谷禾健康
《血糖,微生物,胰岛素》
2型糖尿病(T2D)是一种全球性慢性代谢性疾病,目前已影响超过 4.6亿人,其社会经济负担巨大,迫切需要寻求有效的治疗方法。
根据中华医学会糖尿病学分会发布的《中国2型糖尿病防治指南》,我国2型糖尿病的管理路径清晰而规范:以生活方式干预为基石,以二甲双胍为一线首选,后续根据情况采取阶梯式的强化治疗。
然而,尽管指南明确,临床上仍然面临治疗反应个体差异大这一核心难题,这导致我国仍有近半数患者血糖控制不达标。为何同样的“金标准”方案,效果却天差地别?
多项研究发现,2型糖尿病的肠道菌群组成与健康人存在明显差异,菌群失衡可能通过影响短链脂肪酸合成、胆汁酸代谢及胰岛素敏感性等途径促进代谢紊乱。
甚至连二甲双胍这些药物的降糖效应,竟有相当一部分是依赖其对患者肠道微生物群的重塑和调节。
本文将介绍当前有关肠道微生物群调控葡萄糖稳态的潜在机制,并重点探讨近年来通过靶向肠道菌群改善糖代谢的研究进展。其中包括粪菌移植、益生元、益生菌、合生元与外源性代谢调节物质等多种策略在动物模型中的应用及其转化潜力。这些非侵入性干预手段有望为2型糖尿病带来新的、有效的治疗或至少是辅助选择。
要揭示肠道菌群与个体糖尿病的关系,需要谨慎和长期的队列研究
肠道菌群:一个多因素互动的复杂网络
然而,事情并非绝对“好细菌”与“坏细菌”的简单对抗。肠道菌群是一个复杂的生态系统,这个复杂的网络包括:
所有这些因素交织在一起,共同决定了我们的代谢健康状况。
因此,要真正揭示肠道菌群在糖代谢中的作用机制,就需要做到:
这类研究不仅能为糖尿病的早期预测和个体化干预提供坚实证据,也将为利用肠道菌群进行精准营养调控和代谢重塑奠定科学基础。
谷禾已经通过14,846例2型糖尿病患者(包括妊娠糖尿病)构建了早期糖尿病预测模型,但该模型仍面临若干挑战。
未来谷禾会继续推进研究结合代谢组,药理学等多组学数据,并通过多中心、纵向的设计来控制药物等潜在混杂因素,以实现更高精度、更具普适性的肠道菌群早期糖尿病预测模型。
通过深入探索这些微生物是通过哪些机制影响血糖平衡和代谢功能的,也许会为糖尿病治疗带来新的突破。
肠道屏障受损:免疫与糖代谢的微妙联系
肠道屏障是先天性免疫系统的重要组成部分,它的主要工作就是筑起一道坚固的墙,将肠道内的细菌、病原体及其代谢产物牢牢地限制在肠道内,防止进入血液循环。
▸当肠道屏障出现漏洞
然而,高脂饮食(HFD)会破坏肠道微生物群平调,诱发肠漏,这使得细菌内毒素,特别是革兰阴性菌产生的脂多糖(LPS),更容易进入血液循环,形成“代谢性内毒素血症”。
▸炎症的触发机制
—警报响起
泄漏到血液中的LPS会激活免疫细胞表面的Toll样受体4 (TLR4)。
—信号传导
TLR4被激活后,会启动一个信号级联反应,导致细胞核内的 NF-κB激活。NF-κB是调控炎症反应的总开关。
—促炎因子
被激活的NF-κB会命令细胞大量生产和释放促炎细胞因子,如肿瘤坏死因子-α (TNF-α)、白介素-6(IL-6)等。在全身造成低度慢性炎症。
值得注意的是,近期研究发现,不同菌种来源的LPS在影响葡萄糖代谢、炎症反应及肠屏障完整性方面存在差异,说明仅以LPS总量评价肠漏程度可能并不准确。
▸ 慢性炎症:导致胰岛素抵抗的元凶
这种炎症状态是导致代谢紊乱的关键因素之一,例如,TNF-α会直接干扰肌肉细胞对胰岛素的响应,阻碍血糖的正常利用,最终引发胰岛素抵抗、高血糖及高胰岛素血症。
▸免疫系统与菌群的双向互动
免疫系统和肠道菌群的关系并非单向的,而是一个复杂的双向互动。
关键免疫细胞:Th17细胞
这是一种特殊的T细胞,它在正常情况下分泌IL-17和IL-22等因子,对于维持肠道屏障的完整性和抵御病原体至关重要。可以看作是城墙的守护者。
➦ 菌群 → 免疫系统
证据1(生酮饮食):生酮饮食会减少肠道中Th17细胞的数量。但如果给无菌小鼠移植了采用生酮饮食的人的粪菌,小鼠的Th17细胞也会减少。而补充双歧杆菌则可以恢复Th17细胞的水平。
证据2(高糖高脂饮食):高糖高脂饮食会减少那些能够诱导Th17细胞发育的特定细菌。如果给高糖高脂饮食喂养的小鼠补充这些特定的细菌,它们的Th17细胞水平得以恢复,血糖也得到改善。
➦ 免疫系统 → 菌群
证据(过继转移):将Th17细胞直接移植到肥胖小鼠体内,这些小鼠的肠道菌群结构发生了有益的改变,葡萄糖耐量也得到了改善。
doi.org/10.1146/annurev-physiol-051524-094728
►▷
不良饮食 → 菌群失调 → 肠漏 → LPS进入血液 → 激活免疫系统(TLR4)→ 慢性炎症(TNF-α)→ 胰岛素抵抗。
菌群的改变会影响关键免疫细胞(如Th17)的数量,而免疫系统的状态反过来又能重塑肠道菌群的构成。
这种菌群与肠道免疫之间错综复杂的相互作用,是理解代谢性疾病病理生理的核心,也为未来的治疗提供了新的靶点。
短链脂肪酸:菌群送给你的控糖礼物
短链脂肪酸(SCFAs)包括丁酸、丙酸、乙酸,它们是由肠道细菌通过碳水化合物发酵产生。
它们不仅仅是代谢产物,更是重要的信号分子,是肠道菌群与我们身体对话的语言。
▸ 短链脂肪酸如何调控血糖?
▸ 动物研究,直接补充SCFA改善血糖
多项动物实验表明,外源性补充SCFAs可改善能量代谢与血糖稳态,表现为体重下降、葡萄糖耐受性提升及胰岛素抵抗减轻。
▸ 人体研究,效果不一致
例如,口服丁酸仅在健康受试者中改善血糖控制,而对代谢综合征患者无显著效应,提示代谢紊乱本身,可能就损害了人体对SCFA信号的响应能力。
▸ 口服补充为何会失效?
口服补充SCFA是不符合生理规律的。
在自然状态下,绝大多数SCFA是在远端肠道(结肠)中由细菌产生的。
口服的缺陷:口服的SCFAs在到达结肠之前,可能早已在胃或小肠中被吸收或代谢掉,无法到达它们应该发挥主要作用的地方。
有力的证据: 一项巧妙的研究解决了这个问题。科学家设计了一种“菊粉-丙酸酯”,这种特殊结构可以保护丙酸不被提前吸收,精准地将其运送到结肠释放。结果发现,这种精准投放的丙酸,确实能够有效改善超重和肥胖人群的能量代谢和胰岛素敏感性。
这说明,SCFA在哪里释放,比释放了多少,可能更为重要。
▸ 为何病人的粪便里SCFA反而更高?
库存 ≠ 产量
一些研究发现,代谢疾病患者粪便中的SCFA含量反而更高。这似乎与“SCFA是有益的”这一观点相矛盾?
合理解释:粪便中的SCFA含量,仅仅是未被肠道吸收和利用的“剩余物资”。
▸ 肠道菌群-短链脂肪酸-肠道激素轴
短链脂肪酸通过与肠内分泌细胞(EECs)上的受体结合,刺激激素的释放,比如说,GLP-1(胰高糖素样肽-1)、PYY(肽YY)、GIP(胃抑制肽)、CCK(胆囊收缩素)等。GLP-1与GIP为主要的“促胰素”,能够在摄食后迅速加强胰岛素分泌反应,是控制餐后血糖的关键。
doi.org/10.1146/annurev-physiol-051524-094728
近年来的新发现进一步揭示,微生物群可通过调控宿主营养感知机制影响肝脏糖异生,形成由GLP-1介导的“肠–脑–肝”信号轴。
►▷
由于肠道菌群与上皮层密切接触,它可能通过改变肠内分泌细胞的营养感知机制,并利用短链脂肪酸及其他微生物代谢物作为信号分子,调控肠激素分泌和葡萄糖平衡。这种微生物与宿主的相互作用网络为解析肠源信号调控代谢疾病提供了新的理论框架。
菌群把胆汁酸变成影响血糖的信号
肠道是一个高度复杂的生态系统,如同一个动态的生物反应器,在这个反应器里,无数的微生物与我们吃进去的食物、以及我们身体自己分泌的物质(如胆汁)发生反应,生成了大量独特的代谢产物。
关于肠源性代谢产物我们前面已经讨论过短链脂肪酸,现在焦点转向另一位主角:胆汁酸。
★ 胆 汁 酸
▸ 初级胆汁酸
出生地: 肝脏。 原料: 胆固醇。
初始形态:在肝脏合成后,它们会与牛磺酸(主要在小鼠中)或甘氨酸(主要在人类中)结合,形成结合型初级胆汁酸。
主要工作:进入肠道,帮助我们消化和吸收脂肪。
▸ 次级胆汁酸
一旦初级胆汁酸完成了消化任务并进入肠道后段,肠道菌群就接管了,对胆汁酸进行两步关键的改造:
这种从初级到次级的转变至关重要,因为不同形态的胆汁酸,会像不同的钥匙一样,激活不同的细胞受体“锁”,从而触发完全不同的生理效应。
doi.org/10.1146/annurev-physiol-051524-094728
▸ 两大关键受体:TGR5 与 FXR
次级胆汁酸主要通过激活两个著名的受体来发挥信号作用:
—— TGR5受体 (明确益处)
激活机制:菌群将初级胆汁酸(如鹅去氧胆酸)转化为次级胆汁酸(如石胆酸),后者是TGR5受体的强效激动剂。
明确的益处:激活肠道细胞上的TGR5受体,能够促进GLP-1的分泌,从而改善高脂饮食动物的血糖稳态。
—— FXR受体 (更具争议)
FXR受体则要复杂得多,它的作用似乎取决于它在哪个器官被激活。
在肝脏中(作用清晰):
激活肝脏的FXR受体,可以改善健康和糖尿病小鼠的胰岛素敏感性。
在肠道中(作用矛盾):
一些研究报告称,使用激动剂激活肠道FXR能改善胰岛素抵抗和葡萄糖耐量。
而另一些研究(包括我们之前讨论的产乳酸菌的研究)则发现,使用拮抗剂抑制肠道FXR,或者直接把肠道FXR基因敲除掉,反而能改善血糖稳态。
这说明,FXR在肠道中的作用远非简单的“开”或“关”,而是受到多种因素调控的复杂网络。
★ 其他代谢产物
这些肠源性代谢产物通过影响能量代谢、免疫反应以及宿主信号通路,构成肠道微生物–代谢–宿主疾病之间的重要生物学纽带。
既然我们已经明确,肠道菌群是糖尿病发生发展的关键一环,那么一个问题随之而来:我们目前广泛使用的那些经典降糖疗法,比如二甲双胍等,它们的疗效背后,是否也隐藏着菌群的秘密?下面我们就来看看,常见的治疗方式是如何通过影响肠道菌群来帮助我们控制血糖的。
二甲双胍
二甲双胍是最常见的降糖药之一。它降低血糖的传统机制是减少肝脏制造葡萄糖的能力。但近些年,人们发现——它在肠道里也发挥着巨大作用。
研究发现,口服二甲双胍比注射更能有效降糖,提示它在消化道内可能有额外的作用通路。科学家进一步发现,二甲双胍能改变肠道菌群结构:
更有趣的是,如果把“吃过二甲双胍的小鼠”的小肠菌群移植到其他糖尿病老鼠体内,这些受体小鼠体内的营养感知通路得以恢复,进而抑制了肝脏的葡萄糖生成——也就是说,药效可以通过菌群“传递”出来。
这说明,二甲双胍不仅是“肝药”,更是“肠药”。它同时通过肠道菌群、胆汁酸,以及“肠–脑–肝”信号网络,共同调控血糖代谢。
GLP-1受体激动剂
GLP-1受体激动剂(胰高糖素样肽-1受体激动剂,GLP-1RAs)是一类降糖药物,GLP-1受体激动剂通过多靶点机制发挥作用:
▸肠道菌群对GLP-1的双重影响
促进分泌:肠道菌群能够促进肠道内GLP-1激素的分泌,这是一种有益的代谢效应。
限制作用:分泌的GLP-1在体内极易被二肽基肽酶-IV(DPP-IV)快速降解,导致其对血糖和食欲的系统性调节作用受限,仅产生局部、短暂的代谢效应。
注:DPP-IV 是 Dipeptidyl Peptidase-IV 的缩写,中文名称为 二肽基肽酶-4。它是一种丝氨酸蛋白酶(serine protease),广泛存在于人体的多种组织中,包括肠道上皮、肝脏、肾脏、免疫细胞以及血浆中。
因此,肠道菌群在介导GLP-1药物系统性效应中的具体角色仍不明确。
▸动物与人体研究中的差异
关于GLP-1RAs对肠道菌群的影响,现有研究结果存在不一致。
动物研究:在高脂饮食或糖尿病动物模型中,GLP-1RAs治疗能够增加肠道菌群的多样性,并提升有益菌(如Akkermansia muciniphila、乳酸杆菌)的丰度。
🧍♀️人类研究:也有观察到双歧杆菌数量增加。但大多数人类临床研究报告称,在接受GLP-1RAs治疗后,患者的肠道菌群组成并无显著变化。
▸给药途径:可能是造成差异的关键因素之一
大部分GLP-1RAs均经皮下注射给药,因此菌群改变或许是药物通过影响肠道生理功能(如延缓胃排空、降低肠蠕动等)所致的间接效应,而非药物直接作用于菌群。
目前,虽然口服剂型司美格鲁肽已获批准,但其对肠道菌群的直接影响尚缺乏系统性评估。
▸新视角:来自肠道菌群的DPP-IV
近期的一项关键研究为理解这一复杂关系提供了重要的新视角:
部分肠道微生物自身能够产生并分泌DPP-IV酶。这种细菌源性的DPP-IV同样会降解宿主的GLP-1,从而削弱其生理活性。
临床关联: 研究发现,在对DPP-IV抑制剂药物西他列汀反应不佳的个体中,其肠道微生物的DPP-IV活性显著更高。
干预潜力: 基于此,研究人员已鉴定出一种能特异性抑制微生物DPP-IV的抑制剂,并在动物模型中证实其能改善葡萄糖耐受性,并降低粪便DPP-IV活性。
►▷
这一发现为2型糖尿病(T2D)的治疗开辟了新思路。未来可能开发出一种联合干预策略,即同时靶向宿主和菌群来源的DPP-IV。这种策略有望更有效地保护内源性GLP-1,从而实现更优的血糖控制效果。
减重手术
两种常见的减重手术——Roux-en-Y胃旁路术(RYGB)和 袖状胃切除术(VSG),在胃肠道生理结构上的改变机制不同,但它们在治疗肥胖和糖尿病方面的效果及益处相当。
起初,人们认为手术后的机械性限制,也就说胃容量变小减少食物摄入,是体重下降与代谢改善的主要原因。然而,后续研究发现,减重手术会引发一系列深远的胃肠道生理适应,包括肠道激素分泌、胆汁酸代谢及 肠道微生物群的显著变化,这些因素彼此关联,共同促进体重下降与血糖耐受性改善。
▸ 肠道菌群的核心作用与证据
——菌群持久且独立的变化
研究表明,减肥手术后,肠道菌群会发生显著且持久的变化(至少维持十年)。这种改变似乎是独立于体重减轻或热量限制本身。
证据:与仅节食减肥个体相比,RYGB手术患者的菌群多样性增加;并且,RYGB手术的肥胖大鼠菌群,与体重相当的假手术组大鼠(未真正手术但体重通过节食控制)的菌群显著不同。
——因果关系的探索 (动物、人类)
动物实验:将接受了RYGB手术小鼠的肠道菌群移植到无菌小鼠体内,能够复制体重下降的效果,这强烈暗示了由手术介导的菌群改变在驱动体重减轻中可能具有部分因果作用。
人类研究:然而,在人类研究中结果更为复杂。将术后一年且体重下降30%的供体的菌群移植给代谢综合征患者,并未能改善其葡萄糖稳态。但值得注意的是,这种移植确实阻止了受体胰岛素敏感性的进一步恶化(相比之下,接受其他代谢综合征患者菌群移植的对照组则出现了恶化)。
这说明,肠道微生物群在RYGB的代谢改善中虽起到一定作用,但更可能是与其他机制协同发挥效应,而非单一决定因素。
▸ 菌群发挥作用的关键途径
近期的证据揭示了菌群影响代谢的具体机制,主要涉及以下两个方面:
——胆汁酸信号通路
垂直袖状胃切除术的降糖效果依赖于肠道菌群,并且需要功能正常的FXR和TGR5受体(两者均为胆汁酸受体)。
手术后的菌群改变会增加肠道中胆汁酸转运体的表达,从而促进石胆酸 (lithocholic acid) 的吸收并将其运输至肝脏。
在肝脏,石胆酸被转化为CA7S,这种物质可以直接激活TGR5受体,从而增加GLP-1的分泌,最终改善血糖控制。
——短链脂肪酸信号通路
减肥手术后,肥胖个体循环系统中的丁酸和丙酸水平显著增加,而乙酸水平则降低。
这些短链脂肪酸的变化,同样被认为有助于改善体重和葡萄糖稳态。
减肥手术带来的全面健康益处(体重减轻和葡萄糖稳态改善)不能归因于任何单一机制。它很可能是多种因素,包括肠道菌群的深远影响、胆汁酸信号的改变和短链脂肪酸的产生等共同作用的结果。
总结来说,不同的减重手术(如胃旁路术和袖状胃切除术)虽然操作方式差别很大,但减重与控糖效果相近。关键并非只是吃得少、吸收少,而是对肠道—代谢轴的系统性重启。
肠道菌群、胆汁酸、激素信号和神经代谢网络共同协作,把机体从易胖、胰岛素抵抗的状态,切换回更健康、更稳定的能量代谢模式。
以上这些发现让我们意识到,我们可能一直在间接利用菌群的力量。这自然而然地将我们引向了糖尿病治疗的下一个前沿:与其依赖药物对菌群的附带效应,不如直接将肠道菌群作为干预的核心。接下来,我们将探索那些专门为此设计的创新途径。
FMT 是目前临床上应用最广泛且成功率最高的治疗方法之一,特别是在治疗艰难梭菌感染以及其他多种胃肠道疾病中表现突出。近年来,FMT 也被探索作为一种新型的神经系统、免疫系统及代谢性疾病(包括肥胖与2型糖尿病)替代疗法。
▸ 动物研究中,FMT显著成效
糖尿病小鼠实验:持续为糖尿病模型小鼠(db/db小鼠)移植健康人类的粪便菌群,能够改善它们的葡萄糖耐量和新陈代谢。
运动与饮食实验:从健康饮食并坚持运动的小鼠身上获取菌群,并将其移植给久坐不动的高脂饮食小鼠,可以改善后者的葡萄糖耐量并减少其脂肪堆积。
肠道内容物移植:将健康大鼠的小肠内容物移植到高脂饮食的大鼠体内,可以迅速改善其对葡萄糖的耐受能力,并减少葡萄糖的生成。
动物研究普遍表明,移植健康的肠道菌群能够有效改善代谢问题。
▸ 🧍♀️人体临床研究的:效果有限且短暂
关键研究案例: 在两项人类研究中,患有代谢综合征的男性受试者,接受了来自瘦型的健康捐赠者的FMT。
短期效果(6周后): 受试者的胰岛素介导的葡萄糖摄取能力得到改善,糖化血红蛋白(HbA1c)水平也下降了。这是一个积极的信号。
长期效果(18周后):然而,之前观察到的有益效果不再显著。
▸ 为什么在人类身上效果不佳?
▸ 未来的改进方向
为了让FMT成为治疗代谢疾病的可行方案,需要更精细化的策略:
优化方案:需要调整FMT的时间、重复和剂量。
联合疗法:将FMT与生活方式干预(如改变饮食、补充膳食纤维)相结合。
近期的两项临床试验证明,当FMT与饮食改变或膳食纤维补充相结合时,这种联合策略确实能改善肥胖或2型糖尿病患者的代谢结果。
个性化FMT:类似于个性化医疗,未来可能需要发展“个性化粪菌移植”。即根据每个患者的具体情况,精心挑选或设计最适合他们的菌群来进行移植。
谷禾也会根据肠道菌群检测报告为合作方提供相关指标,便于更好地筛选与匹配。
多项研究表明,在代谢性疾病(包括肥胖与2型糖尿病)的动物和人类模型中,补充益生菌可在急性及长期阶段均显著改善多项代谢指标。
在这里,介绍用产乳酸菌、产丁酸菌和特定物种Akkermansia muciniphila治疗2型糖尿病和其他代谢疾病状态的效果。
AKK菌|Akkermansia muciniphila
Akkermansia muciniphila(简称AKK菌)是一种革兰氏阴性菌,具有降解黏蛋白的能力,主要定植于肠道黏液层,并可在粪便样本中检测到。
肠道粘液层的主要成分是粘蛋白(Mucins),粘蛋白是一种富含糖基的结构蛋白,是肠道黏液层的重要组成部分,这也是Akk菌的“主食”。
AKK菌与健康的关系:绝大多数证据指向有益
大量研究发现,在啮齿动物与人类中,肥胖或2型糖尿病患者体内的Akk菌丰度都显著偏低;当其丰度减少时,常伴随炎症水平上升、肝脏脂肪变性以及胰岛素抗性增强。
有一项宏基因组学研究报告指出,AKK菌的增加与2型糖尿病相关,理由是它降解粘蛋白会破坏肠道粘液层的完整性。
更多的研究表明,AKK菌的丰度与更厚的粘液层和更低的肠道通透性(即更少的“肠漏”)正相关。它似乎能通过一种尚不完全明确的机制,刺激肠道中负责生产粘蛋白的杯状细胞数量增加,从而实现“越吃越有”的良性循环。
Akk菌如何发挥作用?
Akk菌的益处主要通过其菌体上的特定成分和它分泌的蛋白质来实现。
Akk菌外膜上的一种叫 Amuc_1100 的蛋白质。
作用过程: 这种蛋白质可以激活肠道细胞上的TLR2受体,进而调节一系列负责细胞连接的紧密连接蛋白(如Claudin 3,Occludin等)的表达。
最终效果: 这大大增强了肠道细胞间的连接,加固了肠道屏障。屏障加固后,肠道中的有害物质(如内毒素LPS)就难以泄漏到血液中,从而减轻了全身的低度炎症,最终改善胰岛素抵抗和血糖控制。
最近,科学家发现Akk菌还能分泌一种名为 P9 的新型蛋白质。
作用效果: 在小鼠实验中,P9被证实能够促进GLP-1(一种重要的降糖激素)的分泌,从而改善葡萄糖耐量。
研究发现,活的Akk菌和巴氏杀菌的Akk菌都有效,但高温彻底灭活(Heat-killed/Autoclaved)的Akk菌则无效。
原因在于:巴氏杀菌的温度(约70°C)足以杀死细菌,但不会破坏关键蛋白Amuc_1100的结构和活性。而更高的灭菌温度则会使其变性失效。这为开发安全的菌剂产品提供了重要依据。
🧍♀️人体临床证据
Akk菌的益处已经在人体上得到初步验证。
安全性:早期的临床研究证实,无论是活菌还是巴氏杀菌的Akk菌,对人体都是安全且耐受性良好的。
有效性: 在一项针对代谢综合征患者的研究中,与安慰剂组相比,服用巴氏杀菌Akk菌的患者出现了显著的积极变化:
►▷
综合来看,上述动物与早期临床研究一致显示:
AKK菌的干预可重建肠道屏障完整性、降低代谢炎症并改善血糖稳态,提示该菌株具有成为治疗肥胖与2型糖尿病的潜在候选益生菌的巨大应用前景。
产丁酸菌
产丁酸菌并非单一菌种,而是一个庞大的功能性菌群。产丁酸菌是一类能够在厌氧环境下、通过发酵多种底物产生丁酸的肠道共生菌群。
★ Faecalibacterium prausnitzii
F. prausnitzii 是一种严格厌氧、产丁酸的共生菌,在小鼠与人类结肠中含量丰富。
为什么它如此重要?(关联性证据)
研究发现,2型糖尿病患者体内 F. prausnitzii 的丰度显著降低,而在接受减重手术后,该菌丰度显著增加,且与炎症标志物水平呈显著负相关。
这一系列发现表明,F. prausnitzii 可能通过减少肠道炎症、增强肠屏障完整性、改善代谢性内毒症,从而发挥潜在益生作用。
它如何发挥作用?
在结肠炎小鼠模型中,给予 F. prausnitzii 或其上清液,可显著增加肠上皮紧密连接蛋白表达,并降低炎症性细胞因子水平。
一个关键的发现是:单独使用丁酸,其抗炎效果远不如用F. prausnitzii的培养上清液。这说明,F. prausnitzii的益处并不仅仅来自于丁酸,它还分泌其他抗炎的有益物质。
研究人员后来确实鉴定出了一种由F. prausnitzii产生的“微生物抗炎分子”(microbial anti-inflammatory molecule, MAM),这种分子能够修复糖尿病小鼠的肠道屏障功能,并上调紧密连接蛋白表达。
给予F.prausnitzii可以改善啮齿动物的葡萄糖稳态,并且对2型糖尿病患者进行GLP-1RA治疗可以增加粪便中F.prausnilzii的丰度,这与空腹血糖呈负相关。
虽然目前尚无直接临床试验验证F. prausnitzii 在血糖调节中的疗效,但近期一项研究已证实,其长期补充在人体中是安全且可耐受的,并已启动相关的临床试验以进一步评估其作为下一代益生菌的潜力。
★ Anaerobutyricum soehngenii
这个菌它最初是在一项粪菌移植临床试验中引起关注的。研究者观察到,Anaerobutyricum属增加与受试者胰岛素敏感性改善密切相关。
动物实验:给糖尿病小鼠补充 A. soehngenii 可显著提高粪便中丁酸及次级胆汁酸水平,增强胰岛素敏感性,提升能量消耗。
🧍♀️人体临床试验:两项针对代谢综合征人群的临床试验表明,A. soehngenii 的口服或十二指肠输注均安全且耐受良好;单次十二指肠灌注实验显著提升GLP-1水平,并改善胰岛素分泌与敏感性。
►▷
无论是F. prausnitzii还是A. soehngenii,它们的益处是多方面的,不仅仅是生产丁酸,还包括分泌其他抗炎分子和调节宿主激素(如GLP-1)。这些产丁酸菌的研究都凸显了它们作为治疗代谢疾病的新型疗法的巨大潜力。
产乳酸菌
产乳酸菌是一类耐酸的革兰氏阳性菌,通常不具运动性,主要通过发酵碳水化合物产生乳酸作为主要代谢产物。乳酸是厌氧呼吸中的重要代谢物,既是宿主能量代谢中关键的中间产物,也可作为底物被其他肠道菌群利用以产短链脂肪酸。
明星成员: 其中最著名、研究最广泛、应用最普遍的就是乳杆菌属和双歧杆菌属的成员。
动物研究,效果显著
在啮齿类动物模型中,补充多种乳酸生成菌可显著带来以下代谢益处:
在多项研究中,使用以下菌株治疗,显著改善小鼠的血糖控制:
乳杆菌属
双歧杆菌属
核心作用机制:巧妙抑制FXR信号,促进GLP-1分泌
产乳酸菌改善血糖的机制相当精妙,其中一个核心通路与胆汁酸受体FXR有关:
1
分泌“胆盐水解酶” (BSH)
许多乳杆菌能产生一种叫做“胆盐水解酶”的工具。
2
分解胆汁酸
胆盐水解酶这个工具可以将“结合型胆汁酸”分解为“游离型胆汁酸”。
3
抑制肠道FXR活性
“游离型胆汁酸”激活肠道FXR受体的能力较弱,因此,这一过程的最终结果是降低了肠道FXR信号的整体活性。
4
解放GLP-1
关键点来了,肠道中的FXR受体被激活时,会抑制GLP-1(一种重要的降糖激素)的分泌。因此,当产乳酸菌抑制了FXR后,就相当于解除了对GLP-1的束缚,从而促进了GLP-1的释放,改善了血糖控制。
双重协同作用:抑制FXR还能增强短链脂肪酸诱导GLP-1分泌的效果。同时,某些产乳酸菌自身也能促进丁酸等短链脂肪酸的产生。这种 抑制FXR + 增加短链脂肪酸的协同作用,可能共同放大了GLP-1的分泌。
🧍♀️ 人体临床研究,好坏参半
与动物实验的普遍成功形成鲜明对比,产乳酸菌在人体临床试验中的表现,结果好坏参半:
☺一项研究显示,包含多种产乳酸菌的复合益生菌产品,相比安慰剂,能够降低2型糖尿病患者的糖化血红蛋白(HbA1c)和空腹血糖。
☺另一项研究发现,单独使用植物乳杆菌也能降低餐后血糖和HbA1c。
☹ 然而,与安慰剂对照组相比,补充罗伊氏乳杆菌、嗜酸乳杆菌或乳双歧杆菌并没有显著改善健康或糖尿病患者的血糖控制或胰岛素敏感性。
☺一个值得注意的细节是,在一项研究中,乳双歧杆菌(B. lactis)虽然没有改善代谢综合征患者的指标,但成功维持了他们的胰岛素敏感性,阻止了其进一步恶化。
鉴于在糖尿病患者体内,许多产乳酸菌(尤其是双歧杆菌)的数量有所减少,那么通过“缺啥补啥”的思路来恢复它们的水平,理论上应是一种有前景的治疗方法。
然而,现有的人体临床证据有限,乳酸菌对改善代谢性疾病的作用不足,因为每个人的饮食、基线肠道菌群和疾病表现都千差万别(即高度异质性),想用标准化的益生菌对所有人都产生效果,是不容易的。因此,益生元等可以增加整体微生物群的多样性和丰富性,而不是单一细菌,这可能会为更广泛的人群提供更有效的治疗选择。
2型糖尿病的治疗策略
doi.org/10.1146/annurev-physiol-051524-094728
益生元被定义为:“能够被选择性发酵,并导致胃肠道微生物群组成和/或活性产生特定变化,从而对宿主健康带来益处的成分。”
简单来说,一种物质要被称为“益生元”,必须满足苛刻的条件:
基于这些标准,许多食物或成分都可以被归入益生元的范畴。在众多候选物质中,当前研究最为集中、并在糖尿病治疗中表现出潜在疗效的包括几类新型功能性益生元。
菊粉型果聚糖(ITFs)
菊粉型果聚糖(ITFs)——主要包括菊粉(inulin)、低聚果糖(OFS)和果寡糖(FOS),它们本质上是一类由果糖分子链组成的不可消化性碳水化合物。能够被肠道细菌发酵利用,从而促进宿主健康。
它们如何发挥作用?—— 多途径、多靶点的系统工程
核心作用:精准“施肥”,优化菌群
机制一:放大GLP-1信号,控制血糖
这是菊粉型果聚糖改善血糖的核心途径。
证据: 益生菌(特别是双歧杆菌)利用菊粉型果聚糖作为底物,发酵产生短链脂肪酸,如乙酸和丁酸。而短链脂肪酸是已知的肠道L细胞分泌GLP-1的强效刺激剂。
铁证: 在GLP-1受体被基因敲除的小鼠中,或者在使用了GLP-1受体拮抗剂的小鼠中,菊粉型果聚糖带来的所有降糖益处都完全消失了。这证明了GLP-1通路在其中的决定性作用。
菊粉型果聚糖也能显著提高人和动物的餐后GLP-1水平。
机制二:激活GLP-2信号,修复肠道屏障
GLP-2可以看作是GLP-1的兄弟,它主要负责维持和修复肠道屏障的完整性。
研究发现,补充菊粉型果聚糖能够增加内源性GLP-2的分泌。如果在小鼠中阻断GLP-2受体,那么菊粉型果聚糖带来的修复肠道屏障、抗炎等益处也大部分会消失。
机制三:调节内源性大麻素系统
这是一个更深层的机制。菊粉型果聚糖诱导的菌群变化(或AKK菌的增加)能够调节肠道的内源性大麻素信号系统(endocannabinoid),增加2-棕榈酰甘油(2-palmitoylglycerol)、2-油酰甘油(2-oleoylglycerol)和2-花生四烯酰甘油(2-arachidonoylglycerol);降低花生酰胺(anandamide)水平;进而增强肠道屏障功能,减少LPS泄漏。
🧍♀️ 人体临床证据
虽然不是所有研究都报告了积极结果,但大量的临床试验已经证实了菊粉型果聚糖在人体中的益处:
►▷
菊粉类果聚糖代表了一种非常有前景的、非侵入性的2型糖尿病治疗方案。它不像直接补充益生菌那样面临能否存活和定植的问题,而是通过为体内已有的有益菌(如Akk菌和双歧杆菌)提供精准的养料,激发一连串有益的生理反应——核心是驱动GLP-1和GLP-2的分泌,最终达到控制血糖和修复肠道屏障的双重目的。
其他膳食纤维
首先,一个基本共识是:增加膳食纤维的摄入量,能显著降低患上肥胖和2型糖尿病的风险。
膳食纤维主要分为两大类:
🧬 植物来源的主要可溶性纤维包括:
然而,研究发现,不同可溶性纤维的效果差异很大,这取决于纤维的用量、食物来源、补充方式(是直接吃食物还是吃提纯的纤维补充剂)等因素。
几种可溶性纤维的表现:
🧪 β-葡聚糖—— 全能选手
来源: 主要存在于燕麦和大麦中。
一项对比研究发现,在高脂饮食中添加富含β-葡聚糖的大麦粉,能增加肠道丁酸、改善血糖。但如果直接添加提纯的β-葡聚糖纤维,同样能改善代谢。这表明β-葡聚糖本身就是强效的功能成分。
⁎ 作用机制
无论是动物还是人体研究,都强有力地支持β-葡聚糖作为一种益生元,在改善血糖和治疗代谢疾病方面具有巨大潜力。
🌽 抗性淀粉—— 瞒过小肠的特工
抗性淀粉它本质上是淀粉,但由于其特殊的结构,能抵抗小肠的消化,完整地到达结肠,成为微生物的食物。
来源:冷却的米饭、土豆、未完全成熟的香蕉等。
⁎ 作用机制(与β-葡聚糖类似):
🧍♀️ 人体证据
在患有代谢综合征和2型糖尿病的人群中,补充抗性淀粉(特别是2型抗性淀粉,如高直链玉米淀粉)能够改善胰岛素敏感性并降低空腹血糖,同时也能观察到短链脂肪酸产量的增加。
一个有趣的发现:补充高直链玉米淀粉会特异性地增加双歧杆菌的丰度,而双歧杆菌正是一种擅长发酵抗性淀粉的细菌。
🍎 果胶 —— 机制独特
来源: 广泛存在于水果中,如苹果、柑橘等。
⁎ 作用机制(与其他不同):
►▷
简而言之,膳食纤维是“好菌的食物,也是代谢的调节器”:当你吃更多含纤维的天然食物(燕麦、豆类、全谷、蔬果),肠道菌群就会发酵产出丁酸等代谢产物,能修复肠道、提升GLP-1分泌、降低炎症、帮助降糖。β-葡聚糖与抗性淀粉尤其被视为下一代代谢健康促进纤维,未来可能成为糖尿病膳食疗法的核心成分。
合生元是一种同时包含益生菌和益生元的产品。
这个设计的初衷是,通过提供益生菌最喜欢吃的益生元,来帮助它在复杂的肠道环境中更好地存活、定植并发挥作用。
鉴于益生菌能产生短链脂肪酸,而益生元是产生短链脂肪酸的代谢前体物质(原料),那么将两者结合,应能够协同增加短链脂肪酸的产生,从而对代谢健康产生比单独使用任何一种都更强大的益处。
🧬 合生元的常见组合
双歧杆菌/乳杆菌 + 低聚糖/膳食纤维
这种组合的设计理念是:由益生元提供底物,使益生菌能够在肠道定植并活跃代谢,从而增强肠道生态修复与宿主代谢调节效应。
并未实现“1+1 > 2”的突破
动物与人体研究均表明,补充益生元或益生菌本身即可带来代谢性益处,合生元干预能够改善肠道菌群生态与增加粪便SCFA含量。然而,在大多数研究中,联合应用(合生元)并未显示出明显优于单独使用益生元或益生菌的效果。
为什么这个看似完美的策略效果不理想?
研究人员认为是由于缺乏精准匹配,也就是说大多数研究在设计合生元产品时,只是想当然地将一种常见的益生菌和一种常见的益生元组合在一起,但未能首先验证,这个益生菌是否真的喜欢吃、并且能高效利用配给它的那个益生元。
这并不意味着合生元的理念是错误的,而是说明我们的执行方式需要更加科学和严谨。
改进:在进行昂贵且复杂的人体临床试验之前,必须增加一个关键的验证步骤:
►▷
合生元的概念本身极具潜力,但需确保益生菌和益生元是真正的天作之合,这种“1+1>2”的协同效应才会在临床上有更好的效果。这要求我们对菌株和底物的特性有更深入的了解和更严格的前期验证。
外源化合物(Xenobiotics)被定义为:“在机体内非天然存在的外来化学物质。”这个范畴非常广泛,从化妆品、药物到膳食补充剂中的成分都可能属于外源物。
前文已提到二甲双胍(metformin)与GLP-1受体激动剂(GLP-1RA)的降糖作用同样被认为与肠道微生物介导机制相关,而这些药物本质上也属于外源化合物的范畴。
虽然很多外源物对健康有害,但我们这里聚焦的是那些有益的外源物,重点分析两种备受关注的有益外源物:多酚和小檗碱。
多 酚 类 化 合 物 (Polyphenols)
多酚是一大类存在于植物中的化合物,如白藜芦醇、类黄酮等。
多酚类化合物是植物来源的次级代谢物,主要包括:
这些分子既能调节肠道微生物群结构,也能改善2型糖尿病的多种代谢指标。
💊白藜芦醇(Resveratrol)
白藜芦醇是多酚中研究最为深入的代表性化合物之一。
来源: 葡萄皮、红酒、花生等。
它可显著改善胰岛素敏感性、葡萄糖稳态、血脂水平、高血压等。但它的生物利用度很低,口服后能进入血液循环的量很少,而且大部分还和蛋白质绑定,无法发挥活性。
那它是如何起作用的?
答案指向了肠道。
口服有效。 多项研究发现,口服白藜芦醇可以改善小鼠的血糖,但腹腔注射(绕过了肠道)则无效。这有力地证明了它的作用点在肠道内。
口服补充剂也有益地改变了啮齿动物的肠道微生物组,降低了厚壁菌门/拟杆菌的比例,增加了Akk菌、双歧杆菌和乳杆菌的丰度,这与改善葡萄糖稳态和炎症标志物有关。
最终证据——粪菌移植: 将服用过白藜芦醇的小鼠的粪菌移植给普通高脂饮食的小鼠,后者也出现了血糖改善的效果。
🧍♀️ 人体临床研究
尽管研究尚少,但已有临床试验发现,补充白藜芦醇可以增加代谢综合征男性体内的AKK菌,并轻微改善血糖。
💊 黄酮类化合物(Flavonoids)
除白藜芦醇外,黄酮类化合物也能增加肠道有益菌数量,并改善葡萄糖耐受性、抑制炎症反应、增强肠屏障功能。
来源: 广泛存在于各种水果、蔬菜、茶中。
动物实验研究
在高脂饮食诱导的肥胖或糖尿病小鼠模型中:
蔓越莓提取物可提高胰岛素敏感性、降低HOMA-IR与循环内毒素(LPS)水平;同时伴随AKK菌丰度显著上升与肠屏障完整性增强。
蓝莓原花青素含有丰富的花青素与原花青素,同样可改善葡萄糖耐受;增加AKK菌含量;并增厚胃肠道黏液层。
苹果原花青素处理高脂饮食小鼠时,也观察到一致的结果:肠道屏障功能及AKK菌丰度同步提升。
这些研究揭示不同植物来源的黄酮类多酚均通过促进有益菌的富集和黏液层重塑,实现改善肠屏障与系统代谢功能的作用。
🧍♀️ 人体及体外研究证据
尽管人群中关于单独考察黄酮类化合物作用的临床研究仍然有限,但已有体外模拟与部分干预研究提供了支持性证据:
红酒葡萄提取物或红茶多酚在人体肠道模拟模型中均能增加AKK菌的丰度。
可可黄烷醇则在健康人群中可显著增加双歧杆菌和乳杆菌的数量,表明其对肠道菌群结构也具有积极调节作用。
综上,黄酮类化合物以其独特的双重功能而受到关注:
这些作用共同促进了葡萄糖代谢与胰岛素敏感性的改善,为其作为代谢性疾病营养干预的潜在候选物提供了有力依据。
小 檗 碱
来源: 黄连、黄柏等中草药的主要活性成分。
小檗碱可以直接作用于肝细胞,激活AMPK(一个关键的能量代谢开关),从而改善血糖(增强胰岛素敏感性与葡萄糖稳态控制)。但它的口服生物利用度同样很低。
小檗碱是否进入循环系统,依赖肠道菌群
小檗碱只有在被肠道菌群代谢为更易吸收的衍生物后,其药效才能被充分发挥。
——肠道菌群:加工
肠道菌群能将小檗碱转化为更容易被人体吸收的形式,帮助它进入血液循环。
例如,某些肠道细菌可将小檗碱还原为二氢小檗碱,这种形式在肠上皮中的吸收效率更高,随后可重新氧化为小檗碱并在全身循环中发挥作用。
——肠道菌群:效应放大器
动物实验表明,口服(而非注射)小檗碱能增加肠道产丁酸菌的数量和丁酸产量,并改善空腹血糖。这说明小檗碱的另一部分功效是通过调节菌群-丁酸实现的。
临床研究与争议
动物研究:在动物模型中,小檗碱改善血糖的机制似乎与增加GLP-1/GLP-2、增加次级胆汁酸(DCA)从而激活TGR5受体、增加SCFA产量等有关。这是一个非常清晰、正面的通路。
人体研究的反转:迄今为止唯一一项相关的糖尿病人体研究却得出了矛盾的结果:小檗碱使血液中次级胆汁酸和有益的产短链脂肪酸菌的显著下降了,但同时它确实又显著降低了患者的糖化血红蛋白。
这凸显了小檗碱作用机制的复杂性。小檗碱确实是一种有效的降糖物质,但它究竟是如何通过菌群在人体内发挥作用的,远比我们想象的要复杂,目前仍是一个充满争议和未解之谜,其肠道依赖机制亟需更多临床研究验证来阐明。
►▷
小檗碱就像一个“需要肠道助手的药”:它自己难以被吸收,但一旦被肠道菌群“加工”成可利用的形式,便能帮助调节血糖、减少炎症、修复肠屏障。不过,因为每个人肠道菌群不同,它在不同人身上可能表现出截然不同的效果。
尽管大量动物研究已明确证实,肠道菌群在血糖稳态调控中扮演着核心角色,但将这些发现直接转化为对人类有效的通用疗法却挑战重重。其根本原因在于人类肠道菌群的复杂性与高度个体化。
这种个体差异正是许多干预措施(如益生元或益生菌)效果因人而异的关键。
益生元:当人们吃下富含β-葡聚糖的特制大麦面包后,只有一部分人的代谢状况得到了改善。科学家检查后发现,这些“有效者”在干预开始时,体内就存在着“无效者”所缺乏的特定肠道细菌。是这些细菌帮助他们更好地利用了膳食纤维。
益生菌:吃下益生菌,不代表它们就能在你的肠道里安家落户,一项研究发现,11种常见益生菌能否成功在肠道定植,取决于每个人已有的菌群构成。
既然每个人都是不同的,那么治疗方案也必须因人而异,兼顾菌群个体差异与动态变化。这个“个性化”会是什么样子呢?
比如,个性化饮食算法,这个算法不仅分析一个人吃了什么,更整合了这个人肠道菌群数据、血液指标等多种参数。这样不仅可以预测这个人吃下特定食物后的血糖反应,更能反过来为他量身定制一套可以最大程度平稳餐后血糖的个性化饮食方案。
在糖尿病前期人群中,通过整合基线菌群特征,机器学习模型,也能预测哪些患者能通过什么样的运动有效改善血糖,而哪些患者则收效甚微。
简而言之,要让基于微生物群的疗法真正在人体中奏效,我们需要摆脱“一刀切”的思路,而是把每个人的肠道菌群当作独特的生态系统。未来的糖尿病干预,可能需要“定制化的微生物处方”:先读取你的菌群模式,再精准投喂适合的菌与食物,让微生物群自己帮你稳糖、抗炎、调代谢。
深入理解并善用
每个人的独有菌群信息
将是我们开启
代谢疾病精准治疗
新时代大门的钥匙
注:本账号内容仅作交流参考,不作为诊断及医疗依据。
主要参考文献
Weninger, Savanna N., Andrew Manley, and Frank A. Duca. “Managing Glucose Homeostasis Through the Gut Microbiome.” Annual Review of Physiology 88 (2025).
Howard, Elizabeth J., Tony KT Lam, and Frank A. Duca. “The gut microbiome: connecting diet, glucose homeostasis, and disease.” Annual review of medicine 73 (2022): 469-481.
Cho, Hyoung-Soo, et al. “Structure of gut microbial glycolipid modulates host inflammatory response.” Cell 188.19 (2025): 5295-5312.
Sun, Hanxiao, et al. “GLP‐1 receptor agonists alleviate colonic inflammation by modulating intestinal microbiota and the function of group 3 innate lymphoid cells.” Immunology 172.3 (2024): 451-468.
Su, Lili, et al. “Health improvements of type 2 diabetic patients through diet and diet plus fecal microbiota transplantation.” Scientific reports 12.1 (2022): 1152.
Anhê, Fernando F., et al. “Metabolic endotoxemia is dictated by the type of lipopolysaccharide.” Cell reports 36.11 (2021).
Baroni, Irene, et al. “Probiotics and synbiotics for glycemic control in diabetes: A systematic review and meta-analysis of randomized controlled trials.” Clinical Nutrition 43.4 (2024): 1041-1061.
谷禾健康
2025 年 10 月 6 日,两位美国科学家玛丽·E·布伦科(Mary E. Brunkow)、弗雷德·拉姆斯德尔(Fred Ramsdell)和 一位日本科学家坂口志文(Shimon Sakaguchi)因在外周免疫耐受方面的发现,获得 2025 年诺贝尔生理学或医学奖。
他们的发现揭示了人体免疫系统是如何避免自我攻击的,为一个新的研究领域奠定了基础,并推动了新疗法的研发,例如针对癌症和自身免疫性疾病的疗法等,目前,已有多种基于上述原理的疗法正在进行临床试验。
今天谷禾君和大家分享该伟大的发现以及肠道菌群与免疫调控的一些相关知识。
据诺贝尔委员会官网发布的新闻稿介绍,三位获奖者的集体工作,识别出了一类特殊的免疫细胞,它们如同体内的和平维护部队,主动抑制自身免疫攻击。这类细胞如今被称为调节性T细胞(Tregs)。他们的研究最终发现了控制这些关键细胞发育和功能的“总开关”基因——Foxp3。
人体强大的免疫系统必须受到调控,否则它可能会攻击我们自身的器官。三位获奖科学家发现揭示了免疫系统如何避免伤害人体。他们的发现为一个新的研究领域奠定了基础,并推动了新疗法的研发,例如针对癌症和自身免疫性疾病的疗法。
这一荣誉不仅是对免疫学领域一项里程碑式发现的最高认可,也可能标志着我们对免疫系统自我调节机制的理解进入了新纪元。
免疫“刹车片”的早期探索与鉴定
早在20世纪70年代,免疫学界便提出了“抑制性T细胞”的概念,推测存在一类能负向调节免疫反应的细胞。然而,由于缺乏特异性分子标志和可重复的实验验证,这一领域的研究曾一度停滞。
直至1995年,日本免疫学家坂口志文(Shimon Sakaguchi)教授通过严谨的实验,首次明确鉴定出一群表达CD4和CD25(IL-2受体α链)的T细胞亚群。他证实,从正常小鼠体内去除这群细胞会导致严重的自身免疫疾病,而将这群细胞回输则能有效抑制疾病发生。这一开创性工作揭示了免疫系统中存在着一支关键的维和部队,负责维持免疫耐受,防止免疫系统攻击自身组织。
FOXP3 —— 主控开关的发现
Treg细胞研究的另一重大突破是对其核心转录因子的鉴定。
2001年,美国科学家玛丽·E·布伦科(Mary E. Brunkow)、弗雷德·拉姆斯德尔(Fred Ramsdell)发现,一种名为Foxp3(Forkhead box P3)的基因发生突变,会导致罕见的、致命的自身免疫疾病——IPEX综合征。这一发现为Treg细胞的功能提供了遗传学基础。
注:IPEX综合征是一种罕见且严重的遗传性自身免疫疾病,它的名字是几个单词缩写:Immune dysregulation(免疫失调), Polyendocrinopathy(多发性内分泌病变), Enteropathy(肠病), X-linked syndrome (X连锁遗传)。简单来说,这种疾病的患者免疫系统会发生严重紊乱,错误地攻击自己身体的多个器官。
紧接着在2003年,坂口志文的实验室与另外两个独立研究团队几乎同时证实,Foxp3是Treg细胞发育、维持和发挥功能的主控开关。Foxp3的发现,使得Treg细胞的研究从依赖表面标志物进入到基于谱系特异性转录因子的精准分子调控层面。
2025年诺贝尔奖的加冕
基于上述开创性贡献,2025年诺贝尔生理学或医学奖授予了日本科学家坂口志文以及美国科学家玛丽·E·布伦科、弗雷德·拉姆斯德尔。诺奖委员会的颁奖词强调了他们的工作揭示了Treg细胞作为免疫系统的“刹车系统”,通过精准抑制过度活跃的免疫反应,维持外周免疫耐受。这一发现不仅深化了我们对免疫系统基本工作原理的理解,更为自身免疫疾病、器官移植排斥、肿瘤免疫逃逸等重大疾病的治疗开辟了全新的途径。
定义与核心特征
调节性T细胞(Regulatory T cells, Treg)是一类具有免疫抑制功能的CD4+ T细胞亚群,其核心功能是维持免疫稳态和自身耐受。
根据来源不同,可分为:
主要表面标志物
CD4+, CD25high, CTLA-4+, GITR+。在人类中,常结合CD127低表达(CD127low)作为更精确的辅助标志。
关键转录因子
FOXP3(叉头框蛋白P3),是Treg细胞谱系分化和功能维持的核心调控因子。
主要功能
抑制效应性T细胞的活化与增殖;
维持对自身抗原和共生菌群的免疫耐受;
调节炎症反应,防止组织损伤。
稳定性
tTreg细胞的表型和功能相对稳定,而pTreg细胞的稳定性受微环境影响较大。
多维度的免疫抑制机制
Treg细胞通过多种非冗余且协同的机制来发挥其强大的免疫抑制功能,这些机制共同构成了免疫系统的刹车网络。
分泌抑制性细胞因子
分泌IL-10、TGF-β、IL-35等细胞因子,直接抑制效应T细胞和抗原呈递细胞(APC)的功能。
代谢干扰
高表达CD25,竞争性消耗效应T细胞增殖所必需的细胞因子IL-2;通过表面分子CD39/CD73将ATP代谢为具有抑制功能的腺苷。
调节树突状细胞功能
通过其表面的CTLA-4与树突状细胞(DC)上的CD80/CD86结合,诱导DC表达IDO(吲哚胺2,3-双加氧酶),从而抑制T细胞增殖。
细胞溶解作用
通过分泌颗粒酶(Granzyme)A/B和穿孔素(Perforin),直接诱导靶细胞(如效应T细胞)凋亡。
肠道作为人体最大的免疫器官,是宿主与海量微生物共存的独特场所。肠道菌群及其代谢产物在塑造局部乃至全身免疫系统,特别是诱导和调节pTreg细胞方面,扮演着至关重要的角色。
菌群代谢产物:调控Treg分化与功能的关键信使
肠道菌群通过发酵膳食纤维等营养物质,产生多种小分子代谢物,这些代谢物如同信号分子,深刻影响着Treg细胞的分化、功能和稳定性。
★ 短链脂肪酸 (Short-Chain Fatty Acids, SCFAs)
短链脂肪酸是菌群发酵膳食纤维产生的主要代谢物,包括丁酸盐、丙酸盐和乙酸盐,它们是调节Treg细胞的关键分子。
★ 胆汁酸代谢物
初级胆汁酸由肝脏合成后进入肠道,被菌群(如梭菌属)代谢为次级胆汁酸。这些次级胆汁酸是重要的免疫信号分子。
研究发现,一种名为isoalloLCA的次级胆汁酸同样可以作为HDAC抑制剂(特别是HDAC3),促进FOXP3的表达。
此外,胆汁酸还可通过激活法尼醇X受体(FXR)和维生素D受体(VDR)等核内受体,调节Treg细胞的分化和功能,抑制肠道炎症。
★ 色氨酸代谢物
肠道菌群能够代谢膳食中的色氨酸,产生一系列吲哚衍生物,这些物质通过激活芳香烃受体(Aryl hydrocarbon receptor, AhR)来调节免疫。
AhR是一种在多种免疫细胞(包括Treg)上表达的配体依赖性转录因子。菌群产生的吲哚衍生物作为AhR的配体,激活该通路后可促进Treg细胞分化,并增强其分泌抗炎细胞因子IL-10的能力,从而维持黏膜免疫稳态。
特定肠道菌群/益生菌对Treg细胞的调节作用
除了代谢产物,特定的共生菌或益生菌菌株本身也能通过其独特的分子结构或与其他免疫细胞的互作,直接或间接地调节Treg细胞。
自身免疫疾病的根本病理在于免疫耐受的丧失,导致免疫系统攻击自身组织。大量研究表明,Treg细胞的功能缺陷和肠道菌群的失调是这一过程中的核心环节。
Treg细胞异常与肠道菌群失调的普遍联系
在多种自身免疫疾病(如类风湿关节炎、多发性硬化症、炎症性肠病)患者中,普遍观察到以下关联:
这些变化形成了一个恶性循环:
菌群失调导致有益代谢物减少,无法有效支持Treg细胞的分化和功能;
而Treg细胞功能缺陷又进一步加剧了对肠道菌群的异常免疫应答和全身性炎症。
具体疾病中的关联机制研究
★ 类风湿关节炎 (Rheumatoid Arthritis, RA)
Treg细胞异常
类风湿关节炎患者外周血和关节滑膜中Treg细胞数量减少且功能受损,CTLA-4和IL-10表达降低。
肠道菌群变化
一个显著特征是Prevotella copri(普氏栖粪杆菌)的丰度显著增加。同时,产丁酸盐的细菌如Faecalibacterium prausnitzii减少。
关联机制
研究表明,P. copri的过度增殖可能通过促进IL-6和IL-23等促炎细胞因子的分泌,抑制Treg细胞的分化,从而驱动关节炎症。丁酸盐的减少则直接削弱了对Treg细胞的支持。
★ 多发性硬化症 (Multiple Sclerosis, MS)
Treg细胞异常
多发性硬化症患者外周血Treg细胞数量减少,且向中枢神经系统浸润不足。Treg细胞的稳定性降低,易向Th17细胞转化。
肠道菌群变化
产SCFAs的菌群(如Clostridium cluster XIVa)减少,而Akkermansia muciniphila和Ruminococcus gnavus等菌的丰度变化与疾病活动性相关。
关联机制
短链脂肪酸的减少导致Treg细胞分化障碍,无法有效抑制攻击髓鞘的自身反应性T细胞。同时,菌群代谢产生的AhR配体减少,可能影响Treg细胞的稳定性,加剧神经炎症。
★ 炎症性肠病 (Inflammatory Bowel Disease, IBD)
Treg细胞异常
IBD患者肠道黏膜中Treg细胞数量减少或功能缺陷,特别是分泌IL-10的Tr1样Treg细胞缺乏。
肠道菌群变化
菌群多样性显著降低,产丁酸盐的益生菌Faecalibacterium prausnitzii(普拉梭菌)丰度急剧下降是IBD的标志性特征之一。同时,黏附侵袭性大肠杆菌等促炎菌增加。
关联机制
F. prausnitzii的减少直接导致丁酸盐供给不足,削弱了肠道屏障功能和对Treg细胞的诱导。菌群紊乱还可能导致TGF-β信号减弱,进一步影响Treg细胞的正常分化与功能,最终导致失控的肠道炎症。
治疗自身免疫病(增援维和部队)
在类风湿关节炎、1型糖尿病等疾病中,免疫系统过度活跃。治疗目标是增强调节性T细胞(Tregs)的力量得以恢复秩序。目前已有疗法通过扩增患者自身的Tregs再回输体内来进行治疗。
癌症免疫疗法(解除武装)
狡猾的癌细胞会利用这套维和系统来保护自己。许多肿瘤会主动招募Tregs在周围形成“保护盾”,阻止免疫系统攻击。因此,治疗目标与第一种恰好相反:暂时削弱或清除肿瘤周围的Tregs,解除武装,让免疫系统得以攻击癌细胞。
器官移植(诱导免疫耐受)
通过驾驭Tregs的力量,有望教导免疫系统容忍移植器官,从而减少对强效免疫抑制药物的依赖。
目前,已有多种基于上述原理的疗法正在进行临床试验。
下一代免疫疗法
靶向肠道菌群—Treg轴的机遇与挑战
近年来的研究深刻揭示了肠道菌群与宿主免疫系统之间复杂的相互作用,特别是其在调节Treg细胞(调节性T细胞)分化与功能中的核心作用,这为免疫介导性疾病的治疗开辟了全新的前沿。
展望未来,靶向“菌群-Treg轴”的免疫疗法展现出巨大的临床转化潜力。其核心机遇在于:
1) 个性化医疗的实现
通过粪菌移植(FMT)、定制化益生菌/益生元配方,或直接补充关键菌株代谢产物,有望为炎症性肠病(IBD)、自身免疫病乃至过敏性疾病患者提供“量身定制”的治疗方案。
2) 拓展癌症免疫疗法边界
优化肠道微生态以增强Treg细胞的适度抑制功能,可能减少免疫检查点抑制剂(ICIs)相关的免疫副作用(如结肠炎),甚至协同增强抗肿瘤效果,实现“增效减毒”。
3) 预防医学的应用
在生命早期通过饮食干预等手段,塑造健康的“菌群-Treg轴”,可能从源头上降低个体未来患上免疫相关疾病的风险。
然而,挑战依然严峻。菌群的高度个体化差异意味着通用型疗法难以实现,治疗方案必须高度定制化。如何确保工程菌在复杂肠道环境中的定植效率和安全性,以及如何精确控制Treg的诱导强度以避免过度免疫抑制(例如,在肿瘤患者中可能抑制抗肿瘤免疫),是临床转化前必须攻克的科学难题。
尽管如此,随着我们对这一复杂互作网络的理解日益加深,靶向菌群-Treg轴无疑将为无数免疫相关疾病患者带来颠覆性的治疗希望。
谷禾健康
阴道微生物组在女性阴道健康方面起着重要作用。使用高通量宏基因组和16S rRNA 测序,已在人类阴道中鉴定出250多种细菌。其中,乳杆菌是健康阴道中最常检测到的微生物,其中包括卷曲乳杆菌(Lactobacillus crispatus)、惰性乳杆菌(Lactobacillus iners)、詹氏乳杆菌(Lactobacillus jensenii)和格氏乳杆菌(Lactobacillus gasseri)。
乳杆菌被认为通过产生有机酸、过氧化氢 (H2O2)、细菌素和其他抗菌化合物来防止病原体入侵,从而对阴道生态有益。月经、怀孕、性行为、阴道冲洗和不受控制地使用抗生素等因素会迅速改变微生物群落。阴道生态系统的破坏的特征是乳杆菌物种的枯竭和非乳杆菌微生物的过度生长。
如果把阴道微生态比作一座城市,惰性乳杆菌(Lactobacillus iners)就像那位“随时上线的值班员”:它无处不在、反应灵敏,却不总是最强的守护者。与经典的“稳定派”L.crispatus不同,L.iners 更像过渡期的掌舵者——在月经、性行为、抗生素、妊娠激素等因素影响时占据主导地位,帮助群落从一种状态向另一种状态转变。
但这份灵活也带来代价:它产酸与抑菌能力较弱,黏附与免疫调控独具一格,因而既能伴随健康,也常与生态失调、细菌性阴道病、性传播感染、妊娠不良风险相伴。认识并理解这位“双刃剑”角色,或许是我们走向更精准的女性生殖健康管理、重塑“好菌优势”的关键一步。
惰性乳杆菌(Lactobacillus iners)是阴道微生物群中最普遍的成员,然而,其在复杂的阴道微环境中的作用尚不完全清楚。鉴于其在乳杆菌中具有独特属性,且对多种不良生殖结局的影响差异明显,了解其基本特征有助于更全面地认识其在女性健康中的作用。
惰性乳杆菌(L.iners)于1999年才首次在阴道和泌尿道标本中被发现;因无法在常规MRS琼脂的标准条件下像其他乳杆菌那样生长而长期被忽视。
1
形态特征
• 革兰氏染色具有可变性
惰性乳杆菌(L.iners)起初被归为革兰氏阳性、杆状、非孢子形成的兼性厌氧菌,但多项研究表明其并非总呈典型的革兰氏阳性染色,形态亦常似球杆菌。一些报道其多呈革兰氏阴性、短小杆状,耐酸性弱(在pH3培养基中不可存活),这或致其早期在培养与显微观察中被忽视。
L. iners 出现“时而革兰氏阳性、时而革兰氏阴性(或变异性)”主要有以下原因:
–细胞壁肽聚糖层很薄:电镜研究显示其PG层显著薄于典型乳杆菌,导致在革兰染色中难以稳定保留结晶紫,呈现革兰阴性或“变异性”外观(可见杆菌或球菌样形态)。
-形态可塑性与菌株差异:同一菌株内及不同分离株之间均可见细胞形态与染色表现的变动,提示菌株层面的结构与功能差异会影响染色结果。
-环境与基因表达的影响:在不同阴道微环境(如细菌性阴道病样环境 vs. 乳杆菌占优势环境)中,L.iners 的基因表达(如调控细胞形态的rodZ等)会改变细胞形态与壁性质,从而影响革兰染色表现。
-方法学与判读偏差:Nugent评分依赖革兰染色形态计分,而L. iners 的“革兰阴性样”表型易被误判为加德纳菌等阴性形态,导致分类偏差,放大了其“阴性”出现的频率。
L. iners 培养分离株的革兰氏染色
Holm JB,et al.Curr Infect Dis Rep.2023
• 厌氧条件下生长能力显著强于其他乳杆菌
该菌在血琼脂上厌氧孵育 24 小时可形成小而光滑、圆形、半透明、无色素的菌落;在添加1–5%绵羊或人血的MRS琼脂上多数分离株亦可生长。
研究证实,L. iners 在厌氧条件下可在MRS琼脂上持续生长至少7天,显著长于其他乳杆菌。
2
基因组和功能
• 较小的基因组对环境波动适应能力较差
惰性乳杆菌(L.iners)的基因组很小,平均为1.28 Mbp,而L.crispatus为2.25 Mbp,这已经处于乳杆菌属的较低基因组大小范围内。相应地,L.crispatus泛基因组计数4300个基因,而L.iners的基因组为2300个基因,平均GC含量为 ~33.3%。
如此低的基因组大小强烈表明一种寄生性、宿主依赖性的生活方式。此外,人们认为较小的基因组预示着对环境波动的脆弱性更高。
• 碳水化合物和氨基酸代谢基因减少
基因组分析表明,L. iners碳水化合物和氨基酸代谢相关的基因数量严重减少,而它维持了主要核心代谢蛋白的保守基因和来自宿主或群落的必需化合物的膜转运基因。确定了三个潜在的核心基因(inerolysin、ZnuA 和 hsdR)与L.iners对阴道环境的特异性适应密切相关。
inerolysin是一种异常的成孔型胆固醇依赖溶素,在酸性环境中活性高,能在膜上形成孔洞,或为稳定获取宿主营养所必需;高亲和力锌摄取蛋白 ZnuA 维持金属离子稳态,可能介导对阴道上皮的强黏附;I 型限制性内切酶亚基 hsdR 被认为在细菌性阴道病期间参与抗噬菌体防御。
• 独特的肽聚糖层可能有助于吸收营养
此外,L. iners 携带完整的肽聚糖(PG)合成与水解酶基因。与其他乳杆菌物种相比,惰性乳杆菌细胞膜独特而薄的肽聚糖(PG)层可能更容易吸收营养或分泌蛋白质,从而提供必需的营养物质或应对阴道环境的快速变化。
3
产酸和过氧化氢能力较弱
• 相较其他乳杆菌抵抗病原体能力较弱
乳杆菌是阴道主要产酸者,能降低pH并抑制潜在致病菌。但不同物种的产酸能力存在差异:L.crispatus、L.gasseri、L.jensenii可由糖原发酵生成D-乳酸与L-乳酸;而L.iners缺乏D-乳酸脱氢酶,仅产L-乳酸,因此其L/D比值最高。
乳酸异构体对宿主免疫的影响不同;较高的L/D比值可上调 EMMPRIN 并激活 MMP-8,促进细胞外基质分解,利于细菌穿越宫颈并诱发上行感染。此外,D-乳酸对外源细菌的抑制强于L-乳酸,说明L.iners在防御病原入侵方面较弱。
• L.iners为主时阴道pH值偏高
研究发现,L.crispatus优势时阴道pH持续偏低;而 L.iners过度生长并不能维持低 pH,且在低 pH 环境中表现较弱。细菌性阴道病常伴随 pH 升高,此时多见加德纳菌与L.iners共存而少见其他乳杆菌。
L.iners 亦缺乏通过丙酮酸氧化产生 H2O2 的机制,而 H2O2 被认为有助于抑制厌氧菌定植。因此,当病原菌挑战阴道环境时,L.iners无法抵抗病原菌的过度生长和pH值的升高,而它可能会持续存在生态失调。
4
营养需求
L. iners基因组异常小、代谢受限,却有更复杂的营养需求,使其能适应多样阴道生态位。激素和其他因素的波动可能会影响阴道环境,导致粘液和糖原产生、pH 值和微生物种类发生变化,这可能为L.iners提供必需的营养。
• 主要对葡萄糖、麦芽糖进行糖酵解
基因组分析表明,除能从葡萄糖、麦芽糖、海藻糖和甘露糖产生酸外,这些菌株不能从L-阿拉伯糖、D-阿拉伯糖醇、环糊精、糖原、N-乙酰葡糖胺、乳糖、甘露醇、松三糖、蜜二糖、甲基β-D-吡喃葡萄糖苷、普鲁兰、棉子糖、核糖、鼠李糖、山梨糖醇、蔗糖、塔格糖、海藻糖或D-木糖产生酸。
• 编码inerolysin使其在失调环境下更具竞争优势
惰性乳杆菌(L.iners)对外源氨基酸的依赖性更高。并且L.iners已被证明是迄今为止已知的唯一编码一种形成孔的溶细胞毒素 inerolysin 的乳杆菌物种。
L.iners产生 inerolysin 的能力可能是影响其从阴道环境中获取营养能力的最重要因素之一。与在平衡的微生物环境中相比,超过10%的编码L.iners中 inerolysin 的基因在生态失调中的表达更高。该毒素可直接从宿主组织/细胞释放资源,使L.iners在营养匮乏和不利条件(如细菌性阴道病,其他乳酸杆菌难以定植)下具竞争优势。
注:尽管在乳杆菌中没有发现铁摄取系统,但在乳杆菌中检测到了能够催化亚铁离子并结合原卟啉IX形成血红素的铁螯合酶。
5
粘附能力
惰性乳杆菌(L.iners)对宿主细胞的粘附被认为通过阻断病原微生物在阴道上皮细胞的结合位点的机制在排除病原微生物方面发挥作用。
• 中性pH值下L.iners与人纤连蛋白的结合强于其他乳杆菌
尽管L.iners缺乏乳杆菌属的大部分主要粘附分子,但它仍然对阴道上皮细胞表现出很强的粘附能力。纤连蛋白是阴道上皮细胞外基质中的一种不溶性糖蛋白。L.iners基因组编码一种纤连蛋白结合蛋白,该蛋白含有金黄色葡萄球菌致病菌株共有的基序(纤连蛋白结合蛋白 A),从而介导金黄色葡萄球菌对宿主细胞的粘附和侵袭。研究证明,在更中性的 pH 值下,L.iners与人纤连蛋白的结合明显强于其他乳杆菌物种,这可能导致L.iners在阴道中持续存在,尽管存在病原体或用抗生素治疗。
• L.iners独特的粘附能力会影响其保护作用
一项体外研究报告说,L.iners可能会增加引起细菌性阴道病(BV)的G.vaginalis的粘附。研究还证明,L.iners产生溶孔素,这是一种常见于病原菌中的成孔蛋白,可以增强粘附能力。这些发现表明,L.iners独特的粘附功能降低了对健康阴道微生物组免受病原菌侵害的保护。
6
抗菌和免疫特性
L.iners是最常见且持久的阴道共生乳杆菌,能高度适应复杂且动态的阴道环境。环境波动时,其他乳酸杆菌或难以存活,而 L.iners 借助基因组层面的灵活调控——如特异性碳水化合物摄取、纤连蛋白结合、噬菌体防御与惰性溶血素合成——维持稳定丰度。其在多种条件下的生存优势使其在微生物组过渡期常成优势种。
• L.iners在不同环境下可能存在免疫保护也可能扰乱稳态
多项研究已证实 L.iners 具备多种免疫特性,其细胞因子调控、外源营养摄取和噬菌体防御等特性,有助于在不利条件(包括 BV)下生存。L.iners还能限制有害菌获取铁等关键营养,并通过激活上皮先天免疫抑制其生长;此外,通过阴道上皮细胞之间的特定分子相互作用观察到 L.iners 的抗炎作用。
以 L.iners 为主的阴道微生物组与上皮应激反应的诱导相关。研究发现,L. iners(而非 L. crispatus)显著上调人原代阴道上皮的模式识别受体通路并提升 TNF mRNA,显示其对宿主免疫的物种特异调节。有人提出,L. iners 在压力下可激活 TLR 信号、提高 HSP70、抑制自噬,从而扰乱上皮稳态并削弱对潜在病原的识别与应答。相反,多种参与上皮抗菌防御的分子(如 NGAL、钙卫蛋白、透明质酸)又更易被其诱导。
综上,L.iners 既能对抗非生理威胁、促进恢复至更健康状态,又表现促炎特性,且在不同环境下并不总是共生角色。
阴道微生物群在维持女性健康的阴道微环境方面起着重要作用,其组成受种族、年龄、妊娠、阴道疾病等多种因素的影响。作为全球育龄女性阴道微生物组中最常见的乳杆菌成员,Lactobacillus iners兼具“普遍性”与“复杂性”。
一方面,乳杆菌总体被视为女性阴道健康的关键守护者,通过乳酸与抗菌物质产生抑制病原体、维持低pH与生态稳态;另一方面,L.iners又与经典的有益乳杆菌(如L.crispatus、L.jensenii、L.gasseri)显著不同:其基因组较小、代谢能力相对受限、主要产生L-乳酸、能在高低pH及BV阳/阴性环境中存活,因而常被视为生态扰动后的“过渡型”定植者。
流行病学与多组学研究提示,L. iners主导的微生物群(CST III型)在多个人群中广泛存在,较缺乏乳杆菌的多样化菌群仍具一定保护性,但与L.crispatus主导状态相比,其对病原体(包括念珠菌)定植与部分不良结局(如阴道生态失调、性传播感染及妊娠不良)的防护可能次优;同时,行为与社会学因素(如无保护性行为、性伴数增加)可能与其主导状态相关。
阐明L.iners在阴道健康与疾病中的双刃剑角色,并识别可干预的致病特征与潜在生物标志物,至关重要且紧迫。
1
L.iners与阴道生态失调
证据强度:较高
与肠道菌群相比,健康个体阴道微生物环境的一个典型特征是其细菌多样性极低。健康绝经前妇女有五种主要的群落状态类型(CST),即L.crispatus 主导的 CST I、L. gasseri 主导的 CST II、L.iners 主导的 CST III 和 L. jensenii 主导的 CST V,而 CST IV 的特征是缺乏乳杆菌属。阴道生态失调以细菌多样性高和厌氧菌混合物为特征,经常与多种妇科疾病有关。
• L.iners在孕妇中占比均较高,但健康孕妇中更多
一项研究从中国广州中山大学附属第六医院招募了一组 95 名孕妇。该队列包括 34 名健康孕妇(健康)和 61 名患有至少一种疾病的孕妇。
参与者患有的疾病也被分为妊娠糖尿病(GDM)(n=21)、母体相关不良妊娠结局(MAPO, n=29)、胎儿相关不良妊娠结局 (FAPO, n=13)、阴道感染(n=6)、肝脏或肾脏异常(n=14)、贫血(n=8)、血栓形成倾向(n=4)和辅助受孕(n=11)。
中国孕晚期孕妇阴道微生物组组成及结构
Wang X,et al.NPJ Biofilms Microbiomes.2025
研究发现,在物种层面,健康孕妇的阴道微生物组呈现出独特的分布模式,其中L.iners主导的CST-III型占比高达50%,显著高于疾病组的31.15%,但在所有组中,L.iners所主导的分型占比均不低。
• L.iners为主的阴道菌群保护性不及L.crispatus
L.iners常见于健康女性、阴道生态失调(如 BV)患者,甚至抗菌治疗者。多项研究表明,L.crispatus与健康相关,而以L.iners为主的群落有时难以提供足够保护以预防失调。
L.iners的存在与较高水平的促炎因子有关,例如白细胞介素1α、白细胞介素18、巨噬细胞迁移抑制因子和肿瘤坏死因子α,它们负责激活阴道炎症反应。
• L.iners适应能力较强,BV患者丰度可能也不低
尽管L.iners的作用仍有争议,但其丰度相对稳定,不易被病原体替代。细菌性阴道炎时,L.iners常与潜在有害菌共存,而L.crispatus则很难做到。
其基因组支持对失调环境的适应,可能与代谢、细胞溶解及抗噬菌体防御基因随阴道环境变化而调控有关。其在多种条件下的强生存力提示其既是宿主防御的重要成员,也是可维持与恢复阴道微生物组的持久共生乳杆菌。
2
L.iners与细菌性阴道病
证据强度:较高
细菌性阴道病(BV)是育龄妇女中最常见的阴道炎类型。它的特点是乳杆菌属显著减少或消失,伴随着以厌氧菌和兼性细菌为主的更多样化的微生物群的出现,如加德纳菌属、普雷沃氏菌属和阴道曲霉属。
• L.iners是能在细菌性阴道病中存在的乳杆菌
L.iners通常是唯一可以在细菌性阴道病(BV)期间检测到的与BV相关细菌共存的阴道乳杆菌物种。凭借对基因组功能的动态调控,它能在剧变的阴道环境中持续存在;L.iners基因表达的增加可能导致琥珀酸和其他短链脂肪酸的产生以及 BV 环境中 pH 值的增加。
为了适应BV环境,L.iners可以增加inerolysin和粘蛋白的表达,促进甘油的产生和相关代谢酶的表达,从而保证其从外源获取营养物质。此外,噬菌体是导致 BV 期间乳杆菌种类突然减少的原因之一,而 L.iners 可以上调I型 RM 系统和 CRISPR 等防御系统,以及其特异性 hsdR 基因,以抵抗 BV 期间噬菌体的入侵。
最近的一项研究发现了三种由名为Lactobacillus paragasseri的人类肠道菌株产生的细菌素活性肽。这些细菌素对乳杆菌具有很强的选择性抑制活性,而L. crispatus、L. jensenii和L. gasseri仅受到轻微抑制,表明这些乳杆菌衍生的抑制剂可以与甲硝唑联合使用,以改善目前的BV治疗。
• L.iners有助于预测细菌性阴道病的状态
由于 L.iners 在 BV 中的共存与其他乳杆菌物种不同,因此L.iners的流行率可以作为微生物指标来预测BV的发作或中间状态。此外,L.iners对甲硝唑具有耐药性,并且被发现它是主要的乳杆菌物种,即使在用甲硝唑处理BV后也是如此。
与BV期间几乎缺失的保护性乳杆菌相比,L.iners竞争力更强,能在失衡微生物组中共存。有人认为它促成 BV 与非 BV 状态的过渡。值得注意的是,治疗后微生物组常仍以L.iners为主,而未转为L.crispatus优势。因此,L.iners持续存在或致长期阴道失调,尤见于反复治疗后。但仍需研究其究竟是转化生物标志物,还是 BV 的促成因素。
3
L.iners与早产
证据强度:一般,存在矛盾结果
在怀孕期间维持阴道微生物组中乳杆菌属的自然健康平衡尤为重要。早期的研究证实,怀孕期间阴道内的高雌二醇水平和随之而来的高糖原水平导致更强的阴道酸化,从而随着妊娠的进展促进乳杆菌物种的流行。
• L.iners的丰度在孕中期和晚期显著下降
许多研究表明,以惰性乳杆菌(L.iners)为主的阴道微生物组更有可能在怀孕期间转向生态失调。在之前的研究中,发现健康孕妇的L.iners丰度在妊娠中期和晚期显著下降,而 L.crispatus 的丰度在妊娠中期与孕早期相比有所增加。
此外,研究发现,阴道清洁度和白细胞酯酶活性阳性的升高与 L.iners 而非 L.crispatus 的丰度增加相关。
• L.iners的丰度与早产之间存在一定联系
越来越多证据表明,细菌性阴道病(BV)是不良妊娠结局的重要病因,尤以早产(PTB)为甚。以L.iners占优势的“中间微生物群”被视为 PTB 的潜在风险因素。
有研究人员认为,在怀孕早期健康女性的阴道涂片中检测到的L.iners可能与早产(PTB)有关。另有研究也证明了这一点,报告说,妊娠16周时以L.iners为主的阴道微生物组是短宫颈和早期 PTB(<34 周)的危险因素,而 L.crispatus 优势在种族更多样化的队列中对 PTB 具有保护作用。
来自不同国家的最新研究表明,L. iners 与早产患病率增加之间存在关联。L. iners也被证明是黑人孕妇中最丰富的乳杆菌物种。然而,大多数研究并未确定乳杆菌占主导地位的阴道微生物组与黑人孕妇的 PTB 之间存在显著关系。
相反,三项研究报告说,L.iners与降低 PTB 风险有关。因此,L. iners 与 PTB 风险之间的关联还存在争议(表1)。此外,有限的样本量、样本采集时间、PTB 定义的差异、种族和地理差异、菌株鉴定方法的差异,以及遗传异常或 PTB 病史等复杂的临床条件,都是影响结果的混杂因素。
L.iners和早产的研究主要结果
Zheng N,et al.Front Cell Infect Microbiol.2021
基于L.iners的特性及其在作为唯一乳杆菌时对病原体保护不足,一些研究者认为它并不直接致孕期感染。事实上,L.iners优势的阴道微生物组较不稳定,孕期易向与BV相关的CST-IV转变;其还可能通过调节局部炎症与影响宫颈完整性,削弱化学与机械黏膜屏障,从而增加早产风险。但仍需进一步研究阐明二者的潜在机制。
4
L.iners与生物膜形成
证据强度:一般
生物膜是紧密附着在表面上的细菌结构,已知它们比浮游细胞对宿主免疫反应和抗生素治疗更具抵抗力。阴道上皮的生物膜与感染密切相关;大量证据显示BV伴随致密的多菌生物膜,其中加德纳菌(G.vaginalis)为主导菌。一般认为,加德纳菌启动生物膜形成并促进其他 BV 相关菌附着,进而增厚生物膜;其生物膜还能阻挡抗生素渗透,保护其他菌株。BV 的高复发被广泛归因于此类生物膜既能保护细菌免受抗生素治疗,甚至作为病原体再生的宿主。
• L.iners对病原菌的粘附抑制不如其他乳杆菌
阴道本土乳杆菌被认为可以通过空间位阻或粘膜中的受体掩蔽来防止病原菌的定植。先前的研究使用乳杆菌益生菌方法试图清除多微生物生物膜,从根本上阻止细菌毒力并抑制人体阴道感染。
据报道,植物乳杆菌(Lactobacillus plantarum)可显著降低 HT-29 细胞系中大肠杆菌、鼠伤寒沙门氏菌、金黄色葡萄球菌和铜绿假单胞菌的粘附,这使其成为治疗 BV 的潜在抗生物膜剂。体外生长的阴道加德纳菌生物膜被罗伊氏乳杆菌RC-14取代,并在有限程度上被L.iners取代。
研究发现,L.crispatus大大降低了G.vaginalis菌株对宫颈上皮细胞的粘附,包括来自健康女性和患有BV的女性。有趣的是,L.iners显著降低了健康女性对G.vaginalis菌株的粘附,但却增强了致病性G.vaginalis的粘附,表明L.iners可能可以与BV相关的G.vaginalis共存,并可能有助于G.vaginalis主导的生物膜形成。
此外,众所周知,念珠菌属,主要是白色念珠菌,可以形成厚而坚韧的生物膜,这大大增加了治疗复发性外阴阴道念珠菌病期间对抗真菌药物的耐受性。有研究报道了各种乳杆菌在共培养时抑制白色念珠菌生物膜形成和生物膜相关基因表达的能力。鼠李糖乳杆菌可下调白色念珠菌生物膜相关基因表达。相反,与 L.iners 共培养导致生物膜相关基因表达(ALS3 和 ECE1)上调,表明 L.iners 的存在可能表明阴道生态失调的转变;因此,它不应用作白色念珠菌感染的益生菌干预措施。
进一步了解阴道共生乳杆菌与生物膜结构和功能之间的相互作用对于确定生物膜相关感染的新治疗方法极为重要。
5
L.iners与性传播感染
证据强度:低
先前的研究报告称,以L. crispatus为主的阴道微生物组与较低的性传播感染患病率有关,而细菌性阴道病与性传播感染风险升高有关,例如沙眼衣原体、人类免疫缺陷病毒(HIV)、淋病奈瑟菌、巨细胞病毒和单纯疱疹病毒2型感染。
• 以L.iners为主的阴道微生物群受病原体感染风险更高
有研究报告说,基线时以L.iners为主的阴道微生物组显著增加了一年后感染沙眼衣原体的风险。以乳杆菌为主的阴道微生物组中缺乏D-乳酸可能会通过调节宫颈完整性来增加 HIV 横贯宫颈阴道粘液的能力。
许多研究报告称,HPV阳性女性的阴道微生物多样性较高,乳杆菌种类丰度较低。与L.crispatus相比,以L.iners为主的阴道微生物组与高危 HPV 感染相关。可以推测,阴道生态失调可能会影响宿主对 HPV 感染的先天免疫力,导致发育不良/宫颈癌。
这些发现表明,L.iners可能表现出类似于BV的阴道微生物组组成的快速变化,并且可能是性传播感染下动态阴道环境的有价值的生物标志物。
6
L.iners与不孕症
证据强度:较低
阴道生态失调,包括pH值升高、菌群多样性增加、细菌性阴道病、外阴阴道念珠菌病和滴虫性阴道炎,被认为是不孕症的危险因素。还有研究报告说,L.iners的丰度与不孕率增加有关。
• L.iners丰度可能对怀孕率存在影响
近期有研究报道,以L.iners为主的阴道微生物组与输卵管性不孕和沙眼衣原体感染相关。作为过渡物种,L.iners可能在治疗或体外受精(IVF)所致的高雌激素环境下,促使异常与正常微生物组相互转换。
7
L.iners与月经周期
证据强度:一般
人类微生物组项目显示,包括阴道在内的各部位微生物群在同一受试者内的时间变化小于个体间差异。月经周期是扰动阴道微生物多样性的关键因素。L.crispatus通常在育龄妇女的阴道中占主导地位,而 L.iners 在月经周期中过度生长并取代L.crispatus。
• L.iners在月经期间明显增加,有助于判断月经时间点
最近的一项研究报告说,L. iners是卵泡期复发最频繁的微生物;L.iners和CST IV型在围排卵期占主导地位;在黄体期,最常见的类型是 CST IV。事实上,L.iners的丰度在月经期间显著增加,通常与G.vaginalis或Atopobium vaginae的增加同时;然而,在没有干预的情况下,它们随后在月经后减少。
由于阴道生态的动态变化是在同一个体月经周期的不同时间点表征的,因此相对于月经周期的采样时刻对于阴道微生态分析非常重要。
L.iners作为改善生殖健康的靶点
鉴于L. iners在阴道微生物组中的高检出率、其在多种阴道环境状态中的存在以及其功能可塑性(无论是通过遗传多样性、维持多菌株、差异基因表达还是两者兼有),特定的L. iners菌株、基因或产物可能成为治疗或预防性调节阴道微生物群的广泛适用靶点。
在关于阴道乳杆菌对半胱氨酸依赖性的报告中证明,L.iners缺乏L.crispatus、L.gasseri和L.jensenii中存在的外源性半胱氨酸摄取转运系统。相反,L.iners依赖于摄取外源性L-胱氨酸,然后在细胞内将其转化为半胱氨酸。在模拟细菌性阴道病(BV)样菌群的体外实验中,使用胱氨酸摄取抑制剂和甲硝唑处理促进了L.crispatus的生长,而单独使用甲硝唑处理则导致L.iners的扩增。因此,胱氨酸摄取抑制剂或其他特异性抑制L.iners的试剂未来可能作为细菌性阴道病治疗方案的补充,以调节微生物群组成,促进非L.crispatus乳杆菌属的扩增。
总的来说,卷曲乳杆菌(L.crispatus)与最佳阴道健康状况相关,部分原因在于其全球普遍存在以及与积极健康结果的相关性。然而,由于宿主生理或免疫学原因,卷曲乳杆菌的优势状态可能并非某些个体能够合理实现的状态。确实存在稳定的以无害乳杆菌(L.iners)为主的微生物群,这些微生物群可能具有特定的菌株水平特征,即宏基因组亚种,并且可能对某些个体而言是最优的。
一种新的干预措施可能是将与细菌性阴道病(BV)风险增加相关的不稳定乳杆菌微生物群调节为由对变异有抵抗力的无害乳杆菌菌株组成的稳定微生物群。
本文涵盖了L. iners的主要特性、健康影响及其在未来女性健康中的潜在作用:
一、L.iners的主要特性
普遍性与过渡性:是育龄女性阴道中最常见的乳杆菌之一,常出现在生态扰动后的过渡阶段,可在健康与失调状态(如BV)中共存。
基因组与代谢:基因组最小(约1.28 Mbp),代谢能力受限,依赖宿主营养;缺乏D-乳酸脱氢酶,仅产L-乳酸,产酸与过氧化氢能力弱于L.crispatus。
特异功能基因:携带inerolysin(成孔毒素)、ZnuA(高亲和锌摄取)和hsdR(I型限制性内切酶亚基)等,有利于在酸性、营养匮乏和噬菌体压力下生存。
免疫调控:可上调上皮PRR通路与炎症因子(如TNF),在不同环境下呈现抗炎与促炎双重效应。
二、对女性健康的影响
阴道生态:以L.iners为主(CST III型)的群落相较L.crispatus主导状态保护性较弱;在细菌性阴道病中常与厌氧菌共存,能耐受甲硝唑并在治疗后持续占优,或与生物膜形成、复发相关。
生物膜与病原体黏附:对G.vaginalis的黏附抑制弱,甚至增强致病株黏附;与白色念珠菌共培养可上调ALS3/ECE1,提示其不宜作为念珠菌感染的益生菌干预。
妊娠与早产:孕期以L.iners为主的群落较不稳定,易向BV相关CST-IV转变;可能通过局部炎症与宫颈完整性影响,增加早产风险(证据存在异质性)。
性传播感染(STI)与HPV:L. iners主导与较高的STI风险和高危HPV相关;多样性升高、乳酸杆菌减少的状态或削弱对HPV的先天免疫。
月经周期动态:卵泡期与围排卵期更易见L.iners增多,提示其对激素与环境波动高度敏感。
三、未来在女性健康中的作用与方向
风险分层与生物标志物:作为生态扰动与STI动态环境的指示菌,用于BV“中间状态”、治疗后复发风险及HPV/早产风险的预测与监测。
精准干预靶点:围绕其特征通路(inerolysin、金属离子摄取、CRISPR/限制修饰系统、黏附因子)设计干预,限制致病性而非简单清除。
益生策略优化:更倾向于重建L. crispatus优势的“功能性益生”与微生态移植;避免在念珠菌感染等场景使用L. iners相关干预。
个体化管理:结合月经周期、妊娠阶段、性行为模式与种族/地域差异,动态评估菌群状态,制定个体化预防与治疗方案。
总而言之,惰性乳杆菌(Lactobacillus iners)在波动环境中具生存与一定保护能力,但其较弱的产酸/抗菌功能与独特黏附、免疫调控特性,关联BV、STI、HPV风险升高以及妊娠不良与不孕。未来应将其作为风险标志与精准干预靶点,聚焦功能替代与群落重建,推动女性生殖健康的个体化管理与预防治疗升级。
主要参考文献
Wang X, Jiang Q, Tian X, Chen W, Mai J, Lin G, Huo Y, Zheng H, Yan D, Wang X, Li T, Gao Y, Mou X, Zhao W. Metagenomic analysis reveals the novel role of vaginal Lactobacillus iners in Chinese healthy pregnant women. NPJ Biofilms Microbiomes. 2025 May 30;11(1):92.
Zheng N, Guo R, Wang J, Zhou W, Ling Z. Contribution of Lactobacillus iners to Vaginal Health and Diseases: A Systematic Review. Front Cell Infect Microbiol. 2021 Nov 22;11:792787.
Holm JB, Carter KA, Ravel J, Brotman RM. Lactobacillus iners and genital health: molecular clues to an enigmatic vaginal species. Curr Infect Dis Rep. 2023 Apr;25(4):67-75.
Kim H, Kim T, Kang J, Kim Y, Kim H. Is Lactobacillus Gram-Positive? A Case Study of Lactobacillus iners. Microorganisms. 2020 Jun 29;8(7):969.
Novak J, Ravel J, Ma B, Ferreira CST, Tristão ADR, Silva MG, Marconi C. Characteristics associated with Lactobacillus iners-dominated vaginal microbiota. Sex Transm Infect. 2022 Aug;98(5):353-359.
Bautista C. T., Wurapa E., Sateren W. B., Morris S., Hollingsworth B., Sanchez J. L. (2016). Bacterial Vaginosis: A Synthesis of the Literature on Etiology, Prevalence, Risk Factors, and Relationship With Chlamydia and Gonorrhea Infections. Mil. Med. Res. 3, 4.
Alonzo Martinez M. C., Cazorla E., Canovas E., Martinez-Blanch J. F., Chenoll E., Climent E., et al. (2021). Study of the Vaginal Microbiota in Healthy Women of Reproductive Age. Microorganisms 9 (5):1069.
Borgdorff H., Armstrong S. D., Tytgat H. L., Xia D., Ndayisaba G. F., Wastling J. M., et al. (2016). Unique Insights in the Cervicovaginal Lactobacillus Iners and L. Crispatus Proteomes and Their Associations With Microbiota Dysbiosis. PloS One 11 (3), e0150767.
Campisciano G., Florian F., D’Eustacchio A., Stankovic D., Ricci G., De Seta F., et al. (2017). Subclinical Alteration of the Cervical-Vaginal Microbiome in Women With Idiopathic Infertility. J. Cell Physiol. 232 (7), 1681–1688.