谷禾健康
想起写作和整理这篇文章的契机,除了夏季即将来临,还要从我们的一位消费者来咨询的内容说起。他的肠道菌群检测报告里有一个病原菌检出超标,这个病原菌就是赫赫有名的Borrelia burgdorferi (伯氏疏螺旋体,也称莱姆病螺旋体)。
谷禾肠道菌群检测报告
说到这个菌,大家可能不熟悉,但应该听过或者患过“莱姆病”,或者听过有关莱姆病的新闻。
著名加拿大歌手贾斯汀·比伯和摇滚小天后艾薇儿都曾因为莱姆病不得不暂别歌坛数年,2018年,艾薇儿用一首《Head Above Water》诠释了与莱姆病战斗的过程。病情最严重的时候,她感觉:
“自己的身体停止运转,
像在慢慢沉入水底,
需要浮上来呼吸一口气”
莱姆病是全球性的疾病,但大家可能还不够重视。
地区分布
这种疾病于上世纪70年代在美国康涅狄格州的莱姆镇被发现,四十多年来,莱姆病在亚洲、欧洲、非洲都有病例报道,以北半球较为多见。
我国于1985年,在黑龙江省林区,发现了国内首个莱姆病病例,目前,东北林区仍是我国莱姆病最常见的地区。
发病率
2015 年 9 月发表在《新发传染病》上的一份报告估计,该国每年发生329,000 例莱姆病病例——是通常向 CDC(Centers for Disease Control and Prevention ) 报告的 30,000 例确诊和可能病例的10 倍以上。欧洲每年报告大约 85,000 例莱姆病病例。
莱姆病只发生在某些生态条件适宜的地区。在美国的高度流行地区,如康涅狄格州和纽约南部,每年的发病率约为每1000人0.5例,但在局部地区可能要高得多。报告的发病率在5至10岁儿童中最高,几乎是成人发病率的两倍。
莱姆病的“罪魁祸首”,是一种叫做“伯氏疏螺旋体(Borrelia burgdorferi)”的病原体,也就是我们前面报告中检出的病原菌。
下面我们就从“伯氏疏螺旋体”开始说起,详细了解一下究竟什么是莱姆病,感染之后为什么会这么严重,需要注意事项等。
伯氏疏螺旋体(Borrelia burgdorferi)是真细菌门螺旋体的一员。这类菌具有独特的形态,包括螺旋状或波浪状的身体和鞭毛(运动器官),鞭毛被包裹在外膜和内膜之间。
图源:医学百科全书
螺旋体包括几种人类病原体,例如:
梅毒螺旋体(梅毒病原体)、钩端螺旋体、脊螺旋体属和几种引起复发性发热的螺旋体。虽然医学界早就知道这些其他螺旋体,但莱姆病的病原菌是70年代才被发现的。
伯氏疏螺旋体的发现
1977年,Alan Steere博士及其同事在临床上将莱姆病描述为一种传染病。Steere等人认为,由于农村地区患者的地理聚集和症状的季节性发生,莱姆病的流行病学表明是通过节肢动物媒介传播的。随后,Willy Burgdorfer博士及其同事在莱姆病流行区采集的蜱中肠组织中观察到螺旋体。
当这些螺旋体注射到兔子体内时,会产生类似于红斑移行症的皮疹,莱姆病患者的血清在间接免疫荧光分析中与细菌发生反应。为了确认这一发现,这种细菌被命名为伯氏疏螺旋体。
美国,伯氏疏螺旋体是唯一导致莱姆病的病原体。 然而,在欧洲和亚洲,除伯氏疏螺旋体外,B. burgdorferi sensu strictu (s.s.),B. garinii 和B. afzelii也会引起莱姆病。
但是欧洲和北美莱姆病的临床表现具有一些共同特征,例如红斑游走性皮疹和流感样疾病。 随后,可能会出现与感染物种大致相关的其他症状。 关节炎经常伴随 B. burgdorferi s.s. 感染,而神经系统症状与 B. garinii 相关,皮肤病与 B. afzelii 相关,尽管这些临床关联不是绝对的。
尽管尚未确定导致疾病差异的潜在遗传特征,但释放的三个疏螺旋体基因组序列应该有助于了解更多。这些基因组具有几个共同的特点,包括线性染色体和大量的较小的DNA分子(质粒),其中一些是线性和其他环状。
染色体和许多质粒的线性结构在细菌世界中是不寻常的,虽然这种形式的 DNA 的进化优势尚不清楚。然而,它可能会给疏螺旋体属带来一些好处,因为所有特征成员都保留线性 DNA 分子。
传播这种病原菌的节肢动物主要为蜱虫(如下图)。
莱姆病最常见于6 月、7 月和 8 月,在这季节蜱很活跃,人们在户外的时间也较长。这些蜱虫会在春季和夏季觅食。
大多数蜱经历四个生命阶段:卵、六足幼虫、八足若虫和成虫。从卵孵化后,蜱必须在每个阶段吃血才能生存。需要这么多宿主的蜱虫可能需要长达 3 年的时间才能完成它们的整个生命周期,而且大多数会因为找不到宿主进行下一次喂养而死亡。
不同生命阶段几个蜱的相对大小
图源:CDC
像肩胛硬蜱的生命周期通常持续两年。在此期间,它们经历四个生命阶段:卵、幼虫、若虫和成虫。卵孵化后,蜱虫必须在每个阶段吃血才能生存。
图源:CDC
蜱可以以哺乳动物、鸟类、爬行动物和两栖动物为食。大多数蜱虫喜欢在其生命的每个阶段拥有不同的宿主动物,如下所示:
蜱虫可能会在其生命周期的任何阶段被感染,因为它是伯氏疏螺旋体的天然宿主。幼虫在地上过冬,次年春天以若虫的形式出现。 若虫蜱最有可能传播感染,因为它们很小,很难看到,而且在人类经常感染蜱虫的地区数量众多。 若虫在秋天蜕皮成为成虫。 成年雌性通常在冬天依附于鹿等大型动物(因此俗称鹿蜱),在第二年春天死亡前产卵,2年的生命周期再次开始。
注:不完全变态昆虫的幼虫被称为若虫(nymph)。故若虫不是某一种昆虫,而是一类昆虫发育至某一段时期的称谓,即营陆生生活的不完全变态昆虫的幼体。
当然,必须感染蜱才能传播伯氏疏螺旋体。
蜱虫如何找到宿主
蜱通过探测动物,或通过感觉身体热量,水分和振动,找到宿主的呼吸和身体气味。有些物种甚至能认出影子。此外,蜱虫通过识别使用良好的路径来选择一个等待的地方。然后,它们在草和灌木的顶端等待宿主。蜱不能飞也不能跳,但许多蜱类在一个做“任务”的位置等待。
在执行任务时,蜱通过它们的第三和第四对腿抓住树叶和草。他们伸出第一双腿,等待着爬到主人的身上。当寄主经过一个蜱虫等待的地方,它很快爬上。有些蜱虫会很快附着,有些则会四处游荡,寻找耳朵等皮肤较薄的地方。
蜱如何传播疾病
根据蜱类及其生活阶段的不同,准备可能需要10分钟到2小时。当蜱虫找到一个觅食点时,它会抓住皮肤并切入表面。
然后,蜱虫插入它的喂食管。许多物种还会分泌一种类似水泥的物质,使它们在进餐时牢牢地附着在一起。喂食管可以有倒钩,这有助于保持蜱虫在适当的位置。
SCIENCE PHOTO LIBRARY
蜱还能分泌少量具有麻醉性质的唾液,使动物或人感觉不到蜱附着在自己身上。如果蜱虫在一个隐蔽的地方,它可能会被忽视。
螺旋体生活在蜱的中肠中,然后细菌迁移到唾液腺和唾液,通过唾液将螺旋体注入宿主。
伯氏疏螺旋外表面蛋白的OspA显示出是细菌驻留在蜱表面,但在蜱喂养和传播给哺乳动物的过程中下调。随后的研究表明,OspA 是一种粘附素,对于将螺旋体保留在蜱中肠直到进食很重要。
OspB,另一种潜在的中肠粘附素,BptA,一种功能未知的脂蛋白,以及 BB0690 基因的产物,可能与抗氧化应激有关 ,似乎也有助于蜱中的细菌存活。
一只蜱会慢慢地吸血好几天。如果宿主动物有血源性感染,蜱虫会将病原体与血液一起摄入体内。
蜱虫的少量唾液也可能进入宿主动物的皮肤。如果蜱虫含有病原体,那么可能通过这种方式传染给宿主动物。
这一过程结束后,大多数蜱虫会脱落,为下一个生命阶段做准备。在下一次进食时,它可以将获得性疾病传染给新的宿主。
莱姆病典型症状包括发烧、头痛、疲劳以及称为游走性红斑的特征性皮疹。如果不及时治疗,感染会扩散到关节、心脏和神经系统。症状可能因疏螺旋体的具体类型而异。
在北美的主要种类是B.burgdorferi sensu strictu,它特别容易引起关节炎。相比之下,欧洲物种B. garinii和B. afzelii分别与神经和慢性皮肤病表现更相关。
莱姆病的进展通常分为三个阶段:
第一阶段
局部莱姆病,感染集中在身体一个区域
第二阶段
早期播散性莱姆病,其中细菌已开始传播
第三阶段
晚期播散性莱姆病,其中细菌已扩散到全身
莱姆病的早期症状
莱姆病通常以明显的皮疹开始,但也可能导致流感样症状。
莱姆病的早期体征和症状可能非常轻微,可能会被遗漏。这种疾病在发病时可能类似于流感。其最明显的症状是牛眼状皮疹。但美国国家过敏和传染病研究所 (NIAID) 指出,至少有四分之一的莱姆病患者没有出现明显的皮疹。
局限性莱姆病最常见的特征是缓慢扩大的皮肤病变或皮疹,称为游走性红斑 (EM)。这种皮疹通常在传播疾病的蜱叮咬后 3 到 30 天(平均 7 天)出现。
Anastasia Kopa/Shutterstock
在向疾控中心报告的莱姆病病例中,约有 70% 的莱姆病病例,游走性红斑是该病的最早征兆。
某些特征可以帮助识别游走性红斑: 它从蜱虫叮咬处的扁平或略微凸起的红点开始,然后扩展为直径达73 厘米(28.7 英寸)的圆形皮疹(如上图)。
它可以出现在身体的任何部位(咬伤部位),但最常见于成人的下肢、臀部和腹股沟,以及儿童的头部和颈部。
皮疹中心周围可能会出现一个清晰的环,使其看起来像牛眼(中心圆圈周围有一个清晰的环,周围环绕着一个更大的皮疹)。
它摸起来可能是发热的,但很少疼痛或发痒。
虽然典型的莱姆病皮疹呈牛眼状,但并非所有的游走性红斑病例看起来都一样。患者可能会出现红色、扩大的病灶,中央有皮肤结痂;多处红色病变;红色椭圆形斑块;根据疾病预防控制中心的说法,或出现蓝色皮疹。
除了游走性红斑外,局部莱姆病患者可能会出现类似流感的症状,包括发烧和发冷、头痛、疲劳、肌肉和关节疼痛、全身不适(不适)和淋巴腺肿胀。
莱姆病会导致关节疼痛急剧增加和大量肿胀,所以有些人觉得特别累。但是也有大约 20% 的莱姆病患者除了游走性红斑症外没有任何症状。
如果莱姆病得不到治疗,皮疹通常自行消退,但是细菌会进入血小管,并传播到身体其他部位。
神经系统并发症可在早期播散性(第二阶段)莱姆病中开始发展。
莱姆病并发症可能包括:
——视力障碍
——注意力不集中
——易怒
——睡眠和记忆障碍
——腿部和手臂的神经损伤(神经病)
也可能出现其他非神经系统并发症,例如严重的关节炎、持续性疲劳、情绪障碍以及危及生命的心脏、肺和神经系统疾病。
莱姆病的后期症状
在早期播散性(第二阶段)莱姆病中,在蜱叮咬后数周至数月发生,可能会出现其他症状,包括:
额外的红斑移行病变神经疼痛;
面部麻痹或贝尔麻痹,面部一侧肌肉麻痹或无力;
莱姆心脏炎:莱姆病细菌进入心脏组织并干扰协调心脏跳动的正常过程,症状包括心悸、胸痛或气短。
晚期播散性(第三阶段)莱姆病在感染开始后数月至数年发生,可能导致:
伴有严重关节疼痛和肿胀的关节炎,尤其是膝盖等大关节
肌腱、肌肉、关节和骨骼疼痛
肌肉运动异常
手或脚麻木和刺痛
认知问题,包括言语和短期记忆问题
脑膜炎 引起的严重头痛和颈部僵硬 (覆盖脊髓和大脑的膜发炎)
什么情况下,从蜱到人类传播风险较大?
受感染蜱的比例因地理区域和蜱在其生命周期中的阶段而异。 在新英格兰南部的高度流行地区,若虫感染的几率约为20%-30%,成年蜱的感染率为30% -50%。
根据动物的实验研究,要传播伯氏疏螺旋体,受感染的若虫蜱通常必须至少进食 36 至 48 小时,受感染的成年蜱必须至少进食 72 小时,然后传播风险才会变得很大。 这些实验结果在一项人类研究中得到证实,在该研究中,对于已进食至少 72 小时的若虫蜱,从蜱(可以评估其进食持续时间)到人类的传播风险为 25%。
研究表明,在大多数被蜱虫叮咬的情况下,蜱虫进食的时间不到 48 小时,这在一定程度上解释了在流行地区被蜱虫叮咬后患莱姆病的风险低(1%–3%)。未被识别的叮咬可能会导致莱姆病的风险更高,因为蜱虫可能会吃饱并更有可能传播感染。
什么情况下容易被蜱叮咬?
一个人被蜱虫咬伤和患莱姆病的几率取决于他们居住、旅行或谋生的地方。
感染莱姆病的常见风险因素包括:
长时间在树木繁茂的地方或草地,田地,庭院,特别是在美国东北部和中西部
裸露的皮肤,会让蜱虫更容易附着或叮咬
不正确地去除蜱虫或在它们附着在皮肤上 48 小时或更长时间后才去除,这会使叮咬处的细菌进入皮肤
在评估莱姆病患者时,首先应考虑:
莱姆病的体征和症状 ,患者接触感染蜱的可能性,其他疾病可能引起类似症状的可能性。
然后进行CDC建议的对莱姆病的两步检测。
这两个步骤都是必需的,并且可以使用相同的血液样本完成。如果第一步是阴性的,则不建议进行下一步测试。
如果第一步是阳性的或不确定的(“模棱两可”),则应执行第二步。仅当第一次测试为阳性(或模棱两可)而第二次测试为阳性(或某些测试模棱两可)时,总体结果才是阳性。
抗体产生
要记住,大多数莱姆病测试旨在检测身体对感染产生的抗体。
抗体可能需要数周时间才能产生,因此如果最近才感染,患者可能会检测为阴性。
感染消失后,抗体通常会在血液中持续存在数月甚至数年;因此,该测试不能用于确定治愈。
检测的准确性
感染其他疾病,包括一些蜱传疾病,或一些病毒、细菌或自身免疫性疾病,可能导致假阳性检测结果。
不过莱姆病的血液检测只有 65% 或更少是正确的。与其他传染病的血清学检测一样,检测的准确性取决于被感染的时间。在感染的最初几周内,例如当患者出现游走性红斑皮疹时,预计检测结果为阴性。
一些测试会给出两种抗体的结果,IgM 和 IgG。如果患者患病超过 30 天,则不应考虑阳性 IgM 结果。
感染几周后,FDA 批准的测试具有非常好的敏感性。
感染初期,在被蜱虫叮咬后的最初几周内接受抗生素的人可能没有完全发展的抗体反应,或者可能因产生抗体反应的水平太低而无法检测到。
针对莱姆病细菌的抗体通常需要几周的时间才能产生,因此即使被感染,在此之前进行的检测也可能呈阴性。在 4-6 周后,测试才可能呈阳性。
PCR,测序和培养
PCR或测序可以提供各种样本中伯氏疏螺旋体核酸的高度特异性证据,包括滑液、皮肤活检组织、血液和脑脊液 。然而,其临床效用受到低灵敏度(尤其是血液和脑脊液样本)及其潜在污染的限制。
滑液PCR 对莱姆关节炎的敏感性 > 75%,可能与其他滑液分析结合使用,以区分莱姆关节炎和其他关节炎 。
对血液 PCR 的研究发现,它的高特异性被其缺乏临床敏感性和污染的可能性所抵消。因此,PCR 尚未被普遍标准化或优化用于诊断莱姆病。然而,一些临床实验室提供了疏螺旋体属的 PCR 检测,血液 PCR 已显示出检测新基因种B. miyamotoi 和B. mayonii 的效用。
由于伯氏疏螺旋体是一种生长缓慢的菌,目前的培养方法敏感性较差。通常不建议将培养用于研究以外的目的,或用于证实在以前未被识别有感染风险地区感染的疾病。
根据我们的检测,可以看出粪便菌群检测结果也可以辅助判别是否感染了伯氏疏螺旋体,而且粪便里检测到有一定概率表明血液里也存在了。这种情况可以根据自身症状和是否接触过蜱虫活动区进一步判别,不过目前类似PCR和粪便菌群测序等测试目前都只能作为辅助判别。
如果你被蜱虫咬过并且它嵌入你的皮肤,最好的去除方法是使用细尖镊子。
图源:CDC
将镊子尽可能靠近皮肤,将蜱虫稳步向上拉以取出它的身体(包括它的嘴部),并彻底清洗咬伤处和手。即使没有看到蜱虫,如果在去过可能有蜱虫的区域后出现皮疹、发烧、发冷或头痛,也要特别留意和检查身体。
Thinkstock; Getty Images
抗生素治疗
抗生素是目前唯一已知的有效治疗莱姆病的方法。
在大多数情况下,莱姆病可以通过两到三周的抗生素疗程来解决,通常是强力霉素(也具有抗炎特性)或阿莫西林。
通常,治疗开始(和完成)越早,恢复就越快。
成人和儿童早期莱姆病的标准治疗方法是口服抗生素。 不过不同的人群使用抗生素不同,要遵循医生的建议。
如果莱姆病进展到更晚期并累及神经系统,则可能需要静脉注射抗生素。这些通常开处方 14 到 28 天,可以消除感染,但它们可能会引起副作用,包括白细胞计数降低、轻度至重度腹泻,或其他与莱姆病无关的抗生素耐药生物定植或感染。
替代和补充疗法
除抗生素外, 科学家们还在探索莱姆病的补充和替代医学。有针对莱姆病患者销售的替代或补充疗法,但没有科学证据证明它们有效,甚至可以安全使用。
发表在 2020 年 2 月出版的《医学前沿》杂志上的一项研究发现,相对低浓度 (1%) 的七种天然草药提取物可能对伯氏疏螺旋体有效,但是临床使用还需要进一步证明。
【1】避开木质、灌木丛和草地,尤其是在 5 月、6 月和 7 月。
【2】穿浅色衣服,如果蜱爬到身上时你可以及时发现它。
【3】穿长裤、长袖衬衫和覆盖整个脚的鞋子(不要穿凉鞋),把裤腿塞进袜子或鞋子里,把衬衫塞进裤子里。戴帽子保护头部。
【4】在衣服和裸露的皮肤区域喷洒含有避蚊胺的驱虫剂。
【5】如果在林荫小道上,请走在中间,尽量避开灌木和草地。
【6】从户外进来时,请立即脱掉衣服,并在高温下洗涤并晾干。
【7】户外活动后仔细检查身体和头部是否有蜱虫。尤其是身体的这些部位:
腋下、耳朵内和耳朵周围、肚脐内侧、膝盖后面、在头发内部和周围、两腿之间、腰部周围。
附录:关于莱姆病的常见问题
被蜱虫叮咬了,患莱姆病了吗?
被蜱虫叮咬后感染莱姆病的几率取决于蜱虫的类型、感染地点以及它附着在身上的时间。
在美国,许多类型的蜱虫会咬人,但只有黑腿蜱虫会传播导致莱姆病的细菌。此外,只有美国东北部和中北部高度流行地区的黑腿蜱通常被感染。最后,黑腿蜱需要附着至少 24 小时才能传播莱姆病。
对于被蜱虫叮咬,要引起重视,除了莱姆病之外,也有传染其他疾病的可能性。
莱姆病会通过性传播吗?
没有可靠的科学证据表明莱姆病是通过性接触传播的。已发表的动物研究不支持性传播(Moody 1991;Woodrum 1999),并且莱姆病螺旋体与这种暴露途径不兼容(Porcella 2001)。传播莱姆病的蜱虫非常小,很容易被忽视。因此,即使其中一方或双方不记得被蜱虫叮咬,生活在同一家庭的性伴侣也有可能因蜱虫叮咬而被感染。
莱姆病会通过母乳传播吗?
没有关于莱姆病通过母乳传播给婴儿的报告。如果在被诊断出患有莱姆病的时候还在母乳喂养,请告知医生,尽可能开出在母乳喂养时可以安全使用的抗生素。
莱姆病会通过输血途径传播吗?
尽管没有莱姆病病例与输血有关,但科学家们发现莱姆病细菌可以生活在一个活跃的感染者的血液中。接受抗生素治疗的莱姆病患者不应献血。
怀孕了,怀疑有患莱姆病,该怎么办?
怀孕期间未经治疗的莱姆病可导致胎盘感染。从母亲传播到胎儿是可能的,但很少见。幸运的是,通过适当的抗生素治疗,不良分娩结果的风险不会增加。
* 没有已发表的研究评估母亲在怀孕期间患上莱姆病的儿童的发育结果。
如何知道是否已经彻底治愈?
没有任何测试可以“证明”治愈。
莱姆病测试检测人体免疫系统产生的抗体,这些抗体可以在感染消失后持续很长时间。这意味着,如果血液测试呈阳性,那么即使细菌不存在,它也可能会持续数月甚至数年呈阳性。
如果说PCR研究工具可以检测某些患者的细菌 DNA。但研究表明,死细菌的 DNA 片段在治疗后数月内仍可检测到。剩余的 DNA 片段没有传染性。仅仅因为感染的 DNA 片段还存在, 并不意味着细菌是活的或有活力的。
一旦得了莱姆病,就会一直持续下去吗?
不会。在感染早期接受抗生素治疗的患者通常会迅速完全康复。大多数在疾病晚期接受治疗的患者也对抗生素反应良好,尽管有些患者可能对神经系统或关节造成长期损害。
但也有可能存在,接受推荐的 2 至 4 周抗生素疗程的莱姆病患者在完成治疗时出现疲劳、疼痛或关节和肌肉酸痛等症状。
在少数情况下,这些症状可持续 6 个月以上。这些症状无法通过更长疗程的抗生素治愈,但随着时间的推移,它们通常会自行改善。
主要参考文献
Shapiro ED. Borrelia burgdorferi (Lyme disease). Pediatr Rev. 2014;35(12):500-509. doi:10.1542/pir.35-12-500
Tilly K, Rosa PA, Stewart PE. Biology of infection with Borrelia burgdorferi. Infect Dis Clin North Am. 2008;22(2):217
Imaging in Lyme neuroborreliosis.Insights into Imaging(2018)9:833–844.
Lyme borreliosis:diagnosis and management.BMJ 2020;369:m1041.
Brainstem encephalitis in neuroborreliosis:typical clinical course and distinct MRI findings.J.Neurol.2020 Aug 28.
Centers for Disease Control website. Lyme disease. www.cdc.gov/lyme. Updated December 16, 2019. Accessed April 7, 2020.
Steere AC. Lyme disease (Lyme borreliosis) due to Borrelia burgdorferi. In: Bennett JE, Dolin R, Blaser MJ, eds. Mandell, Douglas, and Bennett’s Principles and Practice of Infectious Diseases. 9th ed. Philadelphia, PA: Elsevier; 2020:chap 241.
Wormser GP. Lyme disease. In: Goldman L, Schafer AI, eds. Goldman Cecil Medicine. 26th ed. Philadelphia, PA: Elsevier; 2020.
What Is Lyme Disease? Symptoms, Causes, Diagnosis, Treatment, and Prevention. Joseph Bennington, Sanjai Sinha, 2020, 11
Lyme Disease Treatment. Joseph Bennington, Joseph Bennington, Castro Medically, 2018, February 23
How ticks spread disease, Content source: Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases (NCEZID), Division of Vector-Borne Diseases (DVBD)
Shapiro ED. Borrelia burgdorferi (Lyme disease). Pediatr Rev. 2014;35(12):500-509
谷禾健康
肺炎克雷伯菌(Klebsiella pneumoniae),也称弗里德兰氏杆菌,最早是由德国微生物学家和病理学家Edwin Klebs卡尔·弗里德兰德于1882年描述的。
肺炎克雷伯菌是一种革兰氏阴性,不运动的,包囊的杆状芽孢杆菌,存在于人类和非人类灵长类动物的鼻咽和胃肠道中。属于克雷伯氏菌属和肠杆菌科。是兼性厌氧的,氧化酶为阴性,并从乳糖产生酸和气体。它是一种肠内细菌,在5%的健康人的肠道中可见。也可以驻留在皮肤和口腔中。
肺炎克雷伯菌可以自然存在于健康个体的肠道和呼吸道中,具有健康免疫系统的人很少发生感染疾病。
肺炎克雷伯菌的扫描电镜观察
图源:Janice Carr/Centers for Disease Control and Prevention (CDC)
肺炎克雷伯氏菌在人宿主中有两个主要的定植渠道:上呼吸道和肠道。肺炎克雷伯菌建立定植必须与这两个位置的微生物群和免疫系统建立的防御系统抗衡。
表达多种致病性因子,包括多种粘附素,荚膜多糖,铁载体和脂多糖,可逃避宿主防御。例如,荚膜多糖(K抗原)可防止吞噬作用;染色体上携带的多种抗生素抗性基因等。
科学分类
Trevisan 1885 emend. Drancourt et al. 2001
首先我们先来看看,肺炎克雷伯菌这种菌在人群中的分布情况究竟是怎样的?
我们从谷禾健康2019年近期检测人群肠道菌群样本抽取1.3万例样本,人群共计13358人,涵盖0~103岁人群。
其中肺炎克雷伯氏菌丰度占比超过1%的人群有3765例,占比28.2%。
谷禾健康肠道菌群数据库
肺炎克雷伯菌可以逃避人体的正常保护机制。除了攻击肺和膀胱等器官外,它还引发炎症反应,从而加剧发烧和发冷等症状。
接下来我们详细了解一下,克雷伯菌感染后会有哪些症状。
在新的和旧的灵长类动物中,这种细菌都与脑膜炎,腹膜炎,败血病和肺炎有关。肺炎克雷伯菌是引起肺炎的人类呼吸系统的主要病原体之一。
当细菌直接进入人体内时,通常会发生克雷伯菌感染。一旦它们进入体内并在免疫系统的防御中幸存下来,它们就会影响各种器官。疾病的症状通常取决于感染开始的位置。
感染包括泌尿道、血液、脑部等。克雷伯菌的感染迹象和症状会随感染部位的不同而不同。
肺部感染
这类肺炎的主要症状是发烧和发冷,由于咳嗽,可能还会感到胸部不适,呼吸急促,疲倦。如果疾病已经蔓延很多,那么可能还会遇到一些其他症状,例如咳嗽时痰液浓稠,带血,通常被称为“黑加仑果冻痰”。
像肺炎球菌一样,克雷伯菌属感染肺部一般会产生大叶性肺炎,有黏液状的“粘液样”外观,并且上叶的原因不明。感染会导致出血性坏死,微脓肿和空腔形成。部分克雷伯菌属还会产生慢性坏死性肺炎,并伴有疤痕和肺部解剖结构扭曲。
鼻部感染
感染克雷伯氏菌会导致鼻粘膜的恶臭消散(萎缩)。
克雷伯氏菌鼻硬膜炎可引起鼻硬化症,是鼻子和喉咙的破坏性结节性炎症。
眼部感染
如果肺炎克雷伯菌(K. Pneumonia)感染了血液,那么它有可能会传播到眼睛并引起严重的感染,称为眼内炎。它主要引起眼睛的白色部分发炎。
在较早阶段,这种感染会导致眼睛发红和轻度至重度疼痛。除了不适,还可能会从眼睛排出白色或黄色粘液。
当感染处于晚期时,会导致视力模糊和畏光。如果不加以治疗,细菌还会扩散到大脑中,并引起其他健康并发症。
血液感染
当肺炎克雷伯菌进入血液并对其进行感染时,通常会发生细菌血症。症状可能包括发冷,发烧,发抖,肌肉酸痛,疲劳和嗜睡。可能还会出现意识变化。败血症可作为反应发生。
脑膜炎
在某些由肺炎克雷伯菌引起的眼内炎中,微生物从患者的眼睛传播到大脑,并引起细菌性脑膜炎。但是,已知这种肺炎克雷伯菌很罕见,通常发生在老年人中。
当一个人患有这种类型的感染时,他们会突然发高烧,脑膜(大脑周围的保护层)感染可引起头痛,脖子僵硬,背部疼痛,疲劳。由于急性疼痛,许多人也会感到恶心和畏光的感觉。在极少数情况下,脑膜炎会引起癫痫发作。
如果不及时治疗,在某些情况下也可能导致患者死亡。
尿路感染
当肺炎克雷伯氏菌细菌进入人的尿道(包括肾脏,尿道和膀胱)时,会引起严重的尿路感染(UTI)。
起初由克雷伯菌引起的泌尿道感染通常不显示任何明显的体征。但是,随着感染的增加,开始出现许多严重的症状。
这可能会导致尿频,排尿灼热感,膀胱急迫和尿失禁。其中,尿频是最常见的一种。它还可能引起发烧、小腹和骨盆区域的疼痛或不适。
这种感染通常发生在使用导尿管一段时间的患者中。通常,它在老年妇女中更为常见。
伤口感染
如果肺炎克雷伯菌通过瘀伤进入,可导致伤口愈合延迟,发红,脓液和疼痛,发烧,疲劳。
那么它也可以感染身体或皮肤的软组织。这种类型的感染发生在那些因手术和受伤导致开放性伤口的人中。
可能会感到非常恶心,但是医生不一定能马上知道感染这种菌,肺炎克雷伯菌的感染通常以与其他感染相似的症状为特征。要经过诊断测试才能确认。
化脓性肝脓肿
肺炎克雷伯菌还可以感染肝脏,并在其中引起脓性病变,它被称为化脓性肝脓肿。这种类型的感染更常见于患有糖尿病一段时间或已经服用抗生素多年的人。
患有化脓性肝脓肿的人可能出现:
轻度至重度发烧、呕吐(有血或无血)、急性腹泻、经常感到恶心、右上腹部轻度疼痛。
克雷伯菌的其他种类包括产酸克雷伯氏菌和植物肺炎克雷伯菌与肺炎克雷伯菌一起可引起人尿道和伤口感染。肺炎克雷伯菌的罕见亚种会引起特别严重的疾病。
K. ozaenae
是一种罕见的人类病原体,很少引起严重感染,被认为是萎缩性鼻炎的病因(萎缩性鼻炎:以粘液脓性分泌物、粘膜结痂和恶臭为特征)。K. ozaenae菌血症是一种罕见的临床问题。在文献中,只有十二病例报告。
K. rhinoscleromatis
可导致缓慢进展的疾病,称为鼻硬化症。在首次临床表现时,患者最初可能处于疾病的第一阶段(鼻炎),伴有鼻塞、结痂和恶臭。随着疾病进展到肉芽肿阶段,患者开始出现更明显的鼻塞、畸形、鼻衄、嗅觉障碍。
K.oxytoca
与新生儿菌血症有关,尤其是在早产儿和新生儿重症监护病房中。从新生儿菌血症患者中分离出来。
K. planticola
已从诸如小麦,水稻和玉米(玉米)等植物的根中分离出了K. planticola和某些肺炎克雷伯氏菌菌株,它们在其中起着固氮细菌的作用。
K. variicola
变栖克雷伯菌K. variicola于2004年被发现,它也存在于多种植物中,包括水稻,香蕉和甘蔗。这种细菌还已经从医院环境中分离出来,在医院中它可能像其他克雷伯菌一样,是一种条件致病菌。
Alfred Pasieka/science Photo Library
肺炎克雷伯菌通常通过触摸,唾液交换和其他接触方式从一个人传给另一个人。没有被这种细菌感染的人也可以将其传播给另一个人。
它们还可以通过其他一些医疗设备传播,例如输尿管和静脉导管,呼吸机等。但是,肺炎克雷伯菌不能通过空气传播。
克雷伯菌肺炎通常发生在由于年龄,酒精滥用或糖尿病等导致免疫功能低下人群。常出现在酒精中毒或慢性肺部疾病等患者中,并且通常以医院感染的形式出现。
此外,易感因素包括营养不良,接触程度,不卫生的环境和遗传易感性等。
具体易感因素如下:
1.开放性伤口
克雷伯氏菌微生物可以通过开放性伤口从一个人传播到另一个人。因此,如果有开放性伤口,那么受到这些感染的风险增加近35%。
2.酒精
酒精除了会使人醉,还会影响人的免疫系统并降低其整体能力。如果一周中的每一天几乎都喝酒,那么免疫系统可能会弱,从而增加感染肺炎克雷伯菌的风险。
3.癌症药物
通常用来治疗癌症的药物会降低人体免疫力。因此,细菌更容易在体内生长并引起感染。
4.服用抗生素
抗生素药物会降低免疫力。如果长期服用抗生素,那么感染克雷伯菌的风险就会大大增加。
5.肾衰竭
如果患有肾脏方面的疾病,那么患克雷伯氏菌感染的风险也较高。肾脏衰竭是又一个可能增加感染克雷伯菌感染的机会的原因。
6.年龄
已知衰老是最主要的因素之一,它会降低我们的免疫系统的能力。因此,肺炎克雷伯菌引起的感染通常在65岁以上的人群中更为普遍。
7.慢性肝病
肝脏有助于清洁血液中的废物成分,从而使免疫系统保持健康有活力。但是,如果一个人患有慢性肝病,肝脏就不能很好地清除血液中的废物。会降低免疫力,更容易感染细菌。
以上原因是较为常见的,当然还有一些其他原因,比如:
长时间使用皮质类固醇; 器官移植; 慢性阻塞性肺疾病;糖尿病;
使用受感染的输尿管导管; 进行重大的手术; 使用被感染的呼吸机。
医生可能进行病史检查,也会使用影像学检查来诊断感染(例如肺炎等),但肺炎克雷伯菌的诊断主要基于实验室检查。
通常,由该菌引起的肺炎,脑膜炎,伤口感染和任何其他部位感染会感到恶心。医学评估通常着重于确定感染的原因并寻找并发症的征兆,例如脓肿。
病 史
医生会问是否发烧,恶心,咳嗽,呼吸困难,疼痛不适以及睡眠情况。可能还会问与患有类似疾病的人的接触情况。
体 检
检查将包括对体温,嗓子,呼吸音的评估,以及对腹部压痛的评估。将检查任何伤口或疼痛的皮肤区域是否发红,肿胀或发热。
影像学检查
这是最常见的检查之一,医生通常会要求患者进行这些检查以定位疾病的位置和传播。假如医生怀疑肝脏有病变,那么他会要求检查。
肺炎克雷伯菌通常会影响右上肺叶,并导致形成空腔以及引起脓液的组织死亡。这些会在胸部X射线上比较明显,这就是成像检查的原因。
根据症状可能还需要对腹部,膀胱,大脑或骨骼进行影像学检查。
诊断测试
医生可能还需要取样,包括血液,粪便,尿液并进行微生物检测,具体取决于怀疑的感染。
甲痰样品可以检测细菌性肺炎。
检测是否有败血症可能需要血液样本。
如果怀疑细菌性脑膜炎可能需要腰椎穿刺。
如果伤口被感染,需要对感染区域的一小部分样本进行检测。
如果是腹泻,可能会送检粪便样本。
以上样本会被送至实验室进行培养或测序,以便识别传染性细菌(及其对抗生素的敏感性)。
抗生素治疗
如果患者感染了非耐药性肺炎克雷伯菌,通常会用抗生素治疗。可以口服或静脉注射。
医生可能会考虑的抗生素包括:
阿扎坦(aztreonam);
喹诺酮类;
第三或第四代头孢菌素,例如罗芬(头孢曲松);
碳青霉烯类,例如Primaxin(亚胺培南/西司他丁);
青霉素,例如佐辛(哌拉西林-他唑巴坦)
治疗持续时间因抗生素而异,但大致范围可能是2-14天。
此外,一定要告诉医生是否对青霉素过敏,青霉素过敏者无法服用某些抗生素。
# 抗生素耐药性 #
肺炎克雷伯氏菌是革兰氏阴性杆菌,包裹在厚多糖胶囊中。
某些肺炎克雷伯菌已经进化,尽管可以通过单药治疗(包括青霉素或类似抗生素)有效地治疗某些克雷伯菌感染,但是对这些药物产生抗药性的生物的出现仍需要开发新的治疗方法。例如,肺炎克雷伯菌对β-内酰胺抗生素有抗性,β-内酰胺类抗生素包括碳青霉烯,青霉素和头孢菌素。
耐药性是由生物体合成称为碳青霉烯酶的酶的能力引起的,该酶会水解构成这些药物抗菌活性基础的β-内酰胺环。结果,耐药的肺炎克雷伯菌感染通常需要与结构多样的药物(例如β-内酰胺抗生素和氨基糖苷)联合治疗。
手 术
如果有脓肿,可能需要通过外科手术将其引流。根据脓肿的位置,这可能需要在诊所进行小手术,或者可能需要在医院进行外科手术。
通常,排脓后至少还需要几天的抗生素治疗。
其他治疗新方向——微生物群
肺炎克雷伯菌感染治疗有难度,因为大多数临床分离株均表现出对几种抗生素的抗性,从而导致治疗失败和全身性传播的可能性。
好消息是,国际顶级微生物学期刊《Nature microbiology》研究发现,成熟的微生物群推动了不同免疫防御程序的发展,从而在上呼吸道和肠道限制肺炎克雷伯氏菌在这些生态位内的定植。
肠道免疫保护取决于拟杆菌、白细胞介素IL-36信号和巨噬细胞的发育。拟杆菌的这种作用需要其保守的共生定植因子的多糖利用位点。相反,在上呼吸道,变形菌门通过IL-17A增强免疫力,但是肺炎克雷伯氏菌通过包囊IL-17A来克服这些防御进而有效定植。
最终发现肺炎克雷伯氏菌的宿主间传播主要发生在其肠道贮存器中,而产生共生定植因子的拟杆菌足以通过IL-36阻止宿主之间的传播。
点此了解更多:
附录:预防感染肺炎克雷伯菌
有必要遵循所有预防措施,尤其是手部卫生。克雷伯氏菌主要通过人与人之间的接触传播,保持手部清洁是防止细菌传播的最佳方法。
身体健康的人感染的几率较低,但是住院病人或免疫力低下者需要非常注意,勤洗手:
在准备食物或食用食物之前洗手;
使用浴室后洗手;
咳嗽、打喷嚏或擤鼻涕后洗手;
更换伤口敷料和绷带前后洗手;
在医院接触床头柜、床栏、门把手、遥控器和电话等表面后洗手。
早期诊断/治疗有助于降低发病率。
主要参考文献:
Sequeira, R.P., McDonald, J.A.K., Marchesi, J.R. et al. Commensal Bacteroidetes protect against Klebsiella pneumoniae colonization and transmission through IL-36 signalling. Nat Microbiol (2020)
Bryan Corrin MD FRCPath, Andrew G. Nicholson DM FRCPath, Klebsiella Pneumoniae Infection: Symptoms and Diagnostic Procedures. Pathology of the Lungs (Third Edition), 2011
Thea Brabb, Martha Hanes, in The Laboratory Rabbit, Guinea Pig, Hamster, and Other Rodents, 2012
Hanifa J. Abu Toamih Atamni, Fuad A. Iraqi, in Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research, 2018
Nervous System Disorders of Nonhuman Primates and Research Models
MicheleA. Fahey, SusanV. Westmoreland, in Nonhuman Primates in Biomedical Research (Second Edition), Volume 2, 2012
Quereshi, Shahab. Klebsiella Infections. Medscape. December, 2018
Bush, Larry and Perez, Maria. Klebsiella, Enterobacter, and Serratia Infections. Merck Manual Professional Version. April, 2018
Clegg S, Murphy CN. Epidemiology and Virulence of Klebsiella pneumoniae. Microbiol Spectr. 2016 Feb;4(1). doi: 10.1128/microbiolspec.UTI-0005-2012. PMID: 26999397.
谷禾健康
饮食失调即使在古罗马时期也是一个社会性问题。但直到如今,我们仍然对它知之甚少。
当前,这种疾病有多流行?现代有“瘦之审美”,畸形观念之泛滥,催生出大批饮食失调人群。
著名演员加布里·西迪贝患有饮食失调(因《 珍爱》 与 《美国恐怖故事:启示录》获得奥斯卡提名),在其回忆录《这就是我的脸:试着不凝视》中生动地描述了她如何用贪食症来应对抑郁。
她写道:
“我的情绪失控了,我只能哭好几个小时。”
“有一天,我哭了很久很辛苦,以至于我开始呕吐。吐完后,我不再哭了。我甚至都没有想过让我哭泣的原因。我感到空虚,这是一件很了不起的事–在此之前,我感觉太过情绪激动了。”
…
《柳叶刀·精神病学》发表的最新研究显示,2019年,全球范围内饮食失调患者总人数已达5550万左右。相比男性,女性患者的占比明显更高。正因如此,饮食失调的临床科研多以女性为主,对男性患病情况缺乏了解。我国饮食失调的发生率与西方国家相当,却未引起足够重视。
虽然有很多关于饮食失调的信息,但是大部分人把这些症状误认为是一种生活方式的选择。
饮食失调,学名“进食障碍”,是以不健康,不正常,强迫性的饮食习惯或异常紊乱的进食行为为主的精神心理障碍,属于轻性精神病。饮食失调通常伴随着情绪和身体症状。
如果你过多地关注饮食,时间和饮食量,以至于对生活造成负面影响,影响工作能力、社交等,则可能意味着你患有进食障碍。
节食、暴饮暴食等现代生活中很常见,媒体也常报道有明星为控制体重连续3天只喝水不吃饭,还有人几十年没碰过米。其实不吃、贪吃、猛吃都可能是饮食失调。
普通人只是偶尔节食,还算不上疾病。
临床上关于此诊断通常有三个维度:
1 频度,异常饮食行为是否持续3个月以上,或每周至少一次。
2 进食习惯表现,比如,是否过度限制饮食等;
3 影响,是否对生活、工作、学业等造成不良影响。
如果三项全部为“是”,且排除垂体肿瘤等神经系统器质性病变,即可认定为饮食失调。
其实饮食失调是导致不健康饮食习惯养成的一系列心理状况,更偏向轻性心理疾病,可能是从对食物、体重或体型的某类思想执迷开始的,比如说“非瘦不可”,“体重超过3位数没有未来”等言论,疯狂追求“A4腰”,“巴掌脸”……
然而,在严重的情况下,饮食失调对身体的破坏力超出你想象。如果不及时治疗,甚至可能导致死亡。
饮食失调包括以下六种:
神经性厌食症
神经性贪食症
暴饮暴食症
异食癖
反刍障碍
回避/限制性食物摄入障碍
神经性厌食症和贪食症是最常见的饮食失调,但暴饮暴食症有时也包括在内。尽管它们三个有相似的根本原因,但受害者行为却是不同的。
厌食症
厌食症:这种疾病的特征是对卡路里摄入量的极端控制,对体重增加的强烈恐惧以及对身体胖瘦和形态的不切实际的看法。
其实部分厌食症患者仍保持有正常的食欲,只是她们为了保持徧低的体重而过分地节制饮食。或因本身身体因素,对食物有排斥心理,导致身体对饮食搭配的失衡。
厌食症的特点是不断自我饥饿造成体重急剧减轻,而且大多数情况下还伴随剧烈运动。
神经性厌食症的常见症状包括:
与年龄和身高相近的人相比,体重明显偏低;
饮食习惯很受限制;
即使体重偏低,仍然强烈担心体重增加或持续某些行为以避免体重增加;
不懈追求瘦和不愿意保持健康体重;
自尊受到体重或感知的身体形态的严重影响;
扭曲身体形象,包括否认体重严重不足。
神经性厌食症主要出现在成年初期,追求苗条身材的心理达到了极致的状态,有一种心理障碍,总觉得自己臃肿,想要把自己饿到很瘦为止。这种病的症状就是把不合适的身材印象强加在自己身上,看周围肥胖的朋友不觉得他们胖,却对自己极为严格,总觉得自己很胖。
这类人群情绪不稳定,带有攻击性,又时常忧郁,试图把自己隔离在家人和朋友之外,最后会出现体重剧减、体温和脉搏下降、缺铁性贫血、白血球数减少、毛发损伤、便秘,以及月经中断等症状。
在模特和演员中也时常出现这种病症。如果无条件地认为瘦就是美,是一件很危险的事情。之所以要减肥,是因为我们需要更健康更有活力的生活,而不是放弃生活。
贪食症
贪食症: 贪食症的特征是频繁进食,暴饮暴食,随后进行清除以免体重增加。清除可能包括催吐,强迫运动以及滥用泻药和利尿剂。
这种疾病的特征是在短时间内频繁失控的进食,直到人们感到不适为止。暴食症通常是由于自我厌恶和尴尬而悄悄发生的。
这样的患者为了减肥只吃热量很低的食物(单一食谱法、丹麦式减肥法、800卡以内减肥法等),但实际上从早到晚都有想吃东西的欲望,结果名义上虽吃低热量食品,实际上却能一次吃光15000卡的食物,相当于正常人一周的食量。意识到之后又觉得很惭愧,身体也感到不适,于是又常常进行人为催吐或服用泻药等不健康手段。
这种节食又暴饮暴食的反复过程,彻底破坏了人体的平衡。反复的呕吐使食道和胃都受到损伤,牙齿表面也被破坏,心理上的负担不断加重,甚至由于极度绝望而导致自杀。
暴饮暴食症
暴饮暴食症:可定义为强迫进食至不适感。重要的是,与同类情况相比,它需要吃的食物要多得多,同时还伴有明显的困扰,缺乏补偿行为以及无法控制吃多少或什么东西。
暴饮暴食症有时被称为强迫进食障碍,与贪食症有很相似的症状,但一般没有催吐之类的行为。这些患者往往超重,因此会造成一些严重的健康问题。
普通人偶尔多吃点没有什么后果。但是暴饮暴食症有所不同,因为暴饮暴食发作变得频繁并开始干扰一个人的幸福感,人际关系和自我价值感。
有意思的是,贪食症患者的体重从低于标准体重,到正常或超重各种各样都有。
如果你发现自己或朋友或家人中有以下危险信号,则可能需要引起注意:
被食物,体重,脂肪或卡路里的思想所控制
避免吃自己喜欢的食物,不愿意享受食物
宁愿一个人吃饭,也不要和别人一起吃饭
过度运动,例如,计划锻炼的一天 ,设定不切实际的目标,或忽略受伤、疲劳等现象
更加关注别人的身体
定期催吐,或者使用食欲抑制剂,泻药,利尿剂,灌肠剂等。
异食癖
异食癖是指一个人总是吃不属于食物的东西。这些食物可能包括纸、肥皂、布、颜料片、蜡笔、灰尘或冰块,这些食物没有营养价值,可能不利于消化。
异食癖通常在两岁后才被诊断出来。
听起来有些不可思议。为什么有人会吃非食物?
一些异食癖者说他们喜欢异食癖的味道、质地或气味。其他人说,吃某些非食物可以缓解压力和焦虑。
医生并不总是能识别出病人在吃非食物,人们通常也不会告诉他们的医生,因为他们感到羞耻。然而异食癖会有可怕的后果,比如窒息、中毒和营养不良,所以寻求治疗是至关重要的。
反刍障碍
反刍症是一种进食障碍,其特征是食物吃进去以后又反流出来。反流可能是自发的。若患者报告称反复反流食物一个月或以上,医生将诊断为反刍症。
有些反刍症患者知道该行为是社会不可接受的,并试图掩盖或隐藏。
如果患者限制了他们的食物摄入量(避免其他人看到反流),他们可能会体重减轻或出现营养缺乏。
反刍经常发生在婴儿期和儿童期,但它也会影响到成年人。压力和焦虑是婴儿和儿童的风险因素,而焦虑和抑郁是成年人的风险因素。
这种情况是习惯性的或无法控制的,治疗的重点可能是打断和逆转这些习惯。
回避/限制性食物摄入障碍
回避/限制性食物摄入障碍(ARFID)发生在人们没有吃足够的食物来获得适当的能量或营养的时候。患有ARFID的人可能会因为食物的口感或气味等感官特征而避免进食,害怕进食的后果,或者根本对进食不感兴趣。结果可能导致体重减轻、营养不良和发育问题。
这种疾病通常出现在婴儿期和儿童期。当这种回避不能用食物匮乏或文化习俗来解释时,就会被诊断为这种行为。医疗问题、饮食失调和心理健康问题也必须排除。ARFID的危险因素包括焦虑、强迫症、自闭症以及胃肠道问题。
人们经常被挑食和ARFID之间的界限所混淆。当一个人不能满足他们的热量或营养需求时,挑食就会变成一种紊乱。他们可能无法增加体重,体重与身高不相称,或者依赖补充剂。如果它开始干扰他们的日常功能,他们可能患有疾病。
ARFID也不同于厌食症;ARFID的食物厌恶并不像厌食症那样,是由对身体形象或体重增加的恐惧驱动的。
虽然一些患有饮食失调症的人看起来很正常,但实际上他们的身体正处于危险之中。
饮食失调症状的一些常见后果,包括干扰发育,并可能导致健康问题如心率过低、月经周期缩短、脱发、菌群失调进而引发一系列疾病。
你可能不知道,饮食失调还会干扰人际关系,妨碍处理潜在的痛苦情绪,很难过上幸福的生活。
患有饮食失调的人经过干预治疗有些最终完全恢复,而有些则在恢复和复发期中循环,有的甚至会长期患病或死亡。
根据统计,饮食失调是所有精神疾病中死亡率最高的。估计有20%的饮食失调者最终会死于以下疾病:例如,不规则或非常低的心跳(心律不齐),突然的心脏骤停,严重的肝脏疾病或自杀等并发症。
即使是幸存者,也可能面临严重的健康问题,包括但不限于:
不可逆转的骨质流失、肌肉丢失和无力;
贫血、严重脱水;
可导致肾功能衰竭;
皮肤干燥、脱发;
消化慢(胃轻瘫),晕厥;
疲劳和整体虚弱;
月经不调或性欲减退,沮丧等。
饮食失调的原因很少人知道。
饮食失调可能源于遗传、人格特征和环境影响(例如童年经历、社会比较、压力或创伤事件以及文化、审美标准)之间的复杂关系。
抑郁,双相情感障碍和焦虑症的较早出现强烈地预示了青少年的饮食失调。饮食失调似乎是遗传的,可能与5-羟色胺受体的遗传差异有关。
当感到烦恼或烦闷时,进食能带来舒服的感觉,因此,很多暴食症患者在感到沮丧时,试图用进食带来舒服的感觉。但是,因吃得过多而感到腹胀和臃肿,患者又感到十分难受,于是借呕吐等方式来控制体重上升,紧接着,内疚、悲伤和可怜的感受亦随之产生。
此外,还有以下三个重要原因:
——个体因素
个体因素:包括生物学因素和个性因素。
生物学因素是指在进食障碍患者中存在一定的遗传倾向(家族中罹患进食障碍和其他精神类障碍的人多于正常人群)和部分脑区的功能异常。
对双胞胎、亲生家庭和收养家庭的研究表明,遗传会使人们患上疾病的风险更大。家庭成员患有饮食失调症的人,患饮食失调症的风险要大得多。
个性因素是指进食障碍患者中常见典型的人格特点——追求自我控制、追求完美和独特;爱幻想,不愿长大等。在青春期即容易表现出自主性和依赖性的强烈冲突,引发进食问题。
有时候我们会建立目标,然而目标越重要,朝着这个目标前进的动力与实现它所需的生活限制之间的等式就越不平衡,以食物作为达到目的的手段危险就越大。
——家庭因素
家庭因素:家庭因素在进食障碍的发生、发展、维持和康复中都可能起到重要作用。
常见的“进食障碍家庭”模式有:
(1)家庭成员的情感紧紧纠缠,无法分清彼此,没有空间;
(2)父母对孩子过度保护;
(3)父母冲突,孩子卷入其中,背负过重的负担;
(4)家庭模式僵化,无法适应孩子的发展——永远用对待婴儿的方式对待长大的孩子。
有学者提出患者以进食行为代表了对父母过度控制、过度保护的反抗;或以节食为手段达到对父母的反控制,以此作为解决家庭内冲突的一种方法。也有学者认为病人的依赖性强,多与母亲的关系过于密切、依赖,而以自我控制进食作为自己独立的象征。
——社会文化因素
社会文化因素:现代社会文化观念中,把女性的身材苗条作为自信、自律、成功的代表。所以青春期发育的女性在追求心理上的强大和独立时很容易将目标锁定在减肥上。而媒体大力宣传减肥的功效,鼓吹极致身材人人皆可拥有,也让追求完美、幻想极致的女孩更容易陷进去。
此外,看多了各式各样滤镜下的照片会导致自我比较——这个过程有时是无意识的。不断的比较会对自尊和身体满意度造成严重影响。
在过去一年的疫情中,日常生活变得不确定,特别是对于许多年轻人而言。因此,控制食物就像是在压力大,不确定的环境中进行控制的一种可行的选择。
然而,这并不能完全解释为什么只有某些人会患上饮食失调。
科学研究者在进行多学科饮食失调研究时遇到了一些挑战:
一个问题是,神经科学家和临床医生的处理方法不同
在临床研究中,重点是综合征(构成一种紊乱的症状的集合),而在神经科学中,重点是大脑与认知和行为之间的联系。
因此,临床医生可能会研究被诊断为饮食失调的人的焦虑,而神经科学家则会研究导致焦虑的大脑机制。
由于进食障碍分类是基于症状群的,因此每种分类内有很多差异。因此很难将临床研究与神经科学研究结合起来,过多的参与者差异阻碍了关于脑与行为关系的结论。
简而言之:两个具有相同饮食失调诊断的人可能出现不同的诊断或神经特征。
另一个问题是饮食失调类别之间以及饮食失调类别与其他心理疾病之间的重叠
为了缓解这种情况,美国国家心理健康研究所创建了一个面向神经科学的框架,用于研究心理障碍(RDoC)。
该框架使用不同层次的分析(即细胞;神经回路)来探索与行为相关的不同领域(即负面评价;奖励)。但很少有饮食失调研究人员使用过它。
研究饮食失调的神经科学的研究人员还遇到了大脑分析的局限性。由于大多数饮食失调并不是致命的,而且经历饮食失调的人群还相对年轻,因此缺乏用于饮食失调研究的人脑样本。这意味着神经科学家很少分析患有进食障碍的人的大脑。相反,他们依靠血液和其他体液来推断脑功能和饮食失调行为。
除生物样本外,还可以使用诸如fMRI(用于测量大脑区域中的氧化血流)和EEG(脑电图)(用于测量大脑中的电活动)之类的技术来“观察活着的人的黑匣子”。 然而,这些技术的准确性有限,它们只能告诉我们很多有关饮食失调行为的信息。
研究人员用于研究饮食失调的神经科学的另一种选择是使用动物模型。使用动物模型有点好处,它可以减少参与者的变异性,因为神经科学家可以控制动物的遗传学,早期生活经历,父母关怀和饮食。这放在人类是不可能的(也是不道德的)。
通过操纵某些条件,神经科学家可以研究特定因素(例如生命早期创伤)如何随着时间的推移影响动物的健康。这提供了关于大脑与饮食失调行为之间因果关系的更具结论性的论据。
哪些性格特征和态度与饮食失调相关?
饮食失调与完美主义、强迫倾向和对负面情绪的敏感性有关。低自尊和对身体的不满是风险因素,以及焦虑和抑郁等心理健康挑战。
研究表明,女孩饮食失调的最强预测指标之一是同龄人对体重和饮食的重视。这种趋势在大学中更加突出,大学是一个由同龄人组成的社小社会,很少有年长的人提供更广阔的视角。同伴感知的影响可能导致大学校园饮食失调的扩散。
许多年轻人在成年后仍会继续患有饮食失调症。他们将面临大量健康问题的高风险,例如蛀牙和频繁呕吐造成的染色、胆囊疾病、消化疾病等。
当我们研究饮食失调时,重要的是要区分可能导致问题开始的过程(饮食失调的原因)与导致问题持续的过程(饮食失调的维持因素)。
这需要区分所谓的发展阶段(即进食障碍发作之前)和维持阶段(即进食障碍发作之后)。
这种区别有两个重要的含义:
1)识别影响进食障碍发展的过程可能有助于设计有效的预防这些进食障碍的干预措施;
2)确定维持饮食失调的过程可能有助于制定成功的治疗干预措施。
饮食失调维持过程的关键角色
据认知行为理论,一种独特的自我评估方案(下图),即对身材,体重,饮食和饮食控制的过高评价(换句话说,就形态, 体重及其控制能力)在饮食失调中起重要作用。
暴饮暴食是不是高估形态,体重,饮食及其控制的一种行为 。这种行为存在于一大群饮食失调的人群中,它是通过以下机制从这种高估间接产生的:
1.严重饮食不足
太在乎或高估身材,体重,饮食及其控制能力可能导致个人饮食不足。这样做会产生神经内分泌信号的几种变化,这些变化控制着食物的摄入,传达了饱腹感/饥饿感。
2.极端和严格的饮食规则
饮食失调的人对这些极端和僵化的饮食规则会做出消极和极端的反应(通常是全有或全无),甚至小小的违规行为也往往被解释为自我控制力差的证据。对这种缺乏自我控制感的反应是暂时放弃限制饮食的努力,这导致暴饮暴食。 反过来,这加剧了人们对他们的身材,体重和饮食缺乏控制的担忧和信念,并鼓励进一步的饮食限制,从而增加了随后暴饮暴食的风险。
3.事件和相关的情绪变化
人们倾向于通过三种主要机制维持暴饮暴食的发作。
体重过轻,饮食不足,暴饮暴食和饮食失调的其他特征(即饮食限制和节制,自发性呕吐,泻药和利尿剂滥用,过度运动,身体检查和避免,发胖)通过多种机制得以维持在持续激活的状态下,人们对形态,体重和饮食控制的过度关注和过度重视,其结果是饮食失调的心态被锁定在患者的核心(下图)。
2012 年发表在《营养与饮食学会杂志》上的一项研究发现,患有饮食失调症的女性成为素食者的可能性是没有饮食失调症的女性的四倍。超过一半 (52%) 有饮食失调病史的女性曾在一生中的某个阶段吃过素。其他研究也发现了类似的关联。
那是否说明素食和饮食失调有直接关联?
不一定。同样是素食主义,有些是健康的,有些与饮食失调相关联。
这里需要明确一点:真正的素食主义不会导致饮食失调。它可以成为人生任何阶段的健康选择,前提是成为健康的素食者。
怎么样算健康的素食者?
健康的素食者会寻找替代品来补充他们所缺少的营养素,例如钙、蛋白质、omega-3脂肪酸、维生素 B12 和铁。当他们的饮食包含多种营养食品时,与非素食饮食相比,水果、蔬菜、纤维和复合碳水化合物的含量往往更高,饱和脂肪和胆固醇的含量更低。
但是如果是用加工过的垃圾食品代替肉类,那不仅不会促进身体健康,反而会更加疲劳和营养不良。
素食者需要注意的饮食失调风险
素食主义看起来是选择了一种积极的生活方式,但对某些人来说要警惕其潜在机制,如痴迷、控制和自卑,可能是精神疾病的征兆。怎么理解痴迷,控制等状态?
打个比方,如果是为了减肥而采取的一种过于自我苛刻的措施,那么有可能就走偏了。尤其是如果变得痴迷于把某些食物标签为“好”和“坏”,减少麻烦类别的饮食。这样下去,饮食方式逐渐变得极端,那么就有可能与饮食失调相关联。
总而言之,看起来同样是素食,但是驱动因素各不相同,有些人的素食与饮食失调挂钩,而有些人的素食是自然而然的健康选择。这是两种不一样的境界。
神经性厌食症在20世纪下半叶之前就已存在。西方世界对神经性厌食症的最早描述可以追溯到12世纪和13世纪,最著名的是锡耶纳的圣凯瑟琳,她拒绝进食是精神上对自我的拒绝。
1973年,希尔德·布鲁赫出版了一本书,书中有许多案例研究,名为《饮食失调:肥胖、神经性厌食症和内向的人》。这种混乱在20世纪70年代蔓延成为公众意识,病例增加。
贪食症(暴饮暴食,然后通过运动、呕吐或泻药进行清除)最早存在于中世纪的一些富人中,他们会在吃饭时催吐,这样就能吃得更多。
关于贪食症的第一篇临床论文发表于1979年。
厌食症和贪食症的病例在1970年代和1980年代呈上升趋势,有人会说他们在那个时期达到顶峰,但全国调查数据表明,贪食症仍在继续上升。
1970年代和80年代是美国肥胖率上升的时期。开始以空前的速度增长,低脂饮食开始流行。
存在第三种饮食失调,暴饮暴食失调,其中周期性的食物刺激不能通过限制或清除行为来补偿。 虽然许多肥胖的人正常饮食,但是暴饮暴食的人每天要消耗多达几万卡路里的热量,一整袋糖果或5-6份快餐的晚餐量。
再有,这种疾病已经虽然已经有几个世纪了,但似乎只是最近才升级了。暴食者约占寻求肥胖治疗的人的1/3。
随着肥胖患病率,遗传易感性的增长以及工业化食品消费的增加,人们不禁会怀疑饮食失调是否又是西方文明中的另一种疾病,最重要的原因是以不良的饮食习惯为依据。厌食症的大部分自然进程可以通过对身体形象的无序思考以及饥饿过程本身来解释。
随着时间的推移,饮食失调发病率依然在不断上升。一项大型审查研究发现,在2000-2006年间,有3.5% 的人患有饮食失调症,而在2013-2018 年间,有近8% 的人患有饮食失调症。
现在,加工,含糖和富含谷物的饮食会导致炎症,瘦素和胰岛素抵抗,肥胖,思维紊乱等,节食或催吐、催泻等行为可能是在标准饮食上保持“瘦”的唯一方法。这些方法代价很大,并且主要由年轻女性承担。
对饮食失调的关键维持过程的理解有助于开发有效的心理治疗方法。最重要的例子是增强的认知行为疗法(CBT-E):旨在针对上述主要维持过程而不是进食障碍诊断(即神经性厌食症,神经性贪食症,其他进食障碍)设计的一种灵活而个性化的心理治疗方法。
CBT-E的功效已在多项临床研究中进行了评估,目前被认为是饮食失调的成人和青少年最有效的治疗方法之一。
病情轻微者可在门诊部接受个人认知心理治疗、行为治疗和家庭治疗而改善其饮食及生活习惯,以帮助患者回复可接受的体重。
其实,对大部分患者来说,和她们讨论烦恼非常重要,例如:学业压力、校园霸凌现象、过分自觉、家庭问题、青春期恋爱问题等等,以更正不正确的观念和行为。
只有当这些基本的治疗步骤无效,或患者体重剧降至威胁生命时,才需入院接受治疗。住院治疗的方法和非住院治疗差不多,都是用饮食控制和心理治疗,所不同的是在一个更有规律的环境下进行。其中大多数可以得到令人鼓舞的康复效果。
治疗饮食失调有时候涉及团队合作,其中包括初级保健医生,心理健康医生和营养师等。
一个人需要的具体疗法将取决于疾病的类型和严重性。
心理治疗
心理疗法,也称为“谈话疗法”,可以帮助进食障碍的人学会用健康的思想或习惯代替有害的思想或习惯。
营养咨询
医学专家可以帮助您制定健康的饮食计划,以满足您的个人需求。
药物治疗
有时,药物可以帮助控制焦虑,敦促或不健康的想法。抗抑郁药和抗焦虑药可给予患有饮食失调症的人。
住院治疗
由于饮食失调而导致严重健康问题的人们可能需要住院治疗。此外,一些诊所还提供密集的住院治疗方案。
替代和补充疗法
某些替代药物可以帮助进食障碍的人放松身心并减轻压力。瑜伽,按摩,冥想和针灸是常见的疗法。
调节肠道菌群
肠道菌群和饮食互相调节互相反馈,饮食塑造影响肠道菌群构成和发育,肠道菌群参与食物消化,调节免疫炎症,影响神经和情绪进而影响进食
预防饮食失调
没有预防饮食失调的最优方法,但是根据研究,一个人可以通过以下方法降低其患病风险:了解体征,症状和风险;避免节食和不健康的减肥行为;避免负面的自我交谈并学会欣赏身体,行为出现问题及时寻求帮助。
如果是家人或亲近的人患上饮食失调,该如何帮助他们?
首先要做好心理准备,帮助患有饮食失调症的人做出治疗的决定可能是一个漫长的过程。你要做的可能是:
询问患者的想法和感受,帮助他们承认自己有问题(他们可能不相信自己有病)。
鼓励患者接受心理帮助和体检,帮助他们排解疾病带来的心理压力。
帮助他们确立未来的目标,这些目标会让他们觉得治疗是必要的、是非常重要的。
主要参考文献
Mason, T. B., & Lewis, R. J. (2015). Assessing the Roles of Impulsivity, Food-Related Cognitions, BMI, and Demographics in the Dual Pathway Model of Binge Eating Among Men and Women. Eating Behaviors 18: 151–55.
Miranda, J., Woo, S., Lagomasino, I., Hepner, K. A., Wiseman, S., & Munoz, R. (2006). Group Cognitive Behavioral Therapy for Depression: Thoughts and Your Mood. Cognitive Behavioral Depression Clinic, Division of Psychosocial Medicine San Francisco General Hospital, University of California, San Francisco.
Olsen, E. M., Koch, S. V., Skovgaard, A. M., & Strandberg‐Larsen, K. (2021). Self‐reported symptoms of binge‐eating disorder among adolescents in a community‐based Danish cohort—A study of prevalence, correlates, and impact. International Journal of Eating Disorders 54: 492– 505.
Schaeffer, J. (2016). Binge Eating Disorder Statistics: Know the Facts
Vocks, S., Tuschen-Caffier, B., Pietrowsky, R., Rustenbach, S. J., Kersting, A., & Herpertz, S. (2010). Meta-Analysis of the Effectiveness of Psychological and Pharmacological Treatments for Binge Eating Disorder. International Journal of Eating Disorders 43: 205–217.
Dalle Grave, R., & Calugi, S. (2020). Cognitive behavior therapy for adolescents with eating disorders. New York: Guilford Press.
Fairburn, C. G. (2008). Cognitive behavior therapy and eating disorders. New York: Guilford Press.
Fairburn, C. G. (2013). Overcoming binge eating, Second Edition. New York: Guilford Press.
National Guideline Alliance. (2017). Eating disorders: Recognition and treatment. London: National Institute for Health and Care Excellence (UK); 2017 May. (NICE Guideline, No. 69.) London.
1)Wildes, J., & Marcus, M. (2015). Application of the Research Domain Criteria (RDoC) framework to eating disorders: Emerging concepts and research. Current Psychiatry Reports, 17.
Wildes, J., & Marcus, M. (2013). Incorporating dimensions into the classificati
What Is Anorexia Nervosa? Symptoms, Causes, Diagnosis, Treatment, and Prevention By Julie MarksMedically Reviewed by Allison Young, MD Last Updated: March 18, 2021
What Is Bulimia? Symptoms, Causes, Diagnosis, Treatment, and Prevention. By Julie Marks Medically Reviewed by Allison Young, MD Last Updated: October 13, 2020
What Are Eating Disorders? Symptoms, Causes, Diagnosis, Treatment, and Prevention.By Nuna Alberts, LCSW Medically Reviewed by Allison Young, MD Last Updated: April 20, 2021
谷禾健康
宝宝如果出现以下症状,家长要注意了,有可能是发育迟缓!
发育迟缓并不仅仅指身高体重不达标,还包括许多方面,比如说,智力发育迟缓,语言障碍,运动发育迟缓,心理发育迟缓等。
儿童发育迟缓会带来许多不良后果,然而很容易在早期被忽视。说话比同龄孩子明显晚几个月,一直不怎么会走路的情况出现,一部分家长还认为,等孩子长大慢慢就好了,这有可能会错过孩子的最佳干预期而遗憾终生。
《中国0-6岁儿童营养发展报告》指出:儿童早期特别是从胎儿期到出生后2岁(生命早期1000天),是决定其一生营养与健康状况最关键时期。
因此在发育迟缓的信号出现时,最好能抓住这段时间及时进行合理干预。
那么问题来了,如何进行干预?
不会走路就强加训练?
不会说话就多沟通练习?
……
很多类似的干预手段花费很多时间精力,可能会有一些效果,但也可能效果并不理想。
我们之前有讲到过发育迟缓的原因有很多,可能是神经内分泌和激素因素、儿童早期腹泻和其他感染频繁、环境肠道功能障碍、环境毒素和遗传因素等。
可以发现这些原因更多的是生理性病因,比如说肠道感染,而在这种情况下,干预如果只是从行为上施加外力进行纠正,可想而知,收效甚微。
临床上,很多寻求治疗的发育迟缓患儿同时伴有类似腹泻,便秘等肠道问题,这其中有着许多关联。
多项研究表明,一个不成熟的肠道菌群可能导致生长迟缓。尤其是,肠杆菌科的异常高患病率持续超过6个月的似乎与生长迟缓有关。肠杆菌科以外的细菌,如链球菌,也可能直接造成有害影响。
也就是说,发育迟缓和肠道菌群的变化有关联。
通过肠道菌群健康检测,可以去寻找可能与发育迟缓相关的因素,从而从根本上去解决问题。
来看两个关于利用谷禾肠道菌群健康检测进行发育迟缓干预的案例。
年龄:9月龄 性别:女
临床主诉
2020年10月起,间断睡眠不安,入睡后上半夜哭闹;
2021年3月初,下半夜也偶尔哭闹。白天睡眠质量一般,有时容易醒,抱睡。
2020年11月底添加辅食,大便两天一次,一个月后,因辅食渐变粘稠,大便3~4天一次(临床判断为便秘),现在,4天一次,有过2次5天一次,辅助开塞露。
Gesell评估表明存在应物能、言语能存在明显落后。
*格塞尔婴幼儿发展量表(Gesell Developmental Schedules)由美国耶鲁大学的A.格塞尔及其同事制定的婴幼儿发展测量工具,是心理学界、医学界、教育界公认的经典量表。主要诊断4个方面的能力:动作能、应物能、言语能、应人能。
临床上考虑到可能肠道菌群存在问题,进行肠道菌群检测,结果如下:
患儿肠道菌群存在明显失衡,以革兰氏阳性细菌比例过高、潜在致病性高为主要特征。
进一步分析发现,该患儿存在大肠埃希氏菌感染、酵母菌感染、宋内氏志贺菌超标及产气荚膜芽孢杆菌为主的菌群感染问题。
关于真菌感染可以详见这篇文章:最新研究速递 | 肠道真菌与健康和疾病有关
大肠埃希氏菌(Escherichia coli)
大肠杆菌是短杆菌,两端呈钝圆形,属革兰氏阴性菌。
大肠杆菌的生化代谢非常活跃。大肠杆菌可以发酵葡萄糖产酸、产气,个别菌株不产气,大肠杆菌还能发酵多种碳水化合物,也可以利用多种有机酸盐。
大肠杆菌具有三种硝酸盐还原酶和三种一氧化氮还原酶。因此,大肠杆菌菌株能够将不可发酵的营养物/硝酸盐转化为可发酵的硝酸盐。
更多关于大肠埃希氏菌的介绍详见:细菌大盘点 | 大肠埃希氏菌、血链球菌、李斯特菌
宋内氏志贺菌(Shigella sonnei)
宋内氏志贺菌是兼性厌氧革兰氏阴性细菌,是一种乳糖发酵细菌,可引起痢疾。
可以逃避人类免疫系统中的TLR-5(toll样受体).
相关疾病症状:痢疾,包括直肠出血,腹泻,发烧等。
除了引起志贺氏菌病外,它还可以引起菌血症,尿路感染,外阴阴道炎,直肠脱垂,反应性关节炎和其他各种并发症。
Shigella sonnei 毒力决定因子
产气荚膜梭状芽胞杆菌(Clostridium perfringens)
革兰氏阳性细菌,是嗜温菌,最适生长温度为37℃,产生内生孢子的非运动性菌。通过无氧呼吸产生能量,使用硝酸盐作为其电子受体。是人类正常肠道菌群中的一种,条件致病菌,导致许多胃肠道疾病,严重程度从轻微的肠毒血症到致命的气性坏疽。
还具有进行糖酵解和糖原代谢所需的所有酶,利用各种糖酵解酶将糖化合物分解为更简单的形式。
相关疾病症状:
食源性疾病(食物中毒)的最常见原因之一。
大多数感染了产气荚膜梭菌的人在食用受污染的食物后6至24小时内会出现腹泻和胃痉挛。这种疾病通常突然发作,持续不到24小时。
这种感染通常不会引起发烧或呕吐。
再来看谷禾检测报告中关于疾病风险评估这块:
疾病风险分析也提示存在神经行为发育异常、炎症性肠病风险;
同时存在B1、B12为主的B族维生素缺乏问题;膳食纤维、锌、其他多维生素缺乏等问题。
读完以上肠道菌群检测报告内容之后,医生给出临床治疗方案。
临床治疗
抗肠道感染治疗;
抗真菌感染治疗(备选方案);
补充维生素B治疗;
益生菌补充;
治疗初步完成后:
临 床 反 馈
Gesell评估该患儿神经系统发育进步明显;
对人反应好,现有较好追视;
社交行为明显增多且改善;
大运动改善;
共患睡眠问题、便秘问题明显解决。
目前还在治疗期,等待复查中。
年 龄: 1岁6月龄 性 别: 男
临床主诉
临床诊断体格发育迟缓:LAZ= -2.87;
HAZ= -1.93;WAZ= -0.91;
骨密度对年龄Z分数= -0.47;
Gesell评估精神发育正常;
共患病:便秘腹泻交替;
存在严重食物不耐受情况。
* HAZ(LAZ)——身高 / 年龄 Z评分
WAZ——体重 / 年龄 Z评分
发育迟缓的儿童LAZ值从出生到18至24个月之间通常会下降到最低点。
临床上考虑到可能肠道菌群存在问题,进行肠道菌群检测,结果如下:
患儿肠道菌群存在明显失衡,以多样性极低为主要特征。
变形菌门扩张。
泛菌属病理性滋生。
泛菌属 pantoea
泛菌属 pantoea 是肠杆菌科中一种黄色杆状革兰氏阴性菌。从多种环境中分离出来,与植物、昆虫、人类和动物有关。泛菌通常被认为是一种植物致病菌,但最近的证据表明,泛菌经常从医院环境中分离出来,目前关于泛菌在人类疾病中的作用存在相当大的争议。
Alyssa M. Wet al,EMS Microbiology Reviews,2015
有研究认为,通过污染医疗器械和肠外(静脉)营养、吸入有机粉尘、接触有机物质的伤口或自然围产期,将细菌引入患者体内。泛菌被认为与一些疾病包括脓毒性关节炎、骨髓炎、菌血症和败血症,以及腹膜炎等有关。
然而,一些研究认为,这些和许多其他被标记为Pantoea菌株的临床分离株实际上被错误识别了,一项研究表明,临床和动物分离的Pantoea菌(最常见的是P. agglomerans)实际上属于其他Pantoea种,甚至其他属,如肠杆菌。
存在炎症性肠病为主的疾病风险,以及严重的肠道营养不良问题。
营养指标的评估是基于菌群构成特征和菌群代谢以及大队列人群膳食营养调查来评估的,严重的菌群失调构成异常会影响营养指标预测模型,比如大量氨基酸都评估缺乏的情况,这种情况建议优先调整好菌群再检测。
临床治疗
抗菌重建肠道菌群;
氨基酸奶粉;
益生菌补充;
特殊食疗(参考了2019年Jeffrey I Gordon课题组针对SAM问题的菌群靶向饮食,具体操作中选择了孩子不过敏但是营养价值较高的合适食物)
治疗初步完成后,复查结果如下:
患儿菌群构成、感染状态、营养状态均得到明显改善。
临 床 反 馈
临床诊断体格发育迟缓:
LAZ=-0.81;HAZ= -0.22;WAZ= 0.14;
骨密度对年龄Z分数= 0.07;
体格发育改善明显;
Gesell评估精神发育正常;
共患病:抗生素治疗后再未见腹泻,但偶见便秘。大便由绿转黄色条状,气味可。
仍然存在食物不耐受情况。
随着肠道健康产业的不断发展,市面上的益生菌种类越来越多,然而我们依然可以看到,很多人只是盲目补充,并不知道什么才是适合自己的益生菌,也不知道是否应该补充。简单粗暴的方式带来更多的是不确定性。
有大量文献研究数据支撑,我们将肠道菌群健康检测与临床案例相结合,将肠道菌群健康检测应用于发育迟缓儿童的干预,在上述案例中显现其应用价值。
在上述案例中我们可以看到,基于肠道菌群健康检测,其干预手段并不仅仅是益生菌的补充,也包括其他多种方式的配合,如维生素的补充,食疗等,因此肠道菌群健康检测并不局限于某种菌是否超标。通过多维数据模型分析,可以为临床干预带来更多角度的思考。
当然,在现有的基础上,也需要更大样本量和更多的临床积累。未来我们会加大投入力度,充分发挥其应用价值,同时也会为大家带来更多的案例参考。
温馨提醒
如果发现有发育迟缓的征兆,请及时就医并进行干预,等超过3岁之后,效果就可能不太理想哦~
最后,愿所有宝宝都能健康成长。
相关阅读:
谷禾健康
微生物群失调与人体中的多种疾病有关。在个体中,每个微生物栖息地都表现出不同的微生物种群模式。迄今为止,关于微生物组相关疾病的研究集中在器官特异性微生物组上。然而,器官间微生物网络正在成为生理功能和病理过程中的重要调节剂。
口-肠
口腔和肠道是两个最大的微生物栖息地,在微生物组相关疾病中起主要作用。即使口腔和肠道是通过胃肠道相连的连续区域,由于口腔-肠屏障的原因,口腔和肠道的微生物群分布很好的分离。
然而,在口腔-肠道屏障功能障碍的情况下,口腔微生物群可以转移到肠粘膜。相反,肠道至口腔的微生物传播也以人际和社区传播发生。
最近,有报道说口腔和肠道微生物组相互依赖地调节生理功能和病理过程。口腔到肠道和肠道到口腔的微生物传播可以塑造和/或重塑两个生境中的微生物生态系统,最终调节疾病的发病机理。
在这里,我们将讨论总结口腔-肠道微生物组轴在胃肠道疾病和癌症中的作用, 更好地了解肠道-肠道微生物组轴在发病机理中的作用将有利于精确的诊断/预后和有效的治疗。
人体消化系统由胃肠道和包括肝和胰腺在内的辅助消化器官组成。 胃肠道的粘膜排列整齐,从口腔开始,直到肠道(更准确地说是肛门)结束。 因此,口腔和肠道是通过胃肠道连接的解剖学连续区域。
此外,由于唾液和消化后的食物都通过胃肠道,因此这两个位置也是化学相连的。
通常,由于中空的运河结构,胃肠道被认为在人体外部。 口腔是消化道的通道,直接暴露于外部环境,例如微生物,营养物和其他外源性物质。 在这方面,口腔和肠道都为不同的微生物繁衍提供了适当的环境。
HMP(第一阶段人类微生物组计划)揭示了人体中一半以上的细菌位于胃肠道(29%)和口腔(26%)中。 除了这些丰富的生物外,口腔和肠道微生物群也高度多样化,并同时显示出与每个生境区分开的独特特征。
根据人类口腔微生物组数据库(HOMD),口腔中大约有700种微生物。口腔中的共生菌包括厚壁菌门、变形杆菌门、拟杆菌门、放线杆菌门、梭杆菌门、奈瑟菌门和TM7。口腔有几种不同的微生物环境,包括:颊粘膜、龈下菌斑、龈上菌斑、角化牙龈、硬腭、唾液、扁桃体、舌头和喉咙。口腔和腭粘膜的多样性低于其他口腔栖息地。
无论小生境的位置如何,健康受试者的所有口腔部位在属水平上的菌如下:
双歧杆菌 Gemella链球菌 Streptococcus
韦荣氏菌 Veillonella嗜血杆菌 Haemophilus
奈瑟菌 Neisseria卟啉单胞菌 Porphyromonas
放线菌 Actinomyces梭菌 Fusobacterium
普雷沃氏菌 Prevotella
除了这些常见的细菌进化枝外,每个小生境还具有分化良好的细菌组成。
根据微生物群落结构,口腔生态位可分为三组:
第一组:颊粘膜、角化牙龈和硬腭
第二组:唾液、舌头、扁桃体和喉咙
第三组:龈下和龈上菌斑
生态位对口腔微生物组的隔离可能归因于多种因素,例如pH,盐度,氧化还原电位,氧气和营养。 此外,牙齿卫生是影响口腔微生物组的另一个重要因素,因为口腔是直接向外界开放的。
肠道是人体内最大、最具特征的微生物生态系统,在50多个不同的门中有大约500到1000个物种。
由五个主要的拟杆菌门、厚壁菌门、放线菌门、变形菌门和疣状菌门组成,但以两个拟杆菌和厚壁菌门为主,占90%以上。
在属的水平上,拟杆菌是最丰富的。已知人类肠道微生物群在生命早期就已建立,然后可以随着年龄和环境(如饮食和营养)而改变,类似于人类口腔微生物群。因此,口腔和肠道微生物组直接反映了宿主的健康状况。
尽管肠道与口腔相连,但肠道微生物群的组成可与口腔微生物群的组成区分开来。在门的水平上,口腔主要由厚壁菌门控制,而粪便微生物群主要富含拟杆菌。这种分离可归因于胃中的胃酸和十二指肠中的胆汁酸。
据报道,长期使用质子泵抑制剂(PPI)会增加肠道感染的风险。值得注意的是,PPIs降低胃酸可以减少肠道微生物生态系统的多样性,改变肠道微生物组的组成。
此外,胆汁酸可引起肠细菌膜和/或DNA完整性的破坏,在口腔和肠道之间起有效的抗菌屏障作用。 因此,胃酸度和胆汁酸池负责肠道和口腔微生物组的独特模式。
人类肠道微生物组的概况可以根据健康状况,环境因素,遗传学甚至生活方式而改变。
宏基因组学分析表明,人类肠道菌群调节代谢途径,例如碳代谢和氨基酸合成。微生物显示出保守的分子基序,称为微生物相关的分子模式和病原体相关的分子模式(PAMP),宿主可通过模式识别受体(PRRs)识别这些基序,如toll样受体。
这种微生物与宿主的相互作用可以刺激人体的免疫系统和炎症反应。 这意味着肠道菌群可以调节人体的主要生物学功能,新陈代谢和免疫力,因此肠道菌群失调与多种人类疾病有关,从传染病到阿尔茨海默氏病。然而,要证明肠道微生物群是人类健康状况的原因还是后果是一个挑战。
另外,无菌(GF)动物为肠道微生物组的生理功能提供了深刻的线索。与无特定病原体(SPF)的小鼠相比,GF小鼠的肠重量减少,绒毛更短,小肠的总表面积减少,表明胃肠道发育存在缺陷。
与此相一致,GF小鼠显示出代谢异常,例如胆固醇代谢改变和肠道内短链脂肪酸的减少,短链脂肪酸是重要的能量来源之一。
因此,与SPF小鼠相比,GF小鼠显示出较低的体内脂肪含量和对高脂饮食诱导的体重增加的抵抗力。 但是,通过应用SPF小鼠的盲肠含量,通过GF小鼠的常规化可以恢复体内脂肪含量。
在免疫方面,GF小鼠在Peyer斑块和肠系膜淋巴结发育方面存在缺陷,CD4,CD8和Foxp3 T细胞数量减少,B细胞分泌的免疫球蛋白A产生减少。
通过与SPF小鼠共栖或口服SPF小鼠粪便中的成分,可以通过微生物群重建来恢复这些疾病。 两者合计,很明显,肠道菌群在维持生理稳态方面起着至关重要的作用,主要是代谢和免疫。
尽管口腔是人体第二大的微生物栖息地,但是累积的知识不足以完全了解口腔微生物组对人类健康的影响。 毫无疑问,口腔微生物组与牙齿健康直接相关。
口腔疾病中有许多已被确认的关键病原体,如龋齿的变形链球菌(Streptococcus mutans )和牙周炎的牙龈卟啉单胞菌(Porphyromonas gingivalis)。此外,与健康受试者相比,口腔鳞状细胞癌患者的口腔微生物组发生了改变。根据口腔微生物群分析,口腔鳞状细胞癌(OSCC)患者中的梭杆菌属(Fusobacterium)水平较高。
口腔微生物组会影响全身健康状况,而不仅限于牙齿健康(下图)。
Park Se-Young, et al., Cancers (Basel),2021
流行病学和实验证据支持口腔菌群失调与全身性疾病密切相关,包括阿尔茨海默氏病,糖尿病和心血管疾病。 与此相符,阿尔茨海默氏病的口腔微生物群特征发生了显着变化,例如莫拉氏菌属(Moraxella),纤毛菌属(Leptotrichia)和鳞球菌属(Sphaerochaeta)的患病率。口腔不良反应的改变与阿尔茨海默氏病的进展有关。
I型糖尿病患者的放线菌门和厚壁菌门的丰度更高。此外,据报道,在有症状的动脉粥样硬化患者的口腔微生态环境中,厌氧菌属的富集已被报道。
在牙周炎(一种口腔失调疾病)的情况下,其标志性病原体牙龈卟啉单胞菌(P. gingivalis)感染可引起局部以及全身慢性炎症。
此外,口腔异位症可以诱导PAMP信号的产生,例如脂多糖(LPS),导致系统性刺激先天免疫应答和炎症转录因子,包括核因子κB。 这些全身性炎症和免疫反应被认为是主要机制之一,强调口腔微生物组调节远端器官的发病机理。
值得注意的是,口腔微生物群可以转移到其他器官,这被认为是口腔生物失调引起的全身性疾病的另一种机制。
在短期死后阿尔茨海默氏病患者的脑组织中已检测到口腔致病菌牙龈卟啉单胞菌(P. gingivalis)。 口腔病原体直接转移到大脑可以通过诱导神经炎症和神经变性而加剧阿尔茨海默氏病。
此外,在冠心病患者的动脉粥样硬化斑块中检测到许多口腔共生细菌,这进一步表明口腔细菌可能转移到远端器官。 由于物理和化学联系,口腔微生物向胃肠道系统的迁移可能更频繁。
在某些致病条件下,一些口腔细菌类群定居并富含胰腺和肠道,表明口腔和肠道菌群之间存在直接的串扰。
由于存在肠-肠屏障,物理距离以及化学障碍(例如胃酸和胆汁),因此口腔和肠道微生物组被很好地隔离了。 然而,口腔-肠道屏障的损伤会导致器官间的易位和交流。
一般来说,新生儿和老年人体内存在不成熟或功能性障碍较少。双歧杆菌是新生儿肠道中最丰富的细菌属。有趣的是,在新生儿的口液中发现了肠道内的双歧杆菌。
同样,与健康成年人相比,老年人肠道内口腔细菌的检出率也较高,如:
卟啉单胞菌(Porphyromonas)、梭杆菌(Fusobacterium) 和假分枝杆菌 (Pseudoramibacter)。
此外,低胃酸使肠道微生物群的组成向口腔微生物群转移。已在体外证明,通过分别引入人类粪便和唾液微生物群的GF小鼠组,口腔微生物群可以侵入肠道并重塑肠道微生物群。
综上所述,这些数据表明口腔微生物可以在某些情况下克服口腔与肠道之间的物理和/或化学障碍,并有可能转移到肠道中。
值得注意的是,在胃肠道的病理条件下已检测到典型的口腔驻留物种。 例如,炎症性肠病(IBD)患者的肠道粘膜中有大量嗜血杆菌和Veillonella富集,已知它们是口腔共生微生物。
在结肠癌患者中,他们的肠道微生物群包含几种口腔类群,包括梭菌。这意味着正常的人口腔微生物群可以在肠粘膜稳态中破坏并在肠道粘膜中定植,并成为条件致病菌。
而且,这种经口-粪便传播也可以在生理条件下发生,而不仅仅是在病理或屏障破坏的情况下。HMP联盟的数据被划分为每个身体部位的群落类型时,口腔和肠道微生物群类型显示出强烈的关联,尽管它们在分类上不同。
在唾液细菌中,普雷沃氏菌(Prevotella)大量存在于粪便样本中。与此相一致,从同一健康受试者的口腔和粪便样本中同时检测到几个属。通过分析470名个体口腔和粪便微生物群中的310种,唾液和粪便样本中普遍存在125种,包括链球菌(Streptococcus)、韦荣氏球菌属(Veillonella)、放线菌(Actinomyces)和嗜血杆菌(Haemophilus)菌株。
综上所述,很明显口腔微生物群可以比预期更广泛地进入肠道,即使在健康状态下,而不仅仅是在病理情况下。
肠道微生物可通过粪-口途径通过直接接触或通过受污染的液体和食物间接接触传播。人的手部微生物群与口腔和肠道微生物群模式高度重叠,表明人的手是粪便到口腔微生物传播的载体。因此,在发展中国家,由于卫生状况不佳,如缺乏清洁供水和公共卫生系统,微生物的粪-口途径经常被报道。
此外,免疫功能低下的个体也容易通过粪-口传播。在头颈部癌症患者中,放射治疗与革兰氏阴性杆菌的口腔定植高度相关,不良的口腔卫生状况会进一步加剧这种情况。因此,不良的卫生和/或免疫损害条件可能会促进同一个体的粪-口途径。
除了体内传播外,粪-口途径也被认为是病原体在人与人之间传播的重要机制。众所周知,甲型肝炎病毒(HAV)和戊型肝炎病毒(HEV)等肠道病毒通过粪-口途径传播,因此很容易通过人与人之间的接触传播,特别是在不卫生的条件下。
肠道病毒可以直接和间接地与肠道微生物群相互作用,对肠道微生物生态系统造成破坏性影响。据报道,戊型肝炎病毒感染会增加急性肝衰竭患者粪便样本中乳酸杆菌科(Lactobacillaceae)和伽马蛋白杆菌( Gammaproteobacteria)的丰度。
添加益生菌粪肠球菌NCIMB 10415(Enterococcus faecium NCIMB 10415) 可有效促进感染猪的HEV清除。
除了肠道病毒外,幽门螺杆菌(Helicobacter pylori)是严重胃十二指肠疾病的主要致病菌,也可以通过粪-口途径传播,显示出与甲型肝炎感染的相关性。
虽然需要进一步的研究来了解粪-口传播在口腔和肠道微生物群中的作用,但令人信服的是,口腔和肠道微生物群通过口-肠和粪-口途径紧密相连(下图)。
Park Se-Young, et al., Cancers (Basel),2021
这种双向相互作用可以相互塑造和/或重塑两个栖息地的微生物生态系统,最终调节胃肠系统的生理和病理过程。因此,口腔-肠道和粪便-口腔方向在以下中统称为“口腔-肠道微生物群轴”。
IBD代表结肠和小肠的慢性炎症性疾病,包括克罗恩病(CD)和溃疡性结肠炎(UC)。因此,IBD与肠道微生物群失调密切相关。IBD患者的肠道微生物组显示出细菌组成的多样性降低和变化,包括厚壁菌门的丧失和变形菌门和拟杆菌门的丰度增加。在肠道粘膜组织活检中而不是在粪便中更深刻地观察到了这些不良生物事件。与健康受试者相比,在肠黏膜表面,IBD患者经常检测到细菌入侵和生物膜形成,表明肠屏障功能障碍与IBD发病有关。
在健康状态下,由于完整的粘膜屏障,肠道微生物群很少受到来自其他栖息地的微生物的入侵和定植。然而,IBD患者由于粘膜屏障受损而表现出肠上皮通透性增加。
值得注意的是,口腔内细菌菌株是从IBD患者的肠道微生物组中分离出来的,这可能是由于肠道渗漏造成的。具核梭杆菌( Fusobacterium nucleatum )通常存在于口腔中,但很少存在于健康人的肠道中。
有趣的是,IBD患者在肠道中出现了F. nucleatum,比其他F. nucleatum菌株更具侵袭性,表明IBD患者存在肠道-肠道微生物组轴。这一点已在体外通过将口腔微生物群移植到动物模型中得到证实。
在大鼠中,F.nucleatum的侵袭导致肠道微生物组发生转移并加重内脏超敏性。 此外,CD患者的唾液微生物群成功地定居在GF小鼠的肠道中。
克雷伯菌(Klebsiell)是最流行的定植菌,可促进肠道Th1细胞的诱导和炎症,这是IBD发病机理中的关键事件。 这些结果进一步支持了口腔微生物群,无论是共生的还是病原菌,都可以传播到肠道,通过肠道失调促进IBD的发病。
因此,口腔失调可以通过募集口腔-肠轴来直接调节IBD的发病机制。牙周炎是一种慢性炎性口腔疾病,与口腔微生物群的改变密切相关,特别是与其关键性病原体牙龈卟啉单胞菌的过度生长有关。
在C56BL/6小鼠中,口服牙龈卟啉单胞菌通过下调紧密连接蛋白来减弱肠道屏障功能,从而导致肠道微生物组发生重大变化,包括梭菌科的丰富。
此外,接种牙龈卟啉单胞菌的小鼠表现出肠道以及全身性炎症,这可以由牙龈卟啉单胞菌衍生的内毒素例如LPS介导。 与动物实验一致,荟萃分析表明牙周炎分别与IBD,CD和UC的两种主要形式密切相关。
两者合计,口腔病原体可以干扰肠屏障功能并侵入肠粘膜,从而引起肠道失调和慢性炎症,从而导致IBD发病。 值得注意的是,IBD患者以及结肠炎引起的小鼠唾液微生物群组成发生变化,这与炎症反应有关,表明口腔-肠道微生物相互作用可能是双向的。
大肠癌(CRC)是世界上最常见的癌症类型之一,也是导致癌症死亡的第二大原因。IBD是CRC发生和发展的最公认的危险因素。因此,IBD和CRC在发病机理中共享病因,包括肠道微生物组的明显变化。 与IBD相似,CRC与肠道失调密切相关。与健康个体相比,CRC患者在粪便和肠粘膜样品中均显示出不同的微生物组成模式。
一直以来,在结肠炎相关和化学诱导的大肠癌小鼠模型中都发现了肠道微生物群的深刻变化,支持肠道失调和大肠癌之间的关系。使用GF小鼠的研究进一步证明,肠道微生物群的改变可以直接促进炎症相关的结直肠癌的发展。
有趣的是,在大肠癌患者的肠道中发现了几种口腔分类群,包括细小单胞菌(Parvimonas)、消化链球菌(Peptostreptococcus)和梭形杆菌(Fusobacterium),表明大肠癌中存在口腔-肠道微生物群轴。
在这些口腔常驻细菌中,具核梭杆菌 (F.nucleatum)与健康人相比,结直肠癌患者的肿瘤组织和粪便中普遍存在细胞核,这与IBD一致。
在小鼠结肠炎模型中,口服具核梭杆菌(F.nucleatum) 细胞核引起的炎症以及小肠和大肠的肿瘤发生。具核梭杆菌 (F.nucleatum)细胞核似乎很容易附着在表达内皮钙粘蛋白的宿主CRC细胞上,然后刺激促炎症反应和细胞增殖。与IBD相似,结直肠肿瘤显示肠道屏障功能受损,这可能解释了口腔微生物群的肠道定植。
此外,据报道,具核梭杆菌 (F.nucleatum) 与口腔病原体牙龈卟啉单胞菌共聚并共感染。尽管体外方法存在局限性,但牙龈卟啉单胞菌仍侵袭CRC细胞并促进癌细胞增殖,这表明牙周病原体参与了结直肠肿瘤的发生。 与此相一致,牙龈卟啉单胞菌血清抗体水平与CRC患者的死亡率呈正相关。
此外,一项荟萃分析表明,牙周炎与CRC风险增加有关。 综上所述,这些研究可以证明口腔失调,口腔-肠道微生物组轴与CRC发病机理之间存在关联。
肝硬化是由慢性肝脏疾病引起的晚期肝病,例如非酒精性脂肪肝疾病(NAFLD)和非酒精性脂肪性肝炎(NASH)。 健康对照组相比,NAFLD、NASH或肝硬化患者粪便样本中的变形杆菌门显著增加,表明肠道微生物组与肝脏发病机制相关。在这方面,与SPF小鼠相比,GF小鼠免受高脂饮食诱导的脂质在肝脏中的蓄积。此外,定居于NAFLD易感肠道微生物的GF小鼠发生了严重的肝脂肪变性,进一步支持了肠道失调可能是慢性肝病的直接病因。
由于肠道和肝脏通过胆道和门静脉进行物理连接,如果粘膜屏障受损,肠道微生物可以转移到肝脏。胆汁酸具有抗菌活性,在肠道和肝脏之间循环循环,具有屏障和桥梁的双重功能。
慢性肝病通常与胆汁酸形成和/或分泌不良有关,会增加肠道通透性。 因此,胆道梗阻促进了细菌从肠道到肝脏的移位。 在胆结石患者中,与正常对照组(例如富集变形杆菌)相比,胆道和肠道中的微生物组成均发生了变化,这支持了慢性肝病中肠道-肝脏微生物组轴的存在。
通过与肠-肝微生物串扰的融合,口腔-肠道微生物组轴正在成为慢性肝病的重要调节剂。
值得注意的是,宏基因组学分析已证明肝硬化患者肠道内的口腔粘膜有侵袭和定植。另一项研究还显示,酒精依赖型肝硬化患者的肠道中口腔微生物的富集。 这些数据支持口腔微生物的肠道迁移与肝硬化有关。 但是,其潜在机制尚不清楚。如前所述,由于胃酸度低,PPI促进了从口腔到肠道的微生物转化。 同样,PPI治疗改变了肝硬化患者的肠道菌群组成,特别是肠道内口腔细菌的过度生长。 相同的研究小组已经证明了肝硬化患者唾液和粪便微生物组的伴随变化,进一步表明口腔-肠道微生物组轴调控肝脏的发病机制。
因此,口腔失调可能会通过改变肠道微生物组而加重慢性肝病。 确实,牙周炎与NASH,NAFLD和肝硬化显着相关。 在来自NAFLD和与病毒感染相关的肝硬化患者的口腔样本中已经检测到牙龈卟啉单胞菌,一种牙周基石病原体。
在高脂饮食喂养的小鼠中,牙龈卟啉单胞菌的牙源性感染通过脂质积累,纤维化和肝脏炎症促进了NAFLD和NASH的进展。 总体而言,口腔失调可能会通过调节肠道生态系统而加剧慢性肝病。 同时,口腔失调可能反映了由肝病驱动的肠道失调生态系统。
肝细胞癌(HCC)的发展经历了一个逐步的过程,从NAFLD/NASH到肝硬化,最后发展为HCC。在小鼠肝癌发生模型中,SPF小鼠比GF小鼠更易发生肝癌,类似于慢性肝病。
在生态型小鼠模型中,某些类型的肠道细菌,如大肠杆菌和粪链球菌,可显著增加肝肿瘤的发生,表明肠道微生物群直接参与了肝癌的发病机制。与这一观点一致,与健康对照组相比,HCC患者的丁酸产生菌属减少,如反刍球菌(Ruminococcus)、大肠杆菌(Oscillibacter)、粪杆菌(Faecalibacterium)、梭状芽孢杆菌IV(Clostridium IV)和粪球菌(Coprococcus),而LPS产生菌属增加,包括粪便样本中的克雷伯菌(Klebsiella)和嗜血杆菌(Haemophilus )。
此外,随着HCC的发展,肠道失调的水平趋于增加。 在患有肝硬化的HCC患者中,粪便微生物群的成分与没有HCC的肝硬化患者的粪便微生物群成分有所不同,例如大肠杆菌和Fusobacteriia的大量富集。 在化学诱导的HCC小鼠模型中,已在肿瘤内发现了一种肠道细菌肝幽门螺杆菌(Helicobacter hepaticus),它直接引起HCC的发展和进程,进一步支持肠道失调可以诱导HCC的发病机理。 然而,在人类HCC样品中未检测到肝炎性肝炎,而确诊存在其他幽门螺杆菌,例如幽门螺杆菌。因此,肝癌的发展与肠道失调密切相关。
有趣的是,据报道,与健康受试者相比,肝癌患者的口腔微生物群发生了变化。肝癌患者唾液微生物群中嗜血杆菌属、卟啉单胞菌属和Filifactor的丰度较高。在肝硬化的HCC患者中,根据舌苔的微生物组学特征,颤杆菌克属(Oribacterium)和梭形杆菌属(Fusobacterium)普遍存在。
此外,慢性牙周炎与晚期HCC相关,提示口腔失调与HCC相关。值得注意的是,肝硬化HCC患者的口腔和肠道微生物群中都富含梭杆菌,这表明口腔微生物可能通过口腔-肠道微生物群轴调节HCC发病机制,但需要进一步研究。
胰腺是消化系统的一部分,分泌分解脂类、蛋白质和碳水化合物的酶。主胰管与胆总管相结合,两者都与十二指肠相连。在正常健康条件下,胰腺被认为是一个无菌器官。
然而,胰腺导管腺癌(PDAC)患者的细菌数量增加,如肿瘤内的γ-变形菌纲(Gammaproteobacteria)和胰液和胰腺组织中的粪肠球菌(Enterococcus faecalis)。
此外,肿瘤内微生物组多样性与PDAC的预后相关。从更全面的角度来看,PDAC患者在胰腺组织、肿瘤以及粪便样本中表现出不同的微生物群模式,表明肠-胰腺微生物串扰参与了PDAC发病机制。特别是,PDAC患者的肠道和胰腺中同时富集了变形菌(Proteobacteria)。
在实验小鼠中,肠道通透性增加与肠道到胰腺的微生物易位有关,这可能加速PDAC的进展。在肠道菌群清除的小鼠中,用PDAC荷瘤小鼠的粪便菌群重新填充可显著促进胰腺肿瘤的发生,表明肠道菌群对PDAC进展的直接贡献。因此,肠道微生物组似乎与胰腺微生物生态系统密切相关,而胰腺生态系统在PDAC发病机理中起着至关重要的作用。
惊讶的是,口腔微生物组也与PDAC的发病机理有关。 根据元流行病学研究,牙周炎是一种主要的口腔菌群失调疾病,可以显着增加PDAC的风险和死亡率。
携带其关键病原体牙龈卟啉单胞菌与PDAC患者的较高风险和死亡率正相关。 在小鼠PDAC模型中,口服牙龈卟啉单胞菌可加速细胞增殖和上皮-间质转化,最终促进PDAC进程。
有趣的是,细胞内牙龈卟啉单胞菌直接促进人胰腺癌细胞系中肿瘤细胞的生长。 这些表明口腔菌群失调可能是直接的病因,也是诊断和预后PDAC发病机理的有用标志。
与健康受试者相比,PDAC患者的口腔微生物组有明显变化。 值得注意的是,尽管在人类PDAC组织中已发现了一种广为人知的口腔细菌群Fusobacterium,但其与PDAC预后的关系仍存在争议。
此外,PDAC患者的胰腺微生物组与肠道微生物组高度重叠。胰腺和肠道菌群均表现出口腔类群富集细菌和卟啉单胞菌的相对丰度。因此,某些类型的口腔微生物可能迁移到肠道,甚至进一步迁移到胰腺,这可能通过肠道和胰腺微生物群的协调调节促进PDAC的发病。
为了支持这一观点,在PDAC患者的口腔,肠道和胰腺微生物群之间发现了相关性,尤其是口腔起源的F. nucleatum subsp. vincentii亚种的丰度。
这些数据表明,口腔-肠道微生物组轴可以调节PDAC的发病机制,甚至进一步创造口腔-肠道-胰腺的微生物途径。
口腔和肠道是人体内最大的两个微生物栖息地。累积证据表明,口腔微生物群可以通过口腔细菌分泌体的直接易位和/或间接地改变整个肠道微生物生态系统。
肠道到口腔的微生物传播也可能发生,特别是在某些情况下,如卫生条件差和免疫功能低下。总之,口腔和肠道微生物群之间的双向串扰可以形成口腔-肠道微生物群轴,它在调节各种人类疾病的发病机制中起着关键作用,主要是在胃肠道系统(见下表)。
结肠疾病中的口腔-肠道微生物群轴
Park Se-Young, et al., Cancers (Basel),2021
肝脏疾病中的口腔-肠道微生物轴
Park Se-Young, et al., Cancers (Basel),2021
胰腺疾病的口腔-肠道微生物组轴
Park Se-Young, et al., Cancers (Basel),2021
值得注意的是,口腔-肠道微生物组轴改善了胃肠道系统的发病机理和预后的预测。荟萃分析表明,口腔微生物组的变化与胃肠道癌的风险有关,包括CRC,PDAC和HCC,这可能是早期发现的潜在指标。已经验证了PDAC特定的口腔微生物模式作为PDAC生物标志物。两种口腔细菌物种长奈瑟菌Neisseria elongata 和 轻型链球菌Streptococcus mitis
同时富集可以将PDAC患者与健康受试者区分开来。
口腔微生物分析的情况下,所述样品可从棉拭取,唾液和口腔冲洗获得。与肠道菌群的采样方法相比,无论健康状况如何,口腔菌群的收集实际上更为方便和可用,没有任何侵袭或卫生问题。因此,结合肠道微生物组,口腔微生物组还提供了作为诊断/预后工具以及治疗靶标的可行优点。
未来我们谷禾也将考虑口腔和肠道微生物组的相结合,结合口腔和肠道微生物组数据可以显着提高预测和检测息肉和/或肿瘤的敏感性。尽管揭示微生物组与疾病之间的因果关系具有挑战性。
参考文献:
Zhang, Z.; Yang, J.; Feng, Q.; Chen, B.; Li, M.; Liang, C.; Li, M.; Li, Z.; Xu, Q.; Zhang, L.; et al. Compositional and Functional Analysis of the Microbiome in Tissue and Saliva of Oral Squamous Cell Carcinoma. Front. Microbiol. 2019, 10, 1439
Wypych, T.P.; Wickramasinghe, L.C.; Marsland, B.J. The influence of the microbiome on respiratory health. Nat. Immunol. 2019, 20, 1279–1290
Park Se-Young,Hwang Byeong-Oh,Lim Mihwa et al. Oral-Gut Microbiome Axis in Gastrointestinal Disease and Cancer.[J] .Cancers (Basel), 2021, 13
Bathini, P.; Foucras, S.; Dupanloup, I.; Imeri, H.; Perna, A.; Berruex, J.L.; Doucey, M.A.; Annoni, J.M.; Auber Alberi, L. Classifying dementia progression using microbial profiling of saliva. Alzheimers Dement. 2020, 12, e12000.
Seedorf, H.; Griffin, N.W.; Ridaura, V.K.; Reyes, A.; Cheng, J.; Rey, F.E.; Smith, M.I.; Simon, G.M.; Scheffrahn, R.H.; Woebken, D.; et al. Bacteria from diverse habitats colonize and compete in the mouse gut. Cell 2014, 159, 253–266.
谷禾健康
心血管疾病(CVD)已成为主要的健康问题,是导致发病率和死亡率高的主要原因,2型糖尿病(T2DM)患者发生CVD和重大心血管不良事件(MACE:心衰梗死、中风、死亡)风险更高,且预后较差。传统的CVD风险指标以及T2DM的血糖控制都不能很好地预测T2DM患者发生CVD的风险。
肠道菌群最近被认为是一种新型的内分泌器官,它通过产生生物活性代谢产物,在调节宿主的心脏代谢和肾脏功能中发挥关键作用。
肠道并不是第一个被用来研究心血管疾病病理生理学的器官。它不仅是处理食物消化吸收的器官,而且是体内最大的具有免疫活性的器官。
最近的研究表明,肠道菌群会产生并释放许多代谢产物和毒素,其中一些代谢产物和毒素会吸收到宿主的体循环中,作为微生物影响宿主的媒介。
我们整理汇总了这篇综述调查来自数项临床和实验研究的证据,这些证据表明肠道微生物群来源的毒素与CVD之间存在关联,包括脂多糖LPS、氧化三甲胺TMAO和苯乙酰谷氨酰胺PAGln。目前已经正在进行一些临床研究,旨在探索降低这些毒素水平以抑制心血管事件的有效性。
了解这些菌群相关代谢物是如何产生并如何影响心血管疾病有助于我们了解可能的风险和找到更好的生活方式来预防CVD。
缩略词:
LPS的结构和特点
LPS,也称为内毒素,是革兰氏阴性细菌外膜的组成部分,主要存在于人体的肠道和口腔中。LPS的基本化学结构由亲水区和糖部分结合到疏水区组成,称为脂质A(下图A)。
LPS的亲水区域由内核和外部核以及O抗原(物种特异性重复寡糖亚基)组成,该区域对LPS的促炎活性影响最小(下图A)。
脂多糖(LPS)和脂质A的结构
Yamashita T,et al., Toxins,2021
疏水区脂质A在各种革兰氏阴性细菌中在结构上是保守的,由磷酸化的二葡萄糖胺主链组成,该主链具有4至7条相连的酰基链(上图B)。脂质A是Toll样受体4(TLR4)的配体和LPS的最关键“毒素”部分,它激活先天免疫系统,包括单核细胞和巨噬细胞,并引起宿主的炎症反应。
宿主血液中的 LPS 是从哪里来的?
——从肠道菌群中来
LPS是革兰氏阴性细菌外膜的主要成分,因此肠道微生物群可能是血液LPS的主要来源。人类胃肠道中存在数百万亿细菌,实际上,粪便LPS水平通常反映了肠道菌群衍生的LPS量,这个量因人的菌群构成和总量而异。
此外肠道通透性的提高会增强肠道菌群来源的LPS从肠道到血液的渗透。高脂饮食会增加肠道的通透性。
而Akkermansia菌可以加强肠道的紧密连接并防止代谢性内毒素血症,此外肠道菌群产生的短链脂肪酸可以保护肠屏障功能。
——从食物中来
除了肠道菌群以外,食物也是LPS的天然来源,因为食物和水总是含有少量LPS。饮食模式反映了血液中LPS的水平。
具体来说,选择健康的饮食食物(包括鱼,新鲜蔬菜和水果)可能会带来积极的健康结果,因为它们有助于减少内毒素血症。
CVD与几种传统的危险因素有关,例如高血压,血脂异常,糖尿病,吸烟和肥胖。
炎性过程已知在心血管病的发展中扮演至关重要的角色,而LPS是一种众所周知的炎症物质。LPS被认为是包括CVDs在内的炎性疾病的一种毒素,并参与CVDs发病和进展的病理生理过程。
由于LPS刺激TLR4诱导释放关键的促炎性细胞因子,而这些因子是激活有效免疫反应所必需的,大量的流行病学证据表明,内毒素血症的血液中LPS处于高水平,是动脉粥样硬化的重要危险因素,并且是LPS与动脉粥样硬化疾病之间联系的纽带。
不同的菌群,其LPS结构不同
虽然肠道菌群可以是粪便LPS的主要来源,但不同的菌群构成其LPS的炎症效应是不同的。LPS的脂质A部分的结构在不同菌群之间有所不同(上一小节图B)。这些结构差异可能是决定LPS活性的主要因素。
例如,已知拟杆菌属具有四酰基和五酰基酰化的脂质A部分,而大肠杆菌具有六酰化类脂A部分。通常,四和五酰化脂质A部分相比六酰化类脂A部分会减少TLR4反应。这表明如拟杆菌的LPS其诱导的促炎性细胞因子生成要远低于大肠杆菌的LPS。
因此肠道细菌组成和这些细菌所拥有的脂质A部分的类型可能是影响肠道微生物LPS与CVD之间关联的重要因素。
越来越多的证据表明,全身性内毒素血症和肠道菌群衍生LPS参与心血管病和许多其它流行疾病的发作和进展,如炎性肠疾病,肥胖和相关代谢性疾病,和非酒精性脂肪性肝炎。
2011年,Hazen博士和他的同事使用代谢组学方法在动脉粥样硬化研究中取得了显著发现,并揭示了肠道衍生的代谢产物TMAO是心血管疾病大型临床队列中心血管事件的独立预测因子。
TMAO是心血管疾病的危险因素
TMAO在伴有冠状动脉疾病、血栓形成、慢性肾病和心力衰竭的CVD患者中升高,并与不良心血管事件和全因死亡率相关。
据报道,TMAO水平升高与慢性肾病患者的肾功能程度和全身炎症增加密切相关,而TMAO可作为该组严重慢性肾病患者死亡率的独立预测因子。可以合理地得出结论,TMAO是肠道菌群来源的尿毒症或心血管毒素,可导致全身性炎症。
TMAO的产生
Brown J M, et al., Nature Reviews Microbiology, 2018
磷脂酰胆碱是一种在食品中发现的饮食成分,例如奶酪,蛋黄,肉和贝类,在肠道中被转化为胆碱,随后利用肠道微生物酶TMA裂解酶代谢为三甲胺(TMA)。TMA从肠道吸收进入门脉循环,然后通过肝脏中含黄素的单加氧酶(宿主酶)转化为TMAO 。
他们还证明,饮食中的左旋肉碱是红肉中的一种丰富营养物质,含有类似于胆碱的三甲胺结构,会促进血浆TMAO水平的升高并加速动脉粥样硬化。
肠道微生物衍生的TMAO代谢
Yamashita T,et al., Toxins,2021
与TMA产生有关的三个关键的微生物功能基因簇是胆碱TMA裂解酶(cutC)及其激活物(cutD)(cutC/D),一种糖基自由基酶和一种糖基自由基激活蛋白;肉碱加氧酶A/B(cntA/B),是一种由两部分组成的Riesketype加氧酶/还原酶复合物;甜菜碱还原酶途径(上图A)。
2020年Hazen团队通过代谢组学分析发现苯丙氨酸(Phe)与T2DM患者发生CVD风险升高有关,该物质被肠道微生物代谢生成苯乙酰谷氨酰胺(PAGln)。
对人群队列的代谢物检测发现,高PAGln水平与MACE高风险显著相关,较高的PAGln水平仍是MACE风险的独立预测因子。
肠道菌群影响PAGln水平
通过检测基线(Pre-Abx)、7天广谱复合抗生素处理(Abx)和3周清除期菌群重塑(Post-Abx)的血浆PAGln水平,发现PAGln水平受肠道微生物影响。
有研究表明,PAGln由苯乙酸(PAA)与谷氨酰胺(Gln)在肝酶的作用下形成,而PAA由苯丙氨酸(Phe)经菌群代谢产生。此外,PAA也可与甘氨酸(Gly)结合形成苯乙酰甘氨酸(PAGly)。
因此,在人类和小鼠体内,PAGln和PAGly都是通过肠道微生物群将饮食中的苯丙氨酸转化为PAA的元生物途径产生的,此时宿主与Gln(人类首选)或Gly(啮齿类动物首选)发生结合反应,分别产生PAGln和PAGly
Nemetet al. Cell , 2020
PAGln与血小板相互作用
根据人PAGln水平与血栓事件正相关性,提示PAGln可影响血小板功能和血管基质相互作用。研究结果显示,PAGln加速了胶原依赖性血小板粘附和扩散速度,并呈现剂量依赖性,表明PAGln可能与血小板直接相互作用,促进胞质内Ca2+浓度([Ca2+]i)呈现依赖性升高,并进行了相关验证。此外,在PAGly实验中也观察到类似结果。
因此,肠道菌群相关代谢产物PAGln和PAGly显著影响血小板功能,增强血小板与胶原基质的粘附,以及血小板刺激依赖性[Ca2+]i升高和对激动剂的聚集反应。
降低血栓形成
有研究报道Phe主要由生孢梭菌(Clostridium sporogenes)代谢为PAA(氧化途径)和苯丙酸(PPA)(还原途径),随后分别与Gln或Gly缩合形成PAGln或PAGly。其中参与反应的酶主要由porA或fldH基因编码。基因porA主要影响PAA产生,而fldH主要调节PPA产生,且敲除fldH会增加PAA水平继而影响PAGly水平从而显著降低血栓形成。
PAGln通过G蛋白偶联受体和ADRs介导细胞反应
Nemetet al. Cell , 2020
研究人员发现PAGln与儿茶酚胺结构相似(上图E),暗示PAGln通过肾上腺素能受体(ADRs)发挥作用。遗传和药理学方法的功能丧失和功能获得研究证实,PAGln可通过G蛋白偶联受体(包括α2A,α2B和β2-ADRs)介导细胞反应。而β受体阻滞剂(卡维地洛)可显著降低PAGln诱导的高血栓风险。
微生物代谢产物可以调节宿主的生理和病理生理过程,这一发现开启了多种可能性,特别是证明了许多微生物途径可以作为抑制心血管病的治疗靶点。
LPS和TMAO可用于开发有效的治疗策略,然而目前还不能证明这些毒素水平是如何在宿主体内被确定和调节的。因此,需要进一步研究阐明肠道微生物源毒素与心血管疾病之间的因果关系,进一步探索肠道微生物及其代谢产物,包括毒素之间的关系,以确定心血管疾病治疗干预的最佳方法及患者的预后。
相关阅读:
主要参考文献:
Brown J M, Hazen S L. Microbial modulation of cardiovascular disease[J]. Nature Reviews Microbiology, 2018, 16(3): 171.
Yoshida, N.; Yamashita, T.; Kishino, S.; Watanabe, H.; Sasaki, K.; Sasaki, D.; Tabata, T.; Sugiyama, Y.; Kitamura, N.; Saito, Y.; et al. A possible beneficial effect of Bacteroides on faecal lipopolysaccharide activity and cardiovascular diseases. Sci. Rep. 2020, 10, 13009
Nemet et al. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors. 2020, Cell 180, 862–877.
Yamashita T, Yoshida N, Emoto T, et al. Two Gut Microbiota-Derived Toxins Are Closely Associated with Cardiovascular Diseases: A Review[J]. Toxins, 2021, 13(5): 297.
Cui, X.; Ye, L.; Li, J.; Jin, L.; Wang, W.; Li, S.; Bao, M.; Wu, S.; Li, L.; Geng, B.; et al. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci. Rep. 2018, 8, 635
Guo, C.J., Allen, B.M., Hiam, K.J., Dodd, D., Van Treuren, W., Higginbottom, S., Nagashima, K., Fischer, C.R., Sonnenburg, J.L., Spitzer, M.H., and Fisch-bach, M.A. (2019). Depletion of microbiome-derived molecules in the host using Clostridium genetics. Science 366, eaav1282
谷禾健康
无论是什么社会阶层
无论以前的职业是什么
任何人都有可能患上阿尔兹海默症
这种疾病如同橡皮擦一般
逐渐抹掉一个人的记忆
…
在详细了解阿尔兹海默症之前,我们先来看一个动画短片(2020年奥斯卡最佳动画短片提名),该片讲述的是一位患有阿尔茨海默病的艺术家慢慢失去自己记忆的故事。
2020奥斯卡最佳动画短片提名——勿忘我(Mémorable)_腾讯视频
“ 他们彼此搂着对方在旋转中化作了记忆的露珠 ”
“你是我空白世界里最后一处的风景”
…
阿尔兹海默症正在呈指数级蔓延,目前却没有治愈的方法。
本文,我们在了解阿尔兹海默症的同时,也带来了关于阿尔兹海默症研究的新方向——结合肠道微生物群(“肠-脑轴”的阐述)来更深入了解该疾病。
阿尔茨海默氏病(AD)是一种神经退行性疾病,影响全世界超过5000万人,是最常见的痴呆症,临床表现为进行性认知功能减退和功能障碍。AD主要影响老年人(> 65岁),表明衰老是主要的危险因素之一,其中与衰老相关的AD进展被称为散发性AD
AD及其相关痴呆症的发病率在世界范围内呈上升趋势,以前,在高收入国家(西欧和北美),AD患病率最高。 然而,中低收入国家的痴呆症发病率开始增加,预计到2030年,所有病例中的63%发生在中低收入国家中,到2050年,占所有病例的71%。但其病因仍未解决,目前尚无有效的预防或改善治疗方法。
缩略词:
新的证据表明AD患者的肠道微生物群与认知正常的患者不同。肠道内的细菌强烈影响肠-脑轴,肠道微生物代谢物包括短链脂肪酸、促炎因子和神经递质也可能影响AD的发病机制和相关的认知能力下降。
饮食是肠道微生物群最强的调节剂之一,也强烈影响着大脑健康和AD病理学。例如,肥胖和2型糖尿病是AD的潜在危险因素,并且研究已将高脂饮食和高碳水化合物饮食与AD发生的风险联系在一起。 相反,地中海(MD)和生酮饮食与更健康的大脑衰老和较低的AD风险相关。 进一步证实了这一证据,在发展中国家,随着肥胖和糖尿病患者比例的增加,流行病学转变导致AD患病率增加。
因此,通过健康饮食来逆转肠道菌群异常可能有益于大脑并降低AD风险。
· 遗传
尽管尚不清楚AD的病理和影响因素,但仍存在一些遗传突变,例如淀粉样前体蛋白(APP)基因的额外拷贝和21号染色体三体等基因突变,这些突变增强了神经退行性β淀粉样蛋白(Aβ)的表达与家族性AD相关的蛋白质沉积。
· 病理
病理上,细胞外神经原纤维斑块和细胞内高磷酸化tau(pTau)缠结遍布AD大脑皮质实质,尤其是颞叶。深部脑萎缩也可能支持AD的诊断,这些明显的特征长期以来被认为是AD病理的主要因素。
新皮层中pTau的Aβ斑块和神经原纤维缠结的堆积会引起炎症,氧化应激和最终的神经退行性变。 这些症状也可以通过活性氧来介导,活性氧通常通过酶促抗氧化剂来控制。 然而,当抗氧化剂水平降低时,活性氧会引起氧化应激并导致神经退行性变。
大脑中的炎症也与AD患者常见的肠道渗漏有关,免疫系统因子如多形核中性粒细胞能够从肠壁漏出。来自肠道的持续炎症可开始降解血脑屏障,使这些炎症因子进入大脑并引起进一步的炎症。
用于AD诊断的生物标志物包括低Aβ-42和脑内高tau水平,PET上氟脱氧葡萄糖摄取减少,MRI上出现结构性脑萎缩。
AD的临床诊断因患者而异,很难用一系列规定的症状来描述。
需要关注的这10个方面
记忆退化/困难; 问题解决; 熟悉的任务完成; 时间/地点识别; 图像或空间关系的理解; 沟通; 追溯步骤; 判断/人际互动; 工作/社交活动; 情绪/认知
早期症状
记忆:丢钥匙,忘记朋友的名字或最近的一次谈话,在熟悉的地方迷路。
讲话:重复自己的话或努力跟上对话。
视觉:很难看到三维的东西和判断距离。
决策:难以做出决定、解决问题或完成多步骤任务,比如做饭。
方向:对自己的位置、时间和日期感到困惑。
情绪:感到焦虑、沮丧或易怒的。
晚期症状
错觉:
例如,毫无理由地相信有人在偷他们的东西
不寻常的行为:
表现出攻击性或躁动、喊叫或扰乱睡眠模式
行走和说话困难:
卧床不起或坐轮椅,需要24小时护理来帮助进食、饮水和上厕所
由于淀粉样蛋白级联假说的不可理解性,研究正在调查Aβ斑块和pTau作为一个系统的标志物,这个系统从许多末端被破坏。
研究假设β-淀粉样蛋白是一种抗菌肽,由于非有益微生物的大量携带,可能来自炎症导致的血脑屏障降解,因此可能会在AD大脑中积聚。这些淀粉样蛋白是由APP的裂解和toll样受体2激活的髓样分化主要反应途径形成的。
脑淀粉样变性外,肠道中还存在细菌淀粉样蛋白,其三级结构类似于中枢神经系统淀粉样蛋白,并可能在刺激大脑中的免疫系统中发挥作用,因为免疫系统学会了识别肠道中的淀粉样蛋白,然后 大脑中淀粉样蛋白的增强攻击,导致炎症。
饮食(例如高脂饮食)可进一步介导导致AD炎症和神经退行性变的肠道渗漏综合征。 因此,AD的可测量症状具有与肠道菌群相关的复杂原因。
Aβ 斑块和tau缠结假说是AD病理生理学的理想模型。然而,新的研究已经证实AD是系统性功能障碍的一个组成部分,至少部分由慢性、全身性和神经元炎症以及肠道微生物群介导。在这一点上,神经炎症假说建立在肠-脑轴上,它将肠道微生物群活动与神经元健康和功能障碍联系起来(下图)。
AD中肠道微生物群的作用是由微生物代谢物介导的,这些代谢物作用于肠道和周围组织中的局部神经元并向大脑发送信号,和/或从肠道吸收并通过循环到达大脑。例如:单胺类、短链脂肪酸(SCFA)、γ-氨基丁酸(GABA)、β-甲胺基-L-丙氨酸、脑源性神经营养因子、血清素和多巴胺。
Kincaid HJ, et al., Ann Nutr Metab,2021
MCI和AD患者中饮食与微生物组相互作用与大脑和认知健康之间的假定联系的示意图。
AD患者和/或患有轻度认知障碍(MCI)的受试者存在明显的微生物群模式。
随着自然衰老相关的肠道营养不良开始发展并削弱肠道上皮,已经存在的微生物群营养不良会进一步影响大脑的衰老,从而导致肠道渗漏和炎症。
全身性炎症的加剧促使免疫功能受损,使大脑中的β-淀粉样蛋白堆积。这表明,患者通常要到老年时发展为AD,即使在生命早期就存在存在危险因素,如基因突变。
患有MCI和AD的患者在脑脊液中还显示出较高水平的肠道微生物来源的三甲胺N-氧化物(TMAO),这与AD生物标志物(包括pTau,总Tau和Aβ42)相关。
TMAO治疗可通过改善神经元衰老和线粒体功能障碍来降低小鼠的认知功能和衰老迹象。尽管TMAO在AD中的作用机制尚不清楚,但TMAO及其前体是炎症生物标志物,可能与AD相关的肠道渗漏有关。
西方饮食由低纤维、高脂肪和高蛋白食物组成,通常吃富含TMA和胆碱的高脂肪红肉和鸡蛋,从而增加TMAO的产生。这可能部分解释了西方国家AD发病率较高的原因。
此外,TMAO相关的脑损伤和认知缺陷可能由氧化应激增加介导。因为大脑消耗大量的氧气,而且神经元的新陈代谢率很高,所以一般人大脑中的神经元面临更高的氧化应激风险。然而,氧化应激可能是AD病理的原因和后果。
炎症引发氧化应激,从而导致β pTau的积累;然而,在一个破坏性的循环中,反之亦然也是可能的。
此外,氧化应激可导致线粒体功能障碍,肠道微生物源性代谢产物影响线粒体功能。饮食可以调节氧化应激,如高果蔬饮食可以提高认知能力,这与老年人氧化应激的降低有关;而西方饮食不富含水果和蔬菜,这也可能解释了在西方国家AD患病率较高的原因。
肠道微生物群对我们的新陈代谢、免疫和大脑健康至关重要。在健康的稳态条件下,肠道微生物群与宿主保持共生关系,对宿主营养和代谢、对病原体的定植抗性、肠道屏障完整性和免疫调节发挥重要作用。
肠道微生物群对脑部疾病有影响,包括抑郁症、焦虑症、高血压和帕金森病。最近的研究也将肠道微生物群与AD联系起来;然而,值得注意的是,这些研究大多是横断面调查,因此,需要更多的纵向干预研究来确定微生物群和AD病理学之间的偶然联系。
美国北卡罗来纳州科学团队最近报道了MCI患者拟杆菌丰度较低,厚壁菌和变形杆菌(肠杆菌科)丰度较高,此外在属水平上也存在一些差异。其他研究也报道了AD受试者的多样性较低,厚壁菌与拟杆菌比率较低,痴呆患者的拟杆菌比率较低,而与MCI患者和正常受试者相比,AD患者的多样性较低,厚壁菌和变形杆菌比率较高。
一项研究表明,丁酸盐产生菌参与认知功能。有趣的是,该团队还发现MD生酮饮食改善了AD生物标志物,即。MCI患者脑脊液中的淀粉样蛋白和tau蛋白,其中这些变化与肠丁酸盐增加有关。
已经研究了Aβ积累与微生物群的关系。 例如,APP-PS1小鼠是使用最广泛的AD模型,它以年龄依赖的方式展示了Aβ在大脑中的蓄积; 然而,它的微生物群不同于野生型小鼠。 此外,移植有AD微生物群的小鼠倾向于具有更高的Aβ积累。 此外,Aβ聚集可以被微生物群衍生的戊酸酯和丁酸酯抑制。
此外,细菌内毒素也可能与AD-淀粉样变性相关的炎症有关。 例如,脂多糖(LPS)是革兰氏阴性细菌的外细胞壁成分,具有高度促炎性,可以增强大脑中Aβ的积累并引起认知功能障碍。
AD患者的血浆LPS水平较高,新皮质和海马较高。 LPS还可能导致慢性神经发炎,内嗅皮质神经细胞死亡以及海马神经元的突触可塑性受损。 特定的细菌,例如大肠杆菌(Escherichia coli),枯草芽孢杆菌(Bacillus subtilis),鼠伤寒沙门氏菌(Salmonella typhimurium)和肠沙门氏菌 (Salmonella enterica)也可以产生淀粉样蛋白。 然而,这些并不是人类肠道微生物的典型且一致的’居民’。
此外,AD相关淀粉样变性与细菌淀粉样变性之间的关系仍不清楚。 尽管如此,细菌淀粉样蛋白可能会激活与AD发病机制有关的特定信号通路,这提示肠道菌群可能会加剧与淀粉样变性病相关的炎症。 这些研究通过微生物细胞外成分,促炎因子,毒素,SCFA,淀粉样蛋白和神经递质将微生物群与淀粉样蛋白的积累联系起来。 考虑到迅速兴起的研究,可以预见的是,AD预防和治疗将绕不开针对微生物群的影响。
鉴于AD患者与健康受试者之间微生物群差异的新数据,研究人员已经开始探索调节微生物群的方法,希望能够改善AD病理学。
尽管肠道微生物群可以通过多种方法进行调控,包括使用益生菌、益生元、合生元和抗生素或改变饮食,但饮食是肠道微生物群的最高级调节剂。
以不饱和脂肪、水果和蔬菜以及全谷类为重点的饮食调节可以给AD相关的认知健康带来好处(上图)。例如,MD通过增加血浆类胡萝卜素和降低C-反应蛋白水平,与AD关键区域的脑萎缩减少相关(表明对AD病理学有积极影响)。
此外,炎症减少也是AD的主要症状。食用富含二十二碳六烯酸(一种n-3多不饱和脂肪酸)的鱼制品与降低AD风险有关。富含维生素D3的鱼和富含维生素D的奶制品促进神经生长因子蛋白的分泌,这种蛋白可以防止大脑发炎和衰老。
由于MD对AD的这些改善作用,一项人体试验研究了MD-DASH干预对神经退行性延迟(MIND)饮食的影响,该饮食是MD与DASH饮食(阻止高血压的饮食方法)的结合,富含 水果,蔬菜,全谷类,低脂乳制品和瘦肉蛋白证明,MIND饮食比单独使用MD或DASH更为有效,尽管所有3种饮食均显示出降低AD病理学的益处。
除了某些饮食生活方式外,个别食物还可以带来抗AD病理学的益处。 例如,在小鼠模型中,饮用红酒可防止Aβ肽生成并降低AD风险。具体而言,据报道,适度饮酒可减少轴突末端的GABA能发芽,这可能是AD中神经退行性变的部分原因。 富含类黄酮的食物,例如黑加仑子,葡萄,柑橘和绿茶,已显示出抑制Aβ沉积并防止tau蛋白过度磷酸化的作用,同时改善了AD的其他生物标志物。
具体而言,据报道,适量饮酒可减少轴突终末的GABA能发芽,这可能是AD中发现的神经退行性变的部分原因。富含类黄酮的食物,如黑加仑、葡萄、柑橘和绿茶,已被证明能抑制β 沉积和阻止tau蛋白的过度磷酸化,同时改善AD的其他生物标志物。
虽然大多数研究都在研究健康饮食对改善AD病理的影响,几项研究探讨了直接针对AD肠道细菌的补充剂的使用。
一项随机双盲对照人体试验,研究了12周食用嗜酸乳杆菌(Lactobacillus acidophilus)、干酪乳杆菌(Lactobacillus casei)、双歧杆菌 (Bifidobacterium bifidum)和发酵乳杆菌(Lactobacillus fermentum),的益生菌组合的效果,据报道,对认知功能有显著的积极影响,但对氧化应激或炎症没有影响。
一项小鼠实验研究了生物素丁酸钠对早期AD小鼠Aβ水平和行为症状的影响,发现补充丁酸钠12周后Aβ水平显着降低,行为反应增加。
益生菌和益生元的组合合生元也显示出对AD的益处。一项人类研究观察到,AD患者食用开菲尔谷物发酵的牛奶(形成共生物质)90天后,精神能力得到改善,炎症和氧化应激减少。
综上所述,目前有关饮食和补充剂影响肠道微生物群和改善AD是有希望的,但更多的研究是也非常需要。
此外,研究已经通过测试Tramiprosate(一种GABA的类似物)来靶向GABA,并发现它有望增加AD模型和临床试验中Aβ抑制的长期增强作用。5-羟色胺激动剂和再摄取抑制剂曲唑酮(trazodone)也表明,与延缓AD患者认知障碍的相关性是非曲唑酮使用者的2.6倍。
AD在世界范围内迅速增长,但是迄今为止尚无治愈方法,这强调了需要有效的策略,例如饮食因素来调节AD相关的神经炎症并预防或减慢AD的进展。
目前的证据表明,饮食成分的促炎和抗炎能力都可能在AD管理中发挥作用。
富含单糖,饱和/反式脂肪,高级糖基化终产物和加工肉的饮食可能对AD患者的大脑产生促炎性影响,同时可能加速肥胖症,高血压,血脂异常,动脉粥样硬化和2型糖尿病。
相反,富含蔬菜,水果,沙拉,坚果,豆类,浆果,多不饱和脂肪酸,维生素,类黄酮,多酚,益生菌/益生元和全谷物的复杂饮食模式(例如,MD,DASH和MIND)可能有助于预防或减缓认知能力下降和AD进展。
研究表明,肠道菌群通过肠脑轴参与了AD病理。饮食会强烈调节和塑造肠道菌群,这可能是这些饮食模式改善肠道脑轴与AD相关的摄动的潜在机制之一。 对生活方式因素与AD相互作用的机械理解可以阐明生活方式模式的改变与AD患病率增加之间的联系,同时包括微生物群等对于宿主生活方式与健康之间的相互作用至关重要的因素。
对饮食,微生物群,生活方式和痴呆症之间的联系进行解码,将有助于揭示AD病理的潜在机制,同时有助于发现预防/治疗AD和相关痴呆及认知能力下降的新策略。
虽然该疾病目前无法得到根治,也无法逆转,但如果在早期就介入治疗,是可以有效延缓疾病的进程。
音乐
有观察表明,音乐疗法可以极大地帮助许多患有阿尔茨海默氏病的人,2019年3月发表在《神经科学前沿》上的一篇评论发现,音乐疗法可以改善行为,认知和社交功能-帮助缓解焦虑症和抑郁症。
对于许多患有阿尔茨海默氏症的人来说,正确的音乐疗法可以在恐惧和孤独的时候提供安慰、快乐。
“以某种方式、形式对音乐做出反应,无论是身体反应、情感反应、社会反应,还是认知反应”,来自伯克利音乐学院音乐治疗系主任乔伊认为,“我们知道痴呆患者的大脑受损,但对音乐作出反应的那部分似乎是最后消失的部分。”
音乐的镇静作用可以减少日常生活中产生焦虑的事件中的躁动,并使阿尔茨海默症患者及其护理者的过渡不那么令人焦虑。
精油
梅奥诊所称,当吸入精油时,它会刺激嗅觉感受器,嗅觉感受器通过中枢神经系统向边缘系统传递正(或负)信息。边缘系统是大脑控制情绪的部分。
梅奥诊所的从业者不会将精油涂抹在患者身上,而是用于供阿尔茨海默患者吸入。
当然吸入太多也不好。如果周围有太多的气味,就像用扩散器一样,使嗅觉系统饱和,甚至再也认不出这种气味了。所以不能过量使用。
几项小型研究表明,薰衣草精油可帮助改善痴呆症患者的行为并改善睡眠。柠檬香脂可以按摩到皮肤或吸入,在减轻压力和焦虑方面显示出优势。生姜精油缓解恶心症状。
但不推荐使用薄荷精油,较刺激,许多人会对它产生不良反应。
瑜伽
关于瑜伽及其对阿尔茨海默氏病的影响的研究在某种程度上是有限的,还远没有定论,但在阿尔茨海默氏症的护理中加入诸如瑜伽之类的补充方法,可能会有助于缓解该疾病的某些症状。
2018年2月发表在《神经生物学的压力》杂志上的一项研究综述指出,越来越多的证据表明,压力可能会对像阿尔茨海默氏症这样的神经退行性疾病的发展产生有害影响。
瑜伽具有潜在的好处,可以帮助减轻压力,平息躁动并改善整体情绪。
大多数针对阿兹海默症患者的瑜伽都是以缓慢,轻松的方式进行轻柔运动。上课时间通常比一般的瑜伽课短,一般持续10至30分钟。根据个人体能定制,老师从不强迫运动,并鼓励参与者做自己想做的事情。
一篇文章发表在2019年的《大脑可塑性》杂志上,发现瑜伽似乎对负责记忆和信息处理以及情绪调节的大脑关键区域具有积极作用。
游戏
大多数专家似乎都同意游戏本身并不能真正改变疾病的生物学或阻止阿尔茨海默氏症对大脑的破坏性作用。
但有研究人员认为,这使他们增加了进行更多社交互动的机会,这比游戏本身更重要,可以提高生活质量,并可能减少认知能力下降。
发表在2019年8月6日《神经病学》上的一项研究发现,精神刺激活动(例如使用计算机,玩游戏,制作手工艺品和参加社交活动)与年龄相关的记忆力丧失的风险较低或延迟有关。
研究发现,在中老年人参加社交活动,例如去看电影或与朋友外出,或玩填字游戏或纸牌游戏等游戏,发展轻度认知障碍的风险降低了20%。
当然也可能是因为有轻度认知障碍的人没有能力经常降低参加这些活动的机会,因此,需要进一步的研究来调查这些发现。
不同人喜欢玩不同游戏,同一款游戏多次重复也会无聊,以下多款游戏可供参考:
填字、拼图、数独、西蒙、Risk、Azul、Lumosity等。
肠道菌群检测
定期进行肠道菌群健康检测,可以了解该疾病风险,如果能在非常早期的时候及时发现,结合肠道菌群进行多种方式针对性干预(如饮食,益生菌,生活方式的调整等),可能会大大延缓病程。
主要参考文献
Kincaid HJ, Nagpal R, Yadav H. Diet-Microbiota-Brain Axis in Alzheimer’s Disease. Ann Nutr Metab. 2021 Apr 27:1-7. doi: 10.1159/000515700. Epub ahead of print. PMID: 33906194.
Prince M, Bryce R, Albanese E, Wimo A, Ribeiro W, Ferri CP. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013 Jan;9(1):63–e2.
Alonso R, Pisa D, Fernández-Fernández AM, Carrasco L. Infection of fungi and bacteria in brain tissue from elderly persons and patients with Alzheimer’s disease. Front Aging Neurosci. 2018;10:159.
Szczechowiak K, Diniz BS, Leszek J. Diet and Alzheimer’s dementia: nutritional approach to modulate inflammation. Pharmacol Biochem Behav. 2019 Sep;184:172743.
Blum S, Aviram M, Ben-Amotz A, Levy Y. Effect of a mediterranean meal on postprandial carotenoids, paraoxonase activity and C-reactive protein levels. Ann Nutr Metab. 2006;50(1):20–4.
Mosconi L, Murray J, Tsui WH, Li Y, Davies M, Williams S, et al. Mediterranean diet and magnetic resonance imaging-assessed brain atrophy in cognitively normal individuals at risk for Alzheimer’s disease. J Prev Alzheimers Dis. 2014 Jun;1(1):23–32.
Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015 Sep;11(9):1007–14.
Nagpal R, Neth BJ, Wang S, Craft S, Yadav H. Modified mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine. 2019 Sep;47:529–42.
Bhattacharjee S, Lukiw WJ. Alzheimer’s disease and the microbiome. Front Cell Neurosci. 2013;7:153.
谷禾健康
“ 要美白,要抗老,先防晒… ”
“ 护肤中最重要的是防晒… ”
“ 防晒,一年四季都需要… ”
在各大美妆博主的科普下,你可能已经对防晒已经做足了攻略,甚至囤货满满,然而,你可能不知道还有这样一种防晒——“微生物防晒”。
最近,化妆品和皮肤病学领域将其研究重点放在皮肤微生物群及其与皮肤和环境的相互作用上。
现已有研究证明了细菌分子可以阻挡紫外线或逆转它们的有害影响。
为什么细菌可以阻挡紫外线?
在回答这个问题之前,首先我们来认识一下皮肤微生物群。
皮肤是一个复杂的分层器官,提供了非常多样的生态条件。该生态系统是人体最大的生态系统之一,包括细菌、真菌、酵母、古生菌、病毒,甚至螨虫等。
皮肤微生物群如何形成?
从出生开始,一个人的皮肤微生物群是通过分娩后阴道菌群的转移形成的,或者是通过剖腹产分娩时的环境菌群形成的。
皮肤微生物群有什么作用?
皮肤共生菌群对病原体具有几个关键的防御功能,并作为(生物)化学和物理攻击的屏障,以及皮肤先天(通过抗菌肽合成)和适应性免疫系统的调节器。它的成分对免疫稳态至关重要。这种平衡的破坏可能导致疾病,如特应性皮炎,牛皮癣,酒渣鼻,过敏等。
皮肤微生物群主要有哪些菌属构成?
成人皮肤微生物群的组成和分布受皮肤局部参数的调节,且湿润、干燥和皮脂腺皮肤微生物群的数量差异显著。从20多个皮肤部位采集的样本来看:
每个类群的丰度强烈地依赖于适当生态位的特征。例如,亲脂性菌群,如痤疮杆菌Cutibacterium acnes,在皮脂腺部位发现,而葡萄球菌主要在潮湿部位发展。
葡萄球菌和痤疮杆菌在人体皮肤上的分布
Souak Djouharet al., Microorganisms,2021
皮肤真菌
关于真菌的研究比较有限,但已经确定马拉色菌是身体和手臂上的主要微生物。其他微生物,包括在足弓上存在曲霉Aspergillus, 隐球菌Cryptococcus, 红酵母Rhodotorula,附球菌Epicoccum.
在人类皮肤上共鉴定出17种马拉色菌:
以M. restricta、M. globosa 、 M. sympodialis为主。
皮肤古细菌
人类皮肤微生物群中也有古细菌,2013年出现了关于古细菌的研究,发现古细菌在躯干等特定区域可以代表4.2%的微生物群。已鉴定的物种包括土壤类群古菌、产甲烷菌和嗜盐菌。
在大致了解皮肤微生物群的基本构成之后,我们再来看紫外线对皮肤微生物群的影响。
紫外线对皮肤的影响
阳光照射会影响皮肤表面的不同比例,这取决于季节,但它仍然是皮肤环境压力最强大和最持久的来源之一。
紫外线辐射对皮肤的影响因其能量和穿透潜力而异(图2)。
Souak Djouharet al., Microorganisms,2021
太阳紫外光谱本身根据辐射的波长和能量分为三个部分:
UVC(200-290nm);
UVB(280–315 nm);
UVA(315–400 nm)
UVA分为UVA1(315–340 nm)和UVA2(340–400 nm)
辐射波长越长,穿透皮肤的深度就越深,也就是UVA的穿透力最强。平流层中的臭氧能有效地吸收紫外线。在海平面上,人类主要暴露于UVB和UVA。
穿透皮肤的紫外线占阳光辐射的5-8%,相当于约5-10%的UVB和90-95%的UVA。这些数值随太阳高度、海拔高度、臭氧、云量和地面反射而变化。
UVA:晒黑、晒老(皮肤光老化)
UVB:晒伤、晒红、晒出水泡
在皮肤中,紫外线辐射被皮肤发色团以及不同的分子吸收,包括DNA、膜脂和反式尿氨酸。这种靶点的多样性解释了大量已知的生物反应。
紫外线对皮肤微生物群的影响
间接影响
紫外线对皮肤的影响可以间接影响皮肤的微生物群,细菌本身已经发展出对紫外线辐射的抵抗力。
已经证明,紫外线辐射影响皮肤微生物群的组成和活性,但其后果是不明确的。
积极影响:导致金黄色葡萄球菌等条件致病菌的减少
消极影响:出现慢性炎症
紫外线辐射可以通过刺激角质形成细胞产生抗菌肽,如hbD2、hbD3、RNase7、psoriasin或S100A12,从而上调皮肤保护性天然免疫机制。
最近,在一个由6名志愿者组成的小组中研究了UVA和UVB对皮肤微生物群的影响。暴露于UVA和UVB后,观察到其皮肤微生物群的组成发生改变。
蓝藻门细菌Cyanobacteria有增加的趋势,而乳酸杆菌科和假单胞菌科有减少的趋势。蓝藻门的增加归因于它们对紫外线辐射的高内在抗性。
蓝藻门细菌发展了多种防御机制,包括紫外线吸收/筛选化合物的生物合成,如类菌胞素氨基酸(MAAs)和酶,包括超氧化物歧化酶(SOD),它们可以对抗氧化应激。
直接影响
紫外线也直接影响皮肤细菌,如痤疮表皮菌,减少其卟啉的生产。
紫外线也作用于另一种常见的皮肤细菌,藤黄微球菌Micrococcus luteus。该菌株具有显著的特性,能够通过逆转紫外线在皮肤暴露过程中产生的顺式尿氨酸来对抗紫外线对免疫系统的有害影响。
这使得化妆品行业在开发用于防晒产品时考虑到了皮肤微生物群。
随着年龄增长,皮肤的自然老化是不可避免的,但是光老化却是可以通过防晒措施来缓解的。
防晒
经典防晒措施:
穿防晒衣(由防紫外线布料制成的衣服)。紫外线可以穿透一般夏天穿的薄棉质衣服。
现代防晒:包括一级保护和二级保护两种手段。
防晒霜能够吸收或反射紫外线。
抗氧化剂、渗透剂和DNA修复酶有助于减少皮肤损伤。
更准确地说,防晒霜可以根据其作用机制分为物理阻挡紫外线、化学吸收紫外线和混合紫外线过滤。
物理紫外线过滤器反射和散射光,特别是UVA和UVB。这些过滤器包括有色化合物和微粉化颜料。在后者中,我们发现了钛氧化物(TiO2)和氧化锌(ZnO ex Z-Cote®-BASF Care Creations)。
化学紫外线过滤剂(如Tinosorb®M-BASF Care Creations, MexorylTM XL-L’Oréal, Triasorb™-Pierre Fabre)能够吸收高能紫外线并释放较低的能量辐射,这得益于一个发色团,该发色团通常是一个芳香族分子,或与羰基结合或不结合。
这些过滤器既不能穿透皮肤屏障,也不能进入细胞,在细胞中它们会导致变异,也不能进入体循环。
然而,仅仅保护皮肤不受紫外线照射是不够的。
紫外线与空气污染物的结合已被证明会协同加剧皮肤损伤,加速皮肤老化。
最近的研究显示,紫外线和大气污染物(如香烟烟雾和多环芳烃)之间可以存在协同效应。这些污染物具有内在的皮肤氧化特性,其作用可以增强紫外线的作用。这在UVA和B[a]P(苯并芘)中得到了特别的证明,这是最有害的光反应性多环芳烃之一,通过增加脂质过氧化和DNA损伤导致细胞活力下降。
作为对紫外线过滤器的补充,基于对环境协同损害的内源性保护的策略已经通过刺激天然抗氧化途径或添加例如修复酶、抗氧化剂、肽、天然或生物技术提取物来实现(表1)。
根据其作用机理与防晒相关的市售化妆品成分的非详尽清单。
Souak Djouharet al., Microorganisms,2021
INCI:化妆品成分的国际命名法
抗氧化剂,如维生素C、维生素E、类胡萝卜素、多酚和类黄酮可以减少紫外线产生的活性氧。
“微生物防晒剂”——MAAs
如前所述,类菌胞素氨基酸(MAAs)是地衣、真菌和蓝藻在太阳紫外线照射下产生的天然光稳定次生代谢产物和紫外线吸收化合物。
MAAs通常被称为“微生物防晒剂”,它能以热的形式散发紫外线能量而不产生自由基,还能阻止紫外线诱导的嘧啶酮光产物(6-4光产物)和嘧啶二聚体的形成。这些UVs光产物导致突变、细胞转化和细胞死亡。
MAAs是一种多功能化合物,具有抗紫外线辐射损伤、抗氧化、渗透和热应激等作用。这些分子吸收光的带宽很宽,最大吸收率在310-362nm之间(UVA和UVB范围),摩尔消光系数很高(e=28100–50000 M−1厘米−1).
因此,MAAs可作为化妆品的活性成分,以抵消紫外线辐射的负面影响。
MAAs是典型的小化合物(<400 Da),无色,水溶性。已鉴定出20种形式的MMAs,研究最多的是Porphyra-334、shinorine和mycsporin-glycine.
这些化合物具有类似的结构,由含有环己酮或环己烯胺环的4-脱氧戊醇组成,环己烯胺环与氨基酸或亚氨基醇的氮取代基共轭。
许多研究表明,MAAs是抗氧化剂,因为它们通过防止脂质过氧化和超氧自由基活性来对抗氧化损伤。例如,红藻紫菜提取物,商品名为Helioguard 365a(瑞士Mibelle AG Biochemistry),据称是一种天然防晒霜,含有脂质体MAAs、shinorine和紫菜-334的混合物(表1)。这种化合物对UVA引起的DNA损伤的光保护作用已在体外HaCaT细胞中得到证实。
表皮葡萄球菌——抑制紫外线诱导的新生细胞生长
最近的研究强调了皮肤细菌的一种新功能,它可以保护皮肤免受外部攻击,比如紫外线辐射。表皮葡萄球菌产生一种化合物6-HAP(6-N-羟基氨基嘌呤),具有预防肿瘤的保护活性。该分子能抑制DNA合成,选择性地阻止肿瘤细胞的增殖,抑制紫外线诱导的新生细胞生长。
藤黄微球菌——减轻紫外线辐射
众所周知,UVB辐射通过反式尿氨酸(trans-UCA)到顺式尿氨酸(cis-UCA)的光异构化来降低细胞介导的免疫。研究还表明,皮肤共生的藤黄微球菌 micrococcus luteus 能够将顺式UCA降解为反式异构体,从而可能降低UVB的免疫抑制作用。因此,这种细菌可以减轻紫外线辐射的有害影响。
此外,藤黄微球菌特别产生一种有趣的酶,一种核酸内切酶,它有能力提高DNA修复酶复合物的效率。这种核酸内切酶可以被包裹在磷脂包被膜中,以促进其进入细胞。
光裂解酶——抵消紫外线产生的DNA光产物形成
为了限制DNA损伤,另一类酶,光裂解酶,是光破坏防御领域的主要研究对象。这些酶由许多自然暴露于紫外线辐射下的动物物种、植物和细菌产生,但在包括人类在内的胎盘哺乳动物中不编码。
光裂解酶属于一类50-60kDa的黄蛋白,被可见光谱的蓝光或紫外光激活。如前所述,它们能够抵消紫外线产生的DNA光产物的形成,如环丁烷嘧啶二聚体(CDPs)和6–4光产物。
光裂解酶是一种特定的产物,但其作用机制尚不清楚。不过作者已经证明,用脂质体局部治疗人类皮肤,脂质体中含有一种从蓝藻中分离出来的光裂解酶,即Anacystis nidulans,能够降解40%的紫外线照射产生的CDP,并减少红斑。同时,表皮细胞间粘附分子-1(ICAM-1)减少,对免疫和炎症起作用。此外,光解酶似乎能有效降低UVB的有害作用并产生免疫保护。
痤疮表皮杆菌——分泌抗氧化酶
最近的一项研究表明,皮肤共生细菌,痤疮表皮杆菌,能够分泌一种抗氧化酶。这种被称为RoxP的蛋白质是痤疮丙酸杆菌的自由基加氧酶,在体外促进有氧细菌的生长。
另一项研究表明,RoxP积极影响单核细胞和角质形成细胞的活力暴露于氧化应激。这种酶可能有助于减少与紫外线暴露有关的氧化应激。
放线菌——抑制紫外线诱导的新细胞生长
放线菌(Actinobacteria),特别是链霉菌(Streptomyces)是具有光保护活性的代谢物的来源,如抗氧化和抗炎化合物以及吸收紫外线的分子。这些分子包括酰胺类化合物,通常与抗炎活性和生物碱显示更具体的抗氧化活性。这些化合物现在被用作化学成分来开发保护产品。
防止紫外线损伤的细菌营养方法
现在大家都知道各种各样的膳食补充剂对皮肤健康有好处。最近,口服补充抗氧化剂(如抗坏血酸、类胡萝卜素或多酚)和益生菌被提议保护皮肤免受紫外线辐射引起的损害。
“益生菌”一词于1989年被定义为”活的微生物,如果摄入足量,就会对宿主的健康产生影响”。乳酸菌的特定菌株可能会对肠道微生物群的组成和代谢产生有益的影响,在某些情况下还会抑制肠道病原菌的生长。
许多研究表明肠道免疫轴与皮肤有关,食用含有益生菌的食物可以改善皮肤健康,维持皮肤稳态,调节皮肤免疫系统。
Lactobacillus johnsonii NCC 533 (约氏乳杆菌NCC 533)
对于紫外线辐射引起的皮肤损伤,益生菌如约氏乳杆菌NCC 533 (La1)的功效已被证实。
研究表明,约氏乳杆菌的吸收可以通过防止紫外线产生的白细胞介素-10的增加来增强皮肤免疫系统稳态,并减少表皮朗格汉斯细胞的募集。
鼠李糖乳杆菌
以同样的方式,一种益生菌鼠李糖乳杆菌(Lactobacillus rhamnosus GG, LGG)的施用被证明可以防止皮肤肿瘤的发生,这是由于其脂磷壁酸(lipoteichoic acid, LTA)的活性,LTA是革兰氏阳性菌细胞壁的一种成分。
在小鼠模型中,LTA降低了紫外线诱导的皮肤免疫抑制,从而显著降低了紫外线诱导的皮肤肿瘤生长。
还可以考虑其他的光保护候选种,如植物乳杆菌HY7714、短双歧杆菌和长双歧杆菌。这些观察结果是很有希望的,但还需要在人类身上得到证实。
目前的防晒策略多种多样。优化策略可以使用改善紫外线内源性保护反应的成分和/或修复或抗氧化酶,对紫外线暴露后的皮肤恢复具有积极作用。
本文中的提到的皮肤微生物群是具有间接防晒特性的化合物的来源。皮肤微生物群中的一些细菌甚至具有直接的紫外线辐射阻断或吸收作用,以及抗炎和抗氧化活性。
此外,一些临床研究也强化了某些益生菌具有预防或逆转紫外线辐射有害影响的有益活性的观点。内源性和外源性细菌不仅是分子的来源,也是开发新的自然防晒措施的灵感来源。
附录: 防晒常识
#01 化学防晒和物理防晒有什么区别?
化学防晒霜的作用就像海绵一样吸收阳光。它们包含以下一种或多种活性成分:氧苯甲酮,阿伏苯宗,辛酸盐,辛二烯,高渗酸盐和辛氧酸盐。这些配方往往更容易擦入皮肤,而不会留下白色残留物。
物理防晒霜的作用就像护盾一样在皮肤表面,使太阳光线偏转。它们包含活性成分氧化锌和/或二氧化钛。皮肤敏感者或小朋友,请尽量选择物理防晒霜。
#02 什么人需要防晒?
任何人,不论年龄,性别或种族,都需要防晒。
(6个月以下的婴儿尽量避免使用防晒霜,可以选择戴帽子,穿长袖等方式。)
#03 如果使用防晒霜需要多少量?
如果只涂脸的情况下,需要一个一元硬币或以上的量。涂身体需要在这个基础上增加相应的量,如果是在海边沙滩上,按照AAD(美国皮肤学会年会)的规定,至少要涂满1盎司的防晒霜才能完全覆盖身体。
#04 防晒霜上SPF和PA代表什么?
SPF值(Sun Protection Factor),也就是我们平常说的防晒系数,指紫外线照射到不伤害肌肤的一个时间范围。假设不涂防晒时15分钟后晒伤,那么SPF30的意思是15(分钟)*30=450分钟,也就是可以保护皮肤7.5小时。【实际上在很多因素下,并不能有效保护这么久,需要补涂】
PA值是衡量防晒产品UVA的防护能力,美国产的和部分欧洲产的防晒霜并没有标有PA,市面上一般有PA+,PA++,PA+++三个等级。PA+:有效; PA++:相当有效; PA+++:非常有效
#05 多久补涂?
在户外时,请大约每两个小时后补涂,或在游泳或出汗后补上。
#06 防晒霜多久失效?
如果每天以正确的量使用防晒霜,那么一瓶不会使用太久。
FDA要求所有防晒霜保持其原始强度至少三年。如果已过期,请扔掉防晒霜。
#07 防晒霜的成分安全吗?
FDA提议的规则对防晒成分进行了分类。FDA提议将两种成分“普遍认为是安全有效的”(GRASE):
二氧化钛、氧化锌
FDA提议不要添加其他两种成分:
聚氨基甲酸乙酯、甲苯胺水杨酸酯
#08 防晒喷雾如何?
FDA还在评估喷雾防晒霜的安全性和有效性。使用防晒喷雾的挑战在于,你很难知道是否使用了足够的防晒霜来遮盖身体所有暴露在阳光下的区域,有可能会导致覆盖范围不足。使用喷涂防晒霜时,请确保喷涂足够量并擦拭以确保均匀覆盖。
为避免吸入喷雾防晒霜,切勿将其喷涂在脸部或嘴部周围或附近。或者喷的时候应避开人群,注意风向,以免自己或他人吸入。
#09 含有驱虫剂的防晒霜值得买吗?
AAD不建议购买标签上注明含有驱虫剂的防晒霜。
建议购买单独的产品,因为:
防晒霜应自由使用,并经常使用
驱虫剂应少用,且应比防晒霜少使用
参考文献:
Yokoyama, H.; Mizutani, R. Structural biology of DNA (6-4) photoproducts formed by ultraviolet radiation and interactions with their binding proteins. Int. J. Mol. Sci. 2014, 15, 20321–20338.
Bernard, J.J.; Gallo, R.L.; Krutmann, J. Photoimmunology: How ultraviolet radiation affects the immune system. Nat. Rev. Immunol. 2019, 19, 688–701.
Souak Djouhar,Barreau Magalie,Courtois Aurélie et al. Challenging Cosmetic Innovation: The Skin Microbiota and Probiotics Protect the Skin from UV-Induced Damage.[J] .Microorganisms, 2021, 9.
Patra, V.; Sérézal, I.G.; Wolf, P. Potential of skin microbiome, pro- and/or pre-biotics to affect local cutaneous responses to UV exposure. Nutrients 2020, 12, 1795.
Hannigan, G.D.; Meisel, J.S.; Tyldsley, A.S.; Zheng, Q.; Hodkinson, B.P.; SanMiguel, A.J.; Minot, S.; Bushman, F.D.; Grice, E.A. The human skin double-stranded DNA virome: Topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome. mBio 2015, 6, e01578-15.
Morifuji, M. The beneficial role of functional food components in mitigating ultraviolet-induced skin damage. Exp. Dermatol. 2019, 28, 28–31
Paller, AS et al. New Insights About Infant and Toddler Skin: Implications for Sun Protection. Pediatrics. 2011 July; 128 (1): 92-102.
Hughes MC, Williams GC, Baker P, Green AC; “Sunscreen and Prevention of Skin Aging, a Randomized Trial”. Annals of Internal Medicine. 2013; 158(11):781-790.