科普

深度解读 | 肠道菌群和中枢神经系统的关系

原创:  谷禾健康

说话晚、读书读不进、每天不开心不全是我们的错,还可能是肠道菌群有问题。肠道菌群不仅影响消化吸收,还影响神经系统。近年来,科学家们研究发现,肠道细菌可能在神经发育,焦虑和抑郁症的诱发过程中,甚至很多中枢神经系统疾病中,都起着重要的作用。

菌群与神经障碍和发育

肠道菌群究竟是什么

首先,我们了解下肠道菌群。
肠道菌群包含居住在胃肠道中的大约100万亿微生物的集体基因组,我们肠道细菌的基因库包含比人类基因组多150倍的独特基因。


在人体定植的许多微生物群落中,肠道菌群正在成为影响宿主健康状况的主要参与者。肠道菌群的组成是在宿主发育早期建立的,并且可以在一生中经历无数的变化。越来越多的证据表明,肠道微生物组与中枢神经系统(CNS)相通 。


Ghaisas et al. Pharmacology & therapeutics, 2016

肠道菌群和我们的发育同步
是伴随和影响我们一生的伙伴

  从怀孕时期就影响我们的神经发育

神经发育过程

经研究发现,神经发育的主要过程与母体和新生儿肠道微生物的变化一致


Sharon et al. Cell, 2016

肠-脑轴参与婴儿早期神经发育与感受


Cong et al., Advances in neonatal care: official journal of the National Association of Neonatal Nurses,2015

接下来我们看看胃肠道是怎么构成的

胃肠道的构成

胃肠道(GI)长5米,上皮表面积约32平方米。它是身体70-80%免疫细胞的家园,超过1亿个神经元,以及多达100,000个外在神经末梢。

微生物组包含多达40万亿个细胞和至少数百种不同的物种。胃肠道的一个重要功能是感知和响应外部线索。


Yoo and Mazmanian. Immunity, 2017

胃肠道由不同的横截面隔室组成。外在的,交感神经和副交感神经纤维通过肠系膜进入胃肠道并且可以延伸遍及肠组织的所有层。各种免疫细胞驻留在肌层,但在固有层中也非常丰富,特别是在Peyer氏斑块和淋巴滤泡中。

这些免疫细胞也与神经元和神经胶质细胞紧密相连。这里显示的上皮由5种不同的细胞类型组成,包括吸收肠上皮细胞,肠内分泌细胞,杯状细胞,潘氏细胞,微细胞。

胃肠道(GI)对于营养物质的吸收,粘膜和全身免疫反应的诱导以及健康的肠道微生物群的维持是必不可少的。

你会发现不只是消化的细胞

还有大量的神经元和免疫细胞

以及海量的肠道菌群

为什么有句话说

“肠胃不好顺带着心情和脑子也不好了”?

肠道又是如何联系到大脑

从而影响神经系统的呢?

经过大量的研究,我们逐步揭开了肠道菌群与大脑之间的联系。

肠-脑轴

人体肠道微生物组以多种方式影响人类大脑健康:

(1)结构性细菌成分如脂多糖为先天免疫系统提供低级强直性刺激。由细菌生态失调,小肠细菌过度生长或肠渗透性增加引起的过度刺激可能产生全身和/或中枢神经系统炎症。

(2)细菌蛋白质可能与人类抗原交叉反应,刺激适应性免疫系统的功能失调反应。

(3)细菌酶可产生神经毒性代谢物,如D-乳酸和氨,甚至有益的代谢物如短链脂肪酸也可能发挥神经毒性。

(4)肠道微生物可以与人类产生相同的激素和神经递质。这些激素的细菌受体影响微生物的生长和毒力。

(5)肠道细菌直接刺激肠神经系统的传入神经元,通过迷走神经向大脑发送信号。通过这些不同的机制,肠道微生物塑造了睡眠和下丘脑 – 垂体 – 肾上腺轴的应激反应的结构。它们影响记忆,情绪和认知,并且在临床和治疗上与一系列疾病相关,包括酗酒,慢性疲劳综合症,纤维肌痛和不安腿综合征。


Wang and Kasper.  Brain, behavior, and immunity, 2014

在健康和疾病的背景下,多个途径引导微生物组 – 肠 – 脑轴的向下和向上方向。

(A)向下,CNS通过影响营养的可用性饱食信号肽,影响肠功能和神经通路的内分泌物来控制肠道微生物组成。

皮质醇的HPA轴释放调节肠道运动和完整性。

免疫途径(细胞,细胞因子和sIgAs)可以开启,用以响应肠道功能的改变。内分泌和神经通路还可以调节来自特化肠上皮细胞的分泌,包括潘氏细胞,肠内分泌细胞和杯状细胞。它们的分泌产物影响菌群的存活和居住环境。

(B)向上,肠道微生物组通过神经(通过微生物组直接激活神经元),内分泌(例如5-羟色胺的肠内分泌细胞释放),代谢(神经活性分子的菌群合成)和免疫(CNS浸润免疫细胞和全身炎症)途径来控制CNS活动。

菌群在健康状态(神经发育)和疾病(一系列神经免疫和神经精神疾病)状态影响CNS。肠腔菌群,其产物由APC取样,附着上皮的SFB(肠内节丝状菌)介导外周免疫培养。

肠道微生物组成,菌群内的特定菌株,益生菌处理,菌群衍生产物和其他因素构成微生物组研究的范围。

由肠道微生物及其产物

直接或间接驱动的基本发育过程


Sharon et al. Cell, 2016
(A)肠道微生物通过各种直接和间接机制将信息传递给大脑。
(B)基因神经发育过程因GF动物的定植或因抗生素消耗肠道细菌而调节。具体而言,以下过程是调节:血脑屏障形成和完整性,神经发生,小胶质细胞成熟和分化,髓鞘形成,和神经营养因子,神经递质,及其各自的受体的表达。

细分来看,肠神经系统(ENS)就是肠道的大脑,同时还是联系着肠道外部(微生物群,代谢物和营养物)和内部(免疫细胞和基质细胞)微环境。

肠神经系统

胃肠生理学的关键方面由肠神经系统(ENS)控制。ENS由神经元和神经胶质细胞组成。

肠神经元位于粘膜下或肌间神经丛中。两个丛都位于两个肌肉层之间。副交感神经纤维释放乙酰胆碱,交感神经释放去甲肾上腺素。这些外在神经纤维可以支配肠神经元,但也与平滑肌,固有层和上皮细胞相关。肠神经元可以相互支配或延伸到固有层,特定的肠道真菌(IFAN)可以突触到交感神经节。

肠神经胶质细胞产生和释放神经营养因子,与肠神经元结合,并延伸到整个粘膜。左列和中间列用颜色编码,分别代表产生特定条件的细胞和分子以及从这些特定条件产生的结果。

肠神经元与胶质细胞的连接


Yoo and Mazmanian. Immunity, 2017

此外肠道菌群还通过释放不同物质和干预免疫系统最终影响血脑屏障和中枢神经系统(CNS)产生联系。

肠道用于收集营养和能量,防止有害的毒素和病原体,并清除废物,它是一个高度动态的环境,受到蠕动活动的周期性波动的影响。这些功能主要受两个肠神经系统(ENS)和驻留在肠道内的亿万共生细菌调节和控制。斑马鱼研究实验表明ENS调节肠道微生物群落成员身份以维持肠道健康。通过施用代表性抗炎细菌菌株或恢复ENS功能来预防ENS突变体中的炎症。

肠-脑之间通讯途径

肠道微生物群与大脑之间可能存在五种通信途径,包括肠道神经网络,神经内分泌 – HPA轴,肠道免疫系统,肠道菌群合成的一些神经递质和神经调节因子,以及包括肠粘膜屏障和血脑屏障在内的屏障。在这个通信网络中,大脑影响肠道运动,感知和分泌功能,来自肠道的内脏信号也影响大脑功能。

肠道微生物群与脑之间可能存在的五种通讯途径


Wang H X, Wang Y P,Chinese medical journal, 2016

神经递质和代谢产物

很多肠道菌群能代谢产生大量神经递质及其类似物,此外肠道菌群的部分代谢物质也会通过免疫系统影响神经系统。


Cryan & Dinan, Nature reviews neuroscience
, 2012

连接菌群和大脑的

还离不开一个重要通道

——血脑屏障

血脑屏障越来越多的证据表明,菌群与中枢神经系统(CNS)相互作用,并可以调节其许多功能。这种相互作用的一种机制是在血脑屏障(BBB)的水平上。

细菌可以直接将因子释放到体循环中或可以转移到血液中。一旦进入血液,微生物组及其因子可以改变外周免疫细胞,促进与BBB的相互作用,并最终与神经血管单元的其他元素相互作用。

在菌群影响下从外围部位释放的细菌及其因子或细胞因子和其他免疫活性物质可穿过BBB,改变BBB完整性,改变BBB转运率,或诱导屏障细胞释放神经免疫物质。

由菌群代谢产物,例如短链脂肪酸,可穿过BBB以影响脑功能。通过这些和其他机制,微生物组-BBB相互作用可以影响疾病的进程。

Logsdon et al, Experimental Biology and Medicine, 2018
图中1层
菌群与全身免疫细胞相通,可影响血脑屏障(BBB)和CNS功能。肠腔不断暴露于来自外部环境的细菌。肠上皮屏障的破坏可允许肠道菌群不受调节的移动进入固有层。

图中2层
细菌可以渗透GALT(肠道相关的淋巴组织)和血腔,它们与各种免疫细胞相互作用,包括T细胞。

图中3层
某些细菌可以刺激效应型T细胞分化。调节性T细胞测量在GALT,血液和脑脊液中局部菌群的变化可促进T细胞脑浸润。

图中4层
循环细菌可以上调炎性细胞因子水平,影响BBB完整性并促进神经炎症。LPS(脂多糖)由细菌因子产生,并且可以作用于内皮TLR(Toll样受体)以促进神经炎症和CNS疾病。

图中5层
细菌代谢物可以上调紧密连接蛋白并改善BBB完整性。

图中6层
代谢物也可穿过BBB以影响神经胶质细胞和神经炎症。微生物组对周细胞的作用仍不清楚。

那么肠道菌群如果发生变化,

会带来哪些神经系统疾病和问题呢?

神经系统疾病的相关菌

目前已经发现一些与神经系统疾病(包括多发性硬化症,自闭症,帕金森病等)研究相关的菌。研究发现,这些疾病患者的某些菌群的数量明显发生变化,具体如下表:


Marietta et al., Neurotherapeutics, 2018

菌群干预或异常会导致的问题

目前有越来越多的证据表明,肠道微生物群在指导和促进大脑发育过程中发挥着重要作用,对健康具有长期的影响。

菌群和菌群产物的扰动

会影响小鼠模型和人类的行为结果

产前效果

产后效果

菌群如何影响中枢神经系统疾病

免疫介导的CNS疾病

多发性硬化症

多发性硬化症(MS)是由针对中枢神经组织的自身反应性免疫攻击介导的慢性CNS脱髓鞘疾病。这是通过研究患者和使用称为实验性自身免疫性脑脊髓炎(EAE)的MS动物模型来实现的。

如在一系列研究中观察到的,用单一细菌或细菌混合物口服治疗可调节EAE。益生菌动物双歧杆菌减少了大鼠EAE模型中症状的持续时间。

乳酸杆菌(包括LcS),单独施用或与其他双歧杆菌属菌株组合施用,倾向于通过相互调节促炎细胞因子和抗炎细胞因子反应来缓解小鼠EAE症状。

脆弱拟杆菌和乳酸片球菌(菌株R037)的益生菌治疗也显着降低了小鼠对EAE的易感性。

视神经脊髓炎

视神经脊髓炎(NMO),是一种CNS自身免疫疾病,其特征在于视神经和脊髓的免疫介导的脱髓鞘。

研究发现水通道蛋白血清阳性的NMO和NMO谱系疾病患者血清对胃肠道的抗原(最常见的饮食蛋白)抗体水平高于健康对照组,暗示NMO患者微生物群组成和免疫状态的改变。

格林 – 巴利综合征

格林 – 巴利综合征(GBS)是一种周围神经系统的自身免疫性疾病。

空肠弯曲杆菌在家禽中发现的肠道共生物种是由食物污染引起的人类肠炎的主要原因。研究表明弯曲杆菌肠炎患者的GBS风险高。

此外,弯曲杆菌与几种GBS的病理形式有关。不同的弯曲杆菌菌株以及宿主因子在GBS发育过程中形成自身反应性免疫反应中起重要作用。

因此,空肠弯曲杆菌代表了一种介导神经自身免疫的肠道相关病原体。

其他免疫介导的疾病

脑膜炎是CNS保护膜的炎症。病毒或细菌感染可能导致脑膜炎。据报道,成年肠道共生大肠杆菌 K1能够通过母体转移给新生儿引起脑膜炎。

慢性疲劳综合征(CFS),也称为肌痛性脑脊髓炎(ME),目前尚不清楚病因。据推测,共生细菌的转运升高可能是某些CFS患者疾病活动的原因。

非免疫介导的CNS疾病

自闭症

自闭症谱系障碍(ASD)是一系列发育性神经行为障碍,其特征是社交互动和沟通受损。新出现的数据表明肠道微生物组与ASD之间存在联系,可能是直接因果关系,也可能是间接的非典型摄食和营养模式的结果。

肠道微生物群的破坏可能促进产生神经毒素的细菌的过度定殖,从而导致自闭症症状。据报道,在自闭症儿童的粪便样本中存在的梭菌属下的物种数量更多,Bacteroidetes和Firmicutes门的不平衡也表现在自闭症儿童身上。

此外,其他肠道共生物的水平改变,包括双歧杆菌,乳酸杆菌,Sutterella,普氏菌和Ruminococcus属以及Alcaligenaceae家族,与自闭症相关。

肠道微生物组介导的新陈代谢也会影响自闭症。

抑郁症

抑郁症是由神经精神障碍或免疫失调导致的情绪障碍的主要形式。益生菌治疗已经显示出抑制动物抑郁症模型的功效。乳杆菌属下的物种特别表征为抗抑郁剂,包含鼠李糖乳杆菌和瑞士乳杆菌菌株的益生菌混合物通过使皮质酮水平正常化来改善母体分离诱导的抑郁。

类似地,鼠李糖乳杆菌菌株JB-1通过以迷走神经依赖性方式调节皮质酮和GABA受体来减少抑郁相关行为。

双歧杆菌的种类也是有效的抗抑郁药。

如大鼠强迫游泳试验(FST)和母体分离模型所示,Bifidobacterium infantis减轻了抑郁症。涉及的机制包括促炎细胞因子的减弱,色氨酸代谢的调节和CNS神经递质。

此外,含有高水平多不饱和脂肪酸(PUFA)n-3的饮食配方通过与瑞士乳杆菌和长双歧杆菌相似的机制减弱大鼠MI后抑郁症。

焦虑和压力

焦虑和压力是具有神经,内分泌和免疫学基础的情绪障碍的常见形式。暴露于诸如化学,生物或环境刺激的压力因素可引发压力和焦虑反应,其涉及激活HPA轴(下丘脑-垂体-肾上腺轴)。如前所述,焦虑和压力的共病已经在剧烈和轻微的肠功能障碍类型中被感知,强调了肠 – 脑信号如神经递质和免疫因子的作用。

与具有正常肠道微生物群的SPF小鼠相比,GF小鼠显示出增加的运动活性和减少的焦虑。这种行为表型与GF小鼠的CNS中更高水平的神经递质和降低的突触长期增强相关。

后来的研究证实了GF条件下焦虑样行为的减少,这可以通过其他神经化学变化来解释,例如神经递质受体减少和色氨酸代谢增加。因此推测肠道微生物组调节HPA轴的设定点。

有益的益生菌可以改善焦虑。乳杆菌属和双歧杆菌属的特定种类具有抗焦虑作用。用长双歧杆菌,婴儿双歧杆菌,瑞氏乳杆菌或鼠李糖乳杆菌的某些菌株进行益生菌处理单独或联合使用,在动物焦虑模型中归一化行为表型。

Lactobacillus farciminis还抑制了应激诱导的肠道泄漏并减弱了HPA轴应激反应。

由瑞士乳杆菌和长双歧杆菌组成的益生菌制剂显示出在大鼠中的抗焦虑样活性和对健康人受试者的有益心理作用。

通过益生菌调节微生物组可以减轻由对刺激的外周神经反应和对CNS的信号转导引起的伤害性疼痛。在乳杆菌属的种中可见抗伤害感受作用。

罗伊氏乳杆菌还减轻正常大鼠CRD诱导的内脏疼痛。

L. paracasei使抗生素扰动小鼠的CRD内脏超敏反应正常化。

嗜酸乳杆菌通过诱导阿片样物质和大麻素受体在肠道疼痛中产生镇痛作用。

此外,两项研究支持IBS背景下特定婴儿双歧杆菌菌株的抗伤害感受作用。

其他神经精神症状

微生物组与其他神经精神疾病有关,其中经常发生基于免疫和非免疫的病因的混合物。GF动物表现出缺陷的记忆和认知能力。用小鼠菌群重新定殖GF小鼠可以增强或减少探索行为。海马脑源性神经营养因子水平与探索行为正相关。

益生菌能够改善感染引起的记忆功能障碍和糖尿病引起的认知缺陷。肠道微生物组的膳食改变也调节了小鼠的认知和学习行为。

总而言之,肠道菌群的研究对于CNS疾病相关的诊断,预后和治疗都有很大的意义。

主要参考文献

Sharon G et al. (2017) The Central NervousSystem and the Gut Microbiome. Cell. 167: 915–932.

Cong et al. (2016) Early life experience and gut microbiome: the Brain-Gut-Microbiota signaling system. Adv Neonatal Care. 15(5): 314–323.


Rolig et al. (2017). The enteric nervous system promotes intestinal health by constraining microbiota composition. PLoS Biol. 15(2): e2000689. 

Logsdon AF et al. (2018) Gut reactions: How the blood–brain barrier connects the microbiome and the brain. Exp Biol Med. 243(2): 159–165.

Wang HX and Wang YP (2016). Gut Microbiota-brain Axis Chin Med J (Engl). 129(19): 2373–2380.

Vighi G et al. (2008) Allergy and the gastrointestinal system. Clin Exp Immunol.153:3–6

Hooper LV et al. (2012) Interactions between the microbiota and the immune system. Science. 336:1268–1273

Mowat AM. (2003) Anatomical basis of tolerance and immunity to intestinal antigens. Nat Rev Immunol. 3:331–341.

Bryan B. Yoo et al. (2018) The Enteric Network: Interactions between the Immune and Nervous Systems of the Gut. Immunity. 46(6): 910–926.

Johansson MEV et al. (2016) Immunological aspects of intestinal mucus and mucins. Nat Rev Immunol. 16:639–649.

Gerbe F et al. (2016) Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature. 529:226–230.

Howitt MR et al. (2016)Tuft cells, taste-chemosensory cells, orchestrate parasite type 2 immunity in the gut. Science. 351:1329–1333.

Shivani Ghaisas et al. (2016) Gut microbiome in health and disease: linking the microbiome-gut-brain axis and environmental factors in the pathogenesis of systemic and neurodegenerative diseases. Pharmacol Ther. 158: 52–62.

Yatsunenko T et al. (2012) Human gut microbiome viewed across age and geography. Nature. 486:222–227.

Dogra S et al. (2015) Dynamics of infant gut microbiota are influenced by delivery mode and gestational duration and are associated with subsequent adiposity. MBio. 6 

Villaran RF et al. (2010) Ulcerative colitis exacerbates lipopolysaccharide-induced damage to the nigral dopaminergic system: potential risk factor in Parkinson’s disease. J Neurochem. 114:1687–1700. 

Wang Y, Kasper LH. (2014) The role of microbiome in central nervous system disorders. Brain Behav Immun. 38: 1–12.

Mayer EA et al. (2017) The gut and its microbiome as related to central nervous system functioning and psychological wellbeing: Introduction to the Special Issue of Psychosomatic Medicine. Psychosom Med. 79(8): 844–846.

Cryan JF et al (2012). Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nature reviews. Neuroscience. 13:701–712.

Belkaid Y, Naik S. (2013) Compartmentalized and systemic control of tissue immunity by commensals. Nature immunology. 14:646–653. 

Knuesel I et al. (2014) Maternal immune activation and abnormalbrain development across CNS disorders. Nat Rev Neurol. 10:643–660. 

Möhle L et al. (2016) Ly6Chi Monocytes Provide a Link betweenAntibiotic-Induced Changes in Gut Microbiota and Adult HippocampalNeurogenesis. Cell Rep. 15:1945–1956.

Matcovitch-Natan et al. (2016) Microglia development follows astepwise program to regulate brain homeostasis. Science

Desbonnet L. et al. (2015) Gut microbiota depletion from earlyadolescence in mice: Implications for brain and behaviour. Brain Behav Immun. 48:165–173.

生命之友:人类微生物群

摘要

人体内有大量的细菌和其他微生物,它们统称为微生物群或微生物群,它们对我们的健康有重要的功能,包括我们的消化系统和免疫系统。最近的创新带来了更好的测序技术和生物信息学,导致人类微生物组研究尤其是肠道研究的显着增加。本文简要介绍了微生物组研究中使用的技术,并为此提供了新的见解 – 直到最近,这个看不见的世界。另外,将讨论潜在的诊断和治疗应用。

关键词

微生物群,微生物群,肠道细菌,食物

介绍

安东尼范列文虎克(1632-1723)也许是第一个看到细菌的人。他用自己制造的简单但非常有效的显微镜研究了皮屑,头发,昆虫,血液和沼泽水等各种物体。在致伦敦皇家学会的信中,他将他的观察结果描述为井和运河水中的微小“微生物”[1]。1683年,范列文虎克给皇家学会再写了一封信。虽然他总是用盐和一块布清洁他的嘴,但他已经看到他的自制平视
显微镜下他的牙齿和材料之间有什么斑块。在那里,他也看到了数以百计的“小动物”。他的这些口腔细菌的图画和描述可能是与我们身体相关的微生物的发现[1]。

在随后的三个世纪中,微生物学蓬勃发展 – 主要在病原体领域。大多数细菌和病毒被认为是病原体,鉴于霍乱,结核病,天花和百日咳等疾病的高发病率,这是一种合乎逻辑的假设。随着疫苗和抗生素的出现,这些传染性疾病在二十世纪的墨水中减少了,微生物学也可以专注于研究人体内和微生物上的微生物。

我们现在知道,我们的身体适应了生活在我们皮肤上,口腔,胃和肠道中的复杂微生物群落。这些微生物聚生体由细菌,古细菌,原生动物和真菌组成,它们一起被称为人类微生物群(所有微生物)或人类微生物群(所有目前的微生物及其基因组)[2]。一个人容纳几百到几千种不同的微生物物种,主要是细菌,大多数微生物都生活在大肠里。一种广泛使用但现在已经过时的统计数据声称,我们的身体比人体细胞含有十倍多的微生物细胞。在最近的出版物中,这些计算已经重新完成,现在估计人体内和人体内的微生物数量大约等于体细胞的数量,即4×1013 [3]。

人们并不是复杂的微生物群落的唯一栖息地。微生物无处不在。几乎所有生物体 – 植物或动物的生命 – 都与微生物有关。此外,微生物群落在各种环境中都有发现,如土壤,海水,冰川和室内各种表面平原。

技术发展

在过去的二十年中,DNA扩增和测序技术有了惊人的改进。这导致了大量的微生物群落研究[2]。许多这些研究利用了16S rRNA基因的独特性质,它编码的RNA是小核糖体亚基的一部分[4]。核糖体是所有活生物体的一部分,因此是每个细菌基因组中的rRNA基因。16S rRNA基因具有独特的“镶嵌结构”,具有保守区和可变区。保守结构域可用于设计几乎适用于所有细菌基因组的通用引物,而中间可变结构域(V1至V9)对每种细菌物种都是独特的,因此可用于鉴定和表征。

新的分子技术使研究各种样品类型的微生物多样性成为可能,而不必依赖于培养。这导致了许多未知细菌门的发现,现在已经有数百万个细菌和古菌序列被发表。

此外,现在可以对样本中的完整基因组DNA进行测序,以便可以研究复杂群落中的所有基因及其可能的功能(宏基因组学)。最后,科学能够在转录组学,蛋白质组学和代谢组学领域提供各种其他创新 – 在某些条件下对所有这些基因表达的新见解[6]。除DNA提取和测序领域的创新之外,生物信息学在分析这些技术产生的大量数据方面有很大进展。

人类微生物组的组成

新技术使分析人体中复杂的微生物群成为可能。发现人类微生物群落因解剖部位而异,但也受个体和时间的影响[7,8]。2008年开展了两项大规模微生物群研究。欧洲MetaHit-联盟关注粪便的宏基因组分析[9],而美国人类微生物组计划则检查了几个身体部位[10]。最近的两项大荷兰一比利时研究显示,食物和药物对肠道微生物组成的重要影响[11,12]。这些项目极大地扩展了我们对人体微生物居民身份和功能的认识。

起初,殖民化始于出生

我们身体的微生物定植开始于出生时,在生命的第三或第四年左右或多或少完成[13]。这个殖民化过程如何进行,部分取决于交付的类型。在自然分娩期间,婴儿首先接触母亲的阴道和直肠细菌; 而在剖腹产期间,宝宝首先会主要接触皮肤细菌。与此同时,这些新的见解启发了一些父母在母亲的阴道微生物群中涂抹新生儿[14]。此外,婴儿在头几个月的喂养方式决定了他们的肠道微生物群的发展。母乳含有细菌,人造奶不育。通过剖腹产出生的婴儿或用人造奶喂养的婴儿可能会出现一种扰乱的定植模式,哮喘的风险稍高,过敏和晚年肥胖[15]。决定儿童时期微生物群发育的其他因素是兄弟姐妹或宠物的存在以及其他家庭成员的微生物群的组成[16]。与狗或农场长大的儿童发展哮喘的机会较小[17]。这似乎证实了卫生学假说,该假说认为暴露于细菌是儿童早期对免疫系统发育和对环境抗原更高耐受性所必需的。

微生物组的功能

我们体内的微生物,特别是肠道中的微生物,对我们的健康非常重要。我们肠道细菌的共同基因是我们自己的基因组的一个很好的功能延伸。人类肠道微生物群含有比人类基因组多150倍的基因,它编码了许多我们无法自行合成的酶[9]。肠道微生物群的一个重要功能是消化我们不能自行分解的营养物质。大多数植物碳水化合物和纤维不能在小肠中消化,并在未被消化的大肠中被肠道细菌发酵。由此肠道微生物群的存在使得哺乳动物能够从食物中提取更多的能量。在无菌培养箱中出生并繁殖的无菌小鼠,

除了复杂的碳水化合物和纤维的消化和发酵之外,肠道微生物群还涉及短链脂肪酸的生产(例如
丁酸盐),脂肪代谢,大肠解剖结构的正确发展,免疫系统的控制,维生素的合成以及肠道内空洞的填充,使病原体不能定植[8-10,19]。也有越来越多的证据表明肠道菌群与中枢神经系统之间存在相互沟通的途径,称为脑 – 肠轴,甚至有迹象表明肠道细菌对其宿主的行为和情绪有影响[20]。因此,无菌小鼠比殖民小鼠承担更多的风险,但他们也有较少的记忆。目前还不清楚微生物群与大脑之间的这种联系在人类行为中是否也很重要。

因为我们的肠道细菌实际上是带有大量基因的小化工厂,它们也可以分解或修饰各种化学物质。诸如细胞抑制剂和心脏药物的药物可以被肠道微生物群激活或失活。不同的人对相同药物的反应可能不同,需要更高或更低的剂量,这取决于他们携带的肠道细菌[21]。

微生物和营养

人类肠道微生物群通常相当稳定。在一项志愿者长时间收集粪便的研究中,除了在饮食改变,胃肠感染期间或国际旅行期间,肠道微生物群或多或少都保持不变[22,23]。最近对非洲和南美洲传统社区非西方人粪便成分的研究表明,生活方式和饮食对人类肠道微生物群的影响很大。狩猎采集者,传统农民和城市工业人群有着截然不同的微生物群[13,24-26]。狩猎采集者的肠道菌群含有这三组中最高的细菌多样性。这很可能是由这些传统生活小组消耗的大量纤维所引起的 – 比普通美国人和欧洲人多十倍。

抗生素意外的副作用

在严重感染中,抗生素可以挽救生命,但它们也会对我们的微生物群产生意想不到的副作用。大多数抗生素是广谱的,他们不幸地不区分我们身体中的病原体和有益细菌。许多标准的抗生素治疗方案对我们肠道中细菌类型的数量有很大的影响,通常患者并没有注意到它。恢复通常是不完整的,甚至在停止治疗的几个月后[28,29]。口腔微生物群似乎比肠道微生物群对这些紊乱更不敏感[28]。

另外,从动物实验中发现,反复实际的抗生素治疗主要是在年轻动物中,结果可转移到永久性被扰乱的微生物群中[30],并通过移植人类肠道细菌在无菌小鼠中导致肥胖[31]。这导致了这样的假设:儿童时期反复的抗生素治疗可以导致肠道微生物群的细菌种类减少[32]。在生命的头三年,美国儿童平均得到三至六种抗生素,正是在他们的微生物组发育时。虽然这个数字在荷兰较低,但抗生素反复给儿童开处方,导致肠道菌群多样性减少可能与西方世界肥胖和糖尿病患病率增加有关。

艰难梭菌感染和粪便移植

微生物组研究的成功案例之一是应用粪便移植治疗艰难梭菌感染(CDI)患者。艰难梭菌是一种孢子形成和产毒素的细菌,在健康人群中约10%存在于小肠中,但在医院和养老院患者中百分比较高。抗生素治疗可导致肠道微生物群与艰难梭菌的不平衡,艰难梭菌对大多数抗生素具有相对抗性,突然导致它长到大量。可能导致腹泻,腹痛和发烧。在美国,抗生素每年导致近50万例CDI病例和30,000例死亡[33]。直到最近,有限的治疗方案还包括特定的抗生素如万古霉素,在极端情况下,切除一部分结肠。复发性感染很常见。阿姆斯特丹学术医疗中心的研究表明,粪便移植与健康供体的粪便对CDI患者非常成功。第一次移植后,治愈率超过80%,经过第二次尝试后,增加的百分比可能高达94%[34,35]。因此粪便移植已成为CDI治疗以及许多其他肠道疾病的有吸引力的替代方案。虽然粪便移植的并发症发生率很低,但存在致病性病毒或细菌传播或粪便吸入的风险[36]。阿姆斯特丹学术医疗中心的研究表明,粪便移植与健康供体的粪便对CDI患者非常成功。第一次移植后,治愈率超过80%,经过第二次尝试后,增加的百分比可能高达94%[34,35]。因此粪便移植已成为CDI治疗以及许多其他肠道疾病的有吸引力的替代方案。虽然粪便移植的并发症发生率很低,但存在传播致病病毒或细菌或吸入粪便的风险[36]。阿姆斯特丹学术医学中心的研究表明,粪便与健康供体的粪便移植对于CDI患者非常成功。第一次移植后,治愈率超过80%,经过第二次尝试后,增加的百分比可能高达94%[34,35]。因此粪便移植已成为CDI治疗以及许多其他肠道疾病的有吸引力的替代方案。虽然粪便移植的并发症发生率很低,但存在传播致病病毒或细菌或吸入粪便物质的风险[36]。经过第二次尝试后,这个百分比可能高达94%[34,35]。因此粪便移植已成为CDI治疗以及许多其他肠道疾病的有吸引力的替代方案。虽然粪便移植的并发症发生率很低,但存在传播致病病毒或细菌或吸入粪便物质的风险[36]。经过第二次尝试后,这个百分比可能高达94%[34,35]。因此粪便移植已成为CDI治疗以及许多其他肠道疾病的有吸引力的替代方案。虽然粪便移植的并发症发生率很低,但存在传播致病病毒或细菌或吸入粪便物质的风险[36]。

炎症性肠病

炎症性肠病(IBD)如克罗恩病和溃疡性结肠炎是难以治疗的肠炎性病症,其原因不明并且症状不稳定。除了遗传成分之外,还有证据表明肠道微生物群的作用。IBD的肠道微生物群与健康人有所不同,细菌多样性较低,特定细菌群比例改变[37]。然而,这种生态失调是否是临床症状的原因还是长期炎症,药物治疗或饮食改变的结果尚不清楚。尽管有许多出版物和研究,迄今为止还没有发现明显的微生物病原体。除其他外,CDI患者粪便移植的成功取决于肠道内微生物多样性的恢复。

自闭症

自闭症是社会交往领域各种发展制约因素的总称,并且治疗方案很少。与健康儿童相比,自闭症儿童患有肠胃问题,如腹泻或便秘。因此,微生物对这种疾病的可能作用有很大的兴趣[20]。不幸的是,孤独症患者的肠道菌群研究似乎相互矛盾,并且尚未显示与健康人群有明显差异[38]。可能地,自闭症中的一些不同微生物群是由这些患者的某些行为引起的,通常包括强烈的厌恶蔬菜和水果以及偏爱淀粉食物。因此自闭症患者可能会拒绝某些营养素,如纤维。这可能是一些研究中发现的肠道细菌差异的原因。与IBD一样,因此很难区分因果关系。虽然自闭症和肠道细菌之间的关系仍不清楚,但尚未导致临床治疗选择。益生菌,益生菌和最近的粪便移植越来越受到自闭症患者(父母)的’自我药疗’的欢迎[38]。

新见解

除了越来越认识到肠道细菌对我们的健康有益之外,我们开始意识到我们生活得很干净。与当前传统的狩猎采集者相比,他们的生活条件可能与我们的祖先非常相似,我们的西方生活方式使我们与微生物的接触更少。婴儿通常是通过剖宫产或喂食无菌奶而出生的,孩子们的兄弟姐妹越来越少,在沙箱或街上玩的少。我们的食物和饮用水几乎是无菌的,我们几乎不接触土壤,植物或动物,我们经常接受抗生素,许多肥皂和洗发水含有三氯生,抗菌擦拭物或紫外线固定器消毒牙刷或手机正变得越来越流行。所有这些因素,加上小纤维的食物,这可能有助于确保我们来自细菌物种的肠道微生物群远低于传统生物群落。由于我们的微生物组参与了我们身体中的许多过程,包括免疫系统的构建和控制,抗生素的使用增加,纤维摄入量减少,以及在年龄较小时减少接触细菌可能与增加许多代谢,过敏和慢性肠道疾病[32]。显然我们不想回到中世纪,传染病可能会杀死半个大陆的人口。接种疫苗很重要,危及生命的细菌感染应该用抗生素治疗,在我们吃东西或开始治疗病人之前洗手是一件好事。但是,也许我们应该通过食用发酵食品和益生菌让自己稍微暴露于细菌,并且在步行,园艺或玩沙盒等活动中更加活跃。我们还需要通过摄入更多膳食纤维和复合碳水化合物以及更少的单糖来照顾我们的内部微生物。

来自微生物组研究的新见解也与’个性化医疗’的发展非常吻合,患者可根据其基因组的个体布局以及他们的微生物进行量身定制的治疗。确定微生物组概况可能很快成为标准治疗的一部分,某些细菌群的缺失或存在可用于诊断或作为起始点,作为目前难以治疗的疾病的治疗计划。与此相关的令人担忧的发展,商业公司的崛起提供了特殊的益生菌和粪便移植药丸。许多这些补品销售没有科学基础或质量。虽然某些特定情况下的益生菌菌株已被证实有积极影响,这些类型的产品的扩散使得难以将小麦从谷壳中分离出来。然而,微生物组研究领域是非常感激和令人兴奋的职业,我期望我们将发现我们的小朋友对我们未来健康的许多意想不到的特征和影响。

除了越来越认识到肠道细菌对我们的健康有益,我们开始意识到我们生活得太干净。与当前传统的狩猎采集者相比,他们的生活条件可能与我们的祖先非常相似,我们的西方生活方式使我们与微生物的接触少得多。婴儿通常是通过剖宫产或者喂食无菌奶来产生的,孩子们在兄弟姐妹少的情况下长大,在沙箱或者街上玩的少。我们的食物和饮用水几乎无菌; 我们几乎不接触土壤,植物或动物; 我们经常接受抗生素; 许多肥皂和洗发水含有三氯生; 并且抗菌擦拭物或紫外线固定器消毒牙刷或电话正变得越来越流行。所有这些因素,加上我们食物中的纤维太少,可能有助于确保我们的细菌物种的肠道微生物群体比传统生物群落的多样性要少得多。由于我们的微生物组参与了我们身体的许多过程,包括免疫系统的构建和控制,抗生素的使用增加,纤维摄入量减少,以及在早期接触细菌减少可能与增加许多代谢,过敏和慢性肠道疾病[32]。显然,我们不想回到中世纪,因为传染病可能会杀死半个大陆的人口。接种疫苗很重要,危及生命的细菌感染应该用抗生素治疗,在我们吃东西或开始治疗病人之前洗手是一件好事。但是,也许我们应该通过食用发酵食物和益生菌让自己稍微暴露于细菌,并且在步行,园艺或玩沙盒等活动中更加活跃。我们还需要通过摄入更多膳食纤维和复合碳水化合物以及更少的单糖来照顾我们的内部微生物。

来自微生物组调查的新见解也与’个性化医疗’的发展相契合,在这种情况下,患者可以根据其基因组的个体布局以及他们的微生物进行量身定制的治疗。确定微生物组概况可能很快成为标准治疗的一部分,某些细菌群的缺失或存在可用于诊断,或作为可用作目前难以治疗的疾病的治疗计划的起点。与此相关的一个令人担忧的发展是商业公司提供特殊的益生菌和粪便移植药丸的混合物的兴起。许多这些补充剂在没有科学基础或质量控制的情况下销售。虽然某些特定情况下的益生菌菌株已被证实有积极影响,这些类型的产品的扩散使得难以将小麦从谷壳中分离出来。然而,微生物组研究领域是一个非常令人兴奋和令人兴奋的专业,我希望我们将来会发现我们的小朋友对我们健康的许多意想不到的特征和影响。

参考文献

1. Gest H. The discovery of microorganisms by Robert Hooke and Antoni van Leeuwenhoek, Fellows of The Royal Society. Notes Rec R Soc Lond 2004;58:187-201.

2. Grice EA, Segre JA. The human microbiome: our second genome. Annu Rev Genomics Hum Genet 2012;13:151-70.

3. Sender R, Fuchs S, Milo R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans. Cell 2016;164:337-40.

4. Woese CR, Fox GE. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci U S A 1977;74:5088-90.

5. Schloss PD, Handelsman J. Status of the microbial census. Microbiol Mol Biol Rev 2004;68:686-91.

6. Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G, Morgan XC, et al. Sequencing and beyond: integrating molecular “omics” for microbial community profiling. Nat Rev Microbiol 2015;13:360-72.

7. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. Bacterial community variation in human body habitats across space and time. Science 2009;326:1694-7.

8. Bik EM. Composition and function of the human-associated microbiota. Nutr Rev 2009;67:S164-S71.

9. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010;464:59-65.

10. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature 2012;486:207-14.

11. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, et al. Population-level analysis of gut microbiome variation. Science 2016;352:560-4.

12. Zhernakova A, Kurilshikov A, Bonder MJ, Tigchelaar EF, Schirmer M, Vatanen T, et al. Population-based metagenomics analysis reveals markers for gut microbiome composition and diversity. Science 2016;352:565-9.

13. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature 2012;486:222-7.

14. Dominguez-Bello MG, De Jesus-Laboy KM, Shen N, Cox LM, Amir A, Gonzalez A, et al. Partial restoration of the microbiota of cesarean-born infants via vaginal microbial transfer. Nat Med 2016;22:250-3.

15. Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG. The infant microbiome development: mom matters. Trends Mol Med 2015;21:109-17.

16. Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, et al. Cohabiting family members share microbiota with one another and with their dogs. Elife 2013;2:e00458.

17. Fall T, Lundholm C, Örtqvist AK, Fall K, Fang F, Hedhammar Å, et al. Early Exposure to Dogs and Farm Animals and the Risk of Childhood Asthma. JAMA Pediatr 2015;169:e153219.

18. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 2004;101:15718-23.

19. Kau AL, Ahern PP, Griffin NW, Goodman AL, Gordon JI. Human nutrition, the gut microbiome and the immune system. Nature 2011;474:327-36.

20. O’ Mahony SM, Stilling RM, Dinan TG, Cryan JF. The microbiome and childhood diseases: Focus on brain-gut axis. Birth Defects Res C Embryo Today 2015;105:296-313.

21. Spanogiannopoulos P, Bess EN, Carmody RN, Turnbaugh PJ. The microbial pharmacists within us: a metagenomic view of xenobiotic metabolism. Nat Rev Microbiol 2016;14:273-87.

22. David LA, Materna AC, Friedman J, Campos-Baptista MI, Blackburn MC, Perrotta A, et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol 2014;15:R89.

23. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014;505:559-63.

24. Gomez A, Petrzelkova KJ, Burns MB, Yeoman CJ, Amato KR, Vlckova K, et al. Gut Microbiome of Coexisting BaAka Pygmies and Bantu Reflects Gradients of Traditional Subsistence Patterns. Cell Rep 2016;14:2142-53.

25. Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G, et al. Gut microbiome of the Hadza hunter-gatherers. Nat Commun 2014;5:3654.

26. Obregon-Tito AJ, Tito RY, Metcalf J, Sankaranarayanan K, Clemente JC, Ursell LK, et al. Subsistence strategies in traditional societies distinguish gut microbiomes. Nat Commun 2015;6:6505.

27. Sonnenburg ED, Smits SA, Tikhonov M, Higginbottom SK, Wingreen NS, Sonnenburg JL. Diet-induced extinctions in the gut microbiota compound over generations. Nature 2016;529:212-5.

28. Zaura E, Brandt BW, Teixeira de Mattos MJ, Buijs MJ, Caspers MPM, Rashid M-U, et al. Same Exposure but Two Radically Different Responses to Antibiotics: Resilience of the Salivary Microbiome versus Long-Term Microbial Shifts in Feces. MBio 2015;6:e01693-e01615.

29. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 2011;108:4554-61.

30. Nobel YR, Cox LM, Kirigin FF, Bokulich NA, Yamanishi S, Teitler I, et al. Metabolic and metagenomic outcomes from early-life pulsed antibiotic treatment. Nat Commun 2015;6:7486.

31. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013;341:1241214.

32. Cox LM, Blaser MJ. Antibiotics in early life and obesity. Nat Rev Endocrinol 2015;11:182-90.

33. Leffler DA, Lamont JT. Clostridium difficile infection. N Engl J Med 2015;372:1539-48.

34. Drekonja D, Reich J, Gezahegn S, Greer N, Shaukat A, MacDonald R, et al. Fecal Microbiota Transplantation for Clostridium difficile Infection: A Systematic Review. Ann Intern Med 2015;162:630-8.

35. Van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013;368:407-15.

36. Baxter M, Colville A. Adverse events in faecal microbiota transplant: a review of the literature. J Hosp Infect 2016;92:117-27.

37. Kostic AD, Xavier RJ, Gevers D. The microbiome in inflammatory bowel disease: current status and the future ahead. Gastroenterology 2014;146:1489-99.

38. Rosenfeld CS. Microbiome Disturbances and Autism Spectrum Disorders. Drug Metab Dispos 2015;43:1557-71.

客服