Tag Archive 肥胖

真实案例 | 重塑肠道生态,膳食纤维调节肠菌实现高效减肥

谷禾健康

胖!可怎么办?”《柳叶刀》发布的一项报告称,截止2022年,全球超过10亿人患有肥胖症超过20亿人存在超重。从1990年到2022年间,全球患肥胖症的成年人增加了一倍多,患肥胖症的儿童和青少年(5至19岁)更是增加了约3倍超重和肥胖已成为全球日益严重的流行病。

超重和肥胖的不良影响可能不会马上体现,有时会延迟十年或更长时间。流行病学研究证实,超重和肥胖程度的增加是寿命缩短的重要预测因素。在一项心脏研究中,在30岁到42岁之间,体重每增加一磅(0.45公斤),26年内死亡的风险增加1%,在50岁到62岁之间,死亡风险增加2%

肥胖还会引起或加剧许多健康问题,这些问题既有独立的,也有与其他疾病相关的。例如超重和肥胖增加了患高血压、冠心病和中风等心血管疾病的风险。肥胖还是2型糖尿病主要风险因素;此外,肥胖和超重人群更容易患上睡眠呼吸暂停哮喘和其他呼吸系统问题。过重的身体还会给骨骼关节造成巨大压力,增加骨质疏松症关节炎的风险。

“那么我们应该如何改善或是预防肥胖呢?”除了常规的“管住嘴,迈开腿”,谷禾在最近与减肥前后相关的检测中发现,在不改变其他生活方式和饮食的情况下,额外补充一定量的膳食纤维对减肥的帮助效果显著。

肠道菌群已越来越多地被认为是宿主生理和病理的重要调节器。肠道菌群调节炎症脂肪储存葡萄糖代谢进而影响体重和代谢健康

而对肠道微生物群影响最大的是饮食,人类从食物中提取和储存卡路里的能力至少部分受到肠道微生物的影响。这使得饮食成为驱动人类肠道微生物群组成的重要因素。

膳食纤维是一种来自植物的复合多糖,在消化过程中不被小肠吸收,并通过为微生物生长提供底物改变肠道微生态环境。膳食纤维可能会改变微生物群的丰度多样性代谢,包括短链脂肪酸的产生。最近的研究表明,富含膳食纤维的饮食具有预防肥胖的潜力

首先,膳食纤维的物理化学性质(粘性、可发酵性等)具有预防肥胖的作用,因为粘稠的纤维可以延长胃排空小肠运输时间,从而增加饱腹感,减少进食频率,降低热量的摄入

其次,膳食纤维可通过增加代谢相关有益肠道菌群的丰度和多样性改善能量稳态并预防肥胖,降低门水平上厚壁菌门/拟杆菌门的比例(F/B比)并增加罗氏菌属(Roseburia的相对丰度。

第三,膳食纤维可被肠道菌群发酵产生短链脂肪酸 (SCFA),通过降低肠道腔内pH值抑制致病或有害肠道细菌、减少脂多糖(LPS)和代谢有害化合物,在能量代谢方面发挥重要作用。同时,研究还表明,在高脂膳食中添加纤维可降低外周血炎症水平,在本文一起了解下肥胖的原因,哪些肠道菌群参与肥胖及其作用机理,此外,我们还分享了几个根据检测报告针对性调整和补充膳食纤维合生元等干预措施减重改善健康的案例。

Part1
肥胖的主要原因

肥胖不仅仅是因为吃得多这一个原因造成的,而是由多种因素共同导致的慢性代谢性疾病

肥胖受到遗传环境生活方式社会心理因素内分泌和健康状况个体的微生物和营养差异等因素的影响,这些因素通过能量摄入消耗的生理机制相互作用,最终导致了肥胖。

1
能量摄入与消耗不平衡

变胖最直接的原因就是能量摄入能量消耗的不平衡。我们知道,要维持健康的体重,需要保持食物摄入和能量消耗的平衡。

★ 摄入大于消耗时,变成脂肪慢慢堆积

当一天中人体的能量摄入大于能量消耗时,多余的能量就会被储存为脂肪、糖原或蛋白质,而体重就会上涨;相反,当摄入量小于消耗量时,机体就会通过转化储存能量(大部分来源于脂肪)来弥补热量差,体重就会下降

简单来说就是:当你吃的比消耗的多时,能量储存=能量摄入-能量消耗

2
遗传因素和家族史

尽管在过去的20年里,环境变化导致了肥胖率的上升,但家庭和双胞胎研究表明,遗传因素肥胖的发展中也起着关键作用。

★ 瘦素等基因突变易导致肥胖

迄今为止,已确定十几个基因的变异肥胖的单基因原因;包括瘦素瘦素受体黑皮质素3受体黑皮质素4受体(MC4R)基因。

最著名的肥胖相关基因是瘦素(ob)及其受体(db)基因。洛克菲勒大学的研究首次发现ob基因突变缺乏ob基因的小鼠导致严重肥胖,能量摄入增加(暴饮暴食),但能量消耗减少(代谢率、产热和身体活动减少)。

注:该基因产物后来被描述为循环因子,命名为瘦素。瘦素主要由脂肪细胞分泌,循环至全身并穿过血脑屏障屏障来传递饱腹信号,从而减少食物摄入

★ 肥胖的遗传原因大致可分为:

1)单基因原因:由单个基因突变引起,主要位于瘦素-黑皮质素通路。许多基因,如PYY(食欲促进基因)或MC4R(黑皮质素4受体),被发现与单基因肥胖有关,这些基因会破坏食欲和体重的调节系统以及位于下丘脑弓状核的受体感知激素信号(胃促生长素、瘦素、胰岛素)。

罕见的单基因缺陷与高饥饿水平有关,并可能导致幼儿严重肥胖

2)综合征性肥胖是由神经发育异常和其他器官/系统畸形引起的严重肥胖。这可能是由单个基因或包含多个基因的较大染色体区域的改变引起的。

3)多基因肥胖是由许多基因的累积作用引起的。这些类型的基因存在会导致热量摄入增加饥饿感增加饱腹感减少储存身体脂肪的倾向增加以及久坐不动的倾向增加

★ 有肥胖家族史的人患肥胖风险较高

一项研究发现,如果父母一方肥胖,孩子成年后患肥胖的风险提高3倍;而如果父母双方都肥胖,那么孩子成年后患肥胖的风险会提高10倍。(当然这在一定程度上也可能与相同的生活方式有关)

一项针对260名儿童(139名女性、121名男性,年龄分别为2.4岁至17.2岁)的横断面观察研究表明,心脏代谢疾病家族史肥胖是儿童期肥胖严重程度的关键危险因素。

3
饮食、运动等生活习惯

生活方式环境因素肥胖发展中也发挥作用。肥胖患病率的显著增加饮食生活方式的改变密切相关。

在工业化国家,教育程度较低收入较低的人超重和肥胖的发生率较高,尽管发展中国家的情况可能正好相反。

例如,生活在美国的皮马印第安人平均比生活在墨西哥的皮马印第安人重25公斤。生活在美国的非洲人也出现了类似的趋势。

在男性和女性中,超重和肥胖的患病率随着年龄的增长而增加,直到50至60岁;这在20岁到40岁之间尤为明显。结婚后,超重的趋势也会增加

★ 高糖的零食和饮料加剧了肥胖

在众多导致肥胖的因素中,过量食用高热量食物是罪魁祸首之一。目前,无论是发达国家还是发展中国家,高热量食物在食品行业的大规模生产和营销方面都相当成功。这类食物在商店、餐馆、超市和家庭中随处可见。

两餐之间(尤其是晚餐后)吃零食,以及每天饮用果汁碳酸饮料糖果高糖食物。这些不健康的饮食与肥胖风险增加密切相关

★ 运动量的减少也导致肥胖率增加

体育锻炼应该是人们日常生活的一部分,但是随着青少年的学业负担增加、中年人的工作负担沉重运动量大幅减少。如果平时不注意运动,长时间久坐,会导致脂肪堆积,从而出现肥胖的现象。

其他可能导致身体活动减少的因素包括花在电子游戏移动设备上的时间增加,而花在户外活动上的时间减少。这些不良习惯都会损害人们的健康

★ 睡眠不足导致皮质醇升高也不利于减肥

缺乏充足睡眠会引发皮质醇水平的升高,这对身体的减肥过程是不利的,因为高水平的皮质醇可能会干扰新陈代谢影响体重管理的效果。

4
内分泌紊乱

你也许见过,本来身材挺匀称的一个人,因为生病或是吃了一些药物而迅速变胖,这就是内分泌紊乱进而导致肥胖的结果。

许多外周激素参与中枢神经系统(CNS)对食欲食物摄入食物奖励成瘾的控制。美味的食物和一些药物都能激活中脑边缘多巴胺(DA)奖励系统,而该系统对于调节人类和动物的成瘾至关重要。

★ 瘦素、胰岛素等激素会影响进食行为

来自脂肪组织的瘦素、胰腺的胰岛素和胃肠道的胆囊收缩素胰高血糖素样肽-1(GLP-1)、肽YY3-36(PYY3-36)和生长素释放肽参与通过主要针对下丘脑和脑干的神经激素肠脑轴传递有关饥饿和饱腹信号,这些信号可能会直接或间接地调节食欲影响个体的进食行为

瘦素和瘦素受体的基因缺陷可导致儿童早发性严重肥胖。同时当内分泌系统出现紊乱时,可能会导致个体无法有效地控制食欲,进而对食物上瘾或是出现严重的暴饮暴食症

肠道能量吸收、饱腹感调节和全身炎症

DOI:10.1016/B978-0-12-407825-3.00011-3.

★ 内分泌紊乱影响代谢更易导致肥胖

一些疾病如甲状腺功能减退会影响基础代谢率,导致能量代谢异常,进而影响体重控制,甚至引发肥胖

胰岛素抵抗是指身体细胞对胰岛素的反应下降,导致血糖不能有效地被细胞吸收利用。这可能导致胰岛素分泌增加,促使脂肪细胞更多地吸收葡萄糖并转化为脂肪,从而引起肥胖

多囊卵巢综合征(PCOS)一种影响女性生殖系统的疾病,患者常伴有胰岛素抵抗雄激素水平异常。这些因素会导致体重增加脂肪堆积,使得患者更容易发展为肥胖

5
胎儿时期的营养

有证据表明,胎儿在宫内发育期间的营养不良可能决定了肥胖高血压2型糖尿病的后期发病,而这与基因遗传无关。这种现象表明,由于宫内生长的改变,可能存在基因表达的长期编程。

★ 胎儿时期的营养不良可能导致中老年时的肥胖

研究人员假设,子宫内不良的营养环境会导致身体器官发育缺陷,从而导致“程序化”的易感性,这种易感性与后来的饮食和环境压力相互作用,在几十年后导致明显的疾病。

这表明胎儿的生长和新陈代谢为了适应出生后营养不足的预期。这可能在子宫内具有生存优势,因为它将可用的营养物质定向到重要器官,并在以后的生活中,通过增加以脂肪形式储存能量的能力,为食物短缺时提供能量储备。

有报告显示腹部脂肪与出生体重呈负相关,一项研究提供了一些有说服力的证据,证明妊娠早期和晚期是随后肥胖发展的关键时期。与没有在怀孕期间接触过饥荒的对照组相比,那些胎儿在怀孕的前两个月接触过饥荒等到成年后的肥胖患病率明显更高

6
肠道微生物群

肠道微生物群在肥胖中的作用是多方面的,并且与肥胖的发生和发展密切相关。肠道微生物群参与能量稳态的调节,并通过影响营养吸收食欲和脂肪组织功能来影响肥胖的发生。

接下来我们详细了解下肠道微生物群在肥胖中的作用和角色

Part2
肠道菌群如何影响肥胖?

越来越多的研究和谷禾实践检测数据表明肠道微生物群肥胖之间存在着许多相互作用,虽然大人群水平来看,肠道菌群只能解释其中部分的肥胖原因,但是在个体水平上,肠道菌群的状况和构成对于肥胖以及肥胖相关的能量摄入,炎症反应,食物消化等都息息相关。

肠道菌群在肥胖中的作用简单分为两个层面,直接参与间接影响

一,菌群是直接影响致肥胖途径还是通过其成分/代谢产物影响致肥胖途径?

二,是否存在导致肥胖的特定宿主-微生物信号传导机制?

1
菌群的构成与肥胖相关

队列人群和小鼠研究试验均表明,肥胖个体的肠道微生物群种类丰富度与正常体重个体存在明显差异

★ 肥胖人群与健康个体之间占主导的肠道微生物不同

大量研究集中于拟杆菌门厚壁菌门水平变化与肥胖和减肥之间的动态关系。通过比较瘦人和肥胖个体的肠道菌群,发现大人群水平上肥胖个体的拟杆菌门比例降低,而厚壁菌门水平升高。更有趣的是,经过饮食治疗后,拟杆菌门的相对丰度增加,而厚壁菌门的相对丰度降低

在谷禾的检测案例里也发现,同一个人减肥前后的肠道菌群构成(如下桑基图展示)发生了较大的变化,有的肠型也会发生改变。

减肥前后的主要肠道菌群构成变化

通过上图的变化可以看到:减肥之后拟杆菌门的比例增加,与此同时,普雷沃氏菌属的丰度也大大增加,其他菌属的构成也有一定程度的变化。

该案例通过饮食管理和膳食纤维补充,减肥后普雷沃氏菌占比为主可能是水果蔬菜高纤维豆类的饮食摄入相关。

★ 减肥的效果与基线肠道菌群相关

2021年,发表在《Gut Microbes》和《Gastroenterology》两篇研究分别以饮食控制和维生素给予为变量,同时都研究了基线时和干预后肠道菌群的变化。研究结论表示作为节食前个人体重减轻轨迹的预测指标,基线肠道微生物的作用超过了其他因素

doi: 10.1053/j.gastro.2021.01.029.

同时使用随机森林算法,基于相对于基线的种水平物种变化来预测体重下降,预测精度R=0.271,发现R. gnavus (MGS0160), Bacteroides massiliensis (MGS1424)和Bacteroides finegoldii (MGS0729)这三个物种在模型中贡献度最大。

此外,基线菌属如普雷沃氏菌,罗氏菌属(Roseburia)的丰度也会影响饮食营养干预的减肥效果。

这些研究同时确定有哪些饮食因素与个体的体重下降相关。使用GLMMLASSO模型,结果如下图,当coef为非零时被认为是显著的。发现,在所有受试者中,体重下降与卡路里摄入量(系数=-0.153)、膳食中大量营养素组成(脂肪,系数=-0.161;碳水化合物,系数=-0.055;蛋白质,系数=0.084;纤维,系数=0.1)、膳食微量营养素含量和体力活动之间的具有弱相关。

Jie Zhuye, et al., .Gastroenterology, 2021

但是在个体间有很大差异。例如在受试者F00161中,纤维摄入量的增加与减肥之间存在正相关关系,而在F00147中,受试者的脂肪摄入量增加与体重减轻之间存在负相关关系。相反,尽管纤维或脂肪摄入量发生变化,F00203人仍然对体重变化不敏感。所以,即使是相似的膳食大量营养素,体重反应也是高度个性化的

饮食控制期间肠道菌群的组成变化是否会影响减肥轨迹?

研究发现许多参与者的肠道菌群组成发生了实质性的变化,0-3个月的微生物群的变化幅度与体重下降的程度呈正相关,有15个个体肠型被改变了,体重变化范围从20公斤到+7公斤。这两个时间段都是一致的。这一发现表明,在饮食控制计划中,饮食和肠道菌群之间存在着持续的相互作用。如下图:

Jie Zhuye, et al., .Gastroenterology, 2021

这些结果表明可以基于基线肠道菌群组成和饮食数据建立个性化的体重预测模型。我们可以利用肠道菌群的分布做个性化的饮食推荐,以此调节体重,进而促进宿主健康。

此外,谷禾根据权威研究和检测大数据库,在菌群检测报告中给出了肥胖,便秘,失眠,过敏等症状相关菌(包括正相关,负相关菌,证据强度,菌的说明和异常菌的个性化干预调整措施)。

如下是谷禾菌群报告里肥胖相关菌的截图展示:

与肥胖症状相关的菌属

这些菌里,包括有益菌,核心菌,以及有害菌和致病菌等。部分菌在以往文章中详细介绍过:

Nature | AKK菌——下一代有益菌

★ 普雷沃氏菌——在摄入膳食纤维后对减脂更有利

普雷沃氏菌丰度高的健康超重成人在食用富含全谷类和纤维的随意饮食6周后,比普雷沃氏菌丰度低的受试者减脂更多

普雷沃氏菌的高水平不仅与肥胖有关,且与非糖尿病患者的BMI指数胰岛素抵抗高血压非酒精性脂肪性肝显著相关。

肠道重要基石菌属——普雷沃氏菌属 Prevotella

★ Blautia——治疗炎症肥胖相关的潜力菌

Blautia是肠道中常见的乙酸生产者,可通过激活G蛋白偶联受体 GPR41 和 GPR43 来抑制脂肪细胞中的胰岛素信号传导和脂肪积累,进而促进其他组织中未结合的脂质和葡萄糖的代谢,从而减轻肥胖相关疾病

Blautia有效减肥组女性肠道菌群中的优势菌属,但在减肥无效组中则不然。Blautia,特别是B. lutiB. wexlerae,可能有助于减少与肥胖相关的炎症

肠道核心菌属——经黏液真杆菌属(Blautia),炎症肥胖相关的潜力菌

★ Bifidobacterium——减轻体重和减少体脂

双歧杆菌对糖尿病肥胖症高脂血症的有益作用也得到了研究,证据显示其对普通人群的血糖水平和胰岛素抵抗具有有益作用,同时还能降低孕妇妊娠糖尿病的发病率。

肠道核心菌属——双歧杆菌,你最好拥有它

★ Phascolarctobacterium——帮助减肥

比较容易减肥的人体肠道内考拉杆菌属(Phascolarctobacterium)水平较高,因此该菌也被认为可以用来预测肥胖指标。在代谢综合征女性中观察到的Phascolarctobacterium属的丰度高于代谢综合征男性。

肠道核心菌属——考拉杆菌属(Phascolarctobacterium),与减肥相关?

★ Ruminococcus——含量过多与炎症和肥胖有关

瘤胃球菌(Ruminococcus)在新陈代谢中起着至关重要的作用。

一项研究包括肥胖组(BMI≥40kg/m2)和对照组(BMI18.5~ 24.9kg/m2之间)的粪便菌群,其中Ruminococcus bromiiRuminococcus obeum 在肥胖患者中丰度较高

瘤胃球菌喜欢植物中的多糖。如果肠道中有过多的瘤胃球菌,细胞可能会吸收更多的糖导致体重增加

瘤胃球菌属——消化降解关键菌?炎症标志菌?

★ Desulfovibrio——含量过高与肥胖相关

脱硫弧菌属(Desulfovibrio)里的一种能够引起炎症的细菌,当其含量过多时与肥胖相关。并在便秘型肠易激综合征患者,帕金森,系统性硬化症患者患者富集,可产生硫化氢对肠道上皮具有毒性,会导致人体腹泻

肠道有害菌——脱硫弧菌属(Desulfovibrio)

★ 嗜胆菌属——喜欢脂肪、耐胆汁的促炎菌

嗜胆菌属(Bilophila)是变形菌门,脱硫弧菌科的一种厌氧、革兰氏阴性、耐胆汁,该菌是“喜欢动物脂肪喜欢胆汁”的微生物——在以动物为基础的饮食,尤其富含肉类和乳制品脂肪时,其肠道中Bilophila丰度会增加

《Nature》杂志的一项研究发现,当人们从素食转变为以肉类和奶酪为主的饮食结构上时,他们肠道里的细菌Bilophila几乎立即增加,但植物性为主的饮食结构可以降低该菌群的数量。

Bilophila机会致病菌,其丰度的增加与肠道炎症相关。其代表菌种Bilophila wadsworthia增加了高脂饮食诱导的代谢综合征,这是一种与低程度全身炎症相关的疾病,伴随着较高的体重指数。

肠道重要菌属——嗜胆菌属 (Bilophila)喜欢脂肪、耐胆汁的促炎菌

★ 脆弱拟杆菌——肥胖儿童中含量较高

宿主的生活方式和生理状态也会影响肠道脆弱拟杆菌的丰度。例如,缺乏运动可能会导致脆弱拟杆菌和其他拟杆菌属物种显著富集。

以往的研究表明,脆弱拟杆菌过多与肥胖呈正相关肥胖儿童中脆弱拟杆菌的丰度高于瘦儿童

扩展阅读:

正确认识肠道内脆弱拟杆菌——其在健康的阴暗面和光明面

2
肠道菌群代谢物在肥胖中的作用

★ 短链脂肪酸影响饱腹感、促进能量消耗

菌群关键代谢物短链脂肪酸(SCFA)可以说是研究最广泛的微生物代谢物,对人体代谢有许多影响

短链脂肪酸(SCFA)在维持宿主健康影响代谢方面发挥着广泛的作用。SCFA调控体内各种生理过程,包括维持结肠上皮粘液水平的先天性肠道屏障的完整性、调节肠道蠕动以及控制重要肠道激素的分泌,如肽YY(PYY)、血清素胃抑制肽胰高血糖素样肽1(GLP-1) 。

短链脂肪酸参与L细胞产生的肽YY胰高血糖素样肽1(GLP1)激素的调节。这两种激素都调节神经系统的饱腹感,GLP1在葡萄糖刺激的胰岛素敏感性和分泌中也起作用。

-乙酸盐

乙酸盐的健康影响还存在争议。一些研究将其与通过GPR41/43相互作用减少食欲减轻体重以及增强胰岛素敏感性联系起来,而另一些研究则表明其作为肝脏和脂肪组织脂肪产生的底物,在促进肥胖方面发挥着作用。

-丙酸盐

丙酸可由拟杆菌属、考拉杆菌属(Phascolarctobacterium succinatutens)、戴阿利斯特杆菌属(Dialister)和韦荣氏球菌属通过琥珀酸途径产生;或是由埃氏巨球形菌属(Megasphaera elsdenii)、粪球菌属(Coprococcus catus)、沙门氏菌属(Salmonella spp.)、Roseburia inulinivoransRuminococcus obeum通过丙烯酸途径产生。

人体研究表明,丙酸具有整体抗肥胖作用,因为它可以增加餐后GLP-1和PYY水平,减少体重增加、腹部脂肪和肝细胞内脂质含量,并预防胰岛素敏感性问题。丙酸还通过减少中性粒细胞释放白细胞介素8(IL-8)和肿瘤坏死因子α(TNF-α)而表现出抗炎特性

-丁酸盐

在胃肠道发酵产生的所有短链脂肪酸中,丁酸尤其值得注意。重要的产丁酸属和种有Coproccocus 属、Anaerostipes属、真杆菌属(Eubacterium)、普拉梭菌(Faecalibacterium prausnitzii)和罗氏菌属

丁酸盐是成熟结肠细胞的主要能量来源,支持结肠健康,并且是一种具有强效抗炎特性的微生物代谢物,局部和系统性作用均有。此外,丁酸盐在调节局部和全身免疫、维持粘膜完整性和抑制细胞水平的肿瘤改变方面起着至关重要的作用。丁酸盐与丙酸盐类似,具有通过刺激食欲抑制激素的释放促进瘦素的合成减少肥胖的作用。

★ 胆汁酸影响脂肪代谢

许多研究报告了肠道微生物组胆汁酸肥胖或肥胖相关疾病之间存在联系。胆汁酸在肠道中与脂肪分子结合,形成复合物,促进脂肪的分解和吸收。适当的胆汁酸可以帮助提高脂肪代谢效率减少脂肪在体内的堆积

此外,胆汁酸在消化系统中可以影响胃液分泌,从而影响饱腹感食欲调节。适当的胆汁酸水平可以帮助控制饥饿感,减少摄入的热量,有助于减轻体重。

★ 吲哚——抗肥胖特性

一项研究发现较高的血浆吲哚丙酸水平降低患2型糖尿病的风险之间存在关联。

另一项研究发现,与瘦对照相比,患有2型糖尿病的肥胖受试者的吲哚丙酸水平降低。吲哚丙酸显示通过与孕烷X受体结合并随后下调肿瘤坏死因子α来调节炎症

吲哚丙酸也被证明在小鼠中具有抗肥胖活性,微生物衍生的吲哚乙酸进一步限制了巨噬细胞中脂肪酸的积累和炎症标志物的产生

★ 谷氨酸过量与肥胖潜在危害有关

谷氨酸是一种多功能氨基酸,谷氨酸在生物体内的蛋白质代谢过程中占重要地位。根据对肥胖和瘦受试者的队列进行的全基因组关联分析显示,谷氨酸盐具有潜在危害

通过进行途径分析,谷氨酰胺/谷氨酸转运系统在肥胖个体中高度富集。这与拟杆菌属(包括B.thetaiotaomicron)的物种呈负相关。事实上,与瘦受试者相比,肥胖者体内这种细菌的数量减少。因此谷氨酸人体肥胖之间也存在一定联系。

3
肠道微生物影响“膳食能量获取”

★ 肥胖人群的肠道微生物能够更多地获取能量

肠道微生物群影响膳食能量收集和储存过程的探索揭示了两种关键机制:肥胖人群具有分解难以消化的膳食细菌多糖水解酶从而对多糖降解;以及抑制一种名为禁食诱导脂肪因子(FIAF)或血管生成素样4(ANGPTL4)的脂蛋白脂肪酶(LPL)抑制剂的肠道基因表达。

一项比较肥胖小鼠及瘦小同窝小鼠的功能性宏基因组的研究发现,肥胖微生物群富含八个能够水解膳食多糖的糖苷水解酶家族。第二种机制涉及微生物对FIAF的抑制,通过影响LPL活性导致脂肪堆积增加

细菌多糖水解产生脂肪形成底物,即单糖和短链脂肪酸。肠道微生物群还通过增强钠/葡萄糖转运蛋白-1(SGLT1)的表达以及使小肠毛细血管密度加倍促进有效的单糖吸收。这些脂肪形成底物到达肝脏后促进了肝脏甘油三酯的合成

★ 肠道微生物群的组成影响从食物中获取的能量

“能量获取理论”最近也在人类受试者身上进行了测试。招募了12名瘦弱和9名肥胖的成年男性,在最初3天的体重维持饮食之后,以随机交叉的方式分配到2400或3400千卡/天的饮食,持续3天。

在初始体重维持饮食中,瘦人和肥胖个体的三大细菌门(厚壁菌门、拟杆菌门和放线菌门)存在显著差异。作为对改变的热量负荷的反应,肠道厚壁菌门增加拟杆菌门减少宿主能量吸收增加约150kcal有关。

瘦人似乎对增加热量摄入更为敏感,在2400vs. 3400 kcal/天饮食中,粪便能量损失和肠道微生物组成的变化均显著减少。而肥胖个体没有出现类似的变化。我们认为,与体重维持饮食相比,能量摄入的差异程度可能会通过肠道微生物群影响饮食中能量的吸收效率

4
肠道微生物影响“食欲控制”

暴饮暴食是肥胖的主要诱因,是由调节食物摄入的过程失衡造成的,包括“饥饿”、“食欲”和“饱腹感”,以及环境因素。

★ 饱腹和饥饿信号影响人们的进食行为

正常的饮食行为在我们感到饱腹(饱腹感)时就会停止,并在感到饥饿一段时间后再次开始。两餐之间的时间是饱腹感的指标。有许多肠道激素会向大脑传递“饱腹”或“饥饿”的信号。肠内分泌L细胞分泌的胆囊收缩素(CCK)和胰高血糖素样肽1(GLP-1)是与饱腹感相关的肠道激素,可传递“饱腹”信号。

肠内分泌L细胞分泌的肽YY(PYY)和肠内分泌K细胞分泌的葡萄糖依赖性胰岛素促泌多肽(GIP)也传达“饱腹感”,而胃细胞分泌的生长素释放肽则传达决定开始进餐的“饥饿”信号

★ 短链脂肪酸可以影响激素水平进而调节饱腹感

研究表明,肠道微生物群和其发酵产物短链脂肪酸可以影响肠道激素水平,进而调节饱腹感。肠内分泌L细胞分泌的GLP-1和PYY含有短链脂肪酸受体GPR41和GPR43,暗示结肠短链脂肪酸的生成与食欲或摄食量存在关联。

膳食纤维可选择性地支持肠道中有益细菌的生长短链脂肪酸的产生。与饲喂对照饮食或高蛋白饮食的大鼠相比,饲喂高纤维饮食的大鼠血浆GLP-1PYY水平较高,血浆GIP水平较低,结肠PYY mRNA水平增加5倍胰高血糖素原mRNA水平增加11倍

菊粉型果聚糖已被证明可以提高血浆GLP-1水平和结肠胰高血糖素原基因表达,保护免受高脂肪饮食引起的肥胖。一项人体研究表明,每天摄入21克低聚果糖(FOS)可降低超重成人的生长素释放肽并增加PYY,同时减少卡路里摄入量有助于减肥

★ 肠道微生物通过影响免疫也会导致贪食、肥胖

另一个影响食物摄入肥胖的因素是肠道微生物群与先天免疫系统之间的相互作用。Toll样受体5(TLR5)是被广泛研究的受体之一。TLR5在小鼠肠粘膜中高表达,可以识别细菌鞭毛蛋白作为病原相关分子模式(PAMP),与肠道炎症肠道微生物群的变化有关。

最新研究表明,TLR5基因敲除小鼠(T5KO)表现出贪食肥胖代谢综合征以及相关的高脂血症高血压胰岛素抵抗。T5KO小鼠的贪食/肥胖表型肠道微生物群组成的细菌物种水平变化相关,T5KO小鼠有116种来自不同门类的细菌属丰富或减少

将T5KO小鼠肠道微生物移植到健康小鼠中,导致健康小鼠发展代谢综合征,表明T5KO小鼠的肠道微生物影响代谢健康

总的来说,肠道微生物群通过短链脂肪酸信号传导或与先天免疫系统相互作用,在调节食欲肥胖糖尿病方面发挥着重要作用。

因此,可发酵纤维益生元等膳食成分以及肠道内生成的微生物代谢产物可以作为对抗这些疾病的简单而有效的手段。

5
肠道微生物与肥胖的“炎症理论”

肥胖慢性、轻度全身性炎症相关。脂肪细胞和肥胖下的脂肪组织内的巨噬细胞都释放炎症细胞因子。这种轻度全身性炎症部分来源于细菌脂多糖(LPS)从肠道进入血液循环。

血浆中脂多糖浓度增加两到三倍,被称为“代谢性内毒血症”,与肥胖胰岛素抵抗糖尿病动脉粥样硬化等多种慢性疾病相关。

★ 高脂饮食会加剧炎症状态

肠道脂多糖倾向于通过乳糜微粒携带,这些是脂蛋白颗粒,用于输送膳食脂质。因此,高脂饮食可能诱发或加剧代谢性内毒血症。

肠道通透性可能导致脂多糖位移肠道微生态失调或引发肠道壁炎症可能增加通透性双歧杆菌乳酸杆菌的几种菌株及其代谢产物(如短链脂肪酸)已被证实能促进紧密连接蛋白的表达,这些蛋白维持有效的肠道屏障。而肠道中双歧杆菌相对缺乏与肠道通透性增加相关。

★ 肥胖状态下促炎巨噬细胞比例增加

引起脂肪组织炎症加剧的一个关键因素是巨噬细胞的渗入。产生促炎细胞因子的脂肪组织主要来自渗入的巨噬细胞。动物研究表明,巨噬细胞在肥胖中逐渐积累,瘦小鼠脂肪组织中不到10%的细胞是巨噬细胞,而肥胖小鼠中这一比例超过50%

巨噬细胞本身表现出不同表型,可极化为促炎的“M1”抗炎的“M2”表型肥胖状态改变了M1和M2巨噬细胞的比例,导致M1巨噬细胞增加

注:有趣的是,TLR4缺乏可减轻脂肪组织炎症,促进脂肪组织和腹膜巨噬细胞极化为M2型,但不会影响全身胰岛素敏感性

另一项研究比较了无菌小鼠和大肠杆菌单个定植小鼠,结果显示单个定植小鼠脂肪组织中存在脂多糖依赖性巨噬细胞积累大肠杆菌的定植还增加了巨噬细胞的极化,使其转变为促炎的M1型,并导致葡萄糖和胰岛素耐受性下降

小结

肠道微生物组影响肥胖和相关代谢状态的三种机制,即通过能量获取食欲调节炎症状态,综合起来看,每条途径都是协同作用而非独立作用。这些调节过程的核心是宿主微生物组饮食之间复杂而动态的三向相互作用。

人体的消化过程细菌作用在肠道中协同处理膳食成分。产生的代谢产物的特征取决于宿主遗传、宿主生理肠道微生物的组成。微生物与营养消化产物结合,可以通过与宿主细胞受体的特定相互作用或以非特定方式进入一般血液循环,对宿主代谢产生不同的影响

Part3
案例分享

以下是来自君好美健康科技公司的3个案例,采取“膳食纤维+后生元”君好美膳食片作为主食,三餐吃饱——肉鱼蛋奶豆制品蔬菜充分吃,水果干果控制吃,在基本不改变在原有饮食情况下,一段时间后,个案的体重体脂明显下降肠菌菌群得到有效改善

案例一

44岁,原本体重为182.5斤,属于严重偏胖

经历144天的改善后,体重减轻了36.3斤,减脂了22.2斤,减肥效果非常明显。体脂率皮下脂肪内脏脂肪都有所减少。

身体数值的各项变化

编辑​

改善前后的报告对比

可以看到:在额外补充膳食纤维后,健康总分升高肠道微生物的结构更健康,通过增加膳食纤维增加微生物的数量和多样性是非常有效的。有益菌的分值提高有害菌明显减少,肠型由原来拟杆菌型变成了普雷沃氏菌型慢病风险总分下降

▸ 具体到菌种

活泼瘤胃球菌短链脂肪酸的产生有关。与非酒精性脂肪肝病肥胖等疾病存在正相关。在改善后由原本的过高丰度,降低到了正常水平

干预前:

干预后:

颤螺菌属也是与肥胖相关的菌群,过多或过少都可能影响肥胖。在改善后由原本的过低,丰度有所增加,恢复到了正常水平。

干预前:

干预后:

泛菌属是一种条件致病菌,过多导致菌群紊乱,炎感染。而在补充膳食纤维后丰度有所降低(尽管还有一点偏高)。

干预前:

干预后:

此外,丙酸盐的丰度也有一定程度的提高。有充分证据表明,随着膳食纤维摄入量的增加产生的短链脂肪酸(SCFA)也增加。SCFA能够激活游离脂肪酸受体,从而促使厌食激素(如瘦素和肽YY)的分泌。在减肥中发挥益处。

根据以上这些变化,可以看出在额外补充膳食纤维后,可以在一定程度上改善人体的肥胖和代谢健康

案例二

52岁,原本体重为142.4斤,属于严重偏胖

经历73天的改善后,体重减轻了11.6,减脂了7,虽然没有上一个人减重多,但是BMI恢复到了正常水平体脂率皮下脂肪内脏脂肪也均有所减少。

身体数值的各项变化

改善前后的报告对比

可以看到,该女性在经过干预后,健康总分也升高了。并且菌群变得更健康、对于慢病的控制评分更高,营养也更均衡了。肠道菌群多样性提高,有害菌明显减少

与此同时,核心菌属也发生了一定程度的变化:

干预前:

干预后:

重要的肠道基石菌,产短链脂肪酸菌属罗氏菌在改善后由原来的丰度过低变成了正常丰度。罗氏菌具抗炎特性,有助于分解不可消化的碳水化合物如膳食纤维,对健康有利。

肠道重要基石菌属——罗氏菌属(Roseburia)

干预前:

干预后:

过多会导致菌群紊乱副拟杆菌属由原本的过高丰度降低到了正常值

肠道核心菌——副拟杆菌属(Parabacteroides),是否是改善代谢减轻炎症的黑马?

干预前:

干预后:

能够产生脂多糖,代谢生成苯酚,引发感染和并发症的梭杆菌属丰度由原来的过高水平恢复到了正常水平

梭杆菌属Fusobacterium——共生菌、机会致病菌、致癌菌

干预前:

干预后:

过高时会导致肥胖和2型糖尿病的副萨特氏菌属在额外补充膳食纤维后丰度也有所下降(尽管仍然高于正常值)。

肠道核心菌属——萨特氏菌(Sutterella)

干预前:

干预后:

随着膳食纤维摄入量的增加丁酸盐的丰度有所上升。丁酸对于维持肠道内环境温度预防结直肠癌发生具有重要作用,是肠上皮细胞最重要能量来源,对肠粘膜有营养作用,利于代谢健康的重要物质。

案例三  

54岁,原本体重为131.1斤,属于标准体重,本来健康状态就比较好。因此在经历173天后,体重只下降了4.4斤,减脂2.1斤。体脂率皮下脂肪、内脏脂肪也稍微有所下降,但都变得更健康了。

此外,三个案例可以看出膳食纤维对不同基础体重人群的作用效果不太一样大体重人群在额外补充膳食纤维后减重更多。

身体数值的各项变化

改善前后的报告对比

<来源:谷禾肠道菌群健康检测数据库,下同>

根据谷禾的健康报告前后对比可以看到,该男性在经过干预后,健康总分升高,对于慢病控制的评分显著升高肠道微生物的多样性变得更丰富有害菌减少明显。

干预前:

干预后:

过高时与肥胖相关,可能通过抑制乙酸水平来加速肥胖的脆弱拟杆菌在额外补充膳食纤维后丰度降低到了正常水平。

干预前:

干预后:

肠道的条件性致病菌泛菌属,过多导致菌群紊乱炎症和感染。在补充额外的膳食纤维后水平也下降到正常值

Pantoea(泛菌属)——肠道内善恶兼备的神秘细菌

肠道微生物群多样性和高纤维摄入量与长期体重增加较低有关

此外一项对1632个人的研究也发现,微生物群多样性影响膳食纤维与体重增加之间的关系。在微生物群多样性较高的人群中,纤维摄入量与体重增加风险降低有显著相关性。

膳食纤维对体重的有益作用可能在微生物组多样性较高的个体中更为明显。实验表明,纤维摄入会降低饮食的能量密度,由此产生的短链脂肪酸促进肠道糖异生肠促胰岛素形成并随后产生饱腹感,同时短链脂肪酸也会向宿主输送能量并影响脂肪异生。

TIPs: 膳食纤维与益生元的区别

膳食纤维益生元虽然都是植物性食物中的复杂碳水化合物,但它们之间存在一些区别:

1.膳食纤维的定义: 膳食纤维是指植物性食物中不被人体消化酶分解的碳水化合物,包括不溶性纤维可溶性纤维。不溶性纤维,如纤维素,主要作用是增加大便体积,促进肠道蠕动,帮助消化系统健康。可溶性纤维,如果胶和树胶,可以溶解在水中,形成凝胶状物质,有助于降低血糖和胆固醇

2.益生元的定义: 益生元是一种可溶于水的可溶性纤维,它作为益生菌的食物,可以被肠道中的有益细菌发酵,从而促进有益细菌的生长和活动。益生元主要包括低聚果糖(FOS)菊粉、低聚半乳糖(GOS)等。

3.作用机制: 膳食纤维的作用更广泛,包括促进肠道蠕动、帮助排便、降低血糖和胆固醇等。而益生元的主要作用是喂养和促进益生菌的生长,尤其是那些能够产生短链脂肪酸(如丁酸盐)的细菌,这些短链脂肪酸对肠道健康至关重要。

4.种类: 膳食纤维的种类很多,包括纤维素、半纤维素、果胶、树胶、抗性淀粉等。而益生元的种类相对较少,主要是一些特定的低聚糖和某些类型的多糖。

5.健康益处: 膳食纤维对整体消化系统健康有益,而益生元则更专注于通过促进益生菌的生长来改善肠道微生物群的平衡。

总的来说,膳食纤维是一个更广泛的概念,包括了益生元但它们的作用和重点略有不同。膳食纤维对消化系统的整体健康有益,而益生元则专门针对促进一些细菌的生长

拓展:不同纤维对肠道菌群的影响

一项研究了不同谷物纤维(包括麦麸)对健康成人肠道菌群组成的影响。

-食用小麦纤维对肠道微生物的影响:

食用小麦纤维或麸皮纤维对肠道菌群有显著影响,以下门类的菌群均显著增加

双歧杆菌(Bifidobacteria) ↑↑↑

乳酸杆菌(Lactobacillus) ↑↑↑

奇异菌属(Atopobium) ↑↑↑

肠球菌(Enterococci) ↑↑↑

梭状芽孢杆菌(Clostridia) ↑↑↑

毛螺菌科(Lachnospiraceae) ↑↑↑

埃格氏菌(Eggerthella) ↑↑↑

柯林斯菌(Collinsella) ↑↑↑

棒状杆菌(Corynebacterium) ↑↑↑

拟杆菌(Bacteroides) ↑↑↑

普氏菌属(Prevotella) ↑↑↑

-食用大麦纤维对肠道微生物的影响:

所有研究都表明大麦纤维肠道菌群标志物显著影响:要么改变微生物群落 ,要么改变发酵代谢物。发现厚壁菌门和放线菌(特别是罗氏菌属Dialister真杆菌双歧杆菌)显著增加,拟杆菌减少。

其余3项研究测量了发酵标志物,结果显示,在食用大麦纤维后,总短链脂肪酸丁酸盐乙酸盐显著增加,呼气氢显著增加。由于发酵代谢物的积极作用,血糖反应同时改善

-食用燕麦纤维对肠道微生物的影响:

燕麦粒的外层含有不溶性和可溶性(β-葡聚糖)纤维的混合物,这两种纤维都为肠道微生物群提供了食物来源。已证实可溶性燕麦β-葡聚糖有助于降低血液胆固醇水平

对患有轻度高血糖症高胆固醇血症的参与者研究了每天早餐食用全麦燕麦片与精制谷物片的影响。据报道,食用全麦燕麦片后,粪便总细菌乳酸杆菌双歧杆菌数量显著增加,而食用精制谷物片后,总细菌数量双歧杆菌数量均下降。

-食用玉米纤维对肠道微生物的影响:

玉米的淀粉含量相对于其他谷物来说较高,麸皮含量较低

一项急性干预研究比较了单次食用48克全麦玉米早餐麦片(14.2克纤维)对肠道菌群的影响,并与48克低纤维玉米早餐麦片(0.8克纤维)进行了比较。

3周后,高纤维组和低纤维组均报告粪便双歧杆菌增加高纤维组的增幅更大,但未达到显著性,乳酸杆菌、肠球菌和奇异菌属物种的增加不显著。

-混合全谷物对肠道微生物的影响:

全麦谷物包括谷物的胚乳、胚芽和麸皮成分,因此其营养成分与谷物的麸皮纤维部分不同,这可能会影响肠道微生物群

共计357人的研究发现,增加完整谷物纤维的摄入具有显著的益生元作用,细菌多样性、放线菌、双歧杆菌、梭菌、毛螺菌显著增加;但阿克曼氏菌、罗氏菌、乳酸杆菌和肠球菌的增加趋势不显著。促炎性肠杆菌科细菌的水平也显著下降。

作者认为,对高纤维干预的反应取决于基线肠道微生物丰富度——由于膳食纤维的增加,基线微生物丰富度有限的人会随着时间的推移表现出更大的微生物群变化

结语

如今全球肥胖症的流行,寻求新的有效解决方案已成为研究的重中之重。这主要是因为大多数人无法长期坚持既定的饮食和身体活动方案,从而无法达到并保持健康的体重。

肠道微生物群由于位于宿主营养/能量代谢的关键位置并能够影响它,因此已成为一种有希望的新治疗靶点

饮食、肠道微生物群肥胖之间的相互关系是高度互动和动态的。虽然饮食热量摄入是能量平衡方程的主要因素,研究估计现在知道某些肠道微生物可以从饮食中获取“额外”的能量,大约150千卡/天;相当于一年内可能增加6.8公斤的体重。

除了热量含量外,饮食成分也是与肥胖相关的饮食-微生物相互作用的重要因素,例如肠道微生物失调以及高脂饮食引起的全身炎症

肠道微生物还通过调节食欲食物摄入饱腹感影响肥胖:这是能量平衡的一部分。膳食纤维、合生元是调节肠道微生物组成的有效方法,这些干预措施不仅降低了体重,体脂,而且同时改善了与肥胖和相关代谢状况相关的生物标志物,例如血糖水平、胰岛素敏感性、血浆脂联素等。

总体而言,这些结果表明,通过膳食纤维合生元以及饮食调节肠道微生物群可以作为人类减肥的独立方法,同时可以有助于减轻风险并控制肥胖相关疾病(如心血管疾病、胰岛素抵抗和2型糖尿病)的症状。

在当前肥胖流行和健康挑战的背景下,个体化肠道菌群干预显得尤为重要。每个人的肠道微生物群独一无二,受基因、生活方式和环境等多方面影响。因此,针对个体的肠道菌群进行精准干预,可以更有效地调节体重、改善健康状况。

主要参考文献

Li H, Zhang L, Li J, Wu Q, Qian L, He J, Ni Y, Kovatcheva-Datchary P, Yuan R, Liu S, Shen L, Zhang M, Sheng B, Li P, Kang K, Wu L, Fang Q, Long X, Wang X, Li Y, Ye Y, Ye J, Bao Y, Zhao Y, Xu G, Liu X, Panagiotou G, Xu A, Jia W. Resistant starch intake facilitates weight loss in humans by reshaping the gut microbiota. Nat Metab. 2024 Mar;6(3):578-597.

Jie Zhuye,Yu Xinlei,Liu Yinghua et al. The Baseline Gut Microbiota Directs Dieting-Induced Weight Loss Trajectories.[J] .Gastroenterology, 2021.

Pham Van T,Fehlbaum Sophie,Seifert Nicole et al. Effects of colon-targeted vitamins on the composition and metabolic activity of the human gut microbiome- a pilot study.[J] .Gut Microbes, 2021, 13: 1-20.

Corica D, Aversa T, Valenzise M, Messina MF, Alibrandi A, De Luca F, Wasniewska M. Does Family History of Obesity, Cardiovascular, and Metabolic Diseases Influence Onset and Severity of Childhood Obesity? Front Endocrinol (Lausanne). 2018 May 2;9:187.

Bartsch M, Hahn A, Berkemeyer S. Bridging the Gap from Enterotypes to Personalized Dietary Recommendations: A Metabolomics Perspective on Microbiome Research. Metabolites. 2023 Dec 2;13(12):1182.

Zhang M, Liu J, Li C, Gao J, Xu C, Wu X, Xu T, Cui C, Wei H, Peng J, Zheng R. Functional Fiber Reduces Mice Obesity by Regulating Intestinal Microbiota. Nutrients. 2022 Jun 28;14(13):2676.

Menni C, Jackson MA, Pallister T, Steves CJ, Spector TD, Valdes AM. Gut microbiome diversity and high-fibre intake are related to lower long-term weight gain. Int J Obes (Lond). 2017 Jul;41(7):1099-1105.

Mayengbam S, Lambert JE, Parnell JA, Tunnicliffe JM, Nicolucci AC, Han J, Sturzenegger T, Shearer J, Mickiewicz B, Vogel HJ, Madsen KL, Reimer RA. Impact of dietary fiber supplementation on modulating microbiota-host-metabolic axes in obesity. J Nutr Biochem. 2019 Feb;64:228-236.

Jefferson A, Adolphus K. The Effects of Intact Cereal Grain Fibers, Including Wheat Bran on the Gut Microbiota Composition of Healthy Adults: A Systematic Review. Front Nutr. 2019 Mar 29;6:33.

Zhang, Y.; Liu, J.; Yao, J.; Ji, G.; Qian, L.; Wang, J.; Zhang, G.; Tian, J.; Nie, Y.; Zhang, Y.E.; et al. Obesity: Pathophysiology and Intervention. Nutrients 2014, 6, 5153-5183.

Lin X, Li H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front Endocrinol (Lausanne). 2021 Sep 6;12:706978.Lin X, Li H. Obesity: Epidemiology, Pathophysiology, and Therapeutics. Front Endocrinol (Lausanne). 2021 Sep 6;12:706978. Pathophysiology, and Therapeutics. Front Endocrinol (Lausanne). 2021 Sep 6;12:706978

衰老过程中肠道菌群变化及其对老年抑郁和认知下降的影响

谷禾健康

编辑在老龄化过程中,生理功能逐渐衰退,伴随着多种疾病的发生,对老年人的身心健康构成重大威胁。

衰老是一个渐进、持续的过程,受到多种因素的影响,包括遗传、饮食、运动、生活方式等生理因素,也有社会、文化等复杂因素的交互影响,目前,越来越多的证据支持肠道菌群在衰老过程中的作用。

自然或“健康”的衰老,伴随着普雷沃菌属、粪杆菌属和双歧杆菌属以及直肠真杆菌属等减少,被其他共生微生物群所取代,如ButyricimonasAkkermansiaOdoribacter,尤其Akk菌与百岁老人的健康有关。而不健康衰老,则意味着致病菌或条件致病菌增多,包括肠杆菌科、放线菌属等。

肠道菌群与衰老相关的变化与认知能力下降、肌肉质量下降、骨质减少、皮肤稳态、血管老化、免疫衰老、代谢改变、肺和肝功能下降等密切相关。这些身体机能的衰退往往伴随着心理健康的变化,尤其是晚年抑郁症的发病率增高,约4%的老年人被诊断患有晚年抑郁症。

与成年人抑郁症相比,晚年抑郁症更多表现为生理症状突出认知功能损害更严重,晚年抑郁症可能是老年痴呆的先兆

经常看我们文章的朋友都知道,肠-脑轴与神经精神疾病的发病机制密切相关。这一双向调节轴通过神经免疫、神经内分泌等通路,以及肠道屏障微生物代谢物血脑屏障等,影响大脑功能,当然也包括认知水平。

近期几项研究(包括纵向跨诊断研究,横截面研究等)表明,肠道菌群可以预测未来的认知能力下降和抑郁症状,未来认知功能下降较低Intestinibacter相对丰度、较低的谷氨酸降解以及较高的组胺合成水平相关。关于谷氨酸和组胺可以详见我们之前的文章:

兴奋神经递质——谷氨酸与大脑健康

过敏反应的重要介质——组胺与免疫及肠道疾病

晚年抑郁症中总游离脂肪酸部分介导了Akkermansia认知功能之间的关系,IL-6、IFNγ、疣微菌门Akkermansia水平与抑郁严重程度相关。

本文我们通过这几项研究,来更深入具体地了解肠道菌群对老年人认知能力下降抑郁症状的当前和未来影响,同时也包括其他老年神经系统疾病相关合并症营养不良住院老年人的肠道菌群紊乱和临床结果,以及针对衰老的相关干预措施的介绍。希望为大家提供更多关于肠道菌群在老年健康领域重要作用的见解。

doi.org/10.14336/AD.2024.0331

01
老年健康和微生物组


肠道菌群与健康衰老

在人类的整个生命周期中,肠道微生物群的变化和转变伴随着衰老过程。

婴儿从出生起就接触各种环境微生物,导致肠道微生物群逐渐丰富和多样性增加

  • 新生儿

新生儿肠道最初定植主要涉及兼性厌氧微生物,如肠杆菌科和链球菌,其次是专性厌氧微生物,如双歧杆菌、梭菌和拟杆菌。

  • 1-2岁

Prausnitfaecali和喜爱粘蛋白的Akkermansia muciniphila等细菌在婴儿早期要么不存在,要么以非常低的水平存在,并在 1-2 岁左右增加到成人水平。

共生且稳定的肠道微生物群通常在9至36个月大的婴儿中形成,常见的分类群包括拟杆菌门、厚壁菌门和放线菌门。

  • 3-5岁

3-5岁儿童的肠道菌群组成逐渐向成人趋同。一旦建立,肠道微生物群的组成在整个成年期保持相对稳定

  • 成年人

成年人的肠道菌群包括拟杆菌型、普雷沃氏菌型等几种常见肠型。个体间差异与饮食、生活方式、运动频率、种族、文化习惯等许多因素相关。

  • 中老年

在中老年人中,肠道微生物群多样性下降。某些核心肠道微生物类群在老年人中也会发生变化。例如,拟杆菌属大肠埃希氏菌的比例较高

DOI: 10.14336/AD.2024.0331

自然或“健康”的衰老会导致肠道微生物组组成的特定变化,例如某些共生菌属的丧失,包括普雷沃菌属、粪杆菌属和双歧杆菌属以及直肠真杆菌属。在老年阶段,这些菌群被其他共生微生物所取代,如丁酸杆菌属(Butyricimonas)、AkkermansiaOdoribacter等。

特别是Akkermansia muciniphila,已知其有助于肠道中的粘蛋白降解。研究人员推测,AKK菌的水平可以指示健康状况,其相对丰度增加(高于健康老化时的水平)与百岁老人的极佳健康状况相关,而相对丰度降低则与肠道粘液层变薄酰基甘油减少有关。

注:酰基甘油是一种调节肠道通透性减少肠道炎症的内源性大麻素。

长寿人群的肠道菌群特征

研究发现,与100岁以下人群相比,百岁老人体内有益细菌(如拟杆菌属、Desulfovibrio suis、Pameliagodonibacterium pamelaeae、瘤胃球菌科、乳杆菌、Akkermansia、 甲烷短杆菌属)含量更高,而Faecalibacterium普雷沃特菌属、克雷伯氏菌属、链球菌属、肠杆菌属、肠球菌属含量较低

百岁老人肠道菌群多样性有所增加。百岁老人肠道微生物群中有益细菌占主导地位,可能有助于抵消与年龄相关的健康问题和衰老。

长寿人群的肠道菌群功能分析

2019年,一项对百岁老人肠道微生物功能的分析显示,中枢代谢能力增强,特别是在产生短链脂肪酸的糖酵解和发酵途径中。此外,百岁老人还表现出更高水平的磷脂酰肌醇信号系统、鞘脂生物合成和不同水平的n-聚糖生物合成。

2020年,一项对肠道微生物组的功能研究揭示,随着年龄的增长,与异养降解代谢相关的途径增加,与碳水化合物代谢相关的通路减少

2021年进行的一项研究,包括吲哚和苯乙酰谷氨酰胺在内的七种微生物代谢产物与百岁老人肠道微生物群的不同组成之间存在显著关联。这两种代谢产物先前被证明可以延长小鼠的寿命,在百岁老人的血液中发现了高水平的代谢产物。

总之,肠道微生物群不仅是衰老的标志,而且在维持人类健康和寿命方面发挥着至关重要的作用。


肠道菌群与不健康衰老

肠道微生物群与年龄相关的变化不仅影响肠道健康,而且还延伸到其他生理系统。

炎症衰老

早在20世纪60年代的研究就表明老年人的免疫功能有所下降,这一过程现在被称为免疫衰老,与免疫系统功能下降有关,从而导致促炎细胞因子的积累。

老年人群中炎症状态的增加现在通常被称为“炎症衰老”。促炎症状态使患者面临多种疾病的更高风险,例如自身免疫性疾病、心血管疾病、感染。

doi: 10.1186/s12979-020-00213-w

胃肠道内,维持功能性上皮粘液屏障对于预防感染和疾病至关重要。肠道通透性增加可导致微生物易位至宿主循环中,加剧促炎状态。

科学家还发现了几种在“不健康”衰老过程中会增加的致病生物或条件致病微生物,这一过程的特点是身体和精神迅速衰退,并与疾病进展和身体虚弱有关。其中一些病原体包括埃格特菌属(Eggerthella)、放线菌属、肠杆菌科,它们的存在和数量可以帮助预测寿命和疾病结果

老龄化人群:微生物组本身的变化导致促炎状态

在无菌小鼠模型中进行的实验表明,老龄化人群中微生物组本身的变化导致了促炎状态无菌小鼠的寿命比传统小鼠要长得多。此外,与灌胃其他年轻小鼠微生物组的小鼠相比,灌胃老年小鼠微生物组的年轻无菌小鼠表现出更大的肠道通透性和循环肿瘤坏死因子

与各种器官和疾病相关的年龄相关肠道菌群

DOI: 10.14336/AD.2024.0331

肠道微生物群与年龄相关的变化与能力下降、肌肉质量和能力下降、骨质减少、稳态、血管老化、免疫衰老、代谢改变、肺和肝功能下降密切相关。

表1 不健康衰老过程中的肠道微生物组

doi.org/10.14336/AD.2024.0331

一个越来越受关注的领域是通过可能影响认知功能的微生物群-肠-脑轴。神经精神疾病的病因复杂,肠道菌群和炎症可能是神经系统疾病发病机制的关键因素。接下来我们通过几项近期的研究队列,来了解老年人的肠道菌群与神经系统疾病关联。

02
老年人的肠道菌群与神经系统疾病关联


晚年抑郁、认知障碍

随着全球人口预期寿命的增加,晚年抑郁症的患病率显著上升,约4%的老年人被诊断患有晚年抑郁症。晚年抑郁症更多表现为明显的躯体症状,而情感症状不突出认知功能障碍也更严重

有认知障碍的老年人抑郁增加痴呆的进展。微生物群与当前的情绪和认知有关,近日,几项关于肠道菌群与老年抑郁、认知能力下降关联的研究发表,这些有助于我们更好地理解和应对老年抑郁和认知能力下降,一起来看一下:

literature 1
肠道菌群对老年人认知能力下降和抑郁症状的当前和未来影响

268名有不同认知和抑郁症状的参与者中收集临床评估和粪便样本。

70名参与者接受了为期2年的随访。

肠道菌群多样性↑ 认知↓ 抑郁严重程度↑

更大的微生物群落多样性,表明群落中物种的数量更高,分布更均匀,与样本中当前认知功能更以及未服用抗抑郁药的参与者抑郁严重程度更高有关

认知功能差双歧杆菌的相对丰度较低有关。

GABA↓ 抑郁症严重程度↑

在功能水平上,GABA 降解程度,基线抑郁症严重程度越高

GABA 是一种主要的抑制性神经递质抑郁症患者表现出较高的GABA降解较低的 GABA 生物合成,GABA功能的减少在认知功能中起着至关重要的作用,影响抑郁和衰老过程中出现的症状,微生物衍生的GABA会影响全身的GABA 水平,并与行为和功能连接的变化相关。

未来认知能力下降 与下列因素有关:

  • 基线时认知下降和焦虑程度更高有关
  • 厚壁菌门和Intestinibacter的相对丰度下降
  • 谷氨酸降解增加和基线组胺合成增加

未来抑郁症状的增加 与下列因素有关:

  • 较高的基线抑郁和焦虑
  • 较低的认知功能
  • 较低的拟杆菌门相对丰度

doi: 10.1038/s41380-024-02551-3

这是第一项纵向跨诊断研究,它代表着在精神病学、衰老微生物组的交叉点上迈出了重要的一步。

微生物组可以预测未来的认知能力下降和抑郁症状,有可能为识别可能经历认知能力或情绪下降的人提供生物标志物

literature 2
晚年抑郁中,总游离脂肪酸与肠道菌群组成和认知功能相关性的的中介分析

近日,来自浙江省人民医院精神病科康复医学中心廖峥娈团队的相关研究成果发表在《Lipids in Health and Disease》期刊上。这也是谷禾健康开放基金合作项目,一起来看一下。

晚年抑郁症是指60岁以上老年人出现的抑郁障碍,包括老年首发抑郁和老年复发的抑郁。该研究纳入来自老年抑郁认知结果队列研究的29名晚年抑郁症患者。

Spearman相关分析显示,Akkermansia丰度、总游离脂肪酸和MoCA评分之间存在显著相关(P<0.05)。多元回归分析表明Akkermansia总游离脂肪酸能显著预测MoCA评分(P<0.05)。

肠道微生物群、认知评估和脂质代谢指标之间的相关性

doi: 10.1186/s12944-024-02056-6.

调解分析显示,晚年抑郁症患者中Akkermansia相对丰度降低与认知功能下降的关系,部分由总游离脂肪酸介导(Bootstrap 95%CI: 0.023-0.557),占相对效应的43.0%。

肠道微生物群、脂质代谢产物认知功能评分之间的相关性

doi: 10.1186/s12944-024-02056-6.

这些发现表明,晚年抑郁症中认知功能Akkermansia总游离脂肪酸存在显著关系。总游离脂肪酸部分介导了Akkermansia与认知功能之间的关系。

晚年抑郁症患者的认知功能与总游离脂肪酸负相关,尤其是视觉空间/执行功能。

游离脂肪酸作为非酯化脂肪酸,是甘油三酯分解的产物,具有脂毒性,可通过被动转运或蛋白介导的内吞作用进入大脑,从而影响血管内皮功能。它们被认为可预示II型糖尿病(T2DM)患者阿尔茨海默的发生。有研究报告,在II型糖尿病合并轻度认知障碍的患者中,游离脂肪酸与注意力和执行功能呈负相关。另有研究发现,健康人群中游离脂肪酸水平升高认知功能下降相关。这些发现揭示了游离脂肪酸对晚年抑郁症患者认知功能的影响。

总游离脂肪酸在阿克曼症和认知功能之间关系中作用的中介模型

这是首次评估晚年抑郁症患者中认知功能、肠道菌群脂质代谢关系的研究。这些结果有助于理解肠道微生物-宿主脂质代谢轴在晚年抑郁症认知功能中的作用。

literature 3
晚年抑郁症患者肠道微生物群失调和信息功能障碍的横断面观察分析

这项研究也是来自浙江省人民医院精神病科康复医学中心廖峥娈团队的,其相关研究成果已于近日发表在《Neuropsychiatric Disease and Treatment》期刊上。

这也是谷禾健康开放基金合作项目,该研究分析了晚年抑郁患者的肠道菌群特征血清炎症细胞因子,探讨这两个因素在晚年抑郁潜在生物标志物中的联合作用。一起来看一下。

收集29名晚年抑郁患者和33名性别年龄匹配的健康对照(HC)的粪便样本和外周血,检测肠道菌群和12种炎症因子。

晚年抑郁症患者存在系统性炎症细胞因子水平升高肠道菌群失调

  • 在门水平,晚年抑郁症患者中疣微菌门相对丰度降低;
  • 在属水平,巨单胞菌属Megamonas、Citrobacter、Akkermansia相对丰度降低;粪球菌属Coprococcus、Lachnobacterium、颤螺菌属Oscillospira、Sutterella相对丰度升高

晚年抑郁症和健康对照的LEfSe分析

doi: 10.2147/NDT.S449224.

值得注意的是,IL-6、IFNγ、疣微菌门和Akkermansia水平与抑郁严重程度相关。

IL-6是神经元和胶质细胞表达的一种炎症细胞因子,对免疫和急性期反应至关重要。有研究人员提出,高IL-6水平可促进5-羟色胺降解减少5-羟色胺产生,从而损害神经可塑性,导致海马和前额叶萎缩等脑结构异常,这些异常已被证实与晚年抑郁症及其引起的认知障碍相关。与该研究一致。

IFNγ是一种参与中枢神经系统炎症的促炎因子,并激活大脑中的小胶质细胞以诱导促炎反应。研究表明,IFNγ激活的小胶质细胞改变了海马神经原生态位抑制神经干细胞和祖细胞的增殖,并促进未成熟神经元的凋亡,从而导致小鼠的抑郁症状和认知障碍。该研究在临床上证实了这一观点,并证明IFNγ水平与晚年抑郁严重程度有关。简而言之,这项研究表明,晚年抑郁是一种促炎和抗炎细胞因子共存的炎症状态,IL-6IFNγ与疾病严重程度有关。

既往研究发现,焦虑和抑郁患者中疣微菌门丰度降低,而Akkermansia丰度增加降低焦虑增强老年小鼠的认知功能。这与研究结果一致。回归分析显示,Akkermansia丰度是预测晚年抑郁概率的一个风险因素。但Akkermansia丰度与炎症因子水平无相关性,提示Akkermansia可能不通过炎症通路参与晚年抑郁的发病机制。

有趣的是,有研究发现,Akkermansia的外膜蛋白Amuc_1100可直接与TLR2结合促进5-HT合成率限速酶Tph1的表达,并降低肠上皮细胞中5-HT转运体的表达,从而增加5-HT的生物合成和胞外可用性,这提示Akkermansia可能通过直接调节肠屏障的神经递质释放来影响晚年抑郁。

肠道菌群改变、临床变量和炎症因子之间的关联(Spearman相关分析)

doi: 10.2147/NDT.S449224.

研究确定了IL-6AkkermansiaSutterella为晚年抑郁症的预测因子,它们的组合在区分晚年抑郁症患者和健康对照方面的曲线下面积为0.962

通过回归分析,Sutterella可作为预测晚年抑郁的指标。Sutterella是一种重要的肠道共生菌。既往研究发现,Sutterella丰度在重度抑郁和广泛性焦虑障碍患者中显著增加。许多研究也发现Sutterella肥胖以及体重和脂肪增加正相关

肥胖和抑郁之间存在双向关系,研究表明,促使垂体肾上腺皮质轴(HPA轴)过度激活、导致皮质醇失调可能是两者的共同机制。因此推测Sutterella可能通过影响HPA轴,从而影响皮质醇的释放,进而触发晚年抑郁的发生。

利用差异丰度属作为晚年抑郁症诊断因子的灵敏度和特异性的ROC曲线分析

doi: 10.2147/NDT.S449224.

这是一项横断面观察研究。该研究提供了晚年抑郁中肠道菌群和系统性炎症变化的证据。重要的是,将肠道菌群和炎症标志物结合使用,可以增强其作为晚年抑郁症潜在生物标志物的预测能力。这些发现有助于阐明肠道菌群和系统性炎症在晚年抑郁发展中的作用,并为临床实践中晚年抑郁的生物标志物提供新思路

其他合并症相关的研究:


轻度认知障碍、阿尔茨海默

轻度认知障碍(MCI)在老年人中高度普遍,影响了大约10%的70-74岁老人和25%的80-84岁老人。此外,轻度认知障碍患者更有可能进展为痴呆。迄今为止,药物治疗只能减缓轻度认知障碍的进展,但不能逆转它。

注:轻度认知障碍、阿尔茨海默虽然都涉及认知功能下降,但严重程度有所不同,轻度认知障碍是认知功能较正常人有轻微下降,但日常生活功能基本正常。阿尔茨海默是认知功能严重下降,严重影响日常生活。

虽然对微生物群改变是否会影响认知功能仍有分歧,但正在进行的长期项目,如MOTION(衰老肠道的微生物群及其对人类肠道健康和认知的影响),研究健康老龄化的认知和微生物群变化,为解释清楚这些相互作用提供了希望。

表2 选择随机对照试验和观察性研究(2019-2023)

评估老年人认知功能和肠道微生物组

DOI: 10.1007/s11894-024-00932-w

痴呆症:促炎菌增多

2019 年的一项鸟枪法宏基因组序列研究将 57 名患有痴呆症(包括阿尔茨海默病)的疗养院居民与 51 名未患有阿尔茨海默或其他形式痴呆症的老年人进行了比较,结果发现痴呆症患者体内的促炎性肠道细菌水平较高

阿尔茨海默:产丁酸菌减少,α 多样性降低

作者还注意到,与没有痴呆症的受试者和患有阿尔茨海默病以外的其他痴呆症的受试者相比,阿尔茨海默组中丁酸合成细菌的种类(例如丁酸弧菌属Butyrivibrio和真细菌属Eubacteria)有所减少

随后的系统回顾和荟萃分析同样发现,与健康对照者相比,阿尔茨海默患者肠道微生物组的 α 多样性有所降低,但轻度认知障碍 (MCI) 患者与健康对照者之间的差异并未降低。

阿尔茨海默病、轻度认知障碍和健康样本之间微生物组组成的差异(即β多样性)并没有一致改变。研究与痴呆症相关的肠道微生物组的一个挑战是缺乏明确、客观和非侵入性的测试来最终确定诊断和疾病阶段,从而使研究结果的解释进一步复杂化。虽然超出了肠道微生物组的范围,但阿尔茨海默病脑组织的尸检研究已经确定了大脑内存在微生物,这表明存在与神经退行性疾病相关的大脑微生物组

促炎Collinsella菌和APOE风险的强相关性

一项大型全基因组关联研究确定了几个与载脂蛋白E ε4 (APOE ε4) 基因高风险等位基因相关的微生物组属,载脂蛋白E ε4 是阿尔茨海默的一个公认的危险因素。这项研究的一些最重要的发现包括促炎Collinsella和 APOE 风险等位基因之间的强相关性,以及提出对Eubacterium fissicatena的保护作用。


帕金森、便秘

帕金森病 (PD) 是另一种神经系统疾病,在老年人中更为常见,人们越来越关注肠道微生物组作为其生物标志物或治疗方法。

帕金森:产丁酸菌如Roseburia、粪杆菌减少

2020 年对来自日本、美国、芬兰、俄罗斯和德国的 16S 测序数据进行荟萃分析发现,帕金森病患者的Roseburia粪杆菌相对减少,这两者都是丁酸盐的重要生产者

帕金森:普雷沃氏菌里的致病菌种增加

2022 年对 490 名帕金森病和 234 名健康对照者进行的鸟枪法测序研究证实了这些发现,并确定了帕金森病患者中发生改变的其他几个属,例如普雷沃氏菌里的致病菌种增加

帕金森:阿克曼氏菌属增加

有趣的是,多项研究指出,帕金森病患者中阿克曼氏菌属(AKK菌)的数量有所增加,考虑到阿克曼氏菌通常与健康衰老相关,并且在超级百岁老人中尤其丰富,这一点令人惊讶。一些科学家推测阿克曼氏菌是健康衰老的重要组成部分,但数量的增加使患者面临神经认知疾病的风险

进一步假设,阿克曼氏菌丰度的变化可能继发于便秘的发生,便秘是帕金森病的常见胃肠道并发症,并且在多项其他研究中与阿克曼氏菌增加独立相关。由于帕金森病和阿克曼氏菌之间的联系是一个不一致的发现,因此需要进一步的研究来确定该属在帕金森病和更广泛的衰老中的确切作用。

过度表达 α-突触核蛋白聚集体(PD 患者大脑中常见的现象)的帕金森病小鼠模型中,与移植有健康供体微生物群的小鼠相比,移植有 6 名人类帕金森病患者肠道微生物组的小鼠的身体运动障碍和便秘有所增加

粪菌移植改善帕金森病患者便秘和神经系统症状

基于帕金森病微生物群改变的这些早期发现,一项随机对照试验发现,健康捐赠者的粪便以冻干药丸形式每周两次服用,持续 12 周,可以改善便秘和肠道蠕动,并暂时提高轻度至中度帕金森病患者的客观运动技能。虽然仍需要大量的转化和临床数据开发,但这些初步发现表明肠道微生物组调节可能改善帕金森病的胃肠道和/或神经系统症状,并提供对疾病病理生理学的更深入了解的希望。

03
饮食和环境如何影响老年人肠道菌群?

需要更多协助完成日常活动(ADL)的老年人,可能会从社区生活过渡到长期护理机构。这种迁移会由于环境、饮食和医疗因素的推测变化而导致微生物群的变化。

在一般成年人群研究中,家庭表面的微生物肠道微生物群组成相关,这在过渡到长期护理环境时需要考虑。此外,老龄化和接触医疗机构(如长期护理机构)都与艰难梭菌感染(CDI)的风险增加有关,CDI是医疗相关性炎性腹泻的主要原因。

无论年龄如何,都有强有力的证据表明,特定的饮食可以引起微生物组的独特改变以及相应的血清和粪便代谢物的变化。

相对而言,高纤维受试者微生物组恢复能力最好

一项严格对照的研究跟踪了 30 名受试者,他们被随机分为纯素食(高纤维)、杂食(中纤维)和配方饮食(无纤维)。 6 天后,受试者接受口服抗生素和聚乙二醇的组合进行“肠道净化”。

研究人员发现,与其他群体相比,纯素食受试者的微生物组在“净化”后恢复得更快,在更短的时间内恢复了更大的多样性。另一方面,坚持配方饮食的受试者的恢复期最长

不同生活方式下,微生物多样性的差异

在一项横断面研究中,将以前未接触过的亚诺马米美洲印第安人的肠道微生物组与居住在美国和和半跨文化人群的个体微生物组进行了比较,与美国人相比,亚诺马米人的肠道微生物群多样性明显更高,而半跨文化人群的多样性水平居中。然而,值得注意的是,不仅仅是饮食,其他社会和医学因素,也可能导致多样性增加

从社区生活转向长期护理机构,饮食变化如何影响肠道菌群及功能?

微生物组中与年龄相关的变化的一个组成部分似乎与饮食和进食明确相关,特别是因为老年人在获取营养食物方面,出现牙列不良咀嚼困难、食欲下降以及缺乏社会支持的风险增加

例如,会导致微生物组改变的最显著的饮食变化之一,是从独立的社区生活转向长期护理机构内的辅助生活

这种转变通常会导致从高纤维、低脂肪饮食低纤维、高脂肪饮食的转变,与社区居民相比,长期护理居民的微生物组多样性较低。值得注意的是,这些长期护理居民和社区居民之间的差异与长期护理所花费的时间相关。

在消化过程中,纤维被代谢为短链脂肪酸,它可以作为保护性微生物群的能量来源,协助抗炎反应并维持肠道屏障完整性,从而为胃肠道带来许多好处。因此,转移到长期护理机构时因饮食改变而导致的短链脂肪酸缺乏,可能会间接导致肠道功能障碍

营养不良住院老年人的肠道菌群紊乱和临床结果

营养不良是住院患者尤其是老年人中最普遍和最具威胁性的综合征之一。营养不良表现为身体成分改变和生物功能减弱,导致体力下降恢复速度减慢。此外,它降低了对医疗干预的耐受和反应能力,使受影响的人容易出现并发症预后较差。

一项研究对来自入院时和住院 72 小时评估的前瞻性队列中的 108 名急性重症老年患者进行了二次纵向分析。收集了临床、人口统计、营养和 16S rRNA 基因测序肠道微生物群数据。

严重营养不良患者α多样性较差

与住院期间营养良好的患者相比,营养不良患者 (51%) 的微生物群组成不同 (ANOSIM R = 0.079,P = 0.003)。

严重营养不良患者在入院时(Shannon P = 0.012,Simpson P = 0.018)和随访时(Shannon P = 0.023,Chao1 P = 0.008)表现出较差的α多样性

营养不良与特定菌群的关联

Lachnospiraceae NK4A136组、Subdolilegum和普拉梭菌的差异丰度显着降低,与营养不良呈负相关,而棒状杆菌(Corynebacterium)、Ruminococcaceae Incertae SedisFusobacter的差异丰度显着升高,与营养不良呈正相关

棒状杆菌(Corynebacterium)、Ruminococcaceae Incertae Sedis及其总体组成是住院期间营养不良患者重症监护的重要预测因子

doi.org/10.1016/j.nut.2024.112369

总的来说,营养不良的老年急症患者肠道菌群组成不同,多样性较差,潜在有益菌丰度较低,住院期间机会致病菌增多。 “营养不良的肠道微生物群”可能能够预测不良的医院结果。为与疾病相关的营养不良进行更大规模的临床研究和临床前机制探索开辟了新的视角。

04
延缓或逆转衰老的干预措施


饮食

★ 地中海饮食

除了特定的补充剂外,某些饮食也与肠道健康有关。地中海饮食由植物性食品、全谷物和健康脂肪组成,已被证明可以预防所有年龄段的心血管疾病,这种饮食的影响可能是由肠道微生物组介导的

一项研究发现,坚持地中海饮食至少一年,肠道内的普氏杆菌、人型杆菌、直肠杆菌、埃里根杆菌、嗜木杆菌、多形杆菌、普氏杆菌、哈德鲁斯杆菌相对增加。此外,坚持饮食还与认知功能的改善相关,以及高敏 C 反应蛋白 (hsCRP) 和IL-17水平等全身炎症标志物的降低

饮食习惯(尤其是地中海饮食)与肠道菌群和衰老病理生理学方面的联系机制

doi.org/10.1007/s40520-024-02707-9

如何理解肠道微生物群介导的地中海饮食抗衰老作用?

短链脂肪酸的微生物合成

患有虚弱、肌少症、认知能力下降的老年人肠道微生物组的一个关键特征,是产短链脂肪酸的菌减少,包括普拉梭菌、罗氏菌属、丁酸弧菌属(Butyrivibrio)、琥珀酸弧菌属(Succinivibrio)等。而身体健康的百岁老人粪便中短链脂肪酸水平通常高于 60-70 岁的受试者。

地中海饮食刺激短链脂肪酸合成细菌生长和提高短链脂肪酸的能力很重要,然而,肠道细菌有效释放短链脂肪酸的功能能力不仅取决于饮食中的纤维含量,还取决于细菌之间复杂的交叉喂养相互作用以及细菌与宿主之间的相互作用,例如,只有在肠道环境中存在大量双歧杆菌的情况下,普拉梭菌才能产生足够的丁酸。

注:丁酸可以促进肠道粘膜完整性;调节炎症反应;改善胰岛素抵抗,并具有整体促合成代谢功能。

降低肠粘膜通透性

衰老,即使具有健康的活动模式,也与肠通透性增加相关,血清生物标志物连蛋白水平升高就证明了这一点。荟萃分析表明,虚弱者的血清连蛋白水平平均高于健康老年受试者,反映出肠粘膜屏障功能的逐渐丧失。这种情况与健康或患有慢性阻塞性肺病和痴呆等慢性疾病的老年受试者的骨骼肌力量丧失、肌少症等有关。

肠粘膜通透性增加与细菌毒素(包括脂多糖LPS)增加有关,这些化合物激活先天免疫反应和适应性免疫的抗原刺激,最终导致典型的衰老和虚弱的持续性亚临床炎症,也就是炎症衰老。 LPS 毒素增加在与年龄相关的认知衰退阿尔茨海默病的病理生理学中起着关键作用,并且被认为是肠-脑轴失调的主要原因之一。

在患有慢性疾病的成年受试者和老年人中,较高的地中海饮食依从性与胃肠粘膜通透性生物标志物和循环 LPS 水平呈负相关。

食品生物活性物质的生物转化

地中海饮食中通常建议大量摄入水果和蔬菜、全麦谷物、坚果、豆类和特级初榨橄榄油,这其中含有丰富的多酚或酚类化合物膳食多酚肠道微生物组之间的相互作用能够产生多种具有抗衰老作用的生物活性代谢物,特别是在骨骼肌中枢神经系统水平上。

  • 尿石素A具有潜在的抗衰老作用,而地中海饮食可增加尿石素的排泄

尿石素 A、异尿石素 A 尿石素 B 是肠道微生物在摄入鞣花酸鞣花单宁(核桃、石榴和草莓中常见的多酚)后释放的代谢物。

尿石素 A 的潜在抗衰老作用包括:改善肌肉力量和运动耐力、调节神经炎症和细胞凋亡并改善认知、促进胰岛素敏感性、调节脂质代谢和炎症反应。

地中海饮食与尿液中尿石素排泄的平均增加有关,即使分析没有考虑代谢型。同样,在两个不同的随机对照试验中,尿石素的尿液排泄与内脏脂肪减少和磁共振测量的海马占用评分显着相关,这些随机对照试验测试了长期地中海饮食干预的效果。

  • 橙皮苷由黄烷酮代谢产生,具抗氧化抗炎作用,地中海饮食可增其血浆水平

除鞣花单宁外,肠道微生物群衍生的多酚亚类代谢型鲜为人知。在饮食中摄入黄烷酮(一种特别以柑橘为代表的多酚亚类)后,已确定了橙皮苷的高排泄者和低排泄者。橙皮苷具有抗氧化、抗炎和促合成代谢作用,促进肌肉蛋白合成并减少阿尔茨海默病动物模型中的淀粉样蛋白沉积和神经炎症。

在一项测试地中海饮食对2型糖尿病受试者的影响的干预研究中,12周后检测到橙皮苷和其他黄烷酮衍生物的血浆水平增加,炎症生物标志物显著减少

  • 雌马酚由特定肠道菌群产生,有助改善认知功能

同样,雌马酚大豆异黄酮大豆苷元肠道生物转化后释放的生物活性化合物,但它仅由一部分具有特定微生物特征的群体产生。雌马酚在体外表现出针对痴呆症发作的神经保护作用,但在体内,只有在存在雌马酚产生微生物组代谢型的情况下,它才与更好的认知表现相关。

多酚对衰老过程中肠道菌群的影响

doi.org/10.3390/nu16071066

扩展阅读:

肠道微生物群与膳食多酚互作对人体健康的影响

★ 高脂肪和高钠的西方饮食

小鼠研究还表明,高脂肪和高钠的西方饮食会导致肠道微生物组的“预测年龄”增加,该模型基于对雄性 C57BL/6 J 小鼠进行贝叶斯模型训练,这些小鼠的微生物组从第 9 周起就已被表征到生命第 112 周。一旦小鼠恢复标准饮食,这些微生物组紊乱就会逆转。因此,鉴于老年人易受认知能力下降和不健康衰老的影响,评估老年人肠道微生物群和临床结果的干预性饮食研究很有意思。

★ 模拟禁食饮食

模拟禁食饮食(FMD)是一种日益流行的热量限制模式。研究人员发现模拟禁食饮食显著延长了过早衰老小鼠的寿命。在自然衰老的小鼠中,模拟禁食饮食改善了认知和肠道健康

在肠道中,模拟禁食饮食循环增强了肠道屏障功能,减少了衰老标志物,并维持了固有层粘膜中 幼稚T细胞的记忆平衡。模拟禁食饮食重塑了肠道细菌组成,显著增加约氏乳杆菌Lactobacillus johnsonii的丰度。模拟禁食饮食作为一种抗衰老干预手段,具有进一步研究的价值。


粪菌移植(FMT)

粪便菌群移植(FMT)是一种越来越多地被纳入复发性艰难梭菌治疗的疗法,并且还针对炎症性肠病和抗生素后菌群失调进行了研究。这使得研究人员猜测是否可以将来自年轻健康捐赠者的微生物组移植到老年人体内,以逆转不健康衰老的一些影响。

粪菌移植用于延缓衰老和改善认知功能

一项研究证明,“老年”微生物组从老年小鼠转移到年轻小鼠会导致多种与年龄相关的表型,包括晚期中枢神经系统恶化视力缺陷。重要的是,在一组相关实验中,用年轻小鼠的粪便进行微生物组移植后,老年小鼠的年龄相关变化得到改善。这项工作提供了强有力的临床前证据,表明年轻和老年小鼠之间的微生物组特征不仅不同,而且这些微生物组的相关生理效应是可转移的。其他研究人员也重复了这些和类似的发现,证明将老年小鼠的微生物组转移给年轻小鼠可能会导致认知缺陷

粪菌移植在早衰症模型研究中的应用

早衰症是一种特别独特的疾病,可以用来研究微生物组和衰老,因为受影响的个体携带编码层粘连蛋白 A 基因突变,从而导致快速衰老。尽管出生时外观正常,受影响的个体通常会在青少年成年早期出现致命的疾病并发症,主要是心血管疾病

菌群移植延长小鼠寿命并逆转肠粘膜变薄

早衰症小鼠模型研究表明,在早衰小鼠模型中发现肠道微生物群中变形菌Cyanobacteria丰度增加,疣微菌丰度减少。某些人类百岁老人富含的细菌菌株,例如Akkermansia muciniphila,可以通过移植来延长小鼠寿命并逆转肠粘膜变薄。

接受长寿菌群小鼠α多样性↑ 产短链脂肪酸菌↑

与普通老年组的小鼠相比,接受长寿个体肠道微生物群的小鼠表现出更长的小肠绒毛更低的脂褐质和β-半乳糖苷酶(衰老标志)的积累;更高的α多样性,乳酸杆菌、双歧杆菌和产短链脂肪酸菌丰度更高。

恢复外周免疫,改善记忆、学习和行为缺陷

通过粪菌移植,老年小鼠部分恢复了外周免疫(尤其是肠系膜淋巴结免疫细胞)并改善了海马小胶质细胞的缺陷。小鼠海马代谢组(包括维生素 A、GABA、Neu5Gc、精氨酸和相关途径)和谷氨酰胺合成酶表达发生有益变化,从而改善与年龄相关的记忆、学习和行为缺陷。

尽管这些发现仍处于临床前阶段,但它们为使用年轻捐赠者的 FMT 或其治疗成分来逆转不健康衰老的某些方面带来了希望。

扩展阅读:

粪菌移植——一种治疗人体疾病的新型疗法


益生菌、益生元

随着年龄的增长,老年人的饮食习惯通常会发生变化,这会致微生物组的变化。与衰老相关的饮食变化中研究最多的一项是纤维摄入量的减少。然而,补充纤维的临床试验在微生物群组成和炎症状态的变化方面产生了相互矛盾的结果,一些研究人员假设饮食干预和补充剂的功效可能取决于宿主的初始微生物组特征

阿拉伯木聚糖

在一项对 21 名 60 岁以上健康志愿者进行的双盲交叉试验中,他们补充了麦麸衍生的阿拉伯木聚糖,结果发现,所产生的微生物组组成因受试者最初的普雷沃氏菌丰度而异。尽管有限,但这些研究结果表明,需要采取个体化的方法来操纵微生物组,并且需要检测患者的初始微生物组,以调整实现预期结果所需的干预措施。

益生菌干预措施已在老年人中进行了专门研究。可惜,与一般人群的研究类似,临床可操作数据的生成因研究产品和结果的巨大异质性以及大量动力不足的研究而受到抑制。虽然尚未发现单一或组合的益生菌能够明确改善或逆转衰老迹象,但越来越多的研究正在评估特定的微生物菌株及其对客观生理效应的影响。

罗伊氏乳杆菌ATCC PTA 6475

在一项双盲、安慰剂对照研究中,骨矿物质密度较低的老年女性补充罗伊氏乳杆菌ATCC PTA 6475 改善胫骨总体积 BMD (vBMD)。

干酪乳杆菌

在衰老加速SAMP8小鼠模型中,益生菌干酪乳杆菌代田株(Lactobacillus casei Shirota)的给药可减少与年龄相关的肌肉退化线粒体功能障碍

研究发现补充干酪乳杆菌 LC122长双歧杆菌 BL986改善小鼠外周组织氧化应激和炎症反应,增加海马神经变性和神经营养因子表达,并增强学习和记忆能力

乳杆菌和双歧杆菌等细菌以光保护方式与真皮成纤维细胞结合,表现出抗衰老特性。

在人类中,一些小型但双盲随机对照试验已经确定了特定的益生菌改善老年人的认知功能,尤其是包括双歧杆菌乳杆菌在内的益生菌。因此,随着对微生物组操纵和客观健康措施之间更加严格理解的发展,益生菌疗法可能需要定制微生物混合物,以针对个性化护理方法中的特定缺陷或状况。

扩展阅读:

如果你要补充益生菌 ——益生菌补充、个体化、定植指南


锻炼

多项研究报告了实施锻炼计划后肠道微生物组发生了变化,早期结果表明老年人群中也是如此。

2020 年的一项研究利用美国肠道项目的粪便样本,其中还包括患者报告的体重指数和运动习惯信息。该研究包括 1,589 名具有健康 BMI(18.5 ≤ BMI ≤ 25)的成年人(年龄 18-60 岁)和 897 名老年患者(年龄 > 60)的样本,他们根据 BMI 进一步分层为正常体重(n  = 462),超重(BMI > 25,n  = 413)和体重不足(BMI < 18.5,n  = 22),并按运动频率分层。

研究人员发现,随着老年患者运动频率的增加,基于特定分类群和常见途径的相对丰度,老年患者的微生物组越来越接近健康BMI成年人的微生物组。例如,与不运动的老年人相比,运动的老年人中放线菌的相对丰度有所增加,并接近健康体重指数成年人的水平。此外,运动的老年患者的Cyanobacteria相对丰度有所下降,再次接近健康体重指数成人的水平。然而值得注意的是,Cyanobacteria产生的毒素如 β-N-甲基氨基-l-丙氨酸 (BMAA) 与阿尔茨海默病渐冻症等神经退行性疾病有关。

一项小型研究中,招募了 15 名久坐的老年患者(50-75岁),参加一项为期 24 周、每周三次的心血管和阻力运动计划,干预前后收集粪便样本进行16S测序。研究人员观察到,经过 24 周的锻炼计划后,双歧杆菌的相对丰度有所增加丁酸盐水平也有所增加。考虑到双歧杆菌在极端衰老和改善认知功能中的作用,这些研究结果表明,与运动相关的健康益处也可能是通过肠道微生物组介导的。

虽然有这些结果,但运动时的微生物组变化也存在显著的个体差异。此外,当前的许多研究没有对照组、缺乏严谨性和/或样本量较小。未来的研究需要确定运动与健康的衰老微生物群之间是否确实存在关系,以及可以影响肠道微生物群的体育活动类型。

扩展阅读:

体育锻炼与饮食相结合:调节肠道菌群来预防治疗代谢性疾病


艾灸

一项研究观察艾灸“足三里”对亚急性衰老模型大鼠氧化应激和肠道菌群的影响,足三里组艾灸双侧“足三里”,每日 1 次,每次每穴 3 壮,连续 28天。

与模型组比较,足三里组大鼠Chao1、Shannon指数升高(P<0.01,P<0.05)。经艾灸干预后大鼠肠道菌群多样性改善。

与模型组比较,足三里组厚壁菌门、密螺旋体属_2相对丰度降低 (P<0.01),拟杆菌门、乳杆菌属、普雷沃氏菌科UCG-003相对丰度及B/F值升高 (P<0.05,P<0.01)。

注:

  • 密螺旋体属有“隐形病原体”之称,因其外膜脱落,大部分是由非免疫原性跨膜蛋白组成,拥有丰富的脂蛋白,能够诱导炎性反应;
  • 乳杆菌属是健康成年人肠道中普遍存在的菌,有调整肠道菌群、改善肠道功能、增强免疫力、抗氧化等;
  • 肠道菌群中的拟杆菌门与厚壁菌门相对丰度比值(B/F值) 是衡量机体衰老进程的关键指标,老年人B/F 值明显低于年轻人;
  • 普雷沃氏菌属于人体中的抗炎细菌,有利于减轻炎性反应、促进纤维素的消化。

与模型组比较,足三里组大鼠血清SOD(血清超氧化物歧化酶)含量增加(P<0.01),MDA(丙二醛)含量减少(P<0.01)。

艾灸“足三里”可有效改善衰老大鼠氧化应激水平,调节肠道菌群结构,维持肠道菌群微生态平衡,从而起到延缓衰老的作用。

05
结 语

肠道菌群在预测及辅助治疗的应用

肠道微生物组可预测晚年的认知功能和抑郁症状;肠道微生物群和炎症标志物的组合,可能成为老年抑郁症的潜在生物标志物,具有更强的预测力。这些发现为老年认知下降和抑郁症的诊断和治疗提供了新的策略方向。

总游离脂肪酸在Akkermansia和认知功能之间的重要中介作用,为肠道微生物-脂质代谢轴在晚年抑郁症认知功能中的作用提供了新的视角。

营养不良的老年人肠道菌群可能能够预测不良的临床结果,肠道微生物群及其与宿主的相互作用,可能成为辅助个性化治疗/预防干预的新兴目标,有助于优化传统疗法的疗效

基于肠道菌群的干预

益生菌、粪菌移植等方法,可能通过调节肠道菌群,改善免疫功能,为衰老提供新的解决方案。

地中海饮食中的多酚因其抗炎、抗氧化和免疫调节作用,与肠道微生物群的复杂互作也日益受到重视,多酚化合物可能是抵御这些与年龄相关表观遗传变化的关键。未来有望通过多酚化合物调节肠道菌群,利用生物活性化合物的功能属性,巧妙地调节和重新调整与衰老相关的过程。

随着对肠道菌群的研究不断深入,这些都可能成为未来抗衰老领域的突破口。

主要参考文献

Kolobaric A, Andreescu C, Jašarević E, Hong CH, Roh HW, Cheong JY, Kim YK, Shin TS, Kang CS, Kwon CO, Yoon SY, Hong SW, Aizenstein HJ, Karim HT, Son SJ. Gut microbiome predicts cognitive function and depressive symptoms in late life. Mol Psychiatry. 2024 Apr 25.

Chen Y, Li J, Le D, Zhang Y, Liao Z. A mediation analysis of the role of total free fatty acids on pertinence of gut microbiota composition and cognitive function in late life depression. Lipids Health Dis. 2024 Feb 29;23(1):64.

Chen Y, Le D, Xu J, Jin P, Zhang Y, Liao Z. Gut Microbiota Dysbiosis and Inflammation Dysfunction in Late-Life Depression: An Observational Cross-Sectional Analysis. Neuropsychiatr Dis Treat. 2024 Feb 27;20:399-414.

Chen LA, Boyle K. The Role of the Gut Microbiome in Health and Disease in the Elderly. Curr Gastroenterol Rep. 2024 Apr 20.

Muñoz-Fernandez SS, Garcez FB, Alencar JCG, Bastos AA, Morley JE, Cederholm T, Aprahamian I, de Souza HP, Avelino-Silva TJ, Bindels LB, Ribeiro SML. Gut microbiota disturbances in hospitalized older adults with malnutrition and clinical outcomes. Nutrition. 2024 Jun;122:112369.

Wu YL, Xu J, Rong XY, Wang F, Wang HJ, Zhao C. Gut microbiota alterations and health status in aging adults: From correlation to causation. Aging Med (Milton). 2021 Jun 24;4(3):206-213.

Pereira, Q.C.; Fortunato, I.M.; Oliveira, F.d.S.; Alvarez, M.C.; Santos, T.W.d.; Ribeiro, M.L. Polyphenolic Compounds: Orchestrating Intestinal Microbiota Harmony during Aging. Nutrients 2024, 16, 1066.

Wang XM, Fan L, Meng CC, Wang YJ, Deng LE, Yuan Z, Zhang JP, Li YY, Lv SC. Gut microbiota influence frailty syndrome in older adults: mechanisms and therapeutic strategies. Biogerontology. 2024 Feb;25(1):107-129.

Wang Q, Xu J, Luo M, Jiang Y, Gu Y, Wang Q, He J, Sun Y, Lin Y, Feng L, Chen S, Hou T. Fasting mimicking diet extends lifespan and improves intestinal and cognitive health. Food Funct. 2024 Apr 22;15(8):4503-4514.

Wang Y, Qu Z, Chu J, Hun S. Aging Gut Microbiome in Healthy and Unhealthy Aging. Aging Dis. 2024 Apr 9.

抗性淀粉:健康益处、食物来源、与肠道菌群的关联

谷禾健康

目前越来越多营养概念诸如”低碳水化合物饮食”正在流行,然而,所有的碳水化合物都是不好的吗? 其实并非如此。

其中,抗性淀粉就是一种特殊的碳水化合物,它与我们通常所熟知的淀粉有区别。抗性淀粉之所以得名,是因为它能够抵抗人体消化酶的作用,逃离被吸收的命运,直接进入肠道。这种特性使得抗性淀粉拥有许多健康功效,它不仅能调节血糖,还能促进有益菌的生长改善肠道功能,甚至还能增强饱腹感,帮助控制体重

抗性淀粉天然存在于豆类(如扁豆、鹰嘴豆)、某些谷物(如大麦、燕麦)、块茎(如土豆、山药)等食物中。此外,各种食品加工和烹饪方法可以提高食品中的抗性淀粉含量,进一步使这种淀粉的潜在膳食来源多样化。

作为一种膳食纤维,抗性淀粉可以作为微生物发酵的底物,例如拟杆菌属,瘤胃球菌,双歧杆菌等可以发酵抗性淀粉。

一些肠道细菌促进抗性淀粉发酵产生短链脂肪酸。短链脂肪酸的主要功能是改善肠上皮屏障的完整性缓解局部和全身炎症,产生全身效应,影响代谢健康、免疫功能,甚至可能影响大脑健康。

目前代谢性疾病负担正在增加,一些膳食可以通过调节肠道菌群干预疾病,其中抗性淀粉也很重要,它结合了传统和科学,促使研究人员和消费者重新审视传统饮食习惯并认识到其潜在的健康影响。

本文探讨了抗性淀粉和肠道微生物组之间复杂的相互作用,包括抗性淀粉影响微生物群落的机制、这些相互作用对健康的影响。此外,还讨论了富含抗性淀粉的饮食对肠道健康的影响。随着对肠道菌群在健康和疾病中的作用了解越来越多,强调从天然来源获取抗性淀粉的饮食将会不断增长,为营养干预提供新途径。

01
抗性淀粉(RS)


什么是抗性淀粉?

抗性淀粉(RS)是一种不被人体消化酶分解的淀粉,被认为是膳食纤维

淀粉作为葡萄糖的储存形式天然存在于植物中。食品中的淀粉可分为慢消化淀粉(SDS)、快速消化淀粉(RDS)或抗性淀粉(RS)。

一般淀粉在小肠中迅速分解并转化为葡萄糖,并迅速吸收到血液中,而抗性淀粉则抵抗正常消化,因此得名。它不会分解成葡萄糖,而是不受干扰地通过消化道,直到到达结肠


淀粉的生化结构和分类

首先,淀粉的基本结构基于两种不同的葡萄糖聚合物——直链淀粉支链淀粉

直链淀粉主要是由α-1,4-葡萄糖单元组成的线性分子,与支链淀粉的分支结构形成对比,支链淀粉还包含α-1,6键连接。

这两种组分的比例及它们在淀粉颗粒内的排列方式显著影响淀粉的可消化性。这些分子越密集、排列越紧密,消化酶就越难接近它们。

  • 直链淀粉含量与抗性淀粉形成呈正相关。线性直链淀粉链通过氢键彼此结合,使它们不易水解。
  • 淀粉颗粒中支链淀粉分子的比例高,使得表面积更大,因此分子更容易受到淀粉分解攻击。


抗性淀粉的膳食来源

抗性淀粉(RS)是一种独特的膳食纤维,不是在小肠中消化,而是在大肠中发酵。不同食物类别(包括谷物、豆类、块茎和某些加工食品)中抗性淀粉的含量差异很大。

doi.org/10.1016/j.fochx.2024.101118

谷物,特别是大麦、燕麦和全麦等全谷类食物,是抗性淀粉的重要来源,尤其是在它们经过最低限度加工的情况下。比如,煮熟并冷却大米会增加其抗性淀粉含量,这是由于直链淀粉的逆淀粉化作用。

扁豆、鹰嘴豆等豆类也富含抗性淀粉。它们的抗性淀粉含量归因于它们的高直链淀粉支链淀粉比率,这有助于它们缓慢的消化率。烹饪和冷却过程进一步增加了其抗性淀粉含量

块茎,包括马铃薯和山药,含有抗性淀粉,尤其是在煮熟和冷却时,这是一个诱导淀粉回生的过程。这使得冷土豆沙拉等菜肴成为良好的抗性淀粉来源。

某些加工食品,特别是那些由全谷物制成或含有 抗性淀粉作为成分的食品,可能是重要的抗性淀粉来源。经过挤压烹饪等过程的全麦面包意大利面保留了大量的抗性淀粉。

了解这些来源及其抗性淀粉含量对于饮食计划和营养优化至关重要。


抗性淀粉的类型

在此基础上,抗性淀粉可以根据其起源和特性大致分为四种主要类型:

RS1型(RS1):由于食物基质和蛋白质外壳形成的保护屏障,这种形式的 RS 在物理上无法被酶接近。常见的来源包括全谷物和种子

RS2型(RS2):RS2 的特点是其天然颗粒形式,主要存在于某些生食中。例子包括生土豆、青香蕉、高直链淀粉玉米。这些来源的高直链淀粉含量导致紧密堆积的颗粒结构,限制了酶的获取。

RS3型(RS3):也称为逆行淀粉,当某些食物煮熟然后冷却时会形成 RS3。这种冷却过程导致淀粉分子的重新排列和重结晶,进一步使它们对酶分解具有抵抗力。煮熟和冷却的土豆、意大利面和米饭等食物是 RS3 的主要来源。

RS4型(RS4):这种类型包括食品中天然不存在的化学改性淀粉,例如一些商业生产的面包和糕点。各种工业过程在淀粉分子中引入交联或取代,以增强其对消化的抵抗力。

部分分类有:

RS5(RS5): 这是一个较新的类别。它需要通过加热和冷却含有特定脂质(例如脂肪或蜡)的淀粉类食品的过程产生的抗性淀粉。例如含有脂肪成分的面包或含有人工制造的淀粉-脂质复合物的食物。

虽然这些类别有助于讨论和研究,但许多现实世界的食物都含有抗性淀粉类型的混合物。此外,食品加工方法,储存条件其他食品成分的存在等因素可以显着调节这些食品中的抗性淀粉含量。

抗性淀粉的潜在健康益处和生理影响主要来自其在大肠中的发酵。然而,这些益处的程度和特异性可能因抗性淀粉类型而异。例如,不同的抗性淀粉类型可能优先促进特定微生物物种的生长或导致挥发性脂肪酸的产生速率不同。

总之,抗性淀粉的生化结构和分类对于确定其与肠道微生物组的相互作用以及随后的健康结果至关重要。全面了解这些基础方面对于旨在利用抗性淀粉潜在益处的饮食干预的研究和应用至关重要。


抗性淀粉的健康益处

保持血糖稳定

由于抗性淀粉消化缓慢,因此可以保持血糖水平稳定。这可以帮助减少餐后血糖峰值,这对糖尿病患者特别有益。

抗性淀粉具有第二餐的效果:根据一项小型研究的结果,早餐吃抗性淀粉可以降低午餐时的血糖

2022年1月发表在《Frontiers in Nutrition》 的一篇评论指出,在饮食中添加抗性淀粉是一种简单的生活方式调整,可以助糖尿病管理

促进心脏健康

2018年6月《Nutrition Research》发表的荟萃分析结果,抗性淀粉可以通过降低胆固醇水平有益于心脏健康。它还可以改善血糖控制,正如2017年《Nutrition Journal》上发表的一项针对超重成年人的小型研究所证明的那样,它通过促进肠道中健康细菌的生长来实现这一点,这些细菌产生具有有益作用的短链脂肪酸。

根据2022年3月发表在《国际分子科学杂志》上的一篇评论,短链脂肪酸有助于调节交感神经系统。抗性淀粉可能有助于治疗因神经系统过度活跃而加剧的心脏病,例如慢性心力衰竭、高血压和冠状动脉疾病。

减肥效果

抗性淀粉非常有饱腹感,可能会降低食欲。与其他碳水化合物相比,它的热量也较低,通过这些方式,抗性淀粉可能有助于减肥。

虽然早期研究表明抗性淀粉可能在减肥中发挥作用,但还需要进一步的研究来证实任何此类益处。2017 年《营养杂志》上发表的研究表明,每天吃 30 克抗性淀粉,持续六周,18 名超重成年人减少饥饿激素和无意识地吃零食,但不会改变身体成分。

支持肠道健康

抗性淀粉的作用类似于纤维,而纤维会被肠道中的健康细菌发酵。“这些有益的肠道细菌可以产生短链脂肪酸,这对肠道健康有帮助。

例如,短链脂肪酸可以帮助保持肠道内壁坚固,并有助于粘液产生和炎症,还可能有助于降低结直肠癌的风险。这在后面章节我们会详细阐述。


应该吃多少抗性淀粉?

成人每天应摄入约15克抗性淀粉。然而,据估计大多数人每天的摄入可能不到这个量。

抗性淀粉食品含量表

(每100克食品的平均含量)

注:如果要增加摄入量时,请逐步增加,一下子吃太多可能会腹胀和胀气。


食品加工的作用

挤压烹饪,广泛用于生产即食谷类食品和零食,可以增加最终产品的抗性淀粉含量,取决于应用的条件,诸如含水量、螺杆速度和温度等参数可以进行调整以优化抗性淀粉的形成。

退火过程涉及水化淀粉颗粒而不使其明胶化,已发现这一过程可以增加一些谷物中的抗性淀粉含量。

发酵,是各种文化中历史悠久的烹饪和保鲜方法,具有提高抗性淀粉水平的固有能力。这一过程通常涉及有益细菌或酵母分解和发酵糖类,可以改变淀粉结构,使更多的淀粉对消化具有抗性。例如,将谷物发酵制成酸面包或某些传统非洲菜肴不仅赋予了独特的风味,还增加了它们的抗性淀粉含量

虽然探索和应用这些方法可以显著增加抗性淀粉含量,但必须考虑更广泛的营养后果。并非所有增加抗性淀粉的方法都是普遍有益的。有些加工方法可能会剥夺食物的重要营养素,或引入不良化合物。

在增强抗性淀粉获得肠道健康益处,和确保食物整体营养价值保持完整之间取得平衡至关重要。

02
抗性淀粉与肠道菌群相互作用


抗性淀粉在结肠中发酵的机制

抗性淀粉(RS)与肠道微生物组之间错综复杂的相互作用主要发生在结肠,结肠是大多数未消化碳水化合物达到代谢目的的地方。

肠道微生物群发酵抗性淀粉

人类结肠内有着丰富多样、复杂的微生物群,对发酵未消化膳食成分,尤其是抗性淀粉,起着至关重要的作用。

抵达结肠后,抗性淀粉将被居住在肠道的微生物群体进行厌氧发酵。这一发酵过程导致了短链脂肪酸的产生,主要是乙酸、丙酸和丁酸,以及氢气、甲烷和二氧化碳等气体

在短链脂肪酸中,丁酸在结肠健康中发挥着关键作用。作为结肠细胞的主要能源来源,丁酸还具有抗炎性能,加强结肠防御屏障,并潜在降低结肠癌的风险。此外,短链脂肪酸通过调节肠道pH值,有利于有益菌的生长,同时抑制致病菌株的增殖。

doi.org/10.1016/j.fochx.2024.101118

选择性发酵:抗性淀粉增多→有益菌随之增加

抗性淀粉发酵的另一个有趣的方面是其选择性并非所有肠道微生物都能够有效发酵抗性淀粉;特定菌群,特别是来自拟杆菌门和厚壁菌门的细菌群,是主要的抗性淀粉发酵者。

这种选择性发酵会导致肠道微生物组成的变化。持续的抗性淀粉摄入可以促进这些抗性淀粉发酵细菌的增殖,使肠道富含有益微生物,进一步提高发酵效率和短链脂肪酸的产生。因此,抗性淀粉和肠道微生物群之间的动态相互作用有望进行有针对性的干预,有可能通过饮食策略调节肠道微生物组成和活性。

抗性淀粉为微生物发酵提供了底物,作为回报,肠道微生物会产生有益于宿主健康的代谢物。


抗性淀粉发酵中的关键微生物群

前面我们了解了结肠中抗性淀粉发酵的机制,这里了解这一过程中的关键微生物参与者也很重要。

拟杆菌门

积极参与抗性淀粉发酵的主要群体属于拟杆菌门,尤其是拟杆菌属,拟杆菌的代谢能力使它们能够在各种复杂的碳水化合物中茁壮成长,包括抗性淀粉。它们的酶库有助于将抗性淀粉分解成更简单的单元,然后发酵以产生短链脂肪酸。

厚壁菌门

抗性淀粉发酵的另一个重要贡献者是厚壁菌门,尤其是瘤胃球菌属,瘤胃球菌是这一领域的关键物种,因其在启动抗性淀粉降解方面的无与伦比的效率。瘤胃球菌R. bromii)进行的初步降解使抗性淀粉更易于其他微生物群进一步发酵。考虑到在摄入富含抗性淀粉饮食的个体中的统治地位,其重要性变得明显。此外,瘤胃球菌的丰度较高与改善的肠道健康状况相关,表明其潜在的保护作用

放线菌门

虽然拟杆菌门和厚壁菌门脱颖而出,但另一个门放线菌门通过双歧杆菌属促进抗性淀粉发酵。双歧杆菌是备受推崇的益生菌,已知具有无数的健康益处。在抗性淀粉的背景下,双歧杆菌发酵它以产生短链脂肪酸,从而降低肠道 pH 值,从而创造不利于病原菌的环境。此外,抗性淀粉的双歧杆菌效应,即补充抗性淀粉导致双歧杆菌增加,已在各种研究中得到充分证明。

产甲烷古细菌

古菌,特别是产甲烷的Methanobrevibacter smithii,在抗性淀粉发酵领域也发挥作用。

M. smithii消耗其他微生物在抗性淀粉发酵过程中产生的氢气,将其转化为甲烷。这种氢气的去除至关重要,因为它防止了结肠中氢气的积累,否则可能会阻碍发酵过程。因此,M. smithii通过维持其他发酵者的适宜环境,间接支持抗性淀粉发酵过。

总而言之,结肠中的抗性淀粉发酵并不是归因于单个微生物分类群的孤立过程。这是一项涉及多个微生物群体的协同合作,每个微生物群体都为该过程及其健康益处做出了独特的贡献。

只有少数菌群如瘤胃球菌和青春双歧杆菌能够利用淀粉,这些细菌本身并不直接产生丁酸盐,而是依靠与其他肠道细菌的交叉喂养相互作用来产生丁酸盐。

他们的集体行动强调了肠道是一个代谢“器官”的概念,其中饮食成分,主要是抗性淀粉,以协调的方式代谢。


肠道菌群协同酶利用抗性淀粉

丁酸梭菌(Clostridium butyricum)是一种降解抗性淀粉的菌,能够在多种类型和来源的抗性淀粉上生长,在这个过程中产生大量的丁酸盐。它通过使用一种酶系统来实现这一点,该酶系统虽然是迄今为止在能够降解抗性淀粉的细菌中发现的最简单的酶系统,但在抗性淀粉的消化过程中表现出高度的协同作用和功能多样性。在一个生物体中,消化抗性淀粉丁酸生产的结合有可能绕过交叉喂养网络的复杂性,而交叉喂养网络通常是抗性淀粉消耗过程中生产丁酸所必需的。

这种独特的性状组合表明,它可能作为一种与抗性淀粉协同使用的菌株,促进更广泛的丁酸反应,从而为更多人群解锁这种益生元的健康益处。

doi.org/10.1016/j.jff.2022.105094


影响抗性淀粉-微生物组相互作用的因素

我们了解到肠道微生物群领域及其与抗性淀粉的错综复杂互动是广阔而多层次的。抗性淀粉可以影响肠道微生物群的组成和功能,但同样明显的是,这些影响的程度和性质受到各种因素的调节。揭示这些因素可以增进我们对肠道健康复杂性的理解,并帮助更有效地定制膳食和治疗干预措施。

个体肠道微生物群的基线组成

一个主要决定因素是个体肠道微生物群的基线组成。每个人的肠道微生物群具有独特的特征,受到遗传、早期生活暴露、抗生素和饮食模式等因素的影响。引入膳食时,抗性淀粉可能会因个体肠道微生物的起始点而在个体之间产生不同效应。例如,基线拟杆菌水平较低的个体,在摄入抗性淀粉后,可能会比那些已经拥有更高丰度的个体出现这些细菌增加更显著

不同类型的抗性淀粉会被特定菌群优先代谢

消费的抗性淀粉类型是另一个重要因素。根据其物理化学性质和来源,抗性淀粉有多种类型:RS1、RS2、RS3、RS4。每种类型可能会被特定微生物类群优先代谢。例如,瘤胃球菌高直链淀粉玉米中的RS2表现出明显的偏好,而某些拟杆菌物种可能更青睐来自逆行淀粉的RS3。因此,膳食中包含的抗性淀粉类型可以引导微生物群变化的轨迹。

其他营养素的影响

抗性淀粉消费的膳食背景也不容忽视。其他膳食纤维、蛋白质、脂肪和微量营养素的存在可以影响抗性淀粉的可获得性和发酵性。例如,富含可溶性纤维的饮食可能通过促进有益菌(如乳杆菌)的生长来放大抗性淀粉的益生效应。相反,富含蛋白质的饮食可能会使一些结肠细菌转向蛋白质发酵,产生像氨之类的潜在有害化合物

抗性淀粉摄入的持续时间

抗性淀粉摄入的持续时间也起着关键作用。初始引入抗性淀粉可能会导致微生物群组成的快速变化。然而,随着摄入时间的延长,微生物群可能会稳定下来,表明适应性。长期摄入抗性淀粉可以导致更具弹性和多样化的微生物群,这些微生物群更能抵抗干扰和潜在的菌群失调。

其他宿主相关因素

最后,宿主相关因素,如年龄、健康状况和遗传,调节着抗性淀粉与微生物群的相互作用。与微生物群的年龄相关变化、肠道传输时间的差异和酶活性可能会影响抗性淀粉在肠道中的发酵。同样,患有肠道紊乱症状如肠易激综合征(IBS)或炎症性肠病(IBD)的个体可能对抗性淀粉有不同反应,鉴于这些情况下肠道环境和微生物群的组成发生了改变。

总之,抗性淀粉与肠道微生物群之间的互动是一个受多种因素影响的动态过程。认识和理解这些因素对于个性化营养策略旨在利用抗性淀粉的肠道健康益处是至关重要的。这些见解呼唤着在营养和肠道健康领域采取更个性化的方法,更胜于一刀切的建议。

03
抗性淀粉对肠道健康和完整性的影响


抗性淀粉和肠道屏障功能

抗性淀粉已成为膳食的关键成分,其影响远远超出了其营养价值。抗性淀粉最重要的作用之一在于它能够维持肠道的屏障功能。这种错综复杂的粘膜细胞和细胞间连接是我们全身健康的关键,可防止病原体入侵并维持代谢平衡。鉴于肠道相关疾病的负担不断加重,了解抗性淀粉如何影响这一屏障可以为疾病预防和治疗干预提供关键的见解。

肠道屏障是一个动态和反应灵敏的系统,而不是一个静态的实体。在其核心,上皮细胞形成前线,作为对管腔环境的主要防御。

抗性淀粉促进粘蛋白分泌

抗性淀粉通过支持细胞更新促进粘蛋白的分泌来增强上皮屏障,粘蛋白是一种糖蛋白,可润滑和保护上皮表面免受潜在病原体和研磨性食物颗粒的侵害。粘蛋白层不仅形成保护毯,还为共生细菌提供栖息地,有助于宿主和微生物群之间的双向关系

抗性淀粉正向调节紧密连接蛋白

紧密连接蛋白,结合上皮细胞的微观结构,对于维持屏障完整性至关重要。这些蛋白质决定了屏障的渗透性,决定了哪些物质被允许通过,哪些物质仍然被排除在外。在“肠漏”的情况下,这些蛋白质会受到损害,导致肠道通透性增加。这种情况会允许不需要的物质(包括病原体和毒素)进入血液,引发全身炎症。研究表明,抗性淀粉正向调节这些蛋白质。抗性淀粉发酵产生短链脂肪酸,特别是丁酸盐,在上调紧密连接蛋白的表达、强化肠道屏障方面发挥作用。

抗性淀粉间接影响局部免疫反应

驻留在肠道粘膜内的免疫细胞为屏障的防御机制增加了另一层。在这里,抗性淀粉展示了其免疫调节能力。通过改变肠道微生物群组成,抗性淀粉间接影响局部免疫反应。它促进有益细菌的生长,进而与免疫细胞相互作用,指导它们的功能。这种串扰确保了潜在病原体的迅速消除,同时保持了对膳食抗原和共生微生物的耐受性

抗性淀粉通过神经,免疫,血管等相互作用,间接提供保护

除了这些直接影响外,抗性淀粉诱导的肠道微生物群变化也会影响肠脑轴。肠道和中枢神经系统之间的这种双向沟通渠道对整体健康至关重要。肠道屏障功能的破坏与神经系统疾病有关,强调了抗性淀粉等膳食成分在神经保护中的重要性。

此外,肠道内的血管结构,包括血液和淋巴管,在屏障功能中发挥作用。它们确保营养吸收和免疫细胞运输。抗性淀粉通过其代谢物调节血管内皮屏障,优化营养吸收并确保有效的免疫监测。

总之,抗性淀粉与肠道屏障的细胞、免疫和血管成分错综复杂的相互作用,为应对环境挑战提供了强大的防御能力。拥抱抗性淀粉的治疗潜力可以重新定义面向胃肠道健康及其他方面的策略。


抗性淀粉调节肠道炎症

炎症是免疫系统对病原体、伤害或有害刺激发起的保护性反应,当放松管制时,可能会成为一把双刃剑。特别是在肠道内,持续的炎加剧从炎症性肠病发展到结直肠癌等多种疾病。人们的注意力已经转向可以调节炎症的饮食成分,其中抗性淀粉已成为一个至关重要的参与者。

抗性淀粉促进抗炎短链脂肪酸 (丁酸盐) 产生

与其他淀粉不同,抗性淀粉在小肠中抵抗消化,基本完好无损地到达结肠。一旦进入结肠,抗性淀粉就会充当某些有益肠道细菌的底物,导致短链脂肪酸的产生,主要是乙酸盐、丙酸盐和丁酸盐。值得注意的是,丁酸盐因其显着的抗炎作用而得到认可。丁酸盐通过抑制促炎细胞因子的产生来发挥作用,例如TNF-α和IL-6,它们在炎症传播中起着核心作用。

抗性淀粉影响免疫细胞分化

抗性淀粉发酵和随后的短链脂肪酸产生已被证明会影响免疫细胞分化,尤其是调节性 T 细胞(Tregs)。这些细胞在维持肠道免疫稳态方面起着不可或缺的作用。Tregs数量的增加炎症减少有关,这证明了它们抑制异常免疫反应的能力。短链脂肪酸,特别是丙酸盐,影响幼稚T细胞分化为Tregs,确保肠道内平衡的免疫反应。

抗性淀粉影响肠道神经系统

肠道神经系统功能微妙,确保肠道蠕动和分泌,同时与免疫系统密切相互作用。肠道神经系统的破坏会导致肠道运动障碍,从而为细菌过度生长和炎症创造有利的环境。抗性淀粉通过其代谢物,尤其是丁酸盐,影响肠道神经系统功能。它有助于维持肠道神经元的健康和功能,随后促进肠道的定期肌肉收缩,最大限度地减少细菌停滞和炎症的机会。

抗性淀粉维持平衡的肠道pH值

此外,抗性淀粉可以通过调节肠道的 pH 值来影响肠道炎症。抗性淀粉发酵产生的短链脂肪酸导致结肠中的微酸性环境。这种酸度阻止了病原菌的生长,同时促进了有益共生细菌的增殖。这两个细菌群之间的平衡对于维持肠道健康至关重要,任何向致病性优势的转变,称为生态失调,都可能引发炎症。通过维持酸性 pH 值,抗性淀粉间接阻止炎症的发生和发展。

总之,抗性淀粉在调节肠道炎症中的复杂作用揭示了其潜在的治疗应用。它能够改变微生物组成,促进抗炎短链脂肪酸的产生影响免疫细胞分化,并维持平衡的肠道pH值,这表明其在确保肠道稳态方面的多方面方法。随着肠道相关炎症的患病率不断上升,利用抗性淀粉的益处可以为提供预防和治疗潜力的新型饮食干预铺平道路。


抗性淀粉与免疫系统的相互作用

肠道和免疫系统之间的界面是人体内最具活力的相互作用之一。我们整个免疫系统的近70%都存在于肠道内,随时准备对来自食物和病原体的各种抗原做出反应。正是在这种背景下,抗性淀粉等膳食成分占据了中心位置。抗性淀粉不仅仅是消化过程中的旁观者,它还以多种方式塑造和影响肠道的免疫反应

抗性淀粉发酵产物,减少促炎细胞因子

抗性淀粉天然抵抗上消化道的消化,到达结肠基本保持不变。在结肠中,抗性淀粉由特定菌群发酵,导致短链脂肪酸的产生增加,主要是乙酸盐、丙酸盐和丁酸盐。除了作为结肠细胞的能量底物外,这些短链脂肪酸还调节各种免疫细胞功能。例如,短链脂肪酸可以降低炎性细胞因子的表达增加抗炎介质,从而有效地抑制过度的免疫反应。特别是丁酸盐对中性粒细胞功能具有深远的影响,并减少炎症介质如TNF-α和IL-6的产生。

肠道相关淋巴组织 (GALT) 是免疫系统不可或缺的一部分,在维持肠道稳态方面起着至关重要的作用。在 GALT 内,树突状细胞不断对肠道的管腔内容物进行采样。这些细胞在遇到细菌代谢物(如抗性淀粉发酵产生的短链脂肪酸)时,其活性受到调节,导致调节性T细胞的产生增加,这些T细胞在控制炎症和自身免疫方面起着关键作用。此外,已经注意到短链脂肪酸对巨噬细胞的直接影响,观察到抗炎细胞因子产生增加促炎细胞因子产生减少

抗性淀粉增强屏障功能,减少LPS易位

抗性淀粉发酵产物会影响肠道屏障的完整性。维持肠上皮层连续性的紧密连接蛋白被短链脂肪酸上调,从而增强屏障功能,减少细菌内毒素如脂多糖(LPS)进入体循环的易位。LPS易位减少导致内毒素血症相关免疫激活减少有益于整体健康。

抗性淀粉促进有益菌生长,IgA升高

抗性淀粉作为一种益生元,选择性地滋养有益菌,进而积极调节免疫反。例如,双歧杆菌和乳酸杆菌等有益细菌的富集通常与抗性淀粉消耗有关,与免疫球蛋白 A(IgA)的产生增强有关,IgA是粘膜防御中的一抗。升高的IgA水平在中和病原体维持粘膜稳态方面起着关键作用。

从本质上讲,抗性淀粉与免疫系统之间的相互作用强调了饮食、微生物群和免疫力之间复杂的相互作用。通过其发酵产物和肠道微生物群的调节,抗性淀粉有可能成为调节免疫反应和维持肠道健康的重要膳食成分。它带来了全身益处,并为免疫调节的饮食策略开辟了途径。

04
抗性淀粉在其他疾病防控中的作用


代谢综合征

抗性淀粉越来越被认为是一种重要的膳食成分,不仅因为它对肠道健康的直接影响,还因为它更广泛的代谢影响,特别是与代谢综合征有关。代谢综合征是一组疾病,包括血压升高、高血糖、腰部脂肪过多以及胆固醇或甘油三酯水平异常,会增加患心脏病、中风和糖尿病的风险。抗性淀粉减轻代谢综合征方面的潜力主要归因于其肠道微生物群发酵产物,如乙酸盐、丙酸盐和丁酸盐。

尤其是丁酸盐,在维持肠道屏障完整性方面发挥着重要作用,并具有抗炎特性,这对于对抗与代谢综合征相关的炎症过程至关重要。丁酸盐还通过增强结肠中的能量消耗和脂肪氧化,与改善胰岛素敏感性有关,胰岛素敏感性是代谢综合征的关键因素。此外,丙酸盐具有糖异生作用,有可能调节血糖水平,这对患有或有2型糖尿病风险的人至关重要。

此外,抗性淀粉在食欲调节中的作用也值得一提。随着短链脂肪酸的产生,它们会刺激厌食激素的释放,如肽YY(PYY)和胰高血糖素样肽-1(GLP-1),从而增加饱腹感并减少卡路里摄入量。这种食欲调节作用,加上对血脂和血压的潜在益处,使抗性淀粉消费成为预防或管理代谢综合征的有前途的策略。


体重管理和肥胖

体重管理和肥胖的全球挑战与饮食成分及其代谢结果有着内在的联系。肥胖的增加伴随着 2 型糖尿病、心血管疾病和几种癌症风险的增加,使其成为最重要的健康问题。从这个角度来看,抗性淀粉不仅作为一种膳食纤维脱颖而出,而且作为对抗肥胖症的潜在变革性膳食成分脱颖而出。

一些研究表明,抗性淀粉可能对体重管理有直接影响。一个主要机制是食物的热效应,这是消化和加工食物时消耗的能量的量度。抗性淀粉对立即消化具有抵抗力,往往会增加这种热效应,导致在大肠发酵过程中消耗更高的能量。这不仅有助于负能量平衡,还会影响脂肪储存增强脂肪氧化,这对体重管理至关重要。此外,如前几节所述,抗性淀粉发酵导致短链脂肪酸的产生,短链脂肪酸通过释放 PYY 和 GLP-1 等激素在控制食欲方面发挥积极作用。调节食欲等同于减少热量摄入,这是体重管理的一个重要方面。

此外,抗性淀粉与改善肠道健康有关,这对肥胖有间接影响。健康的肠道生物群与更瘦的表型有关。当肠道微生物群发酵抗性淀粉时,它会导致微生物组成的变化,有利于与肥胖呈负相关的有益菌。

近日,一项针对 37 名超重或肥胖参与者的随机安慰剂对照交叉设计试验(ChiCTR-TTRCC-13003333) 中,研究人员测试了抗性淀粉作为膳食补充剂是否会影响肥胖相关的结果。

研究表明补充抗性淀粉 8 周有助于实现体重减轻(平均 -2.8 公斤)并改善体重超重个体的胰岛素抵抗

补充青春双歧杆菌(一种与减轻研究参与者肥胖显著相关的物种)可以保护雄性小鼠免受饮食引起的肥胖。从机制上讲,抗性淀粉诱导的肠道微生物群变化改变胆汁酸分布,通过恢复肠道屏障来减少炎症,并通过调节ANGPTL4抑制脂质吸收,提高脂肪组织对FGF21的敏感性。

次级胆汁酸,例如甘氨脱氧胆酸、脱氧胆酸、甘氨胆酸和牛磺脱氧胆酸,对于提高胰岛素敏感性改善肝脂肪变性具有重要作用。胆盐水解酶负责次级胆汁酸的去偶联。补充抗性淀粉降低了胆盐水解酶的产生,增加了次级胆汁酸的水平。

抗性淀粉至少可以部分通过青春双歧杆菌促进体重减轻,并且肠道微生物群对于抗性淀粉的作用至关重要。

因此,持续食用富含抗性淀粉的食物可能会导致肠道环境不太容易使体重增加和肥胖。


糖尿病和血糖控制

糖尿病是一种以慢性高血糖为特征的代谢紊乱,是一个不断升级的全球健康问题,具有从个人健康恶化到国家经济负担的多方面影响。鉴于发病率不断上升,迫切需要饮食干预来缓解或可能逆转这种疾病的进展。抗性淀粉是一种引人注目的膳食成分,其多种代谢影响与糖尿病管理和血糖控制有关。

糖尿病管理的核心调节餐后血糖和胰岛素反应。摄入抗性淀粉似乎有利地调节这些反应。与快速消化的淀粉不同,抗性淀粉不会直接导致餐后血糖峰值,因为它绕过了小肠的消化,它在大肠中的发酵会产生短链脂肪酸。特别是,丙酸盐可促进肝脏葡萄糖产生调节,降低餐后葡萄糖偏移的风险。此外,丁酸盐在促进胰高血糖素样肽-1(GLP-1)分泌中的作用。

注:GLP-1是一种增强胰岛素分泌和减少胰高血糖素释放的激素,协调血糖水平。

此外,期服用抗性淀粉提高胰岛素敏感性有关,这是 2 型糖尿病发病机制的关键因素。研究表明,食用富含抗性淀粉的饮食的胰岛素抵抗个体表现出胰岛素敏感性的显著改善。这种改善被认为与短链脂肪酸的抗炎特性有关,尤其是丁酸盐,以及它在减少氧化应激中的作用,氧化应激有助于胰岛素抵抗。此外,抗性淀粉培养有益肠道微生物群组成的能力对代谢健康有间接影响,进一步强调了其在糖尿病管理中的潜在作用。


高血脂

莲子抗性淀粉抑制高脂血症大鼠中下列菌群的生长:

  • Romboutsia
  • Bacillus
  • Blautia
  • norank_f__Muribaculaceae
  • norank_f__Eubacteria_coprostanoligenes_group

莲子抗性淀粉促进初级胆汁酸(CA、CDCA 、β-MCA)和次级胆汁酸(LCA、UDCA)的产生,降低高脂血症中TCA、DeHydro-LCA、isoLCA、LCA-3-S、THDCA的含量。

Blautia、norank_f__Muribaculaceae、norank_f__Eubacteria_coprostanoligenes_group与 DeHydro-LCA、isoLCA、TCA、LCA-3-S、 TCHO、TG和 LDL-C呈正相关

莲子抗性淀粉通过调节肠道菌群并加速肝脏中胆固醇分解为胆汁酸来改善血脂水平

doi.org/10.1016/j.foodchem.2022.134599


神经认知

认知能力下降是衰老的常见后果。缺乏纤维和高饱和脂肪的饮食模式会引发促炎症途径和代谢功能障碍,从而加剧认知障碍。新的证据强调了富含纤维的饮食对神经认知的益处以及肠道-微生物-大脑信号传导的关键作用。

经过为期20周的饮食方案,包括含有5%重量比来自芸豆(PTB)、黑眼豆(BEP)、扁豆(LEN)、鹰嘴豆(CKP)或菊糖纤维(INU)的抗性淀粉的西式饮食(实验组),与不含抗性淀粉的西式饮食(对照组),发现抗性淀粉特别是来自扁豆的抗性淀粉,可以改善西式饮食引起的认知障碍

从机理上看,抗性淀粉通过改善肠道菌群-代谢组,包括增加短链脂肪酸降低支链氨基酸水平,从而改善神经认知功能评估。这种肠道菌群-代谢物-大脑信号级联抑制了神经炎症、细胞衰老和血清瘦素/胰岛素水平,同时通过改善肝功能增强脂质代谢。总的来说,数据证明了抗性淀粉的益生菌效应可通过调节肠-脑轴改善神经认知功能。

doi.org/10.3389/fnut.2024.1322201


溃疡性结肠炎

溃疡性结肠炎是一种复杂的炎症性疾病,发病率不断上升。一项研究通过酶法分离方法从紫甘薯中获得抗性淀粉(PSPRS)。然后,研究了PSPRS的结构特性及其对葡聚糖硫酸钠诱导的结肠炎的保护功能

结构表征结果表明,PSPRS的结晶度从CA型转变为A型,并且在酶水解过程中层状结构被完全破坏。与结肠炎小鼠相比,PSPRS给药以剂量依赖性方式显著改善病理表型和结肠炎症。

ELISA 结果表明,给予PSPRS的结肠炎小鼠表现出较高的 IL-10 和 IgA 水平,但较低的 TNF-α、IL-1β 和 IL-6 水平。同时,高剂量(300 mg/kg)的PSPRS显著增加了乙酸盐、丙酸盐和丁酸盐的产生。

16S rDNA高通量测序结果显示,PSPRS治疗组中厚壁菌门与拟杆菌门的比例以及潜在益生菌水平显著增加,如乳杆菌、Alloprevotella, 毛螺菌科_NK4A136_组、双歧杆菌。同时,高剂量 PSPRS 显著抑制了拟杆菌属、葡萄球菌属和阿克曼氏菌等有害细菌 (p < 0.05)。因此,PSPRS有潜力成为促进肠道健康、缓解溃疡性结肠炎的功能食品。


慢性肾病

慢性肾病是与心血管疾病、发病率和死亡率风险增加相关的主要健康问题。最近的研究表明,慢性肾病的进展可能与肠道菌群的变化有关。抗性淀粉是一种膳食纤维,可以作为微生物发酵的底物。一些研究发现补充抗性淀粉可以改善慢性肾病患者的肠道菌群紊乱

在 2022 年随机对照试验的荟萃分析中,发现补充抗性淀粉可以降低患有透析患者血液中硫酸吲哚酚、磷、IL-6和尿酸的水平。

抗性淀粉还对肠道环境产生有益影响,包括增加Ruminococcus bromide

Ruminococcus brucei是厚壁菌门的主要成员之一,是一种主要的抗性淀粉发酵菌株。通过其针对抗性淀粉的特殊活性,Ruminococcus brucei从淀粉中释放能量以逃避宿主酶的消化。此外,摄入富含抗性淀粉的食物可以增加肠道短链脂肪酸水平,调节微生物代谢物,并改善葡萄糖稳态和胰岛素敏感性。

通过摄入抗性淀粉,胆固醇和甘油三酯降低,胰岛素敏感性提高,可以大大降低代谢综合征的发生率。慢性肾病患者也可能受益于更好的葡萄糖代谢、血脂水平和更好的体重管理。

05
如何补充抗性淀粉?注意事项


富含抗性淀粉的食物:益处和注意事项

近年来,富含抗性淀粉(RS)的食物因其多方面的健康益处而受到越来越多的关注,从肠道健康到调节全身新陈代谢。

益处

作为一种必需的膳食成分,抗性淀粉与典型的淀粉不同,主要是由于其对小肠消化的抵抗力,它基本上完好无损地到达大肠,在那里它作为微生物发酵的底物,产生有益的代谢物,如短链脂肪酸。

抗性淀粉中天然丰富的食物包括青香蕉、豆类、全谷物和某些类型的煮熟然后冷却的食物,如土豆和米饭。食用此类食物的好处之一是它们有可能增强血糖控制。富含抗性淀粉的食物具有较低的升糖指数,转化为较慢的餐后血糖升高。这一特性对患有糖尿病等代谢紊乱的人特别有益。此外,抗性淀粉发酵产生的短链脂肪酸,特别是丁酸盐,丁酸盐是结肠细胞的主要能量来源,并具有抗炎特性,使其对结肠健康不可或缺。

注意事项

抗性淀粉摄入量的快速大量增加会导致胃肠道不适,包括腹胀、胀气和排便习惯改变。通常建议逐渐将富含抗性淀粉的食物引入饮食中,以使肠道微生物群有时间适应。此外,患有某些健康状况的人,例如患有肠易激综合征(IBS或特定碳水化合物不耐受的人,应谨慎对待富含抗性淀粉的食物,并在专业指导下。抗性淀粉的发酵有时会加剧这些人的症状。

总之,虽然富含抗性淀粉的食物具有许多健康益处,尤其是在肠道健康和代谢调节方面,但个人应注意摄入饮食中的抗性淀粉的来源和数量

最好取得平衡:优化健康益处,同时最大限度地减少潜在的不利影响


抗性淀粉与饮食模式

抗性淀粉的作用超越了其个人益处,使其成为各种饮食模式和制度的关键成分。

地中海饮食

例如,当考虑因其保护心脏的益处而广受赞誉的地中海饮食时,我们发现豆类,抗性淀粉的天然来源,是其成分的基石。经常食用豆类,其丰富的抗性淀粉含量不仅有助于增强肠道健康,还有助于与这种饮食模式相关的心脏保护作用,因为抗性淀粉具有调节餐后血糖反应的潜力。

旧石器饮食

旧石器时代的饮食,俗称旧石器饮食,是另一个有趣的领域,其中抗性淀粉找到了相关性。对旧石器饮食的当代解释集中在块茎和某些根的消费上,当通过特定方法制备时,例如烹饪后冷却,这些根会富含抗性淀粉。这证实了我们的祖先可能已经消耗了大量的抗性淀粉,为他们的肠道微生物群提供了可发酵的底物。从理论上讲,肠道微生物与其宿主之间的共生关系已经共同进化了数千年,而抗性淀粉可能是推动这一进化过程的关键饮食元素

低碳和生酮饮食

低碳水化合物和生酮饮食,在减肥和代谢健康方面很受欢迎,通常会限制淀粉的摄入。然而,将抗性淀粉整合到这些饮食中可以提供明显的优势。由于抗性淀粉不表现出与普通淀粉相同的消化率,因此它的加入不会显著提高血糖水平。这意味着这种饮食的人可以获得抗性淀粉的好处,例如增强肠道健康和饱腹感,而不会影响酮症或低碳水化合物方案的状态。从根本上说,抗性淀粉允许当代饮食方法之间的共生关系,重点是减肥或代谢益处,以及滋养肠道微生物群的古老进化重要性。


抗性淀粉摄入和膳食整合的实用建议

将抗性淀粉纳入饮食中不仅要承认其生理益处,还要了解其最佳摄入量并融入各种饮食中,以最大限度地发挥其潜力。随着越来越多的证据描绘抗性淀粉的多方面优势,从调节肠道微生物群到调节血糖水平,向更广泛的公众提供可操作的指南变得至关重要。

循序渐进

首先,身体可能需要一些时间来适应饮食中添加抗性淀粉。因此,需要循序渐进逐步添加。

添加少量抗性淀粉。例如,早餐中加入一根绿色香蕉午餐中加入四分之一杯扁豆

食物中获取

最好从食物中获取抗性淀粉,常见的食物补充包括:青香蕉、豆类(豌豆、扁豆)、全谷物(燕麦和大麦)、煮熟并冷却的米饭

注:增加纤维摄入量时,要慢慢喝大量的水,以减少胃肠道副作用。

补充剂

补充性抗性淀粉通常以粉末形式服用,可混合到食品或饮料。如绿色香蕉粉、木薯粉等。

烹饪,可进一步提高抗性淀粉的含量

必须认识到并非所有抗性淀粉来源都是一样的。虽然豆类、全谷物和某些块茎天然富含抗性淀粉,但烹饪方法可以进一步调节其抗性淀粉含量。例如,烹饪然后冷却土豆或米饭等淀粉类食物可以增加其抗性淀粉含量,提供了一种直接的策略来提高饮食中的抗性淀粉水平,而无需任何剧烈变化。

抗性淀粉的推荐每日摄入量通常在 15-30 克之间。这可以通过多样化的饮食来实现,包括冷意大利面沙拉、隔夜燕麦或豆类菜肴等食物。

考虑个人的消化耐受性的重要性

抗性淀粉摄入量的突然激增会导致一些人的胃肠道不适。因此,谨慎的做法是在几周内逐渐增加抗性淀粉的摄入量,让肠道进行调整。此外,将富含抗性淀粉的食物与益生菌食物(如酸奶或开菲尔)相结合,可以产生协同效应,为有益的肠道细菌茁壮成长营造一个好的环境。与任何饮食改变一样,应根据个人口味、健康状况和饮食习惯定制抗性淀粉,确保方法既平衡又可持续

06
结 语

抗性淀粉作为益生元可以调节肠道微生物群,对于肠道菌群失调相关的许多疾病包括炎症性肠病、肠易激综合征、结直肠癌等具有重要意义,为这些疾病辅助治疗的潜在用途奠定了基础。

抗性淀粉的另一个治疗意义在于其抗炎特性。慢性炎症在心血管疾病、2型糖尿病和某些癌症等多种疾病的发病和进展中发挥着关键作用。肠道微生物群发酵抗性淀粉会产生短链脂肪酸,尤其是具有抗炎作用的丁酸,可以抑制促炎细胞因子,使抗性淀粉成为减轻炎症引起的疾病的潜在候选者。

抗性淀粉也有望成为对抗肥胖和相关并发症的饮食策略。鉴于其调节饱腹感、提高胰岛素敏感性调节脂质代谢的能力,抗性淀粉可以作为代谢综合征和相关病症的辅助或预防措施。例如,将抗性淀粉纳入饮食中可以改善糖耐量受损个体的餐后葡萄糖反应,强调其潜在的治疗相关性。

抗性淀粉在个性化营养方面的潜力也不容忽视,但仍需谨慎对待剂量、持续时间和个体差异在决定抗性淀粉在任何治疗应用中的功效方面发挥着关键作用。

个体对抗性淀粉的反应可能存在很大差异。年龄、遗传、肠道微生物群组成和整体健康状况等因素会影响人们处理抗性淀粉摄入及益处。例如,摄入相同量抗性淀粉的两个人可能会表现出不同的餐后葡萄糖反应或结肠中不同的短链脂肪酸产生情况。此外,肠道微生物群将抗性淀粉发酵成有益代谢物的能力在个体之间可能有所不同,特别是在微生物群多样性高的人和微生物群较少的人之间差异较大

这种个体差异突出了个性化营养方法的必要性。与其采取一刀切的抗性淀粉摄入建议,不如根据个人独特的代谢和菌群特征来定制饮食建议。随着深入探索个性化医疗时代,整合肠道菌群数据或许能为优化个人抗性淀粉摄入、获得健康效益提供更精准的建议。

主要参考文献:

Chen Z, Liang N, Zhang H, Li H, Guo J, Zhang Y, Chen Y, Wang Y, Shi N. Resistant starch and the gut microbiome: Exploring beneficial interactions and dietary impacts. Food Chem X. 2024 Jan 3;21:101118.

Li H, Zhang L, Li J, et al., Resistant starch intake facilitates weight loss in humans by reshaping the gut microbiota. Nat Metab. 2024 Mar;6(3):578-597.

Junejo SA, Flanagan BM, Zhang B, Dhital S. Starch structure and nutritional functionality – Past revelations and future prospects. Carbohydr Polym. 2022 Feb 1;277:118837.

Arp CG, Correa MJ, Ferrero C. Modified celluloses improve the proofing performance and quality of bread made with a high content of resistant starch. J Sci Food Agric. 2023 Apr;103(6):3041-3049.

Du X, Wu J, Gao C, Tan Q, Xu Y. Effects of Resistant Starch on Patients with Chronic Kidney Disease: A Systematic Review and Meta-Analysis. J Diabetes Res. 2022 Jul 18;2022:1861009.

Tekin T, Dincer E. Effect of resistant starch types as a prebiotic. Appl Microbiol Biotechnol. 2023 Feb;107(2-3):491-515.

Wang, Z.; Gao, M.; Kan, J.; Cheng, Q.; Chen, X.; Tang, C.; Chen, D.; Zong, S.; Jin, C. Resistant Starch from Purple Sweet Potatoes Alleviates Dextran Sulfate Sodium-Induced Colitis through Modulating the Homeostasis of the Gut Microbiota. Foods 2024, 13, 1028

Chen R, Zhang C, Xu F, Yu L, Tian F, Chen W, Zhai Q. Meta-analysis reveals gut microbiome and functional pathway alterations in response to resistant starch. Food Funct. 2023 Jun 6;14(11):5251-5263.

Kadyan S, Park G, Hochuli N, Miller K, Wang B, Nagpal R. Resistant starches from dietary pulses improve neurocognitive health via gut-microbiome-brain axis in aged mice. Front Nutr. 2024 Jan 24;11:1322201.

Pickens TL, Cockburn DW. Clostridium butyricum Prazmowski can degrade and utilize resistant starch via a set of synergistically acting enzymes. mSphere. 2024 Jan 30;9(1):e0056623. 

肥胖与代谢综合征,膳食纤维干预的相关进展

谷禾健康

肥胖代谢综合征在全球范围内日益流行,是21世纪人类健康面临的重大威胁之一。据世界卫生组织(WHO)全球数据估计,目前全球约13%(即近65亿)成年人口受肥胖症影响

肥胖代谢综合征对健康的危害包括增加患心血管疾病糖尿病高血压的风险,影响身体的免疫系统和内分泌系统,还可能导致肝脏疾病等

更令人担忧的是,模型预测到2030年,约五分之一的成年人将患有肥胖症,这些数字突显了寻求新疗法的迫切需要,这些新疗法将独特地利用肥胖和代谢综合征背后的复杂途径来促进体重减轻以及代谢和免疫系统的调节

“肥胖”是指身体过度脂肪堆积超过正常范围的体重。通常是由于摄入热量过多消耗热量不足导致的。同时肥胖患者还伴有慢性低度炎症,以及肠内分泌和神经激素的失调

体重通过激素神经代谢途径之间复杂的相互作用进行调节,并受到许多环境因素的影响。能量摄入支出之间的不平衡可能是由于多种因素造成的,包括饮食行为的改变异常的饱腹感或饥饿感以及低能量支出

目前主要有两种新兴的治疗方式:通过肠道微生物群膳食纤维肠道微生物群通过涉及粘膜和全身免疫、激素和神经系统的多种机制,深刻影响能量稳态的各个方面。

膳食纤维新陈代谢肥胖的益处也已通过机制研究和临床试验得到证明,在本文,我们讨论了不同纤维的理化特性纤维和肠道微生物群如何相互作用以调节体重稳态的最新发现,以及与使用膳食纤维作为补充策略

了解膳食纤维沿胃肠道的生理效应,包括肠道微生物群的作用,将支持开发利用微生物群和临床特征来预测个体对纤维补充反应的精准医学方法,用于调节免疫、代谢和体重稳态。随着临床前和临床研究继续探索膳食纤维能够促进哪些与健康相关的微生物群和代谢物,对这种纤维-微生物群的相互作用将为开发基于纤维的精准营养提供框架,以实现更优化、个性化的肥胖和代谢综合征相关治疗。

01
关于肥胖你需要知道的

为了更好地预防和改善肥胖,我们需要先了解关于肥胖的一些知识


肥胖的病理生理学

✦ 肥胖患者肠内分泌和神经激素会失调

肥胖不仅仅是体重过高,其实是一种复杂的慢性进行性疾病,其特征是体内脂肪堆积过多以及肠内分泌神经激素信号通路失调,从而增加食欲能量储存

✦ 肥胖还伴有慢性低度炎症

肥胖也被描述为一种慢性低度全身炎症,循环促炎细胞因子水平升高,对中枢神经系统(CNS)以及参与能量和代谢稳态的所有器官产生负面影响

肥胖个体下丘脑尺寸的增加被认为是由于下丘脑炎症所致,这将加剧能量稳态失调。内脏脂肪组织和胃肠道失调似乎是全身炎症的主要原因。来自肥胖动物模型的大量证据支持肠道微生物群衍生的脂多糖数量增加通过增强细胞旁运动或通过乳糜微粒运输的跨细胞途径进入体循环的作用,从而启动许多炎症途径,进一步导致体重增加

尽管来自人类研究的证据不如来自动物模型的结果清楚地表明肠道来源的脂多糖肥胖之间的关联,但人体中的一些研究结果已将全身性脂多糖增加肥胖联系起来,特别是与肥胖相关的代谢疾病风险

此外,一些人类研究的结果表明,高水平的餐后内毒素血先于2型糖尿病的发生,这表明存在潜在的致病作用。


能量稳态的控制

在正常生理条件下,能量稳态通过调节饮食行为能量储存肠内分泌神经激素信号通路受到严格控制。除了胰腺产生胰岛素胰高血糖素之外,胃肠道和脂肪组织也会产生主要整合在下丘脑内的信号,以调节食物摄入能量消耗

✦ 肠内分泌激素有促食欲和抑制食欲两种作用

肠内分泌激素,由整个胃肠道中专门的肠内分泌细胞(EEC)响应营养和其他信号而释放。这些激素在胃肠道和远处器官中发挥局部作用,协调能量稳态的维持,包括饥饿、饱腹感肠道屏障完整性肠道转运、血糖控制整体能量平衡

肠内分泌激素的功能可根据其促食欲(刺激食欲)和厌食(抑制食欲)特性大致分类。胆囊收缩素(CCK)、肽 YY(PYY)、胰高血糖素样肽1(GLP1)、葡萄糖依赖性促胰岛素多肽(GIP)和胃泌酸调节素是主要由小肠EEC产生并在餐后释放以诱导饱腹感减少食物的摄入

从胃中释放的生长激素释放和从结肠中的EEC释放的胰岛素样因子5(INSL5)充当促食欲信号瘦素脂联素从脂肪组织中释放,也有助于调节饮食行为和能量稳态。

主要肠道激素及其对能量稳态的影响

Deehan EC,et al.Nat Rev Gastroenterol Hepatol.2024

✦ 进食速度和食物适口性也会影响能量摄入

然而,肠道源性食欲激素的水平并不一定与能量摄入相关;此外,一些研究表明,人类对急性饮食的激素反应并未表现出对常量营养素摄入量长期差异的实质性适应。这些发现表明,其他因素,例如食物能量密度食物摄入速度以及食物的适口性,可能会增加人类的能量摄入

✦ 中枢神经系统调节饥饿、饱腹感和能量储存

中枢神经系统是多种肠道源性激素的重要作用部位,也是通过整合涉及自主下丘脑回路、皮质执行回路和皮质边缘奖励通路的大脑网络来调节饥饿饱腹感能量储存的中枢调节器。

下丘脑的弓状核内有两个独立且相对的神经元群:促食欲NPY-AgRP神经元促厌食POMC-CART神经元

NPY-AgRP神经元被能量不足和信号(如生长激素释放肽)激活,以刺激食物摄入,并被胃肠道中营养物质的存在饱足信号(如CCK和PYY)抑制。相比之下,瘦素等信号激活POMC-CART神经元会抑制进食,并由于释放与大脑黑皮质素受体结合的α-黑素细胞刺激激素而改变葡萄糖代谢

✦ 肥胖患者的能量信号受损导致易暴饮暴食

有证据表明,肥胖成人中营养信号的受损导致暴饮暴食和肥胖。在一项针对健康体重个体和肥胖个体的单盲、随机、对照交叉研究中,结果显示,肥胖个体在大脑对摄入营养素的反应中表现出整体和营养特异性受损。因此肠道和脂肪源性激素以及中枢神经系统共同是能量稳态治疗操纵的基本目标。

过去二十年的研究表明,肥胖代谢特征的特征是人类血清胆囊收缩素、胰岛淀粉样多肽胃饥饿素INSL5和胰岛素水平升高,同时瘦素GLP1和PYY水平降低

重要的是,这些血浆激素水平被发现随着减肥手术后肥胖的解决而恢复正常,从而强调了它们作为关键治疗靶点的作用。


基于药物的疗法

✦ 激素药物的疗法会受到胃肠道耐受性的影响

针对肥胖的内源性神经分泌机制的药物是治疗肥胖代谢综合征最有效的长期药物疗法。GLP1激动剂(索马鲁肽、利拉鲁肽和西他列汀)已被证明对持续减肥改善心脏代谢功能具有良好功效。

使用作用于GIP、GLP1或胰高血糖素受体的双重和三重激素受体激动剂的临床试验已显示出在减肥和改善代谢参数方面的卓越功效。

然而,这些基于肠降血糖素的疗法的使用目前受到高成本、有限的医疗保健覆盖范围和胃肠道耐受性问题的限制。此外,人们还担心这些药物对肠道功能的长期影响

✦ 基于饮食的疗法将是未来的趋势

由于这些限制,人们越来越有兴趣开发替代性肠促胰岛素靶向疗法,特别是基于饮食的方法,通过使肠促胰岛素激素(如GLP1和GIP)水平正常化治疗肥胖预防肥胖相关代谢功能障碍的发生。

02
膳食纤维和代谢健康

在动物模型和人类中进行的大量研究表明膳食纤维摄入宿主代谢和减肥有好处,因此增加膳食纤维摄入量作为一种基于饮食的肥胖疗法已引起广泛关注。

膳食纤维是碳水化合物的一种聚合物,主要存在于植物食物中,可抵抗哺乳动物基因组中编码的酶的消化;它们到达近端结肠,在其中经历肠道微生物群不同速率和程度的糖分解发酵

✦ 目前大部分人群膳食纤维摄入不足

膳食纤维的生理益处多种多样,取决于其理化特性摄入量,膳食纤维的推荐膳食摄入量为每1000kcal 14克(成年女性每天25克,成年男性每天38克)。然而,目前大部分人群通常每天摄入的纤维少于15克,即推荐量的一半左右。

✦ 肠道微生物在纤维代谢促进健康中起重要作用

几项大型前瞻性研究已经证明了纤维消耗代谢健康之间的关联,目前的工作强调了肠道微生物群在将膳食纤维摄入有益效果联系起来。

越来越多的证据表明,肠道微生物群通过涉及免疫、激素神经系统影响的多种机制,深刻影响能量稳态的各个方面,并且肠道菌群失调或肠道微生物类群的异常组成可能会导致能量代谢紊乱并对脂肪组织、肌肉和肝脏造成影响

肠道微生物群发酵纤维会释放出多种代谢物,包括短链脂肪酸酚类吲哚化合物支链脂肪酸、乳酸、琥珀酸和各种气体(氢气、二氧化碳、甲烷、一氧化氮和含硫化合物)。

肠道微生物产生代谢物的途径和前体对饮食摄入具有高度适应性;因此,通过特定的饮食干预措施(例如膳食纤维)来针对微生物代谢改善代谢功能障碍肥胖的关键因素。


短链脂肪酸

短链脂肪酸是通过微生物可接触的膳食纤维发酵产生的主要代谢物,人体肠腔中主要短链脂肪酸的相对比约为乙酸盐(60):丙酸盐(20):丁酸盐(20)

短链脂肪酸可以通过与G蛋白偶联受体相互作用并抑制组蛋白脱乙酰化来介导多种局部和外周效应,从而导致基因表达的表观遗传调节变化

丁酸盐在结肠中被结肠细胞用作能量来源,而丙酸盐和乙酸盐通过门静脉吸收到肝脏,其中丙酸盐主要用作糖异生脂肪生成的底物;相反,乙酸盐以更高的量进入体循环。

✦ 短链脂肪酸影响激素分泌从而改善葡萄糖代谢

除了纤维对胃排空抑制消化的影响已得到充分证明外,增加饮食中的纤维含量可能会通过产生短链脂肪酸帮助减肥葡萄糖代谢

大量体外和小鼠研究表明,短链脂肪酸通过G蛋白偶联受体GPR41和GPR43(也称为FFAR3和FFAR2)直接刺激肠道肠内分泌细胞分泌胰高血糖素样肽-1(GLP-1)和肽YY(PYY)。

体内研究表明,急性直肠输注醋酸盐短链脂肪酸混合物增加PYY和GLP1的全身水平。此外,一项人体研究表明,与单独使用菊粉相比,在20名健康成年人中,急性口服菊粉丙酸盐增加全身PYY和GLP1的水平,并减少食物摄入量,这表明丙酸盐水平增加在调节血糖新陈代谢方面发挥着作用。

✦ 短链脂肪酸影响神经系统抑制食欲和能量摄入

短链脂肪酸还可以直接与肠神经系统相互作用,从而允许肠道来源的短链脂肪酸向大脑直接发出信号。小鼠研究表明,短链脂肪酸给药可通过中枢神经系统相关机制抑制食欲和能量摄入

此外,体外和小鼠研究表明,短链脂肪酸可以通过多种机制增强血脑屏障,包括减少氧化和促炎途径以及增加紧密连接蛋白。

在小鼠研究中,乙酸盐和丁酸盐已被证明可以穿过血脑屏障并刺激迷走神经下丘脑,从而调节食物摄入量饱腹感。使用功能性磁共振成像的人体研究表明,结肠丙酸盐输送减少了与食物渴望相关的大脑区域的活动,并减少了食物摄入量

需要注意的是,尽管在人脑和脑脊液中发现了可测量浓度的短链脂肪酸,但人脑对循环短链脂肪酸的摄取似乎有限,这表明一些记录在案的循环短链脂肪酸对大脑活动的影响可能是这是由于短链脂肪酸诱导的与免疫和内分泌系统的相互作用,而不是大脑内的直接相互作用。

短链脂肪酸对能量稳态的作用机制

Deehan EC,et al.Nat Rev Gastroenterol Hepatol.2024

✦ 短链脂肪酸影响脂肪的分解和积累

在培养的小鼠和人类脂肪细胞中,乙酸盐丙酸盐已被证明能够以G蛋白偶联受体依赖性方式促进脂肪分解抑制脂肪生成,从而可能减少非脂肪组织和脂肪组织中的全身脂质循环和脂肪积累,同时还提高胰岛素敏感性

在人类研究中,短链脂肪酸的直肠给药已证明可以促进全身脂肪分解,并且在体外培养的人类脂肪细胞中,短链脂肪酸也已被证明可以刺激瘦素分泌。短链脂肪酸还可以减少人类外植体脂肪组织的促炎细胞因子分泌,因此可能有助于减少与肥胖相关的全身低度炎症

注意:仍然存在一些不确定性

然而,尽管大量工作支持短链脂肪酸调节体重增加宿主代谢方面具有潜在的有益作用,但该领域关于短链脂肪酸在肥胖中的作用仍然存在很大的不确定性,因为许多影响主要体现在小鼠模型无法在人类研究中复制。

事实上,据报道短链脂肪酸水平升高和降低都与肥胖有关。然而,大多数人类研究测量粪便样本中的 短链脂肪酸,这反映了生产、吸收和利用的净结果,并不一定反映可能更相关的全身水平。

为了支持这一观点,对160名BMI在19.2 kg/m2至41kg/m2且葡萄糖代谢正常或受损的参与者进行的横断面研究中证明,全身短链脂肪酸水平空腹甘油呈负相关。三酰甘油和游离脂肪酸,与空腹GLP1呈正相关,而粪便水平与这些参数均无关联。此外还发现循环醋酸盐胰岛素敏感性之间呈负相关,而丙酸盐与胰岛素敏感性呈正相关

总体而言,研究短链脂肪酸宿主代谢的生理影响的可用人体体内数据仍然有限。由于纤维肠道微生物群人体新陈代谢之间相互作用的复杂性,目前尚不清楚增加纤维摄入量的有益影响是由于微生物代谢和某些代谢物(例如短链脂肪酸)的产生或其他有据可查的影响而产生的纤维的变化,包括运输时间营养吸收或粪便膨胀和结合的改变。


乳酸和琥珀酸

除了短链脂肪酸之外,肠道微生物群还在膳食纤维发酵过程中产生乳酸琥珀酸,然而,这些代谢物通常被认为是微生物生产短链脂肪酸的中间体。

✦ 肥胖和代谢综合征患者乳酸和琥珀酸含量增加

乳酸和琥珀酸以低浓度存在于血液和组织中,与没有肥胖的人相比,在肥胖和代谢综合征患者中检测到的水平有所增加。乳酸是宿主衍生的葡萄糖代谢产物,当糖酵解通量超过线粒体氧化时,血液中的乳酸会增加

✦ 乳酸可能作为活性信号分子减少促炎反应

因此,乳酸可以被认为是葡萄糖代谢受损的生物标志物。此外,体外和小鼠研究表明,乳酸可以作为活性信号分子,调节脂肪细胞功能和代谢,并通过GPR81依赖性和非GPR81依赖性来减少脂肪组织和免疫细胞功能中的促炎症反应

由于这些有益的发现,有人建议通过增加纤维摄入量和由此产生的乳酸产量来靶向GPR81可能代表肥胖和代谢紊乱的新治疗靶点

✦ 琥珀酸作为代谢稳态的一种信号分子

尽管琥珀酸传统上被认为是三羧酸循环的代谢物,但目前的研究已证明琥珀酸可作为参与应激组织损伤的代谢信号

肠腔中琥珀酸含量较低,但对小鼠的研究发现,细胞外琥珀酸的浓度随着纤维摄入量的增加而增加。琥珀酸可以通过与几种不同细胞类型(包括脂肪细胞和免疫细胞)上的琥珀酸受体1(SUCNR1;也称为GPR91)结合而充当信号分子

在人类中,横断面研究报告称,血浆琥珀酸水平肥胖葡萄糖代谢损伤之间存在负相关。据报道,琥珀酸还可以充当生热激活剂和褐变剂,并且对脂肪分解具有影响

一项使用脂肪细胞特异性Sucnr1敲除小鼠和从肥胖人群中分离出的人类脂肪细胞的研究发现,通过与SUCNR1相互作用调节脂肪细胞中的生物钟和瘦素表达,琥珀酸诱导的代谢效应具有新功能。

✦ 琥珀酸可能有助于解释代谢与炎症之间的联系

还有强有力的证据表明琥珀酸-SUCNR1信号传导可以充当代谢应激炎症之间的联系。

利用人类原代巨噬细胞证明,细胞外琥珀酸可以诱导巨噬细胞产生抗炎作用。有趣的是,肥胖全身琥珀酸水平高有关,但脂肪组织驻留巨噬细胞中琥珀酸受体的表达减少,这可能有助于解释为什么肥胖患者往往无法控制炎症

在小鼠模型中,研究表明,肠道微生物群响应补充低聚果糖 的饮食而产生的琥珀酸增加,通过充当肠道糖异生的底物并随后减少肝脏葡萄糖的产生改善血糖控制能量代谢

随着越来越多的研究检查琥珀酸诱导的生理效应,它可能有助于阐明细胞外琥珀酸的作用及其在调节宿主代谢中的局部和全身作用模式以及如何最好地针对这些途径。


肠道气体

✦ 微生物发酵膳食纤维产生的气体会导致一些胃肠道症状

膳食纤维经微生物发酵还会进一步产生H2、CO2和CH4等气体。然而,纤维发酵过程中气体产量的增加可能会引起不良症状,并且是个体不耐受高水平纤维的主要原因之一。

因此,还需要进行更多研究来增加肠道气体对宿主生理和代谢影响的了解,使用纤维和大量营养素的饮食控制来减轻患有与产气相关的胃肠道疾病的患者症状

03
膳食纤维对胃肠道的生理作用

了解膳食纤维在胃肠道中的生理效应机制,包括其与肠道微生物群的作用,将有助于开发基于膳食纤维的补充策略,以调节免疫代谢和体重稳态


膳食纤维的异同

所有膳食纤维的共同特征是它们的低聚或多聚碳水化合物结构可抵抗小肠的消化,并且如果分离和合成,则对人类健康显示出生理益处。然而,纤维之间的化学和物理结构以及理化特性存在巨大的异质性

常见分离和合成的商业膳食纤维

Deehan EC,et al.Nat Rev Gastroenterol Hepatol.2024

✦ 膳食纤维的差异会影响其对人体的作用

具有较长、无支链的线性碳水化合物结构(如纤维素)通常不溶于水性溶剂,阻碍了人类肠道微生物群对其进行发酵,使较少的微生物能够接触到这种结构。

相比之下,具有混合连接或支链的低聚合物和聚合物通常可溶于水,更容易被肠道微生物接近。因此,随着聚合度的增加,可溶性纤维倾向于将水和其他化合物截留在聚合物内和聚合物之间,从而以浓度依赖性方式增加粘度分子量也会影响微生物的发酵和短链脂肪酸生产速率;然而,分子量与发酵之间的关系取决于纤维结构,且不一定是线性的。

尽管纤维通常根据物理化学性质(例如溶解度、粘度、结合能力或发酵性)进行分类,但这种分类并不能反映离散纤维结构所表现出的全部性质

例如,来自高粱或稻米等草类的阿拉伯木聚糖低聚物或简单结构的聚合物很容易发酵,而复杂结构的阿拉伯木聚糖要么在整个结肠中缓慢发酵,要么很难被人类肠道微生物群作用

因此,了解纤维的结构和理化特性,尤其是分离或合成后的纤维,对于更精确地应用纤维来治疗肥胖至关重要


近端胃肠道的生理反应

膳食纤维的理化特性影响它们在胃肠道中的作用,从而决定它们对炎症代谢能量稳态的影响。

✦ 粘性纤维和较大纤维会增加饱腹感并减少摄入

从口腔开始,粘性纤维大纤维颗粒(如谷类麸皮)可以通过获得更坚硬和耐嚼的食物基质来延长咀嚼和口腔感官暴露,从而改变内分泌相对饱腹感的反应并减少能量摄入

当食品应用中热量密集的糖和脂肪减少时,菊粉、低聚果糖和微纤丝纤维等纤维也可以保持感官特性(如甜味和口感)。天然食品中的纤维基质进一步充当唾液淀粉酶等消化酶的屏障。咀嚼过程中这些三维植物细胞壁结构的维持影响细胞内成分(如淀粉)沿胃肠道的生物利用度

增加食糜粘度的纤维,例如较高分子量的混合连接或支化聚合物和微纤丝纤维,可促进胃扩张延迟胃排空。小肠腔内增加的食糜粘度通过限制营养物质向粘膜扩散和内源性消化酶的活性进一步延迟营养物质吸收,这通过触发回肠破裂进一步减慢近端胃肠传输

✦ 纤维结构影响脂质的吸收和利用率

除了粘度之外,某些纤维结构还可以结合或捕获化合物,例如常量营养素微量营养素酚类胆汁酸,从而延迟或阻止小肠吸收。胆汁酸与膳食纤维的结合会干扰胆汁酸的肠肝循环并阻碍胶束形成,从而减少脂质的吸收和利用率

此外,增加纤维结合胆汁酸向大肠的输送可能会导致微生物胆汁盐水解酶和 7α-脱羟酶将初级胆汁酸转化为次级胆汁酸。对人类和小鼠的研究以及使用分离的人类胰岛和哺乳动物培养细胞的体外实验表明,这些次级胆汁酸通过多种膜和核受体(包括G蛋白偶联胆汁酸受体(TGR5)和法尼醇X受体,导致饱腹感增加、肝糖原合成、肝脏、棕色脂肪和肌肉组织中的胰岛素分泌和能量消耗

一项针对肥胖和2型糖尿病患者(n=23)的研究证明,将结合胆汁酸输送到回结肠区域可降低餐后血糖空腹胰岛素水平,并增加GLP1分泌,这支持了胆汁酸在葡萄糖代谢中的作用。

✦ 膳食纤维会影响小肠对营养的反应

尽管了解甚少,但膳食纤维可能会进一步改变驻留的小肠微生物群,在大鼠模型中显示这种相互作用会影响小肠营养感应,特别是低聚果糖诱导的脂质感应,从而促进肠内分泌细胞(EEC)释放GLP1以增加饱腹感

在培养细胞、动物模型和人类中进行的大量工作也表明微生物代谢物胃肠道味觉受体表达和活性的改变有关,从而导致味觉偏好食物摄入的改变。

最后,所有膳食纤维,无论是天然存在的、分离的还是合成的,都可以通过简单地用不可消化的碳水化合物代替一部分可消化的化合物来减少能量摄入,这与能够在不改变感官特性的情况下在食物中实现更高水平的较低粘性纤维相关。

总体而言,小肠的营养吸收率受到结构依赖性的影响,增加了纤维消耗的阻碍。这有助于促进饱腹感减弱餐后血糖、血脂和炎症反应,而这些反应通常在肥胖症中失调


结肠和肠道微生物群

纤维摄入量的增加相当于未吸收的营养物质增加,这些营养物质到达近端结肠并可供人体肠道微生物群利用。

膳食纤维对胃肠道的生理影响

Deehan EC,et al.Nat Rev Gastroenterol Hepatol.2024

✦ 微生物对膳食纤维作用改善排便和减轻炎症

与小肠中的化合物结合的纤维进一步在结肠中被作用,使底物和其他生长因子接近利用它们的特定微生物。肠道微生物群对发酵缓慢或发酵不良的化学和物理结构,如大纤维颗粒、纤维素或车前草,通过刺激蠕动粘膜分泌抑制水的重吸收来提供其他胃肠道益处,这已被证明可以增加体积和软化人类粪便。

这些纤维通过抑制微生物发酵可能减少结肠转运时间,促进结合化合物的排泄并减轻全身炎症。尽管可发酵纤维还可以通过增加微生物生物量以及产生短链脂肪酸和气体来影响结肠转运时间,但纤维发酵的主要生理效应归因于假定有益微生物的结构特异性扩张以及随后结肠内短链脂肪酸其他代谢物的产生。

✦ 富含膳食纤维的饮食使肠道微生物群更丰富

纤维到达结肠时会引发微生物群落内复杂的交互作用,这些群落共同获取、降解和利用代谢产物,最终丰富了成员多样性

初级降解和次级发酵释放短链脂肪酸、气体和其他代谢产物,被代谢物利用者进一步转化,影响与结肠细胞的相互作用。

消耗可发酵纤维支持多种微生物群成员,解释了纤维结构多样的饮食与多样化微生物群的关联,这是健康肠道微生物组的特征

结肠中成员的富集和代谢产物的促进取决于纤维结构个体群落生态因素,如结肠微环境。研究表明,特定饮食可增加能量利用降低脂肪含量,并提高胰高血糖素样肽-1(GLP-1),而食物摄入量无显著变化。

✦ 复杂结构的膳食纤维增加结肠远端的短链脂肪酸产量对代谢有利

尽管纤维发酵过程中微生物群落产生的副产物主要发生在结肠近端,但通过消耗具有结晶或复杂结构的纤维可以减慢发酵速率,从而减轻肠道气体的产生并将短链脂肪酸输出转移到远端

研究表明,增加短链脂肪酸远端产量可通过上调PYYGLP1肠内分泌激素,对人类的饱腹感血糖能量代谢产生有利影响

事实上,在肥胖男性中,远端结肠中施用的醋酸盐增加脂肪氧化和循环PYY;然而,当在近端结肠中施用醋酸盐时,没有看到效果。尽管向增加脂肪氧化和PYY产生的转变意味着有利的能量代谢,但仍需要进一步研究来确定是否可以通过增加远端结肠中纤维发酵和短链脂肪酸的产生来减少体重和肥胖

✦ 远端结肠可能是未来治疗肥胖的靶点

糖分解发酵向远端结肠的扩展和延伸进一步减少了膳食和粘膜蛋白质的发酵。蛋白水解发酵的抑制部分是由于肠道微生物对碳水化合物而非氨基酸的普遍偏好,以及乳酸和纤维发酵过程中结肠pH值降低抑制蛋白水解酶

人类蛋白水解发酵的减少可能会随后降低被认为有害和促炎的病原体(例如脱硫弧菌)和代谢物(例如氨或对甲酚)的水平。纤维和蛋白质发酵之间的平衡已在人类身上得到证实,因为增加抗性淀粉的剂量以及将饮食模式从高蛋白、低碳水化合物转变为体重维持饮食已被证明可以增加粪便中的短链脂肪酸并减少支链脂肪酸,支链氨基酸发酵产生的代谢物。

促进结肠中短链脂肪酸的产生可能会通过刺激粘液分泌上调紧密连接蛋白增加抗菌肽浓度调节结肠上皮增殖增强胃肠道屏障完整性,共同减轻细菌脂多糖的易位和随之而来的代谢性内毒素血症。总之,这些结果支持将远端结肠作为控制肥胖的治疗靶点。


其他因素的影响

除了膳食纤维结构之外,还有一些生态因素会影响纤维发酵过程中促进健康相关的微生物和代谢物的产生。

✦ 结肠转运时间影响微生物群和宿主代谢

结肠转运时间被认为是影响肠道微生物群宿主代谢的关键因素,转运时间较慢与纤维发酵速率降低短链脂肪酸减少远端结肠pH值蛋白水解发酵增加以及肠道对粪便能量的回收减少。

体外实验进一步表明,结肠pH值的降低可通过选择对酸敏感的微生物(如拟杆菌)来塑造参与纤维结构发酵的独特微生物群落。由于参与结肠纤维发酵的大多数共生微生物是专性厌氧菌,因此如在炎症中观察到的那样,结肠微环境中氧浓度的增加,也通过支持耐氧微生物(例如大肠杆菌)的大量繁殖来形成特殊菌群成员

✦ 不同人群对补充膳食纤维会产生个性化反应

由于生态因素影响微生物对膳食纤维个体化反应,因此在实施基于可发酵纤维的治疗策略来预防和治疗肥胖代谢综合征时,需要从个人生态角度出发。

据报道,纤维引起的肠道微生物群变化仅限于少数主要反应类群,而其余成员和代谢副产物则发生更多个性化变化

例如,数十年的人类研究证实,低聚果糖低聚半乳糖等益生元寡糖可通过选择性促进经常用作益生菌的乳酸菌双歧杆菌来增加乳酸和乙酸,从而为人类带来健康益处

丁酸盐生产菌

体外研究还表明,厌氧丁酸菌真杆菌粪杆菌丁酸盐生产菌可以通过乳酸和乙酸的交叉喂养或通过利用抗结晶淀粉、木聚糖和菊粉等底物来富集。

丙酸盐生产菌

另外,丙酸盐生产者,如拟杆菌属副拟杆菌属葡萄杆菌属韦荣球菌属,可以通过交叉饲喂乳酸和琥珀酸盐或通过降解底物(如酯化抗性淀粉、果胶和木聚糖)来富集。

下一代益生菌

下一代益生菌有望改善患有肥胖和代谢综合征的成年人的代谢,其中包括Akkermansia muciniphilaAnaerobutyricum soehngenii ,这两种细菌已被证明可以通过补充纤维来丰富

小结

因此,可发酵膳食纤维可用于选择性地扩大肠道微生物群内与健康相关的类群。然而,仍需要进行更多研究来阐明与肥胖和代谢功能障碍有因果关系的其他共生微生物和代谢物,并可通过选择膳食纤维来靶向。


拓展:肠脑轴的调节

肠脑轴连接肠道中枢神经系统,促进双向通讯。这一过程牵涉到肠神经系统迷走神经、内源性大麻素系统以及神经免疫神经内分泌通路。

肠道代谢产物可直接调节神经系统活动,通过作用于肠神经元迷走神经交感神经末梢,或者经体循环传输至大脑。

★ 肠道微生物产生的多种神经递质会影响食欲

此外,肠道微生物还产生多种神经递质,如血清素、多巴胺、乙酰胆碱GABA(γ-氨基丁酸),这些物质通过迷走神经在肠神经系统或中枢神经系统内发挥作用。一项小鼠研究指出,细菌肽聚糖片段与大脑下丘脑神经元上的NOD2相互作用,调节食物消耗和体温,进而影响食欲

研究者还发现,从肥胖小鼠体内提取的微生物移植到瘦小鼠体内,可影响大脑奖励系统,与微生物代谢产物3-3′-羟苯基丙酸存在因果关系,影响多巴胺能和阿片类标记物,进而调节食欲行为和动机。进一步分析显示,嗜黏蛋白阿克曼菌(Akkermansia)、Muribaculum普雷沃氏菌(Prevotellaceae)和副拟杆菌(Parabacteroides)的水平与3-3′-羟苯基丙酸血浆水平相关。

肥胖症中微生物群与肠道之间的相互作用

Deehan EC,et al.Nat Rev Gastroenterol Hepatol.2024

这些研究共同表明,肠道微生物群与宿主相互作用,通过不同的自主神经体细胞神经内分泌途径改变新陈代谢,并且肥胖患者的这些相互作用发生了实质性改变。实际上,每个途径都代表了可以通过饮食干预(例如增加纤维摄入量)进行调节的潜在途径。

扩展阅读:

体重增长:目前为止我们所知道的一切(更新你的减肥工具箱)

04
治疗肥胖的精准医学方法

治疗肥胖症的精准医学方法是通过个性化的诊断治疗方案来帮助患者减肥改善健康状况。这种方法结合了先进的科学技术和专业知识,以确保每位患者都能得到最有效的治疗。

通过精准医学方法,医生可以根据患者的基因生活方肠道微生物群和其他因素制定个性化的治疗计划,从而更好地管理和治疗肥胖


根据微生物组进行个性化饮食治疗

对于减肥饮食干预的反应存在着高度的个体差异,这种差异可以归因于多种因素,包括遗传背景微生物群组成以及生活方式因素(如进餐时间、睡眠、锻炼和昼夜节律)。为了实现减肥效果,需要确定影响个体对饮食干预反应的关键因素,并制定个性化的营养策略

✦ 肠道微生物群是预测减肥效果的良好指标

研究表明,基线微生物宏基因组谱,尤其是与纤维降解相关的几个基因的存在,与随后的体重减轻密切相关。在一项为期6个月的减重研究中,研究人员发现,个体的肠道微生物群是预测体重减轻效果的一项重要指标。

特定的肠道细菌,如布劳特氏菌(Blautia wexlerae)和多氏拟杆菌(Bacteroides dorei),在含量丰富的个体往往能更好地预测体重减轻效果

此外,体重减轻活泼瘤胃球菌(Ruminococcus gnavus)、马赛拟杆菌(Bacteroides Massiliensis)和芬氏拟杆菌(Bacteroides Finegoldii)相关。

✦ 具有高发酵肠道微生物水平时增加纤维摄入有利于减肥

这些微生物群,如阿克曼氏菌普雷沃氏菌,由于其处理植物来源复杂纤维的能力,与富含纤维的饮食密切相关。相比之下,食用低纤维饮食的个体通常具有更高水平的拟杆菌;而食用高纤维饮食的人群普雷沃氏菌更丰富。在人类减肥试验中,与普雷沃氏菌水平较高的个体相比,以拟杆菌为主的个体在摄入富含纤维的饮食时通常不太可能减肥或维持体重减轻效果

这些发现表明,高水平发酵代谢的肠道微生物群(如普雷沃氏菌)可能更有利于减肥,尤其是在增加纤维摄入量时。

最后,试验(n=1002)的数据显示,肠道微生物群组成是餐后脂质血糖反应,以及空腹心血管代谢标志物的良好预测因子。然而,必须指出的是,肠道微生物群组成仅解释了餐后甘油三酯、葡萄糖和C肽升高的5-7%变化,其他因素也在其中起作用。


基于表型的干预措施

将基于精准医学的方法应用于肥胖代谢紊乱的另一种方法是根据个体的潜在病理生理学和行为特征使用针对表型的干预措施

肥胖表型通常可分为四类:异常饱腹感异常餐后饱腹感情绪性进食异常静息能量消耗。针对每种表型进行了可行性试验,比如通过使高纤维饱腹感异常的个体饮食,可以关闭大脑饥饿中枢并实现最大的胃扩张。支持这一概念的是,与接受标准治疗的参与者相比,接受表型定制生活方式干预的参与者减重更多代谢和临床参数改善更显著

✦ 根据不同表型采取饮食会有更好的效果

在一项为期12周的饮食干预试验中,患有肌肉胰岛素抵抗肝脏胰岛素抵抗的人被随机分配到高单不饱和脂肪酸饮食低脂肪、高蛋白和高纤维饮食。具有肌肉胰岛素抵抗的个体(n =149)在食用低脂肪、高蛋白和高纤维饮食时代谢参数有更多改善,而具有肝脏胰岛素抵抗的个体食用高单不饱和饮食时,肝脏胰岛素抵抗(n=93)有更大的改善。

需要注意的是,另一种基于代谢表型的方法根据CORDIOPREV-DIAB试验显示出相互矛盾的结果。可能是由于研究人群的差异或饮食干预措施的组成差异造成的,说明了基于某些表型设计精准饮食干预措施的还存在一些挑战。

通过营养干预进行个性化葡萄糖优化研究旨在测试这种通过根据组织特异性胰岛素抵抗表型调节膳食营养素含量改善葡萄糖稳态参数和心脏代谢健康的方法。

尽管开发个性化营养干预措施存在相关的挑战,但这些原理验证研究总体上支持使用基于生物和表型因素开发个性化饮食干预措施的基本概念。

此外,了解肠道微生物及其基因途径如何与饮食成分相互作用可能有助于设计更有效的个性化疗法,并有可能提高饮食干预减肥的成功率


基于纤维的策略

膳食纤维结构和理化多样性为开发基于纤维的策略提供了潜力,还能从一定程度上改善肥胖和代谢综合征药物和手术疗法

富含纤维的天然食品,如全谷物蔬菜水果、豆类、坚果和种子,为以肥胖为中心的医学营养疗法提供了非淀粉多糖和抗性淀粉的混合来源,分离和合成的浓缩和均匀特征纤维为针对代谢综合征病理生理学的营养保健品开发提供了途径。

✦ 膳食纤维对于控制肥胖有重要作用

几种纯化的食品级膳食纤维已经作为食品成分或补充剂在市场上销售,其中许多可以被选定的微生物群落获取、降解和利用

一项包含22项随机对照试验、总共1428名参与者的系统回顾和荟萃分析表明,使用分离的可溶性膳食纤维补充剂(菊粉、低聚果糖、抗性玉米糊精、瓜尔豆胶、亚麻籽粘液、海藻酸盐粉、葡甘露聚糖和黄原胶)的个体至少12周后, 与对照干预措施相比 ,体重减轻代谢功能改善显著更高(可消化的碳水化合物),支持补充分离纤维在控制肥胖中的作用。

然而,体重的减少相对适度(平均差-1.25公斤),表明单独分离的可溶性纤维可能无法实现实质性的体重减轻。

!

补充膳食纤维需要和个体特征相匹配

使用基于膳食纤维的策略相关挑战在于需要什么剂量才能产生有益效果以及个人对这些剂量的反应如何

通常,小鼠和大鼠模型中使用的剂量转化为人类每日摄入量>100 g ,这可能会导致严重的副作用。事实上,一项对18名参与者进行的纵向、随机交叉研究表明,补充30克菊粉会增加促炎细胞因子(如IL-6和TGFβ)以及肝酶的水平

另一项结合使用人体组织样本、人体结肠活检离体培养和细胞培养模型的研究表明,饮食中的β-果聚糖可引发人体巨噬细胞和患有活动性肠道炎症的炎症性肠病患者的活检样本中的促炎症反应。研究人员推测,在缺乏发酵纤维(如β-果聚糖)所需的特定微生物类群(如罗氏菌属普氏粪杆菌)的个体中,这些未发酵的纤维可能会在胃肠道中诱发炎症反应

这些研究强调了基于将特定纤维混合物与宿主现有微生物功能特征相匹配个性化饮食疗法的必要性。


将纤维与健康相关微生物群结合

了解膳食纤维如何沿着胃肠道表现并与人体肠道微生物群相互作用后,可以根据纤维独特的理化特性对肠道微生物群的影响以及对饱腹感血糖血脂炎症反应的影响来合理选择纤维。

✦ 根据对肠道微生物群的影响等选择合适的纤维

一个商业化的例子是PolyGlycopleX,它是海藻酸钠、魔芋胶和黄原胶的混合物,协同相互作用形成高粘性和凝胶形成的多糖复合物,先前已证明可以促进饱腹感降低总胆固醇水平。

注:人们可以推测,将PolyGlycopleX与有利于丙酸产生的可发酵纤维混合物配对可能会增强临床反应,因为人类补充丙酸已被证明对饱腹感胆固醇代谢有良好的影响。

39名患有高心脏代谢疾病风险的成年人服用含有七种可发酵纤维的专有混合物,可以改善葡萄糖胆固醇代谢的替代标志物,并显著调节肠道微生物的组成和功能特征。

快速(菊粉)和缓慢(抗性淀粉)发酵纤维的混合物,旨在将乙酸盐的产生扩展到远端结肠,也被证明可以在健康个体的餐后促进能量消耗减弱血糖反应,但有趣的是,它并没有患有糖尿病前期的个体。

这些结果强调了微生物发酵能力的改变以及正常体重个体和肥胖或代谢功能障碍个体之间短链脂肪酸代谢的差异会影响对纤维补充剂的反应

✦ 纤维引起的微生物变化会影响代谢、信号传导

虽然纤维混合物是一种新兴方法,可以部分克服对纤维补充的个性化反应,但仍需要精心设计的临床前和临床研究来开发和确定此类纤维混合物单独以及与治疗肥胖症和代谢综合征的护理标准相结合的功效。

对14名成年人进行的受控饮食研究中使用特定的纤维组合,证明不同的纤维组合微生物功能基因表达和生长中引发了共同的和纤维特异性的反应。

例如,豌豆纤维和菊粉或豌豆纤维、菊粉、橙纤维和大麦麸的组合都促进了多种拟杆菌的生长,并增加阿拉伯低聚糖低聚木糖利用的途径。

此外,纤维诱导的特定微生物基因的变化可能与宿主葡萄糖代谢钙调神经磷酸酶AKT信号传导细胞凋亡、激肽释放酶-激肽蛋白酶和免疫过程的变化相关。

尽管体外研究进一步证明了离散纤维结构能够操纵肠道微生物组的潜力,但仍需要在人体中进行额外的随机对照试验来确认纤维补充剂的生理效应。


协同合生元或粪菌移植

膳食纤维健康相关细菌基因组之间的联系表明,活体微生物的施用,无论是益生菌、活体生物治疗药物还是粪菌移植,都可能与选择性发酵的膳食纤维相互作用。

与将益生菌和益生元结合在一起的互补合生元不同,这种精确配对是协同合生元开发的基础,其中精确开发底物以供共同施用的活微生物选择性利用,从而为宿主带来健康益处

✦ 膳食纤维协同合生元改善代谢和肥胖

一些早期的临床前和临床研究结果表明,协同合生元可能并不总是可预测地相互作用以促进健康。例如,根据三氯蔗糖与乳果糖的比率估计,在94名肥胖个体中补充益生元低聚半乳糖、益生菌青春双歧杆菌或协同合生元已被证明可以类似地增强肠道屏障完整性

然而,根据系统评价和荟萃分析的报告,合生元补充剂,或益生元(或多种益生元)和益生菌(或多种益生菌)的一般配对,已显示出减轻体重纠正肥胖代谢失调的希望。

一个例子是Pendulum Glucose Control,它是菊粉低聚果糖嗜黏蛋白阿克曼菌(Akkermansia muciniphila)、拜氏梭菌丁酸梭菌和婴儿双歧杆菌专有混合物,已被证明可以改善2型糖尿病患者的葡萄糖代谢,这些患者单独通过饮食和运动治疗。

✦ 膳食纤维的摄入与粪菌移植的效果会相互影响

整个粪便微生物群落的管理可能会进一步受益于精确膳食纤维的共同管理,这些纤维支持群落内与健康相关的成员调节防止微生物植入的环境限制。

在一项研究中,粪菌移植与不可获取的微晶纤维素 (n=17) 配对,但不是可发酵纤维混合物(n=17)(抗性麦芽糖糊精、IV型抗性淀粉和阿拉伯胶),改善了接受者中肥胖和代谢综合征患者的胰岛素敏感性

微晶纤维素是一种食品添加剂,也常用作药物包衣材料。它是一种水溶性纤维素衍生物,具有优异的增稠、乳化、稳定等功能。在食品工业中,微晶纤维素常用于调制冰淇淋奶油、果冻等产品;在药物制剂中,微晶纤维素常用作控释药物的包衣剂。

补充微晶纤维素有助于增加群落丰富度以及几种与健康相关的类群的植入或富集,例如AkkermansiaChristensenellaceaePhascolarctobacter,这可能是通过将结肠环境转向更有利的条件,例如减少肠道炎症

捐赠者在获得粪便之前的饮食会进一步影响粪菌移植的功效。例如,与遵循地中海减肥(n=16)或健康饮食指南(n=19)饮食后接受自体粪菌移植胶囊的个体相比,含有绿茶和较高膳食纤维的地中海饮食在粪菌移植后8个月可减弱体重增加

总体而言,将益生菌活生物治疗粪菌移植疗法与具有离散结构的新型纯化的膳食纤维相结合,将有助于开发创新的营养保健品和药物疗法,通过平衡失调的肠道微生物群来针对代谢综合征的病理生理学。

主要参考文献

Deehan EC, Mocanu V, Madsen KL. Effects of dietary fibre on metabolic health and obesity. Nat Rev Gastroenterol Hepatol. 2024 Feb 7.

Lin D, Peters BA, Friedlander C, Freiman HJ, Goedert JJ, Sinha R, Miller G, Bernstein MA, Hayes RB, Ahn J. Association of dietary fibre intake and gut microbiota in adults. Br J Nutr. 2018 Nov;120(9):1014-1022.

Ricardo-Silgado ML, McRae A, Acosta A. Role of Enteroendocrine Hormones in Appetite and Glycemia. Obes Med. 2021 May;23:100332.

Crooks B, Stamataki NS, McLaughlin JT. Appetite, the enteroendocrine system, gastrointestinal disease and obesity. Proc Nutr Soc. 2021 Feb;80(1):50-58.

Brown SSG, Westwater ML, Seidlitz J, Ziauddeen H, Fletcher PC. Hypothalamic volume is associated with body mass index. Neuroimage Clin. 2023;39:103478.

She Y, Mangat R, Tsai S, Proctor SD, Richard C. Corrigendum: The interplay of obesity, dyslipidemia and immune dysfunction: a brief overview on pathophysiology, animal models, and nutritional modulation. Front Nutr. 2023 Oct 11;10:1304102.

Gill SK, Rossi M, Bajka B, Whelan K. Dietary fibre in gastrointestinal health and disease. Nat Rev Gastroenterol Hepatol. 2021 Feb;18(2):101-116.

Mah E, Liska DJ, Goltz S, Chu Y. The effect of extracted and isolated fibers on appetite and energy intake: A comprehensive review of human intervention studies. Appetite. 2023 Jan 1;180:106340.

体重管理的微观关键:脂肪组织、肠道菌群与肥胖的关联

谷禾健康

如今,全球约有 26 亿人(约占世界人口的 40%)受到超重或肥胖的影响。除非采取果断的行动来遏制这一日益严重的流行病,否则预计到 2035 年,将有超过 40 亿人,也就说世界人口的一半受到超重或肥胖的影响(世界肥胖联合会的研究统计)。

超重和肥胖的特点是能量摄入超过能量消耗时产生过多的脂肪量积累控制能量消耗的一种可能的方法是调节白色脂肪组织(WAT)和/或棕色脂肪组织(BAT)中的生热途径。

脂肪组织分为白色、棕色米色,在体内能量储存、产热和新陈代谢中具有不同的作用。环境因素极大地影响能量代谢,其中饮食、运动和睡眠是主要影响因素。

在能够影响宿主代谢和能量平衡的不同环境因素中,肠道微生物群现在被认为是关键因素。肠道细菌参与肠道和脂肪组织之间的双向通讯,影响能量代谢、营养吸收、食欲和脂肪组织功能。

开创性研究表明,缺乏肠道微生物(即无菌小鼠)或肠道微生物群耗尽(即使用抗生素)的小鼠产生的脂肪组织较少,许多研究调查了肠道细菌之间存在的复杂相互作用,其中一些它们的膜成分(即脂多糖)及其代谢物(即短链脂肪酸、内源性大麻素、胆汁酸、芳基烃受体配体和色氨酸衍生物)以及它们对 WAT 褐变和/或米色脂肪的贡献以及 BAT 活动的变化。

肥胖与多种不良健康后果相关,包括代谢紊乱,如 2 型糖尿病、心血管疾病和某些类型的癌症。因此,迫切需要新的治疗策略来解决日益流行的肥胖及其相关的健康问题。

一种有前途的方法是调节白色脂肪组织(WAT)棕色脂肪组织(BAT)中的生热途径,这可以帮助控制能量消耗并有助于减肥(下图)。此外,肠道微生物群已成为调节宿主代谢和能量平衡的关键角色,通过有针对性的方法对其进行调节可能有望治疗超重和肥胖。

Cani PD, et al., Nat Rev Gastroenterol Hepatol. 2023

除了储存脂质(白色和米色脂肪组织)和产生热量(米色和棕色脂肪组织)外,人体脂肪组织还通过产生脂肪因子参与各种代谢功能。

本文我们一起来了解关于白色、棕色米色脂肪组织的一般生理学,人类和小鼠之间的区别,同时也了解一下肠道菌群及其不同代谢物,它们的受体信号通路如何调节脂肪组织的发育及其代谢能力,通过呈现具体的关键示例,深入阐述了肠道微生物群和脂肪组织代谢之间的复杂机制,同时也展示了从实验室转向临床的主要挑战与前景。

01
肥胖和脂肪

肥胖人数翻倍

自1975 年以来,全球肥胖人数几乎增加了两倍,目前有超过 6.5 亿人的体重指数 (BMI) ≥30 kg/m2被归类为肥胖。

肥胖相关合并症

由于肥胖与其合并症(包括 2 型糖尿病、心脏病、中风以及罹患多种癌症的风险增加)之间的密切关联,肥胖每年导致全球超过 470 万人过早死亡。因此,开发新的疗法至关重要,不仅可以减少体重过度增加,还可以限制体内脂肪过多的人患病的风险。

肥胖是如何形成的?

肥胖是由于长时间的正热量摄入而产生的,其中能量摄入超过能量消耗,过量的营养物质以甘油三酯 (TG) 的形式积聚在白色脂肪组织 (WAT) 内。

什么是白色脂肪组织?它有什么作用?

白色脂肪组织最初被认为是一种不良的结缔组织,但越来越清楚的是,白色脂肪组织发挥着广泛的重要生物功能,而且缺乏 WAT 与脂肪量过多一样对代谢健康有害。

因此,如今脂肪组织被认为是一个中央代谢器官,通过营养物质交换和脂肪源性激素细胞因子的分泌(统称为脂肪因子)密切参与能量代谢的系统调节。

Hagberg CE, et al., Nat Rev Mol Cell Biol. 2023

人体脂肪组织大致可分为:

  • 皮下脂肪组织(SAT)
  • 内脏脂肪组织(VAT)
  • 棕色脂肪组织(BAT)

BAT 主要在瘦人的颈部、锁骨上、椎旁和肾周区域。此外,瘦人还含有乳房(粉红色)脂肪组织、骨髓脂肪组织和真皮白色脂肪组织(WAT),后者在解剖学上与 SAT 是分开的。

肥胖个体中,脂质开始异位累积在肝脏和肌肉等器官中,并且在更大程度上累积在VAT库中,包括网膜、纵隔、腹膜后、网膜和肠系膜库。脂肪也开始在血管周围积聚为血管周围脂肪组织 (PVAT) 和心脏周围的心包位置。

临床上可以根据病史、血液检查人体测量指标以及异位脂肪堆积和不良脂肪细胞特征的成像来预测与肥胖相关的病理。

BMI,身体质量指数;DXA,双能X射线吸收测定法;MDCT,多探测器计算机断层扫描;MRI、磁共振成像;MRS、磁共振波谱;WHR,腰臀比。

脂肪组织的复杂性与功能多样性

脂肪组织远非均匀的能量储存室。相反,它体现了一个由不同细胞类型组成的动态生态系统,这些细胞类型的相互作用决定了其生理和病理作用。这些细胞群包括脂肪细胞、巨噬细胞、T 细胞、成纤维细胞、内皮细胞、脂肪干细胞和祖细胞、中性粒细胞和 B 细胞)之间的相互作用形成一个高度整合的网络,协调脂肪组织功能和体内平衡

每个脂肪库都显示出其独特的功能模式细胞组成和疾病倾向,以及脂肪细胞类型的变化。

肥胖白色脂肪组织的特征

Hagberg CE, et al., Nat Rev Mol Cell Biol. 2023

例如,人类皮下脂肪组织(SAT)主要由白色单房(含有单个脂肪滴)脂肪细胞以及基质血管细胞组成,而血管周围脂肪垫通常包括多房(含有多个较小的脂肪滴)生热米色/brite脂肪细胞和乳腺脂肪组织含有粉红色脂肪细胞,有利于哺乳。

尽管这些特殊的脂肪细胞亚型对其各自的组织功能非常重要,但成人中的大多数人类脂肪细胞驻留在 WAT 中并发挥能量储存的作用。

脂肪细胞功能与代谢疾病

重要的是,这些也是与人类肥胖引起的病理学关系最密切的脂肪细胞。由于人类和啮齿动物脂肪库之间的解剖学、生理学和病理学特征存在巨大差异,当前的本文将主要关注人体研究的证据,旨在阐明哪些脂肪细胞功能已得到充分证实,以及哪些方面需要更多研究。

全基因组关联研究和转录分析的结果相结合,证实了脂肪细胞和 WAT 分布对于肥胖期间维持代谢健康的关键作用,并强调脂肪细胞功能障碍的发展是导致代谢疾病的第一步这包括脂肪组织在胰岛素抵抗和 2 型糖尿病发展中的既定作用,这在上面进行了简要讨论,我们建议读者阅读一些近期的优秀评论,以进行更深入的分析。

Hagberg CE, et al., Nat Rev Mol Cell Biol. 2023

体重增加和肥胖与罹患各种慢性、身体和精神疾病的风险增加有关,其中描述了其中一些疾病。

肥胖和脂肪细胞功能障碍对心血管疾病、癌症和生殖的影响。

心血管:血管周围脂肪细胞功能障碍改变脂肪因子和促炎细胞因子的分泌,从而促进血管收缩、平滑肌细胞增殖和内皮细胞渗漏,加剧动脉粥样硬化中发现的许多病理变化,从而增加发生症状性心血管疾病的风险疾病。

癌症:癌细胞与癌症相关脂肪细胞合作,促进邻近脂肪细胞释放游离脂肪酸 (FFA),促进癌细胞增殖和迁移。此外,脂肪细胞通过释放细胞因子、细胞外基质(ECM)蛋白和激素来促进癌症生长。癌症相关脂肪组织也与治疗抵抗有关。脂肪细胞以及相关的纤维 ECM 会阻碍癌症药物的输送。肥胖者的脂肪组织还具有慢性低度炎症和氧化应激增加的特征

生殖:功能失调的白色脂肪组织改变脂肪因子分泌可直接损害生殖器官功能,并导致多囊卵巢综合征(PCOS)和生育能力下降。肥胖还会增加患妊娠糖尿病的风险。

IL-6、白介素-6;PAI1,纤溶酶原激活剂抑制剂1;TNF,肿瘤坏死因子。

02
脂肪组织类型

长期以来,脂肪组织只是以脂肪形式被动储存多余能量的场所。然而,研究表明,它是一个活跃、动态的内分泌器官,能分泌激素,在调节体内新陈代谢和其他生理过程中发挥着至关重要的作用。

人体内的脂肪组织可以根据其位置皮下和内脏)或根据其形态(WAT或BAT)来划分,每个脂肪库都有其独特的生理和代谢特征。

脂肪因子有什么用?

脂肪因子可以局部作用(自分泌、旁分泌)或分泌到血流中,对远处的器官和组织发挥作用(内分泌)。

脂肪因子在调节体内各种生理过程中发挥着至关重要的作用,包括能量代谢、胰岛素敏感性、食欲调节、脂质代谢、生殖以及免疫和心血管功能。

肥胖和代谢紊乱中经常观察到的脂肪因子失调会导致多种慢性疾病的发生,包括胰岛素抵抗、炎症相关疾病、心血管疾病和癌症。

脂肪因子在不同的脂肪室中差异表达

例如,与皮下脂肪组织(SAT)相比,内脏脂肪组织(VAT)中的vistatin、网膜素(omentin)、chemerin、BMP2、BMP3和RBP4更高,SAT中的脂联素、瘦素、抵抗素、脂素(adipsin)和颗粒蛋白前体(progranulin)更高

多种细胞分泌600+ 脂肪因子

脂肪因子可由成熟脂肪细胞以及基质血管细胞(包括脂肪细胞前体细胞、内皮细胞、巨噬细胞、泡沫细胞、中性粒细胞、淋巴细胞、成纤维细胞等)分泌。已鉴定出超过 600 种潜在的分泌蛋白从脂肪组织中分泌。

脂肪细胞表达的脂肪因子的选择、它们的关键生物学作用以及表达水平随肥胖的变化如表所示。为了更深入地回顾脂肪因子(包括非脂肪细胞表达的脂肪因子)及其在健康和病理学中的作用。

Hagberg CE, et al., Nat Rev Mol Cell Biol. 2023

皮下脂肪扩张限制,可能导致异位脂肪沉积,与肥胖病变相关

有人提出,当皮下脂肪组织(SAT)扩张受损时,特别是当增生受到限制时,会导致肝脏和骨骼肌中异位脂肪沉积,从而导致肥胖相关疾病的发病机制。

持续的代谢改变可能会导致脂肪组织从健康变为功能失调,从而产生系统性后果

人体皮下脂肪的增加,对新陈代谢具有中性或有益的影响

人们越来越认识到皮下脂肪可能对新陈代谢具有保护作用。与此相一致的是,人体试验表明,皮下 WAT 的大容量吸脂术提供的代谢优势极小甚至没有。

来自小鼠模型的证据进一步表明,将皮下 WAT 移植到受体小鼠的内脏腔中会导致体重、总脂肪量、葡萄糖和胰岛素水平下降,并提高胰岛素敏感性,而移植的内脏脂肪则没有效果。这些数据表明皮下脂肪本质上不同于内脏脂肪。

不同类型的脂肪组织和脂肪细胞

Cani PD, et al., Nat Rev Gastroenterol Hepatol. 2023

白色脂肪组织包含单房白色脂肪细胞,其特征在于单个大脂滴和少量线粒体。

棕色脂肪组织由具有小多房脂滴和高线粒体密度的棕色脂肪细胞组成。

白色脂肪细胞在特定刺激下(例如寒冷暴露)可以呈现棕色样特征,这一过程称为白色脂肪组织米色化。


白色脂肪

皮下脂肪组织是体内最丰富的脂肪组织类型,是身体里存放多余能量的地方,以甘油三酯的形式。

白色脂肪组织WAT 由脂肪细胞组成,脂肪细胞是一种特殊细胞,可以根据身体的能量需求储存和释放脂质。除脂肪细胞外,WAT 还含有基质细胞、免疫细胞和细胞外基质成分。

这种白色脂肪组织主要位于两个地方

  • 一个是皮下,就是在皮肤下面的脂肪层
  • 一个是内脏脂肪,包围着我们的内脏器官

皮下的脂肪组织比较活跃,而包围内脏的脂肪组织跟身体的一些代谢问题,比如胰岛素抵抗有更直接的联系。

人类和啮齿动物不同类型的脂肪组织

Cani PD, et al., Nat Rev Gastroenterol Hepatol. 2023

与人类一样,小鼠的脂肪组织由多个储存库组成。皮下白色脂肪组织 (WAT) 遍布全身皮肤下,而内脏 WAT 则包裹着腹部的器官。

然而,人类有两个主要的皮下脂肪库位于腹部和臀股区域,而小鼠的两个主要皮下脂肪垫位于前面和后面。在成年人中,大多数产热米色脂肪组织 (BAT) 库位于颈部的锁骨上区域。相比之下,肩胛间库是小鼠中最主要的 BAT。

值得注意的是,与成年人相比,BAT 在成年小鼠中更为明显和可见。性腺 WAT 库位于卵巢和睾丸附近,在研究中经常用作内脏 WAT 的代表。

在这些脂肪组织类别(VAT 和皮下 WAT)中,有多种储存亚型。内脏脂肪组织VAT包括位于胃肠道的心外膜脂肪组织、肾周脂肪组织、腹膜后脂肪组织和肠系膜脂肪组织。

这些库具有不同的解剖位置、细胞特征、代谢功能和健康影响

例如,肾脏周围的脂肪组织主要充当缓冲垫和隔热体。它还通过分泌脂肪因子和促炎细胞因子影响肾功能和血压调节

另一方面,肠系膜脂肪组织在肠道免疫、屏障功能和营养吸收方面发挥作用。它还通过与肠道神经系统和肠道微生物群相互作用来调节肠道蠕动、分泌和激素释放。

人体中的 WAT 库及其与代谢病理学的关系

皮下脂肪组织(SAT)是储存多余脂肪的首选部位,这一过程有助于保护个体免受代谢疾病的影响,在肥胖症中也是如此。

SAT扩张保护代谢,超量则引发异位脂质沉积与疾病

代谢健康的一个主要决定因素是 SAT 安全扩展以响应能量需求和储存多余脂肪的能力。SAT 减少,如发生在脂肪营养不良综合征(全身或部分缺乏脂肪组织)中,由于缓冲过量脂质的能力下降,导致心脏代谢风险增加。

相反,当肥胖期间超过 SAT 储存容量时,游离脂肪酸 (FFA) 就会在 VAT 和异位位点积聚。

异位脂质沉积——代谢疾病的独立危险因素

异位部位包括组织驻留脂肪细胞(例如,心外膜和胰腺脂肪组织)、循环和非脂肪细胞(例如,骨骼肌和肝细胞中的脂质积累)。这些部位的脂质积累会引发脂毒性,导致葡萄糖代谢异常、全身胰岛素抵抗和炎症。因此,异位脂质沉积(VAT 扩张是其标志)是肥胖相关心血管和代谢疾病的独立危险因素

WAT 库在储存和释放脂肪酸以及产生脂肪因子的能力方面彼此不同。此外,它们的细胞特征也因区域分布而异,包括细胞组成、神经支配、代谢、血管化、细胞外基质(ECM)组成和分泌因子的库差异。

身体脂肪的位置和数量,在确定疾病风险中发挥着重要作用

上半身的脂肪堆积(即 VAT,但在某种程度上,腹部 SAT)会增加患糖尿病、高血压、动脉粥样硬化、血脂异常和癌症的风险,而外周或下半身脂肪(臀部皮下和股骨)可能会代谢保护。

这些差异是如何产生的?

储存库之间的差异可能是由于微环境造成的,例如独特的神经支配和血管方面(例如,内脏脂肪的静脉引流排空到门静脉循环中,并使肝脏沐浴在脂肪代谢和脂肪因子的副产物中),和/或由于细胞内在差异。

储存差异也可能是由于前脂肪细胞表型的不同造成的,因为WAT可以通过前脂肪细胞分化成新的脂肪细胞(增生)或通过预先存在的脂肪细胞增大(肥大)来扩张。与此相一致的是,前脂肪细胞的基因特征和分化潜力已被证明在不同的脂肪库之间存在差异,即使在相同条件下分离和长期培养后,这种情况仍然保持不变,表明脂肪细胞特征的强表观遗传调节。

不同仓库之间 WAT 的相对分布由多种因素决定,包括性别、遗传、年龄、疾病状态、食物摄入量以及对药物和激素的反应。

性别:女性更容易肥胖?

女性的肥胖率通常高于男性,并且在外围(雌性脂肪分布)储存脂肪的效率比在中央(机器人脂肪分布)储存脂肪的效率更高。男性往往有更多的肝内脂肪积累,这与男性比女性更高的胰岛素抵抗有关。

然而,这种情况女性绝经后发生了变化脂肪储存变得更加集中,代谢风险变得与男性相似。性激素对脂肪生成的影响不同,睾酮会损害脂肪生成,雌激素会刺激前脂肪细胞孕激素会刺激分化,这也许与许多女性孕育生产后更容易肥胖有关系。

遗传和环境因素也会影响脂肪分布

不同种族之间的内脏脂肪分布存在差异,南亚人比欧洲人后裔有更多的中心性肥胖,白人比非裔美国人和西班牙人有更多的内脏脂肪,我国北方人群比南方有更多的皮下脂肪。

年龄与腹部脂肪的优先增加以及下半身 SAT 的减少有关

随着年龄的增长,心脏、肝脏和骨骼肌等异位部位的脂肪沉积会增加,从而增加胰岛素抵抗和心血管疾病的风险

总而言之,尽管仍然很难控制储存间脂肪的相对分布,但很明显,VAT 中甘油三脂储存量的增加是异位脂质沉积的替代标志,因此与代谢疾病密切相关,而 SAT 积累是中性的或者甚至可以对全身健康和新陈代谢产生一些有益的影响。

功能失调的 WAT 的特征

WAT 是一个高度动态的组织。在肥胖期间,WAT 的几个形态特征发生显着改变包括脂肪细胞大小、组织炎症、血管化和细胞外基质组成。这些形态学变化与病理学密切相关,是 WAT 功能障碍的重要组织水平标志物。

★ 脂肪细胞大小和数

体重增加期间,脂肪组织需要储存更多的能量,这通常表现为甘油三酯的形式。脂肪细胞可以通过两种方式来适应这种增加的能量储存需求:

  • 肥大(Hypertrophy):现有的脂肪细胞体积增大,因为它们储存了更多脂肪(甘油三酯)
  • 增生(Hyperplasia):脂肪组织中新的脂肪细胞的数量增加。

这两种机制都是人体调节能量储备和脂肪组织大小的方式。

脂肪细胞——先肥大,后增生?

在某些情况下,脂肪细胞可能首先通过肥大来适应增加的脂肪存储需求,但当它们达到一定的容量限制时,脂肪组织会通过增生来进一步扩张。这个过程是复杂的,并且受到多种因素的调节,包括遗传、饮食、生活方式和激素等。

早期长胖时,脂肪细胞大小随 BMI 线性增加

研究表明,人类早期体重增加主要是通过脂肪细胞大小的增长来实现的,而病态(极度)肥胖则进一步与增生性组织扩张相关

一项对超过 89 项比较人类脂肪细胞大小的研究进行的荟萃分析表明,脂肪细胞大小随 BMI 线性增加

脂肪细胞大小的增加——代谢功能障碍最一致的标志之一

脂肪细胞肥大与代谢和心血管疾病密切相关,肥大而不是肥胖本身是 2 型糖尿病的强有力预测因子。这种对病理学的贡献在内脏脂肪中尤其明显。

严重肥胖女性中,内脏脂肪组织(VAT)肥大胰岛素抵抗高血压相关,而皮下脂肪组织 (SAT)细胞大小仅与高血压相关。

脂肪细胞大小与代谢疾病之间的关系

其他研究证实了内脏脂肪细胞大小代谢功能障碍之间的关系,包括胰岛素抵抗、糖化血红蛋白和血脂异常

增加小脂肪细胞数量(通过促进脂肪生成和增生)的治疗可显著改善 2 型糖尿病患者的代谢功能。

大脂肪细胞分泌更多炎症因子,包括IL-6、IL-8、MCP1、瘦素,这与多种炎症相关疾病的发生有关,比如糖尿病心血管疾病

此外,大脂肪细胞在胰岛素刺激下的葡萄糖摄取能力也受到损害。这种损害包括GLUT4到细胞膜的运输缺陷。

注:GLUT4是胰岛素依赖型葡萄糖转运蛋白,负责将血液中的葡萄糖转运进细胞,供细胞使用。在大脂肪细胞中,GLUT4功能受损会导致葡萄糖摄取减少,这是糖尿病发病机制的一部分。

★ 慢性低度炎症

肥胖的特点是脂肪组织中存在慢性低度炎症。脂肪细胞本身可以分泌促炎分子,这种分子在患有肥大性 WAT 的肥胖个体中会增加,导致免疫细胞的募集和激活,从而进一步放大炎症。这种慢性炎症会导致胰岛素抵抗、心血管疾病和其他合并症

例如,在啮齿类动物中,肿瘤坏死因子 (TNF) 的分泌可以直接降低脂肪细胞的胰岛素敏感性。

为什么在肥胖小鼠中“王冠状结构”较为常见,而在人类中不太常见?

“王冠状结构”(crown-like structures),是由巨噬细胞和其他免疫细胞形成的环状聚集体,它们环绕在濒临死亡的脂肪细胞周围,试图吞噬这些细胞的脂质,以防止这些脂质渗漏到血液循环中去

  • 在肥胖状态下,小鼠性腺周围脂肪组织内的巨噬细胞数量可占到所有细胞50%以上。
  • 在人体的白色脂肪组织中,巨噬细胞的比例通常较低,大约在10-20%之间。

肥胖相关胰岛素抵抗与脂肪组织炎症无关?有关?

新出现的数据还表明,肥胖患者的胰岛素抵抗与脂肪组织炎症无关。这可能强调了通过针对 WAT 炎症来治疗代谢疾病的临床策略的失败,这在一定程度上削弱了脂肪组织炎症作为引发人类肥胖诱发代谢疾病的致病因素的观点

然而,最近的研究表明,针对某些炎症介质如MCP1的信号传导途径在治疗糖尿病患者中显示出了一些积极的效果。这说明完全排除炎症作为改善白色脂肪组织功能障碍的治疗目标可能还为时过早

同时也应该认识到,WAT炎症在一定程度上具有生理上的组织调节作用。虽然这一点在小鼠身上的证据更为充分,但在人类中也有例证,比如健康的网膜肠系膜脂肪组织内的驻留巨噬细胞很可能有助于肠道的免疫防御。

总结来说,尽管在肥胖和代谢疾病脂肪组织炎症的角色可能没有之前想象的那么直接或者重要,但炎症和免疫反应在这一过程中仍然扮演着一定的角色,并且可能是未来治疗策略的一个潜在目标。同时,脂肪组织中的炎症反应也具有生理上的正面作用,这一点在治疗策略的设计中需要考虑。

★ 血管生成和血管化

瘦状态下,人体脂肪组织血管化良好,每个脂肪细胞都与至少一个毛细血管微血管相邻。脂肪组织的扩张需要同时从现有血管形成新血管(血管生成),以便为扩张的组织提供营养和氧气

早期体重增加是通过增加血管生成生长因子的分泌和血管萌芽来进行的。然而,随着固有脂肪细胞增大,微血管之间的距离增大,组织的血管密度逐渐减小。

此外,增大的脂肪细胞减少促血管生成因子,例如血管内皮生长因子A(VEGFA)的分泌,进一步减少氧扩散并导致肥胖期间组织的相对氧压降低。这导致肥胖 WAT (白色脂肪组织)血管生成潜力降低、毛细血管密度降低(毛细血管稀疏)甚至血管退化

此外,WAT 氧合减少会激活缺氧诱导因子 1A (HIF1A) 和下游缺氧反应通路(例如 NF-κB 通路),并促进促炎因子和纤维化胶原蛋白的分泌。因此,脂肪组织炎症可以被视为组织低氧环境的症状表现,这可能解释了为什么仅针对促炎细胞因子信号传导不足以改善整个组织功能和代谢健康。除了增加炎症外,组织缺氧的增加还会激活肥胖者脂肪组织的促纤维化硬化

★ 脂肪细胞外基质(ECM)改变

所有脂肪细胞都被一个丰富的三维细胞外基质(ECM)网络所包围,这个网络为脂肪细胞提供了机械支持,帮助保持脂肪组织的结构,并且在细胞信号传递中起着重要作用。

细胞外基质的作用与结构

在人类的脂肪组织中,细胞外基质网络主要由多种类型的胶原蛋白构成,尤其是COLI-VII,此外还有层粘连蛋白、纤连蛋白、透明质酸、弹性蛋白和糖胺聚糖等成分,这些都是由脂肪细胞和组织基质细胞所产生的。

健康的脂肪组织中,细胞外基质会经历一个连续的重塑过程,这个过程中合成和降解细胞外基质的成分,以便适应脂肪量的变化、细胞信号的传递以及组织血管化的需要。

肥胖对脂肪组织重塑的影响

然而,在肥胖症状态下,细胞外基质的这种重塑能力受到损害,导致某些细胞周围的细胞外基质胶原蛋白过度积累,最终可能导致脂肪组织的纤维化。其中包括胶原蛋白6(COL6),在小鼠研究中可以限制脂肪细胞扩张,这种限制作用可能直接导致在体重增加期间脂肪组织的功能障碍

具有高水平脂肪 ECM 的肥胖受试者同样被证明在减肥手术后体重减轻减少。除了 ECM 重塑减少之外,肥胖还与 WAT 中 ECM 成分之间较高水平的交联有关,这会增加组织硬度较高的 WAT 硬度与胰岛素抵抗、葡萄糖代谢受损和炎症增加有关,可能是因为它阻止了必要的组织重塑

肥胖相关的细胞外基质异常及其后果

值得注意的是,ECM 交联程度和组织硬度可能比 ECM 积累水平更能决定 WAT 功能障碍。好几项研究发现发现代谢不健康的肥胖受试者与瘦受试者相比,脂肪组织 ECM 沉积的总体水平降低,并且某些 ECM 成分(如 COL1 和纤连蛋白)的表达降低,而组织僵硬和相关转录本肥胖人群中增加。

这在一定程度上可以通过分泌基质金属肽酶 (MMP) 和其他促进肥胖症 ECM 降解的酶的免疫细胞来解释,促进免疫细胞侵入 WAT,同时通过降解限制性 ECM 促进脂肪细胞扩张。这一假设仍有待彻底检验,但可以解释为什么 WAT 形态学的许多病理变化(肥大、炎症、ECM 重塑)经常同时发生。这些病理性 ECM 变化的主要上游引发因素和驱动因素被认为是脂肪组织氧合作用的减少。缺氧还直接加剧炎症,进一步加速 ECM 变化和 WAT 纤维化的发展。

总之,脂肪组织中细胞外基质变化会导致脂肪细胞功能失调、胰岛素敏感性受损、慢性炎症和其他与肥胖相关合并症相关的代谢异常。


棕色脂肪(BAT)

棕色脂肪组织(Brown Adipose Tissue, BAT)含量低于白色脂肪组织,主要位于身体的锁骨上和肩胛间区域,并且其分布在个体之间差异很大。它由多房脂肪细胞组成,其中含有大量具有中央核和线粒体的细胞质脂滴,赋予它们特有的棕色。

注:多房脂肪细胞(multilocular adipocytes)是指那些含有多个脂质滴的脂肪细胞,通常与棕色脂肪组织中的细胞相关。这些细胞与单房脂肪细胞(unilocular adipocytes)不同,后者是指含有单一大脂质滴的白色脂肪组织(WAT)中的细胞。

这种特殊类型的脂肪组织负责通过称为非颤抖产热的过程燃烧储存的脂质来产生热量。这一过程是通过解偶联蛋白 1 (UCP1) 的高表达来实现的,UCP1是一种线粒体内膜蛋白,负责呼吸和产热活动的解偶联。BAT 的代谢活性比 WAT 更高,并且已被证明在调节能量稳态和葡萄糖代谢方面具有作用。

此外,还在小鼠的 WAT 库和肌束之间发现了可诱导的非表达 MYF5 的棕色脂肪细胞祖细胞。

2023 年,两篇补充论文证明,来自不同人类脂肪库(包括 BAT 和 WAT)的脂肪祖细胞具有相似的转录组,表明有一个共同的祖细胞。这些祖细胞分化为两种主要细胞命运之一:脂肪形成细胞或多能细胞,称为结构性WNT调节脂肪组织驻留(SWAT)细胞,提供了终生维持的祖细胞池。研究人员认为,这两种细胞命运(分化的脂肪细胞和未分化的多能祖细胞)之间的微妙平衡可能是脂肪组织组成和功能的决定因素。


米色脂肪

米色脂肪组织(有时称为浅色脂肪组织)是一种介于 WAT 和 BAT 之间的脂肪组织。米色脂肪组织存在于一些 WAT 库中,具有 BAT 的形态和功能特征,例如燃烧储存的脂质和产生热量的能力

脂肪组织内可以诱导生热作用来调节能量稳态并对抗肥胖的发展,这引起了人们对鉴定所谓的褐变剂(即可以增加 UCP1 数量或活性的条件或试剂)的高度兴趣。

尽管动物(小鼠和大鼠)研究取得了有希望的结果,表明米色脂肪细胞可以响应各种刺激(包括寒冷暴露、运动和某些药物制剂)而被诱导,但其病理生理学相关性仍不清楚,因为与米色褐变相关的生热能力与经典 BAT 相比,它可能仅具有次要的生理重要性。

03
肥胖脂肪细胞的功能缺陷

虽然上面列出的 WAT 功能障碍的标志已得到充分证实,并且易于在人类 WAT 活检中测量,但与肥胖相关的功能变化仍然不太清楚。


信号敏感性降低

从功能上讲,肥大脂肪细胞的早期变化之一是对生理胰岛素信号产生抵抗,同时对许多其他外源信号的反应性降低,如肾上腺素能刺激和有益代谢调节因子成纤维细胞生长因子21(FGF21)的信号传导。这对脂肪细胞功能具有广泛的影响,最值得注意的是脂肪细胞通过脂解释放脂肪酸的失调

肥胖→胰岛素不能正常限制脂肪分解→脂质渗漏

在健康的餐后状态下,胰岛素有效地限制基础脂肪分解和激素诱导的脂肪分解。两餐之间,儿茶酚胺会诱导脂肪分解,以便为肌肉和其他器官提供营养

肥胖期间脂肪细胞胰岛素抵抗的发生降低了胰岛素限制食物摄入后脂肪细胞脂解的能力。这种脂肪分解失调导致脂肪酸从肥胖脂肪组织持续低级渗漏到循环系统中,并在肝脏中早期积累

随着脂质渗漏的继续,从脂肪组织释放的脂肪酸也开始在其他器官中积累,例如骨骼肌、胰腺β细胞和肾足细胞,以及作为氧化脂蛋白的一部分在较大血管的壁中积累。

肥胖矛盾:脂肪释放减少与体重增加

矛盾的是,肥胖症中脂肪细胞的信号敏感性降低也使它们对相反的信号不敏感,即禁食期间通过肾上腺素刺激诱导脂肪分解。这种信号敏感性的降低至少部分是由于肥胖相关的脂肪细胞表面肾上腺素能受体的下调所致,导致激素诱导的脂肪分解水平降低,尽管基础脂肪分解增加

Hagberg CE, et al., Nat Rev Mol Cell Biol. 2023

这两种相反的变化的相对重要性,一种是由于胰岛素信号传导减少,另一种是由于肾上腺素信号传导减少,在人类中很难确定,但最近的研究提供了一些见解:纵向研究显示,肾上腺素刺激的脂肪分解水平降低,与储存脂质更长时间的倾向增加有关,可能导致体重增加和糖耐量受损的发展

重要的是,在体重增加的女性中,激素驱动脂肪分解水平的降低与基础代谢健康状况不佳的关系比基础(胰岛素控制的)脂肪分解水平的增加更为密切。几项测量脂肪酸通量的研究还指出,每公斤脂肪释放的脂肪酸速率随着体重的增加而下降,再次表明肥胖症中脂肪细胞的总脂肪分解能力受到损害。

这可以解释为什么尽管脂肪量大幅增加,但肥胖受试者的血浆 FFA 水平与瘦人相比仅略有增加。此外,一项荟萃分析发现脂肪酸水平与胰岛素抵抗测量之间没有相关性,这对胰岛素抵抗导致肥胖症中脂肪组织脂解的教条提出了质疑。这些研究表明,肾上腺素刺激的脂肪分解减少是肥胖人类脂肪组织的一个主要表型特征,这可能解释了肥胖期间脂肪组织持续扩张的矛盾(表明脂肪酸释放减少),尽管基础脂肪酸释放水平较高。


脂质储存有缺陷

肥胖者的脂肪组织在储存脂肪方面存在问题

除了肥胖者脂肪组织中脂肪酸释放的变化之外,WAT 的储存能力也受到循环中脂质摄取率降低的负面影响。使用稳定同位素或测量内脏(腹部)脂肪组织清除率的研究表明,肥胖者 SAT 摄取的脂肪酸较低。

脂蛋白脂肪酶的水平下降,可能导致肥胖和代谢综合征

需要更全面地了解肥胖症中介导脂质储存缺陷的机制,但一种已确定的分子机制涉及脂解酶脂蛋白脂肪酶(LPL)。LPL 是主要的脂肪分解酶,参与从循环中富含 TG 的脂蛋白(例如乳糜微粒和极低密度脂蛋白VLDL)中利用脂肪酸。

患有肥胖和代谢综合征的女性,她们体内的脂蛋白脂肪酶(LPL)水平通常会降低。LPL是一种重要的酶,它在脂质代谢中起着关键作用,可以帮助分解血液中的三酸甘油脂,从而使脂肪酸能够被肌肉和脂肪组织吸收并用作能量。较高的LPL水平通常被认为具有保护作用,因为它有助于维持脂质代谢的正常运作,减少脂肪积累,从而降低患上代谢疾病的风险。

不同人群和个体在脂肪组织的脂质代谢速度上存在显著差异

通过测量稳定同位素氘(一种氢的重同位素)的掺入情况来研究脂肪组织中的脂质周转,在人体内发现了脂质代谢的种族差异和储存模式。具体来说,他们发现与胰岛素敏感的人相比,胰岛素抵抗者体内的甘油三酯(TG)合成速度明显降低。

研究发现,相比瘦人,肥胖者的皮下脂肪组织(SAT)中的TG去除率降低,这反映了脂肪分解和随后的脂肪酸氧化过程的减缓;同时,他们的脂质储存率增加,即脂肪组织每年吸收的脂质量更多

脂肪细胞中脂质周转的速率与代谢疾病的风险密切相关

在体外实验中,分离出的脂肪细胞在受到刺激时脂肪分解的情况与体内通过放射性碳测年技术测量的TG去除率呈现正相关。这进一步证实了脂肪分解通过调节TG去除率来决定脂肪细胞中脂质周转的速度。因此,高脂质储存和低TG去除率会促进脂肪组织的积累,进而导致肥胖。相反,如果一个人的TG去除和储存率都低(如在家族性混合型高脂血症患者中观察到的情况),这会导致脂肪细胞储存和释放脂肪酸的能力降低。

降低的TG周转率可能导致肝脏中脂肪酸异常积累,引起血脂症

脂肪组织中 TG 周转率的降低可能会促进脂肪酸在肝脏中的异位沉积,从而导致血脂异常。因此,脂肪细胞脂质周转已成为预防和治疗代谢疾病的新目标

这些结果共同描绘了肥胖脂肪细胞失去有效摄取饮食来源脂肪酸的能力,以及在两餐之间从脂肪组织中保留和释放脂肪酸的能力,导致在进食期间将脂肪酸作为甘油三酯储存的能力总体上存在严重缺陷。

应该指出的是,除了脂质储存缺陷之外,肥胖脂肪细胞还表现出细胞内能量代谢和底物利用的普遍功能障碍。例如,研究表明,代谢不健康个体的脂肪细胞表现出柠檬酸循环代谢物的消耗,以及组织氨基酸水平和氨基酸分解代谢酶表达的显着改变。


脂质信号传导缺陷

脂质信号传导是指一个复杂的生化过程,其中脂质(例如脂肪酸)在细胞通讯和各种生理和病理过程的调节中发挥着关键作用。特别重要的是肥胖对脂质信号通路的影响,这可能为脂肪肝和高脂血症等有害疾病的出现铺平道路。

胰岛素抵抗引发的脂肪分解失调及对健康的影响

如上所述,脂质信号传导的关键参与者之一是胰岛素。胰岛素抵抗会损害脂肪细胞响应胰岛素而有效调节脂肪分解的能力。因此,脂肪细胞释放的 FFA 水平升高,涌入血流,导致脂毒性现象

过剩脂肪如何导致肝脏疾病和血脂异常

过量的脂肪酸会进入肝脏,在那里重新组装成甘油三酯。这种流入压倒了肝脏处理脂肪的能力,导致脂质在肝细胞内积聚,称为脂肪肝或肝脂肪变性。此外,肥胖扰乱了不同脂肪因子(例如脂联素和瘦素)之间的平衡。

肥胖导致的脂联素和瘦素水平变化

脂联素通常具有抗炎和胰岛素增敏作用,但在肥胖时会减少。相反,调节食欲和能量消耗的瘦素也可能失调,导致脂质稳态被破坏。脂质信号通路错综复杂的网络还涉及转录因子,例如过氧化物酶体增殖物激活受体 (PPAR) 和甾醇调节元件结合蛋白 (SREBP) 。

代谢指挥官出错:肥胖影响关键转录因子

在肥胖症中,这些转录因子表达错误,导致参与脂肪酸合成和储存的基因上调,同时抑制负责脂肪酸氧化的基因。这些破坏的最终结果导致高脂血症——一种以血液中脂质水平升高为特征的疾病。

脂肪过多,健康受损:高脂血症与肥胖代谢问题

由脂蛋白运输的甘油三酯胆固醇变得丰富,增加了动脉粥样硬化和心血管疾病的风险。此外,肥胖和相关的脂肪细胞肥大也会引发促炎细胞因子和趋化因子的释放,为慢性低度炎症状态奠定基础,进一步加剧脂质失调

因此,肥胖对脂质信号通路的多因素影响对代谢稳态产生深远的影响,由此产生的脂质失调为脂肪肝和高脂血症的发展奠定了基础。


改变脂肪因子分泌和衰老

众所周知,体重增加显著减少有益脂肪因子脂联素的分泌,同时增加瘦素的分泌。此外,SAT 脂肪细胞的大小与大量其他促炎细胞因子的分泌增加呈线性相关,包括 IL-6、IL-8、MCP1 和 TNF5 。这些细胞因子不仅可以促进脂肪组织内免疫细胞(包括巨噬细胞、T细胞和中性粒细胞)的浸润和激活,而且还可以损害成脂分化,诱导脂肪细胞胰岛素抵抗和细胞因子渗漏到循环中,促进全身代谢。

诱发炎症和发生合并症的风险

不同的脂肪组织库会带来更大或更小的疾病风险。例如,肌内脂肪比 SAT(和 VAT)具有更大的心脏代谢疾病风险,这在某种程度上归因于脂肪细胞代谢和分泌特性的差异。

肥胖症中脂肪因子分泌改变背后的新兴机制之一是细胞过早衰老或衰老,这也已知会影响细胞代谢。除了在人类脂肪组织中已充分确定的前脂肪细胞和内皮细胞衰老。之外,据报道,免疫细胞(T 细胞、巨噬细胞)衰老也在小鼠和人类肥胖症中累积 VAT。

为了更深入地了解这些细胞类型,读者可以阅读下最近报道,高胰岛素血症促进成熟人类脂肪细胞衰老,增加其细胞因子释放,这是衰老相关分泌表型 (SASP) 的一部分。

减少脂肪细胞衰老——减少WAT炎症

衰老细胞通过启用衰老抗凋亡途径来避免凋亡。人们发现一类被称为 senolytics 的化合物可以诱导衰老细胞凋亡,并对小鼠和人类的健康产生有益的影响。

两种抗衰老药物达沙替尼和槲皮素的短暂全身给药,可以减轻糖尿病肾病患者人体脂肪组织中的衰老细胞负担,已知这种疾病的脂肪组织衰老细胞负担会增加。其他人在小鼠和人类研究中也报告了类似的结果。因此,减少脂肪细胞衰老可能是减少肥厚性肥胖期间 WAT 炎症的有效方法。

04
影响能量代谢的环境因素

能量代谢是一个复杂的过程,涉及将食物转化为身体可用的能量形式。能量代谢的准确调节对于维持能量平衡和预防肥胖及相关代谢紊乱的发展至关重要。虽然年龄、性别和遗传等内在生物因素肯定在能量代谢中发挥作用,但饮食、运动和睡眠等环境因素也有很大影响(下图)。

值得注意的是,肠道微生物群还可以在调节脂肪组织代谢和产热方面发挥作用,并且人类和小鼠肠道微生物群的组成和功能可能有所不同。这些差异凸显了研究人类和小鼠模型以充分了解脂肪组织在代谢健康和疾病中的作用的重要性。

Cani PD, et al., Nat Rev Gastroenterol Hepatol. 2023

肠道菌群是一个动态的生态系统,其组成和功能受到饮食、吸烟、吸毒、睡眠、运动和情绪压力等多种环境和外部因素的影响。然而,这些因素的变化引起的调节程度在个体之间可能存在很大差异。

这种变异性受到肠道微生物群的初始组成以及年龄、生物性别和遗传易感性等内在因素的影响。这种微妙的平衡是我们的生活方式选择和固有特征之间复杂相互作用的结果,任何干扰都会深刻影响我们的整体健康。


饮 食

饮食是影响能量代谢的最重要的环境因素之一。除了消耗的卡路里数量外,研究表明饮食质量还可以显着影响能量摄入、能量消耗和能量代谢。

富含纤维白质的食物往往更容易产生饱腹感,并且可以减少总体卡路里摄入量。相比之下,高度加工和能量密集的食物往往可能导致过量。此外,卡路里的来源会影响食欲和食物选择,高脂肪饮食可能会增加饥饿感,并促进高热量食物的消费。

饮食质量也会影响能量消耗

体力活动和锻炼是能量消耗的重要因素,但食物的热效应 (TEF) 也占总能量消耗的约 10%。

TEF是消化、吸收和代谢食物所需的能量;它因人而异,并取决于体力活动水平和饮食的常量营养素成分。蛋白质的 TEF 高于碳水化合物或脂肪,这意味着与低蛋白饮食相比,高蛋白饮食可能会增加能量消耗。

饮食结构也会影响能量代谢

高糖和精制碳水化合物的饮食与胰岛素抵抗和葡萄糖代谢受损有关,影响身体有效利用能量的能力。相反,富含纤维、全谷物、水果和蔬菜的饮食可以提高胰岛素敏感性并促进更有效的能量利用。


锻 炼

运动可以通过促进瘦肌肉质量的发展、提高胰岛素敏感性和减少炎症来增加能量消耗改善代谢健康。此外,运动可以增加参与能量代谢的基因的表达

AMPK途径

一种重要的途径是 AMP 激活蛋白激酶 (AMPK) 途径,该途径在运动过程中被激活,并增加肌肉细胞中的葡萄糖摄取和脂肪酸氧化。AMPK 还调节线粒体生物发生和氧化代谢改善能量代谢和代谢健康。

PGC1α 途径

另一个重要途径是过氧化物酶体增殖物激活受体-γ 共激活剂 1α (PGC1α) 途径,该途径参与线粒体生物发生和氧化代谢。运动可以增加 PGC1α 表达,从而增加线粒体生物合成并改善能量代谢。

运动可以直接影响棕色脂肪组织中特定生物活性脂质的产生

有人认为,运动过程中该组织释放的物质是与定期身体活动相关的一些健康益处的可能机制。通过脂质组学分析,研究人员发现,一段中等强度的运动可显著提高以下人群中循环亚油酸代谢物 12,13-二羟基-9Z-十八碳烯酸 (12,13-diHOME) 的水平(P < 0.05),包括男性、女性、年轻人(24-42 岁)和老年人(65-90 岁),以及那些经常运动久坐生活方式的人。

12,13-DiHOME 是一种棕色脂肪组织衍生代谢物,也会因寒冷而释放。然而,在运动背景下,对小鼠进行的研究表明,单次运动定期运动训练均可直接增加来自棕色脂肪组织的循环 12,13-diHOME 水平。如果通过手术切除棕色脂肪组织,则 12,13-diHOME 的增加就会消失。此外,给小鼠施用 12,13-diHOME 会导致骨骼肌中脂肪酸的摄取和氧化增强,但不会影响葡萄糖的摄取。

这些发现表明,这种12,13-diHOME代表了一类由运动引起的新型循环因子,可能有助于身体活动期间发生的代谢变化。


睡 觉

睡眠是一个经常被忽视的环境因素,它会影响能量代谢。对于人类来说,睡眠不足或睡眠质量差与肥胖和代谢紊乱的风险增加有关。睡眠不足会扰乱食欲激素的调节,导致饥饿感和食物摄入量增加。

睡眠不足的人的血液样本显示出与肥胖者相似的代谢特征

此外,睡眠不足会损害葡萄糖代谢和胰岛素敏感性,从而导致 2 型糖尿病的发生。有趣的是,睡眠时间长也与人类患 2 型糖尿病的风险升高有关。

长期睡眠不足——下丘脑-垂体-肾上腺轴失调

受睡眠剥夺影响的一个重要联系是下丘脑-垂体-肾上腺轴,负责释放应激激素皮质醇,调节葡萄糖代谢和食欲。长期睡眠不足会导致下丘脑-垂体-肾上腺轴失调,导致人体皮质醇释放增加和葡萄糖代谢受损

睡眠不足——扰乱生物钟

另一个重要途径是生物钟系统,它调节生理过程的时间,包括新陈代谢。睡眠不足会扰乱生物钟系统,导致能量代谢失调。在小鼠中,这种失调是由几个基因介导的,包括Clock、Bmal1、Dec、Per1和Cry1,这些基因参与昼夜节律的调节。

睡眠不足——损害胰岛素信号与代谢

睡眠不足还会通过 AKT 途径损害胰岛素信号传导和葡萄糖代谢。AKT 是葡萄糖代谢的关键调节因子,睡眠剥夺已被证明会降低 AKT 磷酸化并损害人类和小鼠脂肪细胞和肌肉细胞的葡萄糖摄取。

睡眠不足——影响人类食欲激素的调节

包括生长素释放肽和瘦素。胃饥饿素是一种刺激食欲的激素,睡眠不足已被证明会增加胃饥饿素水平,导致饥饿感和食物摄入量增加。瘦素是一种发出饱足感的激素,睡眠不足已被证明会降低瘦素水平,进一步促进人类食欲增加。


肠道微生物群

肠道微生物群是一个复杂的微生物生态系统,包括驻留在胃肠道中的细菌、病毒、真菌、原生动物和古细菌。肠道细菌由于其可培养性、相对较大的基因组大小、复杂的功能多样性和有前景的治疗潜力,是迄今为止该菌群中研究和理解最广泛的成员。

肠道微生物群可以通过调节营养物质的吸收和利用调节食欲以及影响脂肪组织的发育和功能,对能量代谢产生重大影响。

肠道微生物群可以产生多种影响能量代谢的代谢物,包括短链脂肪酸、胆汁酸,不同的生物活性脂质包括内源性大麻素 (eCB)、氧脂素和氨基酸衍生物。

肠道微生物群与肥胖和代谢疾病的发展有关,肠道微生物群可以调节小鼠脂肪组织的发育和功能。例如,特定的肠道微生物群可以促进消除 WAT 的褐变,从而增加小鼠的能量消耗并改善代谢健康。

前面提到的影响能量的环境因素,如饮食、睡眠和运动,都与肠道微生物群组成的变化有关。一些临床前研究表明,肠道微生物群可能是影响能量代谢的关键因素之一,通过胆汁酸、SCFA、生物活性脂质等多种代谢物的变化发挥作用。

以微生物群为靶点改变脂肪组织代谢的方法

这里列出的所有饮食成分都被描述为会增加脂肪组织的米色或褐色并影响微生物群。它们都能防止小鼠因饮食引起的肥胖。这些化合物中的大多数通过改变脂肪褐变和脂肪氧化的相同标记物在棕色脂肪组织 (BAT) 和白色脂肪组织中发挥作用,例如增加解偶联蛋白 1 (UCP1)、DIO2、CPT1α、Cidea、过氧化物酶体增殖物的水平。激活受体-γ 共激活因子 1α (PGC1α)、SIRT1 和 BMP7。其中一些会增加冷诱导的生热作用和线粒体的数量和/或活性。


研究最多的膳食成分

白藜芦醇:又称反式-3,5,4′-三羟基二苯乙烯,是一种有机化合物,属于天然多酚。它主要存在于植物和植物衍生产品中,例如虎杖、各种水果,包括葡萄和浆果、花生和红酒。

辣椒素:一种存在于辣椒中的生物碱化合物。

槲皮素:一种重要的类黄酮,常见于人类饮食中,存在于苹果、浆果和洋葱中。

表没食子儿茶素-3-没食子酸酯:一种多酚化合物,存在于茶树 ( Camellia sinensis ) 264植物未发酵的干叶中。

小檗碱:一种天然衍生的生物碱,存在于小檗科、黄连和加拿大水螅等特定开花植物中,用于传统中药。

大黄提取物:源自大黄根的富含蒽醌的粗提取物。

卡姆果 ( Camu Camu,Myrciaria dubia ):一种具有独特植物化学特征的亚马逊水果。

特定细菌

Akkermansia muciniphila增加褐变、脂肪酸氧化和BAT活性,与增强肠道屏障功能有关。

Dysosmobacter welbionis J115 T:是一种丁酸盐生产者,最近被鉴定并描述为通过产生多种生物活性脂质(包括12,13-diHOME)来减少 BAT 白化增加线粒体活性。

其他详细可以看我们以前写的关于肥胖和肠道菌群文章。

扩展阅读:

微生物组对肥胖影响的最新研究分析

05
影响脂肪组织代谢的微生物群相关化合物


空腹诱导脂肪因子

禁食诱导脂肪因子 (FIAF),也称为血管生成素样蛋白 4 (ANGPTL4),是多种组织(包括肠道、肝脏和脂肪组织)响应禁食而产生的循环蛋白,它是主要的过氧化物酶体增殖物激活受体 (PPAR) 蛋白的作用位点。

FIAF 在小鼠体内可通过抑制脂蛋白脂肪酶 (LPL)(循环脂蛋白中甘油三酯核心水解的限速酶),来调节脂质代谢,从而减少脂肪酸进入脂肪组织和肌肉的摄取。

肠道微生物群与FIAF表达的相互作用

小鼠研究表明肠道微生物群调节 FIAF 的产生。FIAF 在无菌小鼠中组成型表达,而常规化(非无菌小鼠肠道微生物群的定植)会降低 FIAF 表达并增加 LPL 活性,从而导致体脂肪量增加

此外,FIAF基因被敲除的无菌小鼠失去了对高脂肪饮食引起的肥胖的抵抗力。然而,谨慎对待这些发现至关重要。

FIAF与肥胖抵抗力的复杂关系

目前的研究结果挑战了人们普遍认为的观点,即肠道微生物群的缺乏本质上会产生对肥胖的抵抗力,不同的结果可能与所使用的膳食脂肪来源有关。一项开创性研究的复制尝试未能反映最初的发现,因此肠道微生物群的缺失对肥胖的影响仍然没有定论

这一证据强调了肠道细菌与代谢疾病之间关系的复杂性,并表明需要进一步探索。FIAF 的产生是否与肠道微生物群介导的脂肪储存效应之间存在因果关系仍存在争议,特别是在无菌小鼠中,高脂肪饮食诱导的肥胖仅增加了肠道中 FIAF 的蛋白表达,而没有增加循环中的蛋白表达。

多项研究表明,施用某些细菌可以增加小鼠体内循环 FIAF 水平,并增加其在人肠上皮细胞中的表达,这表明肠道微生物群的调节可以影响 FIAF 的产生

尽管 FIAF 似乎还通过抑制小鼠下丘脑 AMPK 活性在能量代谢的中枢调节中发挥着至关重要的作用,但肠道微生物群调节 FIAF 蛋白表达的确切机制仍不完全清楚。肠道微生物群是否调节下丘脑 FIAF 尚不清楚。


短链脂肪酸和关键受体

人类不具备分解膳食纤维所需的消化酶。因此,不可消化的碳水化合物在穿过上胃肠道并到达大肠时保持不受影响,在大肠中它们可被厌氧细菌发酵。该发酵过程导致产生各种代谢物,其中短链脂肪酸是主要的代谢物。消耗的纤维的数量和类型对肠道微生物群的多样性和组成有重大影响,进而影响短链脂肪酸的产生。

短链脂肪酸(其中乙酸盐、丁酸盐和丙酸盐是肠道中的主要形式)是从未消化的食物中获取额外能量的重要来源。据估计,短链脂肪酸可以提供人类每日热量的 10%,并且结肠细胞使用短链脂肪酸,尤其是丁酸作为其首选能量来源。

此外,肠道来源的短链脂肪酸可以通过结肠细胞转运到血液中,在血液中与内源性短链脂肪酸(由组织和器官产生和释放)混合,并对多种组织中的脂质、葡萄糖和胆固醇代谢产生各种影响通过充当底物或信号分子3(下图)。

肠道微生物群产生的分子机制和代谢产物

作用于肠道或白色和棕色脂肪组织中的特定受体

Cani PD, et al., Nat Rev Gastroenterol Hepatol. 2023

某些微生物分泌的代谢物(例如脂多糖LPS、病原体相关分子模式PAMP、内源性大麻素),通过微生物消化膳食成分(例如短链脂肪酸)或通过转化产生宿主衍生因子(例如内源性大麻素和胆汁酸)可以通过各种受体和途径来感知,从而改变肠道完整性和宿主健康。右上图指结肠细胞或肠内分泌细胞中表达的特异性受体,不同的特异性受体及其配体来自微生物代谢产物或成分。右下图描绘了白色和棕色脂肪细胞中表达的受体、来自微生物代谢物或成分的特定配体,以及这些受体激活引起的特定代谢效应。

AHR,芳烃受体;CB,大麻素受体;CD14,分化簇 14;GLP1,胰高血糖素样肽1;GPR,G蛋白偶联受体;MYD88,骨髓分化初级反应88;PPAR,过氧化物酶体增殖物激活受体;PYY,肽YY;TGR5,武田G蛋白偶联受体5;TLR,Toll 样受体。

短链脂肪酸的浓度平衡与健康

低浓度过高浓度的短链脂肪酸对人类和小鼠的健康都有不利影响。为了防止血液中短链脂肪酸含量过高,肝脏有效地吸收循环中的大部分短链脂肪酸。在肝脏中,乙酸盐用作能量来源并用作合成长链脂肪酸和胆固醇的底物,丙酸盐用作糖异生的前体。

在人类、小鼠和大鼠中,低 SCFA 浓度与肥胖、胰岛素抵抗和糖尿病等慢性代谢紊乱的发展有关,对小鼠和大鼠的研究已经证实,膳食纤维或 SCFA 补充剂可以缓解高脂饮食引起的肥胖的发展。

短链脂肪酸:从食欲控制到能量平衡

其中一种机制是 SCFA 作为信号分子的作用。SCFA,特别是丁酸盐丙酸盐,充当信号分子,可以调节涉及食欲调节饱腹感能量消耗的各种激素的分泌。例如,SCFA 可以刺激GLP1、PYY和瘦素的释放。GLP1 和 PYY 是促进饱腹感减少食物摄入的激素,而瘦素则通过向大脑发出有关能量储存的信号来帮助调节能量平衡。

此外,SCFA可以与肠内分泌L细胞表面的G蛋白偶联受体(GPR),特别是GPR41GPR43相互作用,刺激肠肽的分泌。SCFAs除了直接刺激肠肽分泌(参与食欲调节)外,还提出SCFAs在这些受体激活后触发细胞内信号通路,最终影响不同细胞类型的能量代谢、炎症和胰岛素敏感性(即白色和棕色脂肪细胞、肝细胞、神经元和免疫细胞)。

SCFA 与脂肪组织之间的关系很复杂且尚未完全了解。例如,一些研究表明,SCFA 浓度升高可能会导致肥胖和胰岛素抵抗,而其他研究则发现 SCFA 可以提高小鼠、大鼠和人类体内的胰岛素敏感性并有助于减轻体重

不同的 SCFA 对脂肪组织代谢的影响有所不同

例如,丁酸盐可通过GPR43激活来诱导脂肪生成,而丙酸盐则通过GPR41激活来刺激成熟脂肪细胞中的脂肪生成。

事实上,在脂肪组织中,GPR41 和 GPR43 的激活可以促进脂肪细胞分化和脂肪生成,导致新脂肪细胞的形成(增生)和脂肪组织质量增加

SCFA 对 BAT 的影响

一项体外研究表明,乙酸盐可促进小鼠棕色脂肪细胞中脂肪细胞蛋白 2(AP2;脂肪细胞分化标志物)、PGC1α 和 UCP1 的基因和蛋白表达上调,从而增加线粒体生物发生,但这些作用在细胞中受到损害GPR43 表达减少

在人类白色脂肪细胞中,结果却有所不同

从培养 13 天的人网膜脂肪组织中分离出的前脂肪细胞,并暴露于不同的 GPR43 激动剂(即生理的或合成的)以研究对脂肪细胞分化的影响,没有显示出对AP2基因表达和最终分化的任何影响。

相反,曲格列酮(一种 PPARγ 激动剂)增加这些细胞中的AP2基因表达,并降低GPR43基因表达的趋势(P = 0.06) 。这一观察结果表明,与小鼠不同,GPR43 与人类脂肪细胞分化之间没有关系

此外,同一研究人员还发现,肥胖个体的脂肪组织中GPR43基因表达并未增加,但主要与肿瘤坏死因子 (TNF) 相关的炎症过程有关。

丁酸盐对食欲的调节

如果我们关注丁酸盐,丁酸盐给小鼠和人类带来代谢益处的机制仍然不完全清楚。2018年,李等人研究了丁酸盐对食欲能量消耗的影响,以确定这两个因素对丁酸盐的有益代谢作用的贡献程度,并发现通过胃管灌注一次急性口服丁酸(而不是静脉注射),能在饥饿过夜的小鼠重新进食后的1小时内减少食物摄入

丁酸盐还抑制大脑不同区域的食欲神经元的活动。研究人员证实,在饮用水中长期补充丁酸盐可以预防饮食引起的肥胖、高胰岛素血症、高甘油三酯血症和肝脂肪变性,但他们主要将这种效应归因于食物摄入量的减少

丁酸盐还适度增强脂肪酸氧化并激活 BAT

增加脂肪酸的利用率,这不仅是由于食物摄入量减少,而且主要是由于 BAT 的交感神经流出增加。研究人员最终发现,膈下迷走神经切断术消除了丁酸盐对食物摄入的影响和对 BAT 代谢活动的刺激。

总之,这些发现表明丁酸盐作用于肠-脑神经回路,通过减少能量摄入并通过激活 BAT 增强脂肪酸氧化来改善能量代谢。


LPS 和其他病原体相关分子模式

低度炎症是肥胖和相关代谢紊乱的标志之一。由于代谢性内毒素血症的发生,这种炎症的起源最初与肠道微生物群有关。代谢性内毒素血症也称为内毒素诱导的代谢性炎症,是指以血液中循环脂多糖(LPS;通常称为内毒素)水平升高为特征的病症,可导致低度慢性炎症代谢功能障碍。LPS 是在某些类型的细菌(例如革兰氏阴性细菌)的外膜上发现的分子。在正常情况下,肠屏障防止内毒素从肠腔易位到血流中。

然而,除了典型的感染或炎症性肠病外,某些因素也会损害肠道屏障的完整性,使内毒素渗入循环系统。这些因素包括高脂肪饮食、过量饮酒、肥胖、高血糖和缺乏膳食纤维,所有这些都会导致肠道屏障完整性的明显改变。这些改变涉及紧密连接蛋白的排列和定位的变化、抗微生物肽的产生的变化以及粘液层的组成的修改。

已经提出了多种机制,通过这些机制,肠道衍生的化合物(例如脂多糖)可以影响脂肪组织代谢。其中之一是通过 TLR4及其辅助受体 CD14 刺激炎症途径,从而触发脂肪组织中的免疫反应。

LPS暴露,抑制脂肪细胞分化

暴露于 LPS 时,脂肪细胞和前脂肪细胞会发生变化,干扰正常的脂肪生成。例如,LPS 可以通过破坏参与脂肪形成的关键转录因子(例如 PPARγ 和 CEBPA )的表达来抑制小鼠前脂肪细胞分化为成熟脂肪细胞。LPS 触发促炎细胞因子的释放,例如 TNF,它通过 WNT-β-连环蛋白-T 细胞因子 4 (TCF4) 途径干扰分化过程。

具体而言,在体外,TNF 增强 TCF4 依赖性转录活性,并促进 β-连环蛋白和阻碍脂肪生成的促炎环境的稳定

LPS可以改变不同脂肪因子的分泌

除了LPS和炎症对脂肪生成过程的直接影响外,在小鼠中也发现LPS可以改变不同脂肪因子的分泌,包括增加apelin、脂联素和瘦素的分泌,这些在调节能量代谢中具有重要作用和炎症还有脂肪生成。在体外,LPS 也可能在脂肪生成受损和脂肪组织细胞衰老的发生中发挥作用,特别是在肥胖和衰老的情况下。

然而,值得注意的是,LPS 对脂肪生成的影响可能因暴露的浓度持续时间以及特定的细胞环境而异。事实上,一些体内和体外研究表明,LPS 可以通过 JAK-STAT 和 AMPK 依赖性 cPLA2 蛋白表达以及 CD14 依赖性机制,来增加前脂肪细胞增殖和脂肪生成。

大肠杆菌产生的LPS影响肠道健康,葡萄糖代谢问题

为了研究肠道中的 LPS 是否足以促进葡萄糖和胰岛素耐受性以及 WAT 中巨噬细胞的积累,用大肠杆菌单定植无菌小鼠,发现这种产生 LPS 的细菌在肠道定植会导致葡萄糖代谢受损、巨噬细胞积累增加以及 WAT 中促炎 M1 表型的极化

相反,用表达LPS但免疫原性降低的大肠杆菌(即大肠杆菌MLK1067)对无菌小鼠进行单定植不会诱导WAT中的巨噬细胞积聚或炎症。

不同来源的LPS对代谢和免疫反应有不同影响

同样,数据表明,来自特定细菌的 LPS 可以对 TLR4 产生拮抗作用,但根据内毒素单位测量,仍会导致内毒素血症。来自大肠杆菌的 LPS损害了肠道屏障的完整性加剧了小鼠的血糖控制。

然而,当比较来自其他细菌(例如,球形红杆菌)的等量内毒素单位剂量的 LPS 时,研究人员发现,小鼠并没有产生相同的负面影响,甚至抵消了等量的大肠杆菌LPS 引起的血糖异常。肥胖小鼠的脂多糖。

这些发现表明,代谢性内毒素血症不应仅仅局限于 LPS 负荷,还应考虑 LPS 分子的具体特征,例如脂质 A 酰化

肽聚糖和脂肽也与肠道屏障损伤和肥胖相关

除了脂多糖之外,与超重和肥胖相关的肠道屏障的破坏也与其他病原体相关分子模式的易位脂肪量的发展有关。例如,研究表明,肽聚糖脂肽也可能导致代谢紊乱的发生,并且受肥胖影响的个体已被证明血液中肽聚糖和脂肽的浓度增加。肽聚糖是革兰氏阳性和革兰氏阴性细菌中细菌细胞壁的成分。

NOD1等受体通过激活多个信号途径促进肥胖个体中的脂肪分解

细菌肽聚糖可以通过激活含有核苷酸结合寡聚结构域的蛋白 1 (NOD1) 来诱导脂肪细胞中的脂肪分解。这种 NOD1 介导的脂肪分解涉及应激激酶(ERK1 和 ERK2)、PKA 和 NF-κB 途径,汇聚于激素敏感脂肪酶。内质网应激肌醇需求蛋白 1作为炎症期间脂肪分解和血液甘油三酯的关键调节剂。

这些数据表明,病原体相关分子模式的受体,例如 TLR 和 NOD 样受体,是一个汇聚点,可以将与肥胖相关的免疫反应与高脂血症和胰岛素抵抗联系起来,至少在小鼠中。

特定受体如Tlr5和Tlr2的缺陷,或改变与代谢综合征的特征相关

鞭毛蛋白(细菌鞭毛的蛋白质成分)、细菌 DNA 和细菌脂蛋白也是作用于特定 TLR 的分子,并且由于肥胖和糖尿病患者肠道通透性增加或易位而被释放到血流中。然而,这些化合物在代谢紊乱发生中的作用仍然存在争议

例如,Tlr5(细菌鞭毛蛋白受体)遗传缺陷的小鼠的微生物群组成发生了改变,并表现出与代谢综合征相关的特征。

同样与肠道微生物群组成的特定改变有关,缺乏Tlr2(一种检测细菌中许多配体的模式识别受体)的小鼠表现出代谢综合征表型,其特征是胰岛素抵抗、葡萄糖不耐受、脂肪量和体重增加以及循环 LPS 水平升高和亚临床炎症

最后,缺乏Nod2(检测肽聚糖)的小鼠在脂肪组织和肝脏中表现出更高的炎症,在高脂肪饮食喂养期间加剧了胰岛素抵抗,并且增加了共生细菌从肠道到脂肪组织和肝脏的易位

总而言之,这些发现强调了研究细菌成分检测以及更好地了解肥胖和 2 型糖尿病背景下肠道微生物、炎症和脂肪组织之间联系的重要性。


色氨酸衍生物

色氨酸可以在肠道微生物群和组织细胞中代谢成不同的代谢物。细菌来源的色氨酸代谢物吲哚,如 3-丙酸吲哚 (IPA),在肥胖个体的血液样本中的含量低于正常体重对照样本中的水平。

犬尿氨酸途径负责将色氨酸降解为犬尿氨酸 (Kyn)、犬尿酸 (Kyna) 和喹啉酸。相反,在肥胖个体的血浆中Kyn 水平升高,这可能归因于吲哚胺 2,3-双加氧酶 1 (IDO1) 的酶活性增强。然而,一些肠道细菌编码与真核 Kyn 途径同源的酶。

AHR信号通路

来自肠道微生物群的色氨酸衍生物和吲哚可以通过激活芳烃受体(AHR)信号通路促进前脂肪细胞分化为成熟脂肪细胞,从而调节脂肪组织发育。AHR 信号通路参与脂肪生成和脂肪细胞代谢的调节。

Kyna和GPR35

Kyna 通过激活 GPR35,促进脂肪组织中的脂肪酸氧化、产热和抗炎基因表达,从而抑制高脂肪饮食喂养的小鼠体重增加改善葡萄糖耐量

Kyna 和 GPR35 增强了脂肪细胞中 PGC1α 的表达和细胞呼吸,并增加了Rgs14的基因表达水平,从而增强了 β-肾上腺素能受体的信号传导。相反, Gpr35的基因缺失会导致体重逐渐增加、葡萄糖不耐受以及对高脂肪饮食的敏感性增加

此外,Gpr35基因敲除小鼠表现出运动引起的脂肪组织褐变受损。这些发现揭示了一种新的途径,肠道微生物群衍生的代谢物通过该途径进行交流以调节能量稳态。

IDO1酶活性

在肥胖症中,IDO1酶活性增加,与肠道中的活性增强相关,导致色氨酸代谢色氨酸代谢从吲哚衍生物和 IL-22 的产生转变为犬尿氨酸的产生。研究表明,抑制或删除IDO1可以改善胰岛素敏感性,保护肠道屏障,减少代谢性内毒素血症和炎症,以及改变肝脏和脂肪组织中的脂质代谢。

脂肪组织可能是 Kyn 的主要直接来源

体内研究表明,IDO1基因和蛋白质在脂肪细胞中表达。消耗脂肪细胞中的Ido1可以防止Kyn的积累,并保护小鼠免于肥胖。有趣的是,这种效应背后的机制仍然涉及 AHR 的激活,因为从脂肪细胞中基因去除Ahr会抵消 Kyn 171的影响

肠道微生物影响miR-181表达,调节脂肪代谢

研究还表明,肠道微生物群产生的色氨酸衍生代谢物控制小鼠白色脂肪细胞中 miR-181 家族的表达,从而调节能量消耗和胰岛素敏感性。此外,肠道微生物群-miR-181轴的失调会导致小鼠肥胖、胰岛素抵抗和WAT炎症的发生。 在一组按体重百分位数分类的儿童中发现,肥胖患者 WAT 中的 miR-181 表达和色氨酸 衍生代谢物的血浆丰度失调


生物活性脂质

生物活性脂质是一类源自脂质(脂肪酸、磷脂和鞘脂)的信号分子,参与广泛的生物活动,包括炎症、疼痛调节、血压调节、细胞生长和分化、细胞凋亡(程序性细胞死亡)和免疫反应

宿主和肠道微生物群产生的生物活性脂质可以影响微生物群的组成和活性以及各种宿主代谢过程。

★ 胆汁酸

胆汁酸的生产和调节

胆汁酸由肝脏产生,但受到微生物群的活性和组成的高度调节。胆汁酸在与甘氨酸或牛磺酸结合后,被储存在胆囊中,随后在进食时释放到小肠中。

脂质消化和吸收

胆汁酸的释放有助于膳食脂肪的消化和吸收。它们使脂肪乳化增加了脂肪酶的作用效率,从而促进了脂质的分解和脂溶性维生素的吸收

胆汁酸循环

约95%的胆汁酸在小肠的回肠部分被重吸收,并被运回肝脏重新分泌,形成了一种高效的循环。这个过程影响了胆固醇的代谢和体内胆汁酸的总量。

胆汁酸作为信号分子

胆汁酸不仅仅是消化助手,它们还能作为信号分子发挥激素的作用,影响葡萄糖、脂质和能量代谢。胆汁酸通过激活特定的受体,如G蛋白偶联胆汁酸受体1(TGR5),来调节代谢过程。

TGR5受体的作用

TGR5受体广泛分布于多种组织,特别是在棕色脂肪组织(BAT)中高度表达。通过TGR5受体,胆汁酸可以激活与脂质代谢、能量消耗和炎症相关的信号基因表达

胆汁酸对能量代谢的影响

胆汁酸可以增加脂肪分解和底物可用性改善线粒体功能和线粒体β-氧化,从而影响能量代谢。例如,口服补充CDCA可以增加棕色脂肪组织的活性和全身能量消耗。

胆汁酸与肠内分泌激素的相互作用

在肠内分泌L细胞上表达的TGR5受体与胃肠道激素如PYYGLP1的释有关,这些激素对维持能量平衡和代谢调节至关重要。

★ 内源性大麻素

eCB 系统以其广泛的生理作用而闻名,包括调节食欲(即能量代谢)、葡萄糖脂质代谢,以及其在免疫、炎症以及微生物群与宿主之间相互作用中的作用。

  • 第一个发现的内源性内源性大麻素是 anandamide(N-花生四烯酰乙醇酰胺),它既是 CB1 又是 CB2 配体;
  • 第二个被鉴定的内源性大麻素受体配体是2-花生四烯酰甘油。

对小鼠、大鼠和人类的几项开创性研究表明,eCB 参与脂肪组织的代谢,并且 eCB 系统的激活促进脂肪生成

eCB系统在肠道屏障功能、肠道微生物群和脂肪组织代谢发挥重要作用

具体来说,在小鼠中,肥胖和糖尿病期间 anandamide 的存在增加,这通过 CB1 依赖性机制触发肠道通透性。此外,当使用有效的 eCB 激动剂药理激活 eCB 系统时,它会增加脂肪生成破坏肠道屏障渗透性的增加进一步放大了血流中 LPS(即代谢性内毒素血症)的水平,扰乱了肠道屏障并影响了整个肠道和脂肪组织中的 eCB 系统。

肥胖的病理状态下,eCB 张力的改变和 LPS 水平的升高导致脂肪生成失调,使最初的不平衡长期存在,并建立一个有害的循环,导致脂肪组织代谢发生改变。这是一种将肠道微生物群与肠道 eCB 系统连接起来的新型病理生理学机制,在调节脂肪生成方面发挥着重要作用。

脂肪生成与eCB系统

脂肪生成受到内源性大麻素系统和脂多糖(LPS)之间反馈回路的影响。肥胖与eCB系统的变化、血浆LPS水平升高以及肠道微生物群组成的破坏有关。

肠道微生物群与代谢

肥胖和糖尿病小鼠的肠道微生物群组成发生了变化,这与代谢功能的变化和eCB系统功能的变化有关。这些发现在饮食诱导的肥胖小鼠模型和无菌小鼠中也得到了证实。

NAPEPLD酶的重要性

NAPEPLD酶在脂肪细胞中参与生物活性脂质的合成,对维持正常的代谢功能至关重要。小鼠模型显示,缺乏NAPEPLD酶导致自发的肥胖胰岛素抵抗和炎症,即使在正常热量饮食下也是如此。

NAPEPLD酶缺陷小鼠的肠道微生物群转移到无菌小鼠后,可以复制出类似的代谢表型,包括减少的产热程序和肠道微生物群的改变。

NAPEPLD酶的失调可能导致代谢并发症。

总之,所有证据都表明宿主 eCB 系统和肠道微生物群之间存在双向通讯。然而,还需要进一步研究来找出几个潜在的新治疗靶点。

★ 氧脂质

氧脂质是一类多样化的生物活性脂质分子,源自多不饱和脂肪酸的氧化。肠道微生物群对氧脂素介导的炎症过程有影响。

12,13-DiHOME是一种由亚油酸通过细胞色素 P450 和可溶性环氧化物水解酶的作用形成的氧脂素。12,13-DiHOME 主要由 BAT 米色脂肪组织产生,运动、饮食和温度等因素会影响其在体内的浓度。它具有调节脂肪组织中脂肪酸的摄取和寒冷暴露期间的体温调节的作用。

研究发现,28 名肥胖青少年男性的 12,13-DiHOME 浓度低于 28 名体重正常的同龄男性,并且随着剧烈运动而增加。在高脂肪饮食诱导的肥胖小鼠中,给予 12,13-diHOME 两周促进脂肪酸转运至 BAT,降低循环甘油三酯浓度并增加 BAT中LPL(一种水解脂蛋白中甘油三酯的酶)的基因表达。

一些肠道细菌可以产生并分泌 12,13-diHOME。例如,在Welbionis Dysosmobacter产生的几种生物活性脂质中发现了 12,13-diHOME ,将这种细菌给予小鼠可显著减少(P  < 0.001)高脂饮食引起的 BAT 变白增加线粒体活性

★ 琥珀酸和 GPR91 的作用

琥珀酸是三羧酸循环(也称为柠檬酸循环或克雷布斯循环)的中间体,是细胞代谢能量稳态的核心。

代谢调节

琥珀酸通过在脂肪细胞上的GPR91参与代谢调节,它可以由微生物通过碳水化合物发酵产生,作为分解代谢物出现。

微生物产物的重要性

琥珀酸作为微生物产物,在消耗膳食纤维时对代谢健康有益,例如通过普雷沃氏菌的作用增加琥珀酸的产生。Akkermansia muciniphila等琥珀酸生产者与肥胖、糖尿病和代谢紊乱有负相关性。


克罗恩病中的琥珀酸水平

克罗恩病患者的血浆琥珀酸水平显著高于健康对照组,且在活动性克罗恩病患者的脂肪组织中,SUCNR1的表达更高

琥珀酸盐可能在克罗恩病中促进白色脂肪细胞向米色脂肪细胞的转变

GPR91的作用

GPR91在小鼠白色脂肪组织(WAT)中高度表达,并调节脂肪量和葡萄糖稳态。在Gpr91敲除的小鼠模型中,GPR91的缺失影响新陈代谢和体重,但具体效果(增重/减重)取决于实验条件。

Gpr91敲除小鼠在常规饮食下表现出较小的WAT隔室、较小的脂肪细胞、增加的能量消耗和改善的葡萄糖调节。

GPR91可能是肥胖、高血压和糖尿病治疗的潜在靶点。

这些研究结果揭示了琥珀酸和GPR91在能量代谢和脂肪组织功能中的重要作用,以及在疾病状态下可能的病理作用。这为未来的治病策略提供了新的方向。

06
脂肪组织微生物群

目前的人类研究表明,个体的脂肪组织中存在微生物群特征,并且该特征可能根据宿主的代谢负担而不同。在本节中,我们讨论这个新课题,重点关注以下几个方面:

1)检测和表征脂肪组织微生物群的方法和挑战;

2) 微生物从肠道转移到脂肪组织的潜在来源和机制;

3)脂肪组织微生物群在不同脂肪库和代谢条件下的多样性和功能作用;

4) 对未来研究和治疗干预的影响和前景。

检测和表征脂肪组织微生物群的方法和挑战

研究脂肪组织微生物群的主要挑战之一是确保微生物检测方法的可靠性和有效性。多项研究使用基于 16S rRNA基因的细菌定量来识别和比较不同脂肪组织库和代谢条件下的微生物谱。然而,这种方法具有一些局限性,例如环境或试剂来源污染的风险、一些引物和探针的低灵敏度和特异性、以及难以区分活细菌和死细菌。

微生物从肠道转移到脂肪组织的可能途径

微生物从肠道转移到脂肪组织的起源和途径尚不完全清楚,但已经提出了几种机制。

1.

一种可能性是细菌或其成分通过增加肠道通透性穿过肠道屏障,这通常在肥胖和 2 型糖尿病中。

2.

另一种可能性是细菌或其遗传物质被免疫细胞主动运输,例如巨噬细胞或树突细胞,从肠道相关淋巴组织迁移到脂肪组织。

3.

第三种可能性是细菌或其成分由门静脉或淋巴系统携带至肝脏或其他器官,在那里它们可以影响局部或全身炎症和代谢。

脂肪组织微生物群,在不同脂肪库和代谢条件下的多样性和功能作用

脂肪组织微生物群的多样性和功能作用可能会因多种因素而异,例如脂肪库的解剖位置、宿主的代谢状态以及与其他宿主因素的相互作用。

例如,患有或不患有 2 型糖尿病的肥胖个体的不同脂肪组织库(皮下、肠系膜、网膜和肝脏)具有不同的微生物特征,并且这些特征与 BMI 无关

组织特异性定量、分类和组成细菌特征与组织依赖性炎症标记物代谢特征相关。

与体重正常的个体相比,肥胖个体的 SAT 细菌载量较高,细菌多样性较低,这些差异与脂质代谢和炎症相关基因表达的改变有关。

母乳中特定细菌的存在及其起源之间的联系

脂肪组织微生物群背景下的另一个重要挑战,涉及母乳中特定细菌的存在及其起源之间的联系,以及最终与“粉红色”脂肪细胞发育的可能联系。

“粉红色”脂肪细胞是一种可以发现的独特脂肪细胞怀孕和哺乳期小鼠的皮下脂肪库中。这些粉红色脂肪细胞是源自皮下白色脂肪细胞的特殊细胞,产生并释放乳汁

越来越多的证据表明,它们经历了一个转分化的过程,成为乳腺肺泡上皮细胞。证据还支持这样的假设:转分化可以以可逆的方式白色到粉色、粉色到棕色以及棕色到肌上皮细胞发生。

母乳中发现了具有独特组成的微生物群。健康女性的乳汁中细菌含量通常较低,主要包括葡萄球菌、链球菌、乳酸菌和其他革兰氏阳性菌,如棒状杆菌、丙酸杆菌和双歧杆菌,但也可以发现来自严格厌氧菌的DNA。它由协调的微生物群和互连网络构成。

关键的未知因素之一是乳腺组织以及最终母乳中微生物群的改变是否可能影响乳房健康、乳腺脂肪组织以及从白色脂肪细胞到粉红色脂肪细胞的转分化。值得注意的是,除了初乳和牛奶之外,无论是否哺乳的女性的乳腺组织都可能含有微生物群,这可能对乳腺癌的发生、进展和治疗产生影响。

对未来研究和治疗干预的影响和前景

脂肪组织微生物群的研究是一个新颖且有前途的研究领域,可能为代谢疾病的病理生理学和治疗提供新的见解。然而,许多悬而未决的问题和挑战仍然需要解决。例如:

  • 脂肪组织微生物群与代谢结果之间的因果关系是什么?
  • 饮食、生活方式、遗传、药物或其他环境因素如何影响脂肪组织微生物群?
  • 我们如何操纵或调节脂肪组织微生物群以改善代谢健康?

需要更多的纵向、介入和机制研究,以及脂肪组织微生物群数据采样、处理、分析和报告的标准化方案,来回答这些问题。

07
肠道-脂肪轴以及肥胖和胰岛素抵抗生物标志物寻找

对肠道微生物群和脂肪组织之间复杂相互作用的研究揭示了一种有趣的相互作用,这种相互作用远远超出了消化和新陈代谢的范围

肠道微生物群影响各种生理过程,包括能量稳态炎症胰岛素敏感性肠道-脂肪轴代表了一个双向通讯系统,涉及肠道微生物群和脂肪组织之间交换的信号分子、代谢物和免疫介质

脂肪组织曾经被认为是惰性能量储存库,现在被认为是一种活跃的内分泌器官,可以释放脂肪因子、细胞因子和其他具有全身效应的因子。另一方面,肠道微生物群产生一系列影响宿主代谢和免疫反应的代谢物。肠道微生物群和脂肪组织之间的这种动态相互作用为识别与肥胖和胰岛素抵抗相关的生物标志物开辟了新途径

这种相互作用产生的潜在生物标志物有望识别代谢紊乱风险的个体,从而实现早期干预和个性化策略,以减轻肥胖的影响并提高胰岛素敏感性。


与肥胖和胰岛素抵抗相关的生物标志物

微生物多样性和组成

肠道微生物群多样性和特定微生物类群丰度的改变与肥胖和胰岛素抵抗有关。例如,脂肪细胞直径、葡萄糖和胰岛素敏感性的替代指标似乎与人类中阿克曼氏菌的丰度密切相关。皮下白色脂肪细胞直径A. muciniphila丰度呈负相关A. muciniphila丰度高的个体具有较低的平均脂肪细胞大小。尽管由于许多混杂因素和巨大的个体差异而仍存在激烈争论,但某些微生物(核心)特征的识别,可以作为代谢功能障碍的早期指标。

代谢物

微生物代谢物,例如短链脂肪酸、次级胆汁酸和三甲胺-N-氧化物,可以反映肠道微生物群活动,并可能预测肥胖和胰岛素抵抗的风险。

短链脂肪酸水平的增加还与体重、脂肪量、腰围、空腹血糖、胰岛素抵抗和炎症的减少有关。

次级胆汁酸水平升高与体重指数、腰臀比、空腹血糖、胰岛素抵抗和炎症降低有关。

三甲胺-N-氧化物水平的增加与体重指数、腰围、体脂百分比、空腹血糖、胰岛素抵抗、血压、炎症和氧化应激的增加相关。

脂肪因子和炎症标志物

受脂肪组织健康影响的大量脂肪因子炎症标记物的循环水平可以作为肥胖相关胰岛素抵抗的指标。

对饮食的代谢反应

肠道微生物群对饮食干预反应的个体差异可能与肥胖风险胰岛素敏感性相关,为个性化饮食建议打下了基础。

微生物-宿主相互作用基因

影响肠道微生物与宿主之间相互作用的遗传变异可能导致肥胖胰岛素抵抗易感性,为风险评估提供遗传标记。

08
从实验室转移到临床:主要挑战

尽管过去几年人们对肠道微生物群和脂肪组织之间的相互作用获得了宝贵的见解,但将体外和动物研究的发现转化为人类仍然特别具有挑战性。

动物模型固有的局限性

无菌小鼠在没有肠道微生物群的情况下饲养,可以深入了解某些肠道细菌或细菌组合的作用。然而,这些小鼠在发育过程中缺乏微生物相互作用,因此代谢发生改变并损害免疫系统功能,这可能无法准确反映人类生理学

遗传性肥胖小鼠(如ob/ob和db/db小鼠)有助于我们了解肥胖的病理生理学,但它们的遗传基础限制了它们向人类肥胖的转化,因为瘦素和瘦素受体缺陷在人类中很少见,而且突变会导致重大肥胖代谢调节途径的破坏

物种差异与研究成果转化的复杂性

另一方面,高脂肪饮食的肥胖小鼠模仿了人类肥胖的某些方面,但未能复制该疾病的多因素性质。遗传和生活方式因素在人类肥胖中起着重要作用,并且很难在实验室中复制。

由于物种之间的生物学差异,将动物模型的研究结果转化为人类也具有挑战性。遗传变异、饮食、肠道微生物群组成和环境影响各不相同,使得直接翻译变得困难。动物模型常常过度简化复杂的人类代谢途径,并且无法解释在人群中观察到的异质性。这是动物研究的结果在人类研究中经常得不到证实的主要原因之一,也是为什么仅从动物实验中获得的数据必须谨慎解释的原因之一

肠道微生物群的个体差异和动态性

尽管许多动物研究表明,针对肠道微生物群及其代谢物的干预措施有望对抗肥胖和代谢紊乱,但设计临床试验来证实这些发现提出了独特的挑战。肠道微生物群表现出显着的个体间差异,因此很难建立在不同人群中产生一致效果的标准化干预措施。更复杂的是,肠道微生物群是一个高度动态且复杂的生态系统,可能受到饮食、药物、压力和其他环境因素等多种因素的影响,并且肠道微生物群的变化可能需要一段时间才能显现出来。

肠道微生物干预领域标准化的缺乏延伸到研究设计、样本收集和数据分析,使得比较和评估这些干预措施的有效性变得极其困难。

干预参数的变异性

肠道微生物群干预的参数存在相当大的变异性。这种差异包括所使用的益生菌和益生元的类型、给药剂量以及干预的持续时间和时机。不同的临床和临床前研究使用不同的菌株或菌株组合,因此比较它们的功效具有挑战性。此外,最佳干预剂量和持续时间尚未确定,导致治疗方案不一致。干预开始的时间和给药途径也不同,给研究带来了额外的可变性。

数据收集缺乏标准化

样本收集方法的变化,例如粪便收集技术、储存条件和运输方案,可能会影响肠道微生物群数据的质量和一致性。此外,元数据(包括饮食信息、生活方式因素、药物使用和临床特征)的收集和报告在研究中通常不一致。缺乏标准化的数据收集程序阻碍了准确解释和比较结果的能力。

粪便样本的局限性

由于其非侵入性收集方法和足够的生物量用于分析,粪便样本仍然是大多数肠道微生物群研究的主要材料来源。然而,重要的是要认识到仅依靠粪便样本时的局限性,因为粪便中的微生物群可能无法准确代表肠道内不同位置的微生物群落,从而导致不完全了解对肠道微生物群的作用和对健康的影响。

肠道微生物群的空间异质性

肠道微生物群沿着胃肠道的长度而变化,其影响因素包括环境变化、营养可用性以及从胃到大肠的不同氧气水平。不同的微生物群落在这些不同的条件下茁壮成长。

粘膜与肠腔微生物群的差异

此外,肠腔(粪便)中的肠道微生物群可能与靠近肠壁的粘膜的肠道微生物群有很大不同。粘膜层是宿主与微生物相互作用发生的动态界面。附着于粘膜的微生物可以具有与内腔中自由漂浮的微生物不同的作用和效果。此外,肠道不同部位的微生物群落可能具有不同的代谢活动。例如,结肠中的细菌通过发酵产生各种代谢物,对宿主健康产生系统性影响。仅研究粪便代谢物可能无法提供完整的信息,因为它们可能受到不同肠道部分细菌之间相互作用的影响。

微生物易位与系统性影响

最后,某些细菌或代谢物可以从肠腔转移到身体的其他部位,可能影响远处的器官和系统。了解易位动态和所涉及的特定微生物种群需要更全面的采样策略,而不仅仅是粪便样本。然而,迄今为止,尚无明确的易于临床使用的生物标志物来全面反映肠道通透性及其动态。因此,尽管粪便提供了宝贵的见解,但认识到它们的局限性并解决准确描述整个胃肠道肠道微生物群的挑战对于更全面地了解它们在健康和疾病中的作用至关重要。

肠道微生物群分析的技术挑战

由于缺乏标准化技术和工作流程,分析肠道微生物群也面临着自身的挑战。不同的研究采用不同的方法来分析肠道微生物群,例如 16S rRNA 基因测序、鸟枪法宏基因组学或宏转录组学。每种方法都有其自身的优点和局限性,技术的选择会影响结果的准确性和全面性。

通过识别有助于各种生理过程的功能性细菌基因和途径,使用鸟枪法测序和生化解释的功能性宏基因组方法已成为微生物组研究的强大工具,但即使这种技术也有其局限性。除了高成本、数据解释的复杂性和功能注释的挑战之外,鸟枪法宏基因组测序仅提供有关功能基因存在的信息,但可能无法完全捕获有关基因表达和调控的信息。此外,不存在用于处理和分析肠道微生物群数据的标准化生物信息学流程。不同的质量控制、分类分配和统计分析方法可能会导致比较研究结果的差异和困难。

虽然存在上述困难与挑战,但科研的步伐不会就此停止。随着技术的不断发展和完善,肠道微生物群分析的方法也将不断改进。标准化的技术和工作流程的建立将有助于提高数据的可重复性和准确性,从而推动肠道微生物群研究突破

09
结 语

与早期将脂肪细胞描述为储存和释放脂质的简单血管不同,我们越来越认识到脂肪细胞的复杂性

当我们过量喂养脂肪细胞时,我们开始欣赏WAT对全身健康的无数贡献。了解肥胖相关的脂肪细胞功能障碍如何导致疾病状态,可能有助于开发新的细胞靶向策略改善或恢复脂肪细胞功能。

虽然肥胖率持续上升,包括儿童肥胖率,但我们有了更多新兴治疗方法来解决肥胖和相关的合并症。鉴于肥胖、脂肪细胞大小和脂肪细胞功能障碍之间的紧密联系,减少脂肪量(和脂肪细胞大小)的策略是很好的治疗目标。

技术和数据整合的进步将继续为脂肪细胞如何受到体重增加的影响提供新的见解,并让我们更清楚地了解肥胖和相关疾病中的脂肪细胞功能障碍。

因此,尽管存在挑战,这方面的研究仍然充满着无限的潜力和机遇。微生物组时代的重点是了解和利用肠道微生物群的潜力,包括其在不同脂肪组织中的作用,这无疑是未来医学和医疗保健范式转变的重要组成部分。

主要参考文献

Hagberg CE, Spalding KL. White adipocyte dysfunction and obesity-associated pathologies in humans. Nat Rev Mol Cell Biol. 2023 Dec 12.

肠道微生物群:心力衰竭的新治疗靶点

谷禾健康

心力衰竭 Heart Failure(HF)

心力衰竭是一种严重的心血管疾病,其特点是较高的发病率和死亡率,同时也会带来高昂的医疗成本。

一般都认为心力衰竭是老年人的疾病,但其实心力衰竭已经呈现年轻化趋势。

以上症状都有可能与早期心力衰竭相关。发生心力衰竭时,血液通常会回流并导致液体在肺部积聚,从而引发气短

长期熬夜睡眠不足,不健康饮食,吸烟酗酒,压力大,过度劳累等各种因素日积月累都有可能导致心律失常,诱发突发性心衰。

越来越多的证据表明,心力衰竭与肠道微生物群变化相关

肠道微生物群失调会导致肠道屏障功能受损,从而使肠道中的有害物质和细菌进入血液循环系统,引发炎症反应。这些炎症因子会进一步损害心脏功能,导致心力衰竭的发生和发展。

肠道微生物群还可以通过产生代谢产物,如短链脂肪酸、TMAO等,影响心血管系统的功能。

本文主要介绍有关肠道微生物群及其代谢物对心力衰竭的影响,以便更好地理解这种多层次的复杂关系。

更深入地了解人体肠道微生物组、心力衰竭和相关风险因素之间的相互作用,对于优化基于微生物群调节的治疗策略提供个体化治疗非常重要。

本文主要内容:

01 了解心力衰竭

心力衰竭的类型

心力衰竭的症状

心力衰竭的形成

心力衰竭的发病率

心力衰竭的风险因素

02心力衰竭&肠道屏障功能受损和炎症

03心力衰竭的肠道菌群变化

04心力衰竭的风险因素和肠道菌群

西方饮食

肥胖

2型糖尿病

高血压

05与心力衰竭相关的肠道菌群代谢产物

苯丙氨酸

TMAO

短链脂肪酸

胆汁酸

06 肠道菌群与心血管药物的相互作用

强心甙类药物

血液稀释剂

β-阻断剂、ACEi和ARBs

他汀类药物

07 基于肠道菌群的干预措施

饮食方式

特定食物

益生菌

益生元

抗生素

粪菌移植

生活方式

08 结语

01
什么是心力衰竭?

心力衰竭是一种心脏疾病,指心脏无法泵出足够的血液来满足身体需要,导致身体器官缺氧水肿等症状。

图源:American Heart Association / watchlearnlive.heart

▼ 

心力衰竭的类型

根据急缓程度区分:

  • 慢性心力衰竭(持续性)
  • 急性心力衰竭(突发性)

两者可以互相转变。

根据部位区分:

  • 左侧心力衰竭
  • 右侧心力衰竭

左侧和右侧心力衰竭不同,左侧心力衰竭比右侧心力衰竭更常见

左侧心力衰竭可能出现的症状有:

呼吸困难;咳嗽;疲劳(即使休息后也极度疲倦);手指和嘴唇呈蓝色;嗜睡;注意力不集中;平躺无法入睡。

右侧心力衰竭可能出现的症状有:

恶心(胃部不适)和食欲不振、腹部疼痛(胃周围区域);脚踝、脚、腿、腹部和颈部静脉肿胀;需要经常小便;体重增加。

根据射血分数区分:

  • 收缩性心力衰竭(射血分数降低,HFrEF)
  • 舒张性心力衰竭(射血分数保留,HFpEF)

注:射血分数是心脏强度的指标。在临床常用于判断心功能的基本情况以及心力衰竭的诊断,射血分数越低,心脏的泵血功能就越弱

  • 射血分数正常在 50%~70%之间;
  • 40% ~ 49% 是中等射血分数,可能没感觉到症状;
  • 低于40% 是射血分数降低的心力衰竭。

收缩性心力衰竭:心脏无法将足够的血液泵出,导致心脏收缩功能下降。

舒张性心力衰竭:心脏在舒张时无法完全放松和扩张,导致心脏无法充分填充血液,从而降低了心脏泵血的效率。

▼ 

心力衰竭症状

  • 活动时或躺下时气短
  • 疲劳和虚弱
  • 腿部、踝部和足部肿胀
  • 快速或不规则心跳
  • 晚上醒来呼吸急促
  • 运动能力下降
  • 持续咳嗽或哮鸣伴有白色或粉红色带血黏液
  • 肚子区域(腹部)肿胀
  • 体液积聚导致体重急速增长
  • 恶心和食欲不振
  • 难以集中注意力或警觉性降低
  • 如果心力衰竭由心脏病发作引起,则会出现胸部疼痛

▼ 

心力衰竭的形成

大多数情况下,心力衰竭是由另一种损害心脏的疾病引起的,比如冠心病、心脏炎症、高血压、心肌病、心律不齐等。

我们知道,心力衰竭是心肌无法泵出足够的血液来满足身体的需求,那么在心力衰竭的初始阶段,心脏会通过一些方式来弥补:

  • 心脏变大。心脏伸展从而更强烈地收缩并跟上身体泵送更多血液的需求。随着时间的推移,这会导致心脏扩大。
  • 心肌质量增加。肌肉质量的增加是因为心脏的收缩细胞变大了。这让心脏跳动更强劲。
  • 心跳更快。这有助于增加心脏输出量。

身体还会通过其他方式进行补偿:

  • 血管变窄以保持血压升高,试图弥补心脏失去的力量。
  • 肾脏保留了更多的盐和水,而不是通过尿液排泄。这会增加血液量,有助于维持血压,并使心脏泵送得更强。但随着时间的推移,这会使心脏负担过重,使心力衰竭恶化。

以上是身体的补偿机制,这就可以解释为什么有些人在心脏开始衰退多年后才意识到自己的病情。

▼ 

发病率

根据 Framingham 心脏研究的数据,心力衰竭的患病率随着年龄的增长而增加,该研究估计:

50 – 59 岁:

心力衰竭患病率为 8 / 1000;

80 – 89岁:

男性为66/1000,女性患病率为79/1000。

发病率随着年龄的增长而急剧增加

在 65 岁后,心力衰竭的发病率每增加10岁就会翻一倍,而在同年龄段的女性中,发病率会翻三倍

所有年龄段的血压和BMI越高,终身风险越高

▼ 

风险因素

以下人群更容易患心力衰竭:

  • 冠状动脉疾病
  • 糖尿病
  • 高血压
  • 心律不齐
  • 先天性心脏病
  • 睡眠呼吸暂停
  • 甲状腺疾病
  • 心脏瓣膜病
  • 肥胖
  • 病毒感染
  • 久坐不动
  • 吸烟
  • 过量饮酒
  • 吃高脂肪、高胆固醇、高钠的食物

02
心力衰竭 & 肠道屏障功能受损和炎症

心力衰竭中的“肠道假说”表明,肠道微生物群、其代谢物与心力衰竭发病机制之间存在密切关系。

这种细菌易位出现在心力衰竭中,是导致胃肠道结构和功能改变的各种机制的结果,从内脏充血到宿主的免疫防御系统。

心力衰竭的肠-心轴

doi.org/10.3390/cells12081158

心力衰竭患者 ⇒ 肠道屏障功能受损

肠道结构和功能的改变是心力衰竭患者微循环紊乱的结果。在这些患者中,尤其是在疾病失代偿的形式中,肠道微生物群落的正常组成被打破,这是由于肠道灌注不足导致的,从而导致局部pH肠腔缺氧

肠壁水肿

有证据表明,与心力衰竭相关的肠道上皮功能受损:这种改变似乎是肠道灌注减少缺血的结果。心输出量降低导致全身循环向多个终末器官的适应性再分配。因此,肠壁水肿增加肠壁增厚与肠道通透性标志物、血液白细胞和循环C-反应蛋白水平的增加正相关

肠道吸收能力降低,上皮通透性增加

除了肠壁水肿外,心力衰竭还表现为肠道吸收能力降低和上皮通透性增加,促进了多种肠道细菌和/或内毒素(如脂多糖)的通过,从肠道进入全身循环

脂多糖黏膜屏障功能恶化

脂多糖是革兰氏阴性菌壁的生物活性成分,具有潜在的免疫刺激活性,通过使用Toll样受体4(TLR4)模式识别受体。

在心力衰竭患者中,在肝静脉中发现高浓度的脂多糖,支持肠道菌群的肠道易位过程的假设。此外,据推测,脂多糖本身可以加剧黏膜屏障功能恶化,导致心力衰竭进展。

心力衰竭患者 ⇒ 炎症

内毒素易位导致炎症因子水平升高

内毒素肠吸收刺激系统炎症因子水平的增加。根据目前的数据,心力衰竭与慢性炎症状态相关,这种微生物易位可以诱导或加速炎症,间接影响心肌细胞的正常功能。

循环细胞因子水平升高,心力衰竭患者预后不良,与脂多糖相关

循环细胞因子水平的升高对应于心力衰竭患者生存中更严重的临床症状和更差的预后。心力衰竭患者的血清TNF-α、IL-1和IL-6水平直接受到现有脂多糖数量的影响,目前认为脂多糖是高炎症性疾病的主要因素

而在失代偿的心力衰竭患者中,脂多糖水平似乎与全身炎症标志物直接相关,并且在心力衰竭代偿后降低。治疗后血浆细胞因子水平并不一定会下降,这表明随着疾病的进展,其影响是持续的。根据两项大型随机安慰剂对照试验,使用TNF- α拮抗剂均不能降低心力衰竭患者的住院或死亡风险。

所有的心力衰竭患者炎症水平上升

另一项针对心力衰竭伴射血分数降低(HFrEF)患者的研究,该患者具有不同的疾病严重程度,或采用了先进的干预措施,如心脏移植(HT)或左心室辅助装置(LVAD),评估了他们的血液和粪便标本。从纽约心脏协会(NYHA)的I级到IV级的所有受试者,炎症标志物水平都有所增加

治疗后水平下降,但未到正常,脂多糖仍处高位

在左心室辅助装置和心脏移植治疗后,他们的水平下降,但未能达到正常值。然而,所有NYHA级别的脂多糖水平均有所增加,并且在心脏移植和左心室辅助装置干预的患者中仍保持升高。

与脂多糖类似,血清中IL-6、IL-1β和TNF-α水平的升高也诱导肠通透性,促进炎症细胞因子增加和内毒素易位的恶性前馈循环。

03
心力衰竭的肠道菌群

肠道微生物群已被证明对心力衰竭有很大影响。心力衰竭患者有更多的致病菌和更少的有益菌。

心力衰竭肠道菌群变化

在心力衰竭中,由于射血分数降低,肠道血流量减少,氧气输送减少。这使肠道容易滋生致病性厌氧菌

综合目前的研究来看,与对照相比,心力衰竭患者肠道菌群主要变化如下:

下列菌群丰度增加

↑↑ Ruminococcus gnavus 瘤胃球菌属

↑↑ Escherichia Shigella

↑↑ Streptococcus 链球菌

↑↑ Veillonella 韦荣氏球菌属

↑↑ Actinobacteria 放线菌门

↑↑ Pseudomonadota 假单胞菌门

↑↑ Klebsiella 克雷伯菌

↑↑ Salmonella 沙门氏菌

↑↑ Campylobacter 弯曲杆菌

↑↑ Candida 念珠菌

↑↑ Enterococcus 肠球菌属

下列菌群丰度减少

↓↓Eubacterium 真细菌

↓↓Prevotella 普雷沃氏菌属

↓↓ Faecalibacterium 粪杆菌属

↓↓ Faecalibacterium prausnitzii 普拉梭菌

↓↓ SMB53

↓↓ Megamonas 巨单胞菌属

↓↓ Dorea longicatena

↓↓ Roseburia intestinalis

↓↓Dialister 戴阿利斯特杆菌属

↓↓ Blautia 经黏液真杆菌属

↓↓ Collinsella 柯林斯氏菌

α多样性随着疾病严重程度的增加而降低

尽管接受了LVAD或HT等治疗,但仍保持较低水平,这可能是由于持续的炎症。随着心力衰竭发展到晚期内毒素血症和全身炎症水平增加,细菌群落的肠道多样性降低

几项关于急性失代偿或稳定型HFrEF患者肠道细菌谱的研究报告称,与健康个体相比,心力衰竭患者的α和β多样性显著降低

心力衰竭相关的肠道菌群失调因患者年龄而异

与已知患有心力衰竭的年轻患者相比,老年患者表现出拟杆菌门水平下降变形菌门、假单胞菌门数量

在所有已知的心力衰竭患者中,毛螺菌科Dorea longicatenaEubacterium rectale的数量都有所减少,而与年轻患者相比,Clostridium clostridioforme普拉梭菌Faecalibacterium prausnitzii)在老年心力衰竭患者中的数量更少

下表中总结了关于心力衰竭患者肠道微生物群的研究。

doi.org/10.3390/cells12081158

04
心力衰竭的风险因素和肠道菌群

患有心力衰竭的人有各种危险因素,但他们中的大多数人患有高血压、肥胖、血脂异常、糖尿病、遗传易患心力衰竭、吸烟、久坐不动的生活方式或不健康的饮食。新证据表明,肠道微生物群及其代谢物也可能对心力衰竭危险因素产生影响。

西方饮食

西方饮食的特点是摄入高糖精制碳水化合物,血糖指数高;抑制一氧化氮合酶的含量,导致心肌氧化功能障碍、心肌肥大和心肌细胞重塑,所有这些都是心力衰竭的诱发因素

西方饮食:通过菌群代谢增加TMAO,胆固醇积累,动脉粥样硬化,心力衰竭风险增加

这种饮食富含快餐食品会导致微生态失调,其菌群特征是假单胞菌Pseudomonadota)和Bacillota水平升高,从而增加TMAO和神经酰胺的水平,促进巨噬细胞中的胆固醇积累,并加剧动脉粥样硬化的发展。

西方饮食诱发心力衰竭

doi.org/10.3389/fmicb.2022.956516

西方饮食通过肠道微生物群代谢为 TMA,然后 TMA 在肝组织中转化为 TMAO。TMAO 积累在许多病理过程中触发胆固醇,包括运输和泡沫细胞形成,从而诱发心力衰竭。

西方饮食还会导致心肌中的脂质积聚、慢性炎症和肥胖。快餐食品加工中使用的食品添加剂(包括亚硝酸盐和磷酸盐)水平的增加心力衰竭风险的增加有关。它们改变了厚壁菌与拟杆菌的比例。

西方饮食:构建肠道屏障菌群减少,屏障破坏

西方饮食还改变了肠道屏障的通透性,其特征是拟杆菌属、双歧杆菌属、梭状芽孢杆菌属、乳酸杆菌属和Akkermansia muciniphila以及所有促进肠道屏障细菌的水平降低。此外,肠壁完整性似乎被脱硫弧菌属和Oscillibacter的增加破坏

扩展阅读:AKK菌——下一代有益菌

肥胖

研究表明,肥胖及其相关的代谢障碍,包括高脂血症、高血糖和胰岛素抵抗,与心力衰竭密切相关。

肥胖 ⇒ 促炎

肥胖及其相关的心脏代谢因子(胰岛素抵抗、血脂异常和腹部肥胖)加剧促炎环境,也就是促炎细胞因子水平升高。

肥胖 ⇒ 血容量改变

内皮功能障碍一氧化氮不可用,可能导致HFpEF的左心室肥大以及收缩和舒张功能障碍。此外,肥胖会导致血管系统和血容量的改变,这与氧气消耗的增加有关,导致心室肥大、平均肺动脉压增加和左心室舒张压升高

肥胖 ⇌ 肠道菌群变化

在动物和人类研究中,在大多数研究中,肥胖似乎与厚壁菌门和拟杆菌门之间的比例改变有关,拟杆菌门减少厚壁菌增加。肠道拟杆菌数量与肥胖有关。

限制热量饮食并减肥的肥胖者肠道微生物群中拟杆菌类的比例似乎较高。具体而言,所有产短链脂肪酸菌Clostridium bartlettiiAkkermansia muciniphila和双歧杆菌都高脂肪饮食诱导的肥胖及其代谢并发症呈负相关

扩展阅读:肠道菌群与肥胖


2 型糖尿病

2型糖尿病是心力衰竭和其他心血管疾病的强相关危险因素

已知2型糖尿病患者粪杆菌、双歧杆菌、Akkermansia、拟杆菌和Roseburia降低Roseburia、拟杆菌和Akkermansia具有抗炎作用。拟杆菌和Akkermansia水平下降导致紧密连接基因表达不足,“肠漏”加剧,从而导致内毒素血症。

扩展阅读:肠道重要基石菌属——罗氏菌属(Roseburia)

此外,产丁酸菌普拉梭菌和Roseburia nestiinalis的丰度降低,会导致脂肪酸代谢失调,导致氧化应激及其相关的心脏代谢不良表现。

另一方面,2型糖尿病与梭杆菌属、瘤胃球菌属厚壁菌门的细菌呈正相关,这些细菌都具有促炎活性。

扩展阅读:2型糖尿病如何做到可防可控?肠道菌群发挥重要作用


高血压

与血压正常的对照组相比,持续升高的血压患者的厚壁菌与拟杆菌比例更高(高达5倍)。此外,高血压时,肠道菌群以产乳酸菌属(如TuricibacterStreptococcus为主,而产短链脂肪酸菌属(如Clostridiaceae、Bacteroides、Akkermansia)似乎减少。其中一些相关的肠道菌群稳态扰动部分与心力衰竭发病有关,并增加心衰进展的风险。

扩展阅读:认识肠道微生物及其与高血压的关系

05
与心力衰竭相关的肠道菌群代谢产物

经典的心力衰竭的生物标志物:利钠肽(NP)、脑型钠尿肽(BNP)、BNP的N-末端原激素肌钙蛋白测量,已被欧洲心脏病学会和美国心脏协会纳入心力衰竭的诊断和治疗指南。

肠道微生物衍生的代谢物也可以在心力衰竭的发病机制中发挥重要作用。通过产生包括短链脂肪酸三甲胺(TMA) / 三甲胺 N-氧化物 (TMAO) 和胆汁酸在内的活性生物代谢物,肠道微生物群会影响宿主生理。

影响心力衰竭的微生物代谢产物及相关治疗策略

doi.org/10.3389/fmicb.2022.956516


苯丙氨酸

苯丙氨酸:与炎症细胞因子呈正相关,是心力衰竭的独立预测因子

这些代谢物可被视为肠道微生态失调的生物标志物,并且可以预测已知患有心力衰竭的患者的炎症。血浆苯丙氨酸水平升高的患者表现出炎症细胞因子(IL-8、IL-10)、C反应蛋白 (CRP) 水平升高,并伴有更高的死亡率。而甘氨酸表现出抗炎作用,似乎提供保护细胞和心脏。对从 FINRISK 和 PROSPER 队列收集的数据进行的分析中,苯丙氨酸是心力衰竭的独立预测因子。


TMAO

升高的TMAO水平与心力衰竭的风险相关

TMAO 是一种由包括厚壁菌和假单胞菌属在内的肠道细菌产生的代谢产物,从胆碱、磷脂酰胆碱和左旋肉碱发酵中获得。

高饱和脂肪和高糖饮食导致的 TMAO 水平升高,可导致纤维化、心肌炎症和舒张功能受损。瘤胃球菌、普雷沃氏菌和梭状芽孢杆菌属和毛螺菌科丰度增加,以及拟杆菌门水平降低,表明其血浆中的 TMAO 水平较高

心力衰竭相关生态失调的特点是循环中高水平的TMAO,能够通过促进心肌纤维化和促炎作用来刺激心脏重塑。现有证据表明,TMAO 水平升高会刺激具有促炎作用的细胞因子(包括 IL-1β 和 TNF-α)的过度表达,以及 IL-10 和其他具有抗炎特性的细胞因子的减弱。

TMAO水平升高可作为急性和慢性心力衰竭的预后生物标志物

与健康人相比,心力衰竭患者的血浆TMAO水平升高。TMAO水平升高可作为急性和慢性心力衰竭的预后生物标志物,独立于B型钠尿肽(BNP)和传统风险因素,因为TMAO水平可预测这些患者的死亡率。

TMAO血浆值升高对应于左心室舒张功能障碍的晚期。TMAO也可被视为HFeEF的预后预测因子和这一特定类别患者的风险分层标志物

对于住院的心力衰竭急性失代偿患者,TMAO水平升高与肾功能下降相关,可作为心力衰竭恶化死亡或再次入院风险升高的预测指标

TMAO水平还与血红蛋白、肌酐、BUN和NT-proBNP相关。

肉碱相关代谢产物与不良预后有关

特别是L-肉碱和乙酰-L-肉碱与短期预后(急性事件后30天)有关,而TMAO与长期预后(急性事件后1年)有关。


短链脂肪酸

短链脂肪酸属于胃肠道中肠道微生物产生的代谢产物。短链脂肪酸对心力衰竭具有保护作用,并在维持肠道屏障的完整性方面发挥主要作用:在粘液产生中,它们在抗炎保护中具有活性。

肠道菌群产生的短链脂肪酸对心血管系统的下游影响

doi: 10.1038/s41569-018-0108-7.

肠道微生物群产生的短链脂肪酸通过以下方式发挥其心血管作用:

  • 通过促进粘液产生间接改善肠道屏障功能;
  • 激活肾小球旁器官 (JGA) 和外周血管系统中的嗅觉受体 51E2(OR51E2),导致肾素释放增加和血压升高,从而抵消游离脂肪酸受体 3(FFAR3);
  • 激活组蛋白乙酰转移酶 (HAT) 和抑制组蛋白脱乙酰酶 (HDAC),从而抑制炎症、平衡基因调控和调节免疫细胞活化。

扩展阅读:缺血性中风和肠道菌群之间的桥梁:短链脂肪酸


胆汁酸

胆汁酸(BA)是由肠道微生物合成的胆汁代谢物,在脂质代谢中起着关键作用。饮食习惯、禁食昼夜节律对胆汁酸的产生和重吸收有影响。

胆汁酸信号传导的受体,如法尼醇-X受体(FXR),在几乎所有的心血管细胞中表达,与心脏组织中的电传导和细胞力学密切相关。因此,胆汁酸信号在调节宿主的生理过程和许多心脏疾病方面非常重要。

一项前瞻性队列研究评估了慢性心力衰竭患者的原发性和继发性胆汁酸水平,然后显示原发性胆汁酸水平显着降低继发性胆汁酸水平增加。研究人员这些发现归因于微生物群的功能,因为微生物代谢对胆汁酸合成的影响很大,尤其是次级胆汁酸。

这项工作揭示了胆汁酸和肠道菌群在调节心肌功能方面的密切相关性,但潜在的机制仍然未知。法尼类 X 受体(FXR)和 G 蛋白偶联受体 5 (TGR5)是 胆汁酸信号通路中的两个重要分子。

FXR是心力衰竭患者的潜在治疗靶点,因为FXR可以通过增加脂联素改善心功能障碍并促进心肌重塑。此外,FXR的敲除通过抑制心脏病细胞的凋亡和纤维化促进了衰竭心脏的恢复。

06
肠道菌群与心血管药物的相互作用

年龄、性别、营养状况、疾病状态以及遗传和环境暴露是可以解释个体对药物治疗反应的因素。我们知道,微生物群参与药物代谢和药理作用,同时也存在双向交流,药物也会影响微生物群的组成。

药物吸收是一个复杂的过程,取决于许多因素,如它们在胃肠液中的解度和稳定性、pH值、胃肠道转运期、通过上皮膜的渗透性以及药物与宿主和微生物酶的相互作用

人类肠道微生物群能够产生参与口服药物代谢的酶促进其在肠道和血液中的吸收。肠道细菌群落的失调可以进一步改变药物的药代动力学;前药的激活可能加剧产生不需要的毒性代谢产物和药物的失活

由于肠道细菌种类的个体间差异,“健康”肠道中也可能存在药物反应的变化。

心力衰竭患者粪便样本的宏基因组测序显示,他汀类药物、β受体阻滞剂、血管紧张素转换酶抑制剂、血小板聚集抑制剂等几种药物的使用对肠道微生物组成有重要影响。下表列出了微生物生物转化的例子。

肠道菌群可能影响心血管药物疗效的已知和提出的机制

doi.org/10.3390/cells12081158

➤ 强心甙类药物

地高辛,一种经常被推荐用于心力衰竭的药物,是微生物群影响药物生物利用度的一个很好的例子。

一些迟缓埃格特菌Eggerthella lenta菌株负责将地高辛转化为一种无活性的微生物代谢产物,限制了10%的患者吸收到系统血流中的活性药物的数量。

最近的研究证明,地高辛抗生素富含精氨酸的饮食共同给药,都会导致全身地高辛水平升高和药物水平的临床相关波动。

➤ 血液稀释剂

阿司匹林是一种非甾体抗炎药,通常用于降低脑血管和心血管疾病的风险

阿司匹林破坏肠道微生物群的组成

与未使用或未使用其他类型非甾体抗炎药的患者相比,使用阿司匹林的患者的瘤胃球菌科、普雷沃氏菌、Barnesiella和拟杆菌的细菌水平存在差异。

肠道菌群的组成对阿司匹林的代谢产生影响

口服抗生素可以通过减缓肠道微生物群的降解、提高其生物利用度和延长其抗血栓作用来降低其代谢活性

含有短双歧杆菌Bif195的益生菌可以预防阿司匹林摄入的不良反应,如肠壁损伤和阿司匹林诱导的胃溃疡。

抗生素通过改变肠道菌群影响华法林的药效

华法林是一种常用的抗凝剂,通过抑制维生素K依赖性的凝血因子II、VII、IX和X的激活来表达其作用。当与抗生素一起服用时,与华法林使用相关的出血事件增加

两种机制:抗生素可以通过抑制或诱导CYP酶来干扰华法林的使用;还可以改变肠道细菌组成,消除产生维生素K的细菌,如拟杆菌属。

➤ β-阻断剂、ACEi和ARBs

抗高血压药物的作用已经在动物和人类研究中进行了多次研究。

β受体阻滞剂、血管紧张素受体阻滞剂(ARBs)和血管紧张素转换酶抑制剂(ACE抑制剂)的使用之间的关联可以改变肠道微生物群的组成。

一项大型宏基因组学研究报告了,钙通道阻滞ACE抑制剂和肠道细菌组成之间的正相关。对高血压大鼠研究发现,包括卡托普利在内的血管紧张素转换酶抑制剂带来的有益作用,是通过减轻肠道微生态失调改善肠壁通透性和增加绒毛长度来实现。

➤ 他汀类药物

他汀类药物是用于降低低密度脂蛋白-C(LDL-C)和胆固醇水平的药物。

他汀类药物治疗反应的存在个体间差异,与特定的他汀类药物或剂量无关。

他汀类药物在调节肠道菌群方面的作用

接受阿托伐他汀治疗的个体表现出抗炎肠道细菌水平的增加,如普拉梭菌(Faecalibacterium prausnitzii)AKK菌(Akkermansia muciniphila)

已知患有高胆固醇血症的未经治疗的患者表现出具有促炎作用的细菌种类的增加,例如柯林斯氏菌(collinsella)和链球菌。

与LDL-C水平相关的菌群

LDL-C水平似乎与厚壁菌门和梭杆菌门呈负相关,而黏胶球形菌(Lentisphaerae)和蓝细菌门与LDL-C呈正相关。现有证据表明,LDL-C对他汀类药物治疗的反应可能受到含有胆汁盐水解酶(bsh)的细菌影响。路氏乳杆菌是一种bsh活性升高的肠道细菌,给药后LDL-C水平显著降低

同一项研究报告称,低密度脂蛋白胆固醇水平的个体变化与循环胆汁酸呈负相关。以前与LDL-C水平呈负相关的厚壁菌门也与bsh活性有关。几种动物模型维持了他汀类药物治疗对肠道微生物群落的有益作用。

使用瑞舒伐他汀有一种罕见的副作用

由于瑞舒伐他汀中含有一种叔胺,在肝脏水平上与TMA竞争代谢,血清TMA水平及其在尿液中的排泄量增加,导致鱼腥味综合征。

07
调节肠道菌群失调作为心力衰竭的潜在干预措施

考虑到微生态失调是心力衰竭发病机制和疾病进展的关键因素,靶向破坏的肠道微生物群是一个有效的治疗目标。

表征每个患者的肠道微生物群及其与疾病相关的肠道微生态失调的可能性,需要个性化的、有针对性的治疗计划。

有各种方法可以管理和调节失调的肠道微生物群,如饮食干预(也包括使用益生元、后生元)和粪便移植,但现有文献中的几份研究将饮食调节使用益生菌作为调节微生物群的主要干预措施

饮食方式

饮食一直被认为是塑造肠道相关微生物群结构和功能的关键因素

地中海饮食

医学文献中经常引用的地中海饮食包括高水平的多不饱和脂肪酸、膳食纤维、多酚和少量红肉

在其对人类健康的益处中,地中海饮食提供了更丰富的益生菌、更大的生物多样性、增加的短链脂肪酸减少的TMAO。坚持地中海饮食与心力衰竭发病率下降相关,最高可达74%

此外,地中海饮食的高依从性似乎与心力衰竭呈负相关,并改善了HFpEF患者的长期预后,因为这是10年随访的结果。地中海饮食可能具有抗炎作用,因为有益作用与CRP水平相关。

扩展阅读:深度解析 | 炎症,肠道菌群以及抗炎饮食

得舒饮食(DASH饮食)

控制高血压的饮食方法(DASH饮食)饮食计划代表了一种摄入多不饱和脂肪、富含全谷物营养、蔬菜、水果和低脂乳制品的饮食,在降低心力衰竭发病率方面具有重要潜力。

饱和脂肪和胆固醇会导致其他心血管问题,请避免使用黄油、起酥油和人造黄油,避免奶酪、熏肉等,并食用有限量的橄榄油、亚麻籽油、山茶油等

高纤维饮食

最近,在高血压诱导的心力衰竭实验模型中,高纤维饮食被证明可以改善肠道微生态失调(厚壁菌和拟杆菌的比例)、降低血压、改善心脏功能和使心脏肥大正常化。此外,纤维的发酵会增加短链脂肪酸的产量,对人类健康具有有益作用。

避免高钠饮食

通常建议心力衰竭患者限制饮食中的钠含量。美国心脏协会建议个人将钠摄入量限制在每天 2300 毫克以下

  • 可以阅读包装上的营养标签,并选择钠含量低的食物;
  • 自己准备饭菜,可以控制在烹饪食物时使用的钠量;
  • 如果觉得淡而无味,可以尝试使用天然香料、柠檬、酸橙汁、苹果醋或香草混合物来为食物增添更多风味。

管理液体量

心脏无法将血液泵送到身体其他部位时,体液就会积聚,喝太多液体可能会导致肿胀、体重增加和呼吸急促。

因此要控制饮水量,其他液体也要限制一定的量,比如说咖啡、果汁、牛奶、茶、苏打水等,还有酸奶、布丁、冰淇淋、果汁,少喝汤。

总体而言,饮食中尽可能将各种新鲜水果和蔬菜比例调大适量食用全谷物、去皮家禽、鱼、坚果和豆类以及非热带植物油。

尽量少吃饱和脂肪、反式脂肪、胆固醇、钠、红肉、糖果、油腻甜点、含糖饮料等。

特定食物

山楂

山楂有助于将心率和血压水平提高到正常水平。它还含有抗氧化剂,可以保护心脏免受自由基的侵害,山楂是心脏营养的绝佳来源,因为它含有生物类黄酮、单宁、维生素A、B族维生素、维生素C,以及铁、钙和钾等必需矿物质。

大蒜

大蒜可以降低心脏病的风险因素,包括高血压和胆固醇。它还降低了冠心病(CAD)心力衰竭患者的心率和心脏收缩力(心脏泵血的强度),冠心病是心力衰竭最常见的原因。

银杏叶

与安慰剂相比,银杏叶通过增加摄氧量、产生能量以及改善局部左心室功能,对心力衰竭有帮助。它还可以预防肾损伤。

人参

人参长期以来一直被用于中医治疗心脏病和心血管疾病。可以帮助降低血压,并降低因压力而导致的体内皮质醇水平。人参可以通过改善动脉和静脉的血液流动、增加心肌的氧合和防止动脉硬化来改善心脏功能

生姜

生姜含有有益心脏健康的营养物质,如抗氧化剂和抗炎剂。它可以通过预防心脏病发作或心肌损伤、降低胆固醇水平和调节血压来帮助治疗心力衰竭。

水飞蓟补充剂

水飞蓟补充剂已被用于心力衰竭患者,水飞蓟含有一组黄酮类抗氧化剂水飞蓟素,可减少心力衰竭时的氧化应激。

辣椒

辣椒能增加血液循环,这意味着心力衰竭患者可以从中受益匪浅。此外,辣椒中含有辣椒素,辣椒素可以使心脏动脉放松和扩张,从而减少心脏病发作。它还可以防止血栓形成或扩大


益生菌

大多数关于益生菌治疗心力衰竭疗效的研究都是在动物模型中进行的。

大鼠模型中:益生菌促进产短链脂肪酸

口服植物乳杆菌299v鼠李糖乳杆菌GR-1可产生有益的心脏作用。补充乳杆菌属似乎可以促进产短链脂肪酸菌,如真细菌、罗氏菌属(Roseburia)和瘤胃球菌,以促进膳食纤维发酵的副产物短链脂肪酸,在维持健康的心血管活动中发挥关键作用。

临床改善:益生菌改善心脏收缩功能

在一项针对心力衰竭患者(NYHA II级或III级,LVEF<50%)的小型双盲、安慰剂对照试点研究中,随机接受益生菌治疗,接受布拉酵母菌Saccharomyces boulardii)(每天1000mg,持续3个月)或安慰剂。与安慰剂组相比,接受益生菌治疗的心力衰竭患者总胆固醇水平和尿酸水平降低心脏收缩功能改善

在人类中,一项初步研究报告称,在慢性心力衰竭患者中使用益生菌布拉酵母菌进行干预后,不仅减少了全身炎症,而且改善了左心室射血分数。不过参与者人数较少(n = 20),应谨慎解释结果。

扩展阅读:如果你要补充益生菌 ——益生菌补充、个体化、定植指南


益生元

最近的一项研究报告称,益生元低聚果糖减少大鼠炎症细胞的浸润。益生元可以促进有益细菌的发生长,包括双歧杆菌和乳杆菌减轻体重和炎症改善葡萄糖和胰岛素耐受,所有这些都与更好的心力衰竭结果有关。

关于肠道微生物群对有害代谢产物产生的调节,临床前研究报告了DMB给药饮食中TMAO的去除,胆碱TMA裂解酶抑制剂碘甲基胆碱的给药在降低血清TMAO水平、改善心脏重塑和减少促炎细胞因子表达方面的有益作用。

白藜芦醇还可以通过重建肠道菌群来刺激肠道中有益细菌的生长,从而减少TMAO的产生

扩展阅读:如何调节肠道菌群?常见天然物质、益生菌、益生元的介绍


抗生素

与抗生素在心力衰竭患者肠道微生物群调节中的应用有关,研究结果存在争议

万古霉素

在动物模型中,与未经治疗的大鼠相比,口服万古霉素可诱导较小的左心室梗死面积,并改善缺血/再灌注实验后的心功能恢复

利福昔明

利福昔明除了具有杀菌和抑菌作用外,还具有减少细菌移位和毒性的能力,具有抗炎作用,可以积极调节肠道微生物群的组成,促进乳酸杆菌双歧杆菌的生长。至于人体临床试验,结果是矛盾的。

妥布霉素和多粘菌素B

在心力衰竭患者中使用妥布[拉]霉素多粘菌素B的混合物,使肠道革兰氏阴性杆菌水平正常化显著降低促炎细胞因子,血流介导的舒张改善:内皮功能障碍的证据。然而,结果仅限于给药治疗期间

此外,在开具抗生素治疗处方时,必须考虑副作用,如多粘菌素B毒性大环内酯类药物增加心肌梗死风险。

最近一项评估共生给药对慢性心衰患者左心室肥大的影响及其对血压和hsCRP作为炎症生物标志物的影响的研究报告称,与安慰剂组相比,共生给药10周后,作为左心室肥大标志物的NT-proBNP水平显著下降。hsCRP水平或血压值没有显著差异。


粪菌移植(FMT)

最近的一项研究报告称,在饮食诱导的HFpEF前啮齿动物模型中,FMT和三丁酸治疗改善了早期心脏功能障碍,并增加了支链氨基酸的分解代谢。

在人类受试者中,FMT使患有代谢综合征的肥胖个体的胰岛素敏感性正常化,但其影响是短期的。目前,还没有可用的临床研究来评估心力衰竭患者的FMT结果,但FMT具有巨大的治疗潜力,并代表了未来研究的一个有希望的方向。


生活方式

戒烟

烟草烟雾中的尼古丁会暂时增加心率和血压,吸烟还会导致血管结块或粘稠。戒烟的人更有可能改善心力衰竭症状。

适当运动,维持体重稳定

体重突然增加或减少可能是正在发展为心力衰竭的迹象。适当运动,维持体重,高强度间歇训练 (HIIT)、低强度有氧运动阻力训练等运动训练方法均能有效改善心肌功能。研究表明,高强度间歇训练在提高患者的活动水平和心脏性能方面最为有效

注意:具体合适的运动量请根据个人情况咨询医生。

限制饮酒

如果需要饮酒,请适度。男性每天不要超过一到两杯女性每天不超过一杯

管理压力


每天花 15 到 20 分钟静静地坐着,深呼吸,想象一个宁静的场景,或者尝试瑜伽或冥想等方式。

涉及深横膈膜呼吸的呼吸练习,可以帮助心力衰竭患者缓解焦虑、增加血液中的氧气水平和降低压力水平,从而改善心脏功能。

充分休息

为了改善晚上的睡眠,请使用枕头支撑头部避免睡前小睡和大餐。试着在午饭后打个盹,或者每隔几个小时把脚抬起来几分钟。

选择合适的衣服

避免穿紧身袜或袜子,例如大腿或膝盖高的袜子,它们会减慢腿部的血液流动并导致血栓。也尽可能避免极端温度。分层穿着,以便根据需要添加或脱掉衣服。

08
结 语

肠道相关微生物群的组成和功能及其在人类健康中的病理生理作用一直是活跃的研究领域。现代技术的不断进步进一步推动了心力衰竭研究的前沿,探索了心力衰竭的新方面。

本文总结了有关肠道菌群及其代谢产物对心力衰竭及其相关风险因素的影响。心力衰竭与肠道微生态失调、细菌多样性低、肠道潜在致病菌过度生长和产短链脂肪酸菌减少有关。肠道通透性增加,允许微生物移位和细菌衍生的代谢产物进入血液,这与心力衰竭的进展有关。

靶向被破坏的肠道微生物群可以被认为是一个有效的治疗目标。有许多方法可以用来调节失调的肠道微生物群,如饮食干预(包括益生元、益生菌)、生活方式调整、补充剂、粪菌移植等。

然而这些方式带来的效果可能各不相同,因为这在很大程度上取决于每个个体的肠道菌群特征,也包括遗传背景、肠道屏障功能等。因此,通过肠道菌群健康检测,以及基于菌群特征开发个性化的微生物组疗法,或为心力衰竭临床治疗带来新的途径。

注:本账号内容仅作交流参考,不作为诊断及医疗依据。

主要参考文献:

Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol. 2019 Mar;16(3):137-154. doi: 10.1038/s41569-018-0108-7. PMID: 30410105; PMCID: PMC6377322.

Lu X, Liu J, Zhou B, Wang S, Liu Z, Mei F, Luo J, Cui Y. Microbial metabolites and heart failure: Friends or enemies? Front Microbiol. 2022 Aug 15;13:956516. doi: 10.3389/fmicb.2022.956516. PMID: 36046023; PMCID: PMC9420987.

Desai D, Desai A, Jamil A, Csendes D, Gutlapalli SD, Prakash K, Swarnakari KM, Bai M, Manoharan MP, Raja R, Khan S. Re-defining the Gut Heart Axis: A Systematic Review of the Literature on the Role of Gut Microbial Dysbiosis in Patients With Heart Failure. Cureus. 2023 Feb 12;15(2):e34902. doi: 10.7759/cureus.34902. PMID: 36938237; PMCID: PMC10014482.

Malik A, Brito D, Vaqar S, Chhabra L. Congestive Heart Failure. 2022 Nov 7. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan–. PMID: 28613623.

Lupu, V.V.; Adam Raileanu, A.; Mihai, C.M.; Morariu, I.D.; Lupu, A.; Starcea, I.M.; Frasinariu, O.E.; Mocanu, A.; Dragan, F.; Fotea, S. The Implication of the Gut Microbiome in Heart Failure. Cells 2023, 12, 1158.

Gallo A, Macerola N, Favuzzi AM, Nicolazzi MA, Gasbarrini A, Montalto M. The Gut in Heart Failure: Current Knowledge and Novel Frontiers. Med Princ Pract. 2022;31(3):203-214. doi: 10.1159/000522284. Epub 2022 Jan 28. PMID: 35093952; PMCID: PMC9275003.

Branchereau M, Burcelin R, Heymes C. The gut microbiome and heart failure: A better gut for a better heart. Rev Endocr Metab Disord. 2019 Dec;20(4):407-414. doi: 10.1007/s11154-019-09519-7. PMID: 31705258.

Chen X, Li HY, Hu XM, Zhang Y, Zhang SY. Current understanding of gut microbiota alterations and related therapeutic intervention strategies in heart failure. Chin Med J (Engl). 2019 Aug 5;132(15):1843-1855. doi: 10.1097/CM9.0000000000000330. PMID: 31306229; PMCID: PMC6759126.

Trøseid M, Andersen GØ, Broch K, Hov JR. The gut microbiome in coronary artery disease and heart failure: Current knowledge and future directions. EBioMedicine. 2020 Feb;52:102649. doi: 10.1016/j.ebiom.2020.102649. Epub 2020 Feb 12. PMID: 32062353; PMCID: PMC7016372.

肠道短链脂肪酸如何让人变胖或变瘦

谷禾健康

在目前的审美中,无论男性或女性的肥胖都是不太加分项。除此之外,肥胖还被认为是几种疾病的重要标志物,特别是高血压、2 型糖尿病 (T2DM) 和代谢综合征,肥胖在这些疾病中发挥着明确而重要的病理作用。

肥胖的发生有多种病因,其中遗传倾向、错误的饮食习惯(脂肪食物)和生活方式(缺乏运动)是重要的。除此之外,某些激素失衡某些药物的副作用也有助于肥胖的形成和发展。但可惜这些致病因素无法解释所有肥胖的原因。

因此,世界范围内的研究正在继续寻找和探究,旨在找出上述因素以外的因素,以便对肥胖实行更好的管理和补救措施,从而防止这一世界性流行病的发展和由于其导致的严重病理负担

治疗肥胖有多种方法,包括饮食控制、基于激励的锻炼计划和胃绕道手术等,但并不适用于所有人。

最新研究进展揭示了肠道微生物群的构成和代谢与肥胖发生之间存在的关系。肠道微生物会帮助消化大部分食物,将其转化为营养物质、神经递质、维生素、激素等。肠道微生物组通过这些代谢物,可以影响几乎所有代谢活动

短链脂肪酸作为肠道菌群代谢产物之一,在肥胖中发挥重要作用,本文一起来了解一下。

什么是短链脂肪酸 (SCFA)?

短链脂肪酸(SCFA)是身体和饮食中的一种脂肪酸。链长是指化合物主链中的碳原子数 (C)。

短链脂肪酸(SCFA):5 个或更少的碳原子

中链脂肪酸(MCFA):6 至 12 个碳原子

长链脂肪酸(LCFA):13 至 21 个碳原子

极长链脂肪酸(VLCFA):22 个或更多碳原子

短链脂肪酸是少于 6 个碳 (C) 原子的脂肪酸。

其中乙酸盐 (C2)、丙酸盐(C3)和丁酸盐 (C4)是主要的短链脂肪酸,是在结肠中碳水化合物的细菌发酵过程中形成的。

短链脂肪酸的存在会使回肠(小肠末端)到盲肠(大肠起点)的肠道 pH 值降低,从而防止有害细菌(如肠杆菌科和梭状芽胞杆菌)过度生长。

短链脂肪酸有助于修复“肠漏”,通过增加粘蛋白 2 (MUC-2) 的分泌来加强肠壁,从而防止LPS穿过屏障

人体肠道中的短链脂肪酸

目前肠道微生物组,已经被视为是免疫系统和部分能量调节器的 “器官”。肠道微生物群促进消化和食物吸收以产生宿主能量 ,并提供维生素和短链脂肪酸。

短链脂肪酸是由肠道中的友好细菌产生的,它们是结肠细胞的主要营养来源。

在结肠中存在的总短链脂肪酸中,健康人体内的90%-95%是乙酸盐、丙酸盐和丁酸盐。

大多数短链脂肪酸在结肠中被吸收,与碳酸氢盐交换。短链脂肪酸是酸性的,而碳酸氢盐是碱性的。

短链脂肪酸和肥胖

关于短链脂肪酸和体重的信息存在一些相互矛盾的信息:

  • 一方面,它们增加了热量利用率;
  • 另一方面,它们与肥胖呈负相关

总体而言,丁酸盐似乎对肥胖具有广泛的保护作用,丙酸盐具有混合关联,而乙酸盐与体重增加有关。

肥胖个体的粪便中短链脂肪酸浓度比瘦的个体高 20%。根据一些研究人员的说法,这可能反映了一种针对肥胖的补偿性保护机制,其中更多的量从粪便中排出。这将防止肠道中短链脂肪酸的积累增加,这可能导致体重增加。

丁酸盐和丙酸盐等短链脂肪酸会增加肠道激素胰高血糖素样肽 1 ( GLP-1 ) 和多肽 YY ( PYY ) 的形成。这些通过降低食欲来减少食物摄入量。丁酸盐和丙酸盐主要是抗肥胖的。

丁酸盐

丁酸盐主要被结肠细胞用作主要的能量来源。

丁酸盐的产生受产丁酸菌数量和大肠 pH 值的影响。丁酸盐主要由肠道中的厚壁菌门细菌产生,会影响大脑中的基因表达。产丁酸菌似乎在更酸性的环境(较低的 pH 值)中茁壮成长,而乙酸和丙酸盐细菌似乎在更碱性的环境(更高的 pH 值)中茁壮成长。

结肠细胞的线粒体中,70%~90%的丁酸被氧化成乙酰辅酶A,随后通过三羧酸循环产生大量的ATP。丁酸盐已被发现可增加线粒体活性,预防代谢性内毒素血症,提高胰岛素敏感性,抗炎潜力,增加肠道屏障功能并防止饮食引起的肥胖

除此之外,研究人员还在研究丁酸盐对抗自身免疫、癌症和心理障碍等方面的潜力。

丙酸盐

丙酸盐还通过门静脉循环到达肝脏,用于产生葡萄糖。丙酸盐是肝脏进行糖异生的主要能量来源,激活三羧酸循环,改变下丘脑食欲调节神经肽的表达谱,也能刺激脂肪组织增加瘦素的表达与释放。

丙酸盐已观察到可能促进或抑制肥胖的作用,但总体而言,它似乎对肥胖具有保护作用。

丙酸盐可抑制胆固醇合成,从而拮抗乙酸盐的胆固醇增加作用,并抑制脂肪细胞中抵抗素的表达。而且,已发现这两种短链脂肪酸通过其对厌食性肠道激素的刺激作用增加瘦素的合成来引起体重调节。

乙酸盐

在所有三种短链脂肪酸中,乙酸盐似乎显示出更多的致肥胖潜力。它充当脂肪生成胆固醇合成的底物。高脂肪饮食增加了 LPS 的吸收,而 LPS 又被发现与代谢性内毒素血症有关,并诱发炎症导致肥胖。

肠道中相当大比例的乙酸盐很容易被吸收并到达肝脏(通过门静脉循环),在那里它被用来制造胆固醇

人体研究表明,在6名志愿者的饮食中给予乳果糖(经微生物群代谢产生大量乙酸盐)2周后,总胆固醇和LDL胆固醇、ApoB和血液中的乙酸盐水平均显著升高。

虽然乙酸盐主要是致胖的,但它也有一些可以防止肥胖的特性,其作用低于丁酸盐和丙酸盐。根据一些研究人员的说法,它可能通过增加GABA对抗下丘脑(弓状核)的体重增加

细菌种类和肥胖

肥胖动物和人的微生物群落多样性较低,拟杆菌门、疣微菌的百分比较低厚壁菌门和放线菌的百分比较。但是其中一些结果没有并不能在所有研究中重现。

种属层面:

<来源:谷禾健康肠道菌群检测数据库>

以下微生物导致肥胖的证据较少:

与较瘦的受试者相比,肥胖小鼠和人类体内的产甲烷古菌含量更高。

M. smithiiB. thetaiotaomicron的共定植导致膳食果聚糖发酵成乙酸盐,从而显着增加脂肪生成

M. smithii存在于 70% 的人类中,它会产生甲烷。已发现通过去除氢原子来增强多糖和其他碳水化合物的发酵,导致更多的短链脂肪酸产生,从而增加它们的吸收。这些短链脂肪酸作为额外的能量来源发挥作用,可能导致体重增加和随后的肥胖。

与瘦受试者和胃绕道手术后的受试者相比,肥胖个体的产氢普雷沃菌科(一种拟杆菌门)和甲烷杆菌目(古细菌,它们是一种氧化产甲烷菌)的数量处于较高水平。研究人员假设氢气减少了,这使得短链脂肪酸的产量更高。这导致更多的能量被肠道吸收。

已发现肥胖人类和小鼠的肠道菌群特征如下:

  • 普通拟杆菌Bacteroides vulgatus相对比例低
  • Erysipelotrichi 较高(与儿童热量摄入增加有关)
  • OscillibacterClostridium簇XIVaIV(在易肥胖的小鼠中发现,并且在其抗肥胖的对应物中完全不存在)
  • 瘤胃球菌高(其大多数物种属于几个梭菌簇,包括梭菌簇 IV 和 XIVa)
  • 已发现Clostridium leptum(簇IV)与肥胖和体重减轻有关
  • F. prausnitzii 与肥胖和糖尿病中低度炎症状态的减少直接相关(与卡路里摄入量无关)

增加短链脂肪酸的食物来源

直接含有短链脂肪酸的食物

主要来源是乳制品,黄油等,其中含有丁酸盐。例如,黄油大约含有 3% 至 4% 的丁酸。这听起来可能不多,但它比大多数其他食物都多。推而广之,酥油还含有丁酸。

其他类型的乳制品也很重要。开菲尔和酸奶通常含有益生菌。这些益生菌可以帮助提高短链脂肪酸水平,只要没有乳糖吸收问题。

然而需要注意的是,以上食物如黄油类的并不能多吃,而通过食物改善肠道菌群组成,从而增加短链脂肪酸是相对有效和安全的方式。

因此,饮食方式对于调节体内短链脂肪酸较为重要,低碳水化合物、高脂肪(或高蛋白)饮食可能降低丁酸盐的产量,因为这样的饮食方式可能会剥夺肠道中产丁酸的细菌最喜欢的食物。那么具体该怎么吃?

通过菌群调节增加短链脂肪酸的食物

大量富含纤维和抗性淀粉类的食物,例如水果、蔬菜和豆类,与短链脂肪酸的增加有关。其中每一种都是由许多不同的底物(食物中的元素)产生的,并且影响不同的肠道微生物,进而影响不同的短链脂肪酸的产生,在调节体重方面发挥着不同的作用。

一项针对 153 人的研究发现,植物性食物摄入量增加与粪便中短链脂肪酸含量增加之间存在正相关关系。

纤维摄入量和类型间接影响短链脂肪酸生成

摄入的纤维量和类型会影响肠道细菌的组成,进而影响短链脂肪酸的产生。例如,研究表明,多吃纤维会增加丁酸盐的产量。

以下类型的纤维最适合在结肠中产生短链脂肪酸

菊粉:进食菊粉刺激肠道菌群中芽孢杆菌属和拟杆菌属的细菌,产生短链脂肪酸显著提高。菊粉还能维持肠黏膜屏障的稳态,激活AMPK,缓解糖脂代谢紊乱,恢复免疫监控,防止肥胖等代谢性综合征的出现。

  • 大蒜、韭菜、洋葱、小麦、黑麦和芦笋中可以获取菊粉。

低聚果糖 (FOS):低聚果糖主要用作替代甜味剂。

  • FOS 存在于各种水果和蔬菜中,包括香蕉、洋葱、大蒜和芦笋
  • 也存在于某些谷物和谷物中,例如大麦和小麦
  • 低聚果糖最集中的来源是菊芋、雪莲果。但很多人不会经常吃这些。

抗性淀粉:抗性淀粉具有许多优点,与肠道健康特别相关,一些研究人员认为,吃富含抗性淀粉的饮食可以促进产丁酸菌的生长。抗性淀粉如绿色香蕉,还可以帮助降低血糖水平。

  • 大麦和糙米等全麦谷物含有抗性淀粉。
  • 扁豆、绿色香蕉(但不是黄色香蕉)、煮熟后冷却的土豆和红薯也是极好来源。
  • 一些块茎类如山药,也可以获取抗性淀粉。

果胶:水果是果胶的最主要来源——通常含有 5% 至 10% 的果胶。

  • 果胶含量很高的水果包括桃子、苹果、橙子、葡萄柚和杏子
  • 柑橘类水果对果胶特别有效,尽管数量会因品种而异。柑橘皮作为果胶的来源更为有效。
  • 相比之下,樱桃和草莓等软质水果通常含有较低水平的果胶。
  • 胡萝卜是果胶含量最高的植物来源,一根大胡萝卜含有约0.58克果胶。
  • 西红柿(中号番茄 0.37 克)和马铃薯(中号马铃薯 0.64 克)也是有用的果胶来源。
  • 豌豆是果胶的最高豆类来源,每杯含有近一克果胶。
  • 谷物也是果胶的良好来源。

阿拉伯木聚糖:阿拉伯木聚糖存在于谷物中。

  • 它是麦麸中最常见的纤维,约占总纤维含量的 70%。

阿拉伯半乳聚糖,也称为甘露半乳聚糖,是一种有助于为肠道提供短链脂肪酸的糖类。

瓜尔豆胶跻身提供短链脂肪酸的食品之列。瓜尔豆胶是一种增稠剂,来自一种豆类。极少量的瓜尔胶对肠道有益,但大量会导致腹胀和胀气。

目前还有短链脂肪酸补充剂。最常见的类型是丁酸盐,如丁酸钠。这些补充剂是直接提供,而不是让身体去产生它。可能存在的问题是,使用这种类型的补充剂,丁酸盐通常在化合物到达结肠之前很久就被吸收了。这可能意味着带来的健康效果不佳,但是不能排除部分情况下补充剂可能仍然有用

每种食物都有自己独特的营养成分,保持饮食多样性可以最大程度避免某些营养物质的缺乏。

一般人对饮食和补充剂的反应各不相同,因为每个人都有独特的“健康密码”。可能有些人吃了抗性淀粉或者高膳食纤维食物会出现腹胀,胀气等问题,可以进行肠道菌群健康检测,查看是哪些菌群超标可能带来的消化道问题。

需要深度挖掘自己的健康信息,并找到可能导致慢性健康问题的原因,然后根据个性化的建议调整,从而帮助达到最佳健康状态。

主要参考文献

Kallus SJ, Brandt LJ. The intestinal microbiota and obesity. J Clin Gastroenterol. 2012 Jan;46(1):16-24. doi: 10.1097/MCG.0b013e31823711fd. PMID: 22064556.

Chakraborti CK. New-found link between microbiota and obesity. World J Gastrointest Pathophysiol. 2015 Nov 15;6(4):110-9. doi: 10.4291/wjgp.v6.i4.110. PMID: 26600968; PMCID: PMC4644874.

Chakraborti CK. New-found link between microbiota and obesity. World J Gastrointest Pathophysiol. 2015 Nov 15;6(4):110-9. doi: 10.4291/wjgp.v6.i4.110. PMID: 26600968; PMCID: PMC4644874.

Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, Nauta A, Scott K, Stahl B, van Harsselaar J, van Tol R, Vaughan EE, Verbeke K. Short chain fatty acids in human gut and metabolic health. Benef Microbes. 2020 Sep 1;11(5):411-455. doi: 10.3920/BM2020.0057. Epub 2020 Aug 31. PMID: 32865024.

How Your Gut Microbiota Can Make You Fat (or Thin),Last updated: August 24, 2022,selfhacked

Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de Los Reyes-Gavilán CG, Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front Microbiol. 2016 Feb 17;7:185. doi: 10.3389/fmicb.2016.00185. PMID: 26925050; PMCID: PMC4756104.


肠道核心菌属——优/真杆菌属(Eubacterium),你为什么要关心它?

谷禾健康

Eubacterium        通常翻译为真杆菌属或优杆菌属

Eubacterium革兰氏阳性细菌,属于真杆菌科,厚壁菌门。

Eubacterium 是在健康人结肠中发现的一种重要的肠道细菌,它是人类肠道微生物群的核心菌属之一,并显示出在大部分人群肠道,口腔等部位的广泛定植,对机体有营养代谢和维持肠道平衡有重要的作用。但是少数菌种可与其它兼性厌氧菌造成混合感染,引起人心内膜炎,盆腔炎等疾病。

这个家族的成员很重要,因为许多菌种产生短链脂肪酸,尤其丁酸。短链脂肪酸普遍被认为对维持人体健康具有多种重要作用,例如充当肠道上皮特殊营养和能量组分、保护肠道黏膜屏障、降低人体炎症水平和增强胃肠道运动机能等等。

F.prausnitziiEubacterium rectaleEubacterium halliiRoseburia gutisRuminococcus bromii是人类肠道中产生丁酸的主要物种。真杆菌属的几个成员均产生丁酸盐,丁酸盐在能量稳态、结肠运动、免疫调节和肠道炎症抑制中起着关键作用。

同时真杆菌属成员还被证明在以下过程发挥关键作用:

胆汁酸和胆固醇转化

参与草酸盐分解代谢

促进抗炎分子的产生

预防气道过敏性炎症

降低胰岛素分泌并增加“健康”脂肪的水平

与下腹部脂肪之间的关联

在越来越多的肠道菌群研究中发现,Eubacterium的减少或缺乏与很多疾病相关,比如抑郁和/或疲劳、肥胖、IBD、II型糖尿病、心脑血管、结直肠癌、自闭症、老年肌少症、肠道健康以及肿瘤预后良好和肠道稳态状态等。

该属的多个物种目前被认为是微生物治疗的有希望的目标。事实上,基于谷禾长期的菌群检测实践与肠道微生物科学研究等达成的“共识”表明,肠道真杆菌属(Eubacterium罗氏菌属(Roseburia)和粪杆菌属, (Faecalibacterium, 也称为普拉梭菌)等的特定产丁酸盐微生物菌株属于对人类健康有益的菌属,其作用方式与乳杆菌属和双歧杆菌属菌株可能相同。

但是,需要注意的是,Eubacterium属正如下面进一步讨论的一样,很难定义,因为最初分配给该属的几个物种随后被重新分配给现有的或新的属。即使是现在,该属在系统发育上仍然是多样化的,成员可以被分配到几个谱系。认识到这种分类学的变化,我们将包括一些最近重新分配给其他属的前真杆菌属物种。此外,本文也将在很大程度上讨论对真杆菌属的与肠道以及健康相关的信息。

01
简 介

真/优杆菌属(Eubacterium)是人类胃肠道含量较为丰富的菌属,是人和动物口腔与肠道正常菌群的成员。

该属由系统发生学上和表型上不同的物种组成,使真杆菌属成为分类学上独特且具有挑战性的属。该属的特征是包含多种表型多样化的物种,革兰氏阳性杆状生物属,非孢子形成,这些细菌的特点是坚硬的细胞壁。它们可以是能动的或不能动的。如果能动,它们就有鞭毛。通常单独出现,成对出现,或短链。偶尔与腹部、骨盆或泌尿生殖道的混合感染有关。

该物种是厌氧的,这使得真杆菌属的表型鉴定非常耗时,这可能一定程度抑制了对从粪便中分离的属成员的详细研究。

02
代谢与生态分布

真杆菌属

Eubacterium

化能有机营养,发酵代谢,有些种利用碳水化合物。发酵葡萄糖或蛋白胨的主要产物通常包括大量的丁酸、乙酸或甲酸并有可测得的H2的混合酸。接触酶阴性,通常吲哚阴性。可能还原硝酸盐,可能液化明胶。

1938年首次提出,常在哺乳动物的口腔和肠道中发现,包括在反刍动物的瘤胃以及在环境中。

该属构成人类肠道微生物群的核心属之一,并显示出在全世界人类肠道的广泛定植,包括亚洲、非洲、澳大利亚、欧洲、南美洲、北美洲等不同人群中,表明该菌属具有高度的特异性和适应性。真杆菌属DNA(G + C)含量约为30~57mol%,代表菌种为黏液真杆菌

多数物种要求特殊的厌氧培养技术和营养丰富的培养基,菌落通常低凸或平坦。这个属里的有些种在自然界中可被糖乳酸化或可运动。

本属细菌从碳水化合物或蛋白胨中产生有机酸混合物,其可能包括大量的丁酸、乙酸和甲酸。

03
系统发育上是多样性

根据Bergey的《细菌和古菌系统学手册》以及NCBI分类学的最新版本,真细菌属属于厚壁菌门、梭状芽胞杆菌目和真细菌科。

由于该属的定义相当宽松,目前该属中的许多物种不属于严格意义上的属,很可能会及时移至新的或现有的属中。

2020年爱尔兰Cotter 团队提供了该树的更新,以显示该属某些成员与其他密切相关物种之间的系统发育关系(下图)。

真杆菌属的系统发育关系

doi: 10.1080/19490976.2020.1802866

▸ 真杆菌属的重新分类

经过重新分类的真杆菌属的大多数成员被归入厚壁菌门,并广泛分布于其中。例如,E. formicgeneransE. timidum,它们分别被重新分配到DoreaMogibacterium

然而,其他几个成员已被重新分配到其他门;实例包括将真杆菌物种重新分配给Slackia CryptobacteriumEggerthela等属,所有这些属都属于放线菌门

值得注意的是,某些E. cylindroides等真杆菌属物种可能同时表现出革兰氏阳性和革兰氏阴性特征,从而在分类学分配中经常实施的基本表型特征中产生歧义;这进一步导致了真杆菌属物种分类的相当大的混乱

▸ 狭义的真杆菌属

有人提出,狭义真杆菌属的核心基因型仅限于该属的模式种Eubacterium limnosum,以及Eubacterium callanderi Eubacterium barkeriEubacterium aggregans,当有足够的基因组和系统发育证据支持时,其余物种可能被同化为/重新分类为现有或新属

为实用起见,迄今为止,成员已根据系统发育特征分为子类别。提议的松散系统发育子类别之一包含E. rectaleE. oxidoreducensE. ramulusRoseburia cecicolaR. intestinalis,其中除E. oxidoreducens之外的所有物种都产生丁酸盐并且是糖分解的

▸ 进一步分类的必要性

后来又有科学家提出了对其中一些物种进行重新分类的有力案例。E. eligens是一种重要的肠道真杆菌,已被发现与Lachnospira pectinoschiza具有相当大的系统发育和表型相似性,并且随着进一步证据的可用性而值得重新分类

鉴于它们不同的表型和系统发育特征,某些对肠道健康很重要的真杆菌属物种已经或计划进行重新分类。例如,建议将E. hallii重新分类为Anaerobutyricum hallii Comb。

2020年11月,报道了一种类似的新型产丁酸盐和丙酸盐的物种Anaerobutyricum soehngenii。事实上,E. halliiE. indolisE. cellulosolvensE. plexicaudatumE. ruminantiumE. saburreumE. xylanophilumE. uniforme 和 E. ventriosum 一起构成了真杆菌属中有趣的种。

值得注意的是,这一群体的成员在系统发育上或表型上与该属中的其他物种没有亲缘关系,并表现出独特的特征,从而为每个物种创建一个新的属。

▸分类对人类微生物群研究影响大,重新分类需谨慎

此外,最近有人提议将最重要的肠道微生物之一直肠肠杆菌重新归类为直肠Agathobacter。然而,这种重新分类受到其他科学家等人的质疑。认为没有理由重新分类并指出其分类学或系统发育隶属关系的任何变化都将对人类微生物群研究产生重大影响。

可以理解的是,提出的分类学重新分配尚未被普遍接受,事实上,如前所述,在考虑真杆菌属任何成员的分类学分类和报告时必须小心。与属的分类有关的进一步努力应该主要关注基因型,并强调基因组特征

真杆菌属目前的模式菌种为黏液真杆菌(Eubacterium limosum)。研究较多的是:

  • 黏液真杆菌(Eubacterium limosum)
  • 迟缓真杆菌(Eubacterium lentum)
  • 直肠真杆菌(Eubacterium rectale)
  • 霍氏真杆菌 (Eubacterium hallii)
  • 惰性真杆菌 (Eubacterium siraeum)
  • 挑剔真杆菌 (Eubacterium Eligens)

04
哪些因素影响肠道真杆菌属

饮 食

饮食是决定肠道菌群组成和多样性的最重要因素之一。就真杆菌属而言,它们在肠道中的存在在很大程度上与膳食纤维摄入量增加有关,多项研究证真杆菌属对消化抗性复合碳水化合物的利用,并且已被证明随着饮食中蛋白质/脂肪百分比的增加而减少

E. halliiE. rectale被证明能够利用证明能够利用补充有抗性碳水化合物的培养基,即长链的果聚糖,如低聚果糖、高性能菊粉。

▸ 地中海饮食增加真杆菌属的数量

多项研究报告称,西方饮食中动物蛋白和脂肪比例增加且纤维含量低,导致肠道细菌丰度显着下降,包括双歧杆菌和真杆菌属等理想的菌群。涉及地中海饮食的研究也表明,地中海饮食可以增加肠道中真杆菌属(Eubacterium的数量。

研究显示45岁男性食用富含多不饱和 omega-3 脂肪酸的饮食时,肠道微生物群的变化,包括真杆菌在内的几种丁酸盐菌的丰度急剧增加,表明多不饱和脂肪酸对真杆菌的正向调节

年 龄

衰老过程中,胃肠道会发生变化,包括粘膜屏障和肠神经系统的退化以及肠道运动的改变和胃肠道病变的增加。

▸老年菌群多样性↓,短链脂肪酸生成↓,肠道炎症↑

总的趋势是,老年人的微生物群多样性随着丁酸盐生产者的减少和潜在病原体数量的增加减少。肠道中短链脂肪酸生成的减少可导致肠上皮细胞粘蛋白分泌受损,从而增加病原体进入肠粘膜的机会, 潜在的肠道炎症

老年人中,肠道相关淋巴组织 (GALT) 受损会加剧肠道炎症,导致无法有效控制常驻微生物群并导致肠细胞释放促炎细胞因子和趋化因子;后者驱动效应 TH1、TH2 和 TH17 细胞的分化。

与上面观察结果一致的是,在百岁老人中,在百岁老人中发现了E. hallii、E. rectale 和 E.ventriosum相对比例降低,而来自变形杆菌门的潜在致病细菌增加

▸ 真杆菌:老年肠道微生物生态系统中的关键物种

后续的研究进行的一项广泛研究强调了真杆菌属的有益作用,其中调查了一大群老年人(n=612),以评估地中海饮食对其肠道微生物群的调节作用。作者报告称,真杆菌(Eubacterium)物种,如直肠真杆菌(E.rectale)和 E.eligens与一些较低虚弱、认知能力提高以及短/支链脂肪酸产量增加的标志物呈正相关。

真杆菌与炎症标志物如IL-2和C反应蛋白呈负相关。此外,网络分析显示,真杆菌属是老年肠道微生物生态系统中的关键物种。然而,与这些一般观察结果相反,其他研究推断出真杆菌属与年龄之间存在正相关。

05
Eubacterium 的健康特性

真杆菌有助于肠道健康

短链脂肪酸有益于人类健康,它们由不同的结肠微生物群产生,包括来自真杆菌属的几种物种(上图)。

▸ E. rectale 是研究最广泛的真杆菌种之一

它首先从健康的日本-夏威夷男性的粪便中分离出来,被确定为主要的丁酸盐生产者,能够利用复杂的碳水化合物(如纤维二糖和淀粉)进行生长和增殖。

▸ 产丁酸的途径,与真杆菌相关

E. hallii是人体肠道中的丁酸盐生产者。在肠道中,丁酸可以通过糖酵解从碳水化合物中产生,其中两分子乙酰辅酶A结合形成乙酰乙酰辅酶A,然后逐步还原生成丁酰辅酶 A。

目前已知丁酸CoA最终转化为丁酸的两种不同途径;这通过丁酸CoA:乙酸CoA转移酶途径或磷酸转丁酸酶和丁酸激酶途径进行。丁酰辅酶 A 转移酶途径与丁酸合成基因与直肠真杆菌和Roseburia等物种密切相关。

其他真杆菌种也采用相同的途径,例如E. halliiE. biforme(现在重新归类为Holdemanella biformis)用于生产丁酸盐。

▸ 丁酸高产的真杆菌属——E. rectale 和 E. hallii

E. rectaleE. hallii随后被确定为肠道中的高产丁酸盐生产者。它们被发现是人类粪便微生物群中最丰富的 10 个成员之一,贡献了从 10 名健康志愿者的粪便样本中检索到的超过 44% 的丁酰辅酶 A:乙酸 CoA 转移酶序列。

瑞士最近的一项队列研究也表明,E. hallii 是婴儿肠道中丁酸的首批生产者之一。

▸ 转化为丙酸的1,2-丙二醇可被E. hallii 代谢

肠道微生物通过糖发酵的两种途径形成丙酸。虽然琥珀酸途径处理大多数戊糖和己糖产生丙酸,但丙二醇途径代谢脱氧糖如岩藻糖和鼠李糖。后者作为膳食(例如人乳低聚糖)或宿主衍生(粘蛋白)聚糖在肠道环境中很容易获得,并且在被各种肠道微生物利用后可以产生 1,2-丙二醇作为最终产物。虽然不能降解脱氧糖,但 1,2-丙二醇可被E. hallii代谢,已证明携带甘油/二醇脱水酶PduCDE,这是1,2-丙二醇转化为丙酸和丙醇并生成一个ATP的关键酶

1,2-丙二醇转化为丙酸取决于维生素B12的有效性,并发生在称为多面体的小隔间内,以隔离有毒中间体丙醛。

虽然真杆菌属(Eubacterium)可以降解复合碳水化合物,但某些真杆菌属菌株可能缺乏降解特定复合碳水化合物的能力,并依赖于其他肠道微生物产生的代谢产物;然后,这些其他肠道微生物产生的发酵产物可以被真杆菌利用。

▸ 交叉喂养机制在真杆菌属生产短链脂肪酸中的重要性

已在多个实例中得到证明。在这些研究中,真杆菌与双歧杆菌在复合碳水化合物存在下共培养。这些双歧杆菌菌株能够降解阿拉伯木聚糖低聚糖岩藻糖基乳糖等复合碳水化合物,可产生乙酸盐、乳酸和 1,2-丙二醇,所有这些物质又被真杆菌属吸收和利用,生成丁酸和丙酸。真杆菌属这种交叉喂养的证据。

这不仅强调了肠道微生物抗性碳水化合物的产丁酸作用之间的协同相互作用,而且强调了肠道微生态整齐的生态互作,不是关注一个菌而是整体的菌群健康状况。同时也突出了真杆菌属在维持肠道健康中的生态作用。

真杆菌调节预防肠道炎症

研究已经证实丁酸盐构成了结肠细胞的主要能量来源,促进了它们的增殖、成熟,发育成健康的结肠。事实上,据报道,E. rectale 直肠真杆菌优先定殖粘液层,从而增加丁酸盐对上皮结肠细胞的生物利用度

▸ 短链脂肪酸促进肠道完整性

此外,短链脂肪酸已被证明在通过促进肠道完整性和调节免疫反应来调节肠道炎症方面发挥重要作用。短链脂肪酸可以通过上调紧密连接蛋白(例如 claudin-1 和 occludin)以及肠粘蛋白、粘蛋白 2 来改善肠上皮抵抗力。

▸ 短链脂肪酸激活GPCR,抑制HDAC

短链脂肪酸对免疫反应的调节,包括G 蛋白偶联受体 (GPCR) 的激活和组蛋白脱乙酰酶 (HDAC) 的抑制。 短链脂肪酸可以结合至少四种离散的 GPCR——FFAR2(游离脂肪酸受体)、FFAR3、GPR109a 和 Olfr78 作为配体,尽管具有不同的特异性。

▸ 短链脂肪酸抑制促炎细胞因子,上调抗炎细胞因子

一些研究表明,短链脂肪酸可以通过抑制促炎细胞因子(如 IFN-γ、IL-1β、IL-6、IL-8 和 TNF-α)发挥抗炎作用,同时上调抗炎细胞因子例如 FFAR2/FFAR3 依赖性方式的 IL-10 和 TGF-β。

GPR109a 激活结肠巨噬细胞和树突状细胞中的炎性体通路,从而诱导调节性 T 细胞和产生抗炎性 IL-10 的 T 细胞的分化。

doi: 10.1080/19490976.2020.1802866

▸ 短链脂肪酸增加IL-18 的产生

短链脂肪酸在肠上皮细胞 (IECs) 中激活 GPR109a 也可以增加 IL-18 的产生,IL-18 是修复和维持肠上皮完整性的关键细胞因子。丙酸盐和丁酸盐对 HDAC 活性的抑制与 IEC 中促炎细胞因子和趋化因子(如 CXCL8 和 CCL20)的表达下调有关。

短链脂肪酸对 HDAC 的抑制也与 β-防御素和导管素(如 LL-37)的表达增加有关。鉴于如上所述,短链脂肪酸广泛参与调节肠道健康,尤其是丁酸盐,由于肠道中短链脂肪酸分布的改变,涉及短链脂肪酸生产者的肠道微生物群失调具有重大影响。

注:组蛋白去乙酰化酶(histone deacetylase,HDAC)是一类蛋白酶,对染色体的结构修饰和基因表达调控发挥着重要的作用。

真杆菌属与炎症性肠病

炎症性肠病 (IBD) 是胃肠道的严重和慢性炎症,其特征在于两种主要的临床表型:克罗恩病 (CD) 和溃疡性结肠炎 (UC)。克罗恩病涉及上皮壁所有层的透壁炎症,而溃疡性结肠炎仅影响浅表粘膜层

▸ IBD患者真杆菌属持续减少

一般来说,IBD 反复表现出肠道微生物群失调,其特征是微生物群的多样性和时间稳定性下降。虽然微生物干扰在 IBD 的发病机制或病因中的确切作用仍在阐明,但包括真杆菌属(Eubacterium在内的丁酸盐生产者的比例在 IBD 受试者中肠道中的持续减少

▸ IBD患者丁酸水平降低

事实上,与非 IBD、健康个体相比,IBD 患者中梭菌簇 IV 和 XIVa 的丰度减少以及伴随的致病变形杆菌增加构成了 IBD 微生物失调的特征,可以被视为生物标志物。因此,在患有 IBD 的患者中通常会观察到肠道丁酸水平降低,从而导致宿主免疫系统调节不当。IBD 和实验性结肠炎患者肠道中短链脂肪酸水平降低也与调节性 T 细胞功能降低和炎症增加相关。

▸ 真杆菌在IBD中提供了丁酸盐介导的保护作用

用溃疡性结肠炎和克罗恩病患者粪便微生物群的体外研究表明,丁酸盐产生者较少,定植能力和丁酸盐产生能力降低;用已知的丁酸盐产生菌(包括真细菌属)补充IBD微生物群可恢复丁酸盐的产生,并改善上皮屏障完整性和定植能力。

真杆菌的作用在接受抗 TNF-α 治疗的患有 IBD 的儿童中,进一步证明了肠道健康中的丁酸盐-抗炎轴E. rectale基线丰度较高的患者对治疗更敏感,E. rectale(直肠真杆菌)的存在预示炎症的成功减轻

在体外和小鼠模型中已经证明了E. limosum粘液真杆菌及其产生的短链脂肪酸对肠道炎症的保护作用。当TNF-α处理刺激时,由E.limsum产生的短链脂肪酸诱导T84结肠细胞生长,并降低结肠细胞IL-6和TLR4的表达,其中丁酸盐是最显著的效应物。此外,与对照组相比,当提供5%的E. limosum时,小鼠在结肠炎诱导时显示出体重和结肠长度的显著保留。这些观察表明,真杆菌属对肠道健康具有丁酸盐介导的抗炎作用,并将其作为炎症性肠道疾病的一种有吸引力的生物治疗药物。

真杆菌属和肥胖

到目前为止,真杆菌属与肥胖的关系仍存在争议,有几份报告表明真杆菌属和肥胖呈正相关。BMI通常被认为是用来衡量肥胖的参数;一些基于BMI的研究也报告了肥胖受试者体内真杆菌的丰度更高

▸ 为什么肥胖人群真杆菌的丰度更高?

有趣的是,据报道,在接受治疗的肥胖受试者中,粪便短链脂肪酸减少的肥胖个体中总丁酸水平较高,这表明碳水化合物和脂质的同化增强,这可能导致肥胖表型。这一观察结果可以解释肥胖个体中丁酸盐产生菌(包括真杆菌属)的丰度较高

仔细观察饮食干预研究表明,肥胖受试者中真杆菌属其他丁酸盐产生者的比例可能主要受饮食影响。在几项研究中,肥胖个体肠道微生物对复合碳水化合物的利用受到限制,一直有报道称真杆菌属的显著减少

对印度肥胖和非肥胖儿童进行的一项研究没有发现各组间直肠大肠杆菌(Eubacterium rectale) 丰度的差异。

综合来看,目前的证据表明,当通过合理数量的复合碳水化合物的持续供应在肠道时,真杆菌属和其他丁酸盐产生菌在肥胖个体中的比例增加,从而促进肠道中的能量提取。肥胖个体的饮食而非改变的代谢参数也可能驱动丁酸盐产生菌(包括真杆菌属)的生长和增殖。

▸ 肠道微生物群调节肥胖的确切机制仍在阐明中

丁酸盐已被证明可以缓解饮食诱导的肥胖和改善葡萄糖稳态,这使得很难得出线性结论。在推断肠道菌群和肥胖之间的直接关联时必须谨慎,因为对于具有多因素影响的代谢综合征,任何的相关性结论可能会过于简单。我们在检测实践中也发现,菌群可能只能解释60%左右的肥胖,肥胖是一种多因素代谢综合征,还与菌群外的其他很多因素相关。

真杆菌影响胃肠激素和胰岛素,缓解 II型糖尿病

在几项研究中,真杆菌属和丁酸盐产生菌胰岛素敏感性呈正相关。最近的独立研究比较了健康和2型糖尿病个体的宏基因组,明确表明肠道微生物群与2型糖尿病病理生理学之间的潜在相关性

▸ 2型糖尿病患者真杆菌显著减少

一项在中国和欧洲人群中进行的研究均报告了2型糖尿病受试者中丁酸盐产生菌(包括真杆菌属)的显著减少。其他研究表明,在人和小鼠胰岛素抵抗模型中,丁酸盐生产商(包括从瘦个体移植的真杆菌属)具有恢复作用。

▸ 粪菌移植后真杆菌的增加,代谢改善

事实上,粪菌移植后真杆菌的增加与胰岛素抵抗个体的代谢改善相关。当向肥胖和胰岛素抵抗的db/db小鼠口服给药时,已表明E.hallii显著改善胰岛素敏感性和能量代谢。

▸ 2型糖尿病的代谢调节,与菌群代谢产物短链脂肪酸相关

短链脂肪酸对肠道激素的刺激和对食物摄入的抑制,是2型糖尿病个体肠道微生物群调节宿主代谢的可能机制。这种提出的机制与观察结果一致,即与FFAR2受体结合的丁酸盐和丙酸盐可以调节饱腹激素,例如生长素释放肽(促食欲肽)、胰高血糖素样肽-1(GLP-1)和PYY(促食欲肽) 。

短链脂肪酸对生长素释放肽和 GLP-1/PYY 的相反调节,其中 GLP_1/PYY 上调,生长素释放肽下调,确保减少食物摄入、饱腹感和减少肥胖。 Ghrelin,也与产生丁酸盐的E. rectale负相关

注:Ghrelin,也被称为“饥饿激素”,刺激食欲,在饭前分泌,而 GLP-1 和 PYY 由肠内分泌 L 细胞合成和释放,刺激胰腺 β 细胞分泌胰岛素,减少食物摄入,使能量正常化摄入量和体重减轻。

▸ 直肠真杆菌高丰度与较低的餐后血糖反应呈正相关

一个大型队列(n=800)进行了一项基于机器学习的研究,以便使用从饮食习惯、肠道微生物群、人体测量、身体活动和血液参数中得出的综合特征数据集来预测个体的个性化餐后血糖反应,也支持真杆菌属在胰岛素敏感性中的肯定作用。在他们的研究中,肠道微生物组的72个特征被推断为具有预测性,其中直肠大肠杆菌Eubacterium rectale)是最强大的特征之一,肠道中较高的细菌丰度与较低的餐后血糖反应呈正相关(n = 430)。

▸ 真杆菌产生的丁酸盐改善胰岛素敏感性和饱腹感

真杆菌产生的丁酸盐也可以通过HDAC(组蛋白去乙酰化酶)抑制介导的胰腺β细胞重编程来改善胰岛素敏感性和饱腹感,从而为2型糖尿病患者提供额外的益处。

▸ 真杆菌产生的短链脂肪酸有助于恢复炎症

据报道,2型糖尿病中存在低度炎症,其中炎症分子在胰岛素靶组织中上调,并导致胰岛素抵抗。例如,TLR4依赖性通过激活胰岛中的巨噬细胞和β细胞产生促炎细胞因子,导致β细胞的调节失调、功能受损和生存能力下降。由真杆菌产生的短链脂肪酸可通过上述机制有助于恢复生理炎症环境。2型糖尿病中其他肠道丁酸盐产生者的持续减少也加强了这种联系。因此,目前的观察结果一致表明,真杆菌属是缓解2型糖尿病的积极贡献者,应被视为一种潜在的治疗方法。

真杆菌属对胆固醇的转化提供预防心血管疾病的保护

20世纪30年代首次报道了肠道细菌将胆固醇转化为粪甾醇(coprostanol),此后进行了几项研究,以确定能够将胆固醇转化成粪甾醇的细菌。许多已鉴定的微生物最终被归入真细菌属

 可降解胆固醇的真杆菌:

——Eubacterium coprostanoligenes HL

Eubacterium coprostanoligenes HL (ATCC 51222) 代表了一种这样的细菌,该菌是从生猪污水泻湖中分离出来的,并且由于其降低胆固醇的特性而受到相当大的关注。

尽管随后有报道称多氏拟杆菌 (Bacteroides dorei)、乳杆菌(Lactobacillus sp)和双歧杆菌(Bifidobacterium sp)具有胆固醇利用特性,但这些特性似乎是暂时性的,可能会丢失,从而使Eubacterium coprostanoligenes HL成为唯一可降解胆固醇可培养肠道分离物。

▸ 肠道微生物群中E. coprostanoligenes 的存在与粪便粪甾醇密切相关

最近,在肠道宏基因组中发现了E. coprostanoligenes 的3β-羟基类固醇脱氢酶同系物,可将胆固醇转化为粪甾醇

有趣的是,这些肠道甾醇代谢A基因(ismA)被归因于尚未培养的肠道微生物,它们与生命树中的真杆菌物种形成了一个连贯的分支,并可能代表了参与肠道胆固醇降低的新真细菌物种

▸ Eubacterium coprostanoligenes的胆固醇代谢

doi: 10.1080/19490976.2020.1802866

来自膳食和额外膳食来源的近1克胆固醇每天到达人体结肠,在那里由共生肠道细菌代谢为粪甾醇。与胆固醇不同,粪甾醇在肠道中吸收不良,并被认为对胆固醇代谢和血清胆固醇水平的调节有影响。

发现血浆胆固醇水平与粪便中胆固醇与粪甾醇的比例之间存在反比关系,这一观点得到了证实。因此,胆固醇向共甾醇的转化被认为是人类胆固醇稳态管理的新策略。作为一种延伸,研究了肠道内高度参与粪甾醇代谢的真杆菌属Eubacterium spp)的降胆固醇作用。

▸ 动物实验发现E. coprostanoligenes降低胆固醇

据报道,喂食E. coprostanoligenes高胆固醇血症兔子的血浆胆固醇水平降低,消化液中的粪甾醇/胆固醇比值增加。在这些兔子中观察到的效果进一步归因于E. coprostanoligenes降胆固醇,因为E. coprostanoligenes优先在空肠和回肠中定殖,这两个地方都是胆固醇吸收的场所。在无菌小鼠中也发现了类似的观察结果。

代谢组学和宏基因组学联合研究的其他结果已经确定了多种细菌门型,包括 Eubacterium eligens ATCC 27750 发光真杆菌ATCC 27750(p=1.477e-02)与高粪便粪便甾烷醇显着相关。

▸ 肠道菌群的变化与胆固醇转化速率直接相关,从而影响心血管疾病风险

动脉粥样硬化性心血管疾病 (CVD) 发展过程中的关键风险因素包括血液胆固醇水平失衡和血清低密度脂蛋白胆固醇浓度高。事实上,CVD 患者的肠道胆固醇吸收更高。值得注意的是,肠道微生物群的变化与胆固醇转化为粪前列醇的速率直接相关,而胆固醇转化为粪前列醇的效率高与 CVD 风险降低有关。

由于它们的降胆固醇作用,真杆菌属和其他降低胆固醇的微生物可以预防心血管疾病

事实上,肠道真杆菌属在动脉粥样硬化受试者中,与已动脉粥样硬化标志物(如低密度脂蛋白、胆固醇和白细胞)呈显着负相关。当给小鼠喂食甲硫氨酸-胆碱饮食以诱发非酒精性脂肪性肝炎时,小鼠肠道中的Eubacterium coprostanoligenes 也减少了,其中对肝脏的损害会抑制内源性胆固醇的产生。

真杆菌属通过胆汁酸代谢促进肠道和肝脏健康

胆汁酸 (BA) 是宿主产生的代谢物,来源于肝脏周围肝细胞中的胆固醇

我们来了解一下肝肠循环。

胆酸 (CA) 和鹅去氧胆酸 (CDCA) 是肝脏中产生的主要 BA,然后与牛磺酸或甘氨酸结合,然后暂时储存在胆囊中;这些胆汁酸随后经过餐后分泌到达肠道。肠道中 95% 的总胆汁酸池被有效吸收并通过门静脉循环回肝脏,这个循环过程被称为肠肝循环。其余的作为肠道细菌代谢的底物,构成胆固醇从体内排泄的关键途径

胆汁酸可以以多种形式出现,包括初级胆汁酸、次级胆汁酸、共轭或非共轭。肠道微生物群的各种成员都能够转化胆汁酸,从而影响局部胆汁酸库的组成以及宿主生理学的其他各个方面。

胆汁盐水解酶(BSH)酶的肠道微生物(包括真杆菌属)能够水解共轭胆汁酸中的C-24 N-酰基酰胺键,以释放甘氨酸/牛磺酸部分。

真杆菌对胆汁酸的修饰与肠肝循环

doi: 10.1080/19490976.2020.1802866

▸ 真杆菌参与人体代谢,通过影响胆汁酸的溶解率,影响胆固醇水平

事实上,真杆菌属与其他属(如RoseburiaClostridium)一起构成了肠道中胆汁盐水解酶的主要储存库。解偶联使BAs的pKa增加到约5,从而使其不易溶解,这反过来导致胆固醇从头合成所损失的胆汁酸的吸收和补充效率低下

▸ 调节胆汁盐水解酶活性来调节宿主的体重增加和胆固醇水平

胆汁盐水解酶活性广泛分布于肠道微生物群中,因此可以通过调节胆汁盐水解酶活性来调节宿主的体重增加和胆固醇水平。解偶联还通过产生的游离胆汁酸重新捕获和输出共转运的质子,从而帮助胆汁解毒,从而抵消 pH 值。

▸ 肠道细菌转化胆汁酸的方式:生成异胆汁盐

肠道细菌转化胆汁酸的另一种方式是通过C3、C7和C12位羟基的氧化和差向异构化,从而生成异胆汁盐(β-羟基)。

聚合涉及从α构型到β构型的可逆立体化学变化,反之亦然,生成稳定的氧代胆汁酸中间体。这一过程由α-和β-羟基类固醇脱氢酶(HSDHs)催化,可以由含有两种酶的单个细菌物种进行,也可以通过两种物种之间的原合作进行,每个物种贡献一种酶。据报道,包括真杆菌在内的几个物种具有HSDH活性

▸ 肠道中胆汁酸的细菌转化,真杆菌能够进行

肠道中的细菌 7α-脱羟基酶将初级胆汁酸、CA 和 CDCA 分别转化为脱氧胆酸 (DCA) 和石胆酸 。尽管从数量上讲,7α-羟基化代表了肠道中胆汁酸最重要的细菌转化,但据报道只有少数肠道微生物的不同成员,如真杆菌和梭菌XIVa 簇能够进行这种反应

▸ 真杆菌:催化初级胆汁酸7α-脱氢化,对肠道健康有重要影响

对真杆菌菌株 VPI 12708 的研究已经鉴定出由胆汁酸诱导型 ( bai ) 操纵子编码的酶,该操纵子催化初级胆汁酸7α-脱氢化的多步途径。

脱氧胆酸DCA 和 石胆酸LCA 通过真细菌对初级胆汁酸的 7α-脱氢化作用产生属 可对主要通过胆汁酸信号受体表现出来的肠道健康和体内平衡产生重大影响。DCA 和 LCA 都是核激素受体法尼醇 X 受体 (FXR) 的高亲和力配体;DCA 或 LCA 激活肠道 FXR 会上调成纤维细胞生长因子 19 (FGF19) 的表达,后者又与肝成纤维细胞生长因子受体 4 (FGFR4) 结合,随后下调肝细胞中胆汁酸的合成。

胆汁酸诱导的信号通路影响胆汁酸稳态和炎症

doi: 10.1080/19490976.2020.1802866

▸ FXR促进抗炎特性,有助于控制病原体

主要是通过抑制 NF-κB 通路和胆汁酸解毒,通过调节增殖物激活受体 α (PPARα)。据报道,FXR 激活可诱导抗菌肽的表达,从而有助于控制病原体

▸ TGR5刺激GLP-1和胰岛素分泌,调节炎症反应

TGR5是一种在与胆汁酸相互作用后激活各种细胞内通路的 GPCR,它也以胆汁酸池中最高的亲和力结合 LCA 和 DCA。一旦被激活,TGR5 会刺激肠促胰岛素激素 GLP-1 和胰岛素的分泌,从而促进能量消耗

此外,TGR5 可以调节炎症反应,这在本质上可以是促炎或抗炎的;BA-TGR5 信号在肠道促炎细胞因子和抗炎细胞因子的复杂平衡中起着关键作用。

LCA 和 DCA 还与孕烷 X 受体 (PXR)、维生素 D 3受体 (VDR) 和组成型雄激素受体 (CAR) 结合,以不同方式影响胆汁酸稳态胆汁酸解毒

生产LCA和DCA的真杆菌属是TGR5的高亲和力配体。

胆汁酸信号受体对微生物群诱导的次生胆汁酸的强亲和力,突出了包括真菌属在内的肠道菌群如何通过胆汁酸信号调节胆汁酸稳态、胆汁酸解毒、控制和维持肠道细菌生长、炎症和血糖反应。

▸ 高脂饮食过度刺激->次级胆汁酸的产生↑->促炎

受饮食和其他因素调节的肠道微生物群可导致特定的胆汁酸分布,进而产生重要后果。高脂肪饮食(HFD)(如西方饮食)过度刺激胆汁酸向肠道的排放,导致肠道微生物群失调,并增加次级胆汁酸的产生,特别是LCA和DCA。

DCA和LCA是胆汁酸池中最疏水的,升高的水平可能具有细胞毒性;DCA和LCA产生的有害影响可通过对DNA的氧化损伤、引发促炎反应和增加细胞增殖来破坏结肠上皮的结构和功能。

▸ LCA/DCA的增加间接与真杆菌相关

在喂食高脂肪饮食的小鼠中,LCA/DCA的增加与梭状芽孢杆菌(一种来自XI梭状芽胞杆菌簇的细菌)丰度的增加相关。令人惊讶的是,据报道,真杆菌属的梭状芽孢杆菌簇XIVa是次要的贡献者,尽管它们表现出7-α羟基化性质。

如上所述,这种观察结果与真细菌属一致,真细菌属受到高脂肪饮食(HFDs)的负调节

高脂饮食引起的肠内继发胆汁酸的重吸收增加,随后转运至肝脏,导致肝脏炎症。由于炎症增加导致FXR信号减少,导致肝胆汁酸转运蛋白功能降低,这会导致持续的肝脏炎症,最终导致肝细胞癌。

肝脏疾病(如肝细胞癌、脂肪酸肝病(FLD)、纤维化和肝硬化)中的生物失调还表现为需氧、促炎、富含BSH的细菌(如肠杆菌和肠球菌)的增加,这也导致继发胆汁酸的产生增加

▸ 肝病患者粪便真杆菌比例较低

事实上,在非酒精性脂肪肝(NAFLD)患者中,粪便中的初级和次级胆汁酸之间的比率以及血清中结合和非结合胆汁酸的水平更高,而真细菌在肝脏疾病中的比例始终较低。与健康个体相比,患有纤维化和肝硬化的受试者的肠道微生物组真细菌种类(如E. rectaleE. hallii 和 E. eligens )显著减少

真杆菌与结直肠癌和炎症性肠病

肠道微生物群产生的二级胆汁酸也可能在结直肠癌(CRC)的发展和建立中发挥关键作用。

▸ 结直肠癌患者中真杆菌属显著减少

如上所述,丁酸盐抑制结直肠癌的发生,并且在结直肠癌患者中通常观察到包括真杆菌在内的肠道中产丁酸盐菌的显著减少。几种丁酸盐生产者,包括属于梭状芽胞杆菌簇 XIVa 的真杆菌属,可以通过初级胆汁酸(BA) 的 7-α 羟基化额外产生次级 BA。

据报道,在患有肠道慢性炎症的 IBD 受试者中,二级 BA 水平显着降低,同时粪便结合 BA 增加,梭菌簇 XIVa 显着减少。

次级 BA 水平的降低导致次级 BA 对肠上皮细胞的抗炎作用丧失,从而加剧慢性炎症。尽管 IBD 中丁酸盐生产者和二级 BA 生产者的损失是分开进行的,但这两个群体有很大的重叠,并且都在肠道慢性炎症中被耗尽

▸ 炎症性肠病患者中真杆菌属显著减少

事实上,最近对肠道宏基因组的生物信息学分析显示,IBD患者中丁酸盐产生者F.prausnitziiE.rectale的数量显著减少。可以理解的是,这组丁酸和次级胆汁酸产生细菌(包括真杆菌属)的缺失促进了IBD的发展,并可能最终发展为结直肠癌,因为在那里观察到类似的肠道微生物群。

实际上,胆汁酸分布和/或肠道微生物群的调节正被作为肝癌结直肠癌新治疗方法

真杆菌参与神经系统疾病

▸真杆菌改善自闭症儿童症状和肠道问题

我国陆军军医大学的专家,去年在《Frontiers in Cellular and Infection Microbiology》上发表了研究报告,指出真杆菌是通过肠道菌群调整,改善自闭症患儿症状,及肠道问题的重要关键菌群。而且该研究验证了特定细菌,即真杆菌特别是其中的粪甾醇真杆菌(Eubacterium coprostanoligenes)丰度变化,可以改善自闭症患儿症状和多种肠道问题,也让调整肠道菌群成为治疗自闭症的新手段。

▸真杆菌可能避免患上痴呆症

来自日本东京工业大学的 Takuji Yamada 团队通过粪便 16S rRNA 基因测序比较了健康、轻度认知功能障碍(Mild cognitive impairment,MCI)和阿尔茨海默病组的肠道微生物组成,发现肠道关键菌株——普拉梭菌 Faecalibacterium prausnitziiF. prausnitzii)具有保护人避免患上痴呆症的作用,此外,真杆菌属在两组之间也是存在显著差异,普拉梭菌和真杆菌都是产丁酸重要的肠道核心菌,可以推断真杆菌属可能也具有保护人避免患上痴呆症的作用。

▸重度抑郁症的真杆菌水平较低

来自中国和美国三个不同机构的的一组研究人员,最近在《Science Advances》上发表了一项研究,指出了人类肠道微生物组紊乱与重度抑郁症(MDD)之间的联系。研究人员从156名重度抑郁症患者和155名没有重度抑郁症的人中,收集了311份粪便样本进行基因分析,发现重度抑郁症患者的粪便样本中,出现了高水平的拟杆菌属 和较低水平的真杆菌布氏杆菌(Blautia。这意味着,重度抑郁症患者可能具有独特的肠道微生物特征,其中真杆菌是重要的菌群特征菌。

真杆菌参与肠道中的关键代谢转化

常驻微生物群对肠道中特定化合物代谢转化对人类健康至关重要。人体无法解毒或分解的物质可能会进入肠道,从而导致毒性作用。

真杆菌属已被证明能够在肠道中进行重要的代谢转化,对人类健康产生积极影响,包括将有毒化合物解毒为更良性的形式。

E.hallii 将致癌物转化为不可用形式

最近报道了E.hallii的多种有益转化E.hallii非常擅长将高度丰富的食物衍生杂环芳香胺致癌物2-氨基-1-甲基-6-苯基咪唑并(4,5-b)吡啶(PhIP)转化为生物学上不可用的形式7-羟基-5-甲基-3-苯基-6,7,8,9-四氢吡啶并[3′,2′:4,5]咪唑并[1,2-α]嘧啶-5-鎓氯化物(PhIP-M1)。

E.hallii 转化后的显示其作为保护剂的潜力

此外,在模拟的近端和远端结肠菌群存在的情况下,E.hallii的PhIP转化导致其丰度分别增加300120倍,表明其作为保护剂的巨大潜力。

在同一项研究中,还观察到E.hallii能够将甘油代谢为3-羟基丙醛(3-HPA),其在水溶液中以罗伊氏菌素(Reuterin的形式存在。有趣的是,罗伊氏菌素已被证明对革兰氏阳性和革兰氏阴性细菌、真菌和酵母具有抑制作用,可能通过调节细胞内谷胱甘肽增加氧化应激,从而使其成为治疗的一个有吸引力的靶点。

注:Reuterin是罗伊氏乳杆菌代谢甘油产生的一种特有广谱抗菌物质,它是一种复杂混合物,主成分为3-羟基丙醛,对多种病原微生物均有较强的抑制作用,在生物防腐方面极具潜力

除了生产短链脂肪酸,需要进一步的研究来真正开发真细菌属所能提供的所有潜在益处。

真杆菌参与肌肉质量

老年肌少症(Sarcopenia)是以肌肉量减少、肌力下降和肌肉功能减退为特征的增龄性疾病。研究表明肠道微生物可以通过参与宿主体内的多条代谢通路来影响宿主肌肉量与肌肉功能。

北京协和医院共招募87名受试者,包括11名肌少症患者、16名可能肌少症(Possible Sarcopenia)患者和60名健康对照受试者发现毛螺菌属(Lachnospira)、真杆菌属和瘤胃球菌属(Ruminococcus)握力具有显著正相关性(P < 0.05),罗氏菌属(Roseburia)、真杆菌属(Eubacterium)和蓝绿藻菌属(Lachnoclostridium)与五次起坐时间具有显著负相关性(P< 0.01),结果提示这些菌属的降低与肌肉量的减少和功能的降低存在相关性。

结 语

Eubacterium

真杆菌属(Eubacterium是一组系统发育多样的微生物,这一事实使得相关的分类学分配具有挑战性

但是,该属的许多现任和前任成员都表现出与肠道健康密切相关,并且作为主要的丁酸盐生产者和核心肠道微生物群组成部分,非常重要。

真杆菌在调节炎症、调节免疫反应、维持肠道屏障完整性、调节血糖反应和胆固醇稳态等方面发挥重要作用。在几种临床条件下与有益效果的强相关性促使人们对该属产生了进一步的兴趣,多个物种被考虑作为下一代益生菌/生物治疗剂进行商业尝试。

最值得注意的是,目前国际上已正在创建含有E. hallii菌株的口服制剂作为生物治疗药物,以降低患有代谢综合征的个体的胰岛素抵抗并预防2型糖尿病的发展。

但是,应该警惕的是,我们对所有相关物种的肠道微生物群在多大程度上影响临床状况以及反之亦然的理解仍然有限。可能需要对严格控制的饮食方案进行纵向研究,在长时间内评估肠道微生物群和相关健康参数,谷禾也在积极推进这样的研究合作,以阐明此类因果关系。

关于真杆菌属的体外和体内表征,需要在基因组、代谢组以及最终在生态水平上进行研究。这将使我们能够更好地了解相对未被充分研究的真杆菌属与肠道微生物组的其他成员相互作用(这也是我们非常看重的),比如它们与其他潜在的下一代健康促进微生物(如Akkermansia muciniphilaF. prausnitzii)分离和组合,以确保其在循证肠道治疗中的有效实践(这也是我们非常看重的)。

主要参考文献

Mukherjee A, Lordan C, Ross RP, Cotter PD. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health. Gut Microbes. 2020 Nov 9;12(1):1802866. doi: 10.1080/19490976.2020.1802866. PMID: 32835590; PMCID: PMC7524325.

Gomes AC, Hoffmann C, Mota JF. The human gut microbiota: Metabolism and perspective in obesity. Gut Microbes. 2018 Jul 4;9(4):308-325. doi: 10.1080/19490976.2018.1465157. Epub 2018 May 24. PMID: 29667480; PMCID: PMC6219651.

akansson A, Molin G. Gut microbiota and inflammation. Nutrients. 2011 Jun;3(6):637-82. doi: 10.3390/nu3060637. Epub 2011 Jun 3. PMID: 22254115; PMCID: PMC3257638.

Wing Sun Faith Chung, Marjolein Meijerink, Birgitte Zeuner, Jesper Holck, Petra Louis, Anne S. Meyer, Jerry M. Wells, Harry J. Flint, Sylvia H. Duncan, Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon, FEMS Microbiology Ecology, Volume 93, Issue 11, November 2017, fix127,

Mukherjee A, Lordan C, Ross P & Paul D. Cotter. Gut microbes from the phylogenetically diverse genus Eubacterium and their various contributions to gut health, Gut Microbes, 12:1.

Chung W S F, Meijerink M, Zeuner B, Holck J, Louis P, Meyer A S, Wells J M, Flint H J, Duncan S H. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon, FEMS Microbiology Ecology, Volume 93, Issue 11, November 2017, fix127,

Chung WSF, Meijerink M, Zeuner B, Holck J, Louis P, Meyer AS, Wells JM, Flint HJ, Duncan SH. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon. FEMS Microbiol Ecol. 2017 Nov 1;93(11).

Peñaloza HF, Noguera LP, Riedel CA and Bueno SM. Expanding the Current Knowledge About the Role of Interleukin-10 to Major Concerning Bacteria. Front. Microbiol. 9:2047.

Iyer SS, Cheng G. Role of interleukin 10 transcriptional regulation in inflammation and autoimmune disease. Crit Rev Immunol. 2012;32(1):23-63.

Nauli A M and Matin S. Why Do Men Accumulate Abdominal Visceral Fat? Front. Physiol. 10:1486. December 2021.

Nie X, Chen J, Ma X, Ni Y, Shen Y, Yu H, Panagiotou G, Bao Y. A metagenome-wide association study of gut microbiome and visceral fat accumulation. Comput Struct Biotechnol J. 2020 Sep 20;18:2596-2609. 

微生物组对肥胖影响的最新研究分析

谷禾健康

在过去的几十年里,肥胖患病率持续快速增长。成为了许多国家的主要医疗保健问题,尤其是在2019年新冠状病毒时代以来。

肥胖是包括心血管疾病在内的一系列疾病不断扩大风险因素。2型糖尿病、慢性肾病、非酒精性脂肪肝病, 负重过大导致的关节炎,甚至许多癌症都与肥胖有关

▸ 肥胖的定义

肥胖定义为身体脂肪过度积累到可能对健康产生不利影响的程度。

一般使用体重指数(BMI;体重(千克)除以身高(米)的平方)进行评估。

我国规定的BMI正常范围在18.5-23.9之间,24-27.9为超重,超过28则为肥胖

肥胖不是单纯的体重增加,而是体内脂肪组织积蓄过剩的状态。肥胖是指一定程度的明显超重与脂肪层过厚,是体内脂肪,尤其是甘油三酯积聚过多而导致的一种状态。

主要原因是由于能量摄入过多机体代谢的改变而导致体内脂肪积聚过多造成体重过度增长并引起人体病理生理改变潜伏

▸ 引起肥胖的因素

肥胖是一个多因素问题,不仅限于饮食或缺乏运动的原因,还包括遗传、环境和心理社会因素,这些因素通过能量摄入消耗的生理介质起作用。

肠道微生物组是这些环境因素之一;大约 20年前,在小鼠研究中已经确定了脂肪储存和肠道微生物组之间的联系。粪便微生物群移植研究提供了更切实的证据。

本文结合了最新的学术研究和谷禾健康数据库,涵盖了不同的角度,既关注单个细菌的作用,也特别强调整个微生物组的组成,以试图解开肠道微生物组肥胖的关系。

让人们更好地了解肥胖以及其发病机制,在此基础上提出一些预防和治疗肥胖的建议,使人们拥有更健康的生活。

本文主要从以下几个方面讲述

●肠道微生物对肥胖发病机制的影响

●菌群代谢物对肥胖的影响

●健康与肥胖人群中的细菌比例

●肥胖与肠道微生物的研究分类

●微生物多样性与人体健康有关

●肥胖与肠道微生物的未来研究方向

●预防和治疗肥胖的一些建议

学术专业用词缩写

PRR—模式识别受体

NOD2—核苷酸结合寡聚化结构域2

FXR—法尼醇X受体

TLR5—TOLL样受体5重组蛋白CDI—复发性艰难梭菌感染

BSH—胆盐水解酶

GLP1—胰高血糖素样肽-1

GPR—G蛋白偶联受体

01

肠道微生物对肥胖发病机制的影响

研究肥胖的发病机制,有助于我们更好地了解肥胖,并以此制定相应的治疗方案。实验研究发现肠道微生物对肥胖的发病机制存在一定的影响。

许多研究已经确定了肠道微生物群与宿主免疫系统之间的关联。其中一个发现是肥胖与肠道微生物引起的慢性低度炎症有关。

肠道微生物群和肠道细胞之间的密切接触是由微生物相关分子模式介导的,这些分子模式可以与上皮细胞和免疫细胞中的模式识别受体 (PRR) 结合

这些识别受体属于先天免疫系统控制炎症和免疫反应。PRR还可以检测宿主细胞释放的损伤相关分子模式。

✦革兰氏阴性菌中的脂多糖易引起炎症

脂多糖 (LPS)是革兰氏阴性菌外膜的一种特有成分,由脂质和多糖构成,似乎会引起小鼠的低度炎症

在这里列举了一些常见的革兰氏阴性菌:

大肠杆菌、变形杆菌、痢疾杆菌

肺炎杆菌、布氏杆菌

需要注意的是,大部分革兰氏阴性菌对人体都有害

在一项人体研究中进行了类似的观察,其中能量摄入与内毒素血症和伴随的炎症有关

事实上,与健康对照组相比,在患有2型糖尿病的受试者中,革兰氏阴性菌的数量明显更多

脂多糖通过脂多糖分化受体14(CD14)和辅助受体 toll样受体 (TLR4)引起炎症,这反过来又导致脂肪细胞产生的促炎细胞因子增加

●饮食在脂多糖中起重要作用

果胶可抑制脂多糖诱导的单核细胞或树突状细胞中的TLR4活化,而果糖或高脂肪饮食导致含有脂多糖的变形菌增加,瘦素信号与饱腹感和能量平衡紊乱有关,因此失调

在此列举了一些高果糖高脂食物:

1.蜂蜜和市面上一些甜的饮料果糖含量较高

2.淀粉类:经油炸加工的馅饼、油条、葱油饼、油糕等食物中,含有大量脂肪与糖分

2、肉类:用糖汁、糖煎、糖烧的方法进行烹调的红烧肉、炸鸡等,也为高糖高脂食物;

3、奶油制品食物:如奶油蛋糕、奶茶、泡芙等甜品,主要原材料为淀粉黄油等物质,所以也有较高的糖分与脂肪。

同时还表明,分泌型脂蛋白脂肪酶(LPL)抑制剂血管生成素样蛋白4(一种禁食诱导的脂肪因子)可被微生物群抑制,进而导致分泌型脂蛋白脂肪酶活性增加和白色脂肪组织中的脂肪储存

✦肽聚糖影响体内平衡

另一个例子是肽聚糖,它是细菌细胞壁的一种成分,对人体内平衡很重要

核苷酸结合寡聚化结构域2 (NOD2) 是肽聚糖的产物,是一种位于上皮细胞和免疫细胞内的胞质 ,能够感知胞壁酰二肽。

这种胞质对于病原体入侵和几种炎症性疾病期间的免疫反应至关重要,从而调节粘膜细菌定植。

// 一些关于NOD2的研究案例

NOD2缺乏的小鼠在高脂饮食期间显示出脂肪组织、肝脏炎症和胰岛素抵抗增加。因此经常用于糖尿病研究。

在具有功能性NOD2受体的肥胖小鼠中,胞壁酰二肽识别显示可减少脂肪炎症胰岛素抵抗,而不会减轻体重或改变肠道微生物群组成。

上述案例在一定程度上可以说明NOD2对于减轻肥胖肠道微生物群稳定具有一定作用。

✦Toll样蛋白受体影响免疫

——Toll样受体5(TLR5)重组蛋白是免疫系统的关键成分,还是单体鞭毛蛋白的传感器,可以检测细菌感染启动宿主抗菌的防卫反应。

肠道微生物群也通过位于上皮细胞上的TLR5与免疫系统相关联。

免疫系统通过TLR5感知肠道微生物群的组成和肠道微生物群的定位,以避免共生肠道微生物群传播到肠外器官、产毒成员的过度生长以及机会性病原体的过度生长和入侵。TLR5检测鞭毛蛋白会导致白细胞介素-22的产生,从而预防与肠道炎症相关的疾病。

// 关于TLR5影响免疫在小鼠中的研究

与野生型无菌小鼠相比,TLR5缺陷小鼠的胰岛素抵抗肥胖水平增加。肠道微生物群从这些TLR5缺陷小鼠转移到野生型无菌小鼠也导致这些野生型小鼠代谢综合征的相似特征转移

一项调查缺乏TLR5受体的小鼠的研究,观察到鞭毛蛋白特异性免疫球蛋白的丢失导致鞭毛细菌增加,包括许多变形杆菌,以及粘膜屏障破坏和炎症增加

肠道微生物影响宿主免疫的推定机制

Levin E,et al.Therap Adv Gastroenterol.2022

部分肠道微生物群的鞭毛蛋白和脂多糖可以与toll样受体重组蛋白结合,而细胞内NOD2感知肽聚糖。几种短链脂肪酸的产生可以与GPR41和GPR43(2种特异性短链脂肪酸受体)结合,导致PYY(肽YY(一种新的胃肠道激素,具有抑制胃肠运动和胃酸分泌等作用))和GLP-1(胰高血糖素样肽-1)的表达增加。

胆汁酸激活TGR5和FXR(一种胆汁酸的受体)),影响脂质葡萄糖代谢。脂肪酸,如HYA,调节TNFR2,参与上皮屏障恢复。吲哚通过GLP-1调节和AHR的激活以及与PXR 的结合影响宿主

注意

事实上,与瘦的人相比,肥胖的人往往有的粪便鞭毛蛋白、更少的粪便抗鞭毛蛋白IgA和更高水平的慢性肠道炎症。

02

菌群代谢物对肥胖的影响

短链脂肪酸

短链脂肪酸(SCFA)主要是微生物厌氧发酵的衍生终产物,对宿主具有多种影响。它是一组少于六个碳的羧酸,包括乙酸盐、丙酸盐和丁酸盐。这些短链脂肪酸及其比例在几种不同的组织中具有多种有益的作用

✦短链脂肪酸有利于肠道环境的稳态

短链脂肪酸被认为是人类宿主的能量来源能量调节剂,但它们也有助于维持肠道环境的稳态。短链脂肪酸的细胞外活性主要由G蛋白偶联受体(GPRs)介导

这些受体在多种细胞上表达,包括肠上皮细胞、脂肪细胞、肠内分泌L细胞、先天免疫细胞和体细胞感觉神经节的神经元。

✦短链脂肪酸会影响饱腹感

短链脂肪酸参与L细胞产生的肽YY和胰高血糖素样肽1(GLP1) 激素的调节。这两种激素都调节神经系统的饱腹感,GLP1在葡萄糖刺激的胰岛素敏感性分泌中也起作用。

饱腹感也由丙酸盐通过激活脂肪细胞中的游离脂肪酸受体3(FFAR3)来控制,因为这些脂肪细胞会产生瘦素。微生物衍生的丁酸盐和丙酸盐都会诱导肠道糖异生,进而诱导对葡萄糖和能量稳态有益影响

✦短链脂肪酸促进能量消耗

研究显示丁酸盐通过游离脂肪酸受体2(FFAR2)的活化刺激棕色脂肪组织的活化,从而显著促进能量消耗。并且脂肪积累被丁酸盐诱导的白色脂肪组织中的游离脂肪酸受体2活化抑制。最后,丁酸盐通过降低肠屏障的通透性减少上皮细胞中的细菌易位

在肠道内,短链脂肪酸的产生通过各种中间体发生。不同的物种,在产生这些中间体和最终产物的每个步骤中使用不同的酶,都参与了这个过程。

●2型糖尿病中产丁酸盐菌丰度较低

在2型糖尿病中,许多研究看到的一个共同趋势是,糖尿病患者的丁酸盐生产者(如RoseburiaFaecalibacterium)的丰度低于对照组,这可能取决于饮食。

在肥胖症中也可能如此,短链脂肪酸的过量生产可能会导致更高的能量可用性和摄入量。

事实上,一项比较肥胖与瘦的受试者的研究表明,肥胖者的总短链脂肪酸水平较高,但必须指出,肥胖与丙酸盐水平特别相关

胆汁酸

胆汁酸是胆汁的重要成分,在脂肪代谢中起着重要作用。 胆汁酸主要存在于肠肝循环系统并通过再循环起一定的保护作用

许多研究报告了肠道微生物组胆汁酸肥胖肥胖相关疾病之间存在联系

初级胆汁酸通过两种途径在肝细胞中产生:

产生大部分胆汁酸的经典途径是由细胞色素P450中的胆固醇7α-羟化酶启动的。

替代途径由细胞色素P450中的27α-羟化酶启动。

注:细胞色素P450——一个很大的可自身氧化的亚铁血红素蛋白家族,属于单氧酶的一类,因其在450纳米有特异吸收峰而得名。它参与内源性物质和包括药物、环境化合物在内的外源性物质的代谢

7α-羟化酶和27α-羟化酶都属于细胞色素P450中的成员。

经典途径中的一种中间体胆固醇7α-羟化酶与总血浆甘油三酯浓度相关,表明肝胆汁酸合成对于调节肥胖者的血浆甘油三酯水平很重要

胆汁酸的作用途径

产生的初级胆汁酸是胆酸、鹅去氧胆酸和猪胆酸。这些初级胆汁酸与甘氨酸或牛磺酸结合。餐后,这些结合物被分泌到胆汁中并释放以促进膳食脂肪的溶解和吸收

此后,肠道微生物群使用胆盐水解酶(BSHs)去结合初级胆汁酸。

Bifidobacterium spp., Lactobacillus spp., Enterococcus spp.和Methanobrevibacter spp.,这些细菌中都含有这些胆盐水解酶。

接下来,这些去结合的初级胆汁酸随后被转化为次级胆汁酸。

注:这是通过肠道微生物群的脱氨基作用和7α-羟化酶的脱羟基化来完成的。

在最后阶段,胆汁酸被回肠远端吸收,完成肠肝循环。产生的次级胆汁酸是脱氧胆酸石胆酸。这些胆汁酸参与调节能量消耗,以及炎症和葡萄糖代谢脂质代谢

这表明这些胆汁酸在肥胖的病理生理学中非常重要,因为与肥胖相关的肠道微生物群的改变包括胆汁酸池大小组成的变化

✦不同胆汁酸具有不同的作用

不同的胆汁酸对各种肠道受体具有不同的亲和力,例如与膜结合的蛋白偶联受体(TGR)以及法尼醇X受体(FXR) 。

注:TGR5—是一种G蛋白偶联受体,不仅是胆汁酸的受体,也是多种选择性合成激动剂的受体。

法尼醇X受体(FXR):一种胆汁酸受体,被特定胆汁酸代谢物激活后发挥转录因子作用,参与调控胆汁酸的合成肠肝循环影响机体的糖脂代谢。

在小鼠中,已经表明肠道菌群通过FXR受体促进饮食诱导的肥胖。

在脂肪组织中,脂肪细胞分化受FXR通过促进过氧化物酶体增殖物激活受体γ活性,进而调节脂肪酸储存葡萄糖代谢

在棕色脂肪组织中,能量消耗因胆汁酸与TGR5结合而增加,随后产生的环磷酸腺苷会增加参与能量稳态的甲状腺激素活化。

在巨噬细胞中,胆汁酸激活TGR5会导致抗炎反应,因为抑制了NF-κb通路和NLRP3依赖性炎症小体活性。FXR和TGR5受体都存在于相似的细胞中,例如胰岛β细胞和肠内分泌L细胞。

在胰岛β细胞中,正向调节合成和葡萄糖诱导的胰岛素分泌。在肠内分泌L细胞中,观察到相反的效果。FXR的激活导致GLP-1分泌的抑制,而TGR5的激活诱导GLP-1的分泌。

✦饮食会影响胆汁酸的含量

几项研究已经将特定的肠道微生物群改变以及胆汁酸成分的改变与肥胖联系起来,同时考虑到饮食的类型。

与富含精制谷物的饮食相比,富含全谷物的饮食导致血浆胆汁酸含量显著增加,包括牛磺鹅去氧胆酸、甘胆酸和牛磺石胆酸。

这被假设为激活FXR和TGR5受体并影响葡萄糖稳态。事实上,高膳食纤维的纯素饮食Prevotella丰度较高相关被证明可以增强法尼醇X受体的信号通路

与杂食动物相比,纯素食者的粪便胆汁酸含量显著降低。当杂食动物的饮食中膳食纤维增加时,观察到粪便胆汁酸显著减少

//研究证明高脂饮食胆汁酸水平升高

在小鼠中,高脂饮食引起的肥胖导致粪便中脱氧胆酸水平升高。此外,高脂肪饮食略微增加总胆汁酸池,特别是增加肝脏和血浆中的脱氧胆酸和牛磺脱氧胆酸水平。

这些变化与以下菌群的丰度增加相关:

Blautia ↑↑↑

Coprococcus ↑↑↑

Intestinimonas ↑↑↑

Lactococcus ↑↑↑

Roseburia ↑↑↑

Ruminococcus ↑↑↑

另一项小鼠研究调查了胆盐水解酶对法尼醇X受体胆汁酸拮抗剂牛磺-β-鼠胆酸的影响,因为法尼醇X受体抑制会导致对肥胖的抵抗。他们发现,乳酸杆菌水平降低与BSH水平降低相关,因此与牛磺酸-β-鼠胆酸水平升高相关

事实上,从小鼠盲肠中分离出的L.johnsonii被发现表达产生胆盐水解酶的基因,这些基因专门针对牛磺-β-鼠胆酸,提供了肠道微生物群变化与调节法尼醇X受体和胆盐水解酶基因表达之间的机制联系

然而,与其他产生类似胆盐水解酶的肠道微生物相比,乳酸杆菌对法尼醇X受体拮抗剂浓度的贡献仍不清楚

一项调查肥胖受试者的人体研究发现了毛螺菌科的瘤胃球菌家族与甘氨脱氧胆酸的比例和血浆中次级胆汁酸与初级胆汁酸的比例呈正相关

除此之外,Faecalibacterium prausnitzii与粪便中的异石胆酸水平呈负相关

一项调查肥胖受试者的研究发现,该组的非12-OH胆汁酸比例降低。在同一项研究中,高脂饮食抗肥胖小鼠的这些非12-OH胆汁酸水平升高

在高脂饮食易肥胖的小鼠中,这些胆汁酸减少并与肠道微生物群的改变有关。在这里,梭状芽孢杆菌减少的很明显,肥胖与肠道微生物群通过胆汁酸池的大小组成有关,但在单个细菌、特定胆汁酸剖面和肥胖表型之间还没有明确的联系。

因此,还需要进行更多的研究,以将肥胖胆汁酸谱和胆汁酸池大小与特定细菌组成谱联系起来。

脂肪酸

除了产生胆汁酸外,一些细菌,包括LactobacilliBifidobacteria,还通过多不饱和脂肪酸的饱和代谢产生代谢物。这会产生中间脂肪酸,如羟基、氧代、共轭和部分饱和反式脂肪酸。

结果表明,与无菌小鼠相比,无特定病原体小鼠的羟基脂肪酸水平要高得多,这表明肠道微生物组的脂质代谢会影响宿主体内的脂肪酸组成,因此会影响宿主的健康

✦增强抗炎能力,促进屏障恢复

此外,共轭脂肪酸组中的一些脂肪酸对健康有益。体外对树突状细胞的实验表明,共轭亚油酸的异构体抑制脂多糖诱导的白细胞介素12产生并增强抗炎细胞因子白细胞介素10的产生。

一个例子是10-hydroxy-cis-12-octadecenoic acid(HYA),因为它部分调节肿瘤坏死因子受体2 (TNFR2),从而促进上皮屏障恢复作用。

注:HYA是不饱和脂肪酸的代谢过程中,肠道微生物产生的中间体游离脂肪酸。HYA能够改善与一些细胞中成熟标志物表达相关的抗氧化/解毒防御能力。

✦保护宿主,减少肥胖

另一项研究展示了HYA如何通过G蛋白偶联受体40(GRP40)和G蛋白偶联受体120(GRP120)分泌胰高血糖素样肽-1来减轻高脂饮食诱导的小鼠肥胖

此外,他们还证实了几种乳酸杆菌属,如

Lactobacillus salivarius

Lactobacillus gasseri,能够产生相似水平的 HYA,保护宿主免受高脂饮食引起的肥胖。

吲哚

吲哚是吡咯与苯并联的化合物,细菌产生吲哚对人体健康具有重要意义

✦饮食类型影响吲哚的产生

吲哚是通过降解肠中芳香族氨基酸如酪氨酸、苯丙氨酸和色氨酸的分解代谢产生的。因此,肠道吲哚水平取决于饮食类型。

富含蛋白质的饮食会促进吲哚的产生。然而,富含的饮食可能会降低吲哚合成,因为过度消耗糖可能会导致小肠饱和,从而导致更多剩余的糖进入大肠。

由于碳水化合物发酵优于蛋白水解活性,因此抑制色氨酸酶活性导致吲哚合成速率降低。吲哚通过以下途径影响宿主代谢L细胞对GLP-1分泌的调节,表明在2型糖尿病等代谢疾病中发挥作用

吲哚丙酸(3-Indolepropionic acid)由Clostridium sporogenes产生,它与膳食纤维摄入量呈正相关

•2型糖尿病会影响吲哚水平

事实上,一项研究发现较高的血浆吲哚丙酸水平与降低患2型糖尿病的风险之间存在关联

另一项研究发现,与瘦对照相比,患有2型糖尿病的肥胖受试者的吲哚丙酸水平降低。吲哚丙酸显示通过与孕烷X受体结合并随后下调肿瘤坏死因子α来调节炎症

✦吲哚具有抗肥胖等特性

研究显示吲哚丙酸可降低饮食诱导的肥胖小鼠的肠道通透性。吲哚丙酸也被证明在小鼠中具有抗肥胖活性

在肠道中,色氨酸可以被肠道菌群用作底物来产生吲哚,但也可以被宿主代谢。在低度肠道炎症(肥胖的一种慢性症状)期间,巨噬细胞中的吲哚胺2,3-双加氧酶活性增加导致犬尿氨酸的产生水平升高,从而将生产从微生物衍生的吲哚转移

注:吲哚胺2,3-双加氧酶是人体内色氨酸代谢中的关键酶,可通过介导色氨酸耗竭及其代谢产物调节机体抗肿瘤免疫

与正常饮食的小鼠相比,高脂肪饮食的小鼠显示出吲哚胺2,3-双加氧酶活性增加。然而,与高脂饮食的野生型小鼠相比,在这种酶被敲低的小鼠中观察到胰岛素耐受性有所改善

微生物衍生的吲哚,如吲哚乙酸激活芳烃受体,但犬尿氨酸抑制其激活。微生物衍生的吲哚乙酸进一步限制了巨噬细胞中脂肪酸的积累和炎症标志物的产生。

谷氨酸

除了吲哚,谷氨酸也可以影响人体

——谷氨酸是一种多功能氨基酸,谷氨酸在生物体内的蛋白质代谢过程中占重要地位。除此之外,谷氨酸也是人体兴奋神经递质,不仅参与消化系统和免疫系统,还是大脑健康密切相关。现在强有力的证据表明肠道微生物产生神经活性分子,如神经递质(即去甲肾上腺素、多巴胺、血清素、GABA 和谷氨酸)和代谢物(即,色氨酸代谢物,短链脂肪酸等)维持宿主和细菌之间跨界跨区域交流。谷氨酸代表了在这种跨界交流中活跃的众多神经活性分子之一。

根据对肥胖和瘦受试者的队列进行的全基因组关联分析显示,谷氨酸盐具有潜在危害

通过进行途径分析,谷氨酰胺/谷氨酸转运系统在肥胖个体中高度富集。这与拟杆菌属(包括B.thetaiotaomicron)的物种呈负相关。事实上,与瘦受试者相比,肥胖者体内这种细菌的数量减少。因此谷氨酸与人体之间也存在一定联系

•拟杆菌的在高脂饮食中的研究

多形拟杆菌B.thetaiotaomicron)在高脂饮食小鼠中的作用的研究表明,编码参与脂肪生成的蛋白质的基因表达较低,而编码参与脂肪酸氧化和脂肪分解的蛋白的基因表达较高。此外,炎症相关标志物的表达也降低

关于发现与肥胖相关的B.thetaiotaomicron,其效应可能是由于与某些其他物种的相互作用,例如B. uniformis,已知其部分恢复了高脂肪饮食诱导的肥胖效应

03

健康与肥胖人群中的细菌比例

有研究发现,健康人群和肥胖人群中的拟杆菌门和厚壁菌门比例存在不同。但是将健康受试者肥胖受试者用拟杆菌与厚壁菌的比例区分开来的一个有争议的话题。

•支持的证据

一项研究调查了遗传易感肥胖小鼠及其接受相同多糖饮食的正常野生型同胞的盲肠微生物群之间的差异。

在肥胖小鼠中,拟杆菌数量减少,而厚壁菌的相对丰度较高。一年后,在比较肥胖和正常时发现了类似的结果。

•反对的证据

然而,同一组在比较正常人和肥胖人双胞胎时观察到了有争议的结果。然而,此处观察到拟杆菌显著减少,与厚壁菌没有关联

除此之外,使用16s rRNA基因的类似管道和区域重新分析前面提到的文章的数据集和其他公开可用的数据也导致了与拟杆菌与厚壁菌比率相关的矛盾结果

鉴于人类肠道中这两个门所代表的目、科、属的物种众多,这些门水平上相互矛盾的肠道微生物群结果并不令人惊讶。

另一方面,厚壁菌门是如此广泛,以至于说某个菌属于厚壁菌门,但是不同菌的功能差别很大。

此外,这些门中分类上不同的细菌具有截然不同的属性。拟杆菌门中最重要的例子是普氏杆菌属和拟杆菌属,它们往往相互排斥。当比较多个研究时,将每个门的细菌汇集在一起时,预计会出现相互矛盾的结果。

因此,目前还不鼓励使用拟杆菌与厚壁菌的比例来区分健康人群与肥胖人群。我们在检测实践中也发现部分肥胖人群拟杆菌比例较高。

PrevotellaBacteroides的比例

在引入肠型后,在拟杆菌门内做出了更合适的区分,即PrevotellaBacteroides的比率。

Bacteroides相比,Prevotella个体在食用左旋肉碱时血浆氧化三甲胺浓度较高

Prevotella为主的肠道微生物群往往与素食主义或非工业化的富含膳食纤维的饮食有关。这些例子可以在非洲、南美洲或者东南亚狩猎采集者或农村人口进行的几项研究中找到。

PrevotellaBacteroides更利于减肥

研究很好地说明了饮食环境导致的从普氏杆菌向更为拟杆菌主导的肠道微生物群的转变,来自泰国农村的人移民到了美国。不出所料,这种转变也伴随着体重的增加。

关于减肥方案,这一比例很重要,因为普氏杆菌与拟杆菌比例较高的受试者在膳食纤维含量较高的情况下更容易减肥

研究发现,给予辣椒素时,拟杆菌量较多的受试者体重减轻更多,在此强调了个性化营养必要性

04

肥胖与肠道微生物的研究分类

为了更好更有条理地研究肥胖肠道微生物之间的关系,需要将微生物进行研究分类

大多数关于肥胖与肠道微生物群之间关系的研究通常将个体分类群病理生理途径联系起来,以建立与肥胖的联系。

影响微生物的因素

细菌并不存在于真空中,所以它们的生长速度以及它们能够进行的代谢活动取决于外部环境因素。

这些外部因素包括pH胆汁酸底物可用性。所有这些反过来又取决于微生物组分本身;这意味着一种细菌的功能受其周围所有其他细菌的影响

更直接地说,各种细菌种类依赖于其他细菌种类为它们提供中间底物(其他细菌的废物),并且反过来,依赖于将消耗其自身废物(发酵产物)的其他细菌,以使其从中获得能量的生化转化在能量上有利

同一物种的不同菌株可能存在很大差异

通常使用不同的分类水平(门/科/属/种)来归因特定的特征和关联,而物种的功能甚至在同一属内,甚至是目前被认为属于不同菌株的细菌。相同的物种,可以有很大的不同

因此,旨在通过查看更高的分类级别来限制分类组数量的降维策略通常应该优选地限制在类属级别

同一物种的不同菌株可能具有也可能不具有归因于它们的特定功能,正如在碳水化合物活性酶中观察到的那样。如果高度相似的基因存在于多种细菌中,则可能还会出现冲突模式。

越来越多的研究人员在过去几十年中得出结论,与肥胖相关的有益影响应归因于肠道微生物群中的多个参与者协同工作。而这种关联的紊乱可以被视为生态失调的一种形式。

微生物成员分组

——由于上述个体分类群分析的缺陷使得难以找到特定于健康结果的具有生物学意义的模式,因此创造了两个不同的术语来将个体微生物组成员分组。

▸ 微生物“聚类”

应用了“guild”这个术语,这在宏观生态学中已经众所周知。它包括“以类似方式利用同一类环境资源一组物种”,后来成为“功能组”的同义词。

通过构建基于微生物丰度协变的共丰度组,给出了一个框架,以更生态有意义的方式解开肠道微生物组与人类健康之间的关系。这将克服目前对基于分类单元的分析和以基因为中心的分析存在问题的各种缺点。

▸ 营养网络

另一个术语称为“营养网络”,营养网络被定义为微生物种群形成代谢相互依赖的生物体的食物网,随着时间的推移以相关的方式稳定地建立。

小结

通过观察微生物聚类或特定的营养网络,可以实现对与健康肥胖相关肠道生态学的更有意义的解释。

此外,将数百个分类群聚集到有限数量的微生物聚类或营养网络中将有助于降低维度,从而有可能应用经典统计数据来限制与校正多重测试相关的问题。

尽管基于微生物聚类的方法似乎是一种有前途的方法,在了解肥胖儿童的体重调节方面观察到了附加价值,但与肥胖本身的相关性仍有待阐明

05

微生物多样性与人体健康有关

α多样性与疾病状态有关

——在区分肥胖受试者和健康受试者时,一个常见的观察结果是他们平均较低的α-多样性

在许多其他疾病中也观察到相同的情况,例如克罗恩病、肠易激综合征和结肠直肠癌。因此,微生物多样性的丧失通常与各种疾病状态有关。可以说,断奶后肠道α多样性降低是与各种人类状况相关的普遍特征

在成年人中,较高丰度的细菌(如Akkermansia muciniphilaF. prausnitzii)通常与较高的α多样性相关

丰富的A. muciniphila与BMI、炎症标志物、脂质合成和总脂肪组织重量呈负相关

▸ α多样性是什么?

α多样性主要关注局域均匀生境下的物种数目,因此也被称为生境内的多样性。α-多样性是由扩散、局部多样化、环境选择和生态漂移共同形成的。

多样性本身不仅仅是健康的指标,因为多种高丰度的病原体持续存在一般不会让肠道感觉 “幸福”。

相反,更高的α多样性应该被视为存在发育良好和扩展的微生物营养网络,它们共同导致发酵能力的提高

✦低α多样性下的肠道微生物

富含拟杆菌的微生物群倾向于具有较低的α-多样性值、较简单的营养网络,并且更容易下降。

这种低α-多样性组合物通常富含诸如肠杆菌科、梭杆菌属、链球菌属、瘤胃球菌属和各种拟杆菌属物种的物种。

这种益生菌组合物在肠型方面与拟杆菌2肠型最为相似,最终会是肥胖和2型糖尿病的危险因素

营养网络被破坏导致α多样性减低

研究表明营养网络的彻底破坏以及由此导致的α-多样性、基因丰富度和肠道发酵能力的极大降低。

调查了(抗生素治疗)危重儿童的肠道微生物群、粪便短链脂肪酸和胆汁酸谱。由于缺乏代谢和发酵能力,这些儿童的初级胆汁酸与次级胆汁酸的比例较高,但短链脂肪酸的产量极低,而碳水化合物发酵的中间产物,如乳酸盐和琥珀酸盐与健康对照儿童相比含量增加

后一项发现,加上剩余的未发酵糖组分、较高水平的未接触蛋白质和更松散的粪便,突出了肠道中剩余的发酵仍然处于糖分解阶段

Christensenellaceae营养网络

——一个与高α-多样性和健康相关的特定营养网络

与肥胖受试者相比,体重指数正常的健康受试者的Christensenellaceae水平更高

Christensenellaceae和寄主BMI之间的关联被认为是最稳健的关联之一。在无菌小鼠体内移植来自人类供体的富含菊苣科植物的粪便可减少肥胖。在富含瘤胃球菌科或厚壁菌的肠型的人中,Christensenellaceae通常很丰富

如上所述,不应将Christensenellaceae视为一个独特的独立实体,因为它始终与其他细菌古细菌形成营养网络。

Christensenellaceae与古细菌的关联

Christensenellaceae与一种古细菌——Methanobrevibacter smithii 的关联可能是这一营养网络最典型的部分。

M.smithii 从微小梭菌产生的氢气中产生甲烷。如果这种营养网络与低BMI之间存在因果关系,则仍然相当不确定。

除了M. smithii是这一营养网络的一部分外,一项比较意大利瘦弱和肥胖老年人的研究发现,ChristensenellaceaeRikenellaceaePorphyromonadaceae之间存在相关性

在日本的一个队列中,调查了不同地区健康成年人的粪便样本,Christensenellaceae与各种其他细菌也与BMI呈负相关

注意

鉴于α-多样性、瘦弱性和Christensenellaceae细菌营养网络之间的紧密联系,未来将继续从机制上研究这种联系。还应注意的是,该营养网络对于短链脂肪酸生产的重要性尚未确定

虽然ChristensenellaceaeMethanobrevibacter可能仅占总微生物群的一小部分,但它们所代表的核心指示物种的营养网络在不同种族中绝不是一个小角色。这种营养网络,其中各种物种彼此之间非常密切相关,具有肠型定义潜力。

Prevotella stercorea营养网络

另一个营养网络,通常在工业化国家的人们中代表性不足,是Prevotella stercorea营养网络,它可以被视为Prevotella肠型组成中的一个重要因素。

这个营养网络的建立首先是通过观察冈比亚儿童正在发育的肠道微生物群来广泛描述的。P. stercorea与Succinivibrio dextinosolvensParaprevotella xylaniphila等形成一个大型营养网络,并且类似地与高α-多样性相关

✦肠道Prevotella的特征

肠道普雷沃氏菌是一个完美的例子来展示微生物“聚类”和营养网络之间的区别。

在人群范围内的研究中,例如使用多民族队列研究的数据,被定义为肠型普氏杆菌的人通常具有非常高P. stercorea水平和与P.stercorea营养网络相关的高水平物种

当在分层聚集的热图中可视化时,P.copri和P.stercorea营养网络中的物种聚集在一起。然而,这种共同发生主要是由于粪便中的Prevotella(包括P.copri、P.stercorea和其他许多普氏杆菌属)和Bacteroides/Phocaeicola.之间的强烈拮抗作用

P.copriP.stercorea营养网络在同一环境中表现良好Bacteroides贫乏),但P.copri的高丰度完全独立P.stercorea营养网络发展,这可以通过跟踪儿童在前3个年的肠道微生物群成熟情况看出多年生活在一个每个人都会发展出富含Prevotella的肠道微生物群的环境中。

12个月后,P.copri成为优势种并保持优势,而与P.stercorea营养网络相关的物种丰度在生命的前30个月以相互依赖的方式缓慢增加,直到达到稳定水平。推测在P. stercorea的营养网络中存在着各种代谢产物的交换,值得进一步研究,特别是与Prevotella肠型生产短链脂肪酸的能力增加有关。

Prevotella与健康相关

与肥胖率上升最快的工业化国家相比,肠型拟杆菌相关的拟杆菌和种类在冈比亚并不多见

肠道中的Prevotella本身也与较低的BMI相关,并且已观察到低密度脂蛋白胆固醇与肠道Prevotella负相关,这表明在非工业化国家,肠道Prevotella健康有关

06

肥胖与肠道微生物的未来研究方向

尽管使用大型队列关联研究对于试图解开与肥胖相关的肠道微生物组的极端复杂性至关重要,但其他几种研究途径也具有潜力,其中一种是粪菌移植。

粪菌移植

▸ 定义

粪菌移植,是将粪便从瘦供体转移到受体。也称为“人类肠道微生物群转移”、“粪便移植”和“粪便细菌疗法”。

✦粪菌移植的作用

粪菌移植已被证明是比抗生素更有效的复发性艰难梭菌感染 (CDI) 治疗方法。然而,与肥胖不同,从病理学的角度来看,CDI是一种相对简单的疾病,其中肠道微生物群的因果关系是明确的。

在一项对患有胰岛素抵抗的肥胖受试者进行的粪菌移植试验中。受试者接受自己的粪便(自体)或瘦供者粪便(同种异体)。短期内在接受瘦供体粪菌移植的受试者中观察到对胰岛素敏感性有益影响

进一步研究表明基线肠道菌群有利于粪菌移植的成功。在这里,当接受同种异体粪菌移植时,在α-多样性降低的受试者中,粪菌移植成功率更高

总的来说,与那些肠道微生物组组成尚未严重恶化的受试者相比,那些α-多样性较低的受试者有更大的改进空间。

✦其他影响粪菌移植的因素

一项研究,其中包括几个调查不同疾病的粪菌移植队列,显示生态变量(如低α-多样性)与临床变量(如抗生素治疗和灌洗)一起在植入成功中发挥作用

他们进一步表明,通过合并供体样本来增加α-多样性预计不会增加供体菌株的植入,这表明合并供体样本在功能上并不等同于单个高α-多样性供体样本。

对队列进行的分析表明,P.copri对接受同种异体粪菌移植的受试者具有有益的影响。P.copri与BMI、C反应蛋白和空腹胰岛素水平进一步呈负相关

此外,肠道微生物群的变化可能与特定血浆代谢物水平和血浆单核细胞中DNA甲基化的变化有关,为肠道微生物群影响肥胖相关疾病的机制提供了额外线索。

验证细菌植入的生物学工具

最近开发了几种工具来帮助解开粪菌移植中肠道微生物组肥胖之间的关系。

为了验证来自瘦供体的菌株是否已移植到受体中,需要进行菌株跟踪分析。比较了七种不同的生物信息学工具,用于在数据集上进行应变跟踪

减轻肥胖和相关疾病负担有前景的方法

Levin E,et al.Therap Adv Gastroenterol.2022

分析健康瘦供体粪便的微生物组成,以选择具有高 α 多样性(以及其他)的供体,这可以被视为存在复杂的健康相关营养网络的标志。

如果合适,然后将高α多样性供体的粪便转移到肥胖的接受者身上,这可能会减轻低度炎症。在粪菌移植之后,使用菌株追踪在接受者的粪便中追踪肠道微生物群基因组中特定位置的特定SNP的供体菌株验证。

在这里,观察到概率工具在宏基因组测序数据上表现最好。然而,随着最近开发的两种新的应变跟踪工具,这一技术领域仍在快速发展。

其中一个工具是基于物种特异性标记基因中的单核苷酸变体跟踪菌株,另一个是先前发布和改进的进一步构建工具,应用应变跟踪方法。

在接受粪菌移植后调查了受体中的菌株植入,观察到供体和受体特异性菌株可以共存。与此同时,发现肥胖受试者的粪菌移植胶囊会导致微生物群落组成发生变化,从而导致受试者从一种肠型转变为另一种肠型。这随后改变了菌群的代谢潜力。微生物组向供体的转变与α多样性正相关

此外,肠道微生物群组成的变化在治疗后持续26周。本研究结合了多个供体的粪便,并表明一些供体具有用于移植的高效微生物群,这意味着供体粪便的组成和整个营养网络的转移,而不是添加单个分类群的重要作用

07

预防和治疗肥胖的建议

预防肥胖

——鉴于肥胖症如此普遍,并且考虑到治疗的难度,预防尤为重要。

为预防超重和肥胖,人们应该根据自己的营养需求进食和饮水,定期锻炼,定期检查体重

•少吃高热量食物

就营养而言,他们应该少吃高能量密度的食物,多吃低能量密度的食物。由于水分或纤维含量高而能量密度低的食物,如全麦制品、水果和蔬菜,相对来说更能饱腹,能量含量也较低。地中海饮食有助于预防超重和肥胖。

还应减少酒精、快餐和含糖饮料的消费。快餐通常含有高比例的脂肪和糖,因此能量很高。不仅是加糖的饮料,还有果汁和果汁饮料,含糖量也很高

•避免久坐或不活动

经常坐着看电视或上网和类似活动的不活跃生活方式会促进体重增加。在日常活动和休闲活动中进行锻炼具有预防作用。这个目标最好通过每周2小时以上的以耐力为重点的体育锻炼(使用大肌肉群)来实现。

肥胖的治疗方法

✦饮食疗法

为了减轻体重,目标应该是遵循减量饮食,这将产生约500kcal/天的热量缺口,或在个别情况下更多。

每天500至600kcal的能量缺口将使体重减轻,以约0.5kg/周的速度发生,持续12周最多24周。

低碳水化合物饮食在开始时会比其他饮食导致更剧烈体重减轻,但一年后就看不到差异了。过去几年的几项大型研究表明,常量营养素组成(脂肪、碳水化合物和蛋白质的比例)与减肥无关。各种减脂饮食可在1至2年内减掉约4公斤。个人经验、知识和资源比营养关系更重要

✦益生菌帮助减肥

已经证明几种益生菌,单独使用或以共生混合物的形式使用,能够通过物种和菌株特异性机制(例如,肠道微生物群调节、降低胰岛素抵抗、更强的饱腹感)来治疗肥胖

更具体地说,乳酸杆菌和双歧杆菌物种由于其低致病性低水平的抗生素耐药性而已成功用于成熟的肥胖动物模型。

益生菌对减肥作用的一些实验

Abenavoli L, et al. Nutrients.2019

与安慰剂组相比,这些治疗导致不同程度的体重增加减少脂肪累积减少

所以在一些时候,我们可以利用例如乳酸杆菌等益生菌来帮助我们减肥

✦增加运动

有效的减肥需要>150分钟/周的运动,能量消耗率为1200至1800kcal/周。单独的力量训练对于减轻体重作用不大

运动中消耗的能量常常被高估。当使用大肌肉群,强度适中到高,运动时间长时,体重减轻是可以预期的。对照良好的研究和荟萃分析显示,在6至12个月内体重减轻了约2公斤,腹部脂肪减少了约6%.

应该向超重和肥胖的人解释运动的健康益处(代谢、心血管和社会心理),无论体重减轻如何,这些益处都会产生。即使在肥胖个体中,增加运动的健康价值不仅仅体现在体重减轻上。

✦行为矫正干预

在团体或个人中,基于行为方法的干预应成为减重计划的一部分。

干预的主要目的是改变营养运动方面的生活方式,并且可以由合格的非心理治疗师进行。如果伴随超重或肥胖的症状更严重,精神科医生或心理治疗师应参与患者管理,并应支持患者进行饮食治疗锻炼

08

结语

肥胖肠道微生物群以多种方式交织在一起。饮食的类型及其数量会影响能量的可用性并因此影响肥胖,但也会强烈影响肠道微生物组,这反过来又可以放大饮食的致肥胖特性,或另一方面提供各种保护性益处

许多微生物衍生的代谢物,包括短链脂肪酸、胆汁酸、吲哚和其他氨基酸,对健康同样至关重要。过量或缺乏这些,或者更具体地说,在任何这些方式中改变的整体组成,都可能是致肥胖的。

通过本文更好地了解肥胖以及其发病机制与微生物组之间的关系,有助于在日后的生活中更好地应对肥胖,使人人都有一个健康的身体。

主要参考文献

van der Vossen EWJ, de Goffau MC, Levin E, Nieuwdorp M. Recent insights into the role of microbiome in the pathogenesis of obesity. Therap Adv Gastroenterol. 2022 Aug 9;15:17562848221115320. doi: 10.1177/17562848221115320. PMID: 35967920; PMCID: PMC9373125.

Canfora, EE, Meex, RCR, Venema, K, et al. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol 2019; 15: 261–273.

Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, Aiello V, Romano B, De Lorenzo A, Izzo AA, Capasso R. Gut Microbiota and Obesity: A Role for Probiotics. Nutrients. 2019 Nov 7;11(11):2690. doi: 10.3390/nu11112690. PMID: 31703257; PMCID: PMC6893459.

GBD 2015 Obesity Collaborators . Health effects of overweight and obesity in 195 countries over 25 Years. N Engl J Med 2017; 377: 13–27.

Chauhan, S, Jena, KK, Mehto, S, et al. Innate immunity and inflammophagy: balancing the defence and immune homeostasis. FEBS J. Epub ahead of print 26 November 2021.

Beukema, M, Faas, MM, de Vos, P. The effects of different dietary fiber pectin structures on the gastrointestinal immune barrier: impact via gut microbiota and direct effects on immune cells. Exp Mol Med 2020; 52(9): 1364–1376.

肠道核心菌属——经黏液真杆菌属(Blautia),炎症肥胖相关的潜力菌

谷禾健康

Blautia (经黏液真杆菌属)

Blautia 是一种最近发现的细菌属,是将几种丰富的胃肠道细菌归类,这些细菌以前属于 Ruminococcus 属。基于表型和系统发育分析,梭菌属和瘤胃球菌属中的一些物种也已被重新归类为Blautia.

Blautia 作为毛螺菌科的一个属,自成立以来,因其对缓解炎症性疾病代谢疾病的贡献以及对特定微生物的抗菌活性而备受关注。最近的几份报告表明,肠道中Blautia菌的组成和变化与宿主年龄、地理、饮食、基因型、健康状况、疾病状态和其他生理状态等因素有关。

研究人员发现:该属中的物种水平在老年患者中经常减少,在结直肠癌患者的黏膜样本中水平降低,在肠易激综合征 (IBS) 患者中水平升高

此外,Blautia与内脏脂肪面积负相关,内脏脂肪面积被认为是心血管和代谢疾病风险的肥胖生物标志物。研究还确定了Blautia luti Blautia wexlerae 的减少与肥胖个体的胰岛素抵抗有关。Blautia菌通过产生细菌素防止病原体的定植,并通过上调调节性 T 细胞和 SCFA 的产生而表现出抗炎特性和维持葡萄糖稳态作用。

Blautia. 图片来源:microbiomology

01
Blautia菌的基本属性和特征

Blautia 属严格厌氧,不能运动,是哺乳动物肠道内重要的核心菌属。Blautia 能够使用氢气和二氧化碳来制造乙酸盐。乙酸是肠上皮细胞的次要能力来源,也是肌肉和脑组织的能量来源,可以抑制病原菌,有抗炎作用。

Blautia菌通常为球形或椭圆形,成对或成股出现,大多数菌株无孢子。Blautia广泛分布于哺乳动物的粪便和肠道中。大多数Blautia菌株的最适温度和 pH 值分别为 37°C 和 7.0。DNA的GC含量约为 37-47 mol%。

培养实验表明,所有Blautia菌株都可以利用葡萄糖,但不同菌株对蔗糖、果糖、乳糖、麦芽糖、鼠李糖和棉子糖的利用能力不同。Blautia发酵葡萄糖的最终产物是乙酸、琥珀酸、乳酸和乙醇,主要生化试验显示卵磷脂、脂肪酶、过氧化氢酶和吲哚的阴性结果。

Blautia菌株的碳水化合物利用特性

Liu X, et al., Gut Microbes. 2021

02
Blautia的物种分类

Blautia属目前根据公布的有效名称物种共计20个,包括:

  • B. Hydrogenotrophica
  • B. coccoides
  • B. wexlerae
  • B. hansenii
  • B. producta

它们最初被错误分类为Ruminococcus、梭菌属或瘤胃球菌属。

文献中报道的Blautia的所有种

Liu X, et al., Gut Microbes. 2021

该属的组成通过增加新的种和品系而不断更新,但总的来说,Blautia中的种仍形成一个相对稳定和连贯的单系分支。

不同物种首次发现的来源不同,但是主要物种都是从人粪便分离出来的。

例如:Blautia hydrotrophica (B.hydrotrophica)Blautia stercoris (B. stercoris) 首先是从人类粪便中分离出来的。

B.hydrotrophica 的代谢途径

Blautia hydrotrophica 是革兰氏阳性、无芽孢、球杆菌状细菌,平均大小为 0.7-0.6 毫米。Hydrogenotrophica,意为以氢为食,是指生物体利用 H2 和 CO2 作为生长能源的能力。它将 H2 和 CO2 代谢形成乙酸盐作为唯一代谢物自养生长。该生物体还能够使用几种不同的有机化合物作为底物异养生长。通过葡萄糖和果糖的发酵,乙酸是主要产物,但也可以形成乙醇、乳酸以及较小程度的异丁酸和异戊酸。

B.hydrotrophica的生存环境

B.hydrotrophica的最佳栖息地pH范围为6.0-7.0,温度为35-37˚CB.hydrotrophica也可能是一种重要的微生物,可替代反刍家畜体内的产甲烷菌,以限制释放的甲烷量。

B.hydrotrophica栖息在哺乳动物的内脏中,有助于分解宿主饮食中原本难以消化的部分,主要是植物材料。膳食多糖和蛋白质的分解是通过微生物群在厌氧肠道环境中发酵完成的。这些微生物群是共生的,这意味着它们的相互作用创造了一个相互关联的食物网。这种代谢食物网的产物是短链脂肪酸,例如乙酸盐、其他有机酸以及 H2 和 CO2 气体。H2 气体的积累实际上可以抑制 NADH 的再氧化,从而减少 ATP 和短链脂肪酸的产生量。据估计,这些短链脂肪酸的代谢产生了人类所需能量的 5%-10% Blautia hydrotrophica在宿主新陈代谢中发挥重要作用,因此更好地了解这些微生物可能会导致能够操纵人体能量平衡。

B. wexleraeB. luti Blautia中最丰富的物种,是人类肠道的主要物种之一。

B. wexlerae 治疗代谢疾病

Blautia wexlerae B. wexlerae ) 是主要的丁酸盐生产者。动物实验表明,丁酸盐可以改善胰岛素抵抗,减少脂肪堆积。因此,这可能是B. wexlerae抗肥胖的机制之一。B. wexlerae治疗代谢疾病方面具有发展潜力。

B. faecis DSM33383 菌株预防管理呼吸道疾病

Blautia faecis也是从人粪便分离出来的,细胞染色呈革兰氏阳性严格厌氧。研究人员已经确定了B. faecis DSM33383 菌株,该菌株降低了 TNF 诱导的肠上皮细胞系 HT-29 产生的 IL-8。在流感后的两个临床前模型中进一步研究了该菌株的作用表明该菌株胃内给药可保护感染了肺炎链球菌的小鼠,并在较小程度上保护鼠伤寒沙门氏菌继发感染。该研究表明,粪杆菌DSM33383 可能是预防和管理呼吸道传染病的有希望的候选者。

B. coccoides参与促炎途径

B. coccoides最初是从喂食高乳糖饮食的小鼠的粪便中分离出来的;Blautia coccoides已通过免疫调节和促炎途径参与多发性硬化,包括与抗原呈递、B 和 T 细胞活化以及补体活化相关的基因的上调

B. hydrogenotrophica,以前称为 Ruminococcus hydrogenotrophicus,是一种在哺乳动物(人类和反刍动物)的肠道内发现的物种。

B. glucerasei从狗的粪便中分离出来。

另外的物种如B. productaB. schinkii甚至从痰液、污水和瘤胃中分离出来。

这些发现表明Blautia在肠道和其他微环境中的生存和进化的重要性。

03
Blautia 与其他微生物的交叉喂养

当细菌从膳食成分中产生的代谢物作为底物支持其他物种的生长时,称为交叉喂养。交叉喂养是肠道微生物群中厌氧菌之间的重要相互作用,可影响其代谢途径并有助于其稳定性和生产力

作为厌氧菌的一个属,Blautia与其他细菌的交叉喂养也在一定程度上有助于代谢调节

Blautia & R. bromii

一项研究发现,通过使用 0.2% 的抗性淀粉作为能量来源,布氏瘤胃球菌(R. bromii)在 RUM-RS 培养基上可以产生大致相等摩尔比的甲酸、乙醇和乙酸。

注:布氏瘤胃球菌(R. bromii)是存在于人类肠道中的降解抗性淀粉的细菌,富含抗性淀粉的饮食可以增加它的丰度。

然而,在淀粉上与产乙酸细菌B. hydrotrophica进行批量共培养导致甲酸消失,乙酸水平增加。产生甲酸的物种和产生乙酸的物种之间的交叉喂养可能在结肠中短链脂肪酸的形成中起重要作用,并有助于大量产生乙酸

Blautia & Dorea

肠易激综合征 (IBS) 患者中观察到 Blautia 菌种水平升高,研究人员推测可能由于由高丰度的Dorea菌产生的较高气体水平Dorea 是一种可以被 Blautia 使用的细菌。

Blautia & B. bifidum

Blautia hydrotrophica消耗 H2和 CO2通过 Wood-Ljungdahl 途径产生乙酸——当与双歧双歧杆菌共存时,该途径显着激活B. bifidum (双歧双歧杆菌)作为一种特殊的碳水化合物发酵物种并产生 CO2,它是 Wood-Ljungdahl 途径中的固定底物。因此,在 Blautia hydrotrophica 中观察到的 Wood-Ljungdahl 途径的变化可能是B. bifidum交叉喂养的结果。

备注:Wood-Ljungdahl 途径又称为厌氧乙酰辅酶 A 途径,存在于产甲烷菌、硫酸盐还原菌和产乙酸菌等化能自养的厌氧细菌和古生菌中。

04
饮食、年龄和地理对Blautia丰度的影响

饮食

饮食是驱动肠道菌群组成和代谢活动的主要因素,不同种类和数量的饮食以及主要营养素之间的平衡对肠道微生物有显着影响。

酒曲通过糖基神经酰胺作为 Blautia coccoides 的益生元

传统的日本烹饪方法和食,其中包含用非致病性真菌酒曲制备的发酵食品,与日本人的长寿密切相关。一项研究报道,酒曲中含有大量的糖基神经酰胺,并表明在小鼠饮食中添加 1% 纯化的糖基神经酰胺作为益生元1周可以提高小鼠肠道中球状芽孢杆菌的丰度,减少液糖水平,并上调其肾腺激素水平。同时发现Blautia coccoides可以将糖基神经酰胺降解为神经酰胺,然后将神经酰胺代谢为脂肪酸鞘氨醇碱,它们被肠道吸收并产生有益作用。

玉米中提取的膳食纤维F-FOP增加Blautia

将从玉米中提取的膳食纤维 (F-FOP) 添加到喂食高脂肪 (HF) 饮食的小鼠的饮食中,显着增加了小鼠粪便中Blautia的丰度。与 HF 饮食的小鼠相比,F-FOPs + HF 饮食的小鼠表现出体重和组织重量的损失,结果显示Blautia的丰度肥胖相关代谢紊乱的标志物呈负相关

低聚果糖、冻干豆浆增加Blautia

在喂食高脂饮食的大鼠中添加 20% 的冻干豆浆会导致大鼠粪便中的Blautia含量增加

在一项研究中,将 30 只雌性大鼠分为六组,分别喂食酪蛋白大豆分离蛋白,每组都含有纤维素、棉子糖或低聚果糖 (FOS)。结果表明,两种来源的日粮蛋白质都可以改变大鼠粪便中乙酸浓度乳酸杆菌的丰度,但无论膳食蛋白质来源如何, FOS都会增加Blautia的丰度

研究还表明,大鼠肠道酸化可能会抑制次级胆汁酸的形成。

omega-3增加Blautia

在另一项研究中,一名 45 岁的男性志愿者每天摄入 600 毫克 omega-3,持续 14 天,该志愿者的整体肠道微生物多样性下降,尤其伴随着粪杆菌丰度的降低Blautia丰度的显着增加

交替饮食和自助饮食增加Blautia

除了食物,人们的饮食方式也会塑造肠道菌群。与普通饮食相比,交替饮食自助饮食可以提高肠道菌群中Blautia菌属和瘤胃球菌的丰度,此外还会引起一些宿主代谢相关参数的变化。随着全基因组测序的发展,未来的研究可以检验各种饮食如何调节Blautia的代谢活动并改善宿主健康。

年龄:老年人Blautia丰度降低

在生命的不同阶段(即从童年到成年再到老年)的过渡期间,肠道微生物群会发生显着变化。使用高通量测序对 367 名 0-104 岁健康日本受试者的粪便样本进行的横断面研究报告称,日本成年人(21-69 岁)的肠道微生物群含有高丰度BlautiaBifidobacterium低丰度Bacteroides。此外,与成年人相比,老年人的微生物组多样性和个体微生物丰度降低,包括Blautia丰度降低。这种现象可能与年龄相关的免疫功能下降(称为免疫衰老)有关,并伴有许多与年龄相关的疾病,包括慢性低水平炎症。

Blautia wexleraeBifidobacterium pseudocatenulatum的丰度在成人型肠道微生物群中显着更高,而在老年肠道微生物群中观察到兼性厌氧菌(如大肠杆菌)的丰度更高。这些发现表明,通过增加会随着年龄增长而减少的菌群,将肠道微生物群从老年人型转变为成人型,可以预防与年龄相关的疾病的风险。

地理位置

最近的一项研究分析了来自亚洲温带和热带地区五个国家的城市或农村地区的 303 名学龄儿童粪便样本中的微生物群落特征。儿童肠道菌群分为普氏菌属(P型)和双歧杆菌/拟杆菌属(BB型)两组。中国(包括台湾地区)、日本等温带地区儿童肠道菌群多为BB型,泰国、印度尼西亚等热带地区儿童肠道菌群多为P型。值得注意的是,Blautia 在 BB 型肠道菌群中显着富集,占总 BB 型细菌组成的 10%,但仅占总P的 5%。

一项研究指出,日本人的主要肠道菌属是双歧杆菌梭状芽孢杆菌。在美国人、中国人、法国人和西班牙人中存在拟杆菌属;在澳大利亚人中是Blautia。据报道,地理位置之间人类肠道微生物多样性的差异在很大程度上与遗传、生活方式和饮食有关。

有趣的是,据报道Blautia在双胞胎遗传中具有很强的分类关联。一项研究收集了七种宿主的粪便样本,包括人类、猪、牛、鹿、狗、猫和鸡,并对 16S rRNA 基因的 V6 区域进行了测序。发现Blautiaoligotypes可以准确识别不同的宿主来源,表明该属具有宿主特异性宿主偏好

05
Blautia 的生理功能

Blautia 对生物活性物质的生物转化

近年来,Blautia对草本植物和功能性食品的生物转化和代谢的研究引起了研究关注。

多甲氧基黄酮 (PMF) 是从山奈柑橘类水果中分离出来的黄酮类化合物,具有抗癌、抗炎、抗病毒和抗凝血等生物学功能。

研究表明,Blautia菌属通过将 5,7-二甲氧基黄酮 (5,7-DMF) 和 5,7,4-三甲氧基黄酮 (5,7,4-TMF)分别转化为具有生物活性的白杨素芹菜素,对芳基甲基醚官能团具有水解作用。该菌还具有去糖基化能力,它可以将异黄酮、黄酮和类黄酮代谢成相应的苷元。

作为黄酮类化合物的另一个例子,姜黄素在治疗某些疾病,包括癌症、心血管疾病、糖尿病、肝病和神经退行性疾病方面表现出抗氧化、抗炎、抗病毒、抗菌的有益作用,受到了广泛的关注。

由于姜黄素结构中含有β-二酮,该化合物具有高的疏水性、低的溶解性和“生物利用度”,因此,每天大量摄入姜黄素,可以观察到对健康的促进作用。不幸的是,大量摄入姜黄素可能会产生有害影响并降低疗效,这会导致限制了姜黄素在疾病预防中的应用。

由肠道细菌产生的姜黄素代谢物具有生物效应,而不是姜黄素的原始形式。

据报道,姜黄素是由人肠道细菌Blautia 菌株MRG-PMF1通过甲基芳醚裂解,转化为去甲基姜黄素双去甲基姜黄素的。有证据表明,未被吸收的姜黄素可以间接调节结肠微生物群,通过产生额外的生物可利用和生物活性分子(如二氧去甲基姜黄素和二甲氧基姜黄素)对多种疾病产生有益的影响。

此外,Blautia sp AUH-JLD56 菌株已被证明可特异性且有效地将牛蒡子苷或牛蒡子苷元生物转化为具有良好自由基清除活性的 (-)-3′-去甲基牛蒡子苷元。 B. glucerasei sp. 产生一种特定的细胞外葡萄糖神经酰胺酶,将葡萄糖神经酰胺水解成功能性物质,对结肠癌具有特定的预防作用。

但是值得提醒的是,Blautia的某些生物转化可能无益,甚至可能有害。某些Blautia物种可以对初级胆汁酸进行 7-α-脱羟基化,并将其转化为次级胆汁酸,如石胆酸脱氧胆酸。这些物质是诱发结肠癌的致癌物,在溃疡性结肠炎、发育不良或癌症患者的粪便中发现这些物质浓度

一般来说,肠道中的细菌代谢不涉及氧气,而是还原和水解,导致形成非极性低分子量产物。在类黄酮转化过程中,Blautia菌种催化的反应包括去甲基化、脱羟基化、O-和 C-去糖基化和 C-环裂解,这可能是由于其相应的酶,如 β-葡萄糖苷酶和 O-糖苷酶。因此,深入开发Blautia对生物转化的探索对于开发用于食品补充剂的新酶和生物活性代谢物至关重要,并为人体肠道微生物组的代谢组学研究提供有价值的视角。

Blautia 和 次生代谢物

次级代谢产物是微生物在生长代谢过程中产生的具有生物活性的化合物,广泛用于抗菌抗癌药物、除草剂、杀虫剂等,也是微生物药物开发的重要来源。如双歧杆菌产生的细菌素对单核细胞增生李斯特菌、产气荚膜梭菌和大肠杆菌等病原微生物具有抗菌活性。

Blautia通常具有生产细菌素的能力。通过antiSMASH数据库对次生代谢物的注释,将74株Blautia菌株注释为7类共261个次生代谢生物合成基因簇(BGCs),包括NRPS、sactipeptide、lanthipeptide、bacteriocin、lassopeptide、betalactone、transat-pks

NRP、sactipeptide、lanthipeptide 通常分布在所有菌株中。NRP 和 PK 是具有多种功能的最丰富的次级代谢产物家族之一,包括参与铁清除的铁载体、提供针对一系列压力因素的保护的色素,以及营养获取、化学通讯和防御反应

备注:antiSMASH数据库可实现基因组与基因组之间的相关天然产物合成基因簇的查询和预测。临床上使用的大部分抗生素和药物均来自植物或微生物的天然产物。近二十年来,基因组数据的不断增加,使通过基因组挖掘来获取化合物的生物合成簇成为可能。antiSMASH是该领域最流行的工具之一。自2011年首次发布以来,antiSMASH已成为次级代谢产物基因组挖掘的标准工具,antiSMASH数据库为许多公开可用的微生物基因组提供预先计算的antiSMASH结果,并允许进行高级跨基因组搜索。

Blautia产生的细菌群具有抑制肠道内病原菌定植的潜力,并且它还可以影响肠道微生物群的组成。研究显示B. obeumB. producta可以抑制产气荚膜梭菌耐万古霉素肠球菌的增殖,使其成为潜在的益生菌,发挥益生菌功能。

06
Blautia的健康特性

肠道微生物群是一个复杂的生态系统,与宿主疾病的发展、药物代谢、免疫系统调节和其他过程有关。Blautia 作为肠道微生物群中的优势菌属,与宿主生理功能障碍具有显着相关性,例如肥胖、糖尿病、癌症和各种炎症性疾病。

肥胖相关疾病

一项研究观察到连续 3 周食用低热量高蛋白饮食的超重/肥胖非酒精性脂肪肝患者的肠道微生物群组成发生变化和Blautia丰度增加。在另一项研究中,无论是否存在非酒精性脂肪性肝炎,肥胖儿童的肠道拟杆菌属丰度较,同时Blautia粪杆菌丰度较

在一项基于人群的横断面研究中,研究人员调查了 20-76 岁日本男性和女性的内脏脂肪积累体重指数与按性别分层的肠道微生物群的关系。发现Blautia是唯一一个其丰度与日本人的内脏脂肪积累呈显着负相关的属,无论性别如何。

Blautia是肠道中常见的乙酸生产者,可通过激活 G 蛋白偶联受体 GPR41 和 GPR43 来抑制脂肪细胞中的胰岛素信号传导和脂肪积累,进而促进其他组织中未结合的脂质和葡萄糖的代谢,从而减轻肥胖相关疾病

Blautia有效减肥组女性肠道菌群中的优势菌属,但在减肥无效组中则不然。在另一项研究中,与健康儿童相比,糖尿病儿童Blautia丰度显着下降。一项横断面研究表明,Blautia,特别是B. lutiB. wexlerae,可能有助于减少与肥胖相关并发症相关的炎症

肥胖组的Prevotella、巨型单胞菌(Megamonas)、梭杆菌属和Blautia显著增加

炎症性疾病

Blautia作为共生的专性厌氧菌属,通过上调肠道调节性T细胞和产生短链脂肪酸,在维持肠道生态平衡和预防炎症方面发挥着重要作用。

IBD患者和健康人的粪便和黏膜菌群分析表明,CD患者盲肠黏膜菌群中Blautia的丰度显着降低。在结直肠癌患者的黏膜粘连菌群中,同样报道了Blautia的丰度降低

霍乱弧菌通常会导致人类腹泻,但人们对病原体的易感性不同,这可能是由人际微生物组变异驱动的。

发现霍乱患者的肠道菌群与健康个体存在显着差异,其中Blautia obeum霍乱弧菌的定植呈显着负相关。进一步研究表明,B. obeum基因组中编码胆汁盐水解酶(BSH)的基因可以降低霍乱弧菌tcpA基因的表达,抑制其定植,缓解腹泻

一项生物标志物分析研究表明,接受异体 BMT 的患者肠道微生物群多样性增加,特别是Blautia共生细菌的丰度增加,与致死性移植抗宿主病的减少总生存期的增加有关。

少数研究也报道了Blautia丰度降低回肠袋-肛门吻合肝硬化的关系。Blautia作为共生的专性厌氧菌属,通过上调肠道调节性 T 细胞和产生短链脂肪酸,在维持肠道环境平衡预防炎症方面发挥重要作用。

上述研究表明,Blautia的丰度与某些疾病呈负相关。然而,与健康个体相比,在肠易激综合征溃疡性结肠炎患者的粪便微生物群中发现了更高丰度Blautia.

尽管Blautia在各种疾病中的潜在机制尚不明确,但 Blautia丰度仍可作为相关疾病早期诊断或治疗的潜在工具。

食欲不振和营养不良

老年人特别容易出现食欲不振和营养不良。这可能部分是由于肠道微生物群老化Blautia属的较丰度可能与营养不良有关,而来自毛螺菌科、瘤胃球菌科 UCG-002、Parabacteroides merdaeDorea formicigenerans 的分类群丰度较与食欲不振相关。食欲不振或营养不良的参与者的粪便乙酸水平降低

Blautia丰度减少可能会增加慢性低度炎症,并降低通过发酵从饮食中摄取的能量。该结论需要进一步的研究支持。

与对照组相比,来自虚弱组的粪便样本下列菌群具有较高的水平:

Akkermansia, Parabacteroides, Klebsiella

而共生属较低水平菌群如下:

Blautia, Megamonas, Faecalibacterium, Prevotella, Roseburia

神经类疾病

自闭症谱系障碍患有功能性肠胃疾病的儿童中观察到几种与粘膜相关的梭菌显着增加,而 Dorea 和Blautia以及 Sutterella的显着减少

此外,帕金森病患者子中发现在属的分类水平上,来自 Blautia、Coprococcus 和 Roseburia 属的推定“抗炎” 丁酸盐产生菌在对照组的粪便中明显多于帕金森病患者。

其他

肌肉减少症是一种症状性病症,其特征是由于骨骼肌质量随着年龄的增长而过度损失,导致肌肉力量和身体机能下降。

肌肉减少症伴随着身体平衡差、步态障碍、使用拐杖和跌倒。研究发现与附肢骨骼肌质量/体重 (ASM/BW)与 ASM/BW 呈正相关BlautiaBifidobacterium可能有助于增加骨骼肌质量

Blautia coccoides可能会通过免疫调节促炎途径参与多发性硬化,包括与抗原呈递、B 和 T 细胞活化以及补体活化相关的基因的上调。与其他疾病一样,在多发性硬化中,肠道菌群失调会增加肠道通透性,从而促进 LPS 的进入

07
Blautia如何调节

如何增加(来自文献,证据不是很充分)

食物:

富含 Omega-3 的食物

糙米

大麦

迷迭香

黄酮类

高谷物饮食

益生元或药物:

二甲双胍

黄连素

小檗碱

红花油

丁酸钠

抗性淀粉(II、IV型)

橙子(果胶/黄烷酮)

葡萄籽多酚/酒

亚麻籽

维生素 D3

益生菌:

枯草芽孢杆菌

布拉酵母菌

德氏乳杆菌

鼠李糖乳杆菌GG

长双歧杆菌 BB

例如:一项研究指出富含阿拉伯木聚糖的麦麸提取物提高Blautia物种的比例 ,这表明有可能设计基于饮食的干预措施,以增加肥胖儿童体内耗尽的这些细菌物种的肠道生态系统。需要对B. lutiB. wexlerae菌株进行临床前和临床干预试验,以明确证明它们对肥胖和糖尿病前期状态的潜在保护作用。

减少Blautia

  • 抗生素:氟喹诺酮和克林霉素
  • 高胆汁酸
  • 饮酒
  • 缺乏乳酸菌

08
小结

人类肠道微生物研究的不能忽略的关注之一是研究核心微生物群。拟杆菌、普雷沃氏菌、瘤胃球菌、经黏液真杆菌属(Blautia)、考拉杆菌、罗伊氏菌、吉米菌、粪杆菌、毛螺菌以及梭菌等是世界代表性人群的核心肠道菌群。在目前谷禾健康超过60万的肠道菌群数据库中,肠道微生物群的几个核心肠道细菌普遍存在于超过90%人群粪便中。

Blautia作为一个重要的核心菌属,在肠道中占比丰度,是短链脂肪酸尤其乙酸主要生产者,对于减肥抗炎均有重要的积极作用。此外,其属下某些菌株分泌的细菌素可以抑制特定病原菌,这对于当下耐药性问题无疑看到了新方向。

但是经黏液真杆菌属(Blautia)作为一种严格厌氧的细菌,需要苛刻的培养条件和严格的操作程序。因此,将属于该属的细菌用作商业益生菌并不容易。相反,Blautia的益生元底物可以用于健康维护。一些食物成分,例如低聚果糖、乳果糖和日本酒曲糖基神经酰胺,均表明可以增加小鼠体内的Blautia丰度。然而,需要注意的是粪便微生物群的益生元作用也会因人而异。

主要参考文献:

Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, Zhao J, Zhang H, Chen W. Blautia-a new functional genus with potential probiotic properties? Gut Microbes. 2021 Jan-Dec;13(1):1-21.

Benítez-Páez A, Gómez Del Pugar EM, López-Almela I, Moya-Pérez Á, Codoñer-Franch P, Sanz Y. Depletion of Blautia Species in the Microbiota of Obese Children Relates to Intestinal Inflammation and Metabolic Phenotype Worsening. mSystems. 2020 Mar 24;5(2):e00857-19.

Stanley D, MS G, SE D, VR H, TM C, RJ H, RJ M. Identification of chicken intestinal microbiota correlated with the efficiency of energy extraction from feed. Vet Microbiol. 2013;164(1–2):85–21.

Biddle A, Stewart L, Blanchard J, Leschine S. Untangling the genetic basis of fibrolytic specialization by lachnospiraceae and ruminococcaceae in diverse gut communities. Diversity. 2013;5(3):627–640.

Chakravarthy SK, Jayasudha R, Prashanthi GS, Ali MH, Sharma S, Tyagi M, Shivaji S. Dysbiosis in the gut bacterial microbiome of patients with uveitis, an inflammatory disease of the eye. Indian J Microbiol. 2018;58(4):457–469.

Milani, C.; et al. The first microbial colonizers of the human gut: composition, activities, and health implications of the infant gut microbiota. Microbiology and molecular biology reviews. 2017, 81(4): e00036-17.

Luu TH, Michel C, Bard JM, Dravet F, Nazih H, Bobin-Dubigeon C. Intestinal Proportion of Blautia sp. is Associated with Clinical Stage and Histoprognostic Grade in Patients with Early-Stage Breast Cancer. Nutr Cancer. 2017 Feb-Mar;69(2):267-275

Chen, W., Liu, F., Ling, Z. et al. “Human Intestinal Lumen and Mucosa-Associated Microbiota in Patients with Colorectal Cancer.” PloS ONE. 7(6): e39743; doi: 10.1371/journal.pone.0039743

Grisham, J. “Bacteria May Hold the Key to Preventing Dangerous Side Effect of Transplants.” Memorial Sloan Kettering Cancer Center. (2014). Memorial Sloan Kettering Cancer Center

Jenq, R.R., Taur, T., Devlin, S.M. et al. “Intestinal Blautia is Associated with Reduced Death from Graft-versus-Host Disease.” Biology of Blood and Marrow Transplantation. (2015). 21(8) 1373-83; doi: http://dx.doi.org/10.1016/j.bbmt.2015.04.016,/p>

Murat Eren, A., Sogin, M.L., Morrison, H.G. et al. “A single genus in the gut microbiome reflects host preference and specificity.” The ISME Journal. (2015). 9: 90-100; doi: 10.1038/ismej.2014.97

Rajilić-Stojanović, M., de Vos W.M. “The first 1000 cultured species of the human gastrointestinal microbiota.” FEMS Microbiology Reviews. (2014). 38(5) 996-1047; doi: 10.1111/1574-6976.12075

Horigome A, Hashikura N, Yoshida K, Xiao JZ, Odamaki T. 2′-Fucosyllactose Increases the Abundance of Blautia in the Presence of Extracellular Fucosidase-Possessing Bacteria. Front Microbiol. 2022 Jun 2;13:913624.

12
客服