Author Archive 谷禾健康

关于《CELL》最新研究:饮食,自闭症与肠道菌群的疑惑与讨论

谷禾健康

本文原创:谷禾健康

自闭症谱系障碍是一种神经发育疾病,其特征是社交和沟通困难限制性和重复性行为以及异常的感觉反应

自闭症的具体发病机制尚不能明确,但目前为止许多研究表明,自闭症与肠道微生物组之间存在很大关联性。

最新,Yap等人发表于Cell的一篇题为“Autism-related dietary preferences mediate autism-gut microbiome associations”的论文就自闭症与肠道菌群的关联给出了他们的研究成果。

其核心结论是:

肠道菌群与自闭症之间没有直接联系。自闭症儿童与正常儿童的肠道菌群差异是由于自闭症症状导致患儿的饮食多样性下降,饮食类型狭窄,从而导致肠道菌群多样性减少,进而引发便秘和消化道症状。

经过对论文的详细阅读,我们认为该结论的适用范围和可靠性需要进一步商榷。

我们来看看其研究设计情况。

关于肠道菌群这方面的研究,很关键的一个点是研究的样本数量。

01 样本数量有限,统计效力存疑

首先,这项研究涵盖了共247名儿童(2-17岁),其中自闭症患者99名,51名患者的兄弟姐妹,97名非自闭症儿童,样本来自澳大利亚自闭症生物银行Australian Autism Biobank (AAB)。

我们观察到样本人群相对于宏基因组来说样本数量还可以,但是99例自闭症患者样本还是让整个研究的统计效力及研究的适用范围有很大限制

02自闭症和队列样本年龄分布与自闭症发生年龄段不一致

自闭症属于神经发育疾病,虽然其病因复杂,但是疾病的发生阶段绝大部分在出生到3岁左右,主要影响了儿童早期的神经系统发育,导致出现神经发育滞后、刻板行为和社交障碍

类似的疾病还有注意力缺陷ADHD以及多动症等。越早期的干预其愈后和改善就越明显,因为早期神经系统发育是阶段性的,错过了发育阶段,很难在后期通过行为学等方面获得明显改善。

进一步查看研究样本的年龄分布我们发现,该研究的样本年龄均值在8.7岁

虽然范围在2-17岁,但是和自闭症发病阶段3岁以下的各组样本分别是7例、7例和8例,2岁以下的样本仅有1例。

也就是说,研究涉及的自闭症患者虽然仍然有着自闭症的诊断和行为表现,但是绝大部分样本均不是处于神经发育的最核心阶段,而且大部分样本应该是经历过多年的包括行为干预或其他治疗。

因为自闭症与早期行为发育相关,大部分确诊儿童可能其行为表现和社交能力直到成年可能仍然没有完全恢复或达到正常水平,可能在多年后即便其引发自闭症的病因(主要是环境或生理因素)已经消失,但症状或诊断仍然没有变化,这就意味着这些样本可能不能反映真实的自闭症发生时的神经发育和菌群状况,因而也不能说明菌群在自闭症的发病和发展过程中并无联系。

更重要的是肠道菌群的组成变化尤其是生命早期与年龄和发育阶段密切相关,3岁之前的肠道菌群基本上每个月龄都存在变化,3岁之后的肠道菌群会趋向于接近成年人的菌群构成,并逐渐成熟。

还需要注意的是,在6个月左右,由于固体辅食的引入,婴幼儿的饮食结构会发生重要变化,相对应的肠道菌群也会发生重要的转变,从乳制品代谢为主的韦荣氏菌、双歧杆菌、大肠杆菌为主逐渐进入以碳水化合物和蛋白质代谢为主的拟杆菌或普雷沃氏菌属等成年人常见核心菌群为主的菌群构成。这一变化阶段恰恰是自闭症对应早期神经发育的最重要阶段,而该研究基本没有这个阶段的样本。

研究中也明确提及肠道菌群构成年龄存在较强的相关性,在分析中是将年龄和性别作为协变量进行控制,但我们认为这种统计方式不足以解决儿童肠道菌群在不同年龄阶段的变化差异,需要进一步对不同年龄阶段或年龄的儿童进行单独分组分析,但是这样该研究的样本数量就严重不足以获得足够的统计效力。

03 配对家庭样本分析存在疑问

研究中包含有来自同一家庭的非自闭症兄弟姐妹,作为对照能较好的控制包括饮食、生活方式及居住环境等变量,因此很自然我们希望看到针对成对家庭兄弟姐妹的比较分析。

在论文的补充材料方法部分有描述了使用成对样本进行比较的内容,一个102个样本,形成51对样本。对于这样的成对样本分析,比较简单的方式是直接进行成对T检验。

然而,论文中并没有这么做,比较奇怪的将family ID作为随机变量从而控制成对样本的差异检验。但是家庭ID本身除了家庭之外并没有类似年龄或分层等信息量,作为随机变量加入后并不能有效实现成对分析的效果。

另外根据论文的结论,饮食结构单一引起了菌群的变化,进而诱发肠道问题,那么在成对家庭成员样本之间,自闭症儿童相较于同家庭的兄弟姐妹在相同饮食习惯和环境下是否饮食结构明显单一呢

我们期待看到自闭症儿童的饮食多样性要显著低于其兄弟姐妹,且基本集中于低多样性的区间。

论文补充材料部分的下面这张图显示,同家庭兄弟姐妹之间的饮食多样性是显著相关的。

那么对应的菌群多样性呢?下面的图显示,基本没有相关性

由于论文没有进行成对样本的检验,因此我们尝试下载数据进行单独分析,很遗憾,论文中提供的数据仅包括100例样本的数据,表型和分组等信息只有50例样本的,无法进行单独分析

针对论文结论的自闭症儿童的饮食类型狭窄的问题,我们认为在早期婴幼儿期饮食构成本身就是相对单一的,而且非自闭症儿童中也存在相当一部分饮食结构单一的,单以饮食结构问题来解释自闭症儿童的菌群差异还不具有足够的说服力

04 菌群数据的过滤筛选对结果的影响

另外我们注意到,该研究将菌种和后续的基因及代谢途径分为常见和罕见两组,其中种部分中位数大于0的作为常见的,一共96个,其他的有607个种作为罕见

另外在后续对功能基因的分析时也是将分析集中于前面发现的Romboutsia timonensis菌种相关的基因。

当然这是受限于样本数量的因素,聚焦于普遍的高丰度的菌属和基因,但是也有很大可能丢失了可能的联系。

综上,文章否定的是菌群与自闭症之间的直接关联,与之相关文章识别到了自闭症与健康儿童间的差异菌(Romboutsia timonensis,经过年龄、性别、饮食偏好调整之后),以及菌群与重复刻板行为存在显著相关(Fig. 4H)。

在这样的事实前面,文章依然要强行否认自闭症与菌群的关系,作者的行为很让人费解。

众说纷纭

对此,网友们也各抒己见,就该文发表了一些见解:

他们的研究甚至没有试图确定:微生物群是否在自闭症谱系障碍中起驱动作用

他们自己的研究需要收费,这让事情更糟糕。人们必须付费去看他们的研究…

我们认为,以下系列问题仍有待回答

1. 他们的自闭症儿童都属于主要集中在轻度或者边缘程度,这个样本选择是否能代表自闭症的全部群体还存疑;

2. 如果将饮食归因于挑食等问题,那么在临床实践中我们也经常看到正常孩子也有挑食。研究者如果要说明菌群和挑食等行为有关而不是自闭有关,那么应该要设置一组挑食的健康对照儿童,才能彻底屏蔽这个因素的可能影响;因为作者明确表示饮食和自闭症有关,而不认为菌群和自闭症有关;

3. 这些样本的分布是否有跨地区特点?如果有,那么区域也会带来极大的差异,如菌群、饮食习惯等等,如何规避这个的影响?

《cell》原文:doi.org/10.1016/j.cell.2021.10.015

微生物组和组学成分数据分析之ALR对数转换

谷禾健康

编辑​

微生物组和组学数据集,由于其生物学性质,通常是高维的,特征常以各种成分,如基因、OTU、RNA转录本等的计数为特征。这些数据统称为成分数据

这类数据分析的中心概念是对数转换,而其中最简单的策略是ALR(Additive log ratio)方法。对于高维数据,ALR方法有一下几个特点:

(a) 次要成分都是相干的

(b)可以解释100%的总对数方差

(c)测量结果非常接近于等距。

最近,来自西班牙科学团队的一篇题为“Compositional Data Analysis of Microbiome and Any-Omics Datasets: A Validation of the Additive Logratio Transformation” 的文章指出:

ALR对数转换可以有效提供一组简单的变量来表示整个成分数据集,其关键节点在于选择哪个成分为参考,并使用三个高维组学数据集进行验证。

01
验证方法

通过ALR方法的理论和推导公式(这里不详述,推荐看原文),分别计算总对数方差(The total logratio variance 总结了采样点在多维空间中的分散程度),Logratio GeometryProcrustes分析,以此找到有效的参照特征。再与其它对数转换方法对比,如CLR对数转换。

02
数据集验证

1. 兔子数据集


数据集为非零数据集,89个样本,3937个特征

总对数方差为0.1601,Procrstes相关系数最高为0.9991,对应的基因数为856。该基因在3937个基因中的相对丰度排名第201位。

图一为所有3937个特征的Procrstes相关性直方图。为了直观地显示ALR变量接近等距的程度

图一

图二显示了在ALR上计算的所有样本间距离,基于所有成对对数的对数距离或同等情况下的所有CLR绘制相应的精确对数距离。

图二

图三为对于数据集的89个样本,参考基因编号856的计数与计数总和之间成正比。

图三

下图四展示了整个数据集的LRA(是所有成对对数的主成分分析(PCA),相当于所有CLR的主成分分析以加权或非加权的形式)。

而图五中展示了具有参考基因856的ALR的对应PCA。主成分分析与参考成分微生物基因编号为856时,其几何形状实际上与确切的直线几何形状相同(Procrstes相关=0.9991)。字母S和F代表进行测序的两个实验室,显示出明显的分离

图四

图五

2. 小鼠数据集

数据集大小,28个样本3147个特征。此数据集中有34个零,使用R包zComposition中的函数cmultReplin替换。

总对数方差 0.2099,Procrustes相关系数最高为0.9977,对应转录本编号1318,其中转录本编号1179的Procrustes相关系数也与其相似。

图六

图七

图六显示了在ALR上计算的样本间距离。为了显示任意大小数据集的ALR变换的质量,对MICE数据进行了模拟研究,从数据中随机抽取不同大小的样本,将每个样本作为独好的立的样本,并为该特定数据集的ALR变换找到最佳参考。

对于100、500、1,000、1,500、2,000、2,500、3,000和3,500个转录本的子集,以及每个子集的100个随机样本,绘制最佳的Procrstes相关性,如图七展示。ALR变换的等距质量随着可能的参考成分特征数量的增加而提高。

图八展示完整数据集的LRA,图九展示了参考转录本编号1179的ALR的PCA。它们实际上是相同的,只是有很小的差异,而在这之前的Procrstes相关系数结果就已经指示出了。标签代表两种不同的处理(L和M)和7种不同的时间(0、1、2、4、6、9和12h)。

图八

图九

3. 奶牛数据集

这是一个大小为211个样127个特征的核磁共振强度数据集。样本被分成三个饮食组:精料组、混合组和饲草组,还测量了甲烷产量。

图十

图十一

总对数方差0.09128,Procrustes相关系数最高为0.9902,对应于编号101。图十展示完整数据集的LRA,图十一展示了编号101的ALR的PCA。标签C(精料)、M(混合)和F(饲料)。

03
结论

从以上三个数据集的验证分析不难看出,对于高维数据,使用ALR对数转换也能得到对全部特征使用CLR对数转换方法的结果,关键在于找到有效的参考特征(成分)。

文章中作者建议将其作为此类高维数据成分数据分析的第一步。作者公开了部分数据集的存放地址,以及用于数据处理的部分代码。可以自己尝试看看是否适用。

扩展:数据集位置及实用脚本

兔子数据集: https://www.ebi.ac.uk/ena/browser/view/PRJEB46755

小鼠数据集:http://doi.org/10.5281/zenodo.3270954

其它数据集及脚本:https://github.com/michaelgreenacre/CODAinPractice

在这个github中有详细列出文中所使用的用于数据处理的各个R源码,以及目前这些数据处理的相关函数。

而这些脚本现已被整合为R包,easyCODA,可以从CRAN中直接下载。在Rstudio中调用“install.packages(“easyCODA“)”。

Tips

在对成分数据(composition data)进行分析时,通常会对原始数据进行矫正,也可以理解为一种标准化方法。比较常用的对数转换方法是CLR(Centered Log-Ratio),其次是ALR(Additive Log-Ratio,也就是文章主要推荐的方法)和ILR(Isometric Log-Ratio)。

每种方法都有优缺点,对于后续统计分析的适用程度,CLR>ALR>ILR个人建议先使用CLR和ALR对数据进行转换,然后使用PCA或其他降维分析方法查看其类群分布,搭配adonis查看其统计显著性水平。只要能达到预期结果就都能使用。如果CLR和ALR数据转换后结果差异不大,那推荐使用CLR

参考文献:

Greenacre M, Martínez-Álvaro M, Blasco A. Compositional Data Analysis of Microbiome and Any-Omics Datasets: A Validation of the Additive Logratio Transformation. Front Microbiol. 2021 Oct 11;12:727398. doi: 10.3389/fmicb.2021.727398.

换个角度看“三胎” | 胎次影响母婴肠道菌群

谷禾健康

生?还是不生? 

随着三胎政策到来,关于三胎的话题源源不断:

包括显而易见的经济压力,职场男女是否平等,教育是否能跟上,住房是否得到保障,医疗问题,家庭关系,产后心理等各个方面。

今天我们抛开这些看,生育更直接的是一身体的考验

单看“三胎”这个词,意味着母亲从十月怀胎到产下宝宝重复经历三次。每一次的妊娠过程都面临着各种风险,如自然流产,早产,难产,妊娠期并发症等。

而影响妊娠健康(包括上述风险)的一个重要因素是孕产妇的肠道微生物组。

最新研究表明,胎次影响母亲及婴儿的肠道微生物组。

胎次:指某次分娩后某个孩子出生时在其母亲所有活产胎儿中所占的顺序数。

之前,关于怀孕和人体微生物组的研究很少涉及胎次问题,且关于胎次的人类研究存在很大挑战大型动物模型则提供了一种替代方法

来自美国宾夕法尼亚大学研究人员就妊娠期间猪微生物群变化及胎次对其影响进行研究,该成果发表在《Microbiome》上。

该研究确定了胎次是妊娠期间调节肠道微生物群的一个重要环境因素,并突出了猪模型在母婴健康中研究微生物群的重要作用。数据显示,胎次的影响不仅限于母亲,而且与后代早期肠道菌群改变有关。

研 究 结 果

通过同步妊娠和密集纵向监测猪微生物群,研究人员描述了妊娠期间的微生物群轨迹,并确定了胎次对该轨迹的调节程度

妊娠期间肠道微生物群的组成变化遵循几个可预测的趋势

A) 利用肠道菌群组成数据可以预测妊娠时间(P = 3.3e−13),并具有一定的准确性(R2=0.27)

B) 对成熟度指数准确性贡献最大的10个分类单元按重要性排序

C) 狄利克雷多项式混合物(DMM)样本分为8个簇,每个簇由独特的肠道微生物组成

D) 对DMM准确度贡献最大的10个分类单元按重要性排序

E) 每个样本的相对丰度

胎次影响妊娠期间肠道菌群轨迹

焦虑可能与食品添加剂有关,警惕食品添加剂引起微生物群变化

谷禾健康


有没有发现我们吃的食品正在变得越来越鲜艳,让人有食欲,“低脂”、“无糖”等字眼出现的频率越来越高,然而这其中必然会用到各类食品添加剂,如防腐剂,甜味剂,乳化剂,着色剂,香料等等。

可以看到孩子们喝的牛奶都是纯白无瑕的,事实上天然牛奶往往没有那么白;孩子们吃的五颜六色的糖果,糕点等也会结合一些人工色素,因此儿童比成人更容易接触到食用色素。

食品添加剂会诱发菌群失调,通过微生物群肠脑轴导致肠道疾病,代谢性疾病等各类问题的发生。这个过程是如何发生的?各类添加剂有什么不同的作用?为什么儿童学习、记忆受到影响?为什么与情绪也有关系?…

本文为大家解答相关疑惑。

首先,我们先来看看:食品添加剂都有哪些种类,它们起到什么样的作用,以及如何查看食品中是否存在添加剂。

01
食品添加剂的种类及功能

工业界使用合成色素使其产品更有吸引力,使用防腐剂有助于保持其功能,适当pH值等特性,因此在大多数情况下,食品添加剂是不可或缺的存在。常见的食品添加剂及其功能用途见下表。

IFIC & FDA

肠道菌群失衡的症状、原因和自然改善

谷禾健康

​肠道菌群是居住在肠道中各种微生物。微生物群的建立甚至在个体出生之前就开始了,随着时间的推移而改变,并在体内持续存在,直到个体死亡。这些微生物群的组成是宿主特定的,在个体的一生中不断进化,并且容易受到各种因素的影响。

胎龄、分娩方式、饮食(母乳与配方奶)、卫生、抗生素,激素、疾病、衰老等都会影响并塑造肠道菌群。肠道菌群的定植、发育、成熟、稳定,老化与我们人类发育以及免疫成熟等高度吻合,不同阶段不同部位的菌群的构成以及丰度有不同特征。

肠道细菌是免疫系统发育和功能的重要组成部分。肠道菌群的变化可能是许多炎症性疾病发生的重要因素。而生活方式的改变可能改变了肠道菌群的初始发育或稳定维持。

本文从肠道菌群的功能,初始构建,到菌群健康/失衡的状态,以及相应的改善措施等进行全面阐述。

01 肠道菌群功能

肠道菌群,居住在肠道(宿主)内的所有本土细菌的总和,被视为一个器官,执行着一系列重要的、对健康至关重要的功能,而这些功能无法通过任何其他方式复制

研究人员通过比较无菌实验动物(没有任何肠道菌群)和正常菌群对照动物来确定这些功能。这些发现也在人群中得到了证实

以下是肠道菌群最重要功能的简要概述:

◥ 粪便中的水分滞留

粪便主要是由水组成(平均水含量75%;各项研究的平均范围为63-86%)。单细胞生物,如细菌,主要含有水,被无法穿透的膜包围。

 形成正常粪便

由于细菌是正常粪便中最主要的成分,它们的缺失可能会导致持续性慢性腹泻。

◥ 生产必需维生素

细菌会合成各种物质,包括某些复合维生素 B、维生素 B12 和维生素 K,这些物质对血液正常凝固至关重要。

 保护肠道上皮(粘膜)免受病原体侵害

正常的肠道菌群控制着不良细菌的数量,例如白色念珠菌(酵母)或大肠杆菌的感染性菌株。保护机制有很多种,食物供应的竞争、对肠粘膜的粘附、维持所需的 pH 值平衡以及产生过氧化物和酶,从而杀死外来细菌。

◥ 组织发育和再生

与健康动物相比,无菌实验动物的肠粘膜(上皮)和淋巴组织(派尔氏斑)发育不良,肠道健康黏膜薄弱、免疫淋巴组织不发达等存在许多缺点。

 免疫

正常肠道细菌负责实现吞噬作用:吞噬细胞在全身范围内破坏致病细菌、病毒、过敏原和其他异物,吞噬细胞是负责非特异性(抗体前)免疫系统防御的专门血细胞。

02 肠道菌群构建及发育

生命的前三年是可塑性增强的时期,肠道微生物群的发育很容易受到环境因素的影响。在婴儿期人与人之间的肠道微生物组差异变化最大,在成年期变得更加相似。

★ 婴幼儿

当婴儿出生后,在几口初乳后,大肠得到“培养”,初乳是一种淡黄色的液体,包含母亲的细菌,富含必需的营养。初乳先于富含脂肪和蛋白质的母乳流出。这个过程在母乳中继续,新生儿的肠道菌群在第6个月开始逐渐成熟,直到“成人”状态。

肠道微生物群的发育及主要影响环境因素

Parkin K et al., Microorganisms,2021

便便之旅,了解和关注便便

谷禾健康

写在前面
排便行为虽然是人类普遍存在的经历,但我们一般很少提及这个生理过程,开启“便便”这个话题并不是容易的事。如果可以抛开偏见,厌恶或者羞耻感,或许你可以尝试去了解更多这方面相关知识。如果这些知识能够普及更多人,或许世界上可以少一些胃肠道疾病患者。

本文试着从排便解剖学、排便的频率、影响排便的因素、粪便类型等多角度来为你阐述“便便”相关知识。

01排便

排便是一个复杂而协调的过程,它整合了多个生理系统,包括神经、肌肉、激素、认知系统等。

结肠基本知识

在了解排便过程之前,我们先认识一些关于结肠结构的基本知识。

结肠和肛门直肠的神经肌肉解剖结构

Heitmann PT, et al., Nat Rev Gastroenterol Hepatol. 2021

a| 结肠和肛门直肠与排便生理有关的外源性感觉运动神经支配。

b| 肛门直肠的冠状图,显示了克制中结构重要性的特征。

结肠是一个粘弹性管状器官,从近端回盲肠交界处开始,远端直肠乙状结肠交界处结束。成人结肠长约130厘米,盲肠的管腔直径为60-80毫米,乙状结肠的管腔逐渐狭窄至25毫米

结肠接受来自肠神经系统的内在神经支配,来自腰神经的外在交感神经支配,以及来自迷走神经(近端结肠)和盆腔内脏神经的外在副交感神经支配,这些神经支配结肠的感觉运动功能。

便便的产生

我们吃进去的食物在体内经历了什么?是如何变成粪便排出的?

进食的时候,食物与唾液相混合,唾液浸湿食物,同时也含有消化淀粉和脂肪的酶。

随后食道将食物推向胃。胃酸、胃液、酶进一步分解,完成后食物就到了小肠

在胰腺、胆囊、微生物群的帮助下,脂肪、蛋白质、微量营养素等进一步被分解,通过小肠吸收后到肝脏,剩下的部分则转到大肠

大肠吸收水分、电解质后产生的粪便进入直肠。直肠积累多了就会向大脑发出信号,大脑考虑现在是否是适合排便的时间。

思考的结果如果是适合的,那么大脑就会向肛门括约肌发出信号,让它放松…

排便过程

关于排便过程,这里主要涉及四个阶段:基础阶段、排出前阶段、排出阶段、结束阶段。下图详细说明了在每个阶段中为保持自制或促进排便所发生的具体变化。

Heitmann PT, et al., Nat Rev Gastroenterol Hepatol. 2021

通知

谷禾健康

10.29-11.1谷禾管理后台数据库升级,涉及到数据迁移和测试,期间可能会在后台显示信息缺失,数据并无问题仅因数据库迁移可能导致显示不正常,预计11.2日会完成升级工作。

特此通知

杭州谷禾信息技术有限公司

微生物群在婴儿健康中的作用:从早期到成年

谷禾健康

生命早期到成年微生物群对婴儿的健康起着至关重要的作用。生命早期的微生物群不仅是婴儿健康的键调节剂,而且与长期健康有关怀孕到生命早期是婴儿微生物群建立的黄金时期,受环境和遗传因素的影响。

最近,关于微生物群在人类疾病中作用的 研究呈爆炸式增长,但在疾病或健康方面的应用相对有限,因为人类微生物群的许多方面仍然存在争议,尤其是婴儿微生物群

在怀孕期间,母体微生物群会影响胎儿的发育,尤其是大脑发育,如子宫微生物群、阴道微生物群、胃肠道微生物群、胎盘微生物群(有争议的)和口腔微生物群。值得注意的是,母体微生物群的紊乱会导致不良妊娠结局,严重威胁后代的健康。出生后,受环境和遗传因素影响的婴儿微生物群迅速建立,以确保健康成长

01 孕期母体微生物群和后代

孕期母体微生物群

以前,胎儿宫内感染的罪魁祸首被认为是来自阴道的微生物,如细菌、病毒和真菌。然而,随着科学技术的发展,人们发现口腔和肠道微生物群也与胎儿的健康有关,因为这些部位的微生物群可以通过血液传播

在怀孕期间,母亲的肠道、口腔和阴道微生物群都会发生变化。这些变化相关的各种因素,包括饮食,抗生素的使用,感染,应激和宿主基因(下图)。

影响母婴微生物群的因素以及微生物群调节的机会窗口

Yao Y, et al. Front Immunol. 2021

研究已经揭示健康孕妇阴道微生物群的稳定性高于健康非孕妇,乳酸菌是健康孕妇阴道微生物群的主要成分。传统上,子宫被认为是无菌的,但这个概念直到最近几年才被打破。子宫内膜有自己的微生物群,尽管这些微生物群的生物量比较低。遗憾的是,目前对子宫内膜微生物群的了解有限,其在胎儿发育和妊娠结局中的作用仍有待充分阐明。

新出现的证据表明,孕妇肠道菌群的丰富度和均一性与正常女性没有显着差异,但分布和组成发生了明显变化。此外,患有妊娠并发症的孕妇肠道微生物群的多样性降低,这对母亲和胎儿的健康都是不利的。例如,妊娠期慢性高血压大鼠的肠道微生物重塑受损。先兆子痫孕妇肠道微生物群中产生短链脂肪酸的粪球菌的丰度降低

消化酶的类型、功能以及食物来源

谷禾健康

消化酶分解脂肪、蛋白质和碳水化合物,便于身体吸收营养。大部分消化酶由胰腺产生,其次是小肠、胃和口腔。

本文主要介绍不同酶的工作原理、酶水平背后的遗传因素和消化系统疾病以及自然促进消化的方法。

01 什么是消化酶?

消化酶是一组广泛的酶,可将脂肪、蛋白质和碳水化合物等大营养素分解成更容易被身体吸收的较小营养素。人体在胰腺中自然产生大部分酶,而胃、小肠和口腔中产生少量酶。

以下酶可以帮助人体从特定的食物中吸收营养:

▪ 蛋白酶把蛋白质分解成氨基酸

▪ 脂肪酶把脂肪分解成脂肪酸

▪ 淀粉酶将碳水化合物分解成单糖,如葡萄糖

它们的主要作用是帮助消化,这些酶在你体内的数量和活性取决于一系列复杂的因素。初步研究表明,消化酶可能有助于缓解各种消化疾病、减轻炎症、肠道感染等。

02 为什么消化酶水平低?

消化酶水平低表明胰腺不能正常工作难以产生重要的消化化合物。

在严重的时候,这种情况被称为外分泌胰腺功能不全(EPI)。这时,胰腺中产生消化酶的细胞会随着时间的推移而被破坏

当然,EPI不是唯一的原因,各种因素都会导致消化酶水平降低:

03 消化酶——各有千秋

消化酶主要分三大类:脂肪酶、淀粉酶、蛋白酶

脂肪酶

脂肪酶是分解脂肪的酶,帮助维持胆囊功能正常。它们在胰腺中产生,但也可以从植物、动物和真菌中提取,并且足够稳定。

各种类型的脂肪酶参与不同的过程,例如脂肪代谢、运输、细胞信号传导、炎症等。

✓ 用于肠易激综合征(IBS)患者

含有脂肪酶和其他胰酶的补充剂可以帮助减少餐后的腹胀、胀气和饱腹感,尤其是脂肪含量高的食物。这些症状通常与消化问题有关,如肠易激综合征(IBS)。研究还表明,一些肠易激综合征患者可能存在胰腺外分泌功能不全,即由于胰腺产生的消化酶缺乏而无法正确消化食物。

细菌素——对抗感染、保存食品、重塑肠道菌群

谷禾健康

近年来,多重耐药病原体数量的增加以及食品安全已成为全球面临的严重问题,寻找或开发新一代抗菌药物或保存剂变得越来越重要。科学家们发现细菌产生的细菌素,能够控制临床相关的敏感菌和耐药菌,纯化的细菌素可以作为天然防腐剂或保存剂添加到食品中。细菌素可以作为抗病原体添加剂添加到动物饲料中,以保护牲畜免受病原体损害。医学上细菌素具有替代抗生素作为抗菌药物的潜力,是一种新型的抗癌药物。

本文将详细介绍细菌素相关的知识,包括:什么是细菌素、分类、生态与进化、抗病原菌以及抗病机制、食品保存和控制食物中毒发展、制药和替代抗生素潜力、益生菌特性、重塑肠道菌群以及影响健康的目标。

细菌素定义

细菌素是一种小的、热稳定的、核糖体合成的抗菌肽,由细菌产生,对其他细菌具有活性,并且生产者对其免疫。它们在大小、结构、作用机制、抑制谱、免疫机制和靶细胞受体方面表现出相当大的多样性

它们表现出针对产生它们的相同细菌菌株或针对密切相关物种的菌株抗微生物活性。细菌素的合成发生在位于质粒或染色体 DNA 中的基因的控制下,这些基因同时包含生产者对产生的细菌素的抗性的遗传决定因素。

编码活性蛋白质的基因,编码蛋白质抗性的基因,负责细菌素从细胞中输出的基因,偶尔编码参与细菌素翻译后修饰酶的基因同时表达。

细菌素由革兰氏阳性菌(乳酸杆菌、乳球菌、链球菌、肠球菌、明串珠菌、片球菌和丙酸杆菌)和革兰氏阴性菌(大肠杆菌、志贺氏菌、沙雷氏菌、克雷伯菌和假单胞菌)产生。

“细菌素(Bacteriocin)”是指由任何类型的细菌产生的有毒蛋白质或肽,它对相关细菌有活性,但不会伤害生产细胞。这是描述的第一种由大肠杆菌产生的细菌素。在这种情况下,后缀cin被添加到生产物种中,例如pyocins来自Pseudomonas pyocyanea。属名也被用来命名细菌,例如klebicins(来自克雷伯氏菌),lactococcins(来自乳球菌)。尽管细菌素对细菌具有毒性,但不应将其与“毒素”(外毒素)混淆。

肠菌素第一个被鉴定的细菌素,由发现者André Gratia 于 1925 年命名,当时他注意到一种大肠杆菌菌株产生一种有毒的可扩散物质,可杀死邻近的大肠杆菌

从那时起,已经描述了成百上千种肽和蛋白质细菌素,它们是由革兰氏阴性和革兰氏阳性细菌制成的各种天然抗菌化合物库的一部分,以抵御竞争对手。为了与细菌素研究的起源保持一致,大肠菌素仍然是研究最多的,特别是在细菌素如何破坏细菌强大的防御机制方面。

大肠杆菌素通过多种机制杀死细胞,这些机制分为两种细胞毒性类别;酶促大肠菌素切割核酸或肽聚糖前体,而成孔大肠菌素使细胞质膜去极化

细菌素的特征

复杂和过度拥挤的环境中,微生物顽强地相互竞争领土和营养,因此形成了过多的防御机制。其中,细菌素被认为是目前分布最广的机制。根据定义,细菌素是原核来源的分泌的、核糖体合成的肽,具有抗菌特性。

从人类健康的角度来看,细菌素代表了一个经过 30 亿年进化磨练的潜在先导化合物库。它们的靶标范围窄、活性高、稳定性惊人且毒性低,使其成为现有小分子抗生素的可行替代品或补充品。它们使用这些强大的武器在微生物战争中茁壮成长。为了完成这个武器库,产生细菌素的菌株被赋予了有效的策略来逃避被自己的毒素杀死。大多数细菌素在皮摩尔或纳摩尔范围内具有活性,并且靶向在系统发育上与生产菌株接近的细菌物种,尽管有些细菌素表现出更广泛的活性谱。

事实上,例如,许多细菌素的活性谱很窄,对与生产者密切相关的菌株表现出抗菌活性,而其他细菌素则表现出对多种不同属的抗菌活性。细菌素生产的调节可能很复杂,在某些情况下会受到环境条件的影响,例如 pH 值、温度和生长培养基等。

Heilbronner S, et al., Nat Rev Microbiol. 2021

客服