Tag Archive 短链脂肪酸

膳食多酚与肠道微生物群的互作对人体健康的影响

谷禾健康

在过去的 20 年中,膳食(多)酚类化合物作为具有预防慢性疾病的抗氧化剂受到了关注。而临床试验中证据很弱,主要因为个体间的差异很大。多酚的生物利用度低(5%–10% 被小肠吸收)。这些化合物的生物利用度严格取决于肠道微生物的酶促机制

最近,鉴定参与肠道多酚转化的细菌越来越受到关注。已经表征了几种催化酚类物质代谢的菌群及其分解代谢途径。大多数描述的参与多酚转化的属是双歧杆菌、拟杆菌和厚壁菌。微生物会受到外部因素(例如饮食、药物和体育锻炼)、宿主的地理分布和个体差异的影响。肠道微生物群组成的年龄相关变化可能会影响某些营养素的生物利用度,包括其代谢活性介质。

特定的代谢型会产生对健康影响的生物活性代谢物代谢型还可以反映肠道微生物群的组成和代谢状态,并且可能是通过肠道微生物群介导的潜在多酚健康影响的生物标志物。

基于最近的研究成果,本文将综合介绍膳食多酚以及其生物利用转化与肠道菌群的互作对人体健康的影响,为我们如何结合肠道微生物群选择和摄入膳食多酚提供一些视野。

01 膳食多酚及其有益作用

膳食多酚是一组生物活性植物化学物质,主要存在于各种水果、蔬菜、种子、草药和饮料(啤酒、葡萄酒、果汁、咖啡、茶和巧克力)中,少量存在于干豆类和谷物中。食物中,这些化合物具有多种生态作用,从抵御生物和非生物压力因素到界内交流

基于中心吡喃环的氧化态将黄铜类细分为几个亚类

类黄酮类黄酮主要是黄烷醇、黄酮、花色素、黄烷酮、黄酮醇和异黄酮

非类黄酮

非黄酮类化合物主要类别是酚酸,可细分为苯甲酸衍生物,例如没食子酸和原儿茶酸,肉桂酸衍生物,包括香豆酸、咖啡酸、阿魏酸

第二个主要组主要由芪类组成,白藜芦醇是主要代表,以顺式和反式异构形式存在。另一个重要的非黄酮类化合物是由两个苯丙烷单元氧化二聚产生的木脂素

黄烷醇是食物中最常见的类黄酮形式,其最丰富的来源是洋葱、西兰花、茶、苹果、红酒、蓝莓、杏仁和开心果

黄烷酮丰富的食物包括橘类水果,如柠檬、葡萄柚和橙子

花青素是存在于红色水果和蔬菜(例如覆盆子、接骨木莓、草莓、石榴、卷心菜、红洋葱)中的水溶性黄酮类化合物。黄酮来源的有针叶樱桃、杏、橄榄油、蜂蜜、苹果、木瓜和芒果

异黄酮是主要存在于豆科植物中的生物活性化合物,少量(浓度低于 0.1 毫克/千克)存在于杏、干枣、醋栗、芒果、李子、新鲜椰子和芝麻,而发现二苯乙烯存在于葡萄、红酒和浆果中。

红色、深色水果和蔬菜,如草莓和黑莓、黑萝卜、洋葱和茶,是也是酚酸的重要来源。

红葡萄酒中常含有芪,豆制品中常含有异黄酮。 亚麻籽和芸苔属蔬菜中含有大量木脂素; 其他,如松脂醇、落叶松脂醇通常也存在于许多食物中。

Davinelli S &Scapagnini G. Biofactors. 2021

多酚是有效的抗氧化化合物,能够抗氧化应激和慢性炎症。许多研究都集中在它们的有益抗炎、镇痛活性和抗菌、血管舒张、抗过敏和抗癌作用。最近的研究表明,有益作用还与多酚与主要细胞信号传导和基因调控途径相互作用以及调节肠道微生物群的能力有关。例如,多酚可以通过抑制特定细菌种类的生长来影响F/B比。事实上,已经通过体外、离体和动物试验证明了不同酚类化合物(尤其是黄酮类化合物)的一系列药理作用然而,这些化合物的健康影响取决于它们的生物利用度,以及它们被吸收、代谢和从体内清除也很重要。

02 膳食多酚的摄入量、生物利用度和稳定性

2.1 摄入量

众所周知,测量膳食摄入量是困难的,单一的方法无法完美地估计膳食摄入量,尤其是在关注微量营养素和生物活性化合物(如多酚)时。对此,最近的一项研究估计整个人群(包括北美和南美、欧洲、亚洲和澳大利亚)的总多酚摄入量约为 900 毫克/天;该值因受试者目标群体的差异而异。此外,发现膳食多酚的主要来源水果和蔬菜、咖啡、茶和红酒

多酚摄入量可能受到其他几个因素的影响,例如饮食习惯、人口特征(例如性别、年龄和文化因素)和地理区域。总体而言,与男性相比,女性摄入量更高,这首先是在考虑能量标准化时。在这方面,与男性相比,女性是水果和蔬菜的消费意愿更强烈,而男性是饮料和咖啡的更高消费者。

2.2 利用度

在了解其生物利用度之前,我们先看下膳食多酚的代谢过程。

由于其复杂的结构和高分子量,只有5-10% 摄入的膳食多酚可在小肠中直接吸收。

而大部分(90-95%)是以其完整形式到达结肠,并依次进行肠道发酵

产生的多酚代谢物在吸收后将通过门静脉到达肝脏并进一步经历广泛降解形成活性代谢产物(甲基化、葡萄苷酸化和硫酸化)。

此后,代谢产物将进入系统循环并到达目标组织和细胞,剩余和未使用的代谢产物通过尿液排泄。

膳食多酚的代谢

Vemana Gowd, et al.,Trends in Food Science & Technology, 2019

多酚摄入量生物可及性和生物利用度密切相关。在这方面,胃肠消化过程中食物基质中多酚的释放,即生物可及性,将对生物利用度产生重大影响,即酚类化合物的潜在吸收可用于随后的代谢途径。事实上,在植物性食物中,多酚等生物活性化合物被包裹在由膳食纤维形成的复杂大分子网络中,通常在胃肠道消化不同阶段释放。通过这种方式,它们可以在小肠和/或大肠中被吸收,从而发挥其真正的生物效应

根据与其他食物基质成分发生的分子相互作用,可以增强或减弱多酚的生物可及性和生物利用度。因此,为了评估多酚的生物利用度,一些研究论文深化了对纤维与这些植物化学物质之间可能相互作用的研究。膳食纤维可能作为一种“控制机制”,用于监测消化道不同部位(下部或上部)生物可及的多酚部分

大多数黄酮类物质在小肠中吸收较差,在大肠中代谢率较高。异黄酮似乎是吸收最好的膳食类黄酮;儿茶素、黄烷酮和黄酮醇糖苷是中间体,而原花青素、黄烷-3-醇没食子酸酯和花青素的吸收最差。

膳食多酚的生物利用度主要取决于肠道微生物群的组成

Westfall S, et al., Front Neurosci. 2019

膳食多酚与肠道微生物群的调节有关,这些微生物将多酚转化为活性和生物可利用的代谢物;因此,肠道微生物群的变化会影响多酚活性

肠道细菌显示出不同的去糖基化活性,因此释放的苷元可能在较小程度上被吸收,更有可能降解为更简单的酚类衍生物 。结肠微生物群对黄酮苷元的降解涉及 C 环裂解和影响官能团的反应,如脱羟基、脱甲基或脱羧

很明显,膳食多酚的有益作用似乎更多是由于在胃肠道中形成的酚类代谢物,主要来自肠道细菌的作用而不是食物中发现的原始形式

结肠微生物群主要负责将母体酚结构分解成一系列低分子量的代谢物。这些微生物衍生的酚类物质比食物中发现的原始化合物更易吸收,对个体健康更有益。

2.3 稳定性

膳食多酚及其肠道微生物群代谢物通常被归类为抗氧化剂。然而,它们与酶、转录因子和受体相互作用的能力强烈表明它们可能充当信号分子,并在细胞和分子水平上发挥其有益作用。已发现这些化合物与血管疾病和神经变性,以及血脂、眼部疾病和血压的改善有关。

肠道微生物群通过多酶促反应影响膳食多酚的稳定性,包括去糖基化、硫酸化、葡糖醛酸化、苯并-γ-吡喃酮系统的 C环裂解、脱羟基、脱羧和氢化。

首先,大多数O-糖苷被转移到苷元,进一步结合到O-葡萄糖醛酸和/或O-硫酸盐形式。然后肠道微生物进行分解代谢转化,如芳环的碳碳分离、烯烃部分的脱羧、氢化和脱羟基。例如,槲皮素 3-O-葡萄糖苷被肠道细菌转化为间苯三酚、2,4,6-三羟基苯甲酸和原儿茶酸。花青素经常被肠道微生物群代谢形成 2,4,6-三羟基苯乙酸和原儿茶酸姜黄素被分解代谢为氢化物,O-葡萄糖醛酸、去甲基和O-硫酸盐形式。肠道微生物群通过脱羟基和分子内缩合将鞣花酸转化为尿石素。花青素葡萄糖苷主要在人结肠中转化为 3,4-二羟基苯甲酸

03 肠道微生物对多酚的生物转化

多酚产生健康益处的能力可能至少部分是由于与肠道微生物群的双向串扰。与肠道微生物群的相互作用导致母体化合物的生化转化为更具生物利用度的代谢物

肠道微生物群进行的三个主要分解代谢过程是水解、裂解和还原反应。 在这些分解代谢反应之后,释放的苷元可能进行 II 期代谢并被肠道微生物群转化为简单的酚类衍生物,从而促进身体吸收

下面,我们将简要讨论由肠道微生物群介导的多酚的主要分解代谢反应。

3.1 水解作用

由于它们以糖苷的形式存在,多酚的生物利用度是有限的,尤其是鼠李糖苷它不能被人体肠道酶水解。因此,这些多酚在吸收前需要被肠道微生物酶水解。 一些研究报道了乳杆菌和双歧杆菌菌株从黄酮类鼠李糖苷中释放鼠李糖。

然而,其他肠道细菌,如拟杆菌、肠球菌和肠杆菌,也显示出这种活性。例如,芦丁和地奥司明被肠球菌、拟杆菌、厚壁菌和布劳特氏菌水解,导致槲皮素和地奥司米丁以其苷元形式释放。 尽管开环异落叶松树脂二葡糖苷(一种常见的亚麻籽木脂素)在胃肠道、乳杆菌和双歧杆菌可以增强其水解,提高生物利用度。另一个很好的例子是动物双歧杆菌,它参与绿原酸水解释放咖啡酸。鞣花单宁(Ellagitannins),一个典型的例子,可水解的单宁,在上消化道消化过程中自发水解成鞣花酸。

3.2 裂解作用

肠道微生物群对多酚的关键分解代谢活动是碳环的打开C C键的断裂和甲基醚的去除。这些反应是由肠道细菌(例如梭状芽孢杆菌)和 Coriobacteriaceae的成员进行的。 在类黄酮的情况下,水解后释放的苷元通过 C 环裂解被分解代谢。 例如,类黄酮 C 环裂解将异黄酮黄豆苷元转化为 O-desmethylangolensin 和雌马酚。

【注:O-Desmethylangolensin 是大豆异黄酮经过肠道微生物代谢的代谢物,具有抗氧化活性。】

黄豆苷元生物转化为雌马酚(一种具有植物雌激素样活性的代谢物)严格依赖于肠道微生物群的组成。

Eggerthella菌和一些 Slackia属的细菌是产雌马酚的细菌。涉及 Cring 打开和 CC 键断裂的微生物分解代谢活动也与不可吸收的低聚黄酮类化合物转化为更具生物利用度的酚类代谢物高度相关。大多数到达结肠的绿原酸,水解发生时,环裂解导致咖啡酸奎宁酸的释放。鞣花酸转化为尿石素M5,一种鞣花单宁的微生物代谢物,涉及内酯开环和脱羧反应。这些反应由属于Gordonibacter 属的菌株催化

3.3 还原反应

多酚的不同还原反应,如双键加氢、羰基还原和脱羟基,也由道微生物催化。这些微生物还原的主要多酚底物包括鞣花酸、咖啡酸和异黄酮。已经确定了许多负责这些反应的肠道微生物。例如,黄豆苷元的苷元被称为 MRG-1 的 Coprobacillus 菌株还原为二氢黄豆苷元。然后,二氢黄豆苷元被 Eggerthella 菌株氢化成雌马酚。肠道细菌可以以非常特殊的方式从酚类分子中去除羟基,这一特征已在鞣花酸的分解代谢中得到深入研究,其中涉及用于生产不同的尿石素谱。在人类中,有特定的代谢型负责合成尿石素,并且已经表征了参与这种代谢转化的细菌种类。

Gordonibacter urolithinfaciens 和 Gordonibacter pamelaeae 能够提供尿石素,而最近发现的Ellagibacter isourolithinifaciens可以产生异尿石素, 肠道细菌,例如梭状芽孢杆菌属的成员,对于催化二羟基反应和转化也是必不可少的,将木脂素转化为肠木脂素(例如,肠二醇和肠内酯)。

04 膳食多酚对宿主肠道微生物群的调节

对菌群构成影响

一般来说,口服多酚在上消化道的吸收相对较低;很大一部分多酚积聚在结肠中,影响和改变肠道微生物群的组成。摄入多酚可能通过促进有益细菌的生长和/或抑制有害细菌的生长来调节肠道微生物群,从而使宿主受益。随机,双盲,安慰剂对照的人类试验表明,经口摄入没食子儿茶素-3-没食子酸酯和白藜芦醇,持续12周显著降低超重男性拟杆菌的粪便丰度和趋向于降低Faecalibacterium prausnitzii 的丰度。

在高脂饮食中补充膳食葡萄多酚导致肠道微生物群落结构发生显著变化,包括厚壁菌门与拟杆菌门的比例降低以及AKK菌的大量繁殖。膳食多酚促进肠道细菌Akkermansia muciniphila 的生长并减轻高脂饮食诱导的代谢综合征。

Vemana Gowd, et al.,Trends in Food Science & Technology, 2019

槲皮素膳食给药(30毫克/千克体重/天)中,通过降低厚壁菌/拟杆菌比率和降低肥胖关联细菌。除了纯多酚外,富含多酚的食物/提取物的给药也改变了肠道微生物群的组成。犬类摄入绿茶多酚提取物 18 周可抑制拟杆菌和梭杆菌的丰度,并增加厚壁菌门 。

用偶氮甲烷/DSS 治疗小鼠 12 周后,来自黑树莓的膳食花青素(饮食中 3.5 和 7.0 μmol/g,相当于饮食中 5% 和 10% 冻干黑树莓粉中的花青素含量)增加了粪便中有益菌丰度,如Faecalibacterium prausnitzii、乳酸杆菌和直肠真杆菌,并减少病原体的丰度,如脱硫弧菌属和肠球菌属

同样,在最近的一项研究中,将野生蓝莓多酚提取物和从蓝莓中分离的部分(包括聚合度小于四个酚酸和黄酮醇的低聚原花青素)给药于高脂肪高蔗糖饮食诱导的肥胖小鼠促进了多酚降解细菌Adlercreutzia equilifaciens的生长,表明将这些细菌纳入多酚代谢可能通过产生参与这些过程的生物活性分子来改善肥胖和糖尿病的代谢紊乱

人类试验中多酚和富含多酚的食物对菌群失调的调节

Molinari R,et al., Biofactors. 2021

短链脂肪酸

肠道微生物群可以利用未消化的食物产生短链脂肪酸,如乙酸盐、丙酸盐和丁酸盐,这些短链脂肪酸在维持人类健康方面发挥着重要作用。补充多酚可以通过改变肠道微生物群的组成和功能来改变短链脂肪酸的产生。绿原酸、咖啡酸、芦丁和槲皮素的体外发酵显著增加了丙酸和丁酸的产量,咖啡酸发酵显示丁酸和丙酸的产量增加最高。相反,在人类中使用波森莓饮料和在高脂肪饮食治疗的大鼠中使用反式白藜芦醇对短链脂肪酸的产生没有造成显著差异。

不同类型的多酚、实验模型和肠道微生物群的复杂性可能是造成差异的潜在原因

  • 橙皮苷 v.s. 橙皮素

在另一项研究中,评估了橙皮苷(饮食中 1%)及其苷元橙皮素(饮食中 0.5%)对大鼠肠道微生物群产生短链脂肪酸的影响。已经发现,橙皮素的摄入显着提高了盲肠总短链脂肪酸(乙酸、丙酸和丁酸),而橙皮苷与对照饮食相比没有显着影响,这归因于它们对生产和活性的可能不同影响微生物酶

  • 不同苹果品种及苹果制品

短链脂肪酸的生产受到来自两个苹果品种(Marie Ménard 和 Avrolles 品种)的不同冻干苹果制品(水果、酶解水果、分离的细胞壁、分离的原花青素或苹果酒)的原花青素的影响。与其他制剂相比,未消化的冻干苹果显示出更高的短链脂肪酸产量。此外,发现长链原花青素的存在能够抑制短链脂肪酸的产生,这很可能取决于对细胞壁降解微生物酶的抑制

  • 绿茶提取物 v.s. 红茶提取物

2018年日本的一项研究发现喂食脱咖啡因绿茶或红茶提取物的 Wistar 大鼠的盲肠中短链脂肪酸的水平已以不同的方式受两种提取物的影响。

与对照饮食相比,施用 10g/kg 的绿茶提取物限制了短链脂肪酸的产生,而饲喂 10 g/kg 的红茶提取物不会显着影响盲肠食糜中的短链脂肪酸水平。值得注意的是,含有绿茶提取物的饮食导致大部分未消化的淀粉从粪便中排出,这表明红茶提取物可能对胰腺α-淀粉酶有抑制作用,导致盲肠中有更多的淀粉可用于生产短链脂肪酸

粘液产生和腔内含氧量

结肠粘液是抵抗肠道病原体的第一道屏障,这可能归因于粘蛋白和糖蛋白的凝胶形成特性。黏液屏障的耗竭会导致大量病原体侵蚀,导致结肠炎症,因此黏液屏障的完整性对结肠健康至关重要。

发现多酚能够促进粘液的分泌。蔓越莓原花青素通过增加白细胞介素IL-4和IL-13促进粘液分泌,刺激杯状细胞增殖和 MUC2 产生。多酚处理可以促进特定细菌的生长,例如Akkermansia ,这些降解粘蛋白的细菌刺激了粘蛋白的产生。此外,多酚可通过抑制粘液腐蚀细菌的生长来防止粘液腐蚀。例如,石榴皮提取物抑制了柠檬酸杆菌(一种可以降解粘液的病原体)的过度生长,从而减少了柠檬酸杆菌感染小鼠的结肠。

多酚可能会促进肠道微生物群组成的整体平衡,以保持粘液的完整性,尽管多酚可能不会抑制特定的粘蛋白降解细菌。例如,槲皮素的给药改变了肠道微生物群组成的平衡,并维持了结肠炎小鼠粘液的完整性,尽管槲皮素并没有显着抑制啮齿类柠檬酸杆菌的生长。总的来说,这些发现表明多酚可以通过刺激粘蛋白的分泌、抑制粘液降解细菌的生长、改善肠道微生物群组成的平衡从而减少粘液的损伤来维持粘液的完整性。

氧化还原稳态对于维持正常的细胞代谢和功能很重要。活性氧 (ROS) 的过度产生导致氧化应激,这与炎症有关。抑制大肠中 ROS 的过度产生对结肠健康具有重要意义。重要的是,氧化还原状态可以改变肠道微生物群的组成。具有较高的ROS产生在小鼠的小肠相关联的多种氧化还原状态显示较低的香农的多样性。在衰老模型中,小鼠年龄越大,ROS 产生越多,香农多样性降低,梭菌减少,拟杆菌门S24-7菌增加。

N-乙酰半胱氨酸对小鼠ROS 的消除增加了与S24-7减少和厚壁菌门增加相关的香农多样性。多酚可直接与 ROS 反应并清除ROS维持全身氧化还原稳态,最终改善肠道微生物群的平衡。例如,柿子醋多酚抑制 HepG2 细胞(肝癌细胞)中 ROS 的过度产生。β-胡萝卜素和葡萄多酚提取物降低肠道中的 ROS 水平,绿茶多酚减少了 Pb 诱导的 ROS 生成。此外,共生细菌和肠上皮细胞之间的相互作用可以触发 ROS 的产生。

鼠李糖乳杆菌刺激肠上皮细胞局部 ROS 的产生,导致 Ubc12 等关键酶的氧化,从而抑制 NF-κB 活化并随后减少炎症反应。因此,多酚对乳酸杆菌的富集或其对上皮细胞的粘附能力增加,例如田菁花提取物和苹果皮提取物,显示调节 ROS 生成和炎症反应的潜力。

肠道免疫系统和炎症

肠道免疫系统具有多种细胞类型。肠道免疫可以分为由上皮细胞和抗原呈递细胞 (APC) 组成的先天成分,以及由淋巴细胞组成的适应性成分。自适应成分本身可以分为响应的诱导和效应位点。诱导位点基本上是派尔斑,即孤立的淋巴滤泡。效应位点是遍布整个粘膜高度的免疫细胞。

适应性免疫系统由高度特化的全身细胞和消除或抑制病原体生长的过程组成。适应性免疫细胞最初是通过树突状细胞 (DC) 的交叉引发来刺激的。适应性免疫系统的细胞涉及各种细胞类型,例如淋巴细胞的主要类型 T 细胞和 B 细胞

在肠道中,即使没有感染,也会在基础水平激活 T 淋巴细胞。这种激活在很大程度上依赖于肠道细菌,并在维持肠道稳态方面发挥作用。特别是,Th17 和 Treg 之间存在良好的平衡。当这种平衡被打破时,就会导致不受控制的肠道炎症,例如克罗恩病。

【温馨提示:接下来几段内容涉及一些关于免疫的专业名词缩写,如不熟悉可先查阅了解,此处不详述】

多酚在适应性免疫系统/微生物群中的作用

肠道慢性炎症综合征和肠道微生物群之间的关系与免疫系统功能障碍和各种促炎细胞因子的产生密切相关。因此,通过饮食化合物(如多酚)单独或与益生菌联合调节免疫细胞可能是对抗这些疾病的好策略。

2018 年一项研究表明,含有一种富含多种不同多酚的工程番茄果实的饮食能够改变健康小鼠的肠道微生物组成,并部分限制宿主炎症反应

非常有趣的是,多酚干预 2 周后小鼠的黄杆菌Oscillospira的相对数量下降。作者强调了粘膜能量代谢的下调、微生物特征的变化和肠道炎症的减弱,这些事件可能是云莓喂养小鼠与越橘喂养小鼠相比腺瘤尺寸较小的原因。

更具体地说,云莓饮食降低了上皮内与总粘膜 CD3+的比例T 淋巴细胞,非常有趣的是,浆果喂养改变了盲肠内容物中的主要细菌多样性,其中越橘喂养的小鼠的微生物特征被确定比其他治疗更加多样化。尤其毛螺菌科,毛螺菌科通常被认为是共生菌或有益菌。此外,云莓喂养小鼠的微生物特征与较小的腺瘤大小相关并聚集在一起,表明肠道微生物群受到云莓喂养的调节,腺瘤的生长减慢

此外,其他研究表明,即使存在其他营养物质(如蛋白质和碳水化合物),flavan-3-ol 单体(黄烷-3-醇)(如表儿茶素和儿茶素)也可能影响肠道微生物群。据观察,儿茶素显着阻碍了溶组织梭菌的生长,并加强了大肠杆菌球状梭菌以及直肠真杆菌组成员的生长,而双歧杆菌和乳杆菌属的生长则受到了抑制。

肠道微生物群产生耐受性反应,影响肠道 DCs 并抑制 Th17 细胞抗炎途径,可以通过能够调节肠道微生物群并随后减弱炎症途径的多酚来改善。多酚可以直接改变 CD4+ T 细胞的活化和极化。例如,当用姜黄素处理小鼠时,观察到粘膜 CD4+ T 细胞和 B 细胞增加,腺瘤形成减少。

此外,白藜芦醇和姜黄素能够改变 B 细胞的活性,这可以通过显着抑制淋巴因子分泌、抗体产生和增殖来证明 。分子机制似乎包括几种转录因子,例如信号转导和转录激活因子 (STAT) 和核因子-κB (NFκB) 的成员及细胞表面受体表达的调节(如CD28/CTLA-4).

事实上,白藜芦醇和姜黄素可以降低 CD28 和 CD80 的表达,同时增加 CTLA-4 和 IL-10 的产生。这种调节很重要,因为可以通过改变 CD28/CTLA-4 的表达来减少或增强 T 细胞受体信号,已知 IL-10 会限制免疫反应。核因子也包括在内,因为激活的CD4+T细胞中的NF-κB p65 核易位在姜黄素饮食中受到抑制。

姜黄素调节人 CD4+ T 细胞中的STAT4 激活并降低它们在 Th1 细胞中的分化能力。Th17 的极化似乎也受苹果多酚的调节。它们减少了与鼠硫酸葡聚糖诱导的结肠炎相关的 T 细胞 IL-17 的产生。此外,关于实验性自身免疫性脑炎,白藜芦醇增加了IL-17 + /IL-10 + /Th17 细胞的产生

因此,从这些数据可以推断,多酚可能通过对 T 细胞的直接和间接作用来减轻 Th1 和 Th17 炎症过程,而人类白细胞抗原 (HLA) II 类介导的恶性 B 细胞免疫识别可以增强。此外,在另一个背景下显示白藜芦醇可以改变 Th17 分化过程。事实上,白藜芦醇使转录因子 STAT3 脱乙酰化,该因子无法产生视黄酸相关孤儿受体-γt(RORγt),这是淋巴细胞分化过程中必不可少的转录核因子。这样,白藜芦醇和其他多酚可以通过阻断白介素相关的 Th17 和破坏 Th17 极化来作用于各种炎症性疾病。通过免疫反应状态的作用,多酚在一定程度上决定了患有各种疾病的患者的治疗结果,尤其是炎症成分起主要作用的疾病。

多酚在肠道适应性免疫反应中的另一个潜在作用可能是它们对 Treg 细胞的作用,Treg 细胞在保持免疫耐受和抑制自身免疫方面发挥关键作用。Treg 细胞有助于逃避免疫监视,抑制 CD4 +、CD8 + T 细胞、DC、成骨细胞、巨噬细胞、B 细胞、NK 细胞和肥大细胞等细胞群,从而避免免疫病理、过敏或自身免疫性疾病,并有助于发展对器官移植的免疫耐受性。生化分析表明 TGFβ 和 FoxP3 存在于多酚作用中,TGFβ 的产生被白藜芦醇下调 、姜黄素和染料木素,诱导Treg 细胞活性的抑制。姜黄素下调 CD4+ CD25+ Treg细胞中FoxP3抑制功能和表达。

有趣的是,在小鼠肠道中,姜黄素处理的 DC 诱导幼稚 CD4 + T 细胞分化为类似 Treg 细胞,包括产生 IL-10 的细菌抗原特异性 Tr1 细胞和 CD4 + CD25 + FoxP3 + Treg。

事实上,在 TGFβ 存在的情况下,CD4+ CD25 – T 细胞可以通过 T 细胞受体 (TCR) 刺激转化为 CD25 + Treg ,并且在高剂量的 IL-10 存在下,抗原特异性 Tr1 细胞可以由抗原诱导。这种调节性T细胞抑制抗原特异性T细胞活化的体外和抑制由于抗原特异性致病性T细胞的结肠炎体内

相反,在非肿瘤环境中,表没食子儿茶素-没食子酸酯 (EGCG) 可以作为 DNA 甲基转移酶 (DNMT) 抑制剂并诱导 FoxP3 表达以及增加体内Treg 数量。此外,IL-10 在染料木素和姜黄素的存在时被下调,随后,效应 T 细胞破坏癌细胞的能力增强,针对肿瘤的 2 型免疫反应增强。另一个例子,当在C57BL/6 小鼠大脑中动脉闭塞发病后立即应用 3 天时,白藜芦醇提供了 Th1 和 Th2 之间的平衡,朝向 Th2 极化,并使 Treg 和 Th17 之间的平衡向 Treg 倾斜。

小肠固有层,并通过在缺血后 3 天改变肠道菌群来减弱小肠促炎细胞因子的表达 

多酚在先天免疫系统/微生物群中的作用

先天免疫系统,也称为非特异性免疫系统和二级防线,涉及以非特异性方式保护宿主免受其他生物体感染的细胞和机制。

当先天免疫系统感知到有关肠道微生物群落代谢状态的信息时,先天免疫系统会发送信号以在组织水平上适应宿主生理机能。此外,肠道微生物组的组成和功能可能受先天免疫系统的调节。基于人类和小鼠研究的遗传发现表明,先天免疫系统显着调节微生物群的组成和个体间差异。已证明 TLR、Nod 样受体和 C 型凝集素等先天免疫途径在宿主-微生物群共生中发挥重要作用。例如,在先天免疫缺陷小鼠模型中,例如没有 NOD2、NLRP6 或 TLR5 的小鼠,已经报道了微生物组成的改变,也称为生态失调。相应地,先天免疫系统可能通过促进有益微生物的生长来维持稳定的肠道微生物群落。

尽管有大量关于巨噬细胞和多酚的研究涉及癌症、自身免疫性疾病、炎症和冠心病等不同领域,但很少有研究关注多酚对巨噬细胞与肠道微生物群的影响。例如,山茶科山茶属Camellia sinensis(乌龙茶、白茶、黄色茶、绿色茶、黑茶和红茶)和山苍子(鹰茶)显著减少促炎细胞因子(肿瘤坏死因子-α、IL-6 和 IL-12) 并增加脂多糖刺激的 RAW 264.7 巨噬细胞和 DSS 诱导的结肠炎小鼠模型中的抗炎细胞因子 (IL-10)。

这些茶提取物对肠道微生物群起到益生元的作用,因为它们增加了潜在有益细菌(如双歧杆菌和粪杆菌)的数量,并减少了潜在有害细菌(如粘螺菌和拟杆菌)的数量。

绿原酸通过抑制活性 NF 显着抑制 IFNγ、肿瘤坏死因子 α (TNFα) 和 IL-6 的分泌以及 CD177+ 中性粒细胞、CD3+ T 细胞和 F4/80⁺ 巨噬细胞的结肠浸润-κB 信号通路。同样,芦荟代谢产物衍生物,一种含有多酚类蒽醌的芦荟叶,可减少小鼠腹腔巨噬细胞产生的一氧化氮 (NO)、TNFα 和 IL-12。此外,芦荟的给药显着降低了巨噬细胞产生的 NO 水平,并在 脂多糖诱导的败血症小鼠中表现出对败血症相关死亡的保护作用。

在先天反应中发挥重要作用的其他免疫细胞是 DC。最近的一项研究表明,用姜黄素纳米颗粒处理会增加粪便中的丁酸水平和产生丁酸的细菌的数量。这与结肠粘膜中 CD4 + Foxp3 +调节性 T 细胞和 CD103 + CD8α 调节性 DC 的扩增增加有关,因此可以成为治疗炎症性疾病的有希望的治疗选择。这一点很重要,因为 DC 的可塑性可能使它们能够根据肠道微环境中接收到的信号调整其功能,特别是通过微生物群 。

生化分析揭示了涉及转录因子 STAT 和 NF-κB、激酶、环加氧酶 (COX) 的常见机制。事实上,多酚会阻碍 COX-2 表达、前列腺素 E2 (PGE2) 的产生、激活以及 STAT1 与干扰素调节因子 1 (IRF-1) 启动子响应 IFNγ 的 DNA 结合。多酚的作用可由激酶等不同因素提供,因为多酚预处理的 DC 抑制脂多糖 诱导的 MAPK,如 p38、JNK、ERK1/2 和 NF-κB p65 易位。

这些数据共同表明,多酚可以通过破坏 T 细胞分化、限制 DC 成熟或抑制巨噬细胞,以及随后产生促炎细胞因子的能力作用于免疫细胞。这些事件可能会促进耐受性状态,并可能限制各种病理生理障碍中的炎症过程

肠道老化和衰老

老龄化是一个生理过程,只要人口老龄化和寿命更长,它就会对社会构成巨大挑战。营养与衰老密切相关,因此良好的饮食习惯可以使衰老过程更健康。在这方面的突出点是肠道微生物群的组成随着衰老和相关疾病结果发生显著变化。肠道微生物群组成的年龄相关变化导致微生物群多样性降低,亚优势种、某些变形菌和蛋白水解菌的丰度增加,而糖分解菌的减少、优势种的丰度、厚壁菌门与硬壁菌门的比例增加。

尽管生活方式、地域和个体间存在差异,但老年人、年轻人和中年人的肠道微生物群组成差异很大。 在老年人中,随着促炎细菌的积累和有益微生物水平的降低,肠道微生物群的组成的多样性显著下降。 此外,老年人的成分变化通常与衰老相关病理的发生同时发生。肠道微生物群和饮食之间的相互作用是衰老和营养研究的一个非常有趣的领域,也是创新治疗工具的潜在目标。

Davinelli S &Scapagnini G. Biofactors. 2021

多酚在衰老中的作用已被广泛记录服用富含多酚的食物或富含这些化合物的提取物可能会降低与年龄相关疾病相关的风险因素。 多酚是潜在的抗衰老剂,因为它们能够调节许多衰老标志,包括端粒磨损、细胞衰老、自噬、氧化损伤和炎症。 尽管多酚与老化肠道微生物群之间相互作用的证据仍然有限,但越来越多的研究表明,多酚对肠道常驻菌群发挥调节作用,促进衰老过程中的肠道健康。

膳食多酚对老化肠道微生物群的潜在调节作用

肠道微生物群在衰老通常会破坏的各种生理过程中起着关键的稳态作用。

尽管关于衰老肠道的数据有限,但越来越多的临床前研究证据表明,膳食多酚治疗可以调节微生物群落的组成并预防与衰老相关的肠道菌群失调。 例如,在柠檬和芒果中发现的几种多酚已被确定为促进属于不同属的促进健康的细菌的生长,如双歧杆菌、乳杆菌、阿克曼氏菌和克里斯滕菌科

  • 柠檬多酚

据报道,长期摄入柠檬多酚可将寿命延长 3 周,并改善肠道微生物群与衰老相关的变化。 这些抗衰老作用拟杆菌属、乳杆菌属普氏菌属的积极变化有关。 他们还发现 F/B 比率有所改善,正如所讨论的,这表明肠道菌群失调与衰老相关。 据报道,越橘花青素提取物的摄入有效地调节了衰老大鼠的肠道组成,包括调节 F/B 比。食用越橘花青素后,属于乳酸杆菌属、拟杆菌属和异芽孢杆菌属的有益肠道细菌的生长被诱导。 同样的提取物还抑制了对肠道有害的细菌生长,例如 Euryarchaeota 组中的物种。因此,越橘花青素提取物成功应用于调节衰老大鼠的肠道微生物群。

  • 葡萄中酚类成分

在另一项研究长期(14 个月)摄入葡萄渣中的酚类成分对大鼠肠道微生物群的影响中发现,这种长期给药选择性地将肠道微生物群调节为更健康的表型益生菌的比例更高,梭状芽孢杆菌含量更低。因此,长期食用酚类化合物可以减少肠道细菌数量与年龄相关的变化

  • 儿茶素、花青素

多项动物研究还表明,服用儿茶素、花青素和原花青素可促进乳杆菌、双歧杆菌、阿克曼氏菌、罗斯布里亚菌和粪杆菌属的生长。在许多情况下,这些益生元效应伴随着短链脂肪酸(例如丁酸盐)产量增加和炎症介质浓度的降低。其他酚类化合物,例如木脂素和芪,在动物模型中增加了乳杆菌双歧杆菌的丰度。

  • 白藜芦醇

食用白藜芦醇可减轻结肠炎小鼠模型中的炎症状态并恢复微生物群多样性。新的证据表明,红酒中的白藜芦醇能通过支持短链脂肪酸的产生来预防阿尔茨海默病 (AD),短链脂肪酸会干扰有毒的 β-淀粉样蛋白聚集体形成。在AD背景下,白藜芦醇的消耗与较高比例的有益菌有关,例如 F. prausnitziiAkkermansia 物种和具有脑抗炎特性的产丁酸盐细菌。

  • 姜黄素

姜黄素是一种从姜黄(姜黄)根茎中分离出来的著名多酚化合物,近年来因其调节肠道微生物群组成的能力而备受关注。

在阿尔茨海默病的动物模型中,发现姜黄素治疗通过减少海马中淀粉样斑块的负担来改善认知能力。同样,姜黄素水平显着降低了拟杆菌科、普氏菌科和乳杆菌科的存在,这些菌与阿尔茨海默病发展有关。 在去卵巢的大鼠(即更年期模型)中,姜黄素能够部分逆转多样性的变化 肠道微生物群,增加 F/B 比并降低 Anaerotruncus 和 Helicobacter 属的丰度。

癌症可以被认为是一种与年龄有关的疾病,因为大多数癌症的发病率随着年龄的增长而增加。已经清楚地证明,姜黄素治疗降低了在癌症患者中发现的与癌症相关的分类群的微生物丰度(例如普氏菌属、冠状杆菌属和瘤胃球菌属)。

  • 其他多酚

此外,其他多酚已表现出作为化学预防剂的潜力。 在转基因小鼠模型中观察到,新橙皮苷是一种源自柑橘类水果的黄酮类化合物,可通过调节肠道微生物群来预防结直肠肿瘤的发生

在人类中,多酚的不同排泄特征可能与肠道微生物群组成的年龄相关变化有关。研究年龄是否影响膳食多酚的代谢,这可能与预防慢性病有关。年轻(23-43 岁)和年长(51-76 岁)的受试者遵循 3 天低多酚饮食和 3 天高多酚饮食。作者发现与年长的人相比年轻的人在摄入低多酚和高多酚饮食后,尿液中酚类物质的浓度更高。

一些饮食中含有大量的多酚,例如地中海饮食植物性饮食(例如 鱼素食、半素食 和 蛋奶素)膳食多酚对与年龄相关的肠道菌群失调的影响是有限的,多酚或富含多酚的饮食的益处可能是由肠道微生物群反应介导的,这种反应可以减少与年龄相关的功能衰退的影响并改善肠道微生物群的改变

最近一项针对 20 名 65 岁以上肥胖女性的小型干预研究显示,坚持地中海饮食可显著抵消在肥胖受试者中观察到的较低水平的 AkkermansiaParabacteroides 和 短链脂肪酸产生菌。该干预措施还降低了通常与肥胖相关的柯林斯氏菌的丰度。

在一项通过多酚进行微生物组操作以管理老年人的肠漏的随机、对照、交叉试验中,富含多酚的饮食模式显着改善了 60 岁以上受试者的肠道通透性和血清 zonulin 水平。同样,纤维发酵显著增加干预后观察到产生丁酸盐的细菌。瘤胃球菌科成员和粪杆菌属细菌受饮食干预的影响最大。在一项临床试验中,39 名 60 岁以上的绝经后妇女连续 2 年每天摄入 100 毫克膳食异黄酮。补充剂增加了球状梭菌,直肠真杆菌、乳酸杆菌,肠球菌群和双歧杆菌属。

综上所述,这些结果表明多酚可以调节老年受试者的肠道微生物群,从而有助于维持肠道稳态并改善人类衰老

05 通过膳食多酚靶向肠道微生物促进宿主健康

Vemana Gowd, et al.,Trends in Food Science & Technology, 2019

糖尿病

糖尿病是21世纪全球关注的健康问题之一,并且还在快速增长。2019 年,全球糖尿病患者人数估计为 4.63 亿,预计到 2045 年这一数字将达到 7 亿。

胰岛素是负责血糖调节的关键激素,在正常情况下,胰岛 β 细胞分泌的胰岛素会减少肝脏的葡萄糖输出,并增加骨骼肌和脂肪组织的葡萄糖摄取。这种状态被称为正常血糖——胰岛素作用和胰岛素分泌之间的平衡。

然而,如果肝脏、骨骼肌或脂肪组织的胰腺 β 细胞功能障碍和/或胰岛素抵抗,全身葡萄糖浓度会增加(高血糖)。

  • 糖尿病患者的菌群变化

最近的证据表明,糖尿病人和非糖尿病人的肠道微生物群的数量和组成存在差异。中国 2 型糖尿病成人的粪便微生物群组成结果表明,血糖水平与拟杆菌:硬壁菌的比例以及拟杆菌-普氏菌、球状梭菌-直肠真细菌的比例呈显著正相关。同样,与非糖尿病志愿者相比,发现糖尿病志愿者中的β 变形菌属丰富,血浆葡萄糖水平之间呈正相关。此外,厚壁菌门和梭菌纲的比例在糖尿病组明显减少

另一项对欧洲 2 型糖尿病女性进行的类似研究表明,条件致病性梭状芽孢杆菌的数量增加,而丁酸盐形成细菌Roseburia的数量减少,这导致患有糖尿病的个体的胰岛素敏感性得到改善。

  • 多酚改善糖尿病

蔓越莓提取物:

根据主要在啮齿动物模型中的临床前实验推测,多酚可能直接取决于其吸收率或间接(即通过调节肠道微生物群)表现出抗糖尿病活性口服富含多酚的蔓越莓提取物(200 毫克/千克/天)8 周显着改善了代谢综合征相关的适应症,包括高脂高糖喂养小鼠的胰岛素敏感性,获得的有益效果归因于肠道中Akkermansia spp的比例增加。

石斛:

石斛富含多酚提取物通过几种可能的机制改善小鼠糖尿病的症状和并发症,一是通过减少炎症和氧化应激,二是增强肠道微生物群平衡

黄芩素:

在另一项体外研究中,来自两个小鼠组的肠道微生物群都将黄芩素(主要的黄酮糖苷)转化为(黄芩素)去糖基化。有趣的是,与健康粪便样品相比,黄芩苷的代谢物具有更好的吸收率,有助于治疗 2 型糖尿病

黑莓:

由于微生物发酵过程中产生的代谢物具有更高的生物活性,因此发现黑莓的人体肠道微生物代谢物具有更高的抗糖尿病活性。通过这种方式,加入黑莓后,HepG2 细胞中的葡萄糖消耗和糖原含量显着增加

癌症

多酚在癌症中的积极作用已被广泛报道。从癌症的角度来看,几种分子、富含多酚的食物,甚至饮食模式都可能令人感兴趣姜黄素是这些富含多酚的食物之一。姜黄素对减少结肠肿瘤负荷的化学预防作用与保持高微生物多样性有关。另一方面,姜黄素通过靶向癌症干细胞亚群增强对基于 5-FU 的化疗的化学敏感性的有趣作用。

  • 前列腺癌

癌症中一些最有趣的证据来自前列腺癌。前列腺癌是男性第二大常见癌症,其外部因素包括营养,严重影响前列腺癌风险。已经证明,食用大量 flavan-3-ol 和富含鞣花单宁的产品,如绿茶和石榴制剂,似乎可以降低患前列腺癌的风险

在动物研究中,经口摄入其中一些产品已被证明可以抑制前列腺癌的发展,并且有流行病学证据。尽管如此,石榴提取物在前列腺癌患者中的临床试验并未提供明确的结果。缺乏积极影响的原因可能是体内活性浓度较低或多酚与微生物群的相互作用。从这个意义上说,鞣花单宁和绿茶 flavan-3-ols 都被肠道微生物群分解代谢,其中主要的生物可利用产物是尿石素 A (uroA) 和 (聚) 羟苯基-γ-戊内酯 (M4)。

  • 结直肠癌

结直肠癌(CRC)已被记录为常见的癌症类型之一。CRC的常规治疗包括手术和化疗。不幸的是,化疗会引起细胞毒性作用、耐药性和不良反应。

大量科学证据已将西方饮食模式与 CRC 风险增加联系起来,而地中海饮食和素食与 CRC 风险较低相关。地中海饮食中广泛存在的一些酚类化合物是阿魏酸(来自全谷物)、儿茶素(来自核桃和苹果)、羟基酪醇(来自橄榄油)和柚皮素(来自西红柿)。

饮食中存在的特定饮食成分,如姜黄素、表没食子儿茶素没食子酸酯、白藜芦醇和羟基酪醇已被提议作为化学预防剂,能够通过调节在 CRC 发病中起关键作用的生物学机制来延缓 CRC 的发展。

白藜芦醇(一种从中草药虎杖中提取的多酚),已被证明对结直肠癌具有凋亡和抗增殖作用,影响 MALAT1 (转移相关肺腺癌转录本1) 表达抑制侵袭和转移。表没食子儿茶素没食子酸酯已在结肠癌细胞系中进行了研究,它通过抑制 Akt、p38MAPK、细胞周期蛋白 D1 以及下调 ErbB2、ErbB3 和 EGFR 来诱导生长抑制。葡萄籽提取物诱导细胞凋亡并抑制 CaCo-2 细胞的活力。

黑树莓干预(饮食中含有 10% 的黑树莓)对肠道荷瘤小鼠的影响。已经表明,黑树莓给药改变了健康小鼠和荷瘤小鼠的肠道微生物组成,这可能对结直肠癌的发生和进展具有保护作用。

肥胖

体重指数 (BMI) 等于或大于 30 变得越来越普遍,特别是在发达国家,由于人们采用了少动的现代生活方式且饮食不健康,会导致体内获得和消耗的能量不平衡,因此多余的能量会导致体内脂肪储存过多。然而,不应只将肥胖视为影响某些人的美容问题,更重要的是肥胖与多种健康问题(如 2 型糖尿病、冠心病、某些类型的癌症和睡眠呼吸)之间存在关联。肥胖的发生是由影响能量摄入和消耗的环境、遗传和生理因素的相互作用决定的。

肠道微生物群是参与肥胖发展的环境因素之一。先前的研究表明,肠道微生物群在脂肪量的形成和能量稳态的改变中起着重要作用。

对无菌小鼠(在没有任何微生物的情况下生长的无菌小鼠)进行的几项研究表明,无菌小鼠比肠道中含有微生物群的小鼠更瘦。此外,发现肥胖微生物组从饮食中获取能量的能力更高,最重要的是,当将肥胖小鼠的肠道微生物群移植到无菌小鼠时,这会导致比瘦小鼠移植时更高的脂肪沉积。

人体研究还表明,肠道微生物组成会因肥胖而发生变化。与瘦人相比,肥胖者的厚壁菌:拟杆菌比率增加,并且该比率随着个人通过两种低热量饮食减轻体重而降低。然而,这在其他研究中并没有被观察到。

几个研究小组研究了酚类化合物对肥胖肠道微生物群的调节,以解释酚类化合物与肠道微生物群之间的相互作用。很明显,膳食多酚及其代谢物通过刺激有益细菌的生长改变肠道微生物组成,同时抑制病原体细菌,从而对促进肠道健康产生积极影响乌龙茶、红茶和绿茶中的多酚已被证明通过增加双歧杆菌属、乳杆菌属来显著影响微生物组成属和肠球菌属。同时增加短链脂肪酸的产生,减少普氏菌、拟杆菌的产生。

李子中的酚类化合物与肠道微生物群的调节(例如,粪杆菌属、乳杆菌属和拟杆菌属的增加)一起限制体重增加,并减少肥胖大鼠的粪便短链脂肪酸,槲皮素类似。

另一方面,肥胖通常被认为是一种慢性低度炎症。这种情况涉及炎症细胞因子(如 TNF-α、IL-1β 和 CCL2)在脂肪组织中的积累,以及巨噬细胞、肥大细胞和自然杀伤 T 细胞的增加。发现肥胖小鼠的炎症通过产生胰高血糖素样肽 2 被下调,胰高血糖素样肽 2 降低了肠道通透性,从而减少了脂多糖的易位,同时改变了肠道微生物群。因此,肥胖的炎症标志物可以通过多酚的结肠发酵来抑制,多酚已被证明可以促进双歧杆菌的生长

心血管疾病

世界卫生组织建议一项重要的生活方式改变就是增加水果、蔬菜和纤维的摄入量,以降低患心血管疾病等非传染性疾病的风险心血管疾病,包括中风、心力衰竭和高血压,是发达国家最常见的死亡原因。目前的研究强调了多酚在预防此类疾病方面的新兴作用,作为人类饮食的一部分,并将摄入多酚含量高的食物(即可可、茶、酒、水果和蔬菜)与减少心血管疾病相关联。据报道,高多酚摄入量,尤其是芪和木脂素,与死亡率降低相关。

食用羟基肉桂酸和类黄酮的食物来源可降低高血压,这是心血管疾病的主要危险因素之一。同样,对巴西人口咖啡消费量的分析显示,与高血压呈负相关咖啡是影响酚酸摄入量的主要食物。最近的研究报告称,摄入 flavan-3-ol 含量高的食物(如茶、坚果、可可、葡萄和豆类)对血压和胆固醇水平有积极影响。从 1975 年到 2010 年,对 953 名参与者进行了一项关于食用黑巧克力和可可对心血管有益的研究。巧克力摄入量与 2 型糖尿病呈负相关,可降低发生中风或缺血性心脏病的可能性。

心血管疾病风险相关的因素之一是三甲胺 N-氧化物 (TMAO),这是一种由结肠微生物群(如变形杆菌、空气杆菌、梭状芽孢杆菌和志贺氏菌)代谢左旋肉碱和胆碱产生的氧化胺。几种含有大量左旋肉碱、卵磷脂和胆碱的食物,如红肉、鸡蛋和咸水鱼,已被认为是 TMAO 的膳食来源。通过定期摄入抗氧化剂和抗菌食物(如多酚)来改变肠道微生物群,是降低心血管疾病风险的目标之一。例如,白藜芦醇抑制变形杆菌毒力因子的表达。鞣花单宁是悬钩子属和草莓属果实中的主要酚类化合物,对选定的革兰氏阴性肠道细菌(如梭状芽孢杆菌)的生长显示出参与 TMAO 代谢。一个在体内对小鼠模型的研究表明白藜芦醇在TMAO水平的降低的能力,修改菌群组合物与在增加乳杆菌属和双歧杆菌生长。研究表明,富含多酚(特别是白藜芦醇)的葡萄渣的新型营养制剂,能够重塑微生物群并降低健康受试者的 TMAO 水平以及心血管疾病的风险。

多酚摄入对局部的有益影响

来自体外和体内研究、临床试验和荟萃分析的新证据表明,定期摄入多酚可以改善人类健康并降低慢性和炎症性疾病的风险炎症过程在许多病理状况的发展和进展中起着核心作用,例如炎症性肠病 (IBD)。IBD 的全球发病率和流行率使其成为全球疾病。在 IBD 中,慢性炎症会导致粘膜破坏以及 ROS 的大量产生,并可能导致癌症的发生、进展和转移扩散。多酚是有效的抗炎化合物,可以为 IBD 管理提供一个有趣的替代候选者。对草莓花青素进行的研究强调了它们的抗 IBD 作用,主要归因于它们的自由基清除和抗炎特性

浆果和苹果对结肠癌的保护作用已在小鼠模型中得到证实,特别是绿茶多酚被发现可增强抗氧化反应,减少炎症标志物(IL-6、TNF-α 和血清淀粉样蛋白 A),以类似于柳氮磺胺吡啶( IBD 治疗中使用的常规药物)的流行病学、临床前和临床研究一直强调肠道微生物群、大肠炎症和结肠直肠之间的重要关系

浆果以其原花青素含量高为特征,因其促进健康,主要针对高血压、出血和一般氧化作用。柿子中存在的黄酮类化合物漆黄素也通过降低结肠炎结肠组织中 COX-2 和 iNOS 的表达降低结肠炎的严重程度。结肠炎是结直肠癌的诱发因素之一,食用柿子作为黄酮类化合物的来源对于预防它很重要。

多酚提取物的发酵对菌群的影响

de los Reyes-Gavilán CG,et al., Biomed Res Int. 2015

06 响应多酚消耗的个体间差异:寻找造成影响的推定驱动因素

对药物给药的临床反应因人而异。同样,越来越多的证据表明某些膳食(多)酚的代谢存在个体差异,例如异黄酮、黄烷酮、茶儿茶素、鞣花单宁等。与此同时,由于获得的结果的标准偏差很大,其他研究也开始对观察到的效果的统计显着性提出争议

在这方面,广泛的(多)酚结构被认为是影响其代谢的关键因素,并且可能是对 CVD 风险生物标志物影响的广泛可变性背后的原因。然而,尽管膳食(多)酚在结构上不同,但许多具有相同的多目标作用机制

多酚消耗的反应存在显着的个体差异。总的来说,这避免了声称多酚对整个人群产生健康影响的说法,这可能是欧洲食品安全局拒绝多酚的许多健康声明的原因。相反,许多特定变量的参与导致我们提出个性化的饮食建议,这些建议考虑个人条件(性别、年龄、基因组成、生活方式、生理状态和肠道微生物群)和其他方面(食物基质和加工、饮食模式等)。似乎并非所有这些条件和方面都必须同等贡献。然而,每个贡献者的可能重要性权重是未知的

在过去的十年中,多酚与肠道微生物群之间的双向相互作用由多酚调节微生物群和由微生物群代谢多酚作为解决肠道菌群问题的新部分引起了人们的关注。 在寻找参与最终(多)苯酚健康影响的主要参与者时,越来越多的证据已经确定其衍生的微生物代谢物可能与建立(多)苯酚的生物活性有关。然而,肠道微生物群和膳食(多)酚之间的双向相互作用也是检测到的个体差异的主要驱动因素

除了摄入的(多)酚和/或其衍生微生物衍生物可能发挥的生物活性外,每个人的肠道微生物群,包括参与(多)酚代谢的微生物群,也与解释最终影响有关。例如,黄豆苷元衍生的代谢物雌马酚被认为比其黄豆苷元前体更具生物活性,并且似乎在一些能够产生雌马酚的个体(即“雌马酚生产者”)中占主导地位。同样,血液中存在尿石素最初被认为是食用含有非生物可利用的尿石素前体鞣花单宁的食物后观察到的影响背后的合理解释。然而,并非所有个体都会产生相同的尿石素,也并非具有相同的相关肠道微生物群。虽然已经全面确定了影响个人对多酚消费反应的决定因素,作用与摄入多酚和/或其衍生代谢物之间的关系尚无定论。

将观察到的活动与循环(或排泄)酚类代谢物或其微生物衍生物同时存在联系起来的研究可能受到许多变量的影响,这些变量阻止了既定的因果关系。在这方面,虽然局部影响可能对系统水平产生影响,并且反之亦然,摄入的(多)酚作用的可能部位,即胃肠道或全身,可能是寻找可能的因果关系的第一个标准。

07 总结

多酚的摄入量和生物利用度决定了它们对健康的影响。尽管我们的饮食中含有大量多酚,但这些单个多酚分子的血浆浓度很少超过微摩尔水平。然而,关于血浆抗氧化能力的研究表明,血浆中仍然存在大量酚类化合物,主要以代谢物的形式存在,可能在组织中产生或通过肠道微生物群的作用产生。迄今为止,已经进行了几项研究,以了解结肠微生物群对多酚的生物转化并确定相关微生物。另一方面,还评估了酚类化合物对肠道微生物群组成的调节,以呈现酚类物质和肠道微生物群之间的相互作用。

基于这些研究,很明显,膳食多酚及其代谢物通过像益生元一样发挥作用并以积极的方式调节肠道微生物组成,从而促进肠道健康,其中有益微生物的生长受到刺激,而病原体受到抑制。多酚存在于多种健康食品中,包括蔬菜、水果等。临床前和临床研究的证据表明益生元对多酚有影响。富含多酚的植物、它们的提取物,甚至单个化合物对肠道健康的积极影响,可用作预防或治疗与氧化应激和炎症相关的各种疾病的替代方法。鉴于多酚在消化和吸收过程中可能会发生显着变化,并且变化的形式可能具有不同的生物学特性和作用力,因此未来的研究还应考虑其肠道菌群及其代谢行为,这可能会影响健康和疾病的改善治疗结果。

主要参考文献

Davinelli S, Scapagnini G. Interactions between dietary polyphenols and aging gut microbiota: A review. Biofactors. 2021 Sep 24. doi: 10.1002/biof.1785. Epub ahead of print. PMID: 34559427.

Gizem Catalkaya,Koen Venema,Luigi Lucini,et al., Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. Food frontiers. 2020 June 22

Iglesias-Aguirre CE, Cortés-Martín A, Ávila-Gálvez MÁ, Giménez-Bastida JA, Selma MV, González-Sarrías A, Espín JC. Main drivers of (poly)phenol effects on human health: metabolite production and/or gut microbiota-associated metabotypes? Food Funct. 2021 Sep 24. doi: 10.1039/d1fo02033a. Epub ahead of print. PMID: 34558584.

Westfall S, Pasinetti GM. The Gut Microbiota Links Dietary Polyphenols With Management of Psychiatric Mood Disorders. Front Neurosci. 2019;13:1196.

Vg A , Nk A , Mris A , et al. Dietary polyphenols to combat the metabolic diseases via altering gut microbiota[J]. Trends in Food Science & Technology, 2019, 93:81-93.

Jamar G, Estadella D, Pisani LP. Contribution of anthocyanin-rich foods in obesity control through gut microbiota interactions. Biofactors. 2017 Jul 8;43(4):507-516.

Roopchand DE, Carmody RN, Kuhn P, Moskal K, Rojas-Silva P, Turnbaugh PJ, Raskin I. Dietary Polyphenols Promote Growth of the Gut Bacterium Akkermansia muciniphila and Attenuate High-Fat Diet-Induced Metabolic Syndrome. Diabetes. 2015 Aug;64(8):2847-58. doi: 10.2337/db14-1916.

Molinari R, Merendino N, Costantini L. Polyphenols as modulators of pre-established gut microbiota dysbiosis: State-of-the-art. Biofactors. 2021 Aug 16.


2型糖尿病如何做到可防可控?肠道菌群发挥重要作用

谷禾健康

2型糖尿病是一种血糖水平升高(高血糖)的慢性代谢疾病,主要由胰岛素抵抗和胰岛素分泌不足引起。2型糖尿病全球患病率在不断上升。

截止到2020年,根据美国糖尿病学会评估标准,糖尿病患病率已达到12.8%。其实在我国成年人中,已经有将近一半的人存在血糖异常,未来极有可能发展为2型糖尿病。如果不加干预治疗,会引发许多不良后果。

很多研究表明,肠道菌群在宿主的代谢和疾病状态中起着重要的作用。特别是2型糖尿病,其病因复杂,包括肥胖、慢性低度炎症,受肠道微生物群和微生物代谢产物的调节。

本文将从肠道菌群的角度了解其与2型糖尿病的关系;肠道菌群及其代谢物对葡萄糖代谢、免疫系统的影响;
从影响肠道菌群变化的因素来了解各种干预措施,包括药物,饮食,益生菌/益生元,粪菌移植,间接性禁食等方式。

01 2型糖尿病

葡萄糖主要通过食用的食物和饮料进入人体。胰腺会产生一种叫做胰岛素的激素,以帮助血液中的葡萄糖进入肌肉、脂肪和肝脏,用作能量。

  • 胰岛素如何将血液中糖分控制在正常水平?

胰岛素通过血液循环进入不同组织。组织大多数细胞表面有一种结构,叫胰岛素受体。当胰岛素流过时,会附着在胰岛素受体上,就像钥匙打开锁一样,糖可以进入细胞内,细胞获得能量维持正常运作,血液中糖分就会回落到正常水平。

  • 2型糖尿病如何形成?

2型糖尿病患者身上,细胞对胰岛素没有反应,这种情况就叫胰岛素抵抗。胰岛素没有了“钥匙”的作用,不能有效开启细胞上的“锁”,或者“锁”的数量也减少了,由此,糖分就不能进入细胞有效利用,被挡在了细胞外面,只好在血液中积累,血糖就升高了。

刚开始的时候,胰腺会觉得自己使不上力,于是不甘心开始拼命工作,产生更多的胰岛素来克服这种抵抗。

随着时间的推移,胰腺开始累了,力不从心,不能产生更多的胰岛素,这时候就是2型糖尿病开始了。

02 2型糖尿病患者的微生物群

肠道微生物群可以直接或间接地影响人类健康,肠道微生物群失调可能会增加促炎疾病的患病率,如肥胖、炎症性肠病、2 型糖尿病、关节炎和癌症。

2型糖尿病人群中个体微生物群的差异

Cunningham A L et al., Gut Pathog, 2021

在2型糖尿病患者普遍具有相对高丰度的特定属:Blautia、Coprococcus、Sporobacter、Abiotrophia、Peptostreptococcus、Parasutterella、Collinsella

2型糖尿病患者中,产生丁酸菌特别缺乏,特别是梭菌目,包括:

Ruminococcus、Subdoligranulum,Eubacterium rectale、Faecali prausnitzii、Roseburia intestinalis 、

Roseburia inulinivorans

2型糖尿病患者中,其他明显较少的菌属有:

拟杆菌属、普雷沃氏菌属双歧杆菌属

  • 双歧杆菌减少

双歧杆菌属具有显著的健康益处,包括改善肠道通透性,从而降低内毒素的循环水平并减少全身炎症。这与改善宿主的糖耐量和葡萄糖诱导的胰岛素分泌,并减少炎症有关。

  • 乳杆菌属增加

来自欧洲的女性2型糖尿病患者队列显示了乳酸杆菌Lactobacillus增加,五种梭菌的丰度下降。

在另外两项研究中也有类似的结论。乳杆菌属的增加较低的空腹血糖水平改善的糖化血红蛋白(HbA1c)水平正相关。这两种菌都与BMI指数没有关系。给糖尿病啮齿动物补充丁酸梭菌可以改善循环血糖水平,降低全身胰岛素抵抗和炎症,增加线粒体代谢,显著减少肠道破坏

  • Akkermansia菌减少

Akkermansia muciniphilaFaecali prausnitzii这两种菌为2型糖尿病的发展提供了保护。

Akkermansia菌维持粘蛋白层的完整性减少炎症方面起着关键作用。粘蛋白是大型、高度糖基化的蛋白质,参与GIT的腔内保护,导致细菌移位减少,并改善脂肪储存、脂肪组织代谢和葡萄糖稳态。给啮齿动物补充低聚果糖(使Akkermansia二次增加)或直接用Akkermansia治疗可以改善它们的整体代谢状态。

  • Faecali prausnitzii 减少

2型糖尿病的Faecali prausnitzii丰度降低,2型糖尿病的治疗似乎也直接导致了Faecali prausnitzii丰度的增加、全身炎症的二次减少和胰岛素抵抗的改善。

2型糖尿病前期菌群变化

2型糖尿病前期患者在其微生物群落中也有类似的发现,包括微生物多样性降低Akkermansia菌梭状芽孢杆菌属数量的减少瘤胃球菌属链球菌增多

如果可以确定2型糖尿病的“共同”微生物群分布,就有可能在机器学习预测模型中利用微生物生物标志物和临床参数,以可靠的诊断准确性区分2型糖尿病风险患者。其次,如果该模型被证明是成功的,所选择的微生物生物标志物可以用于监测患者的血糖控制和新疗法的引入。

03 肠道菌群对葡萄糖和胰岛素代谢的影响

肠道微生物群具有通过多种机制改变宿主葡萄糖稳态的能力,包括:

  • 发酵过程中代谢物产生及其产生的次级效应;
  • 炎症级联反应的激活导致细胞因子的释放;
  • 破坏肠粘膜屏障的渗透性,允许毒素流入;
  • 通过肠促胰岛素分泌的直接信号作用。

2型糖尿病患者表现出糖的膜转运、支链氨基酸(BCAA)转运、甲烷代谢、异生素降解和代谢以及硫酸盐还原的富集。同一队列显示细菌趋化性、鞭毛装配、丁酸盐生物合成以及辅因子和维生素代谢水平降低

微生物群对葡萄糖稳态的影响

Cunningham A L et al., Gut Pathog, 2021

04 肠道微生物群代谢物

短链脂肪酸、BCAAs、琥珀酸盐、吲哚、咪唑都是肠道厌氧发酵过程中产生的微生物代谢产物,是微生物-宿主信号通路的核心成分

这些代谢物主要由微生物群产生,如Akkermansia、普雷沃氏菌属Prevotella、瘤胃球菌属Ruminococus、粪杆菌属Faecalibacterium、真细菌属Eubacterium、Roseburia、梭菌属Clostridium、拟杆菌属、乳杆菌属、链球菌属、丙酸杆菌属Propionibacterium、梭杆菌属Fusobacterium。2型糖尿病病患者体内这些特殊微生物群的大部分已经耗尽。

Huda MN, et al., Front Endocrinol (Lausanne). 2021

丁酸盐、乙酸盐和丙酸盐是膳食纤维肠道发酵产生的最丰富的短链脂肪酸。乙酸盐和丙酸盐主要由拟杆菌门产生,而丁酸盐由厚壁菌门产生。短链脂肪酸被肠粘膜细胞直接用作能量来源,或转移到体循环中,为宿主产生重要的能量来源,并具有作为信号分子的能力。

短链脂肪酸如何影响葡萄糖代谢?

短链脂肪酸通过与选定的G蛋白偶联受体的偶联作用强烈影响葡萄糖代谢。这些主要在脂肪组织、肠道和免疫细胞中表达。GPR43和GPR119刺激促进肠内分泌L细胞分泌肠促胰岛素GLP-1。GLP-1增强葡萄糖诱导的β细胞胰岛素释放,抑制胰高血糖素分泌,保护β细胞免于凋亡,促进β细胞增殖并延长肠转运时间。

丁酸盐和丙酸盐对受体GPR41的刺激具有通过两种不同的作用机制诱导肠道糖异生的能力。

  • 首先,作为GPR41激动剂,增强肠道糖异生基因表达
  • 其次,通过涉及GPR41的肠-脑神经回路

短链脂肪酸还可以直接影响肝脏葡萄糖代谢,减少糖酵解和糖异生,增加糖原合成,降低血浆脂肪酸浓度。干细胞因子具有激活副交感神经活性的能力,从而增加食欲促进葡萄糖刺激的胰岛素分泌

短链脂肪酸通过AMP激活蛋白激酶(AMPK)活性的作用,通过增加葡萄糖转运蛋白4型(GLUT4)的表达来增强外周葡萄糖摄取。其次,在骨骼肌中,短链脂肪酸具有减少糖酵解的能力,导致葡萄糖-6-磷酸的二次积累,从而导致更大的糖原合成

▇ 乙酸盐

乙酸盐是最丰富的短链脂肪酸,被肠上皮吸收,通过门静脉输送到肝脏,并最终分布到外周组织,在那里被代谢。全身性乙酸盐具有穿过血脑屏障的能力,在那里它可以激活乙酰辅酶a羧化酶,导致神经肽表达增强,从而诱导下丘脑神经元激活并抑制食欲

▇ 丁酸盐

丁酸盐是结肠细胞的主要底物和能量来源,提供结肠粘膜至少60-70%的能量需求,对其增殖和分化至关重要。丁酸盐在维持结肠上皮稳态中发挥重要作用,主要是利用其抗炎特性,从而防止氧化应激产生活性氧和氮。在口服葡萄糖耐量试验期间,大量产生丁酸盐的微生物群与改善的胰岛素反应有关(这表明β细胞功能改善)。

餐后血浆丁酸浓度升高与丁酸肠杆菌Intestinimonas butyriciproducens 、Akkermansia muciniphila的丰度增加有关。值得注意的是,通过口服葡萄糖胰岛素敏感性(OGIS)模型评估,丁酸盐浓度与餐后胰岛素敏感性直接相关。

▇ 丙酸盐

肠道产生的丙酸盐是已知的糖异生的首选前体,其中约50%以这种方式利用。丙酸盐进入三羧酸(TCA)循环,通过三个连续的反应转化为琥珀酰辅酶a,生成的琥珀酰辅酶a重新进入TCA循环,并转化为草酰乙酸,即糖异生前体。

肠道丙酸酯释放增加与β细胞功能增强和葡萄糖刺激的胰岛素分泌有关,与GLP-1水平的变化无关。丙酸盐还通过直接抑制炎性细胞因子诱导的细胞凋亡为人类胰岛提供保护。

最后,用肠道丙酸盐补充超重患者导致能量摄入减少和肥胖,并且肽YY (PYY)和GLP-1的血浆水平升高。

膳食纤维的细菌发酵产生大量琥珀酸,通过激活肠道糖异生来改善血糖控制,对于丁酸和丙酸也是如此。

▇ 必需氨基酸

据报道,包括碱性氨基酸和芳香族氨基酸在内的少量必需氨基酸增加与未来发展2型糖尿病的风险增加五倍有关。血中碱性成纤维细胞生长因子水平升高也被证明是胰岛素抵抗的特征,与两种特定的细菌相关,即普雷沃氏菌拟杆菌

胰岛素抵抗患者表现出丰富的支链氨基酸生物合成,并被发现缺乏编码这些特定氨基酸的细菌内向转运蛋白的基因。在啮齿类动物中,普雷沃氏菌可诱导胰岛素抵抗,加剧葡萄糖耐受,并增加支链氨基酸水平。

▇ 吲哚丙酸

吲哚丙酸是细菌芳香族氨基酸分解代谢产生的代谢产物,与膳食纤维摄入高度相关,似乎可以降低患2型糖尿病的风险。它提供了有效的自由基清除活性,提示它可以保护胰腺β细胞免受与代谢和氧化应激相关的损伤。它还可能通过抑制电压门控钾通道,触发GLP-1分泌,参与调节肠内分泌L细胞的肠促胰岛素分泌

由肠道微生物群降解组氨酸产生的咪唑丙酸盐,通过作为细胞内胰岛素受体信号级联的抑制剂损害了细胞正确响应胰岛素的能力。

▇ 胆汁酸

胆汁酸是类固醇羧酸,主要通过限速酶7α‐羟化酶(CYP7A1)的作用从胆固醇衍生而来,然后在分泌到胆汁中之前与甘氨酸或牛磺酸结合。超过95%在末端回肠和结肠通过肠肝循环被重吸收。

胆汁酸的主要功能是小肠内脂类和脂溶性维生素的消化和吸收

乳酸杆菌、双歧杆菌、肠杆菌、拟杆菌、梭菌是影响胆汁酸合成、修饰和信号传导的主要肠道微生物群。它们具有通过解偶联过程控制初级胆汁酸(胆酸和鹅去氧胆酸)转化为次级胆汁酸(脱氧胆酸和石胆酸)的能力,以及代谢天然存在的FXR拮抗剂牛磺β-胆酸的能力。反过来,胆汁酸由于其强大的抗微生物活性,通过抑制细菌在肠道中的定居和生长来促进肠道稳态

除了在肠道消化和吸收中的作用外,胆汁酸还具有发挥激素作用的重要代谢作用的能力。

Xie C,et al., Nutrients. 2021

胆汁酸可以利用FXR和G蛋白受体5 (TGR-5)通过受体偶联信号调节葡萄糖代谢。FXR偶联只有通过原发性胆汁酸才有可能,并且具有减少糖异生、促进肝糖原产生、抑制GLP-1释放和刺激成纤维细胞生长因子(FGF-19)从回肠分泌的能力。

FXR信号抑制糖异生基因的表达,如那些编码磷酸烯醇丙酮酸羧激酶、果糖-1,6-双磷酸酶-1和葡萄糖-6-磷酸酶的基因。FGF-19通过降低CYP7A1的表达、抑制葡萄糖产生和诱导糖原合成来调节BA的合成。TGR-5(仅通过二级BAs结合)偶联导致肠L细胞分泌GLP-1,增加葡萄糖刺激的胰岛素释放,并促进前胰高血糖素转化为GLP-1。

在骨骼肌和棕色脂肪组织中,BATGR5信号通过刺激2型碘甲状腺原氨酸脱碘酶促进甲状腺素(T4)转化为具有生物活性的三碘甲状腺原氨酸(T3),导致更大的能量消耗。两种受体的偶联促进胰腺β细胞产生胰岛素

研究表明,使用钡螯合剂操纵钡池可以改善2型糖尿病患者的血糖控制。钡螯合剂在肠内结合钡,形成不可吸收的复合物,导致肠肝循环中断。胆汁酸螯合剂降血糖作用的潜在机制知之甚少,但据信涉及胆汁酸库组成的破坏、增强肝脏葡萄糖代谢、增加肠促胰岛素激素的释放和诱导肠道微生物群组成的改变

05 菌群缺失导致胃肠屏障功能受损

肠粘膜内层作为与潜在有害物质不良相互作用的预防性屏障,在免疫系统的调节中起着不可或缺的作用。

众所周知,2型糖尿病具有显著增强的肠道通透性,允许细菌穿过肠道上皮移位,导致引发低度炎症的宿主代谢性内毒素血症。由此产生的影响可以引发β细胞破坏胰岛素抵抗

如前所述,粪杆菌属Faecalibacterium、罗氏菌属Roseburia、双歧杆菌属都被认为具有防止细菌移位降低肠道通透性的能力。众所周知,2型糖尿病患者体内这些特殊微生物群的丰度已经耗尽。

06 炎 症 应 答

2型糖尿病的特征是慢性低度炎症状态,伴有大量炎症介质的异常表达和产生。患有2型糖尿病的个体产丁酸盐菌群数量减少,导致肠道轻度炎症

肠道微生物通过脂多糖(LPS)的活性激活宿主炎症胰岛素抵抗,脂多糖是革兰氏阴性菌细胞壁的重要组成部分。细菌片段和脂多糖被先天toll样受体(TLRs)识别,特别是TLR4,触发细胞内信号通路NF-κB的激活和促炎细胞因子的释放。LPS的释放还通过与在巨噬细胞和树突状细胞上表达的NLRP3炎症体和NOD样受体(NLRs)的高亲和力偶联来刺激局部免疫反应。炎性NF-κB级联中血清激酶(Jnk和IKK)的激活诱导胰岛素受体底物丝氨酸磷酸化,恶化胰岛素抵抗。

促炎细胞因子的释放会破坏葡萄糖代谢和胰岛素信号。2型糖尿病患者表现出肿瘤坏死因子-α水平升高,这与糖耐量改变、胰岛素抵抗增强和胰岛功能障碍密切相关。肿瘤坏死因子-α具有上调细胞因子信号转导抑制因子-3 (SOCS-3)转录的能力,该抑制因子与胰岛素受体的酪氨酸-960偶联,防止胰岛素受体结合。这导致IRS-1的降解和胰岛素信号通路的破坏

白细胞介素-1 (IL-1)是白细胞介素家族的一种炎性细胞因子,具有降低IRS-1表达、抑制GLUT-4向质膜移位和减少胰岛素刺激葡萄糖摄取的潜力。最近的研究表明,IL-1受体拮抗剂(IL-1RA)和IL-1β特异性抗体治疗改善了2型糖尿病患者的糖代谢和胰岛素分泌。

IL-6已被确定为2型糖尿病的独立预测因子。它对IRS-1、GLUT4和过氧化物酶体增殖物激活受体(PPARs)的基因转录产生长期抑制作用,并显著降低胰岛素刺激的酪氨酸磷酸化和胰岛素刺激的葡萄糖转运

以上部分是微生物群的改变直接或间接影响2型糖尿病的发展,那么微生物群会受到哪些因素的影响呢?

影响肠道微生物群的因素

Huda MN, et al., Front Endocrinol (Lausanne). 2021

以上因素都会改变肠道微生物群,其中如益生元、益生菌、FMT和间歇性禁食,都被认为是2型糖尿病的潜在疗法。

一些2型糖尿病的药物改善循环血糖水平部分通过调节肠道微生物群,这进一步支持了肠道菌群作为2型糖尿病治疗的可能性。接下来我们看看它们如何调节肠道微生物群。

07 药物引起肠道微生物群变化

肠道微生物的组成在个体之间有很大的差异,并被内源性和外源性因素不断改变。地理和环境因素,如饮食、疾病、生活方式、卫生和药物都会导致变化。抗生素治疗能够在给药后几年内破坏肠道微生物群落。

在斯堪的纳维亚的2型糖尿病患者中发现的拟杆菌属、普雷沃氏菌属双歧杆菌属的数量明显较少,这表明抗生素暴露与随后的2型糖尿病发展之间存在很强的相关性。2型糖尿病的诊断与抗生素处方数量之间的关系需要进一步建立因果关系。

抗生素可能使患者更容易发展为2型糖尿病,然而,在确诊前几年,有2型糖尿病风险的患者可能更容易患病。

下面,来看看抗生素治疗对肠道微生物群的影响,以及由此对肥胖和胰岛素抵抗患者代谢参数的影响

万古霉素显著降低了微生物多样性,厚壁菌门丰度降低,变形菌数量增多,尤其是乳杆菌属,外周胰岛素敏感性下降。包括双胍类、α-葡萄糖苷酶抑制剂、肠促胰岛素类药物、胰高血糖素样肽1 (GLP-1)受体激动剂、二肽基肽酶-4抑制剂和噻唑烷二酮类在内的降糖药物都会影响肠道微生物群。

▇ 二甲双胍

二甲双胍是2型糖尿病患者最广泛使用的口服药物之一,不会有意改变肠道微生物群。

  • 二甲双胍增加有益菌

然而,越来越多的证据表明,微生物群可能会增强某些效应。二甲双胍增加了Akkermansia属、双歧杆菌属乳杆菌属的相对丰度。其他丰富的关联包括拟杆菌属、丁酸球菌属、普雷沃菌属、巨球菌属和丁酸杆菌属。这些特殊的微生物群都具有产生短链脂肪酸的能力

  • 二甲双胍改善菌群多样性

二甲双胍治疗可改善肠道微生物多样性,快速改变肠道菌群组成,通过增加短链脂肪酸的产生,促进内分泌细胞活性,调节胆红酸(BA)的周转,减少内毒素血症,改善肠道功能。

  • 二甲双胍治疗减少脆弱拟杆菌

短期二甲双胍治疗与脆弱拟杆菌的丰度显著降低相关,导致肠道中BA糖链酸水平的二次增加。GUDCA抑制肠法呢样X受体(FXR)信号传导,从而改善葡萄糖耐量。重新引入脆弱拟杆菌逆转了使用二甲双胍后葡萄糖代谢的改善。

二甲双胍治疗下的微生物转移有助于改善血糖控制和不良反应

Forslund K, et al., Nature. 2015

▇ 格列本脲

其他糖尿病药物还没有像二甲双胍治疗那样被广泛研究。格列本脲对肠道微生物群α多样性的影响很小。它增加了Paraprevotellaceae 和普氏菌属 Prevotella 的相对丰度。当与二甲双胍联合使用时,达帕利沙星或格列齐特均未显示能显著改变2型糖尿病患者的肠道微生物群。

▇ 利拉鲁肽

在高脂饮食(HFD)中,利拉鲁肽降低了肠道微生物的多样性,降低拟杆菌门、变形菌门和放线菌门的丰度。所有与肥胖相关的菌(Romboutsia,Ruminiclostridium,Erysipelotrichaceae)的相对丰度也有所下降,同时与瘦相关的菌Blautia和Coprococcus有所增加

接受GLP-1激动剂联合二甲双胍治疗的患者,Akkermansia丰度高于接受单一利拉鲁肽治疗的患者。

08 间接性禁食影响肠道菌群

间歇性禁食被定义为一种周期性的饮食限制,已被证明可以延长寿命,并降低罹患包括2型糖尿病在内的各种年龄相关疾病的风险

动物研究表明,间歇性禁食可改善机体组成、糖脂代谢、减少炎症和自噬,肠道菌群可能在这一过程中发挥关键作用。虽然大多数人类间歇性禁食研究显示了一个有益的影响,结果还不完全确定。

最近一项使用糖尿病小鼠的研究报告称,28天间歇性禁食干预通过增加气球菌Aerococcus、棒状杆菌Corynebacterium、Odoribacter、乳酸杆菌的丰度,减少链球菌、Rummeliibacillus和Candidatusarthromitu的丰度,重组了肠道微生物群,从而降低了血糖和胰岛素水平,改善能量代谢

间歇性禁食引起的细菌丰度变化与血浆次级胆汁酸浓度、绒毛长度增加、肠道渗漏减少、血浆LPS水平降低相关,提示轻度炎症改善。更重要的是,抗生素治疗抑制了间歇性禁食对2型糖尿病的影响,提示微生物群是间歇性禁食改善2型糖尿病的诱因

间歇性禁食的另一种选择是禁食模拟饮食法,它含有非常的热量和蛋白质。禁食模拟饮食法通过增加 ParabacteroidesBlautia的数量,减少普雷沃氏菌科、Alistipes、Ruminococcaceae属的数量,重建肠道微生物群,使血糖水平正常化,改善血糖高db/db小鼠的胰岛素敏感性和β细胞功能

该研究进一步强调了胰岛细胞和β细胞的缺失可以通过禁食模拟饮食法介导的改变肠道微生物群来预防,提示禁食模拟饮食法通过胰腺β细胞的功能来改善2型糖尿病。

综上,间歇性禁食可调节肠道菌群,改善2型糖尿病。然而,这些发现需要在人类队列中进行验证,使用纵向研究来确定间歇性禁食在影响2型糖尿病结果中的长期有效性。

09
益生元、益生菌和合生元

益生元、益生菌和合生元能够调节肠道微生物群组成,目的是为改善葡萄糖代谢创造环境。越来越多的文献支持临床使用添加益生元、益生菌和合生元来改善2型糖尿病患者的血糖控制。

然而,由于研究方法(研究时间、补充量、患者人口特征)之间的异质性,阻碍了研究的比较,而且研究可用性差、单个研究的规模相对较小以及明显缺乏微生物群数据,数据仍然有限,这是具有挑战性的。

▇ 益生菌

益生菌是活的微生物,当以足够的量给药时,对个体的健康有益。

证据表明,益生菌能够改善肠道微生物群,从而实现更好的2型糖尿病控制,同时增强肠道完整性、降低循环LPS、降低内质网应激和改善外周胰岛素敏感性

一项荟萃分析,重点是研究补充益生菌对2型糖尿病患者糖化血红蛋白水平、空腹血糖和胰岛素抵抗的影响。共纳入了15项随机对照试验,涉及902名患者。结果表明,益生菌可降低基线水平的糖化血红蛋白(p = 0.02)、FBG(p=0.003)和胰岛素抵抗(p < 0.00001)。

有限的研究评论了微生物群的变化。两项研究提到了添加益生菌后的微生物群分析,并报告了细菌组成的变化。嗜酸乳杆菌Lactobacillus acidophilus的丰度从干预前的接近不可检测的水平显著增加双歧杆菌属(4.5倍)和乳杆菌属(两倍)数量的显著增加

▇ 益生元

益生元是食物成分,如不易消化的多糖或纤维,通过选择性刺激一个或有限数量的肠道微生物群的生长和/或活性而有益地影响宿主。

补充益生元与改善血糖控制有关,然而,根据益生菌研究报告,方法学的异质性也很大,导致文献不确定。

迄今为止最全面的荟萃分析,包括33个随机对照试验,涉及1346名参与者,分布在健康、肥胖和2型糖尿病队列中。仅关注糖尿病前期和2型糖尿病队列,与对照组相比,补充后FBG、糖化血红蛋白水平、空腹胰岛素浓度和胰岛素敏感性的相对降低,分别为基线值的7.15、7.00、16.58和25.34%。建议每日补充剂量大于10 g,持续时间至少42天,以持续改善血糖指标。

目前尚不清楚观察到的影响是与肠道微生物群的改变有关,还是因为发酵底物的可用性更高。文献中一直缺乏微生物群分析,直接归因于葡萄糖水平的改善。

研究表明,补充益生元六周可产生显著的双歧杆菌效果,并提高粪便短链脂肪酸浓度,但未观察到对整体微生物多样性的影响。其次,补充益生元可以增加细菌多样性,如Shannon和inverse Simpson指数所评估的,并增加2型糖尿病患者的丰富度。然而,在饮食治疗12周后,没有观察到葡萄糖控制的统计学改善。

▇ 合生元

合生元:”包含活微生物和被宿主肠道微生物群选择性利用以赋予‘宿主健康益处’的底物的混合物”。

一种合生元给六十名高血压前期患者2型糖尿病(两种乳酸杆菌和双歧杆菌各一种,一种链球菌和酵母,以及300毫克低聚糖)。据报道,干预后乳酸杆菌属(32.6%)和双歧杆菌属(131.6%)均有所增加,肠道致病菌(44.6%)显著减少,空腹血糖(3.3%)和HbA1c水平(14%)也有所改善

越来越多的证据表明,添加益生元、益生菌和合生元可以改善血糖控制。需要进行详细的工作来设计稳健的方法,以确定这些积极的变化是否直接归因于肠道微生物群的改变和所涉及的复杂代谢机制。一旦这种关系被更好地理解,在2型糖尿病的管理中利用这些饮食补充的潜力就可以充分发挥。

10 粪菌移植治疗,有待深入研究

粪便微生物群移植(FMT)是将最低限度操作的预先筛选的供体粪便转移到已确定的“患病”患者的肠道中,目的是纠正异常生物状态增加整体多样性并恢复微生物群的功能。

被诊断为代谢综合征的男性受体在接受异源菌群6周后,胰岛素敏感性提高,产丁酸盐菌群(Roseburia肠胃炎种)丰度增加

其次,一项研究报告了代谢综合征患者,观察到异体粪菌移植后HbA1c水平显著降低,并与肠道微生物群组成的变化相关。异体粪菌移植之前参与者基线微生物组中基因丰富度的降低与临床结果的改善相关。

应该注意的是,这两项研究的临床益处随着时间的推移而恶化,并且存在相当大的个体差异

因此,粪菌移植治疗虽有希望,但还需进一步研究,例如:

  • 确定最佳供体微生物群特征;
  • 计算补充治疗所需的适当给药频率和阈值,以延长微生物群植入的寿命;
  • 受体宿主因子是否具有调节治疗效果的能力。

11 2型糖尿病的风险因素及预防措施

2型糖尿病是一种多因素疾病。这意味着不是仅仅停止吃糖或开始锻炼就可以来避免这种健康状况。
以下是一些可能影响患2型糖尿病风险的因素:

肥胖

肥胖或超重患2型糖尿病的风险很大

不良的饮食习惯

美国糖尿病协会(ADA)强调,吃太多不健康的食物会增加你患2型糖尿病的风险。研究表明,经常吃高热量、加工食品和饮料的饮食,而完整的、富含营养的食物却吃的少,这样的饮食习惯会显著增加患2型糖尿病的风险。

看电视时间过长

哈佛大学公共卫生学院指出,长时间看电视(和久坐)可能会增加肥胖、2型糖尿病和其他疾病的风险。

缺乏足够的锻炼

就像体脂与胰岛素和其他激素相互作用影响糖尿病的发展一样,肌肉也是如此。通过心血管运动和力量训练可以增加的肌肉量,在保护身体抵抗胰岛素抵抗和2型糖尿病方面发挥着作用。

睡眠习惯

美国国家睡眠基金会指出,睡眠障碍会增加对胰腺的需求,从而影响身体胰岛素和血糖的平衡。随着时间的推移,这会导致2型糖尿病。

多囊卵巢综合征(PCOS)

根据2017年8月发表在《临床内分泌与代谢杂志》上的一项研究,被诊断患有多囊卵巢综合征(一种激素失衡疾病)的女性比她的同龄人患2型糖尿病的风险更大。胰岛素抵抗和肥胖是这些疾病的共同特征。

45岁以上

根据ADA的说法,年龄越大,患2型糖尿病的可能性越大。但近年来,越来越多的儿童和青少年被诊断出患有前体糖尿病和2型糖尿病。

✦ 预 防

对于预防2型糖尿病,没有万无一失的方法,但是根据上述风险因素进行相应调整,保持健康的体重,遵循健康的饮食,定期锻炼,降低高胆固醇和高血压等可以帮助预防这种疾病。

▇ 饮食

因为某些食物,如碳水化合物,直接影响你的血糖,所以饮食是控制糖尿病最重要的因素之一

重要的并不是不吃,而是尽可能均衡饮食。

一种简单的标准餐盘法控制饮食:

盘子的一半:不含淀粉的蔬菜

盘子的四分之一:瘦肉蛋白

盘子的四分之一:谷物或淀粉类蔬菜

按照上述方式吃完饭,如果你还觉得饿,可以再吃一点不含淀粉的蔬菜。重要的是,一定要慢慢吃,享受食物

餐盘法可以帮助你增加纤维摄入量。富含纤维的食物可以帮助减缓血糖上升的速度。让你有饱腹感,潜在地促进减肥提高胰岛素敏感性。高纤维食物通常富含维生素和矿物质,也可以增加营养

已有研究证明,鼓励患者摄入高纤维饮食可以提高产生短链脂肪酸的菌群数量,从而通过增加GLP-1的产量来降低糖化血红蛋白水平。接受高纤维饮食的患者HbA1c水平比对照组下降更大,更高比例的患者实现了充分的血糖控制(HbA1c < 7%)。

注:糖化血红蛋白(HbA1c)是红细胞中的血红蛋白与血清中的糖类(主要指葡萄糖)通过非酶反应相结合的产物。

进一步的临床研究,摄入地中海饮食(富含纤维),也报告了高心脏代谢风险个体的葡萄糖和胰岛素敏感性的改善

因此,高纤维饮食用于控制2型糖尿病是可能的。

▇ 运动

运动对于利用胰岛素(帮助将糖分转移到细胞中)和降低血糖至关重要。通过运动,新陈代谢加快,身体就会逐渐熟练地燃烧卡路里。此外,锻炼有助于保持胆固醇含量,避免胆固醇过高和斑块的形成(这些斑块可能会阻碍血液顺利通过动脉)。

你可能会说工作生活很忙,找时间锻炼很困难,但不得不说,运动非常重要。试着让运动变得有趣,给自己足够的动力,或者把锻炼计划写在本上,比如说每周150分钟的运动量。

常见运动活动的生理成分

Andrew Williams et al., CLINICAL,2021

运动方式对2型糖尿病患者健康相关结果的影响

Andrew Williams et al., CLINICAL,2021

重要的是,要选择适合自己的运动方式,比如说肥胖的人可能会减少负重训练,从而减少与冲击相关的肌肉骨骼问题加重的风险。

有人认为,2型糖尿病患者在运动过程中发生不良事件的风险增加,但不良事件的发生率较低,定期运动的好处远远大于风险

注:不稳定型心绞痛、不稳定呼吸系统疾病、未经治疗的心力衰竭或心肌病、严重主动脉狭窄和未控制的糖尿病患者,运动需要遵医嘱

总之,运动计划必须是有目标的并且是自己感兴趣的,才能坚持下去。

▇ 肠道菌群健康检测

定期进行肠道菌群检测,了解2型糖尿病的患病风险,也是一种可行的预防措施。当发现风险较高就及时调整,不恐慌不焦虑,对自身健康状况了如指掌。

12
结 语

2型糖尿病是一种复杂的多系统疾病,如果不加以适当的识别和治疗,可能会出现并发症。特定的肠道微生物群可能通过葡萄糖代谢途径的改变来避免2型糖尿病的恶化。

随着对微生物群的了解逐渐深入,利用微生物群来识别“高危”人群以及通过微生物群靶向治疗成为可能。对于益生菌,益生元等治疗方案还需进一步研究,最终目标是在已确定的风险人群中简化早期干预,真正做到可防可控。

主要参考文献

Cunningham A L,Stephens J W,Harris D A,Gut microbiota influence in type 2 diabetes mellitus (T2DM).[J] .Gut Pathog, 2021, 13: 50.

Huda MN, Kim M, Bennett BJ. Modulating the Microbiota as a Therapeutic Intervention for Type 2 Diabetes. Front Endocrinol (Lausanne). 2021 Apr 7;12:632335. doi: 10.3389/fendo.2021.632335.

Al-Jameel SS. Association of diabetes and microbiota: An update. Saudi J Biol Sci. 2021;28(8):4446-4454. doi:10.1016/j.sjbs.2021.04.041

Muñoz-Garach A, Diaz-Perdigones C, Tinahones FJ. Gut microbiota and type 2 diabetes mellitus. Endocrinol Nutr. 2016 Dec;63(10):560-568.

Forslund K, Hildebrand F, Nielsen T, Falony G, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature. 2015 Dec 10;528(7581):262-266.

Vitale M, Giacco R, Laiola M, et al. Acute and chronic improvement in postprandial glucose metabolism by a diet resembling the traditional Mediterranean dietary pattern: can SCFAs play a role? Clin Nutr. 2021;40(2):428–37

Tao YW, Gu YL, Mao XQ, Zhang L, Pei YF . Effects of probiotics on type II diabetes mellitus: a meta-analysis. J Transl Med. 2020;18(1):30

Zhang F , Wang M, Yang J, et al. Response of gut microbiota in type 2 diabetes to hypoglycemic agents. Endocrine. 2019;66(3):485–93.

Gérard C, Vidal H. Impact of gut microbiota on host glycemic control. Front Endocrinol (Lausanne). 2019;10:29.

Xie C, Huang W, Young RL, Jones KL, Horowitz M, Rayner CK, Wu T. Role of Bile Acids in the Regulation of Food Intake, and Their Dysregulation in Metabolic Disease. Nutrients. 2021 Mar 28;13(4):1104.

肠道基石菌——拟杆菌属

谷禾健康

拟杆菌(bacteroides)——重要的基石菌属,存在于人类肠道中,它们与人类具有共生关系。它们有助于分解食物并产生身体所需的营养和能量。然而,当拟杆菌进入到除胃肠区域以外的身体部位,可引起或加剧脓肿等感染

初识拟杆菌

拟杆菌是革兰氏阴性、不形成孢子、厌氧和杆状细菌,是人类常驻菌群。它们具有外膜、肽聚糖层和细胞质膜。无氧呼吸的主要副产物是乙酸、异戊酸和琥珀酸。

结构——外膜囊泡OMV

拟杆菌的外膜囊泡 OMV可能对人类宿主的健康和疾病都有贡献。OMV 的水解酶在肠道微生物生态系统中发挥着关键作用。

拟杆菌外膜囊泡 (OMV) 的结构

Hassan Zafar et al., Gut Microbes,2021


OMVs的成分有助于分解复杂的多糖、蛋白质和脂质,从而支持其他细菌的生长和维持肠道内稳态

这些囊泡可以成为致病性载体,长距离储存和运输毒力因子。

代谢特性

拟杆菌参与人体结肠中许多重要的代谢活动,包括碳水化合物的发酵含氮物质的利用以及胆汁酸和其他类固醇的生物转化。大多数肠道细菌是糖酵解的,也就是说它们通过碳水化合物分子的水解获得碳和能量。此外,拟杆菌可以提供一定程度的保护,以免受侵入性病原体的侵害。

拟杆菌在不同人群中的分布

儿童肠道

在新生婴儿中,拟杆菌的流行程度取决于出生方式和前五个月饮食类型。在6-12个月间,拟杆菌是最普遍的菌群;其他菌群数量可能在幼年时期增加。

出生方式:拟杆菌在阴道分娩的婴儿的肠道中普遍存在。

饮食:与母乳喂养相比,用配方奶喂养的婴儿中拟杆菌属的百分比较

通过 16S rRNA 测序分析了美国德克萨斯州 7-12 岁儿童的肠道微生物组,健康儿童中,拟杆菌属平均占近 40%.

而在成年人肠道中,普通拟杆菌Bacteroides vulgatus溶木聚糖拟杆菌Bacteroides xylanisolvens 比在儿童中更多。

下面我们来看成年人肠道中拟杆菌会怎样变化?受哪些因素影响?

成年人肠道

多种因素会影响成年人肠道中拟杆菌丰度,例如饮食、环境、抗生素的使用等。

饮食模式:

纯素、素食和杂食饮食模式下,拟杆菌丰度不同。

Hassan Zafar et al., Gut Microbes,2021

对来自意大利四个不同地点的 153 名健康志愿者(51 名素食者、51 名素食者和 51 名杂食者)的粪便微生物群进行检测,脆弱拟杆菌纯素食者和素食者中的含量较,但在杂食性参与者中非常普遍。16S rRNA基因V3区数据显示,B.salersiaeB.salanitronis在杂食性群体中普遍存在,而B.vulgatus在素食者中普遍存在,B.salersiae在纯素食者中普遍存在。

地理位置:

已经证明,拟杆菌在生活在西方国家(北美和欧洲)的人肠道中普遍存在,因为西方饮食中的脂肪和蛋白质含量通常很高。一般来说,在亚洲,脂肪和蛋白质的消耗量较少,碳水化合物(大米小麦等)较多。

总的来说,在成年人肠道中,饮食模式是影响拟杆菌丰度的重要因素。

以上我们可以看到,不同人群肠道中拟杆菌含量是各不相同,那拟杆菌究竟是好还是不好?

其实,拟杆菌在人体中扮演着多重角色

拟杆菌作为对人类有益的菌

广泛消化膳食纤维多糖和宿主聚糖的能力

在结肠中,许多营养物质尤其是单糖,已经在小肠中被吸收和消耗。其余的营养成分由长链多糖和低聚糖组成,它们不易被结肠上皮细胞吸收,并抵抗宿主酶的消化。为了这一点仅剩的营养成分,拟杆菌使出了武器——淀粉利用系统

拟杆菌的多糖利用位点为许多碳水化合物的获取和代谢的启动提供了主要的蛋白质机制

拟杆菌的淀粉利用系统(Sus)

Hassan Zafar et al., Gut Microbes,2021

SusC 是一种 TonB 依赖性转运蛋白,与淀粉结合脂蛋白 SusD、SusE 和 SusF 协同工作。这些脂蛋白在结合和固定细胞外淀粉聚合物方面发挥作用。随后,α-淀粉酶 SusG 将淀粉降解为较小的寡糖,通过 SusC 进入周质。在周质中,SusA(α-淀粉酶)和 SusB(α-葡萄糖苷酶)将低聚糖分解成麦芽糖和葡萄糖。这些二糖和单糖通过糖转运渗透酶转运到细胞质中。

该系统使拟杆菌在竞争性肠道环境中具有优势,并且还有助于附着在粘液聚糖上。

互利共赢——多糖利用位点PUL 介导的菌群交叉喂养

拟杆菌属使用PUL机制使它们能够参与与其相邻微生物的物种间交叉摄食关系。

多形拟杆菌细枝真杆菌(Eubacterium ramulus)黄酮类化合物的降解和丁酸盐的产生有影响。

多形拟杆菌似乎缺乏降解槲皮素的代谢机制,而细枝真杆菌则缺乏降解淀粉的能力。多形拟杆菌代谢淀粉(PUL介导),并向细枝真杆菌提供麦芽糖和葡萄糖。在这些糖的存在下,细枝真杆菌可以降解槲皮素,同时将葡萄糖发酵成丁酸盐。

这种PUL介导的种间交叉摄食过程不仅有利于肠道居民获得所需的营养物质,而且对人类健康也可能起到有益的作用。

注:类黄酮是一种酚类化合物,存在于水果和蔬菜中,是植物的次生代谢产物。槲皮素是自然界中含量最丰富的黄酮类化合物之一。它有许多健康的好处,抗病毒,抗炎,抗氧化和抗癌。

肠道微生物群,包括细枝真杆菌,在降解过程中裂解槲皮素的C环,并释放3,4-二羟基苯乙酸,它在结肠癌细胞中具有抗增殖活性。

通过荚膜多糖A进行免疫调节

拟杆菌属是人类免疫系统免疫调节的关键参与者。荚膜多糖 A (PSA) 的免疫调节作用已成为广泛研究的主题。

——脆弱拟杆菌的PSA 有益效果:

(i) 刺激、发育和免疫系统的稳态

脆弱拟杆菌的PSA 影响 CD4+T细胞发育,调节 T 辅助细胞 (Th1/Th2) 的免疫平衡,并激活免疫调节 IL-10.

(ii) 预防细菌和病毒感染

脆弱拟杆菌的 PSA 可能在病毒感染期间提供强大的保护性抗炎反应

通过产生短链脂肪酸维持稳态

不同拟杆菌分泌的代谢物有助于维持免疫系统的稳定。这些物种是人体肠道中短链脂肪酸的主要产生者,主要以乙酸和丙酸的形式存在,对维持肠道内稳态很重要。

乙酸盐和丙酸盐都是有效的抗炎介质,因为它们抑制中性粒细胞和巨噬细胞释放促炎细胞因子

丙酸盐诱导人结肠癌细胞凋亡的抗癌作用

丁酸盐增加肠道紧密连接蛋白的表达,以降低潜在的肠道通透性。这反过来又减少了与肠道渗漏相关的炎症和内毒素血症。

通过合成维生素K防治骨质疏松

在人类肠道中,拟杆菌属是维生素K的主要合成菌。它可以通过增加骨矿物质密度来预防或治疗骨质疏松症。

与神经发育相关

强有力的证据表明,一岁时肠道细菌成分中拟杆菌属含量高婴儿,一年后在认知和语言方面发育更好,尤其是男性婴儿

缺乏拟杆菌与抑郁症相关

拟杆菌在心理健康中发挥的作用比我们意识到的要重要得多。

有研究发现,缺乏拟杆菌抑郁症之间存在明显的联系。

为什么拟杆菌缺乏会导致抑郁?

拟杆菌在 GABA 的产生中发挥着重要作用。

——GABA是什么?

γ-氨基丁酸(GABA)被称为抑制性神经递质。大脑中超过三分之一的突触使用GABA,这种神经递质对许多大脑功能至关重要。

当神经元发狂时,就像一只小猴子四处乱窜,所到之处都造成伤害。当兴奋的神经元进行破坏时,你的内部系统就会紊乱。当你的内心愤怒时,你就会将这种悲伤投射到外部,引发抑郁

GABA可以找到过度兴奋的神经元并与之结合。也就是说,GABA会对神经元产生镇静作用。

在深入研究肠道-大脑连接的过程中,科学家们意识到GABA依赖拟杆菌来实现最大生产水平。

Evtepia gabavorous——只吃GABA的细菌

“Evtepia”在拉丁文中有“特别,极为”的意思,

“gabavorous”在英文中有“以GABA为食”的意思,该名字的含义就是极度依赖GABA为食

所以如果没有拟杆菌这样的菌来生产GABA,那么GABA就被Evtepia gabavorous吃光,而体内缺乏GABA会导致焦虑,忧郁,不安等情绪。

特定拟杆菌低与冠状动脉疾病相关

人粪便16SrRNA测序显示,冠状动脉疾病患者中普通拟杆菌(Bacteroides vulgatus)多氏拟杆菌(Bacteroides dorei)的丰度显著降低

普通拟杆菌多氏拟杆菌灌胃可减轻动脉粥样硬化易感小鼠的动脉粥样硬化病变形成显著改善内毒素血症,减少肠道微生物脂多糖的产生,有效抑制促炎免疫反应

此外,冠状动脉疾病患者的粪便脂多糖水平显著升高,并与普通拟杆菌多氏拟杆菌丰度呈负相关。

拟杆菌过低会导致炎症性肠病

多项研究报告了炎症性肠病 (IBD) 与拟杆菌的菌群失衡之间的关联。

来自63篇文章,其中9篇包含了足够的数据进行评估:

活动期克罗恩病(CD)和溃疡性结肠炎(UC)患者拟杆菌平均水平明显低于正常对照组。缓解期CD和UC患者拟杆菌水平明显低于对照组。CD和UC患者活动期的拟杆菌水平甚至低于缓解期。这一分析表明,较低水平的拟杆菌IBD有关,尤其是在活动期。

综上,拟杆菌缺乏与一些疾病相关,拟杆菌的重要程度不言而喻。但是别忘了

拟杆菌还有它的另一种身份——致病菌。

拟杆菌作为对人类有害的菌

当拟杆菌能够逃到肠道以外的身体其他部位时,它们就会充当病致病菌,导致脓肿和其他感染。

尤其是以下几种情况更易发生细菌易位:

  • 免疫系统受损
  • 肠道屏障破坏(肠漏)
  • 手术损伤
  • 过度使用抗生素
  • 衰老

肠道外拟杆菌引起的感染

拟杆菌会引起中枢神经系统、头部、颈部、胸部、腹部、骨盆、皮肤和软组织的感染

Hassan Zafar et al., Gut Microbes,2021

腹内的:

脓疡(大多为多细菌感染),伴有内脏破裂、肠道手术(特别是脆弱拟杆菌)

肝脓肿(尤指解剖或结石异常)

胰腺假性囊肿感染

中枢神经系统:

脑脓肿常与其他细菌有关,是慢性鼻窦炎、慢性中耳炎的结果

硬膜下积脓症

硬膜外脓肿

口腔、上呼吸道:

牙脓肿、牙周炎、扁桃体周围脓肿(伴其他细菌)、鼻窦炎(慢性)、腮腺炎(不常见)。

肺:

吸入性肺炎或坏死性肺炎、肺脓肿、脓胸

泌尿生殖系统:

巴氏腺囊肿,盆腔炎,管腔脓肿,子宫内膜炎,绒毛膜羊膜炎,妇产科术后伤口感染

血液:

1/2 ~ 2/3 的病例是腹内

皮肤/软组织:

人/动物咬伤,手术后,坏死性筋膜炎;褥疮和糖尿病溃疡

骨:

骨髓炎,特别是与褥疮、其他局部污染有关的多细菌感染

治疗

任何脓肿的外科引流都是确保药物渗透的关键。

为了防止手术伤口的拟杆菌污染,可以使用围手术期抗生素,如头孢西丁。

甲硝唑是治疗脆弱芽孢杆菌感染的首选抗生素。

拟杆菌的致病机制是怎样的?

拟杆菌的毒力因子

拟杆菌属拥有一些细菌中最复杂的多糖荚膜系统,由至少八种不同的多糖 (PSA – PSH) 组成。拟杆菌属的脂多糖缺乏O抗原,其毒性大约是大肠杆菌脂多糖的1000倍

脆弱拟杆菌毒素是拟杆菌属中研究最深入的毒力因子之一。它以三种亚型存在 [ BFT-1,BFT-2,BFT-3 ]。

其中,BFT-2最有可能引起组织损伤。在人类分离株中,BFT-1是最常见的毒素变异,而BFT-3在东南亚有地理上的倾向。

氧化应激反应作为毒力因子

拟杆菌是肠道中的居民,暴露在不同浓度的氧气中。在肠外感染期间,拟杆菌转移到氧合程度更高的腹腔(高达7%的氧气),在那里宿主的免疫反应会产生额外的氧化应激。

存活氧化应激的能力是一个关键的毒力因子,因为病原体必须能够抵御宿主的氧化反应。这种增加的耐气性是通过各种氧化还原酶(包括过氧化氢酶、过氧化物酶和硫氧还蛋白)的作用实现的。此外,转录因子OxyR对许多参与氧化应激反应途径的基因的诱导起着关键作用。

肠道内拟杆菌在疾病中作用

拟杆菌在肿瘤发生中的作用

肠道菌群失调更容易发生癌症,因为病原体会对宿主的生理、代谢和免疫系统产生负面影响,从而促进肿瘤的生长。已有研究表明,肠道菌群失调与宿主体内局部和远端肿瘤的生长显著相关。

精胺氧化酶活性的氧化产物是亚精胺、活性氧、过氧化氢和醛、3-氨基丙醛,每一种都有可能产生细胞损伤加重发病机制脆弱拟杆菌可以激活宿主的精胺氧化酶,进而产生过氧化氢和其他活性氧,导致DNA损伤,增加癌症的发病率

结直肠癌:

脆弱拟杆菌是人类结肠直肠癌的主要启动子和促进剂。脆弱拟杆菌毒素引发的细胞事件导致结肠上皮细胞增殖、粘膜炎症和潜在的转移。

Hassan Zafar et al., Gut Microbes,2021

乳腺癌:

在对健康妇女和浸润性乳腺癌患者的肠道微生物组进行比较时,发现癌症患者拟杆菌水平的增加。

肠道微生物分泌的几种生物活性代谢物可影响免疫细胞功能和乳腺癌细胞生长。在这些代谢产物中,短链脂肪酸、石胆酸、激活的雌激素和cadverine可引起乳腺癌上皮间质转化并调节线粒体代谢。而拟杆菌是这些代谢物的高效生产者。

拟杆菌和自身免疫性疾病

在某些条件下,某些肠道微生物可能引起自身免疫情况。据推测,人体中细菌和病毒蛋白质的分子模仿可能导致自身免疫疾病。

自身免疫性炎症性心肌病是一种心肌炎症与心肌功能受损相关的疾病。最近研究表明,多形拟杆菌可能在这种情况的发生中发挥重要作用。

多形拟杆菌编码一种交叉反应的β-半乳糖苷酶模拟肽,它能激活肠道中的肌球蛋白特异性T细胞。肠道内发生的炎症导致免疫细胞迁移到心脏,从而引发自身免疫并伴有心肌病。

如何调节拟杆菌?

饮食改变拟杆菌丰度

增加肠道中拟杆菌数量的最好方法是增加纤维和抗性淀粉的摄入量——所以多吃含低聚果糖的多叶蔬菜、豆类、种子、坚果等。

此外,动物蛋白食物等饮食习惯也会导致拟杆菌数量增加。

但是拟杆菌并不意味着越多越好。

肠道菌群检测

假如拟杆菌过度生长,很难除去,且占据其他菌群的生长空间,导致肠道菌群失衡,因此,不能随意服用补充剂使其疯狂生长。我们需要将其控制在一定范围,肠道菌群检测可以用来确定体内是否真的需要补充,是否已经超标,从而更好地了解自身菌群现状,结合症状干预是一种更好的选择。

主要参考文献:

Solomkin JS, Mazuski JE, Bradley JS, et al. Diagnosis and management of complicated intra-abdominal infection in adults and children: guidelines by the Surgical Infection Society and the Infectious Diseases Society of America. Surg Infect (Larchmt). 2010;11(1):79-109.

Alauzet C, Lozniewski A, Marchandin H. Metronidazole resistance and nim genes in anaerobes: A review. Anaerobe. 2019;55:40-53.

Sukhpreet K. Tamana, Hein M. Tun, Theodore Konya, Radha S. Chari, Catherine J. Field, David S. Guttman, Allan B. Becker, Theo J. Moraes, Stuart E. Turvey, Padmaja Subbarao, Malcolm R. Sears, Jacqueline Pei, James A. Scott, Piush J. Mandhane & Anita L. Kozyrskyj (2021) Bacteroides-dominant gut microbiome of late infancy is associated with enhanced neurodevelopment, Gut Microbes, 13:1

Hassan Zafar & Milton H. Saier Jr (2021) Gut Bacteroides species in health and disease, Gut Microbes, 13:1

Yoshida Naofumi,Emoto Takuo,Yamashita Tomoya et al. Bacteroides vulgatus and Bacteroides dorei Reduce Gut Microbial Lipopolysaccharide Production and Inhibit Atherosclerosis.[J] .Circulation, 2018, 138: 2486-2498.

Wexler HM. Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev. 2007;20(4):593–621.

Flint HJ, Scott KP, Duncan SH, Louis P, Forano E. Microbial degradation of complex carbohydrates in the gut. Gut Microbes. 2012;3(4):289–306.

Foley MH, Cockburn DW, Koropatkin NM. The Sus operon: a model system for starch uptake by the human gut Bacteroidetes. Cell Mol Life Sci. 2016;73(14):2603–2617.

Gao K, Xu A, Krul C, Venema K, Liu Y, Niu Y. Of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements, only 3,4– dihydroxyphenylacetic acid has antiproliferative activity. J Nutr. 2006;136(1):52–57.

Houghteling PD, Walker WA. Why is initial bacterial colonization of the intestine important to infants’ and children’s health? J Pediatr Gastroenterol Nutr. 2015;60(3):294–307.

认识肠道微生物及其与高血压的关系

谷禾健康

肠道的内部环境作为外部环境和宿主之间的接口,不断受到宿主的消费习惯的挑战。在管腔一侧,微生物能够附着并定植于该空间,而在宿主一侧,胃肠道充当体内免疫细胞的最大隔室。

从解剖学上讲,肠道由不同的部分组成。十二指肠,空肠和回肠代表小肠(SI),它比由结肠和直肠组成的大肠(LI)占据更多的物理空间。与人类相比,啮齿动物的盲肠增大,盲肠囊是连接小肠和大肠的盲端囊。在小鼠中,盲肠充当了共生微生物的大贮藏库,这些微生物参与了无法通过其他方式裂解的纤维的发酵。  盲肠在小鼠中的作用很重要,因为它是短链脂肪酸(SCFA)产生的主要途径,去除盲肠会导致胃肠道远端部位炎症的增加 在人类中,该部位微生物的体积远小于小鼠,但该隔室在兼性厌氧发酵中仍起着重要作用。

值得注意的是,共生微生物的组成和丰度在不同的胃肠道区域是不同的,例如,成年小肠中的微生物丰度低(<105个微生物/ mL),在结肠中则增加到1012。小肠和大肠具有独特的生理功能。 虽然十二指肠和空肠参与消化,营养吸收和运动过程,但大肠具有三个主要功能:吸收水和电解质,产生和吸收维生素以及形成和运输排泄的粪便。肠道不断暴露在食物颗粒和食物抗原,生理或机会性微生物群衍生的代谢产物以及其他免疫调节刺激。 胃肠道内的免疫细胞不仅对肠道内的抗原刺激作出反应,而且还显示出扩散到全身的远端器官,表明它们在全系统炎症稳态中的重要性。

微生物无处不在。 他们自我组织,在原本无法居住的生态环境中创建了复杂的生态系统,迅速适应了他们的环境。宿主依赖微生物组实现几种基本的共生功能,例如启动免疫系统和生产必需的维生素,以及从食物中获取能量。 肠道微生物群(定义为人类体内的微生物分类群)现在被认为是内分泌器官,可产生可在宿主中充当效应子的代谢产物,从而触发局部微环境或远端的靶器官系统(如心脏,肾脏,脉管系统)的反应和大脑。

肠腔内壁衬里是抵抗细菌感染的生理屏障,可以与毒素结合。此外,粘液是细菌的营养来源,因此会影响具有在粘液层中生存和扩展能力的微生物的定殖。Akkermansia muciniphila(AKK菌) Citrobacter rodentium (柠檬酸杆菌)能够降解粘蛋白,而后者在纤维缺乏期间会增殖。结肠粘液层完整性的丧失会增加宿主对病原体的敏感性。 在健康条件下,紧密的上皮层可防止病原微生物的入侵,而某些刺激物(如炎症性疾病或西餐)可导致肠道通透性和所谓的肠道渗漏综合征的发展。

随着高通量测序技术和代谢组学的建立以及高性能计算和人工智能的发展,人们逐渐破译生活方式饮食,药物治疗和肠道微生物组之间的相互关系。每个人肠道微生物组随时间推移相对稳定,并与周围环境平衡共存。但是诸如抗生素,肠道感染以及饮食或生活方式变化等扰动都会引起短暂或持续的变化

01 肠道免疫与高血压

在过去的几十年中,实验和临床研究表明,先天性和适应性免疫系统的细胞在高血压,靶器官损害和心血管疾病(CVD)的发病机理中起着关键作用。促炎性效应记忆T细胞和 T辅助细胞亚型T辅助细胞17(Th17;产生IL-17)和1型辅助细胞(产生IFN-γ)促进高血压和心血管靶器官损伤,而调节性T细胞(Tregs)通常产生大量的抗炎性IL-10可以减轻血管,心脏和肾脏的损害

此外,γδT细胞和髓样来源的抑制细胞在高血压的发病机理中也起着重要作用。 已经证明可以改变几种T细胞亚型激活状态的树突状细胞会增加盐反应性高血压,并提示其在菌群失调与血压(BP)之间的相互作用中发挥作用。

细菌可以直接或通过其产生的代谢产物与参与心血管的不同免疫细胞发生反应。例如,分段丝状细菌或Bifidobacterium adolescentis(青春双歧杆菌)可诱导Th17细胞,而Lactobacillus murinus(鼠乳杆菌)及其色氨酸代谢产物吲哚3乳酸则可抑制Th17细胞。 和SCFA丁酸盐是结肠中Treg的杰出诱导剂。

图  肠道微生物与宿主免疫相互作用

在宿主和微生物组方面均可发现肠道空间变异性。内腔和组织相关内容的相对水平在此处进行了说明,表明这两种功能的区域专业化。 已知肠道中的内腔含量在微生物负荷,微生物种群以及所产生的微生物产生的代谢产物方面有显着差异。尽管在整个胃肠道中的种群和区域规格都受到微生物的影响, 根据管腔内物质含量的变化,宿主免疫系统同样具有区域特异性。

这里显示的是免疫细胞,这些细胞在免疫稳态过程中表现出空间动态。  

02 肠道菌群与高血压

高血压的发病机制涉及多种因素,包括遗传、环境、激素、血液动力学和炎症等。越来越多的证据表明,肠道微生物群在高血压的发生和发病机制中起着重要作用。胃肠道是人体内最大的免疫细胞库,代表着环境和宿主的交汇点。因此,生活方式因素的形成和调节的微生物组,影响着高血压疾病形成和发生的风险。一个被广泛研究的例子是膳食纤维的消耗,能导致短链脂肪酸的产生,并有助于抗炎免疫细胞的扩张,从而防止高血压的进展。饮食干预如禁食也被证明通过微生物群影响高血压

图 血压与肠道菌群的关系

摄入的食物被肠道微生物群转化为小的代谢物。食物抗原、微生物产生的代谢物以及微生物本身都有助于免疫稳态。干扰宿主和微生物群之间的共生关系可通过免疫系统直接或间接导致血压变化和相关的心脏、血管或肾脏损害。

在过去的十年中,许多关于肠道微生物组和高血压的作用的证据已积累起来。多项针对人体的横断面研究表明,肠道微生物组与血压或高血压之间存在关联。高血压患者或血压较高的患者,α多样性降低,肥胖,高胰岛素血症和血脂异常也已观察到。 许多人类肠道微生物组研究报告了革兰氏阴性菌群较高的菌群之间的相关性,包括克雷伯菌,副细菌,脱硫弧菌和普氏菌,尽管并非所有研究都能确定这种模式。

来自HELIUS队列研究(城市环境中的健康生活)的研究表明,克雷伯菌属和链球菌属与血压呈正相关。此外,与高血压小鼠相比,从高血压人类供体接受粪菌移植的GF小鼠出现了与其供体相似的肠道菌群,以及8周后收缩压和舒张压升高。它从2个血压正常的供体那里接受了粪菌移植。

此外,还有几种有价值的啮齿动物高血压模型分析了肠道微生物组和血压的作用。自发性高血压大鼠存在失调,与正常血压WKY(Wistar-Kyoto)对照大鼠的微生物群存在显著差异。自发性高血压大鼠的肠道通透性和菌群失调也可能可通过使用降压药治疗大鼠来补救。

肠道微生物组与高血压之间的联系不是物种特异性的。 例如,在小鼠和人类中高盐处理都会减少乳酸杆菌属。  值得注意的是,未治疗的高血压患者中盐的适度降低能够降低血压并改善动脉顺应性。改善的临床结果伴随着8种循环SCFA的增加(包括2-甲基丁酸、丁酸、己酸、异戊酸和戊酸 )。此外,已证明益生菌乳酸菌处理可通过恢复吲哚3乳酸水平(抑制微生物色氨酸代谢)抑制Th17细胞并减轻盐敏感性高血压

已显示,Lactobacillus coryniformis可以改善血管功能和胰岛素敏感性。Lactobacillus(乳杆菌)治疗不仅可以改善心血管疾病,还可以改善实验性自身免疫性疾病的结局。 对益生菌对高血压的作用进行调查的随机对照试验的系统评价表明,如果以足够高的剂量使用至少8周,含乳酸杆菌的益生菌是有效的。

03 饮食方式影响肠道菌群

在人类中,肠道中的核心微生物群落是稳定的,并且仅在响应诸如肠道感染,整体旅行或药物治疗等主要扰动时才发生变化,从而导致肠道微生物组发生短暂或持续的变化。 肠道菌群不仅对某些饮食刺激的比例具有反应性,而且还可能在时空环境中做出反应。

目前,我们对特定饮食变化影响炎症,自身免疫和心血管疾病易感性的确切机制的理解还很模糊。 使用经过微生物组组成和功能训练的机器学习算法可提供令人兴奋的机会,以促进更好地预测对营养刺激的反应。

新兴的研究表明,饮食因素(高盐或高纤维)和生活方式干预盐分限制或热量限制)会影响微生物群落的结构和功能,这对免疫细胞活化和血压具有重要意义。西方人的生活方式通常涉及每天进食几顿主餐,并导致细菌多样性下降,某些食物喂养细菌的过度生长,以及随之而来的其他食物为底物的细菌的抑制。因此,菌群产生的代谢产物发生了转移,从而促进了炎症,最终可能导致肥胖症和动脉粥样硬化等疾病的发展。

从历史上看,餐食通常是新鲜烹制的,但如今,人们更经常食用通常含盐量更高加工食品。这种生活方式通常会导致较高的盐摄入量 而不是医学指南或专家的建议。为减少心脏代谢疾病的风险,通常应节食健康的饮食和运动。 大多数建议的重点是将富含饱和脂肪,糖,盐和卡路里但纤维含量低的西方饮食改变为更健康的地中海式阻止高血压饮食方法,以实现最佳营养,平衡和降低盐摄入量,尽管合规性是一个重大挑战。

04 微生物群衍生短链脂肪酸

SCFA是最典型的微生物群代谢产物之一,它是在不易消化的纤维发酵过程中产生的。 乙酸,丙酸和丁酸是3种高丰度的SCFA。 膳食纤维是由≥3种单体组成的膳食碳水化合物的统称,如非淀粉多糖,抗性淀粉,菊粉,果胶,β-葡聚糖和低聚糖。 这些纤维状化合物中的大多数都被拟杆菌、厚壁菌和放线菌门微生物消化。Bifidobacterium adolescentis, Eubacterium rectale, Eubacterium hallii, Faecalibacterium prausnitzii ,Ruminococcus bromii 通常在大肠中定居,并具有消化纤维以生产SCFA的

大肠的丙酸和丁酸水平比小肠高约4倍。SCFA在结肠中迅速吸收,而丁酸在很大程度上被用作向结肠上皮细胞提供能量的燃料。肠道SCFAs与门静脉血相比要高得多,而门静脉SCFAs较高,其次是肝脏血液,外周血最少,这表明SCFAs基本上被肝脏吸收。肝中丙酸的摄取是糖异生,脂肪生成的前体,以及蛋白质合成,而乙酸盐进入循环系统并被多个组织代谢,并且是胆固醇合成的底物。

SCFA可以与G蛋白偶联受体Gpr41(G蛋白偶联受体41),Gpr43( 小鼠中的G蛋白偶联受体43),Gpr109a(G蛋白偶联受体109 A),Olfr558(嗅觉受体558)和Olfr78(嗅觉受体78),也称为FFARs(游离脂肪酸受体)。FFARs存在于各种组织中,包括血管和肾脏,并参与调节丙酸、乙酸和丁酸的血管反应性。

Gpr41和Olfr78似乎都参与了血压的调节,尽管它们似乎促进了相反的作用。Olfr78激活后会诱导肾素分泌。与此相符的是,Gpr41敲除小鼠为高血压,有趣的是,醋酸盐以前曾用于血液透析缓冲液,但由于其降压作用而被大量废弃,这与SCFA在大多数情况下降低血压的观点一致。

纤维本身已被建议在一定程度上塑造微生物组成

关于血压,纤维的刺激作用增加了SCFA生产者Faecalibacterium prausnitziiEubacterium rectale以及乳杆菌属的丰度。一项具有里程碑意义的研究表明,与传统上纤维含量高的未加工饮食的非洲儿童相比,食用西方饮食的欧洲儿童SCFA水平显着降低FirmicutesBacteroidetes(F/B)比率高。自该研究以来,高F/B比率通常被用作肠道生态失调的替代指标,虽然也已知一些Firmicutes细菌产生有助于健康微生物组的微生物代谢物。

同样,实验工作通常依赖于F/B比作为疾病标志物。自发性高血压大鼠和易中风的自发性高血压大鼠显示F/B比率增加,这支持了这可以作为肠道生态失调的标志物的概念。

05 血压和短链脂肪酸

各种实验或临床研究已证明益生元高级纤维或后生SCFA治疗对血压的影响。研究报道丙酸在麻醉小鼠中诱导了急性的剂量依赖性降血压反应,这是由Gpr41介导的。益生元纤维不仅可以预防心血管疾病,而且这些营养素的缺乏可能是导致高血压和心血管疾病的危险因素。 还发现在低纤维饮食中添加益生元乙酸盐,丙酸盐或丁酸盐可改善血压并减少靶器官损害

此外,GF小鼠的粪菌移植表明,与抗性淀粉相比,饮食中的肠道微生物组缺乏抗性淀粉。高纤维情况不仅在血管紧张素II攻击后导致较高的血压,而且还导致了心脏和肾脏损害的发病机制。

德国一项研究测试了在有和没有动脉粥样硬化的高血压小鼠中口服丙酸治疗的特性。在这两种模型中,丙酸治疗均能降低全身和局部炎症反应,血压以及心脏损害。丙酸的治疗作用是由Treg细胞介导的。但是该研究指出丙酸的降血压作用不是急性的,而是随着时间的推移而发生,提示SCFA的抗炎特性间接促进了血管表型的改善。Th17细胞和Th17与Treg的平衡介导SCFA在血压调节中的作用。

关于SCFA在血压中的作用的人类研究非常少见。对微生物群组成和高血压的一些研究表明,SCFA的生产者为Ruminococcaceae spp,RothiaRoseburia spp. 与较低的血压相关。

在一项小型干预试验中,生物素丁酸酯(600 mg / d),益生素菊粉(10 g / d)以及这两者的组合均降低了代谢综合征患者的舒张压。在HELIUS队列中,将机器学习算法应用于微生物组数据可确定Roseburia spp解释对血压的最大绝对影响,甚至在调整混杂因素(包括使用药物)后,丰度也使收缩压降低4.1 mmHg

相反,血压较高的患者的粪便SCFA水平较高。这种正相关与以前的研究一致,但似乎与血压与胃肠道内微生物SCFA生产者之间的负相关性相矛盾。 但是,粪便中的SCFA含量不一定反映肠道内的SCFA含量,而是反映肠道中产生的SCFA含量而宿主无法吸收的

自发性高血压大鼠的实验工作支持了这一观点,表明实验性高血压会减少结肠丁酸对宿主的吸收。此外,AT1(血管紧张素II型1型)受体阻滞剂坎地沙坦(一种经常用于治疗高血压的药物) 已发现自发性高血压大鼠可以增加乳杆菌的丰度和粪便SCFA水平,改善肠道完整性并降低血压。

坎地沙坦治疗改善了重度肥胖受试者肠道中丁酸生成基因的缺失。总之,在HELIUS队列中,基于肠道微生物群组成的机器学习模型分别解释了收缩压和舒张压变异性的4.4%和4.3%。

纤维来源的SCFAs不仅影响血压,而且在其他心血管疾病和自身免疫中也起着关键作用。例如,用醋酸盐,丙酸盐或丁酸盐进行生物后处理可改善急性肾损伤。肾脏保护与局部和全身炎症反应减少,氧化性细胞应激和细胞凋亡。在多发性硬化症动物模型中,T细胞介导的中枢神经系统炎症性疾病丙酸盐增加了肠道和脾脏中抗炎Tregs的频率,这伴随着临床症状的改善。

高纤维摄入量和增加的SCFA浓度也被证明可以保护中枢神经系统。值得注意的是,多发性硬化症患者可以从丙酸盐治疗中获益。短期丙酸盐治疗导致显着和持续的富集功能正常的Tregs,同时1型辅助细胞和Th17细胞同时消耗。此外,补充SCFA或高纤维摄入对类风湿性关节炎(一种关节慢性炎症性疾病)的预后有积极影响。丙酸酯可增加骨量,并且发现SCFA通过增加Treg的数量刺激骨形成。

06 SCFA与免疫系统相互作用

从机制上讲,SCFA可以影响不同的免疫细胞群。 例如,发现丙酸和丁酸处理后中性粒细胞产生的炎性细胞因子较少。丁酸还可以减少氧化应激和吞噬能力。

SCFA通过减少树突状细胞成熟并抑制CD4和CD8T细胞增殖来调节炎症过程。与乙酸盐相反,丁酸盐或丙酸盐通过HDAC(组蛋白脱乙酰基酶)抑制作用影响骨髓前体细胞的树突状细胞成熟。此外,丁酸可促使M1巨噬细胞分泌更少的炎性细胞因子,增加抗炎细胞因子IL-10的分泌。

SCFAs还引起人单核细胞和T细胞中抗炎标记的表达。 例如,丁酸抑制金黄色葡萄球菌刺激的人单核细胞中IL-12的产生并增强IL-10的分泌。

最近,研究证明了丙酸会降低Th17细胞分化的速率。还发现丁酸盐还通过Gpr43增加1型辅助细胞分化细胞中IL-10的分泌,由SCFA驱动的IL-10诱导激活STAT3(信号转导子和转录激活子3)和mTOR(雷帕霉素的机械靶标),从而上调转录因子B淋巴细胞诱导的表达成熟蛋白。

此外,SCFA最深入研究的特性之一是它们在诱导抗炎Treg中的作用。丁酸和丙酸可增加鼠和人Treg的分化并增强其抑制能力。除丁酸外,丙酸(而非乙酸)通过HDAC诱导外周新生Treg细胞形成。值得注意的是,Clostridia梭菌)是共生微生物的主要类别,它介导了诱导性结肠Tregs,这与Clostridium butyricum酪酸梭状芽胞杆菌)诱导Tregs并减少Th17细胞从而减轻实验性自身免疫的症状的发现是一致的

07 禁食:新的血压控制策略

越来越多的证据表明,禁食是控制代谢性疾病和炎性疾病的有效工具。热量限制会影响微生物组的基本原理令人兴奋。 然而,仍然缺乏关于人类的可靠数据。

一项研究关于10天定期禁食对15名健康男性的粪便微生物群的影响。禁食导致LachnospiraceaeRuminococcaceae菌减少。一项小型的人体试验研究表明,斋月禁食影响了健康受试者的微生物组,丰富了一些SCFA生产者

在一项临床研究中,35名代谢综合征患者接受了5天的禁食,然后进行了3周的DASH饮食,也被译为「得舒饮食」,字面意思是防止高血压的饮食方法饮食。

对照组仅接受DASH饮食。禁食后接着DASH饮食降低血压,需要抗高血压药物和干预后3个月的体重,并改变影响SCFA生产者的肠道微生物群。队列对血压反应性的分层显示,空腹组中存在的免疫细胞变化在血压反应者中比在无反应者中更明显。

此外,禁食组的免疫移位与DASH组观察到的变化根本不同。观察到干预后禁食组中血压响应者特异性微生物组的变化(F.prausnitzii,拟杆菌和厚壁菌的富集;放线菌的消耗)。值得注意的是,丁酸盐生产者F.prausnitzii的富集甚至在禁食后3个月仍然存在。血压反应者和无反应者不仅对禁食反应不同,而且在基线时的丙酸合成能力不同。

将机器学习算法应用于基线免疫组或16S微生物组数据,预测模型通过重新分析调查禁食和血压影响队列(Mesnage数据集)证实,队列中显着的长期血压下降预计准确率约为70%,进一步支持这些发现可能是普遍化的想法。重要的是要强调,上述研究建立了微生物组和血压之间的关联,以应对禁食。禁食对许多患者来说是一项艰巨的挑战。能够操纵负责响应禁食的血压变化的机制将具有高临床效用。

禁食是热量限制的一种极端形式,在不同的文化和宗教习俗中起着重要的作用。 大量的热量限制不仅影响宿主的健康和生理,还降低了血压。生活方式和饮食引起的微生物群及其代谢产物的扰动可直接影响上皮细胞和免疫细胞的稳态。但是我们对营养,微生物群和微生物产物,免疫系统与宿主健康或疾病之间的联系仍处于‘婴儿期’。

08

小鼠与人类的差异障碍和转化

宿主-微生物组相互作用对人类健康和疾病显然有影响。模型系统经常用于基础和临床前高血压研究,以研究疾病的发病机制和进展。小鼠和大鼠模型非常有用,可以提供人类队列研究无法获得的信息。然而,在模型系统中研究人-宿主-微生物组相互作用存在许多障碍。

差 异 

01 胃肠生理学和形态学有许多方面,这在人类和啮齿动物物种之间是截然不同的。盲肠可能是人类和啮齿动物不同物种形成的最明显的例子,以及小鼠结肠粘液层的薄度。

02 小鼠和人类对炎症应激物的基因组反应是明显不同的,这可能与宿主特异性或微生物组特异性特征或两者的组合有关。

03 居住在胃肠道的微生物在小鼠和人类之间通常也是不同的。人和小鼠只有约15%的细菌谱系。虽然它们在属或门的水平上可能具有可比性,但物种特异性变化通常在高血压中具有临床重要性。

04 已知在每个微生物进化枝内,成员物种之间共享功能特性的程度例如,厚壁菌作为进化枝特别代谢不一致,当考虑到普遍使用F/B比率作为生态失调的标志物时,这再次提出了一个问题。

05 由于人类微生物组随时间的相对稳定性,实验室小鼠在这方面与人类不同。

06 小鼠和人体免疫组成和建立不同,人类免疫系统的强劲发展,需要接触各种真菌,病毒,微生物等,而GF小鼠与人或大鼠微生物的定殖不会诱导免疫成熟,只有小鼠特异性微生物能够诱导完全的免疫能力。

07 啮齿动物模型的嗜食性已被认为对微生物组具有独特的影响,这可以通过使用单一住房策略来避免,尽管这会诱发小鼠的应激反应,增加一个额外的混杂因素。

许多研究人员试图通过使用人类微生物定殖小鼠或野外捕获的小鼠来规避物种比较问题。这提出了两个重要的挑战,应该加以考虑。

一,存在宿主与其微生物之间相互作用的相互排斥的问题。事实上,这种相互作用的重要性在最近的一项研究中得到了证实,该研究表明GF小鼠与人或大鼠微生物的定殖不会诱导免疫成熟,只有小鼠特异性微生物能够诱导完全的免疫能力。有几点差异在小鼠和人体免疫组成之间注意到,这可能与免疫微生物组轴有关,例如,与小鼠(10%–25%)相比,外周血中性粒细胞的比例约为人类的两倍(50%–70%)。此外,CD8+T细胞在成年人非淋巴组织中的分布远高于无特定病原体的小鼠,这可能对细胞内感染或癌症的进展有影响。

二,尽管野外捕获的小鼠比实验室培养的无特定病原体的小鼠更准确地概括人体生理,可能与临床试验结果的一致性更高,对疾病的抵抗力更强。但是在科研研究和临床上应用大规模野外捕获老鼠的可能性会受到限制。

因此,在未来动物研究中,整个领域的程序标准化,例如使用同窝对照和可能影响微生物组的条件的稳健记录是必不可少的。要注意笼养,用品和饮食等因素可能会对结果产生重大影响。此外,采样时间,地点也尽量一致。

值得注意的是除了不同胃肠道区域的空间动态外,从粘膜和管腔空间取样的微生物组在小鼠和人类中是独特的。由于胃肠道是免疫细胞极化和微生物产生的代谢物吸收的作用部位,许多人质疑粪便取样是否正确研究宿主-微生物组界面的途径。粪便代表该系统的排泄产物。

然而,粪便取样是检查微生物组的最常见和实际适用的方法,特别是对于需要非侵入性方法的纵向研究。粪便的收集无疑有助于我们理解宿主-微生物组的相互作用。尽管怀疑局部产生的微生物副产物的相关性是重要的,特别是影响代谢物对循环的摄取并影响胃肠免疫细胞的活性,但是该隔室的测量是不发达的。在间质液中的作用部位鉴定微生物产生的化合物的能力可能提供对宿主-微生物组动力学的不同观点。

总之,尽管在解释微生物组数据时需要谨慎,但是,高血压中微生物组-宿主界面的研究是一个有前途且正在迅猛加速的研究领域。随着各种技术的进一步发展,针对微生物组领域的以药理学和辅助诊断方式为中心的方案可能会在不久的将来出现。

相关阅读:

大样本人群揭示肠道菌群与血压之间的关系

肠道微生物群在冠心病中的作用

解密|肠道菌群与健康长寿

最新研究速递 | 肠道真菌与健康和疾病有关

参考文献:

Schluter J, Peled JU, Taylor BP, Markey KA, Smith M, Taur Y, Niehus R, Staffas A, Dai A, Fontana E, et al.. The gut microbiota is associated with immune cell dynamics in humans.Nature. 2020; 588:303–307.

Evangelou E, Warren HR, Mosen-Ansorena D, Mifsud B, Pazoki R, Gao H, Ntritsos G, Dimou N, Cabrera CP, Karaman I, et al.; Million Veteran Program. Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits.Nat Genet. 2018; 50:1412–1425.

Ellen G. Avery. CirculationResearch. The Gut Microbiome in Hypertension, Volume: 128, Issue: 7, Pages:934-950

Tierney BT, Yang Z, Luber JM, Beaudin M, Wibowo MC, Baek C, Mehlenbacher E, Patel CJ, Kostic AD. The landscape of genetic content in the gut and oral human microbiome.Cell Host Microbe. 2019; 26:283–295

Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S, Prifti E, Vieira-Silva S, Gudmundsdottir V, Pedersen HK, et al.; MetaHIT Consortium. Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota.Nature. 2015; 528:262–266.

Verger EO, Armstrong P, Nielsen T, Chakaroun R, Aron-Wisnewsky J, Gøbel RJ, Schütz T, Delaere F, Gausseres N, Clément K, et al.; MetaCardis Consortium. Dietary assessment in the metacardis study: development and relative validity of an online food frequency questionnaire.J Acad Nutr Diet. 2017; 117:878–888. 

研究速递 | Science揭示肠道微生物群和代谢产物在电离辐射中的保护作用

谷禾健康

电离辐射可以引起造血系统,肠道系统以及心脑血管神经系统的多器官损伤。

放射治疗在临床上被广泛用于治疗多种肿瘤。但是由于放射射线不仅可以杀死癌细胞,还会对周围的正常细胞和组织造成损伤,因此放疗经常会引起各种副作用,比如疲劳,恶心,呕吐和腹泻等等。

肠道是辐射的主要目标,也是肠道菌群的最大生态位。虽然有小部分描述性研究表明,肠道微生物群与辐射损伤之间存在潜在的相关性,但这种关系的具体基础仍然不清楚。

近日,来自美国北卡罗拉纳大学教堂山分校的 Jenny P.Y. Ting 团队在 Science在线发表研究论文,题为“Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites”。

发现在致死剂量的全身性辐射模型中,肠道微生物群,特别是LachnospiraceaeEnterococcaceae可以保护小鼠抵抗辐射引起的造血系统和肠道系统的损伤,从而在致死剂量的辐射后存活下来。并且这些有益的微生物在放疗副作用轻微的白血病病人的粪便中含量显著提高。

通过靶向性以及非靶向性代谢组学研究,该研究发现SCFAs和色氨酸代谢物能降低肿瘤坏死因子-α、白细胞介素-6、干扰素-γ等促炎细胞因子的生成,这些细胞因子都是辐射损伤的重要介质。

这些发现提出了肠道微生物群和代谢产物在辐射激发后疾病易感性调节中起关键作用的可能性


研究人员发现,一小部分小鼠可以在高剂量的辐射下存活并正常生活。这些“精英幸存者”拥有一个独特的肠道微生物组,该微生物组是在辐射后形成的。

然后将这部分小鼠称为“精英存活小鼠”,并且收集了他们的粪便进行16srRNA的测序。与同年龄的对照小鼠相比,“精英存活小鼠”的肠道菌群有很明显的不同。

随后,研究人员通过多种不同的菌群干扰实验来直接验证肠道菌群是否可以影响机体对于辐射的反应。在“dirty cage sharing”(脏笼)实验中,作者将“精英存活小鼠”和同年龄常规饲养的的对照小鼠使用过的脏笼子收集起来,用来饲养SPF小鼠和接受者小鼠。

每一周他们都会将接受者小鼠转移到相对应的新鲜脏笼中。经过8周的 “dirty cage” 实验,对接受者小鼠进行致死剂量的辐射。

接受了 “精英存活小鼠” 脏笼子饲养后的接受者小鼠对致死剂量辐射具有了明显的抵抗效果,30天内生存率达到了70%。相反,接收对照组脏笼子饲养的接受者小鼠,30天存活率仅为20%左右。

另外,作者分别利用SPF小鼠和无菌小鼠进行了粪菌移植实验。

接下来他们直接收集了“精英存活小鼠”和对照小鼠的粪便,并将粪便处理物通过灌胃的方法转移到受体小鼠中。接收“精英存活小鼠”粪便移植的SPF小鼠和GF小鼠都表现出明显的抗辐射效果。

利用这一发现,结合粪便植入和‘dirty cage sharing’实验,证明来自精英幸存者的微生物群在无菌的和常规饲养的接受者中均提供了重要的放射防护,其特点是提高了存活率并改善了临床评分

他们找出了8种在“精英存活小鼠”受体组显著升高的细菌以及5种显著下降的细菌。那么作者推测,这些在“精英存活小鼠”受体组显著升高的细菌就可能是使机体对辐射有抵抗效果的“有益菌”,相反在“精英存活小鼠”受体组显著下降的细菌则可能是“有害菌”。

那么,这些肠道菌群对辐射的影响在人体内是否也成立呢?

作者联合杜克大学以及纪念斯隆-凯特琳癌症中心的实验室,一起进行了一个小型临床研究。

他们收集了一些白血病病人的粪便并进行了16srRNA测序。由于腹泻是放疗之后常见的副作用,他们根据病人腹泻的持续时间,将病人样本分为轻度腹泻和重度腹泻两组。

肠道菌群分析

通过肠道菌群的分析发现,在轻度腹泻病人中,Lachnospiraceae,Enterococcaceae以及Lactobacillaceae这三种在小鼠中可能的“有益菌”数量明显高于重度腹泻的病人。Lachnospiraceae的数量与病人腹泻时间存在显著地负相关性。因此,作者推断在人体中,这些可能的“有益菌”也可以帮助病人降低放疗引起的副作用。

随后,作者挑选了三种可能的“有益菌”,三种可能的“有害菌”以及一种最著名的益生菌 Lactobacillus rhamnosus, 进行了单一菌株的体内实验。

组织学分析

作者发现,Lachnospiraceae对小鼠的保护作用极明显。并且,通过组织学分析,Lachnospiraceae极大地降低了辐射对于造血系统和肠道系统造成的损伤。骨髓和脾脏的组织结构和细胞死亡得到了极大地保护。大肠和小肠的损伤以及肠道渗透性也明显降低。

短链脂肪酸分析

由于Jenny Ting课题组和其他课题组已经报道过,Lachnospiraceae可以产生大量的短链脂肪酸,并且短链脂肪酸是调节机体免疫反应和炎症反应的重要物质,因此,作者检测了三种短链脂肪酸对辐射的影响。

他们发现,在接受了propionate丙酸处理后,小鼠可以有效地抵抗致死剂量辐射带来的造血系统和肠道系统的损伤,生存率也得到了极大的提高。

细胞分析

作者同时检测了骨髓中造血干细胞和祖细胞的比例,发现propionate处理小鼠要远高于对照小鼠。另外,辐射所导致的DNA损伤与活性氧的释放,在propionate处理后也明显降低。

非靶向性代谢组学分析

最后,作者通过非靶向性代谢组学研究发现了一系列的代谢产物在“精英存活小鼠”的粪便中含量显著提高。其中,升高最为明显的是色氨酸代谢通路的成员。作者选取了indole-3-carboxaldehyde (I3A)和kynurenic acid(KYNA)进行了体内验证。两个色氨酸途径代谢产物1H-吲哚-3-甲醛(I3A)和强尿酸(KYNA)在体内提供了长期放射防护。

   结 论   

该研究的发现强调肠道菌群作为宿主抵抗辐射的主要调节剂的关键作用,能够保护造血和胃肠系统。 

“精英存活小鼠” 的肠道菌群组成和普通小鼠不同,他们的肠道中含有大量的Lachnospiraceae等“有益菌”。这些“有益菌”通过产生大量的短链脂肪酸和色氨酸代谢通路的代谢产物来促进造血发生以及肠道损伤修复,从而帮组机体抵抗辐射引起的损伤和死亡。

毛螺菌科和肠球菌科,以及以丙酸和色氨酸途径菌群为代表的下游代谢产物,对辐射防护起着重要作用。

这项研究揭示了微生物代谢物轴在产生广泛的抗辐射保护中所起的关键作用,并为治疗辐射暴露的不良副作用提供了有希望的治疗靶标。

Tips

该文做了很多生理,化学,生物代谢和病理等大小20多项实验,包括小鼠实验,辐射处理实验,“dirty-cage sharing”实验,FMT实验,细菌菌种管理实验,SCFA和色氨酸代谢处理实验,病理组织学,肿瘤接种和放射治疗实验,免疫染色和免疫印迹解折,肠通透性检测,骨髓干细胞,肠上皮细胞和肠上皮内淋巴细胞分离,ROS检测,流式细胞仪分析,粪便16S rRNA基因测序分析,气相色谱-质谱检测,非靶向代谢组实验。一篇高水平论文的研究思路和严谨的实验论证过程,值得我们借鉴和学习。

参考文献:

Guo Hao,Chou Wei-Chun,Lai Yunjia et al. Multi-omics analyses of radiation survivors identify radioprotective microbes and metabolites.[J] .Science, 2020, 370

1