性影响HPA轴活性。因此,失眠引起的肠道微生物群失调可能与HPA轴的激活有关。

HPA轴的破坏与致病菌(包括肠杆菌科、链球菌科、韦荣球菌科)的增加和有益细菌(包括双歧杆菌和毛螺菌科)的减少有关。

某些特定的肠道微生物群可以抑制HPA轴的激活,并介导相关的脑功能。大肠杆菌(Escherichia coli)和粪肠球菌(Enterococcus faecalis)可以降低小鼠血清中的皮质醇水平,从而缓解压力和抑郁焦虑行为。

分析表明,粪便中的‌羟甲睾酮Oxymesterone)可以介导皮质醇对副拟杆菌属(Parabacteroides)的负面影响,而3-(2,4-环戊二烯-1-基)-5α-雄甾烷-17β-醇可以介导皮质类固醇对气球菌(Aerococcus)的负面影响;洛伐他汀酸(Mevinolinic acid)还可以介导气球菌对皮质醇的负面影响。这表明肠道微生物群和HPA轴之间的信号传导是双向的。

doi: 10.3389/fphar.2025.1572007

微生物内分泌产物和代谢物

★ 褪 黑 素

什么是褪黑素?

褪黑素(Melatonin,MT)又称为”暗激素”,因为它主要在黑暗环境中分泌,是我们身体内重要的睡眠调节激素。夜幕降临,褪黑素水平开始上升,告诉我们的身体该睡觉了;当太阳升起时,它的分泌减少,帮助我们保持清醒。可以说,褪黑素就像是身体内部的生物钟管家,维持着我们正常的睡眠-觉醒周期。

色氨酸的”三岔路口”

要理解肠道微生物与褪黑素的关系,我们首先需要了解一个关键的氨基酸——色氨酸(Trp)。色氨酸是合成褪黑素的重要原料,但在正常情况下,人体内仅有不到5%的色氨酸用于合成血清素(5-HT)和褪黑素,而高达95%都通过肝脏中的犬尿氨酸(Kyn)途径进行代谢。

这就像是一个”三岔路口”:

  • 主干道(95%):色氨酸 → 犬尿氨酸途径 → 其他代谢产物
  • 小径(<5%):色氨酸 → 血清素 → 褪黑素

压力→肠道菌群失调→褪黑素下降

长期压力会破坏肠道菌群平衡,导致失调,失调的微生物刺激犬尿氨酸通路过度活跃本应用于合成褪黑素的色氨酸被大量转移到犬尿氨酸途径,最终导致循环中的褪黑素水平下降,影响睡眠质量。

有益菌的助眠作用

令人惊喜的是,肠道中的某些微生物也能够主动促进其合成。研究发现,罗伊氏乳杆菌大肠杆菌这两种微生物激活TLR2/4/MyD88/NF-κB信号通路,促进关键酶AANAT(芳烷基胺N-乙酰基转移酶)的表达,推动褪黑素的合成

微生物代谢产物的协同效应

除了直接合成,肠道微生物的代谢产物——短链脂肪酸(SCFA)也发挥着重要作用:

  • 提升血清素水平:为褪黑素合成提供更多原料
  • 激活转录因子:促进p-CREB磷酸化,进一步调控AANAT转录
  • 形成正向循环:更多AANAT意味着更多褪黑素合成

外源性褪黑素补充

不仅能直接改善睡眠,还能帮助生物钟恢复正常运转,改善肠道菌群的组成和功能,增加短链脂肪酸水平,改善肠脑交流,优化肠道与大脑之间的信息传递。

研究表明,褪黑素补充能够通过多个途径改善睡眠剥夺引起的认知障碍:

  • 减少海马区炎症和神经元凋亡
  • 菌群优化:增加有益菌的丰度,如Lachnospiraceae_NK4A136
  • 提高丁酸盐水平,降低有害菌气单胞菌、降低LPS
  • 优化TLR4/NF-κB和MCT1/HDAC3信号通路,改善失眠引起的认知障碍

最后,这些在肠道中产生的褪黑素分子会通过血液循环系统到大脑,与大脑中的MT1或MT2受体结合,最终调节我们的睡眠行为。这就形成了一个完整的”肠道-血液-大脑“调节环路。

★  γ- 氨 基 丁 酸

什么是GABA?为什么它能帮助睡眠?

γ-氨基丁酸(GABA)是一种众所周知的促进睡眠的氨基酸,是一种天然的抑制性神经递质。当我们感到焦虑、紧张或难以入睡时,GABA帮助我们的神经系统冷静下来,促进放松和睡眠。

简单来说,GABA的作用就像给过度活跃的神经系统踩了一脚”刹车“,让我们从兴奋状态转向平静状态,为优质睡眠创造条件。

肠道:GABA的”第二生产基地”

许多人以为GABA只能在大脑中产生,但实际上,我们的肠道也是一个重要的GABA生产基地。在肠黏膜中,存在着一系列特殊的细胞——肠神经内分泌细胞(如STC-1和STC-2),它们就像是内置的”GABA工厂“,它们可以表达GABAA受体及其受体亚型(α1、α3、α5、β1、β3、δ)的mRNA。

除了胃肠神经内分泌细胞合成、储存和分泌GABA的能力外,肠道微生物群的某些成员也可以产生GABA。

乳酸菌和双歧杆菌是GABA产生的关键成员

  • 在肠道粘液层定植的 双歧杆菌 :具有将谷氨酸(Glu)、谷氨酰胺(Gln)和琥珀酸转化为GABA的酶机制。
  • 乳杆菌 :多个菌株都具备GABA合成能力

– Limosilactobacillus fermentum L18

高效分泌GABA的专业户,通过增加连接蛋白的浓度和有益肠道细菌的丰度来增强肠道屏障

– 鼠李糖乳杆菌GG

除了保护肠道屏障外,还可以通过调节肠脑轴来提高海马和杏仁核中的脑源性神经营养因子(BDNF)和GABA受体水平。

– 短乳杆菌

通过发酵产生高剂量GABA,可以提高肠道中有益细菌的相对丰度和SCFA的水平,进而可以上调GABA能和5-羟色胺能神经递质的mRNA和蛋白质表达水平。这将导致θ和δ波以及非快速眼动(NREM)睡眠的显著增加

GABA如何在肠道中发挥多重功效?

– 维护肠道屏障:构建健康防线

刺激Ca²⁺信号传导;增加MUC2释放,强化肠道黏膜屏障;促进肠道干细胞增殖,维持肠道健康。

– 调节肠脑轴:远程遥控大脑

增加海马和杏仁核中的BDNF水平,促进神经元健康;上调大脑中GABA受体水平,增强镇静效果;拟杆菌丰度与GABA受体蛋白表达呈正相关

GABA很难穿过血脑屏障直接作用于中枢神经系统,那么肠道产生的GABA是如何影响大脑和睡眠的呢?

肠神经系统:另辟蹊径的”高速公路”

有研究人员认为,肠道内分泌细胞中存在大量GABA受体,通过肠神经系统这个”第二大脑”发挥作用,不需要直接穿过血脑屏障,而是通过肠-脑轴的复杂网络影响大脑功能。

★  血 清 素

什么是血清素?

血清素(5-羟色胺,5-HT),有时候被称为”快乐激素”,因为它不仅能让我们感到愉悦和放松,还是调节睡眠-觉醒周期的重要神经递质。当血清素水平充足时,我们更容易感到心情平静、思维清晰,也更容易获得优质的睡眠

作为肠脑轴中的关键神经递质血清素(5-HT,血清素)是肠道微生物群和大脑之间进行交流的重要介质,将肠道的信息准确传递给大脑,告诉大脑什么时候工作,什么时候该休息了。

肠道:血清素的主要生产基地

体内约95%的血清素来源于肠道,而大脑反而只是小作坊。

一般生产路径:

  • 色氨酸(Trp)作为基础原料
  • 加工:通过色氨酸羟化酶(TPH1在肠嗜铬细胞中,TPH2在神经元细胞中)转化为5-羟色氨酸(5-HTP)
  • 最终产物:通过芳香族L-氨基酸脱羧酶(AADC)转化为血清素

非经典调控途径:

  • 当接收到IL-33信号时,钙离子(Ca²⁺)内流可以直接刺激肠嗜铬细胞快速分泌血清素。

肠道菌群如何助力血清素的生产?

肠道菌群代谢产生短链脂肪酸,短链脂肪酸通过调节血清素转运体(SERT);调节5-HT受体的敏感性;抑制色氨酸转化为犬尿氨酸,确保更多原料用于血清素合成来促进合成

肠道菌群多样性影响血清素

肠道微生物群的多样性会影响5-HT水平,进而影响人体的睡眠模式补充色氨酸和血清素已被证明可以改善肠道微生物群的多样性,增加肠道中短链脂肪酸的量,提高血清素的血液水平,所有这些都可以改善老年人和新生儿的睡眠质量。

血清素代谢失衡与睡眠障碍的病理关联

在用抗生素耗尽微生物群后,5-HT的表达水平降低,导致REM睡眠的发作频率增加,NREM和REM睡眠之间的频繁转换,最终对睡眠产生负面影响

如何通过调节血清素改善睡眠?

例如,灵芝可以调节肠道微生物群和5-羟色胺相关途径,增加5-羟色胺和GABA的血清水平,同时降低HPA轴激素水平,有效缓解焦虑小鼠的失眠行为。显然,微生物群可以通过影响肠道中5-羟色胺的合成和释放来调节大脑中的睡眠行为。

影响睡眠的微生物群-肠道-大脑轴交流模式

Sen P, et al.,Trends Mol Med. 2021

★  短 链 脂 肪 酸

短链脂肪酸(SCFA)是肠道细菌通过发酵我们吃下去的膳食纤维产生的主要代谢产物,被认为是神经调节物质,对肠道微生物群控制睡眠至关重要。通过免疫、神经、内分泌途径,微生物群与大脑睡眠过程形成密切联系;“肠-脑轴”是两者之间的纽带,SCFA起着信使的作用。

失眠会减少产短链脂肪酸的菌的数量

产短链脂肪的菌如粪杆菌(Faecalibacterium)、Roseburia、Ruminococacaceae,这反过来又降低了肠道中SCFA的数量,而SCFA的缺乏又会进一步影响睡眠质量,形成一个难以打破的恶性循环。

肠道短链脂肪酸水平升高可提高睡眠质量

相关研究表明,短链脂肪酸水平的升高可以通过穿越血脑屏障和调节大脑中血清素和多巴胺(DA)的产生来影响大脑发育。

短链脂肪酸不仅能直达大脑,在肠道局部也发挥着重要的睡眠调节作用。

增强睡眠相关物质:

  • 提升血清素水平:增加肠道中5-HT的含量
  • 促进褪黑素产生:提高肠道中MT的水平

调节压力系统:

  • 抑制HPA轴:降低下丘脑-垂体-肾上腺轴激素水平,减少压力对睡眠的干扰

调节免疫功能

  • SCFA影响肠道中ILC3、T细胞和B细胞,这有助于控制肠道屏障的免疫平衡。
  • SCFA能够减弱小胶质细胞中促炎细胞因子的表达,有效对抗与年龄相关的微生物组失调,这对老年人的睡眠质量尤为重要。
  • 保护神经系统:激活结肠NLRP6炎性小体,改善对肠上皮屏障的损伤,减少海马中的神经炎症和神经元损失。神经系统和大脑中的某些免疫信号分子可以相互作用以帮助调节睡眠。

SCFA调节HPA轴:缓解压力促进睡眠

通过显著增加SCFA含量,可以带来一系列积极变化:

  • 修复下丘脑和海马中的紧密连接基因(OCLN和TJP2)
  • 调节激素受体:优化促肾上腺皮质激素释放激素受体(CRF1和CRF2)的表达,从而缓解睡眠剥夺引起的抑郁和焦虑。

短双歧杆菌207-1可以通过显著增加SCFA和GABA水平,整体抑制HPA轴相关激素来改善睡眠质量。

不同SCFA的作用

乙酸盐、丁酸盐、戊酸盐与HPA轴相关激素水平呈负相关;丙酸盐显示出相反的模式。

因此,微生物群产生的SCFA可以通过改善肠道屏障肠道免疫环境来影响神经系统。它们通过增加肠道中SCFA的多样性和水平、刺激睡眠相关细胞因子的分泌抑制炎症反应等机制,改善失眠

★  多 巴 胺

多巴胺(DA)被称为大脑中的”奖励分子”和”动力激素”,但在睡眠调节中,它是”人间清醒”。作为一种促进警觉性的强效神经递质,多巴胺对于控制我们的睡眠-觉醒周期至关重要。

当多巴胺水平充足时,我们会感到精神饱满、注意力集中、反应敏捷;而当多巴胺不足时,我们可能会感到昏昏欲睡、缺乏动力、思维迟钝。

多巴胺:肠道保护功能

多巴胺在肠道中并不仅仅是一个”过客”,它还承担着重要的肠道保护功能:

通过D5受体的作用

  • 刺激黏液分泌:促进远端结肠黏液的分泌,为肠道提供润滑保护

通过D2受体的作用

  • 通过D2受体和Ca2+依赖途径依赖途径增强胃肠碳酸氢盐的分泌,从而加强胃肠道中的胃肠屏障和防御机制。

肠道菌群失调:多巴胺代谢的破坏者

肠道菌群可以影响多巴胺的水平,相关研究表明,肠道菌群失调导致多巴胺代谢紊乱(以高香草酸减少为特征),从而影响大脑的清醒和认知功能。

注:高香草酸是多巴胺代谢的重要产物,它的减少就像是”多巴胺工厂”生产效率下降的信号。

补充益生菌可以有效逆转这些紊乱

补充益生菌已被证明可以恢复Blautia、Dialister、F.prausnitzii、Ruminococcus、拟杆菌属,这些菌群与高香草酸水平呈显著正相关。这意味着它们能够有效修复多巴胺代谢通路,恢复正常的觉醒调节功能。

两种特别的”多巴胺生产专家”

‌粪肠球菌(Enterococcus faecalis)屎肠球菌(Enterococcus faecium) 具有酪氨酸羟化酶和多巴脱羧酶活性,使其能够将酪氨酸转化为L-dopa(多巴胺的前体)。进一步的研究表明,粪肠球菌和屎肠球菌的移植增加了PGF小鼠肠道内多巴/多巴胺的合成,促进了多巴/多巴胺从肠道进入血液,从而提高了大脑中的多巴胺水平。

这表明,调节肠道微生物群中苯丙氨酸酪氨酸多巴多巴胺的生物合成途径可能会改善脑功能

短链脂肪酸的协同作用

研究表明,肠道微生物群代谢产生的短链脂肪酸可以直接穿透血脑屏障,控制5-羟色胺和多巴胺的合成,进而影响大脑发育。因此,肠道细菌可以通过多种途径调节大脑的多巴胺能系统,从而影响大脑的唤醒能力和功能。

微生物群-迷走神经通路

迷走神经就像是连接肠道和大脑之间的一条专线电话,肠壁中富含迷走神经纤维,这些神经纤维就像是密布在肠道中的信号接收器,能够从肠道接收各种信号并将其精确地传递到大脑。可以说,迷走神经是肠道微生物群影响大脑功能、调节睡眠的重要通路之一。

肠道微生物如何启动迷走神经?

  • 肠道微生物群对色氨酸(Trp)进行代谢处理
  • 代谢产物触发肠内分泌细胞(EECs)的Trpa1信号传导
  • 肠内分泌细胞的信号,进而触发肠道的迷走神经系统

通过这条”迷走神经专线”,肠道细菌能够:

  • 改变大脑的GABA受体表达水平
  • 减轻焦虑症状:让过度紧张的神经系统得到缓解
  • 改善抑郁症状:提升整体的情绪状态

粪菌移植和罗伊氏乳杆菌

粪菌移植可以触发肠道的迷走神经系统,从而导致脑干和海马体的5-HT和DA神经传递途径的长期改变

通过迷走神经依赖机制,罗伊氏乳杆菌还可以改变催产素和多巴胺能信号在腹侧被盖区(VTA)的传递方式。值得注意的是,海马体和VTA中的多巴胺能回路在维持睡眠-觉醒相关行为方面都起着至关重要的作用。

证据:迷走神经切断实验

为了证实迷走神经参与肠道和大脑之间的信息传递,研究人员进行了一个实验:膈下迷走神经切断术。就像是切断电话线,看看肠道和大脑之间的通讯是否会中断。

治疗效果消失:

  • 迷走神经切断后,选择性5-HT再摄取抑制剂的治疗作用完全消失,证明了迷走神经在抗抑郁治疗中的必要性
  • 显著降低了肠黏膜中对5-HT3受体表现出免疫反应性的神经纤维的活性,说明迷走神经确实是5-HT信号传递的重要通路。

注:选择性5-HT再摄取抑制剂是一类通过抑制突触前膜5-HT再摄取、增强突触间隙5-HT浓度的抗抑郁药物。

信号传递的机制

当肠道内的5-HT与迷走神经纤维上密集分布的5-HT受体结合时,迷走神经被激活。然后,神经元通过特定的投射对5-HT信号做出反应并进行分类,然后将其传递到大脑

迷走神经刺激:治疗睡眠障碍的新策略

研究表明,迷走神经刺激可通过降低外周血和海马中IL-1β和IL-6的水平,以及防止星形胶质细胞和小胶质细胞激活,从而改善由睡眠剥夺引起的抑郁样行为

微生物-免疫炎症通路

免疫炎症通路就像是身体内部的警报系统,当有危险信号出现时,它会迅速启动防御机制。在肠道微生物调节睡眠的过程中,它也扮演着至关重要的角色。这套系统运行正常时,我们能享受优质睡眠;而当系统失调时,就可能出现失眠、睡眠质量下降等问题。

微生物通过免疫炎症途径与大脑的睡眠调节功能建立复杂的相互作用。简单来说,肠道微生物可以通过调节免疫系统的炎症反应间接影响大脑的睡眠中枢,就像是通过免疫语言与大脑进行对话。

睡眠剥夺:引发免疫炎症风暴的导火索

睡眠剥夺破坏肠道屏障血脑屏障通透性,增加NLRP3水平,并激活肠道中的TLR4/NF-κB信号通路,导致炎症信号传递到大脑,从而加剧大脑中的神经炎症和小胶质细胞激活。

恢复被破坏的肠道微生物群可以缓解肠道氧化应激、炎症反应和屏障损伤,从而改善睡眠质量。

肠道微生物代谢物:TMAO的双面性

某些肠道微生物可以通过其代谢产物介导宿主的炎症反应来调节大脑的睡眠功能。例如,三甲胺N-氧化物(TMAO)是肠道微生物群的代谢产物,可以通过调节膜联蛋白A1信号传导来增强血脑屏障的完整性,保护大脑免受炎症损伤,还可以通过NF-κB信号通路促进NLRP3激活来影响睡眠

特定菌群与炎症因子

睡眠剥夺会引发肠道微生物群失调,导致炎症因子如IL-1β、IL-6、TNF-α的表达失衡

相关分析表明,IL-1βTNF-α与肠道中的Ruminococcus_1Ruminococcoccus e_UCG-005正相关

– NLRP3炎症体:睡眠调节的关键开关

NLRP3是参与IL-1β调控睡眠的关键介质之一。NLRP3的组装可以激活caspase-1,激活的caspase-1随后将pro-IL-1β切割成成熟的IL-1β,然后调节中枢神经系统对生理睡眠的控制。

TNF-α和IL-1β受体通过配体激活介导NF-κB转录,触发参与睡眠调节和影响睡眠的炎症相关分子的转录。

这个指挥系统一旦启动,就会产生级联放大效应,小小的炎症信号最终可能对睡眠产生显著影响。

尽管睡眠剥夺对血脑屏障的影响在某种程度上是可逆的,但修复过程并不简单,即使在恢复正常睡眠模式后,恢复正常的血脑屏障功能仍然是一个漫长的过程。

这些发现为失眠的免疫治疗提供了新的思路,通过调节肠道微生物群来优化免疫炎症反应,进而改善睡眠质量。

04
中草药及其活性成分通过调节肠道菌群改善睡眠质量

源自中草药的药用食品及其生物活性化合物是独特的“益生元”,具有以下优点:副作用小、安全性高、提高患者依从性、适合长期食用。这些特性突显了这些草药在营养和治疗应用中的双重价值。此外,它们具有调节肠道微生物群稳定性的潜力,为通过调节肠道微生物组预防和治疗失眠提供了新的视角。

酸 枣 仁

酸枣仁(Ziziphi spinosae semen,SZR)是指鼠李科植物枣属种类中,中国枣(Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou)的干燥成熟种子。

酸枣仁以其酸甜口味和中性特性为特征,靶向肝、胆囊、心经。它以“滋阴养心、补血养肝、安神安神”的功效而闻名,对治疗虚证慢性失眠特别有效。正是因为其卓越的安神助眠功效,酸枣仁被誉为”东方睡眠果实“,在临床上广泛用于治疗失眠

注:从历史角度看,酸枣仁在中医中一直受到高度重视,无论是作为单一草药还是复方制剂,都展现出了令人瞩目的疗效。

酸枣仁的”睡眠密码”:三大活性成分

皂苷、黄酮、生物碱是酸枣仁镇静和催眠作用的主要活性成分。先前的研究表明,酸枣仁可以调节氨基酸代谢、神经递质释放、炎症因子平衡和HPA轴稳态等生理过程,从而调节神经活动,实现神经系统的平衡,改善睡眠

最近的研究表明,酸枣仁可以恢复失眠引起的肠道菌群失衡增加大鼠体内有益菌的相对丰度,如乳杆菌、双歧杆菌、乳球菌、真杆菌,同时减少普雷沃氏菌的相对丰度。

菌群代谢产物——短链脂肪酸(SCFA)

梭菌和乳杆菌丰度的增加导致其代谢产物丁酸盐含量的增加,这进一步影响了体内的氨基酸代谢途径,从而显著恢复了患有睡眠-觉醒节律紊乱的小鼠的睡眠-觉醒节奏。

SCFA可以间接调节肠道和大脑中的5-HT水平。

研究表明,通过酸枣仁的微生物代谢增加的SCFA,可以调节结肠中TLR4/NF-κB/NLRP3相关信号通路中代表性因子的表达,从而调节微生物群-肠-脑轴,改善小鼠的失眠和抑郁行为。

注: TLR4:控制肠道免疫系统的”警报器”;NF-κB:调节炎症反应的”总开关”;NLRP3:影响炎症体的活化程度。

酸枣仁调节肠道菌群,而不是直接作用于大脑

显然,酸枣仁可以通过微生物群神经通路和微生物群免疫通路调节微生物群肠脑轴,从而实现对生物体睡眠行为的控制。这可能解释了酸枣仁的活性成分不能穿过血脑屏障,但仍然能改善睡眠质量

卷 丹 百 合

在中医传统中,百合类植物一直被认为具有”润肺止咳、清心安神“的功效,而现代科学研究正在揭示其改善睡眠的深层机制。

卷丹百合(LB)可以通过降低血清中HPA轴激素的水平、增加5-HT和MT的水平、降低下丘脑中去甲肾上腺素(NE)的水平以及上调GABAA受体和5-HT1A受体的表达,来改善大鼠的下丘脑病理并缓解失眠行为。

肠道菌群调节:失眠改善的核心机制

卷丹百合调节肠道菌群的方式可能直接关系到它缓解失眠的效果。除了逆转失眠对肠道微生物群的多样性、丰度和粪便代谢表型的不利影响外,卷丹百合还控制花生四烯酸色氨酸的代谢,从而降低与心理健康问题相关的化学物质犬尿氨酸的表达水平。

卷丹百合显著调节肠道内乳杆菌、埃希氏菌、Porphyromonadaceae的相对丰度,并积极调节下丘脑中的5-羟基-L-色氨酸,后者参与5-HT的代谢。通过卷丹百合干预,最重要和最基本的途径被认为是5-羟色胺能系统花生四烯酸代谢途径

复方协同:卷丹百合与地黄汤的联合

卷丹百合和地黄汤(LBRD)可以通过纠正肠道微生物群失调避免肠道屏障受损或血脑屏障泄漏引起的炎症,来减轻与抑郁行为相关的神经元损伤。根据粪便微生物群移植和肠道微生物群组成研究,通过肠道-脑轴,乳杆菌、双歧杆菌、乳球菌(Lactococcus)被证明是地黄汤抗抑郁作用的重要因素。

灵 芝

灵芝的镇静作用与肠道菌群密切相关

灵芝与罗伊氏乳杆菌发酵时,它可以增加血清中5-HT和GABA的水平,降低HPA轴激素的水平,有效缓解焦虑小鼠的失眠症状。

灵芝的乙醇提取物也对微生物组的结构产生了显著影响。

  • 门水平,它增加了拟杆菌和放线菌的丰度;
  • 属水平,它增加了双歧杆菌的丰度,同时降低了乳杆菌和克雷伯氏菌的丰度。

下丘脑的5-HT浓度与双歧杆菌和动物双歧杆菌正相关,这不仅提高了那里的5-HT水平,还增加了包括Tph2、Iptr3、Gng13在内的重要转录因子的产生。在用抗生素耗尽肠道微生物群后,灵芝乙醇提取物的促进睡眠作用以及与睡眠行为相关的粪便代谢物的变化完全消失。这表明肠道微生物群在灵芝的促睡眠作用中起着不可或缺的作用。

多糖成分的免疫调节与神经保护作用

来自灵芝的多糖已被证明可以提高小鼠大脑中的GABA和5-HT水平,并通过延长NREMS期间的δ波来提高其睡眠质量。

此外,灵芝多糖及其水解产物,即灵芝肽,通过各种途径表现出免疫调节活性。具体而言,灵芝多糖不仅降低了肠道中的F/B比值,而且显著上调了回肠中NF-κBp65、IL-2、IL-4的表达水平;它们还显著增强BDNF的表达,抑制促炎细胞因子的表达,并抑制小胶质细胞和星形胶质细胞的激活,从而发挥抗抑郁作用。

灵芝肽参与关键途径,如叶酸循环、脂肪酸的生物合成和代谢以及cAMP代谢。灵芝多糖在调节肠道微生物群稳态和提供神经保护方面具有巨大潜力。

茯 苓

茯苓(P.cocos)自古以来就被誉为”四时神药”,茯苓性平味甘,具有健脾利湿、宁心安神的功效,是古代人治疗失眠的首选核心药物之一,

传统核心药物的现代机制:多糖和三萜

茯苓含有多糖三萜类化合物,是其镇静和诱导宁静的主要活性成分。研究表明,茯苓中的酸性多糖可以通过干预肠道微生物群和调节相关途径发挥镇静作用。

这些多糖不仅增加了肠道微生物群的丰度,如厚壁菌门、杆菌门、乳杆菌门Fusicatenibacter、Prevotellaceae_UCG-001;它们还上调下丘脑中关键神经递质5-HT、DA、NE、GABA的水平,增加神经元细胞的数量,同时降低炎症因子的表达水平。

此外,来自茯苓的水提取物和水溶性多糖可以通过改善肠道微生物群失衡、缓解代谢紊乱、调节肠道神经肽和神经递质水平以及抑制TNF-α/NF-κB信号通路来有效预防焦虑的发作。

增加短链脂肪酸、促进色氨酸代谢

茯苓多糖可以通过增加肠道中的短链脂肪酸水平和促进色氨酸代谢来增强肠道屏障。它们不仅通过增加吲哚乳酸盐和吲哚-3-醛的水平来促进色氨酸代谢;还通过增加肠道中短链脂肪酸的水平、调节IL-2、IL-4、IL-6、IL-10、TGF-β、IFN-γ等关键免疫因子的表达,激活Wnt/β-Catenin信号通路来维持肠道屏障的完整性和功能。

色氨酸和短链脂肪酸的水平以及肠道屏障的健康稳态与肠道微生物群密切相关,对改善睡眠质量有重大影响。

人 参

人参被誉为”百草之王”,是中药中最珍贵的滋补品之一。作为五加科植物,人参含有丰富的活性成分,具有补元气、复脉固脱、补脾益肺、生津养血、安神益智等功效。现代研究发现,人参不仅能直接作用于大脑,还能通过调节肠道微生物群来改善睡眠质量

多重活性成分的协同作用:跨越血脑屏障

人参中发现的肽、多糖、皂苷具有穿过血脑屏障并调节神经内分泌平衡和大脑代谢环境的能力。人参多糖通过增强肠道吸收和影响肠道微生物代谢来增强人参皂苷Rb1和微生物代谢产物的暴露。Rb1通过调节瑞士乳杆菌丰度和GABAA受体表达发挥神经保护作用。

人参皂苷Rg1(Rg1)对神经系统具有潜在的健康促进作用。Rg1可以改善吗啡诱导的肠道微生物群失调(特别是拟杆菌),抑制肠道微生物群衍生的色氨酸代谢,调节异常升高的血清素、5-羟色胺受体1B和5-羟色胺受体2A水平,使其回归正常范围。

人参皂苷的多途径神经保护机制

人参皂苷Rg可能影响肠道微生物群,并通过多种不同途径提供神经保护。

Rg1可以通过调节5-HT神经递质系统、阻止肠道微生物群产生的色氨酸代谢和改善肠道微生物群失调(特别是拟杆菌)来防止小鼠产生吗啡依赖。

Rg5不仅可以纠正不平衡的肠道微生物群,恢复肠道屏障的功能,还可以通过控制脂肪和葡萄糖的代谢,提高GABA/Glu比值,上调GABAA、GABAB和5-HT受体1A的表达,改变时钟相关蛋白质的节律特征,改善睡眠质量,进而影响GABA5-HT神经递质系统

复方协同与代谢循环优化

人参和酸枣仁的联合使用,可以改善肠道微生物群的结构,促进Glu/GBA-Gln代谢循环的正常运作,增加海马中GABA的合成和释放,从而显著改善失眠大鼠的睡眠状态。这表明人参可以通过多种途径干预肠道微生物群并调节大脑睡眠功能。

doi: 10.3389/fphar.2025.1572007

天 麻

天麻(G.Blume)是兰科植物天麻的干燥块茎,素有”定风草”之称,是著名的息风止痉、平抑肝阳的中药材。

天麻素的多重神经保护机制:从炎症调控到信号通路调节

从天麻中提取和分离天麻素(GAS)已被证明对中枢神经系统疾病有显著影响,包括但不限于失眠、焦虑、抑郁、认知障碍、缺血性中风

天麻素通过控制IL-6、IL-1β等炎性因子的表达、B细胞淋巴瘤-2(Bcl-2)蛋白的活性以及p-ERK与ERK的比值,不仅改善了失眠小鼠的睡眠质量,而且通过调节TLR4/NF-κB和Wnt/β-catenin信号通路,改善了快速眼动睡眠剥夺引起的睡眠障碍。因此,天麻素在提高睡眠质量方面具有很大的潜力。

肠道微生物群调节

已经进行的研究表明,天麻素可以通过调节微生物群-肠-脑轴来抑制神经元凋亡,从而改善阿尔茨海默病小鼠的认知障碍和神经变性

在抑郁的小鼠中,天麻的水提取物可以通过促进潜在有益菌Alloprevotella、双歧杆菌、Defluviitaleaceae UCG-011、Akkermansia、Parabifidobacter)和粪便SCFA水平的增和平衡,使结肠中5-羟吲哚乙酸5-HT的比例正常化,并降低犬尿氨酸与色氨酸的比例来重塑肠道微生物组结构。抗生素混合物的给药部分消除了天麻素对阿尔茨海默小鼠的神经保护作用。

天麻及其活性成分对大脑功能的影响是显而易见的,因为它们部分针对微生物群-肠道-大脑轴。然而,支持天麻素可以通过这种微生物群-肠-脑轴调节大脑睡眠功能这一观点的确凿实验证据仍有待观察。需进一步研究来确定天麻素通过改变肠道微生物群来改善睡眠质量的确切过程,以便更谨慎地开发和使用天麻。

蒙 古 黄 芪

蒙古黄芪是豆科植物蒙古黄芪的干燥根,被誉为”补气圣药”,在中医药学中具有重要地位。黄芪性温味甘,具有补气固表、托毒排脓、利水消肿的功效,是临床上最常用的补气药之一。

现代研究发现,蒙古黄芪富含黄酮类化合物、多糖、皂苷,通过控制肠道微生物群的组成、代谢和活性,有助于保持肠道微环境的稳定。

黄芪多糖的免疫调节机制:特异性菌群调控的双向作用

研究发现,不同浓度的黄芪多糖(APS)对睡眠剥夺小鼠的脾脏和身体损伤具有缓解和保护作用。

进一步的研究表明,黄芪多糖可以通过调节与炎症和免疫反应短链脂肪酸合成和TLR4/NF-κB通路有关的某些微生物来改善免疫功能障碍。

例如,黄芪多糖可以改善免疫功能低下的小鼠和大鼠的免疫功能,这是由于减少Pseudoflavonifractor、Oscillibacter、Tyzzerealla、Paraprevotella、Lachnoclostridium的丰度,并增加了乳杆菌、双歧杆菌、Roseburia、脱硫原体、Paracoccus、副拟杆菌、Clostridium XIVb、Butyricicoccus的丰度。

然而,在肠道微生物群减少的免疫功能低下小鼠中,黄芪多糖并没有改善免疫功能。

肠脑轴的积极调控:从代谢产物到神经递质的全面优化

为了积极控制肠-脑轴,黄芪多糖不仅增加了肠道中乳杆菌芽孢杆菌的相对丰度,还增加了粪便中短链脂肪酸GABA的含量,提高了虾的免疫力。

此外,黄芪多糖可以显著减轻与年龄相关的肠道屏障破坏、胃肠酸碱平衡丧失、肠道长度缩短、肠道干细胞过度增殖以及衰老后的睡眠障碍

因此,肠道微生物群不仅积极帮助身体吸收黄芪多糖,而且通过提高肠道SCFA水平来改善免疫功能障碍,并通过促进神经递质的释放来积极调节肠道脑轴。

龙 眼

龙眼肉,又称桂圆肉,自古以来就被誉为”智慧果”。在中医理论中,龙眼肉性温味甘,具有补益心脾、养血安神的功效,《神农本草经》将其列为上品药材。龙眼肉是中国传统医学中常用的治疗失眠的草药之一,但关于其改善睡眠质量的潜力的药理活性研究很少。

龙眼含有GABA,可以用作天然膳食补充剂。龙眼中富含多种氨基酸,如GABAGlu,并且随着果实年龄的增长,其浓度也会增加。成熟后在冷藏温度下储存可以增加水果中的GABA含量。

此外,通过增加胃中Lactobacilli、Pediococci、 Bifidobacteria的数量,肠道微生物群对龙眼多糖的代谢可以提高琥珀酸和SCFA(乙酸、丙酸和丁酸)的水平,增强肠道免疫力

无论是作为富含GABA的膳食补充剂还是通过调节肠道内的微生物代谢产物,龙眼肉都有可能通过影响肠道中GABA、MT、5-HT等睡眠相关神经递质的合成和释放来调节肠道微生物群-肠脑轴。这可以直接或间接地调节身体的睡眠-觉醒周期,从而发挥强大的睡眠促进作用。

其他中草药及其成分

中医药宝库中蕴藏着众多具有安神功效的珍贵药材,这些草药在千百年的临床实践中积累了丰富的应用经验。

除了前述的经典药材外,栀子、三七、莲子等传统药材同样具有改善睡眠的潜力,但它们通过肠道微生物群调节睡眠机制的研究相对较少。这里讨论了其他一些草药及其活性成分如何影响肠道菌群,从而提高睡眠质量的能力。

栀子、三七

研究表明,栀子可以通过调节肠道微生物群降低TNF-α和IL-7β水平来改善睡眠质量和缓解焦虑症状。

由肠道微生物群代谢的三七总皂苷转化为人参皂苷Rg,其保护海马神经元并调节大脑中的神经递质水平,从而改善失眠、抑郁和认知障碍

莲子、荷叶

莲子和荷叶都可以通过调节肠道微生物群的丰度和结构来调节GABA能系统,从而促进睡眠。然而,它们调节肠道微生物群的方式存在显著差异。具体而言:

  • 莲子中的低聚糖成分可以增加嗜酸乳杆菌、拟杆菌和双歧杆菌的相对丰度。
  • 荷叶含有黄酮类成分,可以增加厚壁菌门和放线菌门相对丰度,减少变形菌门丰度。

枣、谷芽

具有改善睡眠质量和通过调节GABA能系统提供神经保护的潜力。具体而言,它可以上调Lachnoclosdium、Marvinbryantia的丰度,同时下调Alistipes、Akkermansia的丰度。

谷芽[Setaria italica(L.)Beauv]可能会增加肠道中普雷沃氏菌、乳酸菌、Ruminococcus的丰度,从而通过调节神经递质和炎症因子水平来提高SCFA水平并改善睡眠质量。

山茶、枸杞

山茶[(L.)Kuntze]可能通过改善肠道微生物群来影响神经内分泌途径和免疫系统,从而调节睡眠-觉醒周期。

枸杞可能通过改善肠道屏障抑制TLR4信号通路来保护神经系统。

交泰丸

黄连根茎肉桂皮组成的交泰丸可以改善睡眠,并减轻慢性睡眠剥夺引起的炎症和胰岛素抵抗。组学结果表明,交泰丸治疗显著增加了小鼠中毛螺菌科、拟杆菌属、AKK菌属的相对丰度。

黄连温胆汤对失眠的机制可能与它抑制 5-羟色胺含量的降低和γ-氨基丁酸水平的升高有关。同样,研究发现甘麦大枣汤可以增加 NE 和 5-羟色胺的含量,改善睡眠,在一定程度上缓解抑郁,柴胡加龙骨牡蛎汤主要通过调节下丘脑-垂体-肾上腺轴(ACTH、CORT等)和脑单胺神经递质(NE、DA、5-羟色胺等)的水平来治疗失眠。

草药及其活性成分在改变肠道微生物群和提高睡眠质量方面的巨大潜力已经得到证实,尽管这一研究领域仍处于早期阶段。更多的研究不仅可以为治疗失眠提供坚实的支持,还可以通过阐明这些草药与微生物群-肠道-大脑轴相互作用的机制来调节与睡眠相关的大脑功能,从而帮助我们更明智地开发和使用这些草药。

针 灸

针灸治疗注重根据辨证选择穴位,基于辨证的针灸疗法可以取得良好效果并改善胃肠功能,针灸结合腹部环形按摩可以改善下丘脑和海马旁回的功能,从而达到改善失眠症状的效果。

此外,研究发现针灸可以抑制 HPA 轴的活性,从而改善失眠症状。

有研究在微生物-肠-脑轴理论指导下总结了针灸的原则:

  • 首先,失眠与脑相关,因此常选择头部和颈部的穴位(如百会、印堂、上星、神庭、头临泣、风池等 );
  • 其次,心主神明,因此常使用手少阴经和带有“神”字的穴位(如神门、十室空、 等 );
  • 第三,失眠与心、肝、肾等密切相关,刺激背俞穴(脏腑之气输注于背俞穴)可以直接刺激微生物-肠-脑轴,从而促进睡眠。

可以直观地发现,这些针灸穴位与微生物-肠-脑轴的解剖部位有许多重叠。从健脾和胃治疗失眠的角度来看,主要穴位有中脘、关元、天枢、气海等。

这些针灸疗法可以通过调节神经递质和某些激素的分泌,以及下调 HPA 轴来抑制交感神经并改善内分泌,从而改善失眠症状,这些症状是微生物-肠-脑轴相同调节机制的一部分。

doi: 10.12998/wjcc.v12.i18.3314

05
关于失眠的其他干预措施

饮 食 调 整

不良饮食模式的负面影响

  • 高血糖指数饮食

长期高糖摄入会刺激免疫系统,诱发过度炎症反应,导致睡眠片段化

  • 肥胖相关菌群失调

肥胖人群中Faecalibacterium丰度显著下降,这在慢性失眠患者中同样存在。

健康饮食模式的积极作用

  • 地中海饮食

富含植物性食物、抗氧化剂和不饱和脂肪酸;促进产丁酸菌丰度增加,显著改变肠道微生物代谢活性,与更好的睡眠质量更长的睡眠时间相关。

  • 限制热量饮食

适用人群:肥胖青少年、结合增加体力活动

增加肠道中乳杆菌的丰度,乳杆菌以其促进睡眠的有益作用而闻名。

其他,如习惯性饮茶,可能通过肠道菌群-胆汁酸轴减轻慢性失眠引起的肠道菌群失衡和胆汁酸代谢紊乱。

益 生 菌

接受发酵益生菌 Lactobacillus brevis DL1-11 牛奶的小鼠表现出更短的睡眠潜伏期和更长的睡眠时间。因为 DL1-11 可以产生大量的 GABA,GABA 可以促进放松并增强睡眠。

Lactobacillus fermentum PS150TM通过增加下丘脑腺苷 A1 受体的表达,有效地促进了正常小鼠的睡眠,并缓解了咖啡因诱导失眠小鼠的失眠症状。PS150TM 能够恢复因首夜效应导致睡眠障碍的小鼠的非快速眼动睡眠,这可能是由于其重塑肠道菌群组成的能力,改变血清素能通路,减少慢性轻度压力大鼠的抑郁和焦虑。

Bifidobacterium breve CCFM1025 通过抑制 HPA 轴活性,改善了睡眠并缓解了压力水平。

Bifidobacterium adolescentis SBT2786 可以通过增加快速眼动睡眠时间来延长总睡眠时间,白天疲劳减少

Lactobacillus plantarum PS128 显著增强了深度睡眠,并减少了疲劳和抑郁症状。

Lactobacillus gasseri CP2305 也已可以改善肠道微生物群组成,并降低唾液皮质醇浓度,从而减轻压力并增强睡眠 。

Lactobacillus casei Shirota 牛奶通过延长睡眠时间和减少觉醒时的嗜睡感,帮助面临考试压力的个体 。

Lactococcus lactis subsp. cremoris YRC3780 也显示出改善睡眠和缓解压力的潜力,这一点由日本进行的一项双盲、安慰剂对照的临床试验所证实,接受 YRC3780 干预的参与者主观睡眠质量和心理健康均有显著改善

doi: 10.3390/ijms252313208

益 生 元

益生元饮食(由半乳寡糖、聚葡萄糖、乳铁蛋白和乳清蛋白浓缩牛奶脂肪球膜蛋白-10 组成)通过在正常情况下增强非快速眼动睡眠,并在压力情况下延长快速眼动睡眠,对小鼠的睡眠模式产生了积极影响。

接受益生元饮食(由半乳寡糖和聚葡萄糖组成)的大鼠在睡眠紊乱情况下表现出更长的非快速眼动睡眠和快速眼动睡眠。菌群分析发现,在益生组中,Parabacteroides distasonis 的相对丰度增加,这与促进睡眠恢复昼夜节有关。

在一项人体研究中,45 名参与者被随机分为三组,分别接受低聚果糖(FOS)低聚半乳糖(GOS)或安慰剂。结果表明,低聚半乳糖组的参与者睡眠质量得到改善,唾液皮质醇觉醒反应显著降低。这种皮质醇的减少与肠道菌群中 Bifidobacteria 的相对丰度增加有关,这些菌具有代谢低聚半乳糖的能力,并对心理健康有积极作用。

抗性淀粉是另一种已被证明能通过减少炎症和 HPA 轴活性来改善 2 型糖尿病患者睡眠质量的益生元。

一项随机、双盲、安慰剂对照的研究也报道了益生元酵母甘露聚糖的改善睡眠效果。酵母甘露聚糖组的非快速眼动睡眠第 3 阶段睡眠时间和总睡眠时间均显著长于安慰剂组。

粪菌移植 (FMT)

目前,越来越多的研究将粪菌移植作为精神健康疾病的一种潜在治疗方法,因为肠道微生物群可以通过微生物群-大脑轴影响中枢神经系统。

临床研究表明,洗涤微生物群移植增加了有益细菌(如 Bifidobacterium、Ruminococcus gnavus 、Prevotella 7、Faecalibacterium)的相对丰度,并减少了有害细菌(如 Escherichia-Shigella 、 Streptococcus)的相对丰度,显著改善了患有各种潜在疾病的患者睡眠障碍。睡眠质量得到改善的患者在抑郁程度和 IBS 症状严重程度上也表现出更大的减少。

另一项开放标签的观察性研究发现,在患有胃肠道疾病且出现睡眠障碍的患者中,结果相似,作者认为整体改善归因于FMT治疗后菌群多样性的增加

一项真实世界研究发现,粪菌移植显著改善了失眠患者的睡眠质量,缩短了睡眠潜伏期,并提高了睡眠效率。通过比较肠道菌群组成,研究人员发现,粪菌移植显著增加了产短链脂肪酸菌的相对丰度,包括 Lactobacillus、Bifidobacterium 、 Turicibacter

注:所有这些研究都将失眠视为与其他疾病相关的共病,这表明睡眠的改善也可能归因于疾病症状的缓解,粪菌移植对睡眠障碍的有效性需要进一步研究。

06
结 语

随着现代医学对肠-脑轴研究的深入,传统中医药”治未病“的理念与现代微生态学理论完美融合,为失眠治疗开辟了全新视角。

未来研究应重点关注个体化精准治疗策略的制定。肠道菌群检测技术的应用将为临床实践提供重要指导,通过分析患者特异性的菌群结构,识别关键的失调菌群如拟杆菌、双歧杆菌、乳杆菌等,可为选择最适宜的中药配方提供科学依据。

同时,肠道菌群代谢产物如短链脂肪酸、GABA、血清素等关键代谢产物水平,这些在谷禾肠道菌群检测报告中也都有相应指标,结合肠道菌群检测报告有助于辅助评估治疗效果并优化用药方案。

<来源:谷禾肠道菌群检测数据库>

在中医药现代化进程中,应深入挖掘经典方剂如甘麦大枣汤、安神定志丸等复方的菌群调节机制,探索经典方剂与菌群协同效应的内在规律。同时,结合中医体质辨识与肠道菌群分型,建立”体质-菌群-证候“三位一体的诊疗模式。

通过构建中药-菌群相互作用数据库,为临床医师提供相对精准的用药指导,最终实现传统中医智慧与现代精准医学的深度融合,为失眠患者带来更加安全、有效的个性化治疗方案。

注:本账号内容仅供学习和交流,不构成任何形式的医疗建议。

主要参考文献

Wu C, Dou J, Song X, Yang F, Liu X, Song W, Zhang X. Gut microbiota: a new target for the prevention and treatment of insomnia using Chinese herbal medicines and their active components. Front Pharmacol. 2025 May 6;16:1572007.

Li C, Chen S, Wang Y, Su Q. Microbiome-Based Therapeutics for Insomnia. Int J Mol Sci. 2024 Dec 9;25(23):13208.

Ito H, Tomura Y, Kitagawa Y, Nakashima T, Kobanawa S, Uki K, Oshida J, Kodama T, Fukui S, Kobayashi D. Effects of probiotics on sleep parameters: A systematic review and meta-analysis. Clin Nutr ESPEN. 2024 Oct;63:623-630.

Patterson E, Tan HTT, Groeger D, Andrews M, Buckley M, Murphy EF, Groeger JA. Bifidobacterium longum 1714 improves sleep quality and aspects of well-being in healthy adults: a randomized, double-blind, placebo-controlled clinical trial. Sci Rep. 2024 Feb 14;14(1):3725.

Liwinski T, Lang UE, Brühl AB, Schneider E. Exploring the Therapeutic Potential of Gamma-Aminobutyric Acid in Stress and Depressive Disorders through the Gut-Brain Axis. Biomedicines. 2023 Nov 24;11(12):3128.

Li L, Wu L, Jiang T, Liang T, Yang L, Li Y, Gao H, Zhang J, Xie X, Wu Q. Lactiplantibacillus plantarum 124 Modulates Sleep Deprivation-Associated Markers of Intestinal Barrier Dysfunction in Mice in Conjunction with the Regulation of Gut Microbiota. Nutrients. 2023 Sep 15;15(18):4002.

Pan LM, Hong ZB, Guan RQ. Research progress on insomnia treated by traditional Chinese medicine and acupuncture based on microbial-gut-brain axis theory. World J Clin Cases. 2024 Jun 26;12(18):3314-3320.

肠道神经免疫轴:神经元、免疫细胞和微生物之间的串扰

谷禾健康

在自然界中,一些引人注目的共生现象出现在能够改变宿主行为的微生物与其宿主之间。

  • 细菌沃尔巴克氏体(Wolbachia pipientis)如同生物基因木马,能够操控昆虫的生殖和神经系统;
  • 狂犬病毒(Rabies lyssavirus)感染宿主中枢神经系统后,几乎以100%的死亡率展现其致命威力;
  • 偏侧蛇虫草菌(Ophiocordyceps unilateralis,也称为僵尸蚂蚁),通过释放化学物质将蚂蚁变成自己的傀儡。

这些病原体的“精神控制”能力激发了许多末日小说作品,如HBO剧集《最后生还者》中令人毛骨悚然的真菌感染场景。

延展小知识
关于细菌沃尔巴克氏体、狂犬病毒、偏侧蛇虫草菌
Wolbachia pipientis 操控昆虫生殖及神经
Wolbachia pipientis 被喻为生物基因“木马”,可以操控昆虫生殖。常见于节肢动物门和部分线虫体内,影响所寄生动物的生殖和发育。除了影响生殖外,当它们转移到一个新的物种时,会使新寄主产生各种严重的神经系统并发症。2009年开始,科学家发现Wolbachia pipientis阻止登革热病毒在蚊子体内复制增殖,从而阻隔登革热的传播。
2019年,中山大学的研究人员利用利用Wolbachia pipientis感染的雄蚊使得雌蚊无法繁殖下一代几乎消灭了世界上最具侵入性的蚊子种类 – 亚洲虎蚊(白纹伊蚊,本地俗称花脚蚊)。
狂犬病病毒 (Rabies virus)
狂犬病病毒(Rabies virus,RABV) 感染宿主中枢神经系统的重要人兽共患病,一旦发病死亡率接近100%,每年造成全球几万人死亡。
Ophiocordyceps unilateralis,僵尸蚂蚁
‌Ophiocordyceps unilateralis ‌,也被称为偏侧蛇虫草菌,是一种拟寄真菌,偏侧蛇虫草菌在感染蚂蚁后,能够通过释放化学物质改变和控制蚂蚁的行为,让变成蚂蚁自己的傀儡,直到最终死亡。HBO新剧《最后生还者》(The Last of Us)第一季让大家领教了真菌的厉害。剧中的这种致命真菌就是偏侧蛇虫草(Ophiocordyceps unilateralis),它能够入侵昆虫的大脑,使其成为僵尸。

然而,改变行为的微生物并不仅限于这些极端的寄生生物。在自然界中,已有关于共栖和互利微生物驱动宿主行为操控的描述。这个观点在发现胃肠道内的细菌可以调节宿主中枢神经系统后,得到了广泛关注和逐步证实。

肠道微生物群——这一动态且多样化的微生物群落,被认为是肠-脑相互作用的关键调节器。与自然界中那些极端的”精神控制”案例不同,人体肠道微生物群以更加微妙和复杂的方式影响着我们的情绪、认知行为

各种证据表明,肠道细菌发出的信号可以循环到大脑,或影响肠-脑轴免疫内分泌细胞的功能。一个庞大的神经网络——外周神经系统不断且迅速地在肠道和大脑这两个远距离器官之间传递信息,使大脑能够协调胃肠功能,而肠道也能够影响情绪、认知和行为。

临床意义:当微生物失衡遇上疾病

肠道微生物结构的改变与这些生物系统的变化相关,并对人类代谢、神经精神和肠道健康产生重要影响。焦虑、抑郁、自闭症谱系障碍(ASD)和帕金森病等多种神经疾病都具有明确的胃肠疾病合并症。诸如肠易激综合征(IBS)和炎症性肠病等胃肠疾病常常表现为心理症状。关键是,这些临床相关性与失衡的微生物群紊乱的肠—脑信号密切相关。

四条通路:微生物与大脑的对话方式

目前已经比较清晰的知道,连接肠道微生物群和大脑的四种主要通信方式

  • 在第一种途径(代谢物循环)中,微生物衍生的肠道代谢物进入循环,穿过血脑屏障并直接影响中枢神经系统(CNS) 。
  • 在第二条途径中(免疫信号),肠道微生物向各种免疫细胞发出信号,包括驻留在肠道和大脑中的免疫细胞。肠道驻留免疫细胞可以将细胞因子分泌到循环中,也可以前往 CNS 发挥其作用。
  • 在第三种途径(在激素循环)中,肠道内壁的肠内分泌细胞对微生物线索做出反应,并将激素释放到循环中,然后到达大脑。
  • 在第四条通路中,支配肠道的外周传入神经将信号从肠道微生物群传递到 CNS。反过来,大脑通过下丘脑-垂体-肾上腺神经内分泌轴和支配肠道的外周传出神经调节肠道微生物群。

肠道微生物群-脑轴

doi.org/10.1038/s41579-024-01136-9

聚焦核心:肠道神经上皮回路的精密机制

这些途径以多种方式相互交叉影响。免疫细胞和周围神经元之间(神经-免疫轴)、神经内分泌细胞和免疫细胞之间(神经内分泌-免疫轴)、以及肠上皮细胞和周围神经元之间的双向串扰(肠神经上皮轴),为肠道和大脑之间的通信增加了额外的复杂性。

其中,肠上皮的化学感应细胞与支配肠道并延伸到中枢神经系统的周围神经元之间的关系尤为关键。这些肠道神经上皮回路代表了微生物-宿主相互作用的最前沿和最精密的机制。

本文我们将深入了解这些肠道神经上皮回路的分子机制、细胞间相互作用,以及它们如何导致疾病状态,揭示肠道微生物群如何通过这一精密的神经网络实现对宿主行为的影响。理解这些途径有助于促进基于微生物组的胃肠道和神经系统疾病新疗法的开发。

01
肠道神经-免疫轴

胃肠道免疫系统和神经系统

在哺乳动物中,胃肠道包含最大的免疫系统微生物群生态系统内源性神经系统,它们之间复杂的相互作用有助于维持正常的胃肠道生理功能。

特别是胃肠道的固有神经系统,即肠神经系统,调节着重要的胃肠道功能。肠神经系统回路的破坏会导致全身性的胃肠道症状,如腹泻、便秘、内脏疼痛等,这些症状影响着世界上高达40%的人口。

注:肠神经系统,enteric nervous system,简称 ENS,被誉为”第二大脑”。

神经免疫微环境的动态感知机制

胃肠道免疫系统神经系统都进化出了感知和快速响应动态肠道环境的机制,能够实时监测并快速响应肠腔内的营养、微生物及病理性刺激信号。

许多神经将胃肠道粘膜中的局部免疫细胞连接起来,形成神经元免疫细胞单位,这些细胞单位可以通过肠道管腔营养来源和微生物来源的线索重塑。这些单元不仅能够独立启动局部免疫应答,还通过细胞间通讯网络进行信息整合,最终形成由肠道微生物群精密调控的”肠道神经-免疫轴”。这些协调一致的信号轴调节胃肠道屏障功能、免疫力和宿主保护。

病原感染中的神经免疫协同防御

肠道神经和免疫相互作用在感染期间尤为重要。感染应激可激活特定的胃肠道功能,可以通过腹泻反应快速清除病原体,腹泻反应可以通过增加局部水分泌到管腔中并促进推进性收缩模式来清除病原体,这两种反应都需要肠神经系统(ENS)的输入。

此外,感染或炎症引起的肠神经系统结构和/或活动紊乱可以促进或减少炎症,产生胃肠道症状,并限制组织病理学

肠神经系统也可以再生,从而在损伤后恢复胃肠道功能。然而,在许多情况下,完全恢复往往受到限制,并且肠神经系统的损害可能产生长期后果,例如感染后胃肠道疾病

肠道神经和免疫的相互作用的证据

尽管免疫系统神经系统过去被分开单独研究,但现在越来越清楚,这两个复杂系统在功能上密切相关。这两个系统相互交流并不是一个新概念。两千年前,罗马医生Aulus Cornelius Celsus将炎症的四个主要症状归纳为:

疼痛、发红、肿胀、发热

其中疼痛由感觉神经系引起,后三者则与血管和免疫功能相关。

神经对于宿主抵御病原体的调控也是进化上保守的特性,这一点从简单的多细胞动物(如线虫)到脊椎动物(如鱼和哺乳动物)的研究中都有明确证据

过去几十年,科学家们发现神经—免疫交流生理、抗感染、防御、修复和疾病中的多种作用。

肠道神经解剖——层层保护系统

肠道的神经解剖结构由居于器官内外感觉神经元自主神经元共同组成(感觉神经元负责感知信息,自主神经元负责自动控制),胃肠道在解剖学上由肠系膜、浆膜、肌肉、粘膜下层、固有层和上皮组成,由多个周围神经元群支配,这些神经元群与局部免疫细胞配合和协调反应。

肠系膜:是连接肠道与腹壁的重要结构,其主要功能是支撑、固定和保护肠道,同时为肠道提供血液供应和淋巴引流。

浆膜:保护器官,减少摩擦,参与免疫反应、维持器官位置。

肌肉:负责肠道蠕动的动力系统,推动食物通过消化道、进行机械性消化以及促进营养物质的吸收。

粘膜下层:提供营养和支持,还通过其神经和血管网络调节消化和分泌活动。

固有层:为上皮细胞提供结构支持,是免疫细胞聚集的防御前线,参与免疫防御、营养吸收和消化过程。

上皮:保护、分泌、吸收、免疫防御。

肠道支配神经元的命名法基于细胞体是位于胃肠道外部还是内部。肠道相关神经元通常归类为属于内源性肠道神经系统(ENS)。

相比之下,肠道外源性神经元包括体感神经元和自主神经神经元,其细胞体位于外周感觉或自主神经节、脊髓或脑干中。

Yang et al. Cell Mol Immunol, 2023.

肠道外源性感觉神经元位于结节/颈静脉迷走神经节(VG)和背根神经节(DRG)中,分别将信号从肠道传递到脑干和脊髓

自主神经神经元也支配肠道,包括迷走神经传出副交感神经运动神经元和位于自主神经节中的交感神经元。

肠道还拥有自己的内在和自主神经系统,由肠道神经元组成,它们的细胞体位于肌间神经丛和粘膜下神经丛中(如下图)。

doi.org/10.1038/s41385-020-00368-1

交感神经 vs 副交感神经:肠道的刹车和油门

交感神经元和副交感自主神经神经元分别起源于脊髓和脑干,并介导从大脑到肠道的信号转导

  • 交感神经元(刹车)驱动身体的压力反应,执行抑制性肠道功能,包括减慢肠道蠕动和分泌。交感神经元通过儿茶酚胺(多巴胺、肾上腺素、去甲肾上腺素)向 α 或 β 肾上腺素能受体发出信号。这些神经元根据其抑制功能进行亚分类,包括节后血管收缩神经元、分泌抑制神经元和运动抑制神经元。
  • 副交感神经元(油门)主要起源于脑干,通过传出迷走神经支配肠道,并通过神经递质乙酰胆碱(ACh)介导肠道生理学,以驱动运动、消化和分泌功能。

神经支配的地理分布

迷走神经副交感神经元沿前尾方向支配胃肠道,胃的神经支配密度最高,小肠和结肠的神经支配密度降低。

这种分布差异与不同肠段的消化功能需求相关:胃的高密度神经支配支持其机械研磨与酸性环境调控,而结肠的低密度则反映其以水分吸收和粪便塑形为主的生理特性。

交感神经元和副交感神经元都与肌间神经丛中的 ENS 形成连接,形成错综复杂的局部神经回路

神经元——两根触手

  • 一根触手伸向肠道:负责收集信息
  • 另一根触手伸向大脑:负责传递消息

它们能感知什么?

这些感觉神经元群检测营养物质、机械拉伸、管腔威胁免疫刺激,包括细胞因子

除了感知,还会“说话”

这些神经元还通过从周围神经末梢释放神经肽在肠道内发出信号(神经肽就像”化学信号”,用来和周围的细胞交流。)。迷走神经节神经元主要支配近端小肠,而 DRG 神经元支配整个胃肠道

肠道神经网络的双层架构

肠道神经元完全驻留在胃肠道内,并组织成环绕肠管的神经节网络,并在空间上分为两层:肌间神经丛,位于圆形和纵向肌肉层之间,以及粘膜下层的粘膜下神经丛

这两个神经丛通过中间神经元、运动神经元和肠神经胶质细胞紧密相连。它们一起形成介导蠕动和分泌功能的反射回路。

此外,它们还整合来自外源性感觉、副交感神经和交感神经神经元的信号,以介导肠道生理学。

肠道神经和免疫的共同语言

神经系统和免疫系统已经进化出一种共同的语言,在它们对环境损伤的每一步反应中进行交流,从起始到解决。

神经系统和免疫系统:互相听懂语言

  • 神经元表达许多典型在免疫细胞中表达的受体,包括模式识别受体如Toll样受体(TLRs)和炎症细胞因子受体,使免疫细胞能够调节神经元活动。例如,炎症细胞因子IL-1β通过增强感觉神经元的敏感性来调节炎症环境下的疼痛。
  • 免疫细胞也能够通过表达神经递质和神经肽的受体,感知神经元来源的信号。例如,先天淋巴样细胞表达降钙素基因相关肽(CGRP)和神经调节素U(NMU)的受体。

微生物:神经-免疫对话的调节员

神经系统与免疫系统之间的交流机制从进化角度来看是有道理的,因为这种机制减少了应对某些损伤的代价,并使两个系统能够协调复杂的宿主反应。微生物组在调节神经元激活和免疫发育中也起着关键作用

鉴于免疫细胞和神经元都可以直接或间接感知微生物,微生物组的组成在神经元分化或成熟中起着关键作用,以调节内脏疼痛、肠道蠕动和肠道生理的其他方面。

02
肠道神经-免疫轴的调节

中枢神经系统的调节

短链脂肪酸它如何发挥作用?

尽管生物屏障严重限制微生物进入 CNS,但是某些肠道微生物代谢物,如短链脂肪酸(SCFA),可以穿过血脑屏障并起神经调节剂的作用。例如,乙酸盐优先被下丘脑吸收,下丘脑是参与食欲控制的大脑中枢,直接抑制摄食行为 。

尽管 SCFA 受体在大脑中通常以低水平表达,但这些纤维发酵产物可以通过抑制组蛋白脱乙酰酶来调节神经元基因表达。

4-乙基苯基硫酸盐,参与情绪处理的大脑区域

除了 SCFAs,最近有报道称微生物代谢物 4-乙基苯基硫酸盐可以改变参与情绪处理的大脑区域,例如海马体和杏仁核,并诱导小鼠的焦虑样行为。由于无菌动物在基线时表现出异常的大脑化学和结构,这些改变发生的时间已成为一个关键的研究重点。目前越来越多的工作揭示了母婴肠道微生物组对早期神经发育结果的影响

免疫细胞的调节

皮肤、肺和肠道等屏障组织中,免疫细胞和神经纤维紧密相邻,它们经常互相聊天,交换神经免疫调节分子来保护身体健康。

为什么要这样合作?

这种神经免疫轴在面对感染、过敏原毒素时尤为重要,因为这些情况需要快速的组织保护反应,然后进行行为适应以避免未来再次遭遇。

具体怎么合作?

– 食物过敏的例子:

通过食物过敏的动物模型,两项最近的研究发现,肠道里的肥大细胞发现过敏原,它们向大脑发送特定信息,大脑记住这种食物,下次就会产生回避行为。

– 皮肤过敏的例子:

皮肤中的γδ T细胞受到微生物调节,它们能调节感觉神经元的活动,控制过敏反应的强度。肠道黏膜γδ T细胞是否参与神经元信号传递仍有待确定。

免疫细胞的远程通讯:如何向大脑发送消息?

免疫细胞不只是在局部工作。它们还有两种方式向大脑汇报:

方式一:血液快递

免疫细胞把细胞因子释放到血液中,就像发快递一样,把信息送到大脑。

方式二:亲自出差

肠道中某些免疫细胞,例如IgA+浆细胞(专门产生抗体)和自然杀伤细胞(专门杀死异常细胞),也能搬家到大脑或脑膜,从而在中枢神经系统中发挥作用。

肠道细菌的重要作用

这些细胞的功能成熟很大程度上依赖于来自肠道的微生物信号。

– 实验证据:

无菌动物(没有肠道菌群的动物大脑中的IgA+浆细胞和“激活”的自然杀伤细胞数量会减少

大脑常驻免疫细胞也会受到肠道细菌的影响

例如小胶质细胞T细胞,也会受到来自肠道菌群的信号影响。 在这方面,细胞因子IL-17,特别是来自脑膜γδ T细胞的IL-17,作为肠道菌群和行为之间潜在的联系受到了广泛关注。

神经内分泌细胞的调节

下丘脑:身体的应激总指挥

下丘脑也是通过下丘脑-垂体-肾上腺(HPA)轴调节身体应激反应的关键指挥者。这个主要的神经内分泌系统包含几个严格调控的激素级联反应(就像接力赛一样,一个传一个),促进器官间的稳态。

肠道细菌影响压力反应

无菌动物具有夸大的HPA反应,并伴有应激诱导的糖皮质激素水平升高

早期接触共生微生物对HPA轴的正常调节非常重要。简单说,婴儿期的肠道细菌会影响我们一生应对压力的能力。

肠内分泌细胞:肠道里的激素工厂

肠道也包含其自身的神经内分泌细胞群,称为肠内分泌细胞 (EECs):

  • 数量不多,只占肠道上皮细胞的1%
  • 但分布在整个肠道,像遍布各地的小工厂

这些激素调节消化、葡萄糖稳态、食欲。虽然主要在营养感知的背景下进行研究,但 EECs 越来越被认为是肠道菌群的关键传感器肠-脑信号传导的介质

肠道激素:连接肠道与大脑的信使

肠道菌群会影响多种循环激素的分泌:

  • GLP1(胰高血糖素样肽1):调节血糖
  • PYY(肽YY):控制食欲
  • 5-HT(5-羟色胺):影响情绪
  • CCK(胆囊收缩素):促进消化
  • 胰岛素样肽5:调节代谢

这些激素作用范围很广

这些激素中的大多数在胃肠道神经纤维、下丘脑和其他大脑区域都有靶点

由于这些激素及其前体也由身体的各种神经元和非神经元细胞产生,因此了解 EEC 来源的信号对动物行为的具体贡献一直是一个重大挑战,近年来随着基因工具的进步,解决这一问题成为可能。

外周神经元的调节

第四条高速路:外周神经系统的闪电传输

肠道微生物与大脑之间的第四个联系是外周神经系统 (PNS),特别是自主神经系统 (ANS),它具有副交感神经和交感神经两个分支

神经传输有什么特点?

与前面提到的激素传输或细胞迁移不同,神经系统传输信息超级快:

  • 速度:几分之一秒内就能完成
  • 优势:能对刺激做出快速反应

肠道的双重神经网络:外在 vs 内在

– 外在

作为一种内脏器官,胃肠道由“外在”传入和传出神经纤维支配,其细胞体位于大脑或脊髓区域,分别介导肠道到大脑和大脑到肠道的信号传递 。

– 内在

“内在”肠神经系统 (ENS) 的神经纤维也分布在胃肠道中,其细胞体位于肠壁外层。它们在很大程度上自主地执行基本的肠道功能,并接收来自微生物组和中枢神经系统的输入。

迷走神经:肠脑对话的专线电话

迷走神经作为副交感神经系统的主要分支,尤其与肠-脑通讯密切相关,具有传入和传出神经纤维。它在维持肠道稳态以及调节情绪、食欲和能量平衡方面发挥重要作用。

doi.org/10.1038/s41423-023-01054-5

实验证据

迷走神经切断动物(即接受了迷走神经切断术的动物)中,肠道菌群的许多效应都会消失。然而,微生物信号是否能直接调节体内迷走神经的活动,目前证据仍然有限。

脊髓传入神经:疼痛信号的传递者

脊髓传入神经通过脊髓将感觉信息从肠道分别传递到大脑。我们对微生物组通过脊髓神经发出信号的许多了解都与内脏疼痛有关,因为许多这些纤维都是疼痛感应的。无菌动物表现出对结直肠扩张的超敏反应,而益生菌治疗可以缓解这种反应。共生微生物是否通过脊髓通路影响大脑生理或行为,目前仍不清楚。

交感神经系统:应激反应的调节者

交感神经系统调节多种胃肠道功能,尤其是在应对急性应激时。无菌小鼠的交感神经活动长期升高,这与这些动物体内HPA轴反应的增强相呼应。有趣的是,微生物群对交感神经活动的调节依赖于迷走神经传入纤维的信号,突显了周围神经系统相互关联的性质。

肠道神经元:免疫系统的调度员

肠道神经元是异质性的,能释放两大类物质来调节免疫功能:

– 细胞因子:

IL-18:调节抗菌肽的杯状细胞表达,抗菌肽介导宿主对肠道鼠伤寒沙门氏菌感染的保护

IL-6:抑制结肠中 RORγ+ 调节性T细胞的分化

– 神经肽:

NMU(神经调节素U)

CGRP(降钙素基因相关肽)

VIP(血管活性肠肽)

神经元与先天淋巴细胞的密切合作

肠道神经元还协调肠道先天淋巴细胞 (ILC) 的功能方面也起着重要作用。ILC 是协调下游适应性免疫的早期反应先天淋巴细胞

– 空间优势

肠道神经元靠近 ILC,为这些神经元调节 ILC 功能奠定了细胞基础。

– ILC2的调节:过敏反应控制

ILC2 高度表达 NMUR1,NMUR1 是神经肽神经中介U(NMU)的受体。肠道感觉神经元的一个亚群表达 NMU,NMU 在过敏情况下释放。

– ILC3的调节:昼夜节律与宿主防御

肠道神经元在调节肠固有层 3 型 ILC (ILC3) 的功能中也起着关键作用。ILC3 表达高水平的 VIPR2,VIPR2 是神经肽 VIP 的受体。

肠道神经元的一个子集(以及迷走神经感觉神经元)表达高水平的 VIP,并且已发现它们在稳态和宿主防御期间调节 ILC3 功能。

– 具体调节过程

进食触发:食物消耗以昼夜节律方式触发VIP的神经元产生;

抑制作用:VIP抑制ILC3介导的IL-22产生,消除抗菌肽的肠道表达;

实验验证:VIP+神经元的化学激活导致IL-22+ ILC3比例降低,使宿主易受口腔啮齿柠檬酸杆菌感染。

doi.org/10.1038/s41423-023-01054-5

03
微生物群 – 神经上皮信号传导

肠道上皮每天都要面对来自食物肠道菌群的各种化学物质。有时,有害刺激物和病原体会进入胃肠道,需要迅速采取损害控制措施。

为了理解管腔环境并区分“好”和“坏”,EEC(肠内分泌细胞) 和周围神经共同形成了一个广泛的肠道感觉网络。

信息处理:局部处理 vs 上报大脑

这些感觉信息有两种处理方式:

  • 局部处理:一些信息保存在肠神经系统(ENS)内,就地解决
  • 上报大脑:另一些信息传递到中枢神经系统,引起饱腹感、渴望等感觉,并改变行为

同时,大脑也会向肠道发送指令,引起特定的器官间反馈反应。

肠道神经上皮界面的肠道微生物群到大脑通路

Ohara et al. 2025. Nat Rev Microbiol

肠内分泌细胞:肠道的化学传感器

肠内分泌细胞 (EECs) 是肠道的主要化学感应上皮细胞,通常根据其主要激素产物进行分类。产生 CCK、GLP1/PYY 和 5-HT 的 EEC 分别称为 I 细胞、L 细胞、肠嗜铬细胞(EC)。

在 EEC 家族中,这三个亚群最密切地参与肠-脑通讯:

  • I 细胞主要位于上肠
  • L 细胞主要位于下肠
  • EC 细胞分散在整个肠道中

EECs的灵活性

一些 EEC 在其生命周期中分泌多种不同的激素或经历激素转换,这表明 EEC 亚型并非完全固定

重要的是,微生物组感应受体在远端肠道的 L 细胞和 EC 细胞中富集,这个区域正好是细菌载量最高的地方,并且主要被认为发生微生物-EEC 信号传导。

简单说,细菌最多的地方,正好是感应细菌信号的传感器最多的地方。

微生物相关分子模式 (MAMP)

MAMP

微生物相关分子模式(MAMP)就想是细菌身上的身份标识牌,是微生物上进化上保守的结构,就像每个细菌都带着固定的身份证。宿主细胞可以通过模式识别受体来读取这些身份信息,特别是先天免疫细胞,它们是识别细菌身份的专家。

Toll样受体

在模式识别受体中,Toll 样受体(TLR)维持肠上皮细胞稳态中起着至关重要的作用。

肠内分泌细胞表达不同的TLR

体外和体内研究表明,肠内分泌细胞 (EECs) 表达几种不同的功能性 TLR,包括:

  • TLR4:专门识别脂多糖
  • TLR5:专门识别鞭毛蛋白
  • TLR9:专门识别未甲基化的细菌DNA

TLR信号如何影响激素分泌?

肠道中的 TLR 信号传导与 CCK(胆囊收缩素)、GLP1(胰高血糖素样肽1) 、5-HT(血清素)分泌的调节有关,但这仍有待进一步验证。

TLR4 也在感觉传入神经元中表达,但其与微生物组感应的相关性尚不清楚。

短链脂肪酸(SCFA)

短链脂肪酸(SCFA)膳食纤维发酵最终产物,由厌氧菌在结肠中大量产生。

特定的支链短链脂肪酸,如异戊酸盐异丁酸盐,由肠道细菌通过支链氨基酸发酵制成。特征最明显的 SCFA 受体是游离脂肪酸受体2 (FFAR2)和 FFAR3,它们都在多个 EEC 亚群中表达,说明很多肠内分泌细胞都能听到SCFA的信号。

FFAR受体:如何传递SCFA信号?

FFAR 是一种 G 蛋白偶联受体,当被激活时,它与几个下游信号级联反应相连,就像按下按钮后,触发一连串的反应。

– 对L细胞的影响

SCFA 与 L 细胞上的 FFAR2 和 FFAR3 结合会触发细胞内钙动员(也就是钙离子在细胞内快速移动)以及 GLP1 和 PYY 的释放

EC细胞:用嗅觉受体来感应SCFA

在结肠中,EC 细胞也通过 FFAR 以及嗅觉 G 蛋白偶联受体 OLFR78 和 OLFR558(refs)受到 SCFA 的调节。

不同种类的SCFA有不同的分工

  • 乙酸盐通过OLFR78促进结肠EC细胞分化
  • 异戊酸盐与 EC 细胞上的 OLFR558 结合以刺激 5-HT(血清素)产生

尽管FFAR3在 I 细胞中广泛表达,但尚不清楚 SCFA 是否调节CCK的产生。FFAR2 和 FFAR3 在肠道支配感觉神经元中也有功能表达,表明传入神经纤维可能直接对SCFA做出反应。

次级胆汁酸

次级胆汁酸是肠道微生物群产生并被宿主识别的另一类重要代谢物。最初是肝脏产生的初级胆汁酸,这些初级胆汁酸到达远端肠道后,被肠道细菌进行”二次加工“,变成了次级胆汁酸。

简单说,这是肝脏和肠道细菌合作的产物。

主要的次级胆汁酸:两大明星分子

脱氧胆酸(DCA)和石胆酸两种含量最丰富的次级胆汁酸,能够通过多种宿主受体发出信号,特别是 TGR5(也称为 G 蛋白偶联胆汁酸受体 1)和法尼醇 X 受体。两种受体都在 L 细胞中表达,并参与 GLP1 和 PYY 释放的调节,这就解释了为什么肠道细菌的变化会影响我们的血糖控制和食欲调节。

对EC细胞的影响:调节血清素产生

次级胆汁酸还向 EC 细胞发出信号,通过 TGR5 和可能通过 Tph1 的下游转录指导 5-HT 的产生,Tph1 编码 5-HT 生物合成的限速酶。

目前尚不清楚次级胆汁酸是否作用于 I 细胞,但这些胆汁酸的一部分可以通过肠肝循环到达近端肠道,并且表达 CCK A 型受体的迷走神经传入神经亚群以 TGR5 依赖性方式对 DCA 有反应。

色氨酸和吲哚衍生物


色氨酸是一种从膳食蛋白质中获得的必需氨基酸,人体无法自己制造,其分解产物代表了另一类有助于宿主健康的微生物代谢物。

吲哚途径:细菌的化学加工厂

在色氨酸降解的三个主要途径中,吲哚途径由肠道中的许多细菌物种进行,将色氨酸转化为吲哚及其衍生物,如吲哚-3-乙酸(IAA)和吲哚-3-醛。

吲哚类物质如何影响EECs?

吲哚是 L 细胞中 GLP1 分泌的已知诱导剂。也就是说,吲哚能够刺激L细胞释放GLP1。

在斑马鱼中,吲哚和吲哚-3-醛强烈激活 EEC 并通过瞬时受体电位锚蛋白 1 通道触发 5-HT 释放

瞬时受体电位锚蛋白1:多功能的感应通道

瞬时受体电位锚蛋白 1 不仅能感应吲哚类物质,还有其他身份,它也是环境刺激物的传感器,比如能感应芥末油(这就解释了为什么吃芥末会有刺激感)。

瞬时受体电位锚蛋白 1 在哺乳动物EC细胞感觉神经元中高度表达,可能是促进胃肠道蠕动清除摄入毒素的机制。

04
微生物信号的传递

在检测到微生物群衍生因子后,肠道感觉网络将此信息传递给CNS。这种传输究竟是如何发生的,特别是在脑-身体通信的背景下,是目前积极研究的一个领域。

新兴的经典肠道神经上皮通路涉及:

  • 微生物对 EEC 的刺激
  • 激素释放和附近传入粘膜神经末梢的激活
  • 神经信号传递到 CNS

肠道感觉网络

肠内分泌细胞(EEC)和肠道支配感觉神经元在肠粘膜屏障处共同形成一个复杂的感觉网络,能够感知和响应各种微生物结构和代谢物。这些包括色氨酸代谢物、微生物相关分子模式、短链脂肪酸和次级胆汁酸。

结肠中的两大主力

在结肠中,有两类重要的EEC:

  • EC细胞(肠嗜铬细胞):生产5-羟色胺(5-HT)
  • L细胞:生产胰高血糖素样肽1(GLP1)

这两类细胞都表达这些微生物信号的受体,能够直接听到细菌的声音。

I细胞主要位于小肠中,生产胆囊收缩素(CCK),同样表达微生物传感器。

信号传递的两种方式

当EEC被激活时,它们会通过两种方式释放信号分子:

  • 旁分泌:向周围环境释放
  • 突触传递:直接传递给神经元

EEC会释放:

  • 激素
  • 神经递质

传递给:

  • 附近的迷走神经传入神经
  • 脊髓传入神经

不仅影响EEC,还直接影响神经

微生物输入还可以直接调节感觉神经纤维的敏感性,从而增强 EEC-神经荷尔蒙信号传导

不同信号走不同高速路

根据所涉及的微生物传感器、EEC 亚群、神经肽和感觉神经元类型,不同的微生物线索可以通过不同的肠道神经上皮途径输送,最终对大脑功能和行为产生不同的影响。

感觉细胞多样性

肠道里的神经元是怎么工作的?

肠道中有两大类感觉传入神经负责不同的监测任务:

  • 化学感受器:专门感知各种化学刺激(比如营养物质、激素等)
  • 机械感受器:专门感知机械刺激(比如肠道的伸缩、压力等)

最近对迷走神经和脊髓神经元的分析发现了多种感觉神经元细胞类型,甚至在化学感受器和机械感受器中也是如此。

为什么需要这么多不同类型的神经元?

结合遗传的研究方法,得出一个研究的共识,即单个感觉神经元之间存在很大的分工。每种神经元都有自己的专业领域,就像专科医生一样。

这些神经元到底分工有多细?

一些具体的例子:

  • GLP1R+神经元:专门检测肠道扩张(监测肠道是否被撑大)
  • GPR65+神经元:专门检测营养物质(监测食物成分)
  • 检测糖的神经元:只对糖类敏感
  • 检测脂肪的神经元:只对脂肪敏感

复杂分工的深层原因:系统的精密设计

这种刺激特异性神经元反应可能反映了肠道神经上皮水平信息感知和传递方式的复杂性,部分原因是 EEC 和感觉神经元群的异质性。这种精密的设计确保了肠道能够准确识别和传递各种不同的信号。

未来:寻找微生物组专属神经元

这些观察结果提出了一个有趣的问题,即是否有专门的“微生物组响应”感觉神经元来支配肠道,以及是否存在基于微生物刺激的亚型。

当然,GPR65 + 迷走神经神经元是不错的候选者,因为它们是在整个胃肠道中具有致密粘膜神经末梢的化学感受器。

然而,随着迷走神经支配沿结肠长度向远端减少,脊神经可能同样有助于将微生物线索传递给 CNS。

旁分泌传递与突触传递

传统方式:EEC的广播信号传递

当EEC受到刺激后,它们会采用最常见的信号传递方式:

  • 将激素释放到周围组织中
  • 激活邻近的传入神经末梢

这通常被认为以旁分泌方式发生——即最接近 EEC 范围,只要表达相关受体的纤维,就能接收信号并传播给大脑,也就是“近水楼台先得月”。

新发现:EEC的专线连接方式

科学家们发现了一种更直接的连接方式!研究发现了一种独特的 I 细胞和 L 细胞亚群,被称为”神经足”细胞

– 什么是”神经足”细胞?

  • 它们有独特的轴突样突起(像神经元一样长出”脚”)
  • 这些”脚”与迷走神经传入神经形成功能性突触
  • 形成直接的物理接触

更多证据:EC细胞也有类似的专线

对于 EC 细胞脊髓传入纤维提出了类似类型的连接。支持这种突触连接的证据:

  • EEC需要依赖电压门控钠通道(如Nav1.3)进行激活
  • EEC能够分泌神经递质(如谷氨酸)进行信号转导
  • 这些特征都很像神经细胞的行为

然而,最近的高分辨率成像研究尚未发现令人信服的证据证明 EEC 和传入神经之间存在突触接触,这表明神经足细胞要么非常罕见,要么仅存在于某些 EEC 亚型中。另一种解释是,考虑到大多数 EEC 的寿命较短,EEC-神经突触是高度动态的。

了解 EEC 的特定子集是否可以直接进入大脑很有价值,因为它们将是影响与肠道微生物群相关的情绪和行为变化的候选者。

协作微生物-宿主信号传导


到目前为止,我们已经将肠道神经上皮回路描述为一条线性通路,信号在到达 CNS 之前从肠道微生物群传递到 EEC再传递到内脏传入神经

微生物群 → EEC → 内脏传入神经 → 中枢神经系统

新发现:微生物的捷径通道

一些微生物因子,包括 SCFA、次级胆汁酸、蛋白酶,可以绕过上皮层,并直接作用于感觉传入神经。

协同作用:1+1>2的效果

感觉神经纤维如何整合微生物和宿主来源线索的细节开始浮出水面。

– 例子1:DCA + CCK的强强联合

  • 脱氧胆酸(DCA,来自微生物群的次级胆汁酸)+ CCK(来自I细胞的激素)
  • 它们分别通过TGR5和CCK A型受体
  • 协同激活迷走神经传入神经
  • 导致下丘脑的更大激活和对摄食行为的更强影响

注:它是一种次级胆汁酸,由肠道菌群代谢初级胆汁酸而产生。

– 例子2:丙酸盐增强CCK效果

  • 丙酸盐可以增强CCK向迷走神经传入神经的传递
  • 部分通过增强FFAR3下游的Cckar表达

这些发现表明,微生物代谢物可以与肠道激素合作以影响感觉神经放电

复杂的生物网络系统

鉴于最近对免疫细胞在协调脑-身体回路和肠胶质细胞在塑造肠道神经活动中的作用的见解,微生物群-神经上皮相互作用可能涉及多个细胞输入的影响,这个系统作为更大的互连生物系统网络的一部分,远比简单的线性通路复杂。

简单说,肠脑通讯不是一条高速公路,而是一个复杂的交通网络,有多条道路、多个路口,各种车辆(不同的信号分子和细胞)在其中协调运行。

05
调整肠道微生物群


肠道感觉网络收集的有关微生物组的信息,在组织本身、脑干脊髓以及高级大脑区域内进行整合和处理。

大脑处理完信息后会做什么?

中枢神经系统的效应肢体会积极响应,主要包括:

  • HPA轴(下丘脑-垂体-肾上腺轴)
  • 自主神经系统的传出臂

它们的任务是对动态变化的肠道环境做出反应,调节胃肠道生理学的各个方面。

近年来,宿主通过局部和远程信号传导机制对肠道微生物群的定向作用受到了相当大的关注。

肠神经上皮界面的脑到肠道微生物群通路

doi.org/10.1038/s41579-024-01136-9

局 部 调 控

传统认知:感觉神经只负责”上报”信息

传统上,感觉神经是将信息传递到 CNS 传入纤维,就像信息传递员一样,只负责把肠道的情况报告给大脑。

新发现:感觉神经还有”管理”功能

现在人们普遍认识到,感觉神经元还通过在屏障组织局部释放各种神经肽神经递质来执行传出功能。

– 管理方式:

通过作用于附近的免疫和非免疫细胞,感觉传入神经是维持组织健康不可或缺的一部分。

肠道中的疼痛神经:伤害感受器

在肠道中,许多具有局部效应功能的感觉神经元是伤害感受器,它们通常在皮肤中介导疼痛感

– 伤害感受器:微生物管家

尽管它们的确切特征和功能正在阐明,但最近的两项互补研究发现,伤害感受器在调节肠道微生物稳态方面具有新作用。

– 实验证据:

  • 在抑制伤害感受器后,拟杆菌门和厚壁菌门显著改变
  • Turicibacteraceae和Erysipelotrichaceae科(如Turicibacter 和 Allobaculum)增加
  • Oscillospira的减少

在没有功能性伤害感受器的情况下,小鼠以微生物组依赖性方式更容易患结肠炎。

伤害感受器的保护机制:释放保护性分子

伤害感受器通过释放 P 物质降钙素基因相关肽来促进组织保护,这些肽向邻近的肠道杯状细胞发出信号以驱动粘液分泌

有趣的是,伤害感受器释放的 P 物质和降钙素基因相关肽受共生信号调节。因此,感觉神经元同时监测和调整肠道菌群的组成以支持肠道稳态。

EC细胞与5-HT的调节系统

一个显著的例子是 EC 细胞,它在压力、机械压力迷走神经刺激下将 5-HT 释放到肠腔中。

– 微生物的影响:

  • EC 衍生的管腔 5-HT 水平受微生物线索的调节。
  • 孢子形成细菌,包括梭菌科、Turicibacteraceae科,约占宿主外周 5-HT 产生的 50%。

微生物的策略:操控宿主为自己服务

因此,孢子形成细菌识别肠腔中的 5-HT,并通过结肠中的 EC 细胞进一步诱导宿主 5-HT 的产生,来促进自身在微生物组中的成员身份。

这种微生物群-EEC 串扰是孢子形成者独有的,还是其他细菌物种参与界间信号传导仍有待确定。

远 端 调 节

宿主调节微生物的双重策略:局部 vs 远程

宿主有两套不同的调节策略:

策略1:局部信号调节——就地解决问题

  • 来自肠道感觉细胞的局部信号
  • 提供了一种快速直接的方式
  • 独立于中枢神经系统输入来调节肠道菌群

策略2:远程肠脑回路调节——统筹全局管理

  • 远程肠脑回路考虑了宿主的生理和精神状态以及来自外部世界的输入
  • 实现了实现微生物稳态的整体方法

ANS 的两个主要分支——迷走神经交感神经,通过它们在胃肠道中的不同功能输出,来协调这种反馈反应。

迷走神经:身体休息和消化时的管家

虽然大多数迷走神经纤维将感觉信息传递到大脑,但有些也向肠道提供副交感神经流出,主要支配 ENS 并促进肠道蠕动和上皮分泌物,作为身体“休息和消化”反应的一部分。

最近的证据表明,迷走神经传出纤维在通过近端小肠 Brunner 腺调节肠道微生物群方面,具有惊人的作用。

– 对特定微生物的影响:

乳酸菌属对这种神经腺回路的扰动特别敏感,在迷走神经刺激时扩大,并在参与压力信号时丰度降低

迷走神经传出神经元的活动,也极大地影响了肠上皮的吸收能力,可能会改变饮食-微生物群动力学和微生物代谢物对宿主的获取。

交感神经:压力状态下的应急管理员

– 交感神经的基本功能

交感神经为肠道提供肾上腺素能神经纤维,在那里它们支配 ENS 和肠粘膜,并释放去甲肾上腺素,尤其是在应对压力时。

– 对微生物群的具体影响

交感神经激活导致粘蛋白降解剂(如Akkermansia)增多Turicibacter spp137 减少

这些微生物组的变化伴随着粘液产生抗菌基因表达上皮周转率的变化,揭示了交感神经、上皮细胞和肠道细菌之间的密切关系。

交感神经的化学武器:去甲肾上腺素的直接作用

– 直接的化学信号传递

交感传出神经元影响微生物组的另一种机制是,通过将去甲肾上腺素释放到肠腔中。

– 跨界信号传导的例子

QseC 组氨酸激酶对宿主来源的儿茶酚胺(如肾上腺素和去甲肾上腺素)的细菌感应,是王国间信号传导的另一个例子。

– 对病原菌的影响

在某些大肠杆菌菌株中,儿茶酚胺可以改变毒力基因表达和致病性。有趣的是,肠腔中游离儿茶酚胺的水平部分受肠道微生物群的调节。

这可能具有临床意义,因为 GLP1 受体激动剂利拉鲁肽是一种常见的抗糖尿病药物,被发现可以激活交感神经传出纤维触发去甲肾上腺素释放到肠腔中,并诱导大肠杆菌的扩增 。

总的来说,这些研究表明,交感神经可以直接影响肠道细菌定植。

06
未来方向和展望

神经免疫学是一个快速发展的领域。最近在不同的神经元亚群如何调节肠道免疫反应方面的突破,加深了我们对生理和病理条件下肠道免疫的理解。

除了被动接受和应对有害的威胁外,免疫系统还向神经系统发出信号以启动防御性反应。同时,神经系统在对潜在威胁的预期和感知下,积极调节肠道中的免疫反应。神经系统和免疫系统之间的协调使宿主能够正确处理复杂的刺激和不断变化的环境。

肠道微生物群也是调节肠脑轴中神经元和免疫激活的关键臂。结合微生物组、转录组、蛋白质组的多组学研究,配合光遗传学和化学遗传学等新兴技术,将深化我们对神经元如何塑造肠道生态系统的理解。

肠道菌群检测技术的应用将成为连接基础研究与临床实践的重要桥梁。基于微生物组构成神经反应模式的个体化治疗将成为现实,通过功能性微生物组分析,结合肠道菌群检测报告中的神经递质等相关指标,实现疾病风险预测和治疗效果的个性化评估。自迷走神经电刺激在减轻炎症方面的发现以来,生物电子医学在临床应用中展现出广阔前景,无创迷走神经刺激已在克罗恩病临床试验中显示疗效。

神经递质和神经肽受体信号传导的治疗靶向为药物创新提供了新思路。β-肾上腺素能受体拮抗剂CGRP受体拮抗剂等现有药物,凭借其调节肠道免疫的能力,可重新用于胃肠道功能障碍治疗,同时基于微生物代谢物的新药开发和靶向EEC的小分子化合物研究正在兴起。

这些突破将更大地改变焦虑、抑郁、自闭症、帕金森病等神经疾病以及肠易激综合征、炎症性肠病等消化系统疾病的治疗策略。通过微生物疗法、肠道靶向神经调节和神经-免疫平衡调节的联合治疗,未来,临床医生可能会根据患者的肠道菌群特征免疫状态和神经系统表型制定个性化治疗方案。

医学正从标准化治疗转向个体化精准医疗,肠道-菌群-免疫-神经将成为未来疾病治疗的重要方向。短链脂肪酸、色氨酸代谢物以及其他菌群代谢产物正被开发为新型神经调节剂,它们能通过血脑屏障或迷走神经途径影响中枢神经系统功能。

早期干预肠道菌群失调可能成为预防神经精神疾病的关键途径,特别是对具有遗传风险的人群。肠道健康将成为整体健康管理的重要组成部分。

主要参考文献

Jacobson, A., Yang, D., Vella, M. et al. The intestinal neuro-immune axis: crosstalk between neurons, immune cells, and microbes. Mucosal Immunol 14, 555–565 (2021).

Ohara, T.E., Hsiao, E.Y. Microbiota–neuroepithelial signalling across the gut–brain axis. Nat Rev Microbiol 23, 371–384 (2025).

Yang, D., Almanzar, N. & Chiu, I.M. The role of cellular and molecular neuroimmune crosstalk in gut immunity. Cell Mol Immunol 20, 1259–1269 (2023). 

肠道微生物的营养获取策略:一个隐秘而精妙的生态系统

谷禾健康

人体复杂的内部环境中栖息着种类繁多、功能各异的微生物群,这些微生物群落对人类的基本生理功能和各种疾病状态都产生着深刻而持续的影响。

人类胃肠道系统代表着宿主机体与宿主相关微生物群落之间最为重要和最大规模的生物接触界面。长期定植于这一特殊环境中的常驻细菌群体,经过漫长的进化历程,已经发展出高度专门化精细调节的生物学机制,以实现对现有营养物质最优化获取高效利用,这些独特的适应性机制使得它们能够在激烈的生存竞争中胜过其他微生物,并在整个肠道的不同区域中成功建立起稳定而特定微生物群落结构

宿主与微生物群之间的众多复杂相互作用主要基于各种代谢物的交换和信号传递,因此无论是在生理稳态条件还是在各种疾病状态下,这些相互作用都会受到微生物代谢活动环境中营养物质可用性的显著而持续的影响

举例来说,结肠组织正常生理稳态条件下维持着严格的厌氧环境特征,这种特殊的环境条件特别有利于那些主要通过底物水平磷酸化过程获取生存必需能量的专性厌氧微生物的成功定植和繁殖。

然而,当机体处于各种疾病条件下时,无论这些病理状态是由外来病原体感染引起,还是由非感染性自身免疫疾病如溃疡性结肠炎和克罗恩病等慢性炎症性疾病所导致,肠道上皮细胞的代谢模式都会发生显著变化,这些变化最终导致原本稀缺的氧气分子流入肠腔空间,从而为那些能够有效利用氧气进行有氧呼吸的兼性厌氧菌创造了有利的生长环境,促进了这类微生物的快速扩增和繁殖

微生物对碳源和能量的高效获取能力始终是决定群落组成结构和功能表现的最主要驱动力量。肠道微生物群和各种肠道病原体经过长期的适应性进化,已经成功发展出多种多样的生物学机制来获得膳食来源的碳水化合物如糖醇类化合物和Amadori产物,以及来源于宿主机体的各种内源性代谢物如与粘蛋白分子密切相关的代谢产物。

注:Amadori产物是糖类与氨基酸或蛋白质发生非酶糖化反应(Maillard反应)的重要中间产物。

除此之外,微生物对各种关键微量营养素的成功获得,包括多种维生素化合物和重要的金属元素如铁、锰、铜、锌、钼、镍等,也在很大程度上控制和调节着微生物群落的整体结构组织

本文将全面而深入地介绍肠道共生细菌病原菌如何采用各种不同的生物学策略来获取和代谢肠道环境中丰富的宏量营养素,以实现高效的能量产生并促进其在宿主肠道中的成功定植和长期生存

人体不同部位影响微生物群种类及代谢能力

★ 不同细菌的能量代谢来源各异

环境细菌和人体相关细菌表现出惊人的代谢多样性。微生物生理学的一个关键决定因素是能量代谢,微生物根据其首选的碳源(有机物与CO2)、能源来源(阳光与化学反应)和氢供体来源(有机与H2O)可大致分类。

任何生物体要想存活,必须通过化学反应产生足够的吉布斯自由能来合成ATP并建立离子梯度

注:吉布斯自由能可以简单理解为反应的”净可用能量”。

例如,硫杆菌属Thiobacillus spp)等硫氧化细菌使用元素硫、硫化氢(H2S)或硫代硫酸盐作为电子供体,以氧为电子受体生成硫酸盐和其他氧化硫化合物;并通过电子传递链建立质子动力。

而大多数肠道共生菌降解有机化合物,从膳食和宿主来源(化学有机异养生物)中获得能量和代谢中间体。虽然肠道微生物营养策略多样,但人体结构严格限制了不同肠段栖息的细菌类型及其代谢模式

▸ 肠道不同部位微生物群结构和代谢不同

人体已经进化出专门的机制,使特定微生物在肠道不同部位选择性定植,从而塑造微生物群落结构和代谢模式

饮食和宿主因素决定了肠道微生物群的代谢

Muramatsu MK,et al.Cell Host Microbe.2024

★ 小肠以需氧和兼性厌氧菌为主,密度较低

小肠pH值从胃部酸性逐渐升至回肠末端的微酸性或中性,影响微生物群落多样性。十二指肠和空肠主要栖息耐酸需氧菌兼性厌氧菌,如乳酸杆菌属Lactobacillus)和链球菌属Streptococcus)以及变形菌门(假单胞菌属)。

此外,肝胆系统释放的初级胆汁酸(BA)和牛磺酸或甘氨酸偶联的胆汁酸(CBA)以及潘氏细胞释放的抗菌肽抑制了小肠中许多细菌的生长。因此,小肠微生物密度远低于大肠,从近端至远端小肠的每克约103-7个细菌增加到结肠中的每克1011-12个细菌。

★ 大肠环境有利于专性厌氧菌定植

大肠塑造了与小肠截然不同的微生物群落结构和代谢模式。结肠的主要过滤器是缺氧环境,有利于专性厌氧菌定植。

结肠细胞大量消耗氧气进行β氧化,维持上皮缺氧状态,限制氧气从血管向肠腔扩散,促进厌氧厚壁菌门和拟杆菌门专性厌氧菌定植。微生物产生的丁酸盐促进结肠细胞β氧化,形成宿主-微生物代谢反馈回路。由于氧气稀缺,兼性厌氧菌仅占次要地位

大部分胆盐在回肠被吸收,剩余的初级胆盐由大肠微生物代谢。饮食营养在胃中分解后,单糖和氨基酸在小肠被吸收,而不可消化的碳水化合物(膳食纤维)和多元醇进入结肠,成为细菌的主要碳源和能源

肠道微生物的”食谱”:从复杂多糖到粘蛋白

肠道微生物群的代谢构成了人体内最为活跃和复杂的生化反应工厂,这一庞大的微观生态系统依靠多元化的能量来源维持着自身的生存繁殖和功能发挥。肠道微生物主要是将宿主无法消化的复杂碳水化合物、膳食纤维、抗性淀粉以及内源性黏蛋白转化为可被利用的能量物质。

▸ 降解复杂多糖

由于大多数简单的营养物质在小肠中被吸收,因此大肠微生物群的许多成员主要碳和能量来源是膳食复杂多糖(纤维)。这类分子包括植物来源的聚糖,如纤维素、半纤维素、β-葡聚糖、菊粉和果胶,以及动物来源的糖原

★ 拟杆菌等菌属具有强大的复合多糖降解能力

复杂多糖含有多样化的糖苷键,需要特异性糖苷水解酶降解。拟杆菌属等革兰氏阴性专性厌氧菌,如 Bacteroides spp. 和 Prevotella spp.,在复杂多糖的降解方面表现极强的能力。这些细菌拥有大量的碳水化合物活性酶(CAZymes),例如由不同多糖利用位点编码的碳水化合物结合蛋白、糖苷水解酶和多糖裂解酶

拟杆菌淀粉利用系统(SUS)是多糖利用位点的经典例子:淀粉结合蛋白(SusD、SusE、SusF)识别并固定细菌表面的淀粉分子,糖苷水解酶(SusG)将其降解为寡糖,寡糖通过外膜蛋白SusC转运至周质,再被糖苷水解酶(SusA、SusB)进一步降解为单糖,最终转运至细胞质并发酵产生乙酸、琥珀酸和丙酸。拟杆菌编码众多SUS样系统和CAZymes,与膳食聚糖的多样性相匹配

B.thetaiotaomicron中的淀粉利用系统(SUS)

Muramatsu MK,et al.Cell Host Microbe.2024

★ 毛螺菌和瘤胃球菌也能降解复杂多糖并产生短链脂肪酸

毛螺菌科(Lachnospiraceae)和瘤胃球菌科(Ruminococcaceae)等革兰氏阳性梭菌同样降解复合多糖并产生短链脂肪酸

革兰氏阳性菌的降解机制涉及细胞外CAZymes和高亲和力转运蛋白(如ATP结合盒转运蛋白、主要促进子超家族转运蛋白和磷酸转移酶系统),底物特异性酶活性通常以基因簇形式编码。

注:虽然纤维素体降解植物细胞壁的能力在瘤胃微生物中常见,但在大多数人类肠道微生物中缺失,仅在农村和狩猎采集人群的微生物组中观察到此类活性。

▸ 代谢膳食糖醇和多元醇

多元醇是由糖类通过醛或酮基还原形成醇基而天然合成生成的糖醇。自然界中发现的主要多元醇包括赤藓糖醇、山梨糖醇、木糖醇、甘露醇麦芽糖醇等天然形式,以及乳糖醇、异麦芽酮糖醇氢化淀粉水解物等合成形式。

由于在胃肠道中吸收不完全,多元醇常用作低卡路里人造甜味剂。高脂肪饮食联合抗菌治疗会消耗氧敏感的多元醇降解梭菌,导致山梨糖醇不耐受。

★ 大肠杆菌能够利用甘露醇

甘露醇代谢在多种细菌中被广泛研究。在大肠杆菌中,甘露醇通过特异性磷酸烯醇式丙酮酸磷酸转移酶系统被吸收并磷酸化为甘露醇-1-磷酸,随后被甘露醇-1-磷酸脱氢酶转化为果糖-6-磷酸进入糖酵解途径

另一途径是甘露醇以半乳糖基-甘露醇偶联物形式进入细胞,被β-半乳糖苷酶水解后,甘露醇通过甘露醇-2-脱氢酶转化为果糖,再被己糖激酶磷酸化。

★ 双歧杆菌代谢异麦芽酮糖醇并产生丁酸盐

除了甘露醇外,其他多元醇同样可被肠道微生物代谢。中等剂量的异麦芽酮糖醇和乳糖醇摄入后,肠道微生物群组成偏向双歧杆菌,为某些共生菌提供生长优势。体外实验显示双歧杆菌可代谢异麦芽酮糖醇增加丁酸盐产生,这对维持结肠上皮细胞厌氧环境至关重要。

★ 沙门氏菌会与共生大肠杆菌竞争半乳糖醇

半乳糖醇天然存在于某些植物中,酵母也可产生。沙门氏菌通过gat操纵子利用半乳糖醇,包含磷酸转移酶系统gatABC将其转运并磷酸化,最终转化为磷酸二羟基丙酮和3-磷酸甘油醛。半乳糖醇定植抗性的关键代谢物,沙门氏菌共生大肠杆菌竞争这一有限资源。

▸ 粘蛋白:微生物的”应急储备”

肠道微生物群落还可分为管腔、黏液相关和上皮/隐窝相关群体。黏蛋白形成重要屏障,保护肠道上皮免受微生物侵害,其中MUC2是主要类型。小肠黏液层呈多孔状,含抗菌肽(如肠道α防御素)和凝集素(如RegIIIγ),限制微生物与上皮相互作用的同时允许营养吸收

★ 食物缺乏时,某些细菌会消化黏蛋白

结肠黏液则形成细菌无法穿透的致密内层和松散外层,而嗜黏蛋白阿克曼菌Akkermansia muciniphila)等可利用外层获取营养。在没有膳食纤维的情况下,肠道微生物开始消化粘蛋白增加了患结肠炎的风险。

黏蛋白是富含脯氨酸、苏氨酸丝氨酸的大糖蛋白家族。丝氨酸和苏氨酸残基作为N-乙酰半乳糖胺(GalNAc)的O-连接糖基化附着点,可被半乳糖和N-乙酰葡糖胺等单糖进一步修饰,形成长支链聚糖并用唾液酸、岩藻糖和硫酸盐残基末端修饰。

十二指肠、空肠和回肠的黏蛋白高度唾液酸化和硫酸化,结肠黏蛋白则含唾液酸化、硫酸化和岩藻糖化聚糖。近端结肠唾液酸化程度较高,远端结肠硫酸化程度较高。

类似膳食聚糖降解,黏蛋白的微生物消化需要多种降解菌(如嗜黏蛋白阿克曼菌拟杆菌门、厚壁菌门成员)协同形成营养网络。降解过程由岩藻糖苷酶唾液酸酶水解末端糖结构,硫酸酯酶去除硫酸盐基团引发。

★ 降解过程中可为其他细菌提供营养

去除这些末端结构可能会成为粘蛋白降解的潜在瓶颈,因为这些末端结构可以保护底层聚糖链免受糖基水解酶的降解,并且需要特定的酶。肠道微生物群的不同成员编码的酶可以去除这些结构并使其成为其他细菌的营养来源

例如,扭链瘤胃球菌(Ruminococcus torques)很容易使用细胞外CAZymes消化肠粘蛋白上的聚糖。Bacteroides thetaiotaomicron通常更喜欢膳食聚糖而不是粘蛋白,并且在体外使用粘蛋白生长不佳。但R.torques产生的低聚糖的交叉喂养促进B.thetaiotaomicron在粘蛋白上的生长。

同样,卵形拟杆菌(Bacteroides ovatus)和Roseburia intestinalis降解半纤维素成分β-甘露聚糖。而普拉梭菌(Faecalibacterium Prausnitzii)无法自行有效降解 β-甘露聚糖,但可以获得卵形拟杆菌和R.intestinalis释放的甘露寡糖

这些例子强调了肠道营养网络重要性以及定植于肠道的一些细菌之间的互惠关系。

唾液酸和岩藻糖降解—糖利用的例子

唾液酸和岩藻糖是复合多糖降解的常见中间体,为肠道微生物糖利用提供典型例子。

唾液酸的代谢

唾液酸(N-乙酰神经氨酸,Neu5Ac)是一种9碳单糖,通过α2-3/6键与半乳糖和GalNAc残基结合,覆盖胃肠道黏蛋白聚糖链末端。人乙状结肠MUC2分析显示,结肠中最常见表位是与α2-6 N-乙酰半乳糖胺醇结合的Neu5Ac,而小鼠中与GlcNAc结合的Neu5Ac更常见。

两物种的微生物群均编码特异性唾液酸酶,可识别特定糖苷键并去除末端Neu5Ac残基,启动糖苷水解酶的分解代谢。

部分细菌(如脆弱拟杆菌)可直接裂解和代谢唾液酸,而其他细菌仅能清除游离唾液酸分子。唾液酸转运(NanT)后,醛缩酶(NanA)将Neu5Ac代谢为丙酮酸和N-乙酰甘露糖胺(ManNAc)。ManNAc经ManNAc激酶(NanK)磷酸化,再由差向异构酶(NanE)转化为磷酸化N-乙酰葡糖胺(GlcNAc-6-P),最终代谢为果糖-6-磷酸进入糖酵解途径

扭链瘤胃球菌(Ruminococcus torques)采用独特的唾液酸代谢策略获得竞争优势。其编码的分子内反式唾液酸酶在糖蛋白裂解时产生2,7-脱水-N-乙酰神经氨酸(2,7-anhydro-Neu5Ac)而非唾液酸,阻止其他利用唾液酸的细菌使用该底物。进入细菌细胞后,新型氧化还原酶(NanOx)将2,7-脱水-Neu5Ac转化为唾液酸。

肺炎链球菌沙门氏菌等病原体中也检测到NanOx直系同源物和推定的2,7-脱水-Neu5Ac转运蛋白,表明该化合物可能是病原体体内定植的重要代谢物。

岩藻糖的代谢

L-岩藻糖是一种6碳脱氧糖,广泛存在于生命各分支。人和小鼠中,岩藻糖基转移酶Fut2负责胃肠道大部分岩藻糖基化,将岩藻糖附着在聚糖的基端α(1,6)和末端α(1,2)、(1,3)或(1,4)位。胃肠道中,岩藻糖通过肠道微生物分泌的α-L-岩藻糖苷酶从膳食或宿主黏蛋白聚糖中释放,随后被部分肠道微生物吸收代谢

大肠杆菌的岩藻糖利用已被广泛研究,其编码岩藻糖利用操纵子(fucOAPIKR)。岩藻糖通过专用通透酶(FucP)导入细胞,经异构酶FucI转化为L-岩藻酮糖,再被激酶FucK磷酸化。岩藻酮糖1-磷酸被醛缩酶(FucA)裂解为乳醛和DHAP

厌氧条件下,乳醛被氧化还原酶(FucO)还原为1,2-丙二醇;有氧条件下(如肠道炎症期间),乳醛转化为乳酸并氧化为丙酮酸进一步代谢。缺乏fucK和fucAO的大肠杆菌突变体虽能在小鼠肠道初步定植,但无法长期稳定定植,表明岩藻糖获取和利用能力是维持哺乳动物肠道环境的关键。多形拟杆菌和脆弱拟杆菌也利用岩藻糖在小肠中保持竞争优势。

有趣的是,共生肠道细菌可诱导小鼠肠道宿主Fut2表达,形成富含岩藻糖的生态位,既保护宿主聚糖又允许岩藻营养细菌扩增。无菌小鼠经常规小鼠粪便浆液处理可诱导小肠岩藻糖基化。广谱抗生素处理的常规小鼠杯状和柱状上皮细胞岩藻糖基化严重减少,表明共生菌在宿主Fut2表达和肠聚糖岩藻糖基化中发挥作用

一些细菌的存在,如丝状细菌、多形拟杆菌沙门氏菌等细菌可在无菌小鼠回肠诱导宿主岩藻糖基化。虽然肠道共生体诱导Fut2介导岩藻糖基化的信号分子仍不明确,但葡聚糖硫酸钠和霍乱毒素等促炎环境压力源诱导岩藻糖基化

肠道微生物的能量代谢

饮食偏好(高脂肪西餐vs富含纤维饮食)、食物类别(蔬菜vs肉类)和食品添加剂外,食物制备方法也影响微生物代谢

▸ 食物制备方法会影响微生物代谢

法国科学家Maillard最早描述了一种导致烹饪中观察到的褐变效应的反应,称为美拉德反应。当单糖羰基与氨基酸氨基反应时产生Amadori产物,其聚合形成更复杂的类黑精。常见食品加工方法(加热、干燥)产生多种Amadori化合物,如果糖-谷氨酰胺(F-Gln)、果糖-苯丙氨酸(F-Phe)和果糖-天冬酰胺(F-Asn)。

注:美拉德反应(Maillard reaction)‌是食品工业中广泛存在的一种非酶褐变现象,由还原糖与氨基化合物(如氨基酸、蛋白质)在常温或加热条件下发生复杂反应,生成类黑精等棕色物质,并产生大量风味物质。类黑精是指含有半缩醛羟基的化合物(醛、还原糖)与含有氨基的化合物等经缩合、聚合反应生成的高分子量聚合物

★ 肠道共生菌和病原菌均可利用美拉德反应产物

人肠道分离株肠单胞菌AF211(毛螺菌科成员)可代谢果糖赖氨酸(F-Lys)并产生丁酸盐、乳酸盐和氨。F-Lys通过ABC转运蛋白输入,被YhfQ磷酸化形成6-磷酸果糖-赖氨酸,再被6-磷酸果糖-赖氨酸脱糖酶(Yhfn)转化为6-磷酸葡萄糖(G6P)和赖氨酸。

肠道病原体沙门氏菌通过fra操纵子(fraRBDAE)利用F-Asn作为碳氮源。F-Asn首先被果葡天冬酰胺酶FraE转化为果糖-天冬氨酸(F-Asp),再由F-Asp转运蛋白FraA导入。随后F-Asp被FraD磷酸化形成F-Asp-6-磷酸,再被脱糖酶FraB代谢为G6P和天冬氨酸

▸ 发酵是能源生产的主要模式

发酵作为厌氧环境中的关键生化过程,构成了肠道微生物能源生产的主要模式,这一代谢途径在维持微生物群落的生存和功能发挥方面起着至关重要的作用。

肠道微生物会使用大量的分子,特别是通过复合多糖降解释放的单糖以及氨基酸(Stickland 反应),进行发酵。

注:Stickland反应为专性厌氧细菌的梭菌属中常见的一种反应。

★ 发酵产生乳酸、短链脂肪酸等产物

发酵过程中需在细菌细胞内平衡氧化还原反应,避免还原当量(如NADH)积累。维持适当的NAD+/NADH比率对氧化还原稳态和NAD+依赖性酶功能至关重要。

最简单的发酵中,葡萄糖在Embden-Meyerhof-Parnas途径中转化为两个丙酮酸分子,净产生两个ATP和四个还原当量。丙酮酸代谢物用于恢复NAD+/NADH平衡,如将丙酮酸还原为乳酸(乳酸发酵)或将乙醛还原为乙醇(乙醇发酵)。肠道发酵的常见终产物包括乳酸、甲酸、琥珀酸短链脂肪酸(乙酸、丙酸、丁酸)。

一些发酵途径广泛存在,如从丙酮酸产生乙酸的Pta-AckA途径。铁氧还蛋白氧化还原酶、丙酮酸甲酸裂解酶或丙酮酸脱氢酶将丙酮酸转化为乙酰辅酶A,再经磷酸乙酰转移酶转化为乙酰磷酸。乙酸激酶活性从乙酰磷酸和ADP生成ATP,同时产生乙酸

发酵是肠道共生细菌产生细胞能量的主要方式

Muramatsu MK,et al.Cell Host Microbe.2024

★ 短链脂肪酸变化可反映肠道健康状态改变

丁酸主要由毛螺菌科瘤胃球菌科成员通过聚糖直接降解或交叉发酵乳酸、乙酸、琥珀酸产生。两个乙酰辅酶A分子融合形成乙酰乙酰辅酶A,经数步转化为巴豆酰辅酶A和丁酰辅酶A,平衡NAD+/NADH池。类似Pta-AckA途径,丁酰辅酶A产生ATP并形成丁酸。另外,琥珀酸可在多步过程中还原为4-羟基丁酰辅酶A,再转化为巴豆酰辅酶A和丁酰辅酶A。戊二酸和赖氨酸也可转化为巴豆酰辅酶A。

短链脂肪酸的产生是关键代谢输出,指导结肠上皮进行β氧化,维持肠腔厌氧环境。该过程在肠道病原体感染、口服抗菌剂或高脂饮食时被破坏,导致肠道微生物群显著改变丁酸产生减少兼性厌氧菌扩增。

★ Stickland反应是肠道代谢物的重要来源

Stickland反应是某些肠道细菌产生能量的特殊发酵过程。在此反应中,成对氨基酸同时脱氨,一个被氧化,另一个被还原,产生ATP和NAD+。该反应主要见于梭菌属,已鉴定出特定的供体氨基酸(丙氨酸、缬氨酸、丝氨酸)和受体氨基酸(甘氨酸、脯氨酸、天冬氨酸)组合。氧化反应中供电子氨基酸转化为羧酸并产生ATP;还原反应中受电子氨基酸将NADH氧化为NAD+,产生乙酸、5-氨基戊酸、异己酸等代谢物。

编码甘氨酸还原酶途径基因的生物体可通过甘氨酸还原产生ATP、氨和乙酸。氨基酸氧化或还原可补充其他能量产生形式。丙氨酸和丝氨酸氧化脱氨产生的丙酮酸可用于TCA循环。氨基酸还原发酵通过再生NAD+等高能电子载体辅助糖酵解。编码和使用红杆菌氮酶(RNF)样复合物的生物体可将氨基酸代谢与质子驱动力产生结合以提高ATP产量。在厌氧菌具核梭杆菌(Fusobacterium nucleatum)中,RNF复合物的破坏导致ATP生成减少、氨基酸代谢减少和毒力受损

肠道细菌中的Stickland发酵和硫代谢

Muramatsu MK,et al.Cell Host Microbe.2024

Stickland反应产生大量在小鼠肠道和人血中发现的代谢物。人肠道共生梭状芽孢杆菌(C.sporogenes)通过丝氨酸脱水酶氧化发酵丝氨酸和还原精氨酸产生ATP。由脯氨酸和芳香族氨基酸Stickland反应形成的还原代谢物(5-氨基戊酸、苯丙酸、3-(4-羟基苯基)丙酸、吲哚丙酸)也存在于人血中,表明还原Stickland反应衍生代谢物可离开肠道进入循环系统。这表明Stickland反应是哺乳动物肠道和远端部位代谢物的重要但被低估的来源。

★ 艰难梭菌的胶原蛋白降解与脯氨酸利用策略

许多依赖Stickland反应的细菌具有蛋白水解作用,可通过细胞外蛋白酶快速降解蛋白质。肠道病原体艰难梭菌导致宿主释放胶原蛋白应对毒素介导的炎症。胶原纤维主要由脯氨酸、甘氨酸和羟脯氨酸组成。艰难梭菌降解这些纤维,将反式-4-羟基-L-脯氨酸转化为L-脯氨酸,通过prd操纵子进行还原发酵产能。缺乏4-羟脯氨酸脱水酶HypD的突变菌株致病力受损。其他梭状芽胞杆菌如Paeniclostridium spp.在体外与艰难梭菌竞争脯氨酸,影响其发酵能力

综上所述,这表明反式-4-羟基-L-脯氨酸的利用是艰难梭菌用于在体内获得脯氨酸的一种策略,并且脯氨酸发酵在艰难梭菌的体内存活中发挥作用。

肠道细菌的电子受体利用与代谢策略

呼吸作用过程中,电子通过电子传递链转移至外源电子受体,通过酶复合物质子泵活动标量化学形成质子动力。

厌氧呼吸,特别是富马酸还原,在肠道细菌中常见。伯克氏菌科(Burkholderiaceae)、爱格氏菌属(Eggerthella)和丹毒丝菌科(Erysipelotrichaceae) 成员对膳食电子受体表现出种属特异性利用

▸ 胆汁酸的利用

胆汁酸(BA)是消化系统重要组成部分。肝脏产生的主要胆汁酸包括胆酸(CA)和鹅去氧胆酸(CDCA),分泌前与牛磺酸或甘氨酸结合。人体内牛磺酸与甘氨酸结合胆汁酸的比例取决于饮食,牛磺酸主要来源于肉类、鱼类和贝类

★ 胆汁酸有助于发酵过程中的能量转化

胆汁酸(BA)经细菌活动进一步修饰,包括转化和解偶联。在胆酸(CA)向脱氧胆酸和CDCA/熊去氧胆酸向石胆酸的多步转化中,7-羟基被去除,使梭菌科爱格氏菌属(Eggerthella)能够将NADH转化为NADPH,有助于发酵过程中维持理想的NAD+/NADH比率。共生微生物从BA中解离牛磺酸,导致肠道游离牛磺酸浓度升高。胆盐水解酶通过催化类固醇部分C-24位置与BA氨基酸侧链间的酰胺键水解促进解偶联

★ 肠道存在多种胆盐代谢细菌,包括致病菌

肠道微生物群含有许多编码不同底物特异性胆盐水解酶的细菌。厚壁菌门和放线菌门成员可降解大多数结合胆汁酸,而拟杆菌门菌株偏爱牛磺酸结合胆汁酸双歧杆菌属约氏乳杆菌(Lactobacillus johnsonii)乳杆菌等富含胆盐水解酶。结合胆汁酸的解离高度依赖于产胆盐水解酶微生物的位置:小鼠近端小肠中的乳酸杆菌开始解离,而人类中解离直到末端回肠和结肠才发生。

释放的牛磺酸可被不同肠道微生物利用沃氏嗜胆菌(Bilophila wadsworthia)是肠道微生物群的亚硫酸盐还原致病菌,虽仅占正常肠道微生物群的0.01%,但与多种临床疾病相关。当IL-10缺陷小鼠饲喂低脂饮食并补充牛磺酸结合胆汁酸时,会导致肠道B.wadsworthia种群激增B.wadsworthia利用异化亚硫酸盐还原酶复合物(Dsr)从有机磺酸盐释放的亚硫酸盐产生H2S

牛磺酸转运入细胞后,B.wadsworthia利用两个基因簇(ald-tpa-sarD和adhE-islA-islB)代谢牛磺酸。牛磺酸首先被Tpa和Ald转化为磺基乙醛,再被SarD转化为乙硫磺酸盐。异羟乙基磺酸进入细菌微区室后,IslAB形成甘油自由基酶,促进C-S键裂解,将其转化为乙醛和亚硫酸盐。乙醛被AdhE代谢成乙酰辅酶A,再通过Pta-AckA途径转化为乙酸,而亚硫酸盐被Dsr系统用作亚硫酸盐呼吸中的电子受体

▸ 硫酸酯酶和硫酸盐的利用

多糖常被硫酸盐修饰,需释放硫酸盐基团才能接触糖基团。GlcNAc和半乳糖的硫酸化发生在不同羟基位置,特别是GlcNAc的6-羟基(6S-GlcNAc)和半乳糖的3-、4-或6-位置。利用O-糖核心结构中这些硫酸盐基团需要能识别并裂解特定糖苷键碳水化合物硫酸酯酶

★ 硫酸酯酶表达菌释放硫酸盐供硫酸盐还原菌利用

表达硫酸酯酶的细菌释放的硫酸盐通过交叉喂养被硫酸盐还原细菌(SRB)利用。SRB存在于约50%的人群中,进行异化硫酸盐还原,将硫酸盐还原为腺苷-5′-磷酸硫酸盐、亚硫酸盐,并进一步还原为H2S。与缺乏成熟硫酸酯酶的B.thetaiotaomicron 菌株相比,当与从肠道粘蛋白中释放硫酸盐B.thetaiotaomicron菌株共定植时,其在体内的相对丰度增强。H2S具有剧毒,宿主将其解毒为硫代硫酸盐,后者可用作Desulfovibrio spp.的电子受体。

▸ 外部电子转移

寻找合适的电子供体和受体对是细菌产能的关键。部分细菌已开发利用外源性电子受体的策略。外部电子转移(EET)连接细胞质氧化还原反应,将电子转移至与细菌直接接触或远端的外部电子受体。该过程已在环境细菌中广泛描述,近期在哺乳动物微生物群和肠道病原体中也有报道。

★ 细菌具有直接电子转移和介导电子转移两类

革兰氏阴性菌的胞质膜、肽聚糖层和外膜对EET构成物理屏障。为克服这些障碍,电活性细菌进化出两类方法:直接电子转移介导电子转移(MET)。直接电子转移主要见于环境生物体Shewanella oneidensis,电子直接传输至与外膜接触的外部电子受体。

MET则需要电子穿梭介导电子从细菌转移至外部电子受体。铜绿假单胞菌释放苯嗪(含氮杂环化合物)将电子转移至分子氧,植物乳杆菌利用醌1,4-二羟基-2-萘甲酸还原铁。P.prausnitzii与上皮细胞相关,该专性厌氧菌可能使用黄素和硫醇作为细胞外电子穿梭来减少宿主组织释放的氧气

★ 细菌获取外部电子的方式影响其环境适应性

在革兰氏阳性肠道病原体单核细胞增生李斯特菌中,基于黄素的EET(FLEET)途径将NADH脱氢酶(Ndh2)产生的电子穿梭至质膜中脂溶性去甲基甲萘醌衍生物,再转移至膜结合脂蛋白(PplA)上的黄素或黄素单核苷酸基团,最终传递给末端电子受体

研究表明,单核细胞增生李斯特菌厌氧条件下代谢糖醇需要FLEET通路,ndh2突变体在小鼠肠道定植能力受损。FLEET通路基因的直系同源物在数百种厚壁菌门和人类病原体中均有发现。这些研究突出了电子受体的重要性,表明细菌已进化出复杂机制获取外部电子受体池,以增强其在特定环境中的生长能力

▸ 肠道炎症时的能量代谢

肠道炎症会导致微生物群水平变化,变形菌门(尤其是兼性厌氧肠杆菌科)丰度增加。呼吸电子受体的释放是这些群落变化的关键驱动因素,重塑了肠道细菌的能量代谢

★ 电子受体的释放影响肠道菌群的能量代谢

例如,沙门氏菌Salmonella诱导胃肠炎时,活性氧(ROS)将宿主产生的硫代硫酸盐氧化为连四硫酸盐。沙门氏菌编码连四硫酸盐利用基因簇(ttrRSBCA),实现厌氧连四硫酸盐呼吸。炎性ROS和活性氮(RNS)分解产生硝酸盐,为沙门氏菌提供高能电子受体

肠道炎症改变了末端电子受体的可用性

Muramatsu MK,et al.Cell Host Microbe.2024

★ 炎症导致氧气泄漏促进需氧病原体增殖

此外,炎症相关的结肠细胞代谢变化使氧气泄漏至肠腔,支持肠道病原体生长。电子受体的可用性不仅实现高效的电子传输产能,还可利用发酵终产物(如琥珀酸、乳酸和1,2-丙二醇),将其完全氧化为二氧化碳

类似的机制正在驱动非感染性结肠炎期间肠道微生物群的水平变化。硝酸盐和氧气呼吸有助于共生肠杆菌科细菌的繁殖,例如非感染性结肠炎小鼠模型中的大肠杆菌、肠杆菌属和克雷伯氏菌属。上皮细胞释放的活性氧被过氧化氢酶解毒,过氧化氢酶是一种产生分子氧的反应,支持大肠杆菌的呼吸

此外,口服抗菌治疗期间产生丁酸盐梭状芽胞杆菌的耗竭会改变结肠细胞代谢;氧气的流入导致肠杆菌科种群的扩大

呼吸电子受体可用性增加引起微生物群水平变化表明,碳和氮并非细菌生长的限制因素,而能量代谢和从有限底物库产能的能力才是肠道微生物群组成和功能的关键决定因素。

结语

本文介绍了共生菌和病原菌在肠道中获取营养素和产生能量的机制。细菌可氧化有机和无机化合物产生生长必需的能量。在不同微环境中的产能能力群落结构关键决定因素

人体肠道包含多个动态生态位,肠道微生物群在受宿主营养摄入栖息地过滤器疾病炎症影响的环境中调节能量产生

人类微生物组研究传统上侧重于识别与健康和疾病相关的关键细菌种类(如炎症性肠病、艰难梭菌感染、抗生素相关菌群失调等)。但宿主-微生物和微生物间相互作用及其代谢机制同样重要。研究显示,细菌有效利用特定营养物质的能力(无论独立利用还是通过细菌营养网络)是微生物群组成和功能的关键驱动因素。

对宿主健康而言,微生物执行的代谢功能非常重要。这在致病性菌群相关的生态失调中显而易见,共生微生物因面临新代谢环境和成员间相互作用挑战而异常增殖并致病

发现疾病相关代谢途径个性化医疗具有重要意义。未来,随着对肠道微生物代谢功能理解的不断深入,我们有望开发出更加精准个性化医疗策略,包括恢复特定代谢缺陷的微生物疗法,以及深入理解宿主-微生物代谢相互作用的分子机制。通过调节肠道微环境优化营养网络以及恢复关键代谢途径,我们将能够更有效地治疗与微生物群失调相关的疾病,为人类健康开辟新的治疗途径。

主要参考文献

Muramatsu MK, Winter SE. Nutrient acquisition strategies by gut microbes. Cell Host Microbe. 2024 Jun 12;32(6):863-874.

Yersin S, Vonaesch P. Small intestinal microbiota: from taxonomic composition to metabolism. Trends Microbiol. 2024 Oct;32(10):970-983.

Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol. 2022 Nov;20(11):657-670.

Miller BM, Bäumler AJ. The Habitat Filters of Microbiota-Nourishing Immunity. Annu Rev Immunol. 2021 Apr 26;39:1-18.

Salzman NH, Hung K, Haribhai D, Chu H, Karlsson-Sjöberg J, Amir E, Teggatz P, Barman M, Hayward M, Eastwood D, Stoel M, Zhou Y, Sodergren E, Weinstock GM, Bevins CL, Williams CB, Bos NA. Enteric defensins are essential regulators of intestinal microbial ecology. Nat Immunol. 2010 Jan;11(1):76-83.

La Rosa SL, Ostrowski MP, Vera-Ponce de León A, McKee LS, Larsbrink J, Eijsink VG, Lowe EC, Martens EC, Pope PB. Glycan processing in gut microbiomes. Curr Opin Microbiol. 2022 Jun;67:102143.

Eberl C, Weiss AS, Jochum LM, Durai Raj AC, Ring D, Hussain S, Herp S, Meng C, Kleigrewe K, Gigl M, Basic M, Stecher B. E. coli enhance colonization resistance against Salmonella Typhimurium by competing for galactitol, a context-dependent limiting carbon source. Cell Host Microbe. 2021 Nov 10;29(11):1680-1692.e7.

Schaus SR, Vasconcelos Periera G, Luis AS, Madlambayan E, Terrapon N, Ostrowski MP, Jin C, Hansson GC, Martens EC. Ruminococcus torques is a keystone degrader of intestinal mucin glycoprotein, releasing oligosaccharides used by Bacteroides thetaiotaomicron. bioRxiv [Preprint]. 2024 Jan 16:2024.01.15.575725.

肠道菌群:影响癌症的发生、发展和治疗

谷禾健康

癌症——这个困扰人类几个世纪的疾病,至今仍是全球死亡率最高的疾病之一。

国际癌症研究机构调查显示,2022年,全球有超过 1900 万新诊断的癌症病例和近1000 万癌症死亡病例,无数家庭因此经历痛苦。

癌症是一种复杂的多步骤慢性疾病,由活跃分裂细胞在 DNA 复制过程中获得的自发突变积累而成,环境也对癌症风险产生了相当大的影响。

传统的癌症治疗方法——手术切除、放射治疗和化学疗法,虽然在过去几十年中挽救了无数患者的生命,但它们的局限性也日益明显:手术无法完全清除微小转移灶;放疗和化疗的副作用严重,往往让患者雪上加霜;而且,即便是相同类型、相同分期的癌症患者,对同一治疗方案的反应也可能截然不同。

  • 为什么有些患者对治疗反应良好,肿瘤迅速缩小甚至消失,而其他患者却几乎没有反应?
  • 为什么有些患者在治疗后可以长期无癌生存,而另一些患者却很快复发?

传统的癌症生物学理论难以完全解释这些差异。

这些问题引发了研究人员的深思:也许我们需要超越单纯关注癌细胞本身,将目光投向更广阔的“宿主环境”——患者的整体生理状态、免疫系统功能,以及体内的微生态系统

从结直肠癌到肝癌,从乳腺癌到胰腺癌,微生物的”指纹”无处不在,它们通过复杂的代谢网络免疫调节机制,参与肿瘤的发生、发展、转移和治疗反应全过程。

例如,肠道微生物群与宿主黏膜表面之间存在相互作用,后者在肿瘤发生中起着主要作用。微生物可能通过在胃黏膜中诱导氧化应激来损伤 DNA,增强上皮炎症并破坏黏膜屏障,从而增加肿瘤发生风险。

本文我们主要来了解微生物与癌症之间错综复杂的关系,探讨微生物如何成为癌症研究的新焦点,以及这一领域如何有可能彻底改变我们对癌症的认知和治疗方法。

01
微生物组、衰老与癌症

随着年龄增长,我们的身体就像一台逐渐磨损的精密机器,各个部件的功能开始下滑。这种时间依赖性的细胞和生理功能退化过程,被称为”衰老“,它是多种重大疾病的主要风险因素之一,也包括癌症

衰老的基本特征

有人提出,尽管存在显著的个体间异质性和生活方式、饮食和治疗等外部因素的影响,但人类的肠道微生物组成在衰老过程中会逐渐变化。

多项报告表明,与有益菌相比,微生态失调在衰老过程中会增加,并导致促炎共生菌的大量存在,这些菌的富集,可以滋养生理性炎症

对人类老龄化队列的研究表明,包括 Akkermansia、Anaerotruncus、Eggerthella、Bilophila 在内的一组属的丰度随着年龄的增长而显著增加,而 Faecalibacterium、Prevotella、Bacteroides 的丰度在老年人中相对较低。

衰老可能导致癌症,癌症治疗可能导致过早衰老

doi.org/10.1186/s12935-025-03787-x

微生物代谢物如何影响细胞衰老和健康?

短链脂肪酸,包括丁酸,可以帮助减缓细胞衰老。它们通过抑制组蛋白脱乙酰化酶来实现这一点,这调节代谢过程,增加胰岛素分泌,并调节免疫反应。

相比之下,致病菌的代谢产物,如脂多糖(LPS),通过加速炎症增加氧化应激来增强细胞衰老,这是衰老的一个标志。

此外,铜绿假单胞菌和幽门螺杆菌产生的毒素会导致宿主 DNA 损伤并增加氧化应激。

因此,这加剧了 DNA 损伤反应、基因组不稳定性和细胞衰老。

菌群失调细菌毒素促进衰老人群中衰老细胞的积累、DNA 损伤和促炎微环境的形成。这导致代谢紊乱,并创造一个促进肿瘤细胞生存和增殖的 肿瘤微环境,最终导致癌症。

02
癌症的起始和进展

癌症如何开始?

癌症起源于普通细胞中的遗传变化。当细胞DNA受到致癌物损伤时,会触发一系列变化。这些变化可能不会立即表现出来,但会逐渐积累关键的基因突变会赋予细胞生长优势和抵抗死亡的能力,导致异常增殖,最终形成肿瘤。

癌细胞有什么特别之处?

癌细胞最显著的特征之一是它们的代谢方式发生了改变,也就是“代谢重编程”。正常细胞和细胞使用能量的方式完全不同。癌细胞即使在氧气充足的环境中也会进行糖酵解,这种现象称为”有氧糖酵解“。

此外,它们还进行大分子合成、维持氧化还原平衡,谷氨酰胺分解代谢,所有这些都有助于细胞快速增殖和生长。所有这些都有助于癌细胞快速分裂、扩散并侵入身体不同部位。

一个具体例子是D-2-羟基戊二酸的累积,这个代谢物抑制细胞分化,加速癌症发展。这是由于异柠檬酸脱氢酶-1/2 的连续突变。这表明通过抑制分化直接促进癌症的发生和进一步发展。

一个肿瘤内部并非完全一致,不同区域的细胞可能有不同的代谢特性,这种现象称为肿瘤异质性,这使得癌症治疗更加复杂。

肿瘤微环境:癌症的”生态系统”

肿瘤微环境(TME)是另一个在癌症发生和进展中发挥关键作用的组成部分。

肿瘤微环境是围绕癌细胞形成的高度组织化区域,就像一个小型社会,其中癌细胞只是众居民之一。其他成员如下图:

这个微环境如何影响癌症发展?

癌细胞能够改造邻居,使整个环境有利于肿瘤生长。

比如,癌细胞怎样获得养分和氧气?它们促使血管内皮细胞形成新血管。肿瘤相关巨噬细胞(TAMs)被招募后,会分泌生长因子和细胞因子,刺激血管生成和肿瘤侵袭。

癌细胞甚至能重新编程癌细胞相关成纤维细胞(CAFs),使它们分泌ECM蛋白血管生成因子(如VEGF-A)。ECM则作为信号分子的储存库,增强细胞间通讯、粘附和迁移。

因此,TME 的不同组成部分通过影响各种细胞过程,有助于癌症的发生、进展和迁移。更深入地了解调节癌症进展和可塑性的分子机制,有助于开发精确和针对性的癌症治疗疗法,并预防复发。

03
微生物与癌症之间的关联证据

微生物如何影响癌症发展?

最直接的联系是某些微生物直接致癌的能力:

  • 幽门螺杆菌与胃癌相关
  • 人类乳头瘤病毒(HPV)与宫颈癌相关

动物研究显示,微生物可促进多种癌症的发展,包括:

  • 乳腺癌
  • 胃癌
  • 肝细胞癌(HCC)
  • 结直肠癌
  • 胰腺导管腺癌

doi.org/10.1186/s12935-025-03787-x

微生物群如何变化?

高通量DNA测序揭示了癌症相关的微生物群落变化:

  • 胃癌组织比正常组织有更高的微生物丰度、多样性和复杂性
  • 口腔鳞状细胞癌(OSCC)发展,与Fusobacterium增加相关OSCC 患者特定肿瘤部位的 Fusobacterium 丰度较高,而唾液和口腔冲洗样本中的水平则较低
  • 原发性结直肠癌样本下列菌群富集:Streptococcus sanguinis、Anaerococcus mediterraneensis、Fusobacterium nucleatum、Fusobacterium Hwasookii 等
  • HER2+乳腺癌患者的微生物组成与HER2-患者不同(更少的厚壁菌门,更多的拟杆菌门)
  • 在病毒性肝细胞癌患者切除的肿瘤样本中已鉴定出几个优势门类,如拟杆菌门、厚壁菌门、变形菌门、Ruminococcus gnavus

doi.org/10.1186/s12935-025-03787-x

微生物如何促进癌症?

微生物可能通过多种机制促进肿瘤发生:

  • 表观遗传调节
  • DNA损伤
  • 改变DNA损伤反应
  • 干扰信号通路
  • 调节免疫反应

了解微生物与癌症的关系,可能帮助我们开发新的癌症预防策略、提高治疗效果,甚至预测哪些患者可能对特定治疗产生耐药性。

04
微生物群在癌症发生发展中的作用

实际上,微生物群可以同时扮演促进肿瘤发展和抑制肿瘤生长的双重角色,这取决于肿瘤进展的阶段以及微生物群的功能分布位置,那么,哪些微生物会致癌?又是如何作用的?

微生物的促癌作用

结直肠癌

脆弱拟杆菌、大肠杆菌、Streptococcus gallolyticusEnterococcus faecalisFusobacterium nucleatum、Parvimonas micra等在结直肠癌患者肠道中大量存在,通过分泌短链脂肪酸等代谢物、DNA甲基化组蛋白修饰等表观遗传机制影响肿瘤形成。

胰腺癌

牙龈卟啉单胞菌、奈瑟菌、放线菌、链球菌、双歧杆菌、拟杆菌、梭杆菌等与胰腺癌的发生有关,它们通过引起炎症免疫抑制影响肿瘤生长。

口腔微生物群和幽门螺杆菌通过诱导炎症而成为胰腺癌症的危险因素。

乳腺癌

对人类乳腺癌症组织16S rRNA基因序列的分析显示,与早期乳腺肿瘤相比,晚期乳腺肿瘤卟啉单胞菌、Lacibacter、Ezakiella、Fusobacterium的丰度更高。

具核梭杆菌(Fusobacterium nucleanum)和脆弱拟杆菌通过定植于乳腺肿瘤和促进癌症细胞的自我更新来加重乳腺癌症的生长和转移

脑癌

Enterobacteriaceae、Fusobacterium、 Akkermansia是脑癌患者肠道中的主要菌群,它们可能通过免疫抑制、激活炎症、限制细胞死亡以及促进血管生成和侵袭性来影响胶质瘤。

微生物虽然不能穿过血脑屏障,但能释放具有穿透能力的细胞外囊泡,这些囊泡有能力穿过屏障进入大脑。

其他

其他癌症相关的微生物还包括:

  • 胃癌中的幽门螺杆菌
  • 结直肠癌中的具核梭杆菌
  • 卵巢癌中的变形菌门
  • 宫颈癌中的人乳头瘤病毒
  • 肺癌中的放线菌和链球菌

这些菌在相应的癌症中大量存在,并通过改变代谢和免疫反应、增强炎症和毒性以及改变信号通路来提高肿瘤易感性

微生物的抗癌作用

一些微生物如乳杆菌、双歧杆菌、Faecalibaculum rodentium、Streptococcus thermophiles等具有抗肿瘤特性,它们主要通过以下机制抑制肿瘤生长:

调节免疫系统

一组共生肠道细菌,如Paraprevotella xylaniphila、Bacteroides dorei、 Parabacteroides distasonis,可以诱导 CD8 T 细胞产生 IFNγ抵抗单核细胞增生李斯特菌感染,并增强免疫检查点抑制剂在小鼠体内的疗效

产生抑制性毒素

其他细菌,如铜绿假单胞菌、鼠伤寒沙门氏菌、艰难梭菌,分别在黑色素瘤、胰腺癌和乳腺癌癌症中表现出抗肿瘤特性。它们通过产生抑制增殖、使细胞停滞在G1-S期并诱导细胞凋亡的毒素来实现这一点,从而促进抗癌活性

嗜热链球菌还抑制细胞增殖,引发细胞周期阻滞,增强体外结直肠细胞的凋亡,并减少结直肠癌异种移植物的生长。此外,肠道微生物群通过抑制结肠lncRNA Snhg9和上调p53表达来限制小鼠结直肠癌癌症的进展。

产生有益代谢物

– 微生物本身及其毒素能抗癌

科利毒素:赋予宿主抗肿瘤免疫力。

产气荚膜梭菌毒素(CPE)能识别乳腺癌、前列腺癌等细胞表面高表达的claudin-3/4蛋白,与这些蛋白结合后直接引发癌细胞死亡。

Akkermansia muciniphila在肝癌小鼠模型中减少免疫抑制细胞(单核MDSC、M2巨噬细胞),同时增强PD-1免疫治疗的疗效。

– 微生物代谢产物:短链脂肪酸抗癌

丁酸钠,在非小细胞肺癌中消除肿瘤细胞生长,诱导细胞周期阻滞,促进细胞凋亡,并改变免疫反应。

异丁酸,通过减少肿瘤体积来提高癌症结肠癌小鼠模型中抗PD-1免疫疗法的效率。

色氨酸,是人体必需氨基酸,其代谢途径包括:

  • 血清素途径(参与神经信号传递)
  • 犬尿氨酸途径(与免疫抑制相关)
  • 吲哚途径(主要由肠道菌群调控)

拟杆菌、Clostridium sporogenes、 Eubacterium、Ruminococcus gnavus等菌群通过吲哚途径产生吲哚-3-乳酸、吲哚-3-丙酸、吲哚-3-乙酸等代谢物,这些物质既能抑制肿瘤免疫逃逸,也可能促进癌细胞生长,具体作用取决于代谢物种类和浓度。

吲哚代谢物可改善化疗和免疫治疗效果,但菌群失衡可能导致色氨酸代谢紊乱,反而加速癌症进展。

微生物与肿瘤微环境的相互作用

具核梭杆菌的Fap2蛋白可与抑制性受体TIGIT结合,抑制NK细胞和T细胞清除肿瘤的能力。

幽门螺杆菌与微环境中的巨噬细胞互动,诱导其极化为M2样巨噬细胞,促进胃癌进展。

肿瘤内微生物也参与肿瘤生成和进展,例如:

  • 在胶质瘤组织中富集的菌有:Fusobacterium、Longibaculum、 Intestinimonas、Pasteurella、 Limosilactobacillus、Arthrobacter,可促进胶质瘤增殖和分泌炎症因子;
  • 用嗜热淀粉芽孢杆菌(Bacillus thermoamylovorans)培养乳腺肿瘤细胞可使其转移能力增强近三倍。

也有报道称,一些瘤内微生物可以增强抗肿瘤免疫反应,从而抑制肿瘤进展。

了解微生物在癌症中的双重作用,可能为开发新型抗癌疗法提供思路,包括调节微生物群落和利用微生物产物来增强现有治疗方法的效果。

05
微生物群与癌症转移

转移是癌症细胞的一个关键标志,大多数癌症类型的晚期通常以转移开始为特征。

转移,是指癌症细胞通过血液循环从原发肿瘤转移到其他器官的继发部位。它涉及上皮间质转化(EMT)、迁移、侵袭、外渗和继发部位的定植。

转移过程包括哪些步骤,癌细胞面临哪些挑战?

  • 上皮-间质转化(EMT)
  • 迁移和侵袭
  • 进入血液循环
  • 从血管中逃逸(外渗)
  • 在继发部位定植

这个过程对癌细胞来说充满了物理和化学挑战,包括需要穿越坚硬的细胞外基质、承受液体剪切应力、逃避免疫监视,并最终在可能与原发部位环境截然不同的部位建立殖民地。

微生物如何协助癌细胞转移?

– 乳腺癌:细菌随转移扩散

  • 乳腺肿瘤细胞内菌群:葡萄球菌、乳杆菌属、肠球菌属、链球菌属等存在于肿瘤细胞内,乳腺肿瘤向肺部的转移将这些微生物携带到肺组织。
  • 器官筛选菌群:一旦发生转移,微生物的丰度将取决于靶器官的微环境,例如,肺转移将有助于需氧细菌的生长,阻碍兼性厌氧菌的生长。提示新环境“筛选”特定菌群。
  • 转移保护:肿瘤内的细菌,包括Staphylococcus xylosus、Lactobacillus animalis、S. cuniculi,通过抑制RhoA/ROCK蛋白,减少血流剪切力诱导的凋亡,提升癌细胞存活率。

– 具核梭杆菌的多重促转移机制

有核梭杆菌可诱导乳腺癌、结直肠癌、喉癌的转移。它是口腔中常见的革兰氏阴性菌,通常与牙周病、口臭有关。

结直肠癌

  • 黏附定植:具核梭杆菌通过Fap2蛋白结合癌细胞表面的Gal-GalNAc信号,锚定在肿瘤表面。
  • 激活致癌通路:Fad蛋白结合E-cadherin,激活Wnt/β-连环蛋白通路,促进EMT和侵袭。

doi.org/10.1186/s12935-025-03787-x

喉癌

  • 酒精协同作用:具核梭杆菌上调miR-155-5p/miR-205-5p,抑制ADH1B(酒精代谢酶)和TGFBR2(抑癌受体),激活PI3K/Akt通路,诱导EMT。
  • 预后关联:具核梭杆菌高丰度患者无病生存期缩短,提示其作为预后标志物的潜力。

– 抗生素治疗的启示

  • 胰腺癌研究:转移患者使用抗生素>48小时,联合吉西他滨化疗可延长总生存期和无进展生存期。
  • 潜在机制:
  • 清除耐药相关菌,增强化疗敏感性。
  • 调控免疫抑制基因(如CD47/STAT3),或减少全身感染风险。

当然,微生物并不总是促进转移,已知许多微生物群也能抑制转移,从而为防止癌症进展提供了一种自然的方法。

微生物如何阻止转移?

– 抑制转移的菌群代谢物

  • Nisin(乳酸乳球菌分泌):抑制结直肠癌转移标志物MMP2(降解细胞外基质)和CEA(癌胚抗原),阻断侵袭能力。
  • 植物乳杆菌YYC-3代谢物:下调VEGF-MMP2/9通路,减少血管生成和基质降解,限制转移。

– 调节肿瘤微环境

膀胱癌中的菌群关联:

  • 抑制EMT:Oscillatoria与上皮标志物E-cadherin正相关,与间质标志物(Vimentin、Snail、Slug、Twist1)负相关。
  • 促转移菌:大肠杆菌、Saccharomonospora viridis、产丁酸菌与间质标志物正相关,可能促进侵袭。

– 抗癌微生物的鉴定

前列腺癌数据分析:

  • 单增李斯特菌、耐辐射甲基杆菌等与肿瘤标志物(如PSA)负相关,可能抑制转移。
  • 金黄色葡萄球菌等与干细胞基因(如OCT4)相关,可能通过促干细胞特性增强转移。

肿瘤内微生物种类在转移中的重要性在其他癌症中也得到了证实(下表)。

doi.org/10.1186/s12935-025-03787-x

这些研究表明,癌症中微生物的特异性靶向可以抑制肿瘤的转移,从而成为抗癌联合治疗的重要组成部分。未来需揭示菌群与宿主互作的具体机制,探索“以菌治癌”的精准策略,为癌症治疗提供新突破口。

06
微生物群与抗癌疗效

微生物不仅参与癌症的发生和发展,还可能影响癌症治疗的效果。为什么有些患者对治疗产生耐药性?微生物可能是其中一个关键因素。

微生物如何影响抗癌疗效?

微生物群主要通过两种方式来影响抗癌疗效:

  • 一是影响药物的代谢,也就是药物在体内分解、转化的过程;
  • 二是影响药物的运输,这直接关系到药物能否顺利到达肿瘤细胞发挥作用。

这样一来,药物的疗效和对癌细胞的毒性都会发生变化。

以环磷酰胺(CTX)为例,它是一种常用的抗癌药,用于治疗各种血液系统恶性肿瘤和实体瘤。

环磷酰胺不仅能杀伤癌细胞,还能调节肠道微生物的组成。它会促使一些特定的革兰氏阳性细菌从肠道转移到次级淋巴器官,而这些细菌到达那里后,会激活致病性 T 辅助细胞,从而增强环磷酰胺的抗癌活性。

但如果通过某种方式消除肠道微生物,比如用无菌小鼠或给小鼠喂食抗生素,特别是针对Barnesiella intestinihominis、Enterococcus hirae等特定菌群时,就会发现一个很棘手的问题:环磷酰胺的抗癌效果会变差,耐药性出现了。这说明肠道微生物群在化疗耐药性中扮演着重要的角色。

不过,这里又出现了一个违反我们直觉的情况。抗生素虽然可以杀菌,但用多了反而会导致细菌耐药性增加。

研究还在不断深入,科学家们发现:

微生物群调节有助于提高癌症治疗的效率,并通过改变代谢和免疫反应促进更好的预后

比如,García-González 等人做了一项很有意思的研究,大肠杆菌可改变线虫体内代谢通路,增强5-氟尿嘧啶(FUDR)的疗效。

同样,在黑色素瘤患者的治疗中,研究发现粪杆菌Faecalibacterium能帮助增加免疫细胞和抗原呈递,从而让细胞毒性 CD8 + T 细胞在肿瘤床的浸润程度更高,引发大规模的免疫反应,这对抗 PD-1治疗很有帮助。

基于这些发现,有人提出一个大胆的想法:

肠道微生物群也可以用作生物标志物,来预测患者化疗和免疫治疗的治疗反应和疗效

肝癌患者的肠道菌群失衡指数(Ddys) 反映了HCC患者粪便样本中的微生物干扰,可用于预测治疗效果。

失衡指数是根据HCC患者粪便样本中有益菌与有害菌的相对丰度计算的。

工程菌成为抗癌新武器

直接杀伤癌细胞

  • 铜绿假单胞菌分泌的Azurin蛋白可诱导癌细胞凋亡,并抑制血管生成。

靶向递送药物

  • 沙门氏菌工程菌(VPN20009)可定向富集在肿瘤内,释放细胞毒素Violacein。

激活免疫

  • 工程菌表面可表达肿瘤抗原或免疫检查点抗体,精准激活抗肿瘤免疫

现有研究揭示了微生物群在癌症治疗中的多重价值:增强药效、预测疗效、直接作为治疗载体。需深入解析不同癌症特异的菌群特征,明确特定菌种的作用机制,同时解决工程菌的生物安全性问题。

07
化疗 ⇄ 微生物群

化疗不仅直接作用于肿瘤,同时也会对人体内的微生物群落产生显著影响。肠道微生物在应对化疗时,会通过代谢和免疫调节来影响化疗的疗效和毒性。

化疗如何破坏肠道菌群平衡?

化疗不仅攻击癌细胞,还会显著扰乱肠道微生物的组成。例如,在肠道中,化疗可能会破坏黏液层,使部分肠道微生物能够穿透黏膜层,引发免疫反应

结直肠癌患者中,化疗会降低肠道菌群的多样性,这种变化可能反向影响治疗效果——菌群结构越失衡,化疗耐药风险可能越高。

菌群网络的重构:竞争还是合作?

  • 连接性增强:菌群间相互作用增加50%,表明物种关系更紧密;
  • 模块性降低:菌群群落分化减少40%,整体结构趋向单一化;
  • 负相互作用主导:超过70%的关联为竞争或捕食关系,这种“内斗”在化疗5次后显著减弱。

梭杆菌、拟杆菌、粪杆菌分别与肿瘤标志物CEA、CA724、CA242相关,但它们的丰度不受不同化疗阶段的影响。这提示特定菌群可能成为化疗反应的独立预测指标

注:CEA是一种糖蛋白,最初在胚胎组织和结肠癌组织中发现。作为最早被应用于临床的肿瘤标志物之一,CEA主要用于消化系统肿瘤的辅助诊断和监测。

CA724是一种高分子量糖蛋白,是胃癌较为特异的肿瘤标志物。

CA242是一种新型的消化系统肿瘤标志物,主要用于胰腺癌和胆道系统肿瘤的辅助诊断。

菌群如何“对抗”化疗药物?

某些细菌通过代谢转化直接削弱药物活性:

  • 阿霉素耐药机制:肺炎克雷伯菌和大肠杆菌通过生物转化(非外排机制)降解药物,甚至保护其他菌群(如无害梭菌)存活。肺炎克雷伯菌比大肠杆菌更有效。
  • 吉西他滨失活:γ-变形菌通过胞苷脱氨酶将药物代谢为无活性产物,该机制在76%胰腺癌患者菌群中存在。

菌群失衡是否会加剧化疗副作用?

5-氟尿嘧啶(5-FU)为例

5-氟尿嘧啶用于治疗乳腺癌、结直肠癌、胃癌、胰腺癌、胃癌等。其作用方式涉及DNA损伤,导致细胞凋亡或RNA合成抑制。

  • 负面效应:减少厚壁菌门等有益菌,增加大肠杆菌等致病菌,通过NFkB/MAPK通路引起肠道黏膜炎,并伴随肠道微生物和细胞因子/趋化因子的变化。
  • 正向作用:无菌小鼠中5-FU疗效下降,提示部分菌群可能通过未知机制增强药效。

菌群也能增强化疗效果吗?

奥沙利铂和丁酸盐为例

奥沙利铂晚期结直肠癌患者的一线化疗药物。

研究表明,肠道微生物产生的代谢物丁酸盐能增强奥沙利铂的抗癌效果

丁酸盐通过依赖ID2的方式激活CD8 + T细胞。在结直肠癌患者中,对奥沙利铂有反应的患者血清丁酸盐水平高于无反应患者。这表明,肠道微生物产生的丁酸盐可能是决定患者对奥沙利铂反应的关键因素。

临床转化方向

预测性生物标志物

  • 基于菌群网络参数(如连接性/模块性比)或特定代谢物(丁酸盐)制定疗效预测模型

精准调控策略

  • 针对耐药菌,开发胞苷脱氨酶抑制剂;
  • 引入具备药物转化能力的工程菌(如改造肺炎克雷伯菌);
  • 根据患者菌群特征选择化疗方案(如丁酸水平低者优先使用奥沙利铂联合益生元)

化疗与肠道菌群存在双向影响:药物破坏菌群平衡,菌群则通过代谢和免疫调控反作用于药物疗效。未来研究需结合菌群检测,在分子机制与临床干预之间架起桥梁,最终实现精准治疗策略。

08
放疗 ⇄ 微生物群

多项研究表明,放射治疗和微生物群之间存在相互交织的关系。虽然放射治疗可以杀死有益的微生物群,但某些微生物群也可以通过影响患者的免疫系统来提高放射治疗的敏感性

例如,口腔中的具核梭杆菌会被转移到结直肠肿瘤部位,从而降低放疗的治疗效果。

硝唑是一种针对具核梭杆菌的抗生素,研究发现,在结直肠癌小鼠模型中,甲硝唑可以作为一种放疗增敏剂,提高放疗的效果

微生物群导致放疗抵抗

丁酸盐在肠道健康中通常被认为有益,为何在放疗中反而有害?

Lachnospiraceae合成的丁酸盐与放疗抵抗有关

  • 该菌产生的丁酸盐通过抑制STING-TBK1/IRF3磷酸化,阻断树突状细胞释放I型干扰素,削弱放疗诱导的T细胞杀伤功能。
  • 万古霉素清除毛螺菌科后,肿瘤对放疗的响应显著提升。

细菌和真菌对放疗的影响相反

小鼠模型(黑色素瘤、乳腺癌)研究发现:

  • 去除真菌(如念珠菌):增强放疗效果。
  • 去除细菌:降低放疗响应。

关键分子:免疫受体Dectin-1(感知真菌感染)高表达的乳腺癌患者生存率较差抑制Dectin-1可提升放疗疗效。

临床转化方向

精准菌群干预

  • 放疗前菌群检测,高风险患者联用甲硝唑;
  • 开发丁酸盐合成抑制剂(如乙酰-CoA羧化酶抑制剂)局部作用于肿瘤微环境。

免疫微环境重塑

  • 针对Dectin-1高表达患者,使用小分子抑制剂(如LHC165)联合放疗,可能突破免疫抑制屏障。

09
癌症治疗中的微生物群调节

传统癌症治疗方法存在很多局限性,例如对正常细胞的附带损伤、产生治疗耐药性的可能性以及无法完全穿透肿瘤等。因此,迫切需要开发新的、更好的癌症治疗方法。有文献表明,对癌症患者的肠道微生物群进行干预可以增强当前抗癌药物的疗效,如化疗和免疫疗法。

微生物群提高各种肿瘤免疫疗法的效率

doi.org/10.1186/s12935-025-03787-x

细菌疗法

早在1868年,William Coley发现细菌感染可导致肿瘤消退,开创了细菌疗法的先河。现代研究揭示了细菌靶向肿瘤的独特机制:

  • 沙门氏菌:注射后48小时迁移至肿瘤核心,72小时覆盖整个肿瘤,通过诱导凋亡和自噬破坏肿瘤。不同菌株的沙门氏菌也通过各种机制诱导细胞凋亡和自噬来破坏肿瘤。

研究人员改造了专性厌氧鼠伤寒沙门氏菌菌株YB1,并通过在神经母细胞瘤小鼠模型的肿瘤核心注射这种修饰的细菌观察到对肿瘤生长的抑制。

重组减毒沙门氏菌菌株SL7207被用作在黑色素瘤小鼠模型中递送工程肿瘤疫苗的载体。活细菌也可以与纳米粒子结合,形成有效的药物递送系统。

  • 长双歧杆菌:工程化后表达肿瘤抗原WT1,激活CD4+/CD8+ T细胞,特异性杀伤肿瘤且无副作用。
  • 其他一些表现出固有癌症细胞毒性特性的细菌菌株包括:-抗结直肠癌的Streptomyces fradiae-抗前列腺癌的Pseudomonas aeruginosa-抗结肠癌的Clostridium novyi against-抗白血病的Enterobacter cloacae-抗乳腺癌的Brevibacillus

挑战

细菌介导的抗癌疗法带来了一些挑战,包括半衰期短、DNA不稳定性和微生物的内在致病潜力。

基因工程有助于删除致病菌株的一些毒力基因,从而可以控制其抗肿瘤活性、特异性和定植。

目前,一些临床试验正在确定功能化鼠伤寒沙门氏菌菌株的效果。这些菌株要么通过各种遗传技术进行工程改造,要么通过纳米粒子或其他试剂进行表面修饰,以显示出所需的肿瘤靶向和定植。

粪菌移植 (FMT)

最近的研究表明,使用FMT重塑微生物群失调可以潜在地抑制癌症进展,特别是结直肠癌。

结直肠癌(CRC)

移植健康小鼠粪便至CRC模型,逆转菌群失衡,增加CD8+ T细胞浸润,减少促炎因子(IL-6、IL-17),抗炎细胞因子IL-10增加,抑制肿瘤进展。

临床试验进展

注:部分试验中FMT导致腹泻等副作用,提示需优化供体筛选。

宏基因组分析显示,在反应者中,FMT后Prevotella copri、Ruminoccocaceae、Eubacterium丰富。此外,与非反应者相比,反应者在FMT后一个月的粪便样本在小鼠模型中抑制肿瘤生长的能力更强

涉及粪便微生物移植的临床试验

doi.org/10.1186/s12935-025-03787-x

关于 FMT的研究我们之前也写过,详见:

中国儿童粪菌移植十年安全性评估:单中心大样本回顾性研究

肠道菌群类型预测免疫治疗疗效:FMT供体筛选优化

益生菌

益生菌如何帮助对抗癌症?

最近的一项队列研究中,发现益生菌的低等和中等摄入量与癌症死亡率的降低显著相关。

益生菌通过以下机制发挥作用:

  • 增强免疫:激活免疫细胞(如巨噬细胞、T细胞),促进抗肿瘤反应。

鼠李糖乳杆菌(LGG)通过释放脂磷壁酸(LTA)激活TLR2信号,保护肠道干细胞免受放疗损伤。

另一种益生菌Prohep由鼠李糖乳杆菌GG(LGG)、具有活性的大肠杆菌Nissle 1917(EcN)和热灭活VSL3组成,用于在HCC小鼠模型中通过减少Th17细胞和IL-17细胞因子来减少肿瘤生长。

  • 抑制致病菌:减少促癌菌群(如大肠杆菌)的生长,维持肠道菌群平衡。
  • 修复肠道屏障:强化肠道黏膜,防止毒素和病原体渗漏

工程化益生菌有何突破?

  • 大肠杆菌:改造后分泌胶原酶降解肿瘤微环境中的胶原,联合阿霉素抑制乳腺癌生长。
  • 靶向递送:Akkermansia muciniphila还用于协调脂质体,以改善5FU的药代动力学特征和靶向递送,这是结直肠癌的一线化疗。
  • 酵母菌:工程化酿酒酵母(Saccharomyces cerevisiae var.bulardii,Sb)分泌PD-L1抗体,改善免疫治疗耐药的难治性结直肠癌模型中的免疫应答。

益生菌要适量

益处:适量补充益生菌可降低癌症死亡率。

风险:过量可能干扰免疫治疗,如黑色素瘤模型中PD-1抑制剂疗效下降。

益生元

益生元——激活菌群抗癌潜能的“燃料”

益生元选择性地促进有益菌(如产丁酸菌)增殖,协同抗癌治疗。

  • 菊粉:增加肿瘤浸润淋巴细胞(TILs),增强MEK抑制剂对黑色素瘤的疗效,克服耐药。
  • 人参多糖:降低促癌代谢物(犬尿氨酸),提升T细胞活性。
  • 车前子+菊粉:增加短链脂肪酸(如丁酸),抑制膀胱癌放疗后复发。

益生元如何优化药物递送?

  • 海藻酸钠复合物:携带化疗药卡培他滨,延长药物在结肠癌模型中的滞留时间,提升疗效。

临床启示与风险管控

个体化菌群干预

  • 根据肿瘤类型选择菌株(比如肝癌优先使用Prohep,结直肠癌侧重黏液阿克曼菌);
  • 免疫治疗期间避免广谱益生菌,改用特异性工程菌

动态监测必要性

  • 放疗期间补充菊粉+车前子,可使膀胱癌模型丁酸水平提升,但需定期检测短链脂肪酸防止过度发酵,肠道菌群检测报告中也包含菌群代谢物相关指标,如短链脂肪酸

风险提示:

免疫缺陷患者慎用活菌制剂,优先选择灭活益生菌或纯化代谢产物。

总的来说,益生菌双刃剑效应显著,需严格把控种类和剂量;而益生元通过调节菌群代谢,相对安全增强化疗/免疫疗效。

益生菌+益生元+传统疗法可能成为癌症治疗新方向,但需更多临床验证。

抗癌药物

为什么同种药物在不同患者中效果差异显著?

肠道微生物群还参与抗癌药物的生物转化和代谢,导致这些药物的差异吸收和生物利用度。在药物的生物转化过程中,微生物群采用各种机制,如脱氨基、水解、去甲基化、葡萄糖醛酸化和其他反应。

伊立替康(CPT11)

  • 肝脏代谢:转化为活性成分SN-38(杀死快速分裂细胞),随后被UGT酶灭活为无毒的SN-38G。
  • 肠道菌群的β-葡萄糖醛酸酶将SN-38G重新激活为SN-38,导致严重腹泻。

5-氟尿嘧啶(5-FU)

  • 被变形菌门和厚壁菌门转化为无活性的DHFU,引发耐药。

如何减轻菌群介导的副作用或耐药?

抑制特定酶活性

  • 使用β-葡萄糖醛酸酶抑制剂(如小分子药物)阻断SN-38再生,减少腹泻。

调控菌群组成

  • 壳寡糖:抑制肠球菌等致病菌,促进产丁酸菌生长,恢复结直肠癌药物敏感性。
  • 益生元/益生菌:如菊粉或双歧杆菌,抑制促耐药菌增殖

壳寡糖通过降低肠球菌、大肠杆菌-志贺氏菌、Turicibacter的密度以及促进丁酸产生菌的生长,对结直肠癌具有保护潜力。

临床潜在方向

  • 靶向激活前药:利用菌群酶将前药转化为活性成分(如柳氮磺吡啶在溃疡性结肠炎中的转化)。
  • 个性化给药:根据患者菌群特征选择药物,例如对富含β-葡萄糖醛酸酶的患者避免使用伊立替康。

未来,建立“菌群-药物代谢”数据库,结合人工智能预测个体化用药方案。例如,对高β-葡萄糖醛酸酶活性的患者,优先选择不受该酶影响的化疗药物(如奥沙利铂)。

关于常用药物和肠道菌群之间复杂的双向相互作用,我们之前的文章也写过,详见:

这些常见药物会影响肠道菌群并影响大脑

为什么药物对人效果不一?探索药物-微生物群相互作用对效果的影响

10
结 语

全球癌症治愈率依然不高,肠道微生物群在癌症发生、发展、转移和药物反应中的关键作用正逐渐成为研究热点,为精准抗癌策略提供了全新思路。

菌群在癌症治疗中的关键作用

微生物通过多种机制影响癌症治疗效果:

  • 修饰肿瘤微环境、调节免疫应答、转化药物代谢,以及直接参与抗肿瘤过程。
  • 特定细菌如双歧杆菌能增强免疫检查点抑制剂疗效
  • 微生物代谢产物如丁酸盐可改变局部免疫微环境,提高化疗敏感性。

doi.org/10.1186/s12935-025-03787-x

当前挑战:从实验室到临床的鸿沟

– 研究方法的“碎片化”

样本收集(粪便 vs 肿瘤组织)、测序技术(16S rRNA vs 宏基因组)的差异导致结果难以比较;

解决方案:建立全球统一的微生物组分析标准。

– 个体化差异

年龄、饮食、地理因素使菌群组成差异巨大——同一疗法在不同人群中的响应率波动;

突破口:开发基于AI的个体化菌群图谱,预测治疗敏感性与毒性风险。

– 治疗复杂性的叠加

在现有化疗/免疫治疗基础上引入菌群调控,可能引发不可预见的药物-微生物相互作用;

未来方向:迈向精准菌群医学

– 精准菌群分层

通过多组学技术(宏基因组+代谢组)构建个体化菌群图谱,识别“促癌菌”与“抑癌菌”。

针对不同化疗方案调整菌群结构,丁酸水平低者优先使用奥沙利铂联合益生元。

– 联合干预策略

饮食-菌群协同:高纤维饮食联合特定益生元(如菊粉),可使MEK抑制剂疗效提升。

个性化膳食(如高纤维饮食)联合益生菌,改善肠道健康并增强治疗响应。

结合基因、饮食等多维度数据定制治疗方案。

工程菌开发:设计靶向降解耐药相关酶(如β-葡萄糖醛酸酶)的工程菌。

– 临床转化路径

推动大规模临床试验,验证菌群移植(FMT)、益生元/菌在特定癌种中的疗效。

探索菌群标志物(如丁酸盐水平)作为治疗响应预测指标。

开发微生物群-人工智能联合预测模型,优化治疗决策。

将菌群检测纳入癌症辅助诊疗,实现早筛与疗效监控。

总的来说,微生物组研究不仅扩展了我们对癌症发生发展的认知,更为癌症治疗提供了新的可能性。通过系统化的菌群检测与精准干预,跨学科协作与技术创新,未来有望实现真正的个体化治疗方案,提高抗癌疗效并改善患者生活质量。这一领域的进步,代表着癌症治疗从单一靶向向生态系统整体调控的深刻范式转变。

主要参考文献

Adlakha YK, Chhabra R. The human microbiome: redefining cancer pathogenesis and therapy. Cancer Cell Int. 2025 Apr 28;25(1):165.

Shi Z, Li Z, Zhang M. Emerging roles of intratumor microbiota in cancer: tumorigenesis and management strategies. J Transl Med. 2024 Sep 11;22(1):837.

Murayama M, Hosonuma M, Kuramasu A,et al., Isobutyric acid enhances the anti-tumour effect of anti-PD-1 antibody. Sci Rep. 2024 May 17;14(1):11325.

Jia D, Kuang Z, Wang L. The role of microbial indole metabolites in tumor. Gut Microbes. 2024 Jan-Dec;16(1):2409209.

Sun X, Shan X, Zhu B, Cai Y, et al., 5-Fluorouracil Loaded Prebiotic-Probiotic Liposomes Modulating Gut Microbiota for Improving Colorectal Cancer Chemotherapy. Adv Healthc Mater. 2025 Feb;14(4):e2403587.

Zhang H, Xu Z. Gut-lung axis: role of the gut microbiota in non-small cell lung cancer immunotherapy. Front Oncol. 2023 Nov 22;13:1257515.

Wang S, Yin F, Guo Z, Li R, Sun W, Wang Y, Geng Y, Sun C, Sun D. Association between gut microbiota and glioblastoma: a Mendelian randomization study. Front Genet. 2024 Jan 4;14:1308263. 

姜黄素与肠道微生物群之间的互作:姜黄素对健康影响的益处

谷禾健康

姜黄素是姜黄根茎中所含的一种亲脂性多酚,其很早就被亚洲地区的人们用作食品中的香料和染料。除此之外,姜黄素被发现还具有抗氧化、抗炎、抗菌抗肿瘤、调控血糖、神经保护等多种药理作用,目前市场上许多功能性食品中都包含这一成分。

然而,尽管姜黄素具有多种药理活性,但其水溶性较差,在口服后的肠道吸收率较低,并且在肝脏中迅速代谢,加之化学不稳定性,导致其生物利用度非常低,这些都限制了它的治疗效果和临床应用。

值得注意的是,许多研究证实口服姜黄素会在肠道中与微生物群发生双向相互作用。姜黄素的代谢转化不仅发生在肠上皮细胞和肝细胞中,一些肠道菌群如大肠杆菌长双歧杆菌也具有能够代谢姜黄素的酶。将其转化为多种活性代谢物,它们具有特异性往往更有效。有助于提高姜黄素的生物利用度

同时,姜黄素也可以作为一种益生元肠道菌群有改善作用。其增加了产丁酸盐菌等有益菌的丰度,并改善了糖尿病代谢综合征等患者的肠道菌群。姜黄素不仅可以影响肠道微生物群的成分,还能够增强肠道屏障,抑制促炎介质的激活和表达,减轻肠道炎症和氧化应激。

姜黄素肠道微生物群之间相互作用,在临床治疗中具有多种健康益处。包括降低炎症水平、缓解炎症性肠病、减少结肠炎和结肠癌等胃肠道疾病的风险,改善代谢功能障碍如肥胖、调节血糖水平、减轻糖尿病症状,辅助治疗阿尔兹海默病神经系统疾病等。

在本文中,我们介绍了姜黄素的生物学特性药理作用,重点关注它与肠道微生物群的相互作用。由于个体差异,人们对姜黄素的反应各不相同。肠道微生物群检测可了解个体菌群结构、优势菌群和多样性,从而评估姜黄素吸收代谢的潜在差异更有效地利用姜黄素促进健康

01
什么是姜黄素及其对人体的益处

什么是姜黄素?

姜黄素(Curcumin),也称为二阿魏酰甲烷,是一种源自姜黄植物天然多酚类成分,也是姜黄主要的生物活性成分

注:还有另外两种被称为姜黄素的化合物,即“姜黄素II”(去甲氧基姜黄素)和“姜黄素III”(双去甲氧基姜黄素),它们在芳香环上的甲氧基数量不同。它们分别占总姜黄素类化合物的10-20%和3%,具有不同的药理活性

✔ 富含姜黄素的产品已遍布生活中

姜黄素呈亮橙黄色,具有独特的色泽与风味,是咖喱粉中的主要香料之一。它在全球获得广泛认可,应用领域多样:在印度,含有姜黄素的姜黄已被用于制作咖喱;在日本,它被装在里;在泰国,它用于化妆品;在中国,它被用作着色剂功能性食品等;在韩国,它被装在饮料里;在马来西亚,它被用作防腐剂;在巴基斯坦,它被用作抗炎剂;在美国,除了胶囊和粉末形式外,它还用于芥末酱、奶酪、黄油和薯片中,用作防腐剂和着色剂。姜黄素产品形式多样,包括胶囊、片剂、软膏、能量饮料、肥皂和化妆品等。

生姜和姜黄有什么区别?

姜黄素的生物益处

姜黄素不仅具有独特的色泽与风味,还具有许多生物学益处。其抗菌特性于1949年首次得到证明,随后的研究表明,它还具有抗炎特性抗氧化特性和其他一些显著的好处。

✔ 抗氧化

氧化应激(OS)是活性氧产生与机体抗氧化保护系统间的失衡。这种不平衡可能导致细胞功能障碍和损伤

研究表明,姜黄素可以作为一种抗氧化剂。首先,它与活性物质直接反应中和它们并防止进一步的损害。它可以清除不同形式的自由基,例如活性氧和氮物质(分别为ROS和RNS)。

其次,姜黄素诱导各种细胞保护抗氧化蛋白的上调增强身体对氧化应激的防御能力。同时,通过激活细胞保护蛋白受体核因子红细胞系相关因子2(Nrf2)信号通路来调节抗氧化酶的表达,从而稳定活性氧水平。

这种转录因子通过控制抗氧化酶解毒蛋白的基因表达,从而保护细胞免受氧化损伤,在细胞对氧化应激的反应中发挥关键作用。它可以调节在中和自由基中活跃的谷胱甘肽(GSH)、过氧化氢酶超氧化物歧化酶(SOD)的活性;此外,它还可以抑制产生活性氧的酶,如脂氧合酶/环氧合酶和黄嘌呤氢化酶/氧化酶。这些细胞保护蛋白发挥抗氧化活性,保护细胞免受氧化损伤。

注:姜黄素是一种亲脂性化合物,这使其成为过氧自由基的有效清除剂,与维生素E一样,姜黄素被认为是一种链破坏型抗氧剂。链破坏型抗氧剂即链终止型抗氧化剂。可以终止氧化过程中自由基链的传递与增长。

此外,姜黄素能够激活AMP活化蛋白激酶(AMPK),这是细胞能量稳态的重要调节剂。姜黄素的这种激活有助于减轻氧化应激引起的肠道屏障和线粒体损伤

✔ 抗炎

炎症过程氧化应激密切相关,因为活性氧的产生与机体抗氧化防御失衡导致细胞功能障碍炎症反应

炎症反应被发现参与多种慢性疾病发展,包括阿尔茨海默病、帕金森病、多发性硬化症、癫痫、脑损伤、心血管疾病、代谢综合征、癌症、过敏、哮喘、支气管炎、结肠炎、关节炎、肾缺血、银屑病、糖尿病、肥胖、抑郁、疲劳等

炎症反应表现为显著的病理改变,其特征是炎症指标水平升高,如肿瘤坏死因子-α(TNF-α)、白细胞介素-6(IL-6)、白细胞介素-10(IL-10)、C反应蛋白(CRP)、单核细胞趋化蛋白-1(MCP-1)或血管细胞粘附分子-1(VCAM-1)。

姜黄素抑制氧化应激并改善炎症途径

Servida S,et al.Int J Mol Sci.2024

研究发现姜黄素通过降低促炎介质水平减轻炎症反应。这可能因其附着于toll样受体(TLR)并控制NF-κB、MAPK和AP-1等信号通路。其中,NF-κB作为关键转录因子在诱导炎症中至关重要。姜黄素抑制NF-κB,减少IL-1β和IL-6等炎症因子释放。

在葡萄糖硫酸钠(DSS)诱导的结肠炎小鼠模型中,给予适量姜黄素有效抑制了NF-κB抑制蛋白(IκB)的磷酸化,从而抑制了肠道中的NF-κB,这最终减轻了炎症反应

✔ 抗癌

通过多项研究,姜黄素被证明是一种有效的抗癌候选物质,特别是在以下方面:

NF-κB通路抑制:姜黄素能抑制核因子κB的活化,从而减少炎症因子如IL-1β和IL-6的释放,这些炎症因子与肿瘤发生、发展密切相关。

调控肿瘤抑制基因:研究表明姜黄素可以上调p53表达,人类结直肠癌患者服用姜黄素后p53表达增加,增强了机体对癌细胞的抑制能力。

COX-2抑制:姜黄素能特异性抑制环氧合酶-2(COX-2)的表达,这在HT-29人类结肠癌细胞中已得到证实。

除此之外,姜黄素还具有以下药理作用

姜黄素的药理作用

Balaji S,et al.World J Exp Med.2025

姜黄素在各种疾病中的治疗作用

doi: 10.3390/microorganisms12040642.

02
肠道菌群可改善姜黄素的生物利用度

✔ 姜黄素本身的生物利用度较低

尽管姜黄素的药理活性多样,但其治疗应用受到严重限制,姜黄素在口服后的肠道吸收率较低,并且在肝脏中迅速代谢并通过胆囊排泄,加之其水溶性低化学不稳定性,导致生物利用度非常低

姜黄素的吸收及代谢过程

作为第一步,摄入的姜黄素先通过胃,在那里几乎没有被吸收。由于其对低pH值的抵抗力,姜黄素在没有任何化学修饰的情况下到达大肠并经历广泛的I期和II期代谢

口服后姜黄素的药代动力学

Servida S,et al.Int J Mol Sci.2024

✔ I期代谢发生在肠细胞和肝细胞中

首先,它被I期酶代谢:不同的还原酶在其底物中引入反应基团和极性基团,产生活性代谢物,即二氢姜黄素、四氢姜黄素(DHC)和六氢姜黄素(THC)。姜黄素的这种还原性代谢反应广泛发生在肠细胞肝细胞中。

✔ 代谢物的活性低于其底物

在I期形成的代谢物被转运到肠道肝脏胞质溶胶,在那里它们被转化(II 期)成偶联衍生物(即偶联姜黄素、偶联DHC、偶联THC和偶联八氢姜黄素)。

葡萄糖醛酸化是偶联的主要途径,姜黄素葡糖苷酸是器官和细胞体液中存在的主要代谢物(约占血浆姜黄素的99%),其分子的活性低于其底物且分子量更高

口服后姜黄素的代谢

Servida S,et al.Int J Mol Sci.2024

通常口服给药后,在1至2小时内观察到姜黄素峰值血液浓度,并在大约12小时后变得检测不到

肠道菌群提高姜黄素的生物利用度

值得注意的是,姜黄素主要作用于肠道,其代谢转化不仅发生在肠上皮细胞和肝细胞中,还由肠道微生物群产生的酶进行,通过这些酶产生多种活性代谢物。

肠道衍生代谢物的生物活性与天然姜黄素不同,它们具有特异性往往更有效。因此,肠道微生物组成会影响姜黄素代谢物的生物利用度

✔ 大肠杆菌、长双歧杆菌等能够代谢姜黄素

已鉴定出多种能代谢姜黄素的肠道细菌:人类粪便微生物分析显示,大肠杆菌通过NADPH依赖性姜黄素/二氢姜黄素还原酶表现出最高的姜黄素代谢活性。这种酶能够将姜黄素转化为二氢姜黄素,再转化为四氢姜黄素

其他微生物,如长双歧杆菌(Bifidobacteria longum)、假小链双歧杆菌(Bifidobacteria pseudocatenulaum)、粪肠球菌(Enterococcus faecalis)、嗜酸乳杆菌(Lactobacillus acidophilus)和干酪乳杆菌(Lactobacillus casei)是能够代谢姜黄素的相关细菌菌株。

✔ 姜黄素的有益作用可能取决于肠道菌群组成

与花青素等其他膳食多酚类似,姜黄素的生物活性不仅与吸收率相关,还与肠道菌群消化产生的活性代谢物有关。姜黄素的生物学特性取决于这些微生物代谢物的活性。

肠道微生物群的姜黄素代谢途径包括还原、甲基化、脱甲氧基化羟基化和乙酰化主要产物为四氢姜黄素、二氢阿魏酸和1-(4-羟基-3-甲氧基苯基)-2-丙醇。

此外,姜黄素还可以被毕赤酵母代谢成四种主要代谢产物,包括1,7-双(4-羟基-3-甲氧基苯基)庚烷-3,5-二醇、5-羟基-1,7-双(4-羟基-3-甲氧基苯基)庚烷-3-酮、5-羟基-1,7-双(4-羟基苯基)庚烷-3-酮和5-羟基-7-(4-羟基-3-甲氧基苯基)-1-(4-羟基苯基)庚烷-3-酮。

因此,姜黄素的有益作用不仅取决于姜黄素的饮食摄入量,还取决于个人代谢姜黄素的能力,即最终取决于每个人肠道微生物群的组成

提高姜黄素效果的其他方式

✔ 给药形式会影响姜黄素的疗效

研究显示,给药形式会影响姜黄素的生物利用度。使用脂质体、聚合物纳米颗粒、环糊精包封、脂质复合物或合成聚合物-姜黄素复合物等给药形式可提高姜黄素的活性和生物利用度增强其对癌症和肝病等疾病的治疗效果

姜黄素与胶体纳米颗粒分散的新制剂能通过刺激GLP-1(胰高血糖素样肽1)和胰岛素分泌改善高血糖,表明其可用于糖尿病治疗,且可能对炎症和骨关节炎有效。

此外,纳米气泡姜黄素提取物补充剂对小鼠健康和运动表现有益,帮助克服身体疲劳

✔ 新鲜或粉状姜黄生物利用度更高

最近的一些论文还显示了食物基质姜黄素吸收中的重要性,强调与补充剂相比,当它作为新鲜或粉状姜黄食用时,生物利用度更高,这可能是由于与其他姜黄化合物的协同活性或姜黄基质效应

共给药提高姜黄素生物利用度的重要方法。研究显示,与黑胡椒碱(piperine)联合使用可显著抑制姜黄素首过代谢,增加血液浓度。2克姜黄素与5毫克黑胡椒碱联用可使生物利用度提高三倍以上,主要通过抑制葡萄糖醛酸转移酶活性,减少肝脏和肠道代谢。

此外,与其他具协同作用的抗氧化剂、抗炎剂联合应用能放大姜黄素药理效应,改善临床疗效。

03
姜黄素影响肠道微生物组成及多样性

值得注意的是,姜黄素肠道微生物群之间的相互作用是双向的。如上所述,姜黄素在口服给药后优先在胃肠道中积累,一方面,肠道微生物群通过多种酶促途径(如还原、去甲基化、羟基化等)将姜黄素代谢转化为具有独特生物活性的代谢物

与此同时,姜黄素能够调节肠道菌群的丰富度多样性和组成,而这些受影响的菌群又反过来影响姜黄素的吸收、代谢和治疗效果

利于肠道中有益菌株的生长

越来越多的研究证明肠道菌群失调各种疾病的发生之间存在密切关系,姜黄素已被证明可以调整失衡菌群中有益细菌的比例促进有益菌株的生长。

✔ 增加了产丁酸盐菌等有益菌的丰度

连续15天给小鼠施用100mg/kg姜黄素后发现其对肠道菌群有调节作用,姜黄素组显示普雷沃氏菌属的丰度显著降低拟杆菌科和理研菌科(Rikenellaceae)的丰度显著增加。其他动物模型研究也表明,口服姜黄素增加了有益细菌(如双歧杆菌、乳酸菌和产生丁酸盐的细菌)的丰度,同时减少了普雷沃氏菌属拟杆菌科等细菌的数量。

✔ 姜黄素调节脂肪肝病中的菌群失衡

高脂肪饮食的人易出现肝脏代谢改变,伴随着肠道微生物群组成改变肠道通透性增加。在饮食中添加姜黄素可增强肝脏代谢增加有益菌,并减少与高脂肪饮食引起的菌群失调有关的有害细菌菌株

使用姜黄素治疗成功减少了36种与肝脂肪变性呈正相关的潜在有害细菌菌株。姜黄素对柯林斯氏菌属 、链球菌属、萨特氏菌属、ThalassospiraGordonibacter和放线菌属具有富集作用,这些是人体肠道的核心菌属或益生菌。同时对密螺旋体、Alloprevotella、瘤胃球菌属、另枝菌属、ElusimicrobiumAnaerofilumPapillibacter具有抑制作用

✔ 姜黄素调节阿尔茨海默病等疾病的重要菌群

在阿尔茨海默病小鼠中,姜黄素改善空间学习记忆能力,减少海马体淀粉样斑块,并显著改变拟杆菌科、普雷沃氏菌科和乳杆菌科等与阿尔茨海默病相关的关键菌株丰度

另一研究中,姜黄素(100mg/kg/天,12周)能部分逆转卵巢切除导致的肠道菌群多样性变化。给结肠癌小鼠高剂量姜黄素(162mg/kg/天)可减少肿瘤负荷增加乳杆菌减少Coriobacterales。姜黄素还能减少瘤胃球菌,其增加与结直肠癌发生相关。

✔ 姜黄素增加了细菌的多样性

在一项人体随机安慰剂对照试验中,调查了姜黄和姜黄素膳食补充剂与安慰剂相比对30名健康受试者(每组10名)的影响。

姜黄片剂含有1000毫克姜黄和1.25毫克胡椒碱提取物;姜黄素片剂含有1000毫克姜黄素和1.25毫克胡椒碱提取物;受试者被指示随餐口服3片,每天两次(每天总共6000毫克)。在基线和治疗8周后进行微生物群分析

所有受试者都表现出微生物群组成的随时间的显著变化和对治疗的个体化反应。肠道菌群因人而异,个体对治疗的反应并不均匀。然而,比较治疗前后每组存在的细菌种类数量,安慰剂组显示物种总体减少15%,而姜黄和姜黄素处理组分别增加7%和 69%

这些研究表明姜黄素保护作用可能源于其促进肠道菌群失衡转变为平衡的能力,减少了致病菌增加有益菌的丰度

姜黄素对肠道微生物群的影响总结

Servida S,et al.Int J Mol Sci.2024

姜黄素增强肠道屏障功能

姜黄素不仅可以影响肠道微生物群的成分,还能够增强肠道屏障

✔ 姜黄素能够增强中和脂多糖内毒素的能力

肠道屏障由四种不同类型的核纤层蛋白组成。其完整性的任何缺陷都会引起细菌侵入正常结肠组织,导致肠上皮细胞失调和随后的局部炎症

第一层包含碱性磷酸酶(IAP),IAP具有中和细菌内毒素脂多糖的能力。研究表明,口服姜黄素可以将IAP活性提高三倍,并降低循环内毒素脂多糖(LPS)水平,从而直接证明姜黄素对肠道屏障初始层的调节作用。

✔ 姜黄素减少了粘蛋白的分解

构成第二层的肠粘膜层对于将管腔内容物与上皮细胞分离并防止病原菌进入至关重要。随着第二层的消失,肠上皮细胞将直接与管腔细菌相互作用,导致肠道炎症加剧

在姜黄素的驱动下,肠道酸性粘蛋白的增加促进了合成,并最大限度地减少了肠粘膜层的分解,从而保留了其结构。

✔ 姜黄素可增强抗菌肽的产生

第三层由肠上皮细胞之间的紧密连接组成,它们阻止外来抗原、微生物和毒素等有害物质从肠腔转移,同时允许重要的营养物质、电解质和水从肠腔流入血液。通过跨上皮以及跨细胞和旁细胞运输,建立了针对细菌内毒素的防御机制,有助于保持肠道屏障的完整性

在最后一层发现的抗菌肽可防止细菌突破肠道屏障。α-防御素β-防御素具有杀菌特性,其中α-防御素在体内具有显著影响,该因素影响着肠道微生物群的组成。研究表明,姜黄素可增强抗菌肽的产生

✔ 体外和动物研究也证实姜黄素可以恢复肠道屏障

体外研究也显示姜黄素可恢复受损肠道通透性。在CaCo2细胞中,姜黄素减轻肠上皮屏障损伤抑制脂多糖诱导的IL-1β分泌,保护紧密连接蛋白,并通过抑制p38 MAPK激活减少紧密连接蛋白异常磷酸化。

这些结果也在动物模型中得到证实:高脂饮食大鼠经姜黄素处理(200mg/kg/日)后,肠道紧密连接结构改善,血清TNF-α和LPS水平降低,肠粘膜occludin表达上调。同样,西式饮食小鼠补充姜黄素(100mg/kg/日)显著改善肠道屏障功能恢复肠碱性磷酸酶活性及ZO-1和claudin-1表达。

鉴于紧密连接蛋白表达下降在非酒精性脂肪肝(NAFLD)发病中的关键作用,姜黄素(200mg/kg/日,4周)被证明能恢复NAFLD大鼠远端回肠中ZO-1和occludin的表达,表明姜黄素通过改善肠道屏障完整性可能成为NAFLD新疗法。

这些研究提供有力证据表明姜黄素有助于维持肠道屏障完整性,可作为肠道疾病预防/治疗的新工具。

姜黄素减轻肠道炎症

✔ 减轻了炎症和氧化应激

一项随机对照人体试验中,58名非酒精性脂肪性肝病(NAFLD)患者接受含50mg/天纯姜黄素的或安慰剂。代谢组学显示姜黄素对氧化应激炎症标志物有益,减轻了患者中的炎症反应,并抑制了NAFLD进展过程中某些细菌的增长。

一项动物研究报道,一种新开发的纳米颗粒姜黄素通过抑制促炎介质的表达和诱导Treg扩张来积极改善小鼠的炎症,这还伴随着粪便丁酸盐水平的增加

✔ 可抑制促炎介质的激活和表达

含0.2%(w/w)纳米颗粒姜黄素的啮齿动物饮食可抑制小鼠结肠上皮细胞中NF-κB激活促炎介质表达。或者,姜黄素可以通过抑制TLR4/MyD88/NF-κB信号通路的激活来减轻脂多糖诱导的炎症。此外,姜黄素已被证明可以抑制NF-κB核易位,并减轻癌症中过度激活的其他促炎基因的表达

研究证明,断奶仔猪饲喂300mg/kg姜黄素28天可通过抑制大肠杆菌增殖下调TLR4表达缓解炎症

04
姜黄素与肠道菌群互作在临床治疗中的作用

缓解炎症性肠病

大量研究表明,姜黄素可以通过调节肠道微生物群组成和多样性,对胃肠道系统健康产生有益影响。

✔ 姜黄素调节乳酸菌并改善肠道屏障

炎症性肠病(IBD)与肠道菌群稳定性密切相关。研究发现,补充姜黄素增加乳酸菌相对丰度,通过提高sIgA水平增强粘膜免疫改善肠道屏障功能。

注:IgA是一种在改善肠道微生物疾病中起重要作用的免疫球蛋白。

✔ 姜黄素调节信号通路并减少炎症因子

炎症性肠病的发生与TLR4/NF-κB/AP-1信号上调有关。在结肠炎的动物模型中,姜黄素被发现可以通过减少TLR4信号传导来改善炎症。姜黄素通过与细胞外TLR4结构域结合蛋白髓样分化蛋白2(MD-2)结合来抑制脂多糖引起的免疫反应减少炎症因子的释放。

作为IBD发病机制主要贡献者,NF-κB可被姜黄素通过调节NF-κB/IκB通路抑制。姜黄素干扰IκB激酶信号,阻止IκB降解,抑制NF-κB激活降低TNF-α、IL-1、IL-6等细胞因子释放减轻炎症反应。研究表明肠道炎症严重程度与NF-κB p65含量相关,IBD患者肠道中NF-κB p65含量较高

✔ 抑制氧化应激

此外,姜黄素能够降低肿瘤坏死因子(TNF-α)表达水平,同时显著减少一氧化氮(NO)的产生,从而抑制氧化应激并对炎症性肠病产生有益影响

其次,研究表明姜黄素能够通过选择性阻断环氧合酶-2(COX-2)受体来抑制炎症。给予有效剂量的姜黄素可以抑制iNOS/COX-2的表达并减弱p38 MAPK的激活,p38 MAPK在调节炎症因子的转录和释放中具有重要作用。

✔ 姜黄素对一些其他胃肠道疾病也有改善作用

姜黄素通过调节Th17/Treg细胞的平衡恢复肠道微生物群组成来改善糖尿病患者的结肠炎。补充姜黄素可以将肠道微生物群组成转变为富含短链脂肪酸产生细菌的成分,从而促进肠道粘膜保护减轻与肠道疾病相关的炎症。

姜黄素对肠道微生物的调节作用还可能影响结直肠癌,姜黄素和富含生育三烯酚的部分的组合改变了结直肠癌细胞中的微生物多样性,在抑制结肠癌细胞生长方面具有潜在的治疗协同作用。

姜黄素对胃肠道疾病的影响

Balaji S,et al.World J Exp Med.2025

综上所述,姜黄素能够通过调节肠道菌群修复肠道屏障抑制炎症信号通路等多种机制来缓解炎症性肠病,其与肠道菌群的互作有望成为促进胃肠道系统健康和改善一系列胃肠道疾病的天然治疗剂,也为基于肠道微生物组的姜黄素靶向治疗策略提供了理论基础。

改善肥胖

✔ 调节了肥胖的重要指标(厚壁菌/拟杆菌)比值

肠道菌群组成肥胖发病密切相关,肥胖患者肠道中厚壁菌门与拟杆菌门比例(F/B比值)升高。然而,在施用有效剂量的姜黄素后,观察到F/B比值显著降低。这种减少还伴随着毛螺菌科(Lachnospiraceae)和瘤胃球菌科(Ruminococcaceae)数量的减少,以及拟杆菌科Riskenellaceae 和普雷沃氏菌科(Prevotellaceae)丰度的增加

姜黄素还增加双歧杆菌乳酸杆菌嗜粘蛋白阿克曼菌等在人类抗肥胖过程中发挥关键作用的细菌丰度。

✔ 姜黄素还能够抑制成脂基因,减少脂肪积累

此外,一些研究证实姜黄素在多种器官包括脂肪组织中发挥多种生物学功能。姜黄素通过抑制丝裂原活化蛋白激酶(ERK、JNK和p38)活性抑制3T3-L1脂肪细胞分化,并通过抑制PPARγ和C/EBPα表达抑制成脂基因

适量姜黄素可减少室管膜脂肪组织增加能量消耗、减少体内脂质积累,同时阻止吞噬细胞浸润脂肪组织并增加脂质运载蛋白产生,从而减轻脂肪组织炎症。在高脂肪饮食诱导的肥胖小鼠中,0.2g/d姜黄素显著减少了白色脂肪组织

✔ 临床证实姜黄素具有减重和降低甘油三酯水平的功效

临床效果表明,姜黄素可使超重人群BMI恢复正常显著降低血清甘油三酯水平。姜黄素还增强高脂饮食诱导的胰岛素敏感性阻断脂肪生成。此外,姜黄素可通过调节脂质转运蛋白的表达和活性,维持胆固醇稳态

调节血糖水平,减轻糖尿病

姜黄素可以通过改善肠道屏障功能、影响肠道激素分泌调节抗炎细胞因子减少与胰岛素抵抗相关的炎症分子来调控宿主葡萄糖稳态

姜黄素对血糖稳态的影响

Servida S,et al.Int J Mol Sci.2024

✔ 姜黄素调节与糖尿病发作相关的菌群丰度

服用姜黄素可增加有益细菌(乳酸杆菌、双歧杆菌和产生丁酸盐的细菌)的数量,同时减少条件性致病菌(肠杆菌、PrevotellaceaeRikenellaceae)。特别是,姜黄素增加Muribaculaceae科细菌丰度,这类产生琥珀酸、乙酸和丙酸的细菌减少与炎症性肠病和1型糖尿病发病相关。

✔ 姜黄素及肠道菌群通过多种信号通路调节血糖

姜黄素及其衍生物通过多种信号通路调节血糖,包括PI3K/Akt通路(对氧化应激敏感的主要信号转导系统),调控细胞生长和死亡。姜黄素还激活AMPK通路调节能量代谢与细胞稳态,并通过Akt/Nrf2通路上调抗氧化机制

肠道微生物群以相似机制影响血糖调节。姜黄素增加的干酪乳杆菌通过PI3K、AMPK2、Akt2和肝糖原合成途径改善胰岛素抵抗,并通过胆道途径降低高血糖,同时减少Caco-2细胞中的胰岛素降解酶和脂肪组织中的IGFBP-3。

‌IGFBP3‌(胰岛素样生长因子结合蛋白3)是胰岛素样生长因子(IGF)系统中的关键调节蛋白,主要功能是‌结合并调控IGF-1和IGF-2的活性‌,影响细胞生长、代谢及分化。

✔ 姜黄素与肠道菌群影响葡萄糖吸收和糖原合成

肠道微生物群通过调节GLUT-4表达和易位直接影响葡萄糖代谢姜黄素增加乳双歧杆菌促进糖原合成,抑制肝糖异生基因,改善胰岛素刺激的葡萄糖吸收和GLUT-4易位。加氏乳杆菌BNR-17增加肌肉GLUT-4表达,显著降低血糖

体外研究表明姜黄素改善Akt磷酸化,促进GLUT-4易位,减少炎症因子。姜黄素与GLUT-1结合可即时、可逆地抑制葡萄糖重吸收,并调节缺氧脂肪细胞中葡萄糖转运蛋白表达,其效果取决于剂量和暴露时间。长期用药可代偿性上调GLUT蛋白。2型糖尿病肥胖大鼠接受姜黄素治疗(80mg/kg/天,8周)后改善血糖参数、胰岛素敏感性和血脂,降低肝胰丙二醛水平,降血糖作用与GLUT-4基因增加相关。

✔ 姜黄素改善血糖水平的机制与微生物活动相关

姜黄素通过增加GLP-1分泌影响血糖水平。其机制可能与抑制降解GLP-1的二肽基肽酶-4活性有关,或通过激活Ca²⁺/钙调蛋白依赖性激酶II通路直接刺激GLP-1分泌。这两种机制均与微生物活动相关,且需要足够给药时间以便调节菌群

姜黄素通过影响含胆汁盐水解酶的拟杆菌调节胆汁酸代谢。它恢复脂多糖引起的菌群紊乱,增加产丁酸菌,减少致病菌,提高抗炎细胞因子水平。产丁酸盐的细菌促进GLP-1、PYY和GLP-2从L细胞释放,通过GPCR41/43和胆汁酸/TGR5通路发挥作用。

姜黄素还增加FXR基因表达,促进次级胆汁酸通过FXR和GPRC5调节脂质和碳水化合物代谢,并增加回肠GPRC5A/B及去乙酰化酶表达,维持碳水化合物稳态。

成纤维细胞生长因子15(FGF15)是连接菌群、宿主与姜黄素降血糖作用的关键分子。FGF15改善胰岛素敏感性,抑制肝糖异生关键酶,其表达受FXR调节。

姜黄素通过多种机制调控葡萄糖稳态,其中肠道菌群扮演着重要角色。多项随机双盲对照研究都证实姜黄素能降低血清葡萄糖、甘油三酯、低密度脂蛋白(LDL)、糖化血红蛋白(HbA1c)、瘦素,增加脂联素水平,来预防2型糖尿病

辅助治疗神经系统疾病

姜黄素及其肠道细菌代谢物展现出神经保护作用,在阿尔茨海默病、帕金森病、多发性硬化症、缺血性脑损伤焦虑症等神经系统疾病中具有治疗潜力。

✔ 姜黄素清除自由基发挥神经保护作用

神经退行性疾病表现为特定神经元群功能的进行性丧失,导致神经缺陷和认知障碍。虽然其确切机制尚未完全阐明,但氧化应激炎症被认为是主要致病因素。高水平活性氧(ROS)会损害所有细胞,神经元对较低ROS水平也特别敏感。ROS是大脑衰老的主要因素,与神经退行性疾病的发生发展密切相关。

姜黄素通过直接和间接清除自由基提供神经保护。它增强超氧化物歧化酶活性,将超氧化物转化为过氧化氢和氧气,并提高过氧化氢酶活性促进过氧化氢分解,展现抗氧化作用。

四氢姜黄素是研究最广泛的细菌修饰姜黄素衍生物,也能减少氧化应激神经元凋亡,激活自噬,抑制脑损伤后线粒体凋亡。它对Aβ-寡聚体毒性有保护作用,调节神经炎症降低β-淀粉样蛋白触发的活性氧水平和线粒体膜电位,抑制caspase激活。在脑损伤中,四氢姜黄素通过上调Nrf2通路防止神经元凋亡改善神经行为功能

✔ 姜黄素与肠道菌群互作改善多种神经系统疾病

阿尔茨海默病(AD)模型中,姜黄素通过减轻记忆障碍代谢功能障碍来发挥神经保护作用。此外,它调节突触可塑性和代谢途径,有可能改善AD相关症状。此外,姜黄素丰富了有益的肠道微生物群,从而间接影响认知功能

在‌帕金森病(PD)中,姜黄素通过调节肠道微生物群-代谢物轴改善运动缺陷和神经炎症。在多发性硬化症(MS)中,姜黄素衍生物CMG会改变肠道微生物群组成,从而抑制自身免疫性脑脊髓炎的严重程度。这种抑制与粪便和回肠内容物中特定细菌种类丰度的变化相关

缺血性脑损伤中,姜黄素可减少梗死体积、脑水肿和血脑屏障通透性。此外,它还可以改善缺血后的认知缺陷和神经系统结局。姜黄素治疗表明,小鼠的大脑连接和社会行为得到显著改善,同时肠道微生物群组成的改变

焦虑症中,姜黄素通过调节微生物群-肠-脑轴增加前额叶皮层中的磷脂酰胆碱水平来缓解焦虑样行为。此外,它还影响脂质代谢肠道微生物群组成以缓解焦虑症状。

姜黄素的神经保护作用

Balaji S,et al.World J Exp Med.2025

姜黄素通过清除自由基调节突触可塑性神经炎症以及改变肠道菌群组成等多种机制发挥神经保护作用,使其成为治疗神经系统疾病极具前景的候选药物。

05
如何更好地利用姜黄素改善健康?

姜黄素可能存在的不足

姜黄素的主要不足是单独服用时吸收率较低,且可能会引起轻微不良反应。有小部分研究中姜黄素可致肠胃胀气胃部刺激促进胆汁分泌和胆管炎,尤其高剂量时可能出现恶心、腹泻和头痛

研究中,7名服用500-12000mg姜黄素的受试者72小时内出现了腹泻、头痛、皮疹和黄便症状。另一项研究显示,部分服用0.45-3.6g/天姜黄素持续1-4个月的受试者报告恶心、腹泻,并且血清碱性磷酸酶和乳酸脱氢酶水平升高。

✔ 一些肝病患者和酗酒者应谨慎使用

姜黄素可能与非甾体抗炎药利血平抗凝剂相互作用,肝病患者(如肝硬化、胆道梗阻、胆结石)和酗酒者应避免使用或在医师指导下使用。

应该如何服用姜黄素?

如果你正在服用补充剂,医生可能会建议每天两次,每次500毫克姜黄,与食物同服。(但并不是越多越好)

每天摄入量最高可达 8 克,但一般人群每天 500 至 1000 毫克

可以尝试将姜黄与优质脂肪如油、鳄梨、坚果、种子等一起食用。

姜黄与药物之间的相互作用

中度相互作用

轻度相互作用

此列表可能不完整,许多其他药物如草药产品等也可能影响姜黄。

避免与其他可能影响凝血的草药/健康补充剂一起使用姜黄,包括当归、辣椒、丁香、蒲公英、丹参、 月见草 、大蒜、姜、银杏、 马栗 、人参、白杨、红车轴草等。

避免与其他可能降低血糖的草药/健康补充剂一起使用姜黄,如 α-硫辛酸 、铬、达米安娜、 熊掌草 、鹰嘴豆、大蒜、瓜尔胶、马栗、人参、车前子等。

如何更好地利用姜黄素?

姜黄素虽有多种药理活性,但因口服后肠道吸收率低,其治疗应用受到严重限制。以下是几个可能的策略和思路,旨在使人体更好地利用姜黄素,实现其抗炎、抗氧化、抗肿瘤以及其他保护作用。

✔ 个体化肠道微生物群检测与评估

通过粪便菌群测序等手段,了解个体肠道菌群整体结构、优势菌群和多样性情况。这有助于判断个体在姜黄素吸收和代谢过程中的潜在差异,因为肠道菌群在姜黄素的化学转化中可能起到双向调控作用(既可能通过代谢生成更有活性的代谢物,也可能助推姜黄素的降解)。

依据检测结果,对肠道菌群中与药物代谢、炎症调节和屏障功能相关的菌群比例进行评估,从而判断是否需要额外进行菌群调节干预

✔ 利用益生菌和益生元改善姜黄素代谢环境

有研究提示,共给药策略(例如与黑胡椒碱联合使用)能够显著提高姜黄素的生物利用度。同理,合理补充某些益生菌(如乳杆菌、双歧杆菌)和益生元可改善肠道微生态平衡,优化肠屏障功能;这不仅有助于减少姜黄素在肝脏首过效应中的代谢转化,还可能促进姜黄素在肠道内的活性释放

根据个体菌群失衡的具体情况,可以设计联合微生态干预方案,例如在姜黄素给药前后,先行或同步补充针对性益生元,从而改善消化道环境,增强姜黄素的吸收和转化效果。

✔ 给药策略的个性化优化

由于姜黄素本身具有低水溶性和较高亲脂性,目前已有纳米技术、脂质体、固体分散体等多种新型剂型用于提高其生物利用度。结合个体的肠道菌群特点,可以选择或定制适合个体微生态环境的姜黄素制剂。例如,对于部分菌群功能较弱的个体,使用纳米载体不仅可以增加姜黄素的稳定性,也可以延缓其在肠道内的降解过程,从而为肠道菌群与姜黄素之间的互作提供足够的时间。

此外,若检测发现个体肠内特定菌群(例如参与代谢姜黄素转化的菌群)数量较低,可能需要重点采用辅佐用药策略,抑制姜黄素过快的首过代谢(比如结合黑胡椒碱)与微生态调节进行联合应用,以获得更高的药效浓度。

✔ 饮食和生活方式的干预

食习惯对肠道菌群有显著影响,个体化的饮食调整(例如增加富含膳食纤维、益生元的食物)可以促进有益菌群的发展,改善肠道环境,从而间接提高姜黄素的吸收和生物转化

此外,合理的饮食还能减少慢性炎症状态,增强机体对姜黄素抗炎、抗氧化作用的反应。因此,制定一套综合性的生活方式干预方案,将姜黄素的服用与膳食、运动等措施相结合,有望发挥协同增效作用。

✔ 未来的个性化药物方案探索

随着精准医学的发展,可以通过多组学(如基因组、代谢组、微生物组)的综合分析进一步解析姜黄素与个体肠道菌群之间的交互机制,从而设计出针对不同疾病状态(如炎症性疾病、肿瘤或代谢性疾病)的个性化姜黄素使用方案。

临床上可设计小规模试验,通过定期监控个体肠道菌群变化姜黄素血药浓度和临床指标,进一步验证联合微生态调控和个性化姜黄素给药的效果,逐步形成标准化的治疗模式。

结语

姜黄素肠道微生物群双向互作开辟了天然药物对健康影响的新视角。一方面,肠道菌群通过多种酶促途径(还原、去甲基化、羟基化等)将姜黄素转化为具有独特生物活性的代谢物,显著提高其生物利用度;另一方面,姜黄素作为天然益生元调节菌群丰度与多样性增加有益菌如乳酸菌的比例,抑制有害菌繁殖,改善肠道屏障功能减轻炎症水平

这种协同互利的关系使姜黄素能够在临床治疗中发挥多种健康功效,从炎症性肠病、结直肠癌等胃肠道疾病,到肥胖、糖尿病等代谢性疾病,甚至阿尔兹海默病神经系统疾病

随着精准医学发展,未来结合肠道微生物组测序个性化给药策略,有望开发出更精准、高效的药物应用方案,不仅提高其生物利用度,更能充分发挥其治疗潜力。姜黄素与肠道微生物群的协同作用只是连接传统草药现代精准医学的一个例子,为健康产品市场提供了极具价值的科学依据和创新方向。

主要参考文献:

Balaji S, Jeyaraman N, Jeyaraman M, Ramasubramanian S, Muthu S, Santos GS, da Fonseca LF, Lana JF. Impact of curcumin on gut microbiome. World J Exp Med. 2025 Mar 20;15(1):100275.

Zhu J, He L. The Modulatory Effects of Curcumin on the Gut Microbiota: A Potential Strategy for Disease Treatment and Health Promotion. Microorganisms. 2024 Mar 23;12(4):642.

Obrzut O, Gostyńska-Stawna A, Kustrzyńska K, Stawny M, Krajka-Kuźniak V. Curcumin: A Natural Warrior Against Inflammatory Liver Diseases. Nutrients. 2025 Apr 18;17(8):1373.

Scazzocchio B, Minghetti L, D’Archivio M. Interaction between Gut Microbiota and Curcumin: A New Key of Understanding for the Health Effects of Curcumin. Nutrients. 2020 Aug 19;12(9):2499.

Zam W. Gut Microbiota as a Prospective Therapeutic Target for Curcumin: A Review of Mutual Influence. J Nutr Metab. 2018 Dec 16;2018:1367984.

Servida S, Piontini A, Gori F, Tomaino L, Moroncini G, De Gennaro Colonna V, La Vecchia C, Vigna L. Curcumin and Gut Microbiota: A Narrative Overview with Focus on Glycemic Control. Int J Mol Sci. 2024 Jul 14;25(14):7710.

Hewlings SJ, Kalman DS. Curcumin: A Review of Its Effects on Human Health. Foods. 2017 Oct 22;6(10):92.

Pluta R, Januszewski S, Ułamek-Kozioł M. Mutual Two-Way Interactions of Curcumin and Gut Microbiota. Int J Mol Sci. 2020 Feb 5;21(3):1055.

Di Meo F, Margarucci S, Galderisi U, Crispi S, Peluso G. Curcumin, Gut Microbiota, and Neuroprotection. Nutrients. 2019 Oct 11;11(10):2426.

肠道微生物组发育轨迹可以预测儿童健康

谷禾健康

人体肠道微生物组对消化、免疫调节、代谢平衡、抵抗病原体整体健康至关重要。在儿童发育中,生命最初两到三年的肠道微生物组发展是影响终生健康关键期

出生时几乎无菌的婴儿肠道迅速发展为复杂的微生物生态系统,经历连续的群落更替和成熟。这一过程不仅是对环境的被动适应,更是与宿主生理发育协同的积极进程,对免疫系统代谢功能的正常发展具有决定性作用

近年来,随着高通量测序技术的进步,我们对婴儿肠道微生物组的理解已经从描述性分析转向更深入的功能和临床相关性研究。然而,目前关于婴儿微生物组发育轨迹的大规模纵向研究依然有限,尤其缺乏将微生物群落动态变化远期健康结果相关联的研究。

婴儿微生物组发展能否预测未来健康状况?是否存在”健康”或”最优”的微生物组发展模式?哪些环境因素早期暴露会影响微生物组的发展方向

近期发表的一项大规模纵向队列研究或许能解答此问题。研究人员对芬兰赫尔辛基地区967名3周至24月龄婴儿进行肠道微生物组纵向跟踪(谷禾肠道菌群数据库也纳入了该队列数据),旨在揭示其婴幼儿生长发育的规律,并通过建立和评估微生物组健康指数(MWI)探明与其远期健康的关联性。

研究发现肠道微生物组的发展遵循可预测的轨迹,这些轨迹受到出生方式、喂养类型早期抗生素暴露等因素的调节,并与儿童期的健康状况具有重要关联。通过这项研究,我们期望为理解肠道微生物组早期生命中的作用提供关键见解,并为指导干预措施优化婴儿肠道微生物组提供科学依据。

研究背景

★ 研究意义

1.证明肠道微生物群的重要性

2.对早期生活的影响

3.健康预测

★ 研究特点

1.大规模队列:研究使用了一个包含近1000名婴儿的大型纵向队列,监测了从出生到5岁的健康数据。

2.多时间点采样:收集了婴儿前两年内的6203份粪便样本,进行肠道微生物群的分析。

3.微生物群发展轨迹:通过聚类和轨迹建模,识别出五种不同的肠道微生物群发展轨迹。

4.健康指数:创建了一个基于健康发展轨迹的肠道微生物群健康指数,用于评估婴儿的整体健康状况。

5.关键微生物:研究发现双歧杆菌和拟杆菌是早期的关键微生物,指导微生物群的发展,并持续预测积极的健康结果。

6.影响因素:研究分析了多种因素(如分娩方式、饮食、抗生素使用)对肠道微生物群发展的影响。

★ 研究目标

1.描述婴儿前两年内肠道微生物群的发展模式

2.识别与健康相关的微生物群发展轨迹

3.创造一个肠道微生物群健康指数,用于预测婴儿的健康风险。

本研究旨在提供对婴儿肠道微生物群发展的深入理解,说明肠道微生物群在预测健康方面起着重要的作用,并为改善婴儿健康提供新的工具和方法。

研究人群

研究使用了来自芬兰赫尔辛基的一个纵向出生队列,共收集了984名婴儿的粪便样本和健康数据。样本在婴儿3周、6周、3个月、9个月、12个月和24个月时采集。

儿童健康、发育和健康相关数据是从父母填写的问卷中收集的,由两种类型的变量组成:

(a)2岁时医生诊断的过敏性疾病,或5岁时确诊的特应性皮炎、过敏性鼻炎或哮喘;表型过敏,即基于ISAAC问卷的上述疾病在2或5岁时的症状;2或5岁时按世卫组织标准的异常身高或体重(>2或<-2SD);下呼吸道和上呼吸道感染、胃肠感染、耳部感染、痘病毒感染或发热的发生率。罕见感染(N<5)被排除。

(b)正常变异和主观评估:2或5岁时轻度异常身高或体重(>1或<-1SD);父母用VAS量表(0-100mm)对儿童健康状况较低评分;2岁前胃肠功能(排便、胃痛、胀气)表现;3个月龄时基于哭闹时间的婴儿分类。

研究方法

•纵向出生队列

-采用纵向队列研究设计,跟踪婴儿从出生到2岁,甚至到4-5岁,以观察肠道微生物群随时间的变化

•样本收集

在婴儿的3周、6周以及3、9、12、18和24个月时收集粪便样本。

•微生物组测序

对粪便样本进行16S rRNA基因测序,以分析肠道微生物群的组成。

•数据分析

-使用统计软件(如R语言)进行数据分析。

-应用线性混合模型(LMM)来分析微生物群随时间的变化。

-使用机器学习算法(如随机森林)来识别与过敏性疾病相关的微生物特征。

•问卷调查

通过在线问卷收集关于母亲和婴儿的信息,包括生活方式、环境暴露、儿童饮食、健康等。问卷在多个时间点进行,以跟踪变化。

•过敏性疾病诊断

根据国际疾病分类(ICD-10)代码或医生诊断记录来确定过敏性疾病的发生。包括食物过敏、哮喘、湿疹和过敏性鼻炎。

•统计分析

-使用多变量回归分析来评估肠道微生物群过敏性疾病之间的关系。

-考虑潜在的混杂因素,如母亲的过敏史、抗生素使用、分娩方式等。

通过这些综合方法,能够全面评估婴儿肠道微生物的发展轨迹,并探索其与过敏性疾病风险及健康结果之间的关联。

研究结论

1

影响婴儿肠道微生物组的因素

在肠道微生物群组成中观察到一个明显的年龄梯度,婴儿肠道微生物群在生命的前两年逐渐接近,但没有达到成人样组成。

在最初的6个月(26周),婴儿肠道微生物群的组成在个体之间差异很大,但此后趋于一致

984名婴儿的肠道微生物群

doi: 10.1038/s41467-024-52561-6.

注:主坐标分析展示了对数转换微生物属相对丰度的Pearson相关距离。图中不同颜色代表3至104周的婴儿年龄,父母微生物群以黑色表示。图b和图c分别显示PC组件2和PC组件1与年龄和分娩方式的关系,组中值用大圆圈标识。

肠道菌群组成的最重要决定因素是前26周的出生方式抗生素暴露、第一年的排便率以及1至2岁(52-104周)的饮食和家庭组成母亲特征在所有时间点都有适度且一致的影响,并且母亲微生物群组成在26周时变得有影响力,随着时间的推移而增加。

婴儿肠道微生物组的影响因素

doi: 10.1038/s41467-024-52561-6.

2

婴儿微生物群落类型

研究者使用K-means聚类和log-pearson距离方法,在属水平上对婴儿样本进行分析,确定了四种主要的微生物群落类型(C1-C4),这些类型随着婴儿年龄发展而呈现规律性变化

•C1型(绿色)

主导菌群:双歧杆菌属(39.2%)和拟杆菌属(12.8%);

特点:放线菌门和拟杆菌属成员覆盖超过50%的相对丰度;

时间分布:主要在婴儿生命的前26周出现;

常见于:未接触抗生素的阴道分娩婴儿;

粪便特征:多为黄色粪便。

•C2型(蓝色)

主导菌群:几乎没有双歧杆菌(4.8%),梭菌科(13.4%)和肠杆菌科(25.7%)相对丰度高;

特点:微生物丰富度最低,潜在致病菌相对丰度最高;

时间分布:主要在婴儿生命的前26周出现;

常见于:剖腹产婴儿和接触抗生素的阴道分娩婴儿;

粪便特征:相比C1更容易出现绿色粪便。

•C3型(橙色)

主导菌群:双歧杆菌科(27.3%)、乳杆菌科(18.5%)和韦荣球菌科(20.1%);

时间分布:39-52周(9-12个月)时常见;

常见于:大多数婴儿在9个月左右;

粪便特征:棕色。

•C4型(红色)

主导菌群:毛螺菌科(30.0%)和瘤胃球菌科(30.0%)为主;

特点:微生物丰富度最高;

时间分布:52周(12个月)后常见;

粪便特征:多为棕色粪便,反映固体食物增加。

微生物群落类型

doi: 10.1038/s41467-024-52561-6.

微生物丰富度存在差异

微生物丰富度在群落类型之间差异很大C4最高C2最低,并且通常显示与婴儿年龄的相关性越来越大潜在致病菌的相对丰度在C2中最丰富

群落决定因素和健康关联

doi: 10.1038/s41467-024-52561-6.

(a)微生物群落类型决定因素的分区树;

(b)使用负广义线性模型分析了不同年龄段微生物群落类型之间的时间演变及其与5岁时健康结果的关联。

不同微生物类型与健康结果相关

分析各时间点微生物群落类型与2岁和5岁健康结果的关联发现,C2型与不良健康结果尤其是过敏性疾病风险增加相关。

6个月前属于C3型儿童过敏性疾病风险增加,5岁时身高Z评分低于-1标准差。12个月前过渡到C4型与2岁时身高Z评分低于-1标准差相关,但C4型2岁时哮喘诊断呈负相关。12个月时,C1型胃肠道感染有关。

3

微生物组发展轨迹

婴儿肠道微生物组发展高度可预测,遵循五种轨迹之一。

T1轨迹(最常见,47%)

特征:前6个月C1成员稳定,9个月过渡到C3,12-18个月过渡到C4;

菌群:这些婴儿的双歧杆菌的初始相对丰度很高,其相对丰度逐渐下降,最初被韦荣氏球菌属取代,然后被粪杆菌和毛螺菌科的成员所取代;

相关因素:未接触抗生素的阴道分娩、母乳喂养、有兄弟姐妹;

健康关联:与较好的健康结果相关;

微生物稳定性:最稳定的微生物群组成。

T2轨迹(11%)

特征:最初位于C1,但在转移到C3之前转移到C2;

菌群:双歧杆菌迅速减少,梭菌和克雷伯菌短暂增加;

微生物稳定性:9个月大时表现出最大的波动性

T3轨迹(9%)

特征:开始于C1,但在前6个月在C1和C2之间反复振荡;

微生物稳定性:3-12周时表现出最高的波动性

T4轨迹(18%)

特征:T3的反向模式,从C2开始的婴儿在前6个月在C1和C2之间波动,在6-9个月时双歧杆菌达到峰值。

T5轨迹(14%)

特征:前6个月持续处于C2状态;

菌群:梭菌和克雷伯氏菌相对丰度较高。

微生物群发展轨迹、决定因素和与健康结果的关联

doi: 10.1038/s41467-024-52561-6.

影响微生物发展轨迹的因素:

轨迹T1-T3与阴道分娩相关,T4和T5则与剖腹产阴道分娩预防性抗生素使用相关。T1独特地与有兄弟姐妹、住单户住宅和前12个月纯母乳喂养相关。

T2婴儿向C2型过渡可能由配方奶喂养无兄弟姐妹促成,这些婴儿更常接受益生菌T3中C1和C2间波动主要与缺乏兄弟姐妹及较低社会经济地位相关。T4的微生物群自发校正可能由母乳喂养或其他高社会经济地位相关因素驱动。

不同微生物轨迹的健康结果:

T1与多项健康指标呈负相关前2年过敏症状上呼吸道感染风险降低,0-6个月发烧报告减少,5岁时过敏性鼻炎诊断减少,5岁时ISO-BMI Z评分不超过1标准差,2岁和5岁时身高Z评分不低于-1标准差。

T2与2岁时特应性风险和前2年父母报告的过敏症状增加相关。

T3与2岁时父母报告的过敏症状减少有关。

T4和T5均与2岁时身高Z评分低于-1标准差,以及0-6个月间上呼吸道感染和发热相关。由于T4的微生物群校正,这些婴儿5岁时未表现出T5所见的生长改变或过敏性鼻炎风险增加。T5还与5岁时特应性风险增加相关

总体而言,微生物组轨迹健康结果的相关性强于单个时间点的微生物组类型,表明纵向发育分析提供更多信息

与年龄相关的细菌属:

数据分析中,我们识别出一组随年龄变化的细菌属。这些分类群在各发育轨迹中展现相似模式,主要分为早期(放线菌门、拟杆菌属、肠杆菌门、Negativicutes、Bacilli)和晚期(主要是梭状芽胞杆菌)两组。

然而,某些关键类群,如双歧杆菌属拟杆菌属,在不同的轨迹中表现出不同的时间模式

4

微生物组健康指数

微生物组健康指数(MWI)是研究者基于大型婴儿队列(近1000名婴儿)的健康发展轨迹开发的一种评估指标,用于预测婴儿整体健康状况。该指数代表了基于微生物群落组成估计婴儿属于健康参考组的概率

★ 关键有益指示菌:

最强的总体积极关联见于双歧杆菌(Bifidobacterium)和拟杆菌(Bacteroides),这两类菌群一致地指示健康参考微生物组。

随年龄增加积极关联增强的菌群:Eisenbergiella, Oscillibacter, Parabacteroides, Anaerostipes, Streptococcus

★ 负面指示菌:

随年龄增加负面关联增强的菌群:Lachnospira, Faecalicatena, Lacrimispora, Klebsiella, Sutterella。

★ 年龄依赖性:

大多数指示菌显示年龄依赖性关联

某些菌群展示暂时性负面关联(Roseburia, Faecalibacterium);

某些菌群展示暂时性正面关联(Citrobacter, Blautia, Gemmiger, Hungatella)。

微生物群健康指数

doi: 10.1038/s41467-024-52561-6.

★ 健康预测能力:

MWI在患有过敏性疾病生长差异的婴儿中显著降低

在详细分析中,MWI与多种健康结果相关,包括从过敏性疾病到2岁和5岁时的生长指标;

预测感染发生率

★ MWI的优势:

整体评估:超越单个菌群评估,考虑整个微生物群落结构对宿主健康的影响;

发展视角:将肠道菌群演替视为婴儿生理发育的一部分,与免疫系统成熟有关;

预测能力:可预测前5年的总体健康状况,有助于早期识别健康风险;

实用性:相比成熟度指数,能更好地区分不同的发育轨迹和捕捉各种健康关联。

结语

通过对近1000名婴儿的前瞻性纵向队列研究,首次系统阐明了人类婴儿肠道微生物组发展的规律性和可预测性。确定了四种主要的微生物群落类型(C1-C4),这些类型随着婴儿年龄发展而呈现规律性变化。并且不同微生物类型健康结果相关。

婴儿肠道微生物组发展遵循五种主要轨迹的预设路径,非随机发生,并受出生方式、喂养类型抗生素使用等因素显著影响。研究确立了双歧杆菌拟杆菌作为关键早期定植微生物,它们在引导整个微生物组健康发展中起着决定性作用。

基于这些发现,建立的微生物组健康指数(MWI)不仅能够评估婴儿当前肠道微生物组的健康状态,还能预测未来5年的整体健康结果,包括过敏性疾病风险、生长发育状况感染易感性。这一指数的建立将微生物组分析从描述性研究提升至具有临床预测价值的工具,为精准医疗提供了新的维度。

需要注意的是,该研究仅使用了来自芬兰地区的婴幼儿样本,其开发的微生物健康指数(MWI)目前仅适用于北欧地区的婴幼儿样本,更大范围的应用还需要纳入更多地区和年龄的样本。

主要参考文献:

Hickman B, Salonen A, Ponsero AJ, Jokela R, Kolho KL, de Vos WM, Korpela K. Gut microbiota wellbeing index predicts overall health in a cohort of 1000 infants. Nat Commun. 2024 Sep 27;15(1):8323.

谷禾健康肠道菌群健康检测介绍

肠道菌群健康检测报告——常见问题解析

谷禾健康

在持续的肠道菌群检测实践过程中,我们收到很多新的问题反馈和对肠道菌群检测在具体问题中的疑问。在此谷禾基于长期和大规模样本群的经验以及实验分析,对部分常见问题进行汇总和整理。

一次肠道菌群检测好比一场健康考试,你拿到报告的那一刻,等同于拿到了你考的那张卷子,那么你首先会关心自己考了多少分。

在肠道菌群检测报告中,同样也有基于肠道菌群的健康评估分数,即健康总分

01 健康总分

基于大数据和整体性评估,报告中会给出健康总分这项指标。这个健康总分是如何计算得出的?

还是拿我们最熟悉不过的考试举例,一场语文考试可能包括了拼音词语、阅读理解、写作等模块,所以最后你的总分是综合各个模块的测试之后得到的(比如说拼音写错了扣1分,阅读理解错了一题扣5分……),通过各模块测评后得到的总分反映的是你的综合能力。

健康总分也是一样,综合计算了三个部分:肠道菌群健康状况疾病风险情况营养饮食均衡情况综合评估计算。总分100分,采取扣分制,疾病风险和营养不均衡以及菌群失衡都会相应的减分。

以上是具体的评分标准。

健康总分可以说是非常直观的一个指标,除此之外,整体性评估指标还有一个:肠道预测年龄

02 肠道预测年龄

生理年龄是指人达到某一时序年龄时生理和其功能所反映出来的水平,是从医学、生物学角度来衡量的。

谷禾肠道预测年龄是基于超过6万人群队列的深度学习模型构建的,对健康人群的肠道年龄预测真实生理年龄吻合度很好

肠道预测年龄和生理年龄就像齿轮运作,井井有条匹配状态,身体这个系统运作起来相对健康轻松。

疾病人群或菌群紊乱人群,肠道年龄会较大偏离真实年龄,也就是这个齿轮系统出现一些偏差问题。

如果肠道菌群多样性下降,且以大肠杆菌为主,可能会被预测为10岁以下儿童,也就是预测年龄远小于真实年龄。

如果存在较多病原菌,则预测年龄会偏向远大于真实年龄。

如果菌群预测年龄和实际生理学年龄相差很大,如何解读?

还是用考试来说,每个年龄段都应具备该年龄段的能力。如果你是一个初中学生,那么就应该答出初中阶段学生该会的题,这时候给你做个测评,发现还停留在幼儿园水平或者已经到了大学生水平,要么太幼稚要么太早熟,都不符合健康的身心发展规律

肠道预测年龄同样,如果肠道预测年龄偏离实际年龄很大,两种情况,一种是偏大,另一种是偏小

这两种情况均表明菌群发育成熟偏离了实际生长发育,我们均认为其代表菌群状况不太好,存在菌群异常或不健康状况。

如果偏小,即肠道年龄远小于生理学年龄,一般菌群发育滞后或者偏幼龄,菌群构成简单,代谢以及免疫功能不完善。

如果偏大,即肠道年龄远大于生理学年龄,一般菌群多样性下降,变形菌、肠杆菌等致病菌增多,核心菌属构成比例低等。

而在正常范围内,肠道预测年龄小于生理学年龄,那么表示菌群发育正常,菌群构成和代谢偏向于更年轻,比较好。那么什么是正常范围呢?

谷禾肠道年龄预测如下范围内表示正常:

0~2岁:偏差小于3个月

3~5岁:偏差在6个月以内

6~15岁:偏差在1岁左右

16~50岁:偏差在3岁以内

50岁以上:偏差在5岁以内

真实年龄与肠道预测年龄在范围内的差异可以反映其肠道菌群的发育和衰老状况。以下情况可能会导致肠道预测年龄完全偏离真实年龄,包括:

▪ 肠道菌群紊乱

▪ 菌群结构过于单一

▪ 近期服用可能严重干扰菌群的药物(如抗生素)

▪ 病原菌感染或者处于疾病状态

▪ 长期补充益生菌

由于肠道年龄考虑了整体的肠道菌群结构,如果肠道年龄严重偏离真实年龄,通过干预调整或去除上述干扰因素肠道年龄是能够恢复正常范围,但该干预周期一般需要1个月以上。

03 有益菌、有害菌

有益菌

有益菌包括益生菌,益生菌主要来自两个菌属:

分别是双歧杆菌属乳杆菌属,目前已获得批准的有效益生菌菌株均来自这两个细菌属。

其中双歧杆菌可有效改善肠道状况,而特定的乳杆菌菌株可以改善精神健康,包括焦虑和情绪,也能改善肠道健康。双歧杆菌和乳杆菌也是人体肠道菌群中常见的菌。

虽然说是常见菌,却不见得它们数量多。在成年人肠道菌群中,双歧杆菌的比例较低,在1%左右乳杆菌更是低于1%,甚至很多人(20~40%)的肠道菌群中比例低至万分之一

下表是谷禾检测的益生菌列表,列出了主要的常见益生菌。

除了上述益生菌,有益菌还包括下列种属,这些菌属是构建肠道菌群的核心菌属,在评估有益菌水平时根据菌属对肠道菌群结构的重要性会给予不同的权重。

Faecalibacterium、Ruminococcus、Roseburia

Phascolarctobacterium、Prevotella、Parabacteroides

Oscillospira、Megamonas、Lachnospira

Lachnoclostridium、Gemmiger、Eubacterium

Coprococcus、Dorea、Dialister

Clostridium、Blautia、Bacteroides

Akkermansia、Alistipes、Agathobacter

通常益生菌的检出率比较低,一般在益生菌补充一周左右报告中可以体现。从大数据来看,益生菌检出的同时,菌群的相关指标也会有所提升,比如说有害菌降低,改善菌群平衡状况。

有害菌

有害菌和肠道内的其他共生菌共同构成菌群微生态,也是大部分人群肠道内常见的菌群。

有害菌是相对而言的,正常肠道菌群也包含许多这些菌属的菌,但有害菌比例或个别菌属丰度超标可能预示着肠道菌群的健康状况受到破坏。这些菌过多会影响肠道内环境,如pH值,含氧量以及肠道内毒素等,可能会导致出现一些机会感染和机会致病菌入侵,进而诱发炎症和疾病

我们报告中的有害菌包含了致病菌条件致病菌,以及属内主要菌种为致病菌的属。为便于统计,我们在计算的时候统一按照属层级进行计算比例。

报告中的有害菌包括了以下的菌属:韦荣氏球菌属、葡萄球菌科、变形菌属、弓形菌属、弯曲菌属、螺杆菌属、厌氧螺菌属以及弧菌属等

在肠道菌群检测报告中会有对有益菌,有害菌的整体评估。

如果有害菌过多,通常建议服用益生菌或益生元的方式首先增加有益菌的比例,相应的有害菌比例就会降低。想要持久的改善菌群结构降低有害菌水平就需要改善生活方式适当增加抗性淀粉等膳食纤维并规律饮食和睡眠增加运动等。

04 肠道菌群平衡 / 失衡

整个生态系统平衡对于地球而言十分重要,同理,肠道菌群平衡对于我们人体健康也很重要。健康的肠道菌群丰富且多样性高。

菌群失调是指体内微生物群不平衡,这可以表现为某些细菌的出现率较高,细菌的出现率较低,细菌的多样性不足,有害菌,有益菌比例失调等。

通常临床上采用大便常规检查,通过显微镜下观察统计染色细菌中杆菌和球菌以及革兰氏阴性和阳性菌的比值是否超标来判别的。

其中致病菌多为球菌和革兰氏阴性菌,而肠道有益菌多为杆菌和阳性菌,因而在传统临床上简单比较两者的比值评估是否菌群紊乱,是相对比较粗放的。

谷禾菌群检测报告中的菌群失调

基于高通量测序可以精准的检测低至万分之一水平的菌,甚至可以分类到种水平,因此可以更加精细化评估菌群是否出现紊乱和异常。

基于谷禾超过30万人群的菌群数据库分析结果,我们将在90%的人群都有检出,且人群平均丰度1%以上的菌属做为核心菌属。这些核心菌属通过长期与人类共生,在帮助消化复杂碳水化合物和产生短链脂肪酸外还影响整个肠道环境,抑制病原微生物的定植生长。因此当这些核心菌属占总肠道菌群比例低于60%时,肠道菌群很可能处于紊乱状态。

【谷禾健康菌群数据库】

详见:肠道菌群失衡的症状、原因和自然改善

如果出现菌群严重失衡,例如致病菌占了相当大比例,那么首先应考虑针对致病菌使用相应的抗生素治疗,然后再通过益生菌补充饮食、生活方式的改变进行调理,直到菌群恢复平衡。

05 菌群多样性

多样性包含两个维度。

一个是肠道菌群种类,人群中肠道菌群的种类参考范围在100~2000种,种类数量越多样性越

另一个维度是均匀性,即各个菌种的含量丰度较为均一没有出现单一菌种占据绝大部分的情况。

多样性的评估一般通过一个叫做香农-维纳多样性指数的指标来进行评估,计算公式为:

H=-∑(Pi)(log2Pi)

其中Pi为每个菌的占比例,值越大代表物种种类越多,均匀性也更好相应的多样性也越高正常人群中香浓指数在2~9之间,一般大于3以上表明具有一定多样性。

换句话说,肠道菌群多样性表现在:微生态系统的稳定性,以及面对外界致病菌等入侵的抵御能力

一定范围内,更高的多样性通常代表饮食更加丰富多样,同时也意味着更健康的身体状况。

菌群多样性可能与下列情况有关:

环境,农村儿童比城市儿童菌群多样性高;

饮食,低脂饮食与菌群多样性较高有关;

年龄,长寿老人的菌群多样性较高;

……

多样性低不代表一定有疾病,但是更容易到饮食,环境或疾病的影响,包括更易发生水土不服或更容易因饮食不洁导致腹泻等。

多样性可能与下列情况有关:

分娩方式,剖腹产宝宝菌群多样性较低;

饮食营养,营养不良的孩子菌群多样性会下降;

药物,抗生素的使用会大幅降低菌群多样性,并且需要一段时间才能恢复。其他药物也会降低菌群多样性,如治疗胃溃疡和反酸的质子泵类药物也会导致菌群多样性降低;

环境,医院的ICU病房、更衣室等消毒严格,可能导致环境菌群多样性下降。

此外,神经系统、代谢、免疫等慢性疾病也与多样性下降有关。

你可以通过在饮食中增加纤维素,从高脂饮食逐渐转为低脂饮食来提高菌群多样性,另外规律运动也可增加多样性。

另外,我们在实际检测中会发现有这样一种情况:

多样性指标虽然很高,但是整体看起来健康总分并不理想。甚至还有很多慢性疾病风险,这是为什么呢?

这种情况可能是核心菌群丰度不够,核心菌群在代谢、免疫等方面都发挥重要作用,一旦核心菌群丰度下降,则可能造成外源物质侵入。感染、旅行等可能会出现这种情况。

06 致病菌/病原菌

看过我们检测报告的可能会发现,报告里有包括肠道致病菌病原菌,分别代表什么?

<篇幅关系,此处仅展示部分>

肠道致病菌列出了最主要和常见的感染类肠道致病菌。(注意这里重点是肠道

病原菌中给出的包括几十种人体的致病菌,不仅仅是肠道的。<如果没有检出就没有列出>

病原菌和条件致病菌的区别是什么?

病原菌一般极少存在于健康人的肠道菌群,正常范围很小,条件致病菌一般会在正常人群的肠道内存在,丰度较高或菌群结构单一到一定程度会引发疾病。如大肠杆菌和肺炎克雷伯氏菌正常人群中都会有检出,但当丰度较是就会导致肠道菌群紊乱或疾病

报告中如果出现病原菌超标的情况,不一定直接认为有病,需要结合症状

如果出现相应的腹泻等症状需要考是不是因为这些病原菌导致的。单纯超标如果没有症状只是表面有病原菌摄入,注意一下饮食和生活卫生,无须过于担心。

★ 幽门螺杆菌

为什么在医院检查出幽门螺杆菌感染,而报告中并未显示?

注意:本检测未检出并不代表完全不存在该致病菌感染,可能由于比例或其他因素未能达到检测丰度或未检出。

如果肠道菌群检测报告中检出幽门螺杆菌,是否需要去医院进行幽门螺杆菌呼气检测?

如果肠道菌群检测报告显示该项为超标,且同时存在胃部不适或其他胃酸、胃胀等症状,建议前往医院进行幽门螺旋杆菌检测,及早发现治疗。

 沙门氏菌

在食物中毒案例中,通常伴随着沙门氏菌,沙门氏菌粘附到肠上皮表面是发病机制中重要的第一步,并且是其在肠道定植的核心。

关于沙门氏菌的治疗及预防详见:食物中毒一文

扩展阅读:细菌大盘点(二) | 葡萄球菌、沙门氏菌、弯曲杆菌

通过以上部分,我们大概了解了菌群的构成及其扮演的角色,那么我们能利用检测到的这些菌的信息,给我们的健康带来什么帮助呢?

很重要的几个点:

第一,也就是前面所述的,菌群的构成本身就可以反映你的肠道内的环境是不是健康菌群,如果紊乱,它会带来很多的问题,比如说儿童菌群紊乱,可能会营养不良,因为菌群紊乱本身会影响营养吸收。

第二,对病原物的抵抗,也就是说身体是不是比较容易出一些状况,比如说腹泻,感染等问题。

第三,它还会诱发一些长期的慢性疾病,比如说糖尿病,实际上当然饮食是一个问题,但是有一些炎症相关的菌群,会诱发慢性的持续的炎症,从而导致慢性疾病的发展

这就是我们接来下要讲的,疾病风险这块内容。

07 疾病风险

目前我们疾病风险检测部分包括16类主要疾病,根据疾病检测准确度稳定性,我们将检测疾病的水平分为三个等级:低风险、中风险和高风险

根据每种病的分值,0~0.3归为低风险,0.3~0.5评估为注意,0.5~0.7为中等风险,超过0.7为高风险。

目前报告中提供的疾病均经过大量病例样本检验并且准确率超过90%,虽然不作为疾病的诊断依据,但是其分值的高低仍然具有很强的指示作用

0-0.3

如果某种疾病的风险值低于0.3以下表明菌群状态提示疾病风险较,不同身体条件和生活方式下会有0.05的波动

0.3-0.5

如果某种疾病的风险值位于0.3~0.5之间我们认为属于疾病前期阶段,通过饮食调理和相应的注意就可以降低风险。

0.5-0.7

如果某种疾病的风险值位于0.5~0.7之间表明可能患有该疾病处于疾病风险阶段,这时候我们建议最好前往医院相关科室进行检查,如果不便前往医院也可根据建议先进行饮食调理和相应的注意,一般一个月后再进行一次检测查看疾病风险是否下降到正常范围,如果仍然较高甚至升高建议最好前往医院复查。

0.7- 1

如果某种疾病的风险值超过0.7表明有很大可能已患有该疾病,且分值越高表明风险越高。因此我们强烈建议去医院进行相应检查并听从医生建议。

注意:本检测目前尚不属于医疗诊断,疾病分值作为提示,低分值不代表完全没有疾病,只表示风险较低,也可能存在一定的未检出。高分值只表示存在很大疾病风险,疾病的确诊和精确诊断需要通过进一步的医疗检查确认。

说到这里,可能有人对以上这个0.3,0.5…这些风险值有所不解,风险值是你们自己确定的吗?如何计算得出这个值的呢?有参考依据吗?

这里我们来了解一下风险值的计算。

通过模型的构建和大规模人群队列的测试和学习,现在大概已经有几十种病,我们可以比较好的通过菌的构成,来预测到底有没有这个疾病。虽然现在它还做不到直接确诊,但它可以起到一个很好的提示作用,以及对病程进展的评估。

那么,具体哪些方面的疾病跟菌群有重要的关系,并且能够用菌群来预测和评估呢?

消化系统疾病

首先当然是消化道疾病,这很好理解,因为菌群本身就在消化道环境内。像肠炎,就包括克罗恩病,溃疡性结肠炎之类的,还有消化性的腹痛、腹胀这些问题,可能是由于菌群的特征变化造成。

炎症性肠病中的菌群失调

详见:炎症性肠病一文

还有过敏性腹泻,有人可能对一些食物过敏,吃完之后会导致一些腹泻,菌群特征变化很明显,包括甚至一些肠道病毒的感染,比如说诺如病毒、轮状病毒的感染。它也会体现出非常特定的菌群变化特征

在肠道菌群检测报告中,这类疾病风险呈现如下:

上图样本可以看到胃病有中等发现,其备注信息里有填:胃痛,可能要开始注意这方面的疾病隐患,通过饮食等调理一段时间,或前往医院就诊。

★ 胃癌

胃部更严重一点的疾病就是胃癌,胃癌与肠道菌群之间也有很大关系,最近,在“谷禾开放基金项目”中,也有相关论文也已发表。

肠道菌群区分胃癌患者和健康人方面具有高度的敏感性和特异性,表明肠道微生物群是胃癌诊断的潜在无创工具

胃炎与胃癌具有某些微生物群特征,化疗降低了胃癌患者的微生物丰度和多样性乳酸杆菌Lactobacillus巨球菌Megasphaera,是胃癌的预测标志物

★ 结直肠癌

现在已经有多项研究表明,通过菌群可以做一个很好的标志物。虽然做不到所有的结直肠癌患者都能够被检出,但是最终的准确率相对来说还是挺的,甚至比一些,包括肿瘤标注可能还要更高一些。

我们现在大概能做到70%多的肿瘤患者是能被筛查出来。并且准确度其实能够到90%,作为普筛或者健康评估来说,已经是一个比较有效的标志物了。

化疗与手术大幅降低风险分值,但仍比健康人高。

此外,结直肠癌会经历从息肉到腺瘤到癌症多个阶段,应结合年龄和家族史判断息肉和结直肠癌。

肝胆类疾病

肝脏类疾病,比如说非酒精性脂肪肝跟肠道菌群有相当大的关系。

不同肝病有不同的菌群特征,尤其是脂肪肝的严重程度,肝功能异常的严重程度。

扩展阅读:深度解析 | 肠道菌群与慢性肝病,肝癌

因为菌群会产生大量的刺激代谢物,这些代谢物本身可能会加重肝脏的负担,并且诱发一些肝脏的疾病,但反过来肝脏的代谢能力的减弱和一些慢性肝脏疾病进展又会反映在菌群的构成上,所以它们是相互的。当然也可以用菌群的构成来反映具体肝病的特征。

由于不同阶段肝功能异常,脂肪肝等情况都统一归类在肝病这个大类,因此目前还无法判断确切的疾病分类,后续如果有更多细分疾病的样本用于建模,报告也会随之迭代更新。

代谢类疾病

代谢类疾病,比如糖尿病,肥胖等,都与肠道菌群有密切关联。

★ 2型糖尿病

2型糖尿病的发病率越来越高,也有更多人开始关注菌群与2型糖尿病的关系。很多文献都有报道它们之间的关联性。

2型糖尿病人群中个体微生物群的差异

Cunningham A L et al., Gut Pathog, 2021

在2型糖尿病患者普遍具有相对高丰度的特定属:Blautia、Coprococcus、Sporobacter、Abiotrophia、Peptostreptococcus、Parasutterella、Collinsella

2型糖尿病患者中,产生丁酸菌特别缺乏,特别是梭菌目,包括:

Ruminococcus、Subdoligranulum,Eubacterium rectale、Faecali prausnitzii、Roseburia intestinalis 、

Roseburia inulinivorans

详见: 2型糖尿病如何做到可防可控?肠道菌群发挥重要作用

通过肠道菌群检测,一方面健康人群可以查看是否有患病风险,另一方面如果已经患病人群,也可以查看菌群是否异常,推测是否是因菌群显著变化导致的,从而能进行更有针对性的干预。

肠道菌群检测报告中疾病风险预测如下:

2型糖尿病的检出率相对较高,可以达到95%以上,准确的也较高,可以预测早期糖尿病风险

★ 肥胖

目前已有很多关于肠道菌群和肥胖之间关系的研究。

人体摄入大量营养素、肠道菌群与肥胖的关系

↑, 增加;↓,减少;NA,不可用;第三列:营养物质和/或饮食基质与肠道微生物群之间的关系

有人说,为什么我们的肠道菌群报告没有判别测试者是否肥胖?

首先,肥胖不肥胖这个症状是肉眼可见的,也就是说测试者自身已经了解,这种情况下用模型来判别没有意义。

而我们更希望通过肠道菌群检测来可以告诉你,可能是什么因素造成的肥胖,饮食结构的,还是某些菌属代谢问题。

通过菌群知道营养构成,以及是否存在一些特定代谢菌的异常,比如说Akk菌,它是一种在一定程度上帮助减肥的菌群。

如果在你的肠道内该菌特别少,那么可能同样减肥,控制饮食,别人一个月假设瘦十斤,你就不一定能达到这个效果。这些都是菌群可以提供的一些信息。

在肠道菌群检测报告中,会列出肥胖正负相关菌群,及其是否超标。

同理,其他各类肉眼可见的症状(包括腹泻、便秘、腹胀、过敏、皮肤状况等)正负相关菌群都会在报告中呈现,此处就不一一列举。

神经系统疾病

听起来神经系统好像没什么关系,但实际上很多肠道菌群能代谢产生大量神经递质及其他代谢产物。

肠道菌群会影响HPA轴的发育,该轴调节压力反应并参与皮质醇的释放。在抑郁和长期处于压力下的人中,HPA轴可能失调,导致过量的皮质醇(一种压力激素)被循环。

详见:深度解读 | 肠道菌群和中枢神经系统的关系

肠道菌群的部分代谢物质也会通过免疫系统影响神经系统。促炎性细胞因子的失衡可导致慢性炎症和自身免疫性疾病,通常与抑郁症同时发生

通过肠道菌群检测,可以了解体内血清素水平及激素水平,同时也可以了解神经系统相关疾病风险,包括自闭症,抑郁症,阿尔兹海默症等。

肺部疾病

宿主,微生物组和环境之间的三重相互作用在健康功能中维持了肺稳态。

Liu NN, et al., NPJ Precis Oncol. 2020

在大量的临床样本数据当中可以发现,肺部感染,包括社区性肺炎,慢性阻塞性肺疾病,通过血氧浓度和全身的免疫反应,一定程度上是可以反映在肠道菌群上

另外像肺部的感染,比如说在肺炎链球菌之类的感染中,肺部的病原菌可以通过痰或者是呼吸进入到肠道,所以我们在肠道当中是能检测到这些肺部的感染菌,并且随着其严重程度和感染进程,菌群的丰度会越来越高。

肠道菌群检测报告中也有对肺部相关疾病风险提示。

免疫疾病

肺部感染会出现咳嗽等症状,但咳嗽不一定仅是肺部感染,也可能是哮喘。

★ 哮喘

在哮喘中,微生物群是导致肺和肠道之间相互作用的重要因素。肠道微生物可以影响肺部的免疫反应,而肺部刺激可以导致肠道反应。

在一项研究中,来自加拿大的三个月大婴儿哮喘高风险的粪便样本中观察到 Lachnospira, Veillonella, Faecalibacterium, Rothia显著下降。这种菌群特征在1岁时不再明显,同时伴随着粪便乙酸的减少和肝肠代谢物失调

肠道微生物对哮喘的影响部分是由细菌代谢物介导的,1岁时粪便中含有大量丁酸和丙酸的儿童,其特应性敏感性明显降低,3至6岁之间哮喘可能性较小。此外,哮喘患者的粪便中Akkermansia muciniphila 菌水平均有所降低

★ 过敏

已知的婴儿期与过敏性疾病相关的微生物群改变如下:

Diego G. Peroni et al, Front.Immunol. 2020

肠道菌群检测报告中有列出与过敏正负相关菌群,及是否超标。

< 篇幅关系,此处仅展示部分 >

08 营养代谢

菌群生长需要养分,它的食物来源取决于你的肠道,有句话叫:you are what you eat (在我们这篇文章中有详细解释它们之间的关系 深度解读 | 饮食、肠道菌群与健康)。

也就是说,你吃的食物会帮助构建你的专属菌群。有的菌擅长代谢碳水化合物,有些菌擅长代谢脂肪,所以饮食结构不同,也就是食物来源比例不同,最后会塑造不同的菌

那反过来,如果知道你的菌群的构成,就可以相对数量化的去了解你的饮食构成,包括营养摄入具体是什么样子,所以菌群很大的另外一个作用就可以反映你的营养饮食摄入状况

这部分内容在我们报告中的呈现如下:

那么这里可能又会有疑惑,以上这些数值是什么意思,如何计算的呢?

不同的细菌有不同的代谢能力,需要不同的营养物质进行繁殖。通过评估特定营养供给下的偏好菌群的比例,即可反映不同营养物质的摄入比例。所以报告中的主要营养代谢分值评估的是主要营养物质摄入的比例在人群中的分布水平

因此不会出现所有主要营养物质均高或均低的情况,也因此主要营养指标的最佳分值在70,且更关注不同营养物质的均衡性

单项营养物质的分值低于5,表明摄入比例在人群中属于最低的5%,评估为缺乏,低于15评估为偏低。

而如果某项指标达到或超过95,则表明该项可能摄入比例偏高通常对应会有其他营养成分较低。只需要针对性的增加缺乏或偏低的营养成分摄入,维持不同营养成分相对一致即达到营养均衡的目标。

为什么会出现所有的营养指标都很低?

这可能是菌群失调引起的。营养指标的评估是基于菌群构成特征和菌群代谢生成特定营养素的途径来评估的,如果菌群结构异常,将导致后续的预测失常,例如大量氨基酸都评估缺乏的情况。

这时候需要先调节菌群,等菌群指标恢复到一定水平后再次检测,评估营养指标。

09 微量元素

我们日常摄入的除了上一小节提到的宏量营养素之外,还包括微量元素和维生素等。有些维生素比如说B族维生素中有相当一部分,甚至百分之六七十需要通过肠道菌群对初始原料进行代谢之后才会产生,也就是说有些细菌会代谢我们食物中的一些成分,转换成B族维生素

而你的菌群构成代谢B族维生素的能力,会直接决定是否缺乏该类维生素。当然也有部分受基因影响,因此肠道菌群相应的基因和代谢途径的丰度水平也会直接反映这些维生素的摄入水平。

总的来说,菌群在这其中起重要作用。在我们报告中呈现如下:

微量营养元素和维生素的评估分值与主要营养物质不同,是通过调查人群的单项营养成分水平,然后寻找与该项成分异常相关的菌群基于这些菌群和代谢途径计算丰度并转换为人群分布后的值。

简单来说,报告中的微量营养元素的分值即代表该营养元素的摄入水平。

菌群检测营养状况与血液检测有什么区别吗?

通过肠道菌群评估的维生素一般反映一段周期内的维生素状况,因为肠道菌群在没有突发疾病的情况下相对稳定,受一段周期的饮食影响为主,一般是2周。B族维生素是水溶性维生素,每日摄入后会通过尿液代谢排出,通过血液检测,不同时间检测波动较大

菌群评估营养和血液检测营养趋势是一样的,在极端缺乏和极端过量是吻合的,中间档可能在数值上不是完全吻合,血液反映的营养水平比较及时。

当了解了体内的营养素和维生素是否缺乏,以及哪方面的缺乏,就可以进行有针对性地补充。菌群也是需要营养物质的,这就离不开我们的日常饮食,那么该如何补充呢?

10 个体化饮食推荐

我们的肠道菌群检测报告中有个体化饮食推荐表。

<篇幅关系,此处仅展示部分>

以上食物推荐表是怎么来的?

这是经过综合考虑疾病风险营养缺乏状况计算得到的。主要是计算每种食物的营养构成与目前营养状况匹配度,以及特定疾病需要避免的食物

该表推荐的食物分数从-100~100,排序为不推荐到强烈推荐,日常饮食可以参考这个推荐表。推荐分值,表示基于目前的菌群和营养状况对食物的推荐指数,正数分值越大,建议优先选择,同时也是对改善最有帮助;负数分值越大,并不表示不能吃,而是目前状况下不优先推荐或尽量少吃。

p.s. 如果有特殊疾病需要忌口的,优先遵医嘱。

该表包括几百种日常食物,如下图。

<个体化饮食推荐,建议用电脑查看,目前手机端展示不太美观>

对于长期调理菌群而言,饮食无疑是最主要的驱动因素之一。

下一步我们将利用更全和详细的菌群结构,食物营养,人群膳食构成以及营养数据库推出个性化膳食营养升级方案,特别会针对个别菌属的异常和失衡状况以及营养元素异常和缺乏问题。

11 饮食影响菌群检测吗?

前面章节我们知道,通过菌群可以反映你的饮食状况,那么反过来,如果你吃了一个东西,会对菌群检测造成影响吗?是不是菌群就变了,那检测就不准了?

这也是比较重要的一部分,也就是肠道菌群检测的准确性,它能允许多大范围内的变化?什么因素会影响?

其实,菌群变化算快,也不算快。饮食对菌群是有一定影响没错,但这种影响呢,一般来说是前一天的饮食会影响第二天的菌群结构的百分之十几,也就是说,假设你昨天吃大餐,大量吃肉,蛋白摄入非常高,而你之前是以碳水化合物为主的,那么第二天饮食当中,你的蛋白质相关的这部分菌的比例可能会有15%,最高到20%可能会有,但一般来说是在15%以内,会有一个波动

然而,总体的核心菌群构成,不会因为你今天一顿大餐,就直接从素食的变成肉食的菌群结构,核心菌是相对稳定的,那么多久会发生变化呢?

一般来说坚持两周,饮食结构的变化,核心菌群就会发生一个迁移改变。但两周只是一个短暂的周期,如果你两周后又换回先前的那种饮食方式,菌群也会随之改变到之前的状态。那要怎么样才能持久改变菌群呢

这个时间线可能要拉长到两个月

这是在我们的菌群干预中,很多人会遇到的一个周期性的问题。也就是如果你想有效改善菌群,至少需要两周会见到相对明显的菌群结构变化,那如果把干预延伸到持续两个月的周期,甚至是持续干预周期更长,那效果会更好

12 如何正确取样?

取样前饮食会不会造成影响?

前面我们知道,菌群会受检测前一天饮食的影响,造成15~30%的菌群改变,同样也会反映在营养状况的评估上,因此建议检测前一天尽量保持近期正常饮食,这样能更好的反映真实的营养饮食状态。

此外,如果你是在调理一段时间后再次检测,想要和上次比较的话,最好在检测前保持饮食大体相似(意思是不要突然吃和平时不一样的食物或者吃完大餐后取样)。

取样过少会怎么样?

取样不能太少,如果太少的话,可能会影响DNA提取,另外会导致一些低丰度的菌检测不到。

取样过多会怎么样?

如果说取样太少导致样本不合格可以理解,那么取样过多为什么也会有问题呢?

我们的采样管中有保存液,可以将菌群固定在采样的瞬间,但是如果取样过多的话,可能导致部分粪便无法完全溶解于粪便,这部分样不能正常保存可能会使其中的大肠杆菌等兼性厌氧菌开始在管内繁殖。

正确合格取样量(黄豆大小,约200mg,如果是稀便,反复沾取)

只需棉签沾取少量,混匀于保存液,固体粪便取样不能超过管子1/5体积(右图刻度线)。且保存液带有粪便颜色即可。(右图所示)

详见:肠道菌群取样方法

注 意 事 项

如3天内使用过抗生素类、质子泵类胃药、阿片类精神药物请停药3天后进行检测(如果长期服用某种药物,如降压、降血糖药等,不建议停药,检测反映的是用药控制的菌群和身体状况)。

感冒、腹泻或其他症状期间不影响取样,拉稀或稀便可以用棉签反复沾取粪便至取样管。

总的来说,取样虽然很重要,但也只是其中一个环节。每一个样本的结果呈现都凝聚了我们与你共同的努力。那么,从取样到结果报告呈现的那一刻,中间经历了什么?

样本之旅

在你取完样之后,把样本用快递寄到我们这里之后,它会经历提取->测序->分析->报告到你手上。下图绿色标注部分是你需要完成的。

13 展望

近年来,我国将全面健康和预防作为国家重点领域。我们致力于将信息技术(IT)与生物技术(BT)相融合,发展推动肠道菌群基因检测进入成为精准和预防医学时代下的“生命健康新基建”,尽管目前的菌群检测,包括疾病关系,算法,数据库,后端干预均在成长积累阶段,但是菌群检测正在进入大数据时代,菌群基因中蕴藏海量对人体生命和健康的重要数据,我们致力于将这些数据和实际应用相结合,最终转化为疾病预防、改善健康的有效方案。

前沿技术正在不断创新发展,报告也在迭代更新中,谷禾肠道菌群健康检测在辅助判别慢病风险、精准营养、亚健康管理、临床治疗干预中显示出其广泛的社会需求和指导价值。

你问我答

不同部位间的样本(如前段/中段/后段),检测结果差异性有多大?

答:会有不同的,不过主要反映在具体的菌种丰度上,有无这种菌的差异不大。另外慢病的评估也影响不大慢病模型中使用了高维特征丰度的变化波动对结果的影响没那么大营养和代谢部分受菌群丰度影响相对大一些,同一个人的前后两天的取样最大可能有15%左右的差异

肠道菌群在肠道内不同部位以及粪便的不同部分其实都存在差异,含水量、连续几餐的饮食构成和排便周期的长度都会对菌群各个菌种的丰度造成影响。单纯从绝对丰度上来看是一个动态变化的过程,各个菌属在继承之前的构成比例的情况下因各种因素的变化增长或降低。因此并不存在一个绝对的菌群构成以及完全准确的单一指标。肠道菌群检测获取的丰度含量本身信息量很大,但是稳定性和一致性并不很高。

更高层级的菌群相对比例顺序则相对稳定一些,之后具体包含的菌种也相对稳定。目前我们使用的疾病预测模型主要通过高维的菌群结构特征,并不单纯依靠每个菌的绝对丰度来评估,稳定性很高。针对一些特定的病原菌或问题菌,需要通过与人群范围比较,在正常范围内并无问题。

日常多添加有益菌或益生菌的酸奶,可以改善肠道菌群状况吗?

答: 大范围人群调查显示添加益生菌的酸奶可以改善肠道健康,但效应因人和状态而定。总体而言我们支持服用益生菌酸奶有益,但需要注意酸奶饮料可能包含果糖,游离糖等,其作用仍然非常有限

同一份样本,不同批次的实验环节如上机测序,差异有多大?这种差异率是否有一个范围呢?

答:不同批次上机影响很小,菌群数据相关性不低于98%。我们会在每轮设置一个阳性对照,一个上轮检测样本对照,一个阴性对照。评估污染,轮次比对。理论上不同的实验室,扩增引物,方法都会带来对不同菌丰度的系统误差,我们尽力保证本实验体系下各个轮次之间最小化的实验误差。另外使用的引物是经过大量验证的标准化引物。

实际患者建不建议送检,我们这个产品主要针对健康体检,还是也可以辅助诊断和预后治疗呢?

答:产品主要针对健康体检,如果临床诊断判断可能菌群异常或疾病症状与菌群相关,产品可以通过菌群检测提供临床参考,用于辅助诊断和治疗方案的评估。产品关于疾病和菌群相关指标的评估仅限于菌群相关方面,以临床诊断为准,不适用于单独使用产品进行疾病诊断。

抗生素是如何影响菌群的,菌群的敏感性和抗性基因是什么?

答:广谱抗生素会杀死细菌,但是部分细菌在抗生素选择或滥用的情况下会在抗生素靶点基因产生突变携带耐药基因,从而对特定抗生素产生耐药。不同菌目前的耐药菌比例以及携带的耐药基因水平不同,对应的抗生素耐药水平和种类也有不同

有在吃富含某种事物或者相关营养素,为什么报告显示缺乏?

答:营养指标的评估是基于菌群构成特征菌群代谢生成特定营养素的途径来评估的,直接的营养素补充会反映在相关菌群构成上,但部分营养素因为吸收部位不同以及菌群代谢途径上下游的影响,预测可能有一定差异。另外菌群构成异常的情况也会导致营养指标预测失常,如大量氨基酸都评估缺乏的情况。

有人说长期服用益生菌,会让肠道自己产生的益生菌的能力减弱或者可以说是肠道自主平衡的能力减弱,不能长期服用。这种说法是否有依据?长期服用一种益生菌,也容易产生耐药性,那么是否建议定期更换或者调整益生菌的菌种和数量呢?

答:持续服用单一或特定组合的益生菌确实会存在效力减退的情况,主要是菌群具有适应性,如果不配合生活方式和饮食结构的改变,会较快失效。可以根据菌群检测结果调整益生菌的方案。

样品的稳定性对于那些数据的影响是比较大的哪些是影响比较小的?

答:越是直接和具体菌相关的指标变化越快越大,和菌群结构相关的指标,比如一些慢病风险还有总体饮食结构一类的变化较稳定

从波动性排序来看,具体菌丰度>多样性>微量营养(锌 铁 氨基酸 维生素)>消化道疾病风险评估 (受当前状态影响较大)>肠龄>宏量营养素(碳水 蛋白 脂肪 纤维素 乳制品)>抗生素水平 >菌属是否出现>其他慢病风险

中大龄儿童小孩检测到自闭症风险高,如何解读?

答:肠道菌群在1-3岁期间主要是菌群发育滞后会影响神经发育和营养3~6岁左右菌群参与的神经递质代谢异常加剧自闭症的程度,但这个年龄段已有的神经发育滞后不光靠菌群改善就能解决了。

所以如果是0~2岁的如果这个风险值较高,不管有没有症状都建议改善菌群。如果是3~6岁甚至6岁以上,如果就风险值高没有相应的神经或行为异常,就问题不大,可能是菌群代谢构成不太好,不会导致自闭症的。如果有症状那改善菌群有助于改善症状。

肠道菌群平衡,为何多样性指数是低的?

答:菌群平衡和多样性指数是2个不同指标;

多样性仅仅评估肠道菌群的种类数量和丰度分布具体是有益和有害无关。多样性主要与饮食摄入,药物如抗生素类以及疾病状态有关。

菌群平衡对应的异常称为肠道菌群失调,临床上有I度失调和更严重的II度失调。大便常规检查是通过显微镜下观察统计染色细菌中杆菌和球菌以及革兰氏阴性和阳性菌的比值是否超标来判别的。本报告同时提供了另一评估算法,通过有益菌/有害菌的总体情况来评估菌群平衡状态,低于2为重度失衡,低于5为失衡,同时分值也提示菌群平衡水平,越高越正常

菌群失衡如何调整?

从菌群失衡的评估角度来看,首先就是快速增加有益菌特别是双歧杆菌的丰度可有效改善该项指标。因此临床上通常提供多联的益生菌制剂来快速补充益生菌,可以短期有效改善菌群平衡比例

菌群平衡和多样性分值都高的,但是肠道年龄预测比实际大,年龄预测模型是不参考多样性和平衡性参数的?

答:肠道年龄是靠机器学习人群大队列做的,不是只根据菌群平衡和多样性,每个年龄段都有核心和标致的菌群特征,比如婴儿的双歧杆菌,老年人瘤胃球菌等,这几个指标都是表征菌群的状态和健康的。

END

声明

谷禾专注于提供肠道菌群基因检测和基于此的健康评估咨询,肠道菌群对人体健康的影响和关联性已被广泛研究和认可,但基于对健康的慎重和法规,谷禾重申其提供的肠道菌群基因检测目前不用于临床疾病诊断,仅作为菌群状况构成检测和健康评估以及基于菌群的科研。分析报告中疾病风险和健康相关评估来自于公开研究数据和谷禾构建的大人群队列数据分析的预测评估结果,涉及临床诊断和医疗建议请遵照临床诊断和医生的医嘱。由于技术进步和样本数据不断积累,报告中可能存在尚未完全涵盖的因素或状况,不可避免的存在一定概率部分风险未被完全检出的情况。

12
客服