谷禾健康
硒(Selenium)是一种人体必需的微量元素,参与多种生理过程,是多种活性酶和蛋白质的重要组成部分。它在抗氧化防御、免疫调节、甲状腺激素代谢、心血管保护以及神经系统功能甚至生殖能力维护中发挥着关键作用。
适量的硒对于维持人体健康至关重要,而其缺乏或过量都会对机体造成负面影响。硒缺乏被证实与多种疾病密切相关,如克山病、卡斯钦-贝克病、甲状腺功能障碍、免疫力下降和某些癌症。缺硒会削弱机体的抗氧化能力,导致活性氧的过量生成,从而引起细胞损伤与慢性炎症反应,最终增加多种代谢及心血管疾病的风险;而过量摄入则可能引起硒中毒。
近年来,越来越多的研究发现,硒与肠道微生物群之间存在密切的双向调节关系。约四分之一的肠道细菌含有编码硒蛋白的基因,如梭菌和肠杆菌。同时硒作为多种细菌酶的重要辅因子,影响其代谢功能;硒还对病原菌(如大肠杆菌)具有特定的抗菌活性,同时提高具有潜在保护作用的有益菌水平。
肠道菌群能够代谢多种无机和有机硒,过量细菌摄取硒可能导致宿主硒蛋白缺乏,部分细菌还会通过硒来改变致病性。并且硒与肠道微生物群的作用在炎症性肠病(IBD)、癌症、甲状腺功能障碍、糖尿病、心血管疾病和神经发生性疾病等疾病中存在重要影响。
在此背景下,科学合理的硒补充显得尤为重要。日常生活中,主要的硒来源包括富硒粮食、巴西坚果、海产品、动物内脏、蛋类及蘑菇等天然食物;此外,还可以通过富硒酵母、有机硒补充剂、硒强化食品等途径进行补充。然而,硒的安全剂量范围较窄,长期过量摄入可能导致中毒反应,因此补硒应遵循个体化、适量与安全的原则。
本文将系统探讨硒的生理功能、缺乏及过量危害、其与肠道微生物群的相互调节机制以及其与肠道菌群协作在疾病改善中的潜在作用,并总结安全有效的补硒策略,旨在为理解硒的健康作用机制及临床应用提供全面的参考。
硒(Selenium)作为一种人体必需的微量元素,扮演着至关重要的角色,其生理作用涵盖多个方面。它不仅是多种生物活性酶和蛋白质的组成部分,如谷胱甘肽过氧化物酶和硫氧还蛋白,还在抗氧化、免疫防御、甲状腺功能调节、心血管保护以及糖代谢调节等方面发挥着重要作用。硒主要以体内的硒蛋白形式发挥其生物功能,以下是硒在人体内的主要生理功能:
硒及其作用机制的促进健康效应

1
抗氧化功能
证据较充分
研究表明,近一半的硒蛋白具有抗氧化功能,包括谷胱甘肽过氧化物酶(GPX)、硫氧还蛋白还原酶(TrxR)、碘甲状腺原氨酸脱碘酶 (DIOs)、硒蛋白P、硒蛋白M、硒蛋白H、硒蛋白O和硒蛋白V。
▸ 硒可将过氧化物转化为无毒性的氧化状态
硒通过直接、间接和联合作用三种机制发挥抗氧化作用。作为GPX的重要组成部分,硒通过催化谷胱甘肽(GSH)还原为氧化形态(GSSG),将有毒过氧化物转化为无毒的羟基化合物,从而将H2O2分解为H2O,保护细胞和组织免受过氧化物损伤。
硒蛋白还与细胞膜表面的肝素结合,有效抵抗过氧化物如过氧化亚硝酸盐。在间接作用中,硒蛋白促进其他抗氧化酶如GPX和TrxR的表达与活性,这对保护细胞(如线粒体、微粒体和溶酶体)尤为重要。
过氧化物酶在人体内过氧化氢去除中的作用

▸ 硒还与维生素E有协同作用
此外,硒与抗氧化剂维生素E具有协同作用。维生素E通过防止不饱和脂肪酸氧化成过氧化氢来发挥抗氧化作用,而外源性抗氧化剂则是抵御自由基损害的第二道防线。
近年来,研究人员通过体内富集和体外修饰获得了多种硒化合物,包括硒富集酵母、硒多糖、硒纳米颗粒和外源硒蛋白,这些化合物均显示出显著的抗氧化活性。
2
免疫调节功能
证据较充分
硒在淋巴结、肝脏和脾脏等富含免疫细胞的组织中极为丰富。研究表明,硒广泛存在于所有免疫细胞中,并在保护胸腺、维持淋巴细胞活性和促进抗体形成中发挥重要作用。硒同时参与先天免疫和适应性免疫,对多种免疫细胞具有调节作用。
▸ 硒可以影响免疫细胞的活性和分化
硒可以调控NK细胞、巨噬细胞、树突状细胞、粒细胞、肥大细胞和小胶质细胞的先天免疫活性。它还影响T细胞的增殖和分化,并通过调节Tfh细胞和5-脂氧化酶活性来影响B细胞的分化和存活能力。
硒在免疫系统中的作用

总之,硒缺乏会影响免疫系统的各个方面,而硒补充可以增强细胞免疫、体液免疫和非特异性免疫功能。这可能是通过提升含硒的GPX活性,减少免疫细胞中过氧化脂的积累,从而增强免疫细胞功能实现的。
3
甲状腺功能的维持
证据较充分
甲状腺是人体最大的内分泌腺,分泌甲状腺激素(TH),影响几乎所有细胞,调节生长、发育和新陈代谢。主要激素为三碘甲状腺原氨酸(T3)和甲状腺素(T4)。
▸ 硒调节甲状腺激素的平衡
硒能够帮助将甲状腺素T4转化为其更活跃的形式T3。硒还通过影响甲状腺去碘酶的活动,调节甲状腺激素的平衡,对代谢和生长具有重要意义。
4
大脑、神经保护
证据一般
大脑的代谢高度依赖硒水平,人脑中的硒含量约为90–110 ng/mg湿重,低于肝脏。然而,在硒耗尽的情况下,大脑中的硒水平仍能保持。这表明硒对大脑功能的重要性。肝脏合成硒蛋白P、谷胱甘肽过氧化物酶4(GPX4)和血清蛋白W是大脑中表达最丰的三种蛋白,暗示它们在大脑功能中可能扮演关键角色。
▸ 硒水平影响阿尔兹海默病和帕金森病
硒缺乏可能导致神经系统和运动障碍。阿尔茨海默病(AD)患者的血浆硒水平和红细胞GPX活性显著降低。因此,外源性硒补充被发现能够减轻神经退行性疾病并逆转AD模型中的记忆缺陷。
帕金森病(PD)作为一种与运动控制失调相关的神经退行性疾病,也与硒水平有关,硒能减少大鼠PD模型中的运动缓动。此外,癫痫患者的血清硒水平通常低于健康人群。
硒对大脑功能的影响机制

5
糖代谢调节
证据较充分
研究表明,硒通过多种途径影响2型糖尿病(T2DM)。在一项为期7.7年的随机双盲对照试验中,每日口服200微克硒的人群其T2DM发病率高于安慰剂组。另一项剂量反应荟萃分析显示,硒暴露增加了T2DM风险,因其补充剂增加了肝脏中Sepp1的生成,而Sepp1是已知的胰岛素抵抗诱导因子。Sepp1可减少肝细胞中的胰岛素受体酪氨酸磷酸化,并降低肌细胞中的丝氨酸磷酸化,从而损害胰岛素信号传导和葡萄糖代谢。
▸ 硒水平过高和缺乏都会增加2型糖尿病风险
一项针对13460名个体的荟萃分析显示,血清硒含量低于97.5 μg/L和高于132.5 μg/L的人群中,2型糖尿病(T2DM)的患病率较高,且高硒水平个体的发病率上升更为明显。其他研究也表明,糖尿病患者的血浆硒浓度显著低于对照组。
硒对2型糖尿病的影响机制

这些发现表明,T2DM与硒水平之间并不存在简单的线性关系,较高和较低的硒水平均是T2DM的潜在风险因素。适当的硒补充对于维持人类葡萄糖稳态至关重要。
研究发现,硒纳米颗粒通过降低血浆葡萄糖水平帮助预防高血糖,并提高糖尿病大鼠的血浆和胰腺胰岛素水平,修复受损的胰腺组织。此外,硒纳米颗粒还降低氧化应激,并增强过氧化物酶谷胱甘肽的活性。
6
抗癌作用
证据一般
多项研究表明,癌症发病率与硒缺乏密切相关。硒有助于预防肿瘤、抑制肿瘤生长、限制细胞分裂,并逆转恶性表型。
▸ 硒诱导癌细胞凋亡
硒的抗癌效果是多种机制共同作用的结果。有机硒化合物作为调控因子,可以影响致癌基因的表达,诱导癌细胞程序性死亡,并左右细胞的免疫功能。硒通过促进细胞凋亡发挥重要的抗癌作用。甲基硒酸(MSeA)能下调Bcl-xL和Mcl-1,增加半胱天冬酶介导的凋亡。
注:在LNCaP人类前列腺癌细胞中,硒诱导p53 Ser-15磷酸化并促使凋亡。MSeA还诱导DU145细胞浸润伴随Akt和ERK1/2磷酸化降低,与细胞G1停滞及p27kip1和p21cip1表达增高相关。硒诱导细胞生长停滞与细胞周期蛋白D1降低及JNK激活相关。
▸ 减少肿瘤细胞侵袭和转移、刺激DNA损伤修复
硒还通过抑制基质金属蛋白酶(MMP)-2、MMP-9和尿激酶型纤溶酶原激活剂(uPA)减少肿瘤细胞的侵袭与转移,进而发挥其抗癌效果。
刺激DNA损伤修复也是硒的重要抗癌机制。硒蛋白如谷胱甘肽过氧化物酶在抗氧化和维持细胞还原环境中发挥关键作用,能通过增强血清蛋白生成加速DNA修复。SeM通过抗氧化活性增强p53,保护细胞免受DNA损伤。
注:然而,研究发现硒补充并未预防基底细胞癌,反而增加了鳞状细胞癌和非黑色素瘤皮肤癌的发病率。
总之,硒作为抗癌剂在结肠癌、皮肤癌、乳腺癌、肝癌、肺癌和直肠癌中的效果已被广泛记录,显示出其巨大的临床潜力。
7
心血管保护
证据一般
各种心血管疾病的病理基础,如冠心病和高血压,都是动脉粥样硬化。
▸ 硒具有抗动脉粥样硬化的作用
流行病学研究和临床观察表明,硒具有抗动脉粥样硬化的作用,补充硒可以显著减少动脉粥样硬化的形成。含硒的抗氧化酶在心肌组织中发挥作用,帮助清除有害物质,从而保护心肌细胞膜和线粒体等细胞器的正常功能。
硒对心血管疾病的影响机制

此外,研究还显示饮食中的硒含量与高血压呈负相关。
8
重金属解毒
证据一般
研究表明,硒能影响抗氧化性和螯合作用,从而抑制重金属毒性,如汞、镉、砷、铬、铊、铅和银。
金属离子是多种蛋白质所必需的,参与电子转移、氧气运输、催化等生物过程。然而,体内重金属的积累会引发肝脏和肾脏毒性、神经毒性、生殖毒性和免疫毒性等多种不良反应,导致严重的健康问题。氧化应激是重金属的主要毒性机制。
例如研究发现,汞处理红细胞中的H2O2和超氧化物阴离子随剂量增加而增加,汞诱导的活性氧(ROS)可导致细胞坏死和凋亡。
▸ 硒能够减轻重金属的生物毒性
硒通过血清蛋白参与抗氧化防御,主要针对GPX和Trx系统这两大氧化防御体系。硒补充通过维持硒酶活性,减少重金属诱导的活性氧产生、蛋白质氧化和脂质过氧化,保护细胞免受免疫抑制、细胞毒性和内源性凋亡。
此外,硒还能直接与重金属特别是汞、镉和砷相互作用,这些重金属通常与含硫基团高度亲和,可能导致蛋白质结构变形。然而,硒对重金属的亲和力更高,能够封存金属离子,从而降低其生物利用性。
9
其他生物功能
▸ 硒会影响尤其是男性的生殖健康
此外,硒与生殖健康密切相关,尤其在男性中,影响睾丸组织、精子胚细胞数量、精子形成、精子形态和。严重的硒缺乏可能导致男性不育。
▸ 预防骨关节病变
硒补充还能预防骨髓病变并促进修复,对卡斯钦-贝克病和关节炎等疾病具有预防和治疗效果。
小结
因此,硒及其化合物能够作用于人体的多个器官和组织,促进和提升其功能,同时展现出广泛的生物活性。从细胞层面到系统层面,硒在维持健康和防治疾病中发挥着重要的作用,表明其潜在的应用价值和重要性。
人体中的硒含量
▸ 健康人体的硒浓度
一名健康成人体内平均含有约10-20毫克的硒,血液中的正常硒浓度为80–140 ng/mL。尽管这数量相对较小,但在生理功能中却发挥着不可或缺的作用。
血液中硒浓度与人体健康

▸ 硒的人体分布
硒广泛分布于各组织和体液中,但在不同器官中的含量差异显著:
•肝脏:作为硒的主要储存器官之一,肝脏含硒量高,负责重要的代谢和解毒功能。
•肾脏:肾脏同样富含硒,帮助调节体内矿物质平衡和排除代谢废物。
•甲状腺:甲状腺中的硒浓度较高,参与甲状腺激素的合成与代谢。
•肌肉和心脏:硒在肌肉组织(尤其是心肌)中也具有较高浓度,对心血管健康至关重要。
•生殖系统:在睾丸和卵巢等生殖器官中,硒的存在有助于支持生殖功能,促进精子的生成和激素的合成。
硒的吸收、代谢和分布

硒在人体具有重要的生理功能,但其缺乏与过量都会对健康产生显著的负面影响。以下是基于相关文献和我们已有的知识,详细总结硒缺乏和过量对人体健康的影响。
硒缺乏的危害
⑴克山病和卡斯钦-贝克病
凯山病是一种伴有肺水肿的青少年心肌病,主要由硒的缺乏和柯萨奇B病毒变异株引起。该病首次在中国东北黑龙江省克山县被发现,随着时间推移,这些症状在中国东北至西南地区普遍存在,该地区土壤缺乏硒。
凯山病可能引发癌症、高血压、中风,还可能导致湿疹、银屑病、关节炎和白内障。补充硒可以减轻这些症状。维生素E缺乏被认为与凯山病的发生有关,因此建议同时补充维生素E。
卡斯钦-贝克病也是由硒缺乏引起,主要影响5至15岁的儿童,特别是生活在硒水平较低的地区。该病为慢性骨软骨病,主要分布于中国东北及西南部。
硒和碘被视为该病的主要营养缺乏。此外,卡斯钦-贝克病的其他原因包括真菌产生的三聚霉菌(如Alternaria和Fusarium sp.)污染饮食中的大麦,以及饮用水中的富尔维酸。
注:针对儿童卡斯钦-贝克病,有多种硒补充剂可供选择,如硒酸钠、硒酸钠与维生素E、硒酸钠与维生素C、硒盐及硒富集酵母,与安慰剂/无治疗相比,这些补充剂在治疗中十分有效。
⑵免疫功能受损
硒缺乏会导致免疫系统的功能下降,增加感染的风险。研究表明,硒的补充能够改善HIV感染者的免疫应答,降低结核病的发病率。
⑶心血管疾病
硒的缺乏与心脏疾病的发展有一定关联。低硒水平可能导致细胞内氧化应激增加,从而促进动脉粥样硬化等心血管疾病。
⑷甲状腺功能障碍
硒在甲状腺激素的合成中发挥重要作用,缺乏硒可能导致甲状腺功能减退,影响代谢和生长。
⑸神经系统受损
缺乏硒可能对神经系统功能产生负面影响,增加神经退行性疾病的风险,如阿尔茨海默病等。
⑹糖代谢紊乱
硒缺乏与糖尿病的发生之间存在一定关系。这种关系主要是通过影响胰岛素的功能以及调节炎症反应来影响糖代谢过程。
⑺其他症状
硒缺乏还可能引起其他症状,包括:
•肌肉无力;
•碘缺乏加重;
•贫血;
•类风湿关节炎;
•生育能力下降;
•多种癌症,包括肺癌、前列腺癌、乳腺癌、食管癌和胃癌。
导致硒含量过低的原因
▸ 导致硒含量低的主要原因:
•饮食中硒含量不足;
•炎症性肠病(溃疡性结肠炎和克罗恩病);
•肠外营养,适用于通过静脉接受营养的病患者;
•肾脏疾病;
•阿尔茨海默病;
•格雷夫斯病(甲状腺功能亢进)或甲状腺功能减退(甲状腺功能减退);
•针对健康状况(如苯酮尿症,一种罕见的先天缺陷,会导致体内苯丙氨酸氨基酸堆积)的特殊饮食。
▸ 以下药物也可能降低硒水平:
•皮质类固醇,用于减轻炎症的药物。
•避孕药;
•氯氮平,一种用于治疗精神分裂症的抗精神病药物。
硒过量的危害
虽然硒缺乏会带来许多危害,适量摄入对健康有益,但过犹不及,硒过量也会产生一些不利影响。
⑴硒中毒
硒的过量摄入可能导致硒中毒,症状包括:
•恶心;
•呕吐;
•腹泻;
•胃痛;
•皮疹(皮炎);
•低血压;
•心跳加速
硒中毒还可能导致蒜味的口气、皮肤病、脱发、指甲脆弱等症状。严重时,可导致呼吸困难、心肌梗死和肾功能衰竭。
⑵代谢紊乱
过量的硒摄入可能干扰体内其他微量元素(如铅、镉和砷)的代谢,降低其排出,导致多种健康问题。
⑶糖尿病风险上升
糖尿病与硒之间的关系并非那么简单,研究发现T2DM与硒水平之间并不是简单的线性关系,较高和较低的硒水平均是T2DM的潜在风险因素。
⑷男性甲状腺激素(T3)水平下降
一项研究中,过量补充硒(每天300微克)使男性甲状腺激素(T3)降低。然而,更大规模的研究无法复制这些结果。
⑸血液脂肪水平增加
高血硒水平可能与总胆固醇、低密度脂蛋白(LDL)、高密度脂蛋白(HDL)、ApoB和A1(A-A1)升高相关。
⑹健康负担
大规模的随机对照试验表明,长期硒过量补充与死亡率相关,显示出U形关系,即过高或过低的硒水平均与死亡率增加相关。
小结
总之,硒在人体健康中扮演着双刃剑的角色。适量的硒摄入对免疫、心血管和甲状腺健康等多方面有积极作用,而不足或过量则可能导致严重的健康问题。
建议维持适宜的硒摄入水平,以促进身体健康并预防潜在的疾病风险。在某些环境(如土壤缺硒或污染)中,适当评估和监测硒的摄入是非常重要的。
▸ 自然界中硒主要分为元素硒、无机硒和有机硒
自然界中的硒主要存在三种形式(元素硒、无机硒和有机硒)。
元素硒对生物体来说难以吸收和利用。无机硒以硒化物(Se2+)、硒酸盐(Se4+或Se6+)的形式存在,具有较低的生物利用度。
生物体中的有机硒主要分为两类:一类是含硒氨基酸,如硒半胱氨酸(SeCys)和硒甲硫氨酸(SeMet);另一类是含硒蛋白,具有与代谢相关的生理活性。
▸ 硒的膳食来源
▸ 不同地区硒含量差异显著
人体中的硒主要来源于饮食,而食物中的硒则来自土壤。土壤中硒的存在和浓度主要取决于母质的成分。
土壤中硒的分布极不均匀,不同国家甚至同一国家不同地区内的土壤硒含量差异显著。根据世界卫生组织发布的数据,目前全球有40多个国家和地区,涉及5亿至10亿人口,处于不同硒缺乏状态。
全球及中国土壤中硒含量的分布图

在世界地图上,红色表示硒充足,粉色表示硒缺乏,白色表示无硒含量数据;中国地图上,绿色越深表示硒越充足。
▸ 硒的浓度因食物而异
一般来说,硒的浓度因食物而异,动物性食品>蔬菜>谷物>水果。谷物是硒的主要来源,但其硒含量相对较低,范围在0.01至0.55微克/克之间。动物性食品中的硒含量介于0.08至0.7 微克/克之间,蔬菜和水果中低于0.1微克/克。
富含硒的食物及其成分比例

巴西坚果、小麦胚芽、燕麦等谷物、牛肉、鸡肉、贝类、鱼类、海鲜、牛奶和香菇和纽扣蘑菇是硒的优质来源。
巴西栗,又称巴西坚果,是硒含量最高的来源之一。一些草本植物如双黄耆和十字花科植物(西兰花)中也存在较高水平的硒。
▸ 不同形式的硒生物利用度不同
硒的生物利用度主要取决于其化学形式。一般来说,有机形式的硒吸收更快,硒氨基酸的生物利用度通常高于无机硒,常用于血清蛋白的生物合成。并且虽然植物中的硒浓度较低,但其比动物食品中的硒更具生物利用度。
硒半胱氨酸(Sec)是另一种主要来源于动物食品的有机硒化合物。无机硒主要通过硫同化途径在植物体内积累,但也存在于水中。人类摄入的硒酸和硒矿最终会转化为SeMet。
▸ 营养成分比例也会影响硒的生物利用度
此外,饮食中的蛋白质、脂肪和重金属含量也会影响硒的生物利用度。
▸ 不同人群的硒需求
适度摄入硒和均衡饮食对于维持健康至关重要。人体对硒的需求也因不同年龄阶段而异。婴幼儿、儿童、成人和老年人由于生理和代谢特性的不同,对硒的需求也各不相同。
▸ 中老年人和孕妇的硒需求量更高
例如,儿童和青少年在生长发育过程中需要增加硒的摄入,以支持快速的身体和大脑发育。成年人需要足够的硒来维持免疫功能和抗氧化防御,而老年人则因消化和吸收能力下降,可能需要调整硒的摄入。世界卫生组织建议成年人每天硒摄入量为55微克,耐受上限为400微克/天。
中国营养学会对不同人群推荐的硒的估计平均需求(EAR)、推荐营养摄入量(RNI)和最高耐受摄入量(UL)见下表;其他国家和世界卫生组织(WHO)推荐的每日硒摄入量也展示在下面第二个表中。
中国营养学会推荐的硒摄入量

其他国家和世卫组织推荐的每日硒摄入量

▸ 硒的吸收与代谢
膳食硒包括无机硒(如硒酸盐和硒酸盐)和有机硒(如硒甲硫氨酸和硒半胱氨酸),不同形式的硒具有不同的吸收机制。无机硒:硒酸盐通过钠/硒酸盐共转运物质吸收,而硒石则通过简单扩散的方式吸收。有机硒:硒化合物及含硒氨基酸通过依赖钠的氨基酸转运机制被肠道吸收。总体而言,人体吸收有机硒的效率高于无机硒。
▸ 硒的吸收发生在十二指肠、盲肠和结肠
硒的吸收发生在十二指肠、盲肠和结肠。在肠细胞中,SeMet和SeCys通过主动运输被吸收,而硒酸则通过被动运输(SLC26基因家族的阴离子改变因子)吸收。吸收后,所有形式的硒通过肠道细胞内的反应转化为H2Se并通过血液结合的LDL(主要是VLDL)运输。
▸ 硒主要在肝脏中进行代谢,并运输到大脑、肾脏等器官
肝脏是硒代谢的关键器官,大多数含硒蛋白的合成都在这里进行。在肝脏中,H2Se被转化为SePhp,并以SeCys的形式掺入血清蛋白中。通过受体介导的胞吞作用——apoE2和巨型磷酸,主要通过SELENOP形式运输到睾丸、肾脏和大脑等其他组织。
硒的代谢途径

▸ 未被吸收的硒被掺入胆汁、肠道分泌物中
硒的主要排泄形式是通过尿液,但在过量摄入的情况下,也可能通过呼吸道排泄。当硒以三甲基硒(CH₃)₃Se的形式从尿液中排出时,肺部会以挥发性二甲基硒(CH₃)₂Se排出。在适度摄入的情况下,肾脏主要去除的单甲基化化合物是一种硒酸,即1β-甲基硒N-乙酰-D-半乳糖胺。未被吸收的硒还会掺入胆汁、胰腺和肠道分泌物中,最终通过粪便排出。
硒与肠道微生物群之间存在复杂的相互作用,这种关系在维持宿主健康方面发挥着重要作用。肠道微生物通过调节肠道细胞的成熟与增殖,促进食物消化,防止有害细菌,并调节免疫反应,从而对人体生理产生重要影响。膳食成分,尤其是微量元素,能够影响胃肠道内微生物的定植和结构。硒的含量会影响微生物群落的多样性,并对不同微生物群类别产生多种影响。硒在许多微生物群中具有独特的作用。
同时,微生物组编码超过数百万个基因,执行多种宿主无法实现的代谢功能,包括合成某些维生素和生物活性化合物、合成必需和非必需氨基酸、代谢不可消化的碳水化合物,以及通过肠脑轴传递神经、激素和免疫信号。此外,它还参与营养物质的吸收,并作为病原体的上皮屏障。
过去十年间,一些研究评估了硒在约600个细菌和古细菌基因组中的应用。富含硒蛋白的生物体主要是δ-变形菌(Deltaproteobacteria)和梭菌(Clostridia),尤其是Syntrophobacter fumarroxidans,其原核硒蛋白瘤数量最高。
让我们一起来深入了解硒与肠道微生物群之间的复杂相互作用。
▸ 硒作为肠道菌群调节剂
饮食中的硒会影响宿主的硒状态和硒蛋白的表达。同时,肠道微生物群能够利用摄入的硒来合成自身的硒蛋白。硒的摄入影响微生物群的组成和定殖,可能干扰微生物多样性并产生独特影响。
▸ 硒的摄入影响部分菌群合成硒蛋白
约四分之一的细菌具有编码硒蛋白的基因,其中包括大肠杆菌、梭菌和肠杆菌类,它们能够定殖于人类和动物的胃肠道。硒半胱氨酸合酶(SelA)是一种吡磷酸依赖酶(PLP),它催化细菌中由UGA解码的tRNASec(SelC)生成硒半胱氨酸-tRNA,该tRNASec由硒磷酸合成酶(SelD)生成。
除了SelB外,SelA、SelC和SelD作为特异性翻译因子,也是细菌Sec解码的组成部分,允许Sec纳入特定的UGA密码子,并插入Sec元素序列。
硒蛋白通过提高造血PGD2合酶(HPGDS)的表达,影响肠道微生物群,HPGDS催化免疫细胞(如巨噬细胞和T细胞)中PGD2的合成。PGD2经过自发脱水和异构化生成前列腺素J2(Δ13-PGJ2)和Δ12-PGJ2,其中Δ12-PGJ1可转化为15-脱氧-Δ12,14-前列腺素J2(15d-PGJ2),从而缓解炎症。作为转录因子过氧化物酶体增殖物激活受体γ(PPARγ)的配体,PGD2代谢物可结合HPGDS启动子中的PPAR反应元件,进而上调其表达,从而形成前馈回路。
▸ 细菌酶的关键辅因子,影响代谢功能
锰、锌、硒和铁是细菌酶的关键辅因子,负责DNA复制和转录、抗氧化作用以及细胞呼吸。铁和锌是几乎所有生物体在代谢和氧化还原过程中使用的金属。某些物种需要硒来维持正常代谢功能,例如大肠杆菌的结构中有三种血清蛋白。
▸ 提高具有潜在保护作用的有益菌水平
有研究比较了不同剂量的硒膳食补充剂(缺乏、充足和过量)对小鼠肠道微生物群的影响。与缺乏硒饮食相比,适量的硒补充显著减少了Dorea属的丰度。
注:Dorea属是肠道微生物群中常见的一种,能够产生氢气和二氧化碳,并在多发性硬化症、炎症性肠病患者,甚至结直肠癌、自闭症谱系障碍以及肥胖人群中高丰度富集。
同时,提高了对结肠炎和肠道屏障功能障碍具有潜在保护作用的微生物水平(如AKK菌和Turicibacter)。硒补充还显著增加了肠道微生物的多样性和丰富度,有益菌的相对丰度随之提升,特别是Lactobacillus、Ruminococcaceae和Christensenellaceae的丰度显著增加。
此外,硒的补充能够促进短链脂肪酸的生成,特别是丁酸和丙酸等关键脂肪酸的合成。这些短链脂肪酸在增强肠道的抗氧化能力、减少炎症反应以及改善肠道屏障功能方面发挥着重要作用。
▸ 硒能够特异性抵抗病原菌如大肠杆菌
硒在复杂的肠道菌群环境中对病原菌(如大肠杆菌)具有特定的抗菌活性,同时不影响其他微生物群落的丰度。
硒的施用部分恢复了肠道微生物群,并促进了暴露于甲基汞的大鼠的甲基汞分解和排泄。约五分之一的肠道微生物能够表达血清蛋白,而硒的可用性也影响其表达,血清蛋白对细菌和哺乳动物宿主的多种活性至关重要。膳食硒会影响肠道微生物群的组成和胃肠道定植,从而影响宿主的硒状态和血清蛋白表达。
▸ 对肠道微生物群的影响取决于硒摄入量
肠道微生物群的调节受硒状态和其衍生物的生物转化影响。在硒摄入充足的情况下,肠道与宿主细菌之间的有益关系促进了硒化合物(如硒盐转化为SeMet和SeCys)的生物转化,维持稳态。
硒缺乏会导致大肠杆菌、梭菌和肠杆菌等细菌对硒的摄取增加,促进硒化合物的转化,结果是宿主的血清蛋白表达减少、硒免疫细胞激活减少、促炎细胞因子增加,以及炎症性肠病和癌症风险上升。
另一方面,过量摄入硒会增加Turicibacter、Akk菌和乳酸菌的吸收,促使硒酸盐的生物转化,并增加挥发性Se化合物的排放。
肠道微生物群的调节取决于硒状态

▸ 微生物群作为影响硒状态的环境
研究表明,肠道微生物群能够调节宿主对硒的摄取和生物转化,同时也可能影响硒的生物利用度。
▸ 肠道菌群能够代谢多种无机和有机硒
一项研究发现,肠道微生物群能够代谢多种无机和有机硒化合物,并将其纳入细菌蛋白中。含有SeMet的蛋白质作为宿主动物的硒储存,累积在肠道微生物群中。
此外,主要的尿素代谢物SeSug1被转化为可供营养利用的硒化合物。最后,部分生物硒化合物如SeCN、MeSeCys和SeSug1在肠道微生物群中提高了生物利用度。
▸ 过量细菌摄取硒可能导致宿主硒蛋白缺乏
尽管宿主与肠道微生物群通过共生关系相互受益,但在微量营养素供应有限时,它们可能成为竞争对手。
同时,肠道微生物群偏向于硒化合物的生物转化,肠道细菌对硒的过量摄取会影响宿主的硒蛋白表达,导致在硒受限条件下硒蛋白水平降低两到三倍。目前,尚未确认这种效应对人类和动物的不利后果。鉴于益生菌的显著增殖,应研究这些生物体内的硒代谢,以评估是否需要推荐更高的硒摄入。
▸ 部分细菌会根据硒来影响致病性
一些细菌物种能够通过硒影响细菌致病机制。在这种细菌感染中,宿主的免疫反应、微生物病原体、微生物群和宿主的硒状态之间存在复杂的相互作用。具有硒依赖酶的细菌能够在哺乳动物肠道的厌氧条件下存活,利用宿主的硒来增强其毒力和致病性。
硒缺乏会降低个体的免疫功能,使不需要硒的细菌得以存活,进而引发感染和疾病。同时,宿主的微生物群也可能因硒的存在而有所不同,硒可以通过竞争或产生对致病细菌有害的代谢物来防止依赖硒的细菌感染。
★ 硒、微生物群与疾病间存在重要联系
硒蛋白和血清蛋白在某些疾病的发病机制中可能发挥重要作用,特别是在炎症性肠病(IBD)、癌症、甲状腺功能障碍和神经发生性疾病中。硒状态可能影响核因子κB(NF-κB)转录因子和过氧化物酶体增殖物激活受体(PPARs)的表达,这些因子参与免疫细胞激活,导致不同阶段的炎症。
▸ 硒、微生物群与炎症性肠病
炎症性肠病(IBD)包括克罗恩病和溃疡性结肠炎,其特征是肠道菌群失调,导致肠道活动和分泌发生变化、内脏过敏(痛觉过敏)以及肠脑通讯功能衰竭。约30.9%的肠炎患者存在硒缺乏,这表明硒在改善IBD中的重要性,主要归因于其在降低炎症反应中的作用。
▸ 缺少硒会加剧氧化应激
核因子红细胞2相关因子2(Nrf2)似乎也参与上皮细胞的氧化还原稳态。在IBD动物模型中,缺乏Nrf2会增加炎症性细胞因子(如TNFα和IL-6)和COX-2的表达。而在足够的硒浓度下,Nrf2可促进TXNRD和GPX的表达。此外,研究表明血浆硒浓度与Nrf2相关基因表达呈正相关。缺乏Nrf2还会增强NF-κB活性,从而加剧氧化应激。
在IBD患者中,具有促炎活性的细菌,如大肠杆菌和梭杆菌会增加,而具有抗炎活性的细菌如Faecalibacterium prausnitzii、Clostridide leptum、prausnitzii和双歧杆菌会减少。其它细菌门与IBD患者摄入硒有关。克罗恩病和溃疡性结肠炎患者的膳食硒分别与厚壁菌门的存在呈正相关,与疣状菌门呈负相关。
▸ 补充硒或与益生菌联合使用可以改善肠炎
研究了用硒纳米颗粒(ULP-SeNPs)对DSS诱导的小鼠急性结肠炎的保护作用,发现主要益处包括减少结肠CD68、调节IL-6和TNF-α、巨噬细胞失活,以及抑制NF-κB的核易位。
使用SeCys和硒半胱氨酸治疗的动物显示活性氧和腺二铝(MDA)浓度降低,肠道中SOD和GPX活性增加,表明其对肠道黏膜具有保护作用。此外,SeCys治疗组的IL-1、MCP、IL-6和TNF-α水平显著下降。
报告指出,与仅补充L.casei的动物相比,使用含硒纳米颗粒的Lactobacillus casei ATCC 393能更好地保护免受肠道屏障功能障碍和大肠杆菌(Escherichia coli)K88肠道毒素感染相关的氧化应激,表明L.casei 393-SeNPs在维持肠道上皮完整性方面的能力。
▸ 硒、微生物群与癌症
研究显示,饮食中的硒不仅影响肠道微生物群的组成,还影响其胃肠道的定植,从而影响宿主的硒状态和血清蛋白表达。肠道微生物群对硒蛋白及其他与氧化还原稳态相关的分子的影响,可能调控氧化应激、凋亡、炎症和免疫反应,从而直接影响癌症风险。
▸ 硒缺乏的状态下会导致炎症细胞因子水平升高
Dorea属的细菌是肠道微生物群中最常见的物种之一,在缺乏硒的情况下会增加,并与肠易激综合征、癌症、多发性硬化症和非酒精性肝病有关。硒缺乏和血清蛋白表达不足会通过较高水平的炎症性细胞因子,尤其是在结肠水平,损害先天和适应性免疫反应。
肠道微生物群对血清蛋白及其他与氧化还原稳态相关分子的影响,可能影响氧化应激、凋亡、炎症和免疫反应的调控,而这些反应似乎直接影响癌症风险和发展。
▸ 富含有机硒的益生菌能有效消除结肠癌中的致病菌
另一方面,富含有机硒的益生菌可能成为消除炎症性肠病和结肠癌中致病细菌的有效替代方案。研究显示,口服富含硒的酿酒酵母可减少小鼠小肠中嗜酸性粒细胞过氧化物酶活性、组织病理损伤和氧化应激。
因此,强烈建议开展涉及硒富集以及营养保健品中血清蛋白和硒代谢物生物功能及生物可及性/生物利用度/生物活性的临床研究,以验证前期研究结果。
▸ 硒、微生物群与甲状腺功能障碍
甲状腺是体内硒含量最高的组织之一,多种参与甲状腺代谢的蛋白质中含有硒,包括GPX(I型和II型)、DIOs和TXNRD。结肠常驻微生物能代谢硒,微生物通过调节碘的吸收、降解和肠肝循环影响甲状腺水平。此外,一些矿物质在宿主与微生物群的相互作用中,尤其是硒、铁和锌,发挥重要作用。
▸ 菌群稳态对甲状腺功能和甲状腺激素的平衡至关重要
除了促进免疫系统健康,健康的肠道微生物群还积极影响甲状腺功能。虽然自身免疫性甲状腺疾病(AITDs)中的菌群失调已被发现,但甲状腺癌患者中也存在致癌和炎症细菌株数量增加的现象。
此外,肠道微生物群的组成对甲状腺所需的微量营养素,如硒和锌的可用性有重大影响,这些矿物质是将甲状腺素(T4)转化为三碘甲状腺原氨酸(T3)的脱碘反应的辅因子。缺乏这些矿物质可能源于任何阶段的限制性或不均衡饮食,导致甲状腺激素产生减少。
▸微生物群对硒的摄取影响甲状腺素的可用性
微生物群影响硒的摄取,可能改变L-甲状腺素的可用性以及丙硫尿嘧啶(PTU)的毒性。在正常硒水平下,甲氧还蛋白还原酶系统和SH-Px能保护甲状腺细胞免受过氧化物活性影响,而硒缺乏时,H2O2的凋亡反应则会增强。例如,乳杆菌(Lactobacillus)水平的降低可能干扰碘甲状腺原氨酸脱碘酶 (DIOs)的形成,导致甲状腺功能障碍。
一些乳杆菌物种能够在细胞内保持硒酸钠,如SeCys和SeMet,从而提供更具生物利用度的硒形式,而无机形式的硒通常被人类细胞吸收较差。因此,甲状腺疾病患者中乳杆菌的减少可能降低硒的生物利用度,并降低其在激活甲状腺激素转化中的作用。此外,硒还能防止其他激素合成过程中的氧化损伤。
▸ 乳杆菌有助于提高硒在人体的浓度
一项队列研究证实了肠道微生物群、甲状腺癌与甲状腺结节之间的关系。研究中,甲状腺癌组和甲状腺结节组的丁酸单胞菌属(Butyricimonas)和乳杆菌相对丰度显著降低(p < 0.001)。作者指出,乳杆菌是肠道中重要的属,能够提高包括硒在内的多种金属在人体细胞中的浓度。
在人体和大鼠研究中,肠道微生物群的多样性和结构可能在调节药物控制的甲状腺代谢中发挥多重作用。尽管已有研究证实甲状腺疾病与肠道微生物的关系,其他研究表明小肠细菌过度生长可能损害甲状腺功能。然而,硒缺乏症、甲状腺与肠道微生物群的致病作用尚未彻底确立,因此强烈建议进行更多临床研究。
▸ 硒、微生物群与心血管疾病
肠道微生物群的代谢潜力被确认是心血管疾病发展的一个促成因素。肠道微生物群产生脂多糖(LPS)和肽聚糖等信号分子,通常通过模式识别受体(PRR)与宿主的黏膜表面细胞相互作用。
▸ 甘氨酸甜菜碱还原酶的活性依赖于硒
此外,它们还通过三甲胺(TMA)/三甲胺-N-氧化物(TMAO)和短链脂肪酸等途径与宿主相互作用。其中一些分子已被证实能与胃饥饿素、瘦素、胰高血糖素样肽1(GLP-1)和肽YY(PYY)相互作用,并刺激副交感神经系统,从而影响心血管疾病相关的代谢过程。
TMAO因其可能促进动脉粥样硬化、心血管代谢疾病、动脉高血压、缺血性中风、心房颤动、心力衰竭和急性心肌梗死而备受关注。肠道微生物群代谢磷脂酰胆碱和L-肉碱,产生三甲胺(TMA),随后由宿主肝酶进一步转化为TMAO。多种酶参与将膳食成分转化为TMA的过程。其中,甘氨酸甜菜碱还原酶(GrdH)是一种需要硒的酶,负责甘氨酸甜菜碱生成的TMA。
▸ 硒、微生物群与血糖失调
一项研究发现,喂养高脂饮食的小鼠血浆中脂多糖(LPS)浓度较高。脂多糖是革兰氏阴性细菌的易位标志物,与胰岛素抵抗、肥胖和糖尿病密切相关。在此背景下,双歧杆菌的存在与肠道中较低的LPS浓度相关,从而降低代谢疾病的发生率。此外,双歧杆菌还降低了2型糖尿病(DM2)患者的肠道通透性。
▸ 双歧杆菌与硒联合使用改善葡萄糖耐受性
双歧杆菌与硒联合使用时对糖尿病的作用更为显著。富含硒酸钠的双歧杆菌(B.longum DD98,Se-B)能改善糖尿病小鼠的口服葡萄糖耐受性,提高胰岛素敏感性并保护胰腺β细胞。
这些效应呈剂量依赖性,表明适当剂量对B.longum DD98和Se-B的疗效至关重要。还评估了在糖尿病C57BL/6小鼠中硒与微生物联合补充的效果,报告称使用富含硒的提取物可缓解因氧化应激引发的肝损伤。
▸ 硒有助于提高丁酸盐丰度来改善胰岛素抵抗
预防和治疗胰岛素抵抗的其他机制与短链脂肪酸(SCFAs)产生相关,特别是丁酸盐。在2型糖尿病鼠中增加丁酸盐浓度,辅以益生菌,可以降低糖化血红蛋白(HbA1c)水平,改善葡萄糖耐受性和胰岛素抵抗。
此外,施用硒纳米颗粒(0.9mg/kg)可增加丁酸盐及益生细菌如乳杆菌和粪杆菌的含量。口服B.longum DD98和Se-B后,在小鼠粪便中发现高浓度的丁酸、醋酸和异丁酸。
丁酸盐对于胰岛素的积极作用似乎与GLP-1水平升高有关,GLP-1进一步降低2型糖尿病患者的血糖。研究显示,益生菌VSL #3能预防和治疗小鼠的肥胖与糖尿病,机制涉及益生菌-肠道菌群-丁酸-GLP-1轴,促进代谢效率。因补充B.longum DD98和Se-B也促进GLP-1分泌并保护β细胞,因此有学者推测硒在该轴上可能作为调节糖尿病有害影响的因子。
▸ 硒、微生物群与神经系统疾病
随着研究发现某些肠道细菌能产生类激素和单胺类神经递质,微生物群-肠道-大脑轴的机制逐渐明晰。这种双向互动使大脑、胃肠功能与免疫反应之间可以相互影响。
▸ 硒具有一定的神经保护作用,配合益生菌使用效果更佳
神经退行性疾病的特征是活性氧(ROS)的产生增加,血脑屏障功能下降。由于硒的抗氧化特性,一些硒蛋白具有神经保护作用。例如,硫氧还蛋白还原酶(TXNRD)维持氧化还原平衡,保护多巴胺能细胞,这些细胞在帕金森病的病理生理中易受氧化应激影响。
有研究显示,与单独施用酿酒酵母(Saccharomyces cerevisiae)相比,补充富硒酵母(Selemax)可降低自身免疫性脑脊髓炎(EAE)发病率,增加CD103⁺树突状细胞数量,并减轻肠道炎症。
此外,富硒酵母通过促进中枢神经系统中tau蛋白表达发挥神经保护作用。Tau是维持神经元微管及MAPs(MAP1、MAP2)稳定性的关键蛋白。在阿尔茨海默病(AD)三重转基因小鼠模型中,连续3个月补充富硒酵母显著改善了空间学习、记忆和神经活动。
在一项人类研究中,含乳杆菌(Lactobacillus)、两歧双歧杆菌(Bifidobacterium bifidum)和长双歧杆菌(Bifidobacterium longum)(各2×109 UFC)及硒协同补充(200微克/天,硒酸钠)在阿尔茨海默病患者中改善了认知功能和代谢特征。
了解并判断自身硒含量是否处于健康范围,对于维持机体平衡与疾病预防非常重要。硒含量取决于摄入量、保留量和代谢情况。因此,硒含量可以通过摄入、保留/排泄和浓度等生物标志物以及功能性生物标志物在三个层面进行评估。
硒的生物标志物

摄入评估
硒摄入量可通过食物摄入评估方法,如食物频率问卷进行估算,食物中的硒含量则依据食物成分表计算。
▸ 通过膳食摄入评估硒不够精确
由于食物成分表的精确度有限,加之土壤硒含量差异较大,评估饮食中硒的实际摄入仍具挑战。此外,饮食中的硒还会影响肠道微生物定植,从而调节宿主硒状态及硒蛋白的表达。
体内硒的评估
体内硒含量可通过摄入量与尿液、粪便中排泄量之差评估,这需连续数天收集排泄物。另一种方法是测定尿液中硒与肌酐浓度的比值,以减少排泄变异带来的误差。肾脏是吸收后硒的主要排出途径。遗传、环境、体型、年龄及性别等因素均会影响硒的保留与排泄。
▸ 尿液硒有助于成为评估职业暴露的敏感指标
尿液中硒浓度的测量被认为是群体研究中硒状态的潜在可行生物标志物,并且硒摄入增加会导致尿液中硒排泄迅速上升。因此,尿液硒可能是评估短期职业性硒暴露的敏感指标,但其特异性与代谢动力学仍有待深入研究。
此外,尿液中硒的浓度可用于识别硒状态的区域差异,可能反映土壤类型不同食物中硒含量的差异。
▸ 指甲和头发中的硒可反映长期水平
指甲中硒浓度被视为评估硒状态的高级生物标志物,可反映长达一年的长期暴露,而血液指标仅代表短期状态。趾甲因生长缓慢、采集方便、受外部污染影响小,被广泛用于大型流行病学研究。
为提高其实用性,样本采集、质量控制和分析方法的标准化至关重要。指甲中硒与血清蛋白P(SELENOP)及有机硒形式(尤其是SeCys)呈正相关,而与无机硒(如亚硒酸和硒酸)呈负相关,这可能与富含半胱氨酸的指甲蛋白易与硒结合有关。
头发硒常用于长期监测硒状态,具有成本低、样本易储存等优点。头发和指甲中的硒主要为排泄形式,更适用于饮食模式相对稳定的人群研究。
▸ 血浆硒是反映硒浓度较准确的标志物
由于硒在血浆中较为稳定,血浆硒浓度被认为是评估人体硒状态的理想生物标志物。一项系统综述建议在成人补充研究中采用该指标。血浆硒测定能有效反映高基线个体补充后摄入量的变化。此外,红细胞和全血硒浓度也被认为是反映长期硒状态的有用指标。
硒功能的生物标志物
硒功能的生物标志物包括血清蛋白P(SELENOP),其占血浆中硒的20–70%;谷胱甘肽过氧化物酶3(GPX3)占血浆中硒的10%至25%,以及谷胱甘肽过氧化物酶(GPX1),可在红细胞、淋巴细胞、口腔细胞和组织活检样本上检出。
▸ 血清蛋白P是评估低硒摄入人群的重要标志物
血清蛋白P(SELENOP)被认为是硒摄入量较低人群中硒状态的有用生物标志物,但在补充前已高硒水平的人群中不适用。SELENOP已被证明是可靠且敏感的硒状态生物标志物,能够提供剂量反应,用于估算达到血浆中硒水平所需的硒摄入量。
谷胱甘肽过氧化物酶(GPX)是细胞抗氧化防御系统中的关键硒蛋白。推荐的硒摄入量基于维持血浆GPX3最佳活性的血清蛋白层级结构计算,同时考虑达到生理正常硒水平所需的摄入量。
硒补充策略
硒的膳食来源我们前文中有讲过,为了更方便大家我们这里再作简单归纳:
⑴天然食物来源
植物性食品:
•巴西坚果:最丰富的天然来源;
•富硒蔬菜:大蒜、洋葱、蘑菇、西兰花等具有强硒富集能力;
•谷物作物:硒含量取决于种植土壤条件,一般范围0.1-1.0μg/g。
动物性食品:
•海产品:鱼类硒含量49-739μg/kg新鲜重量;
•内脏器官:肝、肾等可达1500μg/kg;
•奶制品和蛋类:硒水平受动物饲料影响显著。
⑵人工强化与补充策略
土壤施肥:
使用亚硒酸钠等硒肥,显著提高作物硒含量。
优点:成本低、覆盖广;
缺点:硒利用率受土壤pH、有机质等影响。
动物饲料添加:
直接添加亚硒酸钠或硒酸盐至饲料,通过富硒肥料→植物→动物的食物链传递。
食品加工强化:
开发硒强化食盐、调味品等日常食品;
通过富含硒的食品补充:如富硒的大米、富硒的鸡蛋、富硒的蘑菇、富硒的茶、富硒的麦芽等。
⑶膳食补充剂形式
无机硒补充剂:
•亚硒酸钠:常用补充形式,生物利用度较高;
•硒酸钠:吸收效率优于亚硒酸钠。
有机硒补充剂:
•富硒酵母:酿酒酵母在硒强化培养基中培养,硒主要以硒代蛋氨酸形式存在,硒含量可达3000μg/g,是当前最常用的补充形式。
•特定有机硒化合物:硒代蛋氨酸(SeMet)、甲基硒代半胱氨酸(SeMCys)、γ-谷氨酰-硒甲基硒代半胱氨酸。
新型补充剂:
•靶向性硒纳米制剂;
•缓释控释型硒补充剂;
•复合型抗氧化补充剂。
剂量与个性化补充
⑴推荐摄入量
最低需求:20μg/天(预防克山病);
推荐膳食供给量(RDA):50-60μg/天。
⑵安全阈值
上限摄入量:400μg/天(预防敏感个体风险);
可观察不良反应水平:850μg/天;
中毒剂量:≥1262μg/天出现临床硒中毒症状。
⑶个体化因素
基础硒状态:缺乏个体补充效果显著,充足个体可能无效甚至有害;
遗传因素:硒蛋白基因多态性影响硒需求;
健康状况:糖尿病、癌症等疾病状态改变硒代谢。
⑷特殊生理状态
孕期哺乳期:保证胎儿/婴儿硒需求,但不超过安全上限;
老年人:维持抗氧化功能,预防年龄相关疾病。
⑸疾病辅助治疗
癌症患者:200μg/天可能改善生活质量,但需注意皮肤癌风险;
HIV感染:补充改善免疫状态,减少机会性感染;
自身免疫性甲状腺炎:200μg/天硒代蛋氨酸改善抗体水平。
综观现有研究,硒不仅是维持生命活动的关键营养素,更是连接宿主代谢、免疫调控与肠道微生态的重要枢纽。它的作用早已超越传统意义上的抗氧化功能,而体现出复杂的系统性影响——既可通过硒蛋白调节炎症与代谢通路,又能借助肠道菌群实现间接的免疫与能量调控。硒与微生态的互作揭示了营养、代谢与疾病之间更为精细的耦合关系,也为理解“营养–肠道–健康”轴提供了新的生物学视角。
从应用层面看,硒可能成为调节肠道稳态与疾病防治的重要介质。合理利用不同形态的硒结合益生菌干预,有望在炎症性肠病、代谢疾病及神经退行性疾病等多领域实现营养精准化治疗。然而,硒的双刃性决定了补充策略必须建立在精准评估与个体差异分析的基础上,否则可能适得其反。
未来,应整合多组学技术和系统生物学方法,深入揭示硒在肠道生态网络中的动态平衡机制,明确宿主–微生物–营养三者间的信号通路。此外,将硒研究与临床实践相结合,探索其在疾病预防、药物增效及衰老干预中的潜在价值,也将成为实现“营养干预精准化”的关键方向。
硒不仅是维系健康的微量元素,更是揭示人体与微生态共生逻辑的重要线索。深入认识硒的多维作用,或将推动未来营养学、微生态医学与精准治疗的融合发展。
注:本账号发表的内容仅是用于信息的分享,在采取任何预防、治疗措施之前,请先咨询临床医生。
主要参考文献
Bai S, Zhang M, Tang S, Li M, Wu R, Wan S, Chen L, Wei X, Feng S. Effects and Impact of Selenium on Human Health, A Review. Molecules. 2024 Dec 26;30(1):50.
Ferreira RLU, Sena-Evangelista KCM, de Azevedo EP, Pinheiro FI, Cobucci RN, Pedrosa LFC. Selenium in Human Health and Gut Microflora: Bioavailability of Selenocompounds and Relationship With Diseases. Front Nutr. 2021 Jun 4;8:685317.
Sun Y, Wang Z, Gong P, Yao W, Ba Q, Wang H. Review on the health-promoting effect of adequate selenium status. Front Nutr. 2023 Mar 16;10:1136458.
Zhang F, Li X, Wei Y. Selenium and Selenoproteins in Health. Biomolecules. 2023 May 8;13(5):799.
Genchi G, Lauria G, Catalano A, Sinicropi MS, Carocci A. Biological Activity of Selenium and Its Impact on Human Health. Int J Mol Sci. 2023 Jan 30;24(3):2633.
Rayman MP. Selenium intake, status, and health: a complex relationship. Hormones (Athens). 2020 Mar;19(1):9-14.
Schomburg L. Selenium Deficiency Due to Diet, Pregnancy, Severe Illness, or COVID-19-A Preventable Trigger for Autoimmune Disease. Int J Mol Sci. 2021 Aug 8;22(16):8532.
Wrobel JK, Power R, Toborek M. Biological activity of selenium: Revisited. IUBMB Life. 2016 Feb;68(2):97-105.
Hadrup N, Ravn-Haren G. Absorption, distribution, metabolism and excretion (ADME) of oral selenium from organic and inorganic sources: A review. J Trace Elem Med Biol. 2021 Sep;67:126801.
Callejón-Leblic B, Selma-Royo M, Collado MC, Abril N, García-Barrera T. Impact of Antibiotic-Induced Depletion of Gut Microbiota and Selenium Supplementation on Plasma Selenoproteome and Metal Homeostasis in a Mice Model. J Agric Food Chem. 2021 Jul 14;69(27):7652-7662.
Callejón-Leblic B, Selma-Royo M, Collado MC, Gómez-Ariza JL, Abril N, García-Barrera T. Untargeted Gut Metabolomics to Delve the Interplay between Selenium Supplementation and Gut Microbiota. J Proteome Res. 2022 Mar 4;21(3):758-767.
谷禾健康


写在前面
《基于肠道菌群思考饮食》
所谓“病从口入”,饮食是人类健康的核心。
有没有发现这样一种现象?我们的日常饮食正在向西式饮食过渡,与此同时,各类慢性病正日渐侵蚀。
近期在《CELL》子刊上接连发表了好几篇关于肠道菌群和健康饮食以及疾病的发生等循证科研研究和综述,谷禾长期的肠道菌群检测实践中也发现各种干预措施和用药治疗均需要考虑饮食营养的部分,结合肠道菌群的干预将起到更有效更长期的效果,例如炎症性肠病患者干预治疗期间,需要结合营养调整或补充来重塑肠道菌群和免疫平衡。
一系列严格的前瞻性队列研究和随机对照试验为健康饮食的特征提供了有力的验证:
蔬菜和水果、全谷物带来益处,加工食品带来有害影响。
然而,仍然存在许多争议,大家可能对“健康饮食”这个概念停留在模糊层面,依然存在许多困惑例如:


本文我们试着从微生物组科学的角度,讨论基于食物的饮食指南和健康饮食的各个方面,尽可能将我们已了解的科学知识融入其中,当然讨论仅限于针对普通人群的健康促进和疾病预防建议,这也是基于肠道菌群和食物营养的饮食推荐的目的。
以食物为基础的饮食指南提供了关于食物、食物组分和饮食模式的建议,以实现营养素的参考摄入量,预防慢性病,并维持普通人群的整体健康。
下表显示了过去10年中更新的国外基于食品的饮食指南的关键信息的非详尽概述,这些指南分为最常见和补充食品组:蔬菜和水果、谷物制品、乳制品、肉类和肉类替代品和加工食品。
非详尽的国家以食物为基础的膳食指南清单和一般成年人的食物组推荐摄入量



doi.org/10.1016/j.chom.2022.04.016
2022年4月26日,《中国居民膳食指南(2022)》发布,提出了平衡膳食八准则:
不同的饮食文化国家的指导原则,有很强的一致性,所有指南都在告诉我们:
建议限制或避免添加高糖、高盐和高饱和脂肪的食品,一些国家特别提到避免加工、超加工和/或包装食品。
一半以上的饮食应包括蔬菜、水果和谷物产品,全谷物优先于精制谷物。这些饮食需要补充少量的动物性蛋白质(鱼类、瘦肉、家禽、鸡蛋和乳制品)和/或植物性蛋白质(豆类、坚果)。
下面,我们在微生物组的背景下讨论饮食指南,重点是人类研究,尽管存在局限性(例如,大剂量给药和向人类转化),但动物模型在建立分子机制和因果关系方面存在优势。
在所有饮食指南中:
✔建议食用蔬菜、水果、全谷类、豆类和坚果等全植物食品
✖ 应限制摄入添加糖、盐或饱和脂肪的加工食品
膳食纤维
全植物食品是膳食纤维的唯一相关天然来源,膳食纤维是一种难以消化的碳水化合物聚合物,在化学成分、物理化学性质和生理效应方面有很大的不同。
与肠道微生物群特别相关的是可发酵纤维,也称为微生物群可获得碳水化合物(MAC),如果它们显示出与对微生物群的选择性影响相关的既定健康益处,则为益生元。
纤维为抑制粘液聚糖代谢的微生物提供生长基质,防止肠道粘液耗尽、细菌侵入粘液层、下游炎症和感染。
纤维发酵的主要最终产物是短链脂肪酸 (SCFA),即乙酸盐、丙酸盐和丁酸盐,它们会引起多种生理效应。
这些影响包括:
高纤维饮食可降低心脏病发作、中风和心血管疾病的风险。
近期,一项纵向、随机、交叉设计主要研究两种流行的纯化纤维,阿拉伯木聚糖 (AX) 和长链菊粉 (LCI),结果发表在《CELL Host & Microbe》.
该研究显示了单个纯化纤维对微生物组的影响,深入了解了纤维补充剂的影响以及纤维诱导的胆固醇降低背后的机制。

doi.org/10.1016/j.chom.2022.03.036
结果表明 ↓↓↓
阿拉伯木聚糖:
长链菊粉:
总的来说,每一种纤维都可引起个体化和纤维特异性的生化和微生物群反应,因此,膳食纤维对健康的益处因人而异,可能还取决于具体摄入的纤维类型和摄入剂量。
植物化学物质
全植物食品的另一个关键成分是植物化学物质,它们是非营养和生物活性化合物,通常与膳食纤维结合,赋予植物颜色、风味、气味和涩味。
大多数 (90%–95%) 的植物化学物质不会被小肠吸收,因此会与肠道微生物群进行双向相互作用。
肠道微生物负责通过去甲基化、开环和脱羟基等过程对植物化学物质进行生物转化,从而增加它们的生物利用度、吸收以及抗氧化和免疫调节作用。
全植物食品对肠道微生物群的影响及对宿主生理、免疫、代谢和疾病风险的影响

doi.org/10.1016/j.chom.2022.04.016
尽管全植物食品具有有益的效果,但工业化国家的全植物食品消费量始终低于建议的水平,而包装食品经过不同程度的加工。
根据NOVA食品分类工具,食品加工程度是饮食质量的主要驱动因素,加工程度最高的食品被归类为“超加工食品”。其有害影响(增加能量摄入和体重增加)已在严格控制喂养研究中得到实验验证。然而,超加工食品的定义或此类食品的示例几乎没有一致性,关于避免所有超加工食品而不考虑其个别营养属性的全面建议存在争议。
加工食品如何带来不利影响?
加工食品的功能特性与全植物食品有着根本的不同。加工食品通常具有较高的能量密度,并且缺乏植物细胞中存在的三维结构。因此,营养素主要是无细胞的(即不包含在细胞内),更容易被宿主消化,这增加了营养素吸收动力学。
这些容易发酵的营养素可能会促使小肠中的细菌过度生长,以及不利的微生物组成和代谢状况,从而对免疫和内分泌功能产生负面影响,而结肠微生物群无法获得这些营养素。
例如,高果糖玉米糖浆已被证明会导致小鼠脂肪肝和葡萄糖不耐受,其方式与肠道微生物群组成和功能变化有关。
加工食品:食品添加剂影响菌群
加工食品中的食品添加剂,可以进一步提高口感和保质期,但是会影响肠道微生物群。
合成乳化剂羧甲基纤维素(CMC)和聚山梨酯-80损害肠道屏障功能,导致微生物群侵占上皮,促进野生型小鼠的代谢异常和轻度炎症,以及遗传易感小鼠的结肠炎,其方式与肠道微生物群有因果关系。
在另一种乳化剂甘油单月桂酸盐的小鼠中也观察到类似的结果。人类短期食用CMC也会显著改变微生物群组成,降低粪便短链脂肪酸水平,并诱导细菌侵入粘液层。
加工食品中的高盐含量也可能改变微生物群。盐的摄入降低了乳酸菌的丰度,这与小鼠小肠固有层淋巴细胞和人类外周血淋巴细胞中辅助性T细胞17的数量增加以及血压升高有关。
另一项针对小鼠的研究报告了类似的结果,其中高盐饮食降低了乳酸菌的丰度,增加了促炎基因的表达,并加剧了两种不同疾病模型中的结肠炎。
因此,现有证据表明,加工食品和全植物食品对人类健康的对比效应部分是由肠道微生物组介导的。
加工食品对肠道微生物群的影响及对宿主生理、免疫、代谢和疾病风险的影响

doi.org/10.1016/j.chom.2022.04.016
更多关于食品添加剂与菌群详见之前的文章:
你的焦虑可能与食品添加剂有关,警惕食品添加剂引起的微生物群变化
根据饮食指南,健康饮食的最大组成部分应该是蔬菜和水果。目前关于蔬菜水果预防多种慢性病的能力的科学证据十分有力。
▸蔬菜水果富含膳食纤维
水果和蔬菜每份可提供高达 8g 的膳食纤维,并含有多种纤维,包括果胶、菊糖、纤维素、木聚糖、棉子糖和水苏糖。这些纤维引发微生物组独立(例如延迟的大量营养素吸收)和微生物组依赖(例如短链脂肪酸介导的胰岛素抵抗衰减)生理效应。
人类对照喂养实验发现,富含菊糖的蔬菜可提高双歧杆菌水平,促进饱腹感,并减轻体重。
在喂食高脂肪饮食的小鼠中,抗生素治疗降低了菊糖的代谢益处,比如降低这些益处:在小肠中诱导肠促胰岛素激素胰高血糖素样肽1和对代谢综合征的保护,这表明微生物群的因果作用。
▸蔬菜和水果也是植物化学物质的重要来源
包括多酚、硫代葡萄糖苷、萜类、植物甾醇和生物碱。
蔓越莓提取物是一种多酚类物质的丰富来源,在高脂高糖饮食的小鼠中诱导代谢改善(例如,减少内脏肥胖和改善胰岛素敏感性),这与 Akkermansia muciniphila的增加有关。
注:Akkermansia muciniphila菌在动物和人类中都显示出有益生理效应。关于该菌详见之前文章:
肠道重要菌属——Akkermansia Muciniphila,它如何保护肠道健康
Nature | AKK菌——下一代有益菌
从临床研究和临床前研究中,也有新的证据表明微生物组在西兰花的生理效应中发挥作用。后者为西兰花衍生的硫代葡萄糖苷生物活性转化为化学预防性异硫氰酸酯奠定了拟杆菌的遗传和生化基础。
总的来说,现有证据支持肠道微生物群在调解蔬菜和水果对健康的影响方面的作用。
食物对宿主-微生物相互作用的影响以及它们如何与膳食指南中的建议保持一致

doi.org/10.1016/j.chom.2022.04.016
扩展阅读:常见水果对肠道菌群、肠道蠕动和便秘的影响
大多数饮食指南建议食用全谷物而非精制谷物。全谷物的麸皮层被去除以生产精制谷物,含有植物化学物质(如阿魏酸、类黄酮)和膳食纤维。
▸ 全谷物含有独特纤维,抗炎作用与菌群相关
全谷物含有独特的半纤维素纤维,如木聚糖和β-(1→ 3,1 → 4)—除纤维素、抗性淀粉和低聚糖外,还有葡聚糖。全谷物能够降低慢性病风险的证据基础是令人信服的。人类干预试验表明,全谷物的抗炎作用与肠道微生物群的变化是并行的。
在健康成年人中,显示了对健康有益微生物的富集,如双歧杆菌和产丁酸菌(直肠真杆菌Eubacterium rectale、Roseburia faecis, Roseburia intestinalis),产短链脂肪酸菌Lachnospira增多,粪便乙酸盐和总短链脂肪酸增加,肠杆菌科减少。
虽然微生物组的变化为抗炎作用提供了潜在的解释,但这些研究之间并不一致;进一步的研究报告没有任何影响,也没有确定因果关系。
▸ 全谷物的部分代谢益处是由肠道菌群介导的
将人类研究与小鼠实验相结合的研究表明,微生物组对全谷物的健康影响具有因果关系。
食用大麦仁面包的人被分为“响应者”和“无响应者”,“响应者”的葡萄糖代谢因干预而得到改善。
响应者普氏菌/拟杆菌属比率和Prevotella copri丰度升高,以及编码复杂多糖降解的微生物基因在应答者中升高。
关于Prevotella copri菌详见:肠道重要基石菌属——普雷沃氏菌属 Prevotella
无菌小鼠灌胃普氏杆菌或含有P.copri的“应答者”人源性微生物群后,喂食标准食物后,葡萄糖耐量有所改善,这在机制上与肝糖原储存增加有关。
进一步的研究证实,在基线时含有高水平的普雷沃氏菌,会导致体重过重,且食用富含全谷物的饮食的个体的体重减轻。
一些饮食指南(加拿大的食品指南、巴西人口的饮食指南和英国的Eatwell指南)建议经常食用植物蛋白食品(如豆类、坚果),因为它们对人类健康有益。
豆类
豆类富含纤维,特别是纤维素、果胶、甘露聚糖、水苏糖、棉子糖和抗性淀粉。
豆科植物还含有黄酮醇等植物化学物质,黄酮醇是一种已知的抗炎类黄酮亚类,还含有酚酸,与谷物中的酚酸相比,豆类中酚酸的生物利用率更高。
新出现的证据表明,肠道微生物群在豆科植物的健康影响中发挥着作用。
例如,绿豆补充剂减少了喂食高脂肪饮食的小鼠的体重增加和脂肪积累,但没有减少喂食相同饮食的无菌小鼠的体重增加和脂肪积累。
坚果
坚果是不饱和脂肪酸、纤维和植物化学物质的来源,所有这些都可能影响宿主与微生物的相互作用。
在一项控制喂养研究中,每天补充核桃可增加粪杆菌属(Faecalibacterium)、罗氏菌属(Roseburia)、梭菌(Clostridium)和戴阿利斯特菌(Dialister)。
在一项杏仁对照喂养研究中观察到了类似的成分变化,显示罗氏菌属(Roseburia)、梭菌(Clostridium)、戴阿利斯特菌(Dialister)和毛螺菌属(Lachnospira)的相对丰度增加。
坚果对罗氏菌属丰度的影响也已在meta分析中得到证实。
主要产丁酸菌如Roseburia intestinalis能够将坚果中难以消化的聚糖β-甘露聚糖代谢为丁酸盐。
坚果中的omega-3脂肪酸也可能增强罗氏菌属,因为在人类中,补充核桃的饮食和不含核桃的具有相同脂肪酸组成的饮食都增加了罗氏菌属的相对丰度。
除了坚果中的纤维和不饱和脂肪酸外,肠道微生物还将植物化学物质鞣花单宁和鞣花酸代谢为尿石素,尿石素是一种生物活性抗炎化合物。
总之,增加坚果摄入量似乎在一定程度上通过影响微生物群的功能成分对宿主健康有益。
抗炎看到目前研究将植物性蛋白质食品的益处与微生物组联系起来,但该领域的研究仍处于初步阶段。
植物性蛋白质比动物性蛋白质更不易消化并因此为结肠微生物提供潜在的底物,这可能导致产生有益的生物活性代谢物,例如色氨酸代谢。然而,蛋白水解微生物发酵也可能有害(见下文讨论——红肉和加工肉)。目前尚不清楚植物蛋白微生物发酵产生的代谢结果是否不同于动物蛋白,需要进一步研究。
饮食指南一直鼓励把鱼类作为优质蛋白质来源和良好的脂肪酸组成。
多脂鱼类
多脂鱼类是长链ω-3脂肪酸二十碳五烯酸(EPA)和二十二碳六烯酸(DHA)的主要天然膳食来源之一。
观察研究和干预研究的有力证据表明,多脂鱼摄入量的增加具有心脏保护作用,肠道微生物群可能是这些健康影响的潜在中介。
鱼油
小鼠实验表明,与猪油(富含饱和脂肪)相比,鱼油降低了 Toll 样受体激活和白色脂肪组织炎症,这与改善胰岛素敏感性有关。
除了这两种脂肪对微生物群组成的不同影响(猪油增加Bilophila菌)之外,与传统猪油喂养的小鼠相比,喂食鱼油的无菌小鼠和喂食抗生素的小鼠的盲肠微生物群定植后,体重减轻,白色脂肪组织炎症减轻。
这项研究为肠道微生物群在饱和脂肪的炎症作用中的因果作用提供了证据。
尚未在人类身上做出因果推论,但在多脂鱼和其他饮食来源中发现的 omega-3 脂肪酸已被提议作为候选益生元,因为它们被特定的肠道微生物利用。
在一项随机对照试验中,鱼源性 omega-3 补充剂增加了Coprococcus的丰度,与富含甘油三酯的脂蛋白水平呈负相关。
因此,肠道微生物组可能是多不饱和脂肪酸心脏保护作用的介质。
以上各种饮食推荐都接近一种饮食模式,那就是地中海饮食,作为现在十分流行的饮食模式之一,
地中海饮食有什么独特之处?
对菌群有哪些影响?
接下来详细了解一下地中海饮食。
我们逐渐开始有这样一个认识,健康不止是受个别食物的影响,而是受其相互联系和协同效应的影响。因此,最近更新的几项饮食指南,如《中国饮食指南2022》、《2020-2025年美国人饮食指南》、《加拿大食品指南》等对饮食模式的关注发生了转变。
食物之间的相互作用也与它们对肠道微生物群的影响有关,人们对饮食模式,尤其是那些具有既定健康益处的饮食模式(如地中海饮食)如何通过微生物群组成和功能变化影响宿主健康感兴趣。
▸ 地中海饮食结合了许多对宿主微生物相互作用具有有利影响的食物组
地中海饮食推荐蔬菜、水果、全谷类、豆类、坚果和橄榄油作为主食,适度摄入鱼类、家禽、鸡蛋和乳制品,并限制摄入红色和加工肉类及加工食品。
在对体重超标的个体进行的一项随机对照试验中,与对照饮食相比,坚持地中海饮食可降低血浆胆固醇浓度,并增加了产丁酸菌普拉梭菌(F. prausnitzii)和罗氏菌属(Roseburia) 的丰度。F.prausnitzii和Roseburia也是通过随机森林模型确定的分类群,这些模型可以最好地预测饮食依从性得分。
▸ 地中海饮食改善老年人认知
在一项大型多中心随机对照试验中,该试验涉及了连续12个月食用地中海饮食的老年人。这些分类群与认知功能的改善呈正相关,与炎症标志物和虚弱呈负相关。
▸ 地中海饮食降低心肌梗死风险
在一项前瞻性队列研究中,长期坚持地中海饮食与F. prausnitzii, Eubacterium eligens, Bacteroides cellulosilyticus 呈正相关。这项研究进一步表明,与那些携带P.copri的人相比,P.copri丰度较低且坚持地中海饮食的人心肌梗死风险较低。
对地中海饮食的微生物组学研究强调了其在饮食建议中的重要性。最近部分国家更新的饮食指南推荐了类似地中海饮食的饮食模式,如阻止高血压的饮食方法(DASH)饮食,并对微生物组在调节其健康影响中的作用进行了研究。
虽然饮食指南已经演变为反映新的可用证据,并普遍同意其建议,但争议仍然存在。
在这里,我们讨论了宿主-微生物相互作用如何提供洞察力来帮助解决这些争议。
红肉含有必需的微量营养素,是重要的优质蛋白质来源。然而,大多数饮食指南建议只适度食用,同时建议避免食用加工肉类(盐腌、腌制和烟熏的肉类)(表1)。
▸ 红肉和加工肉类引争议?
在癌症预防方面,这些评估由国际癌症研究机构(IARC)和世界癌症研究基金会共同进行。尽管有这些一致的建议,但2019年的一系列系统性审查得出结论,成年人应该继续目前的红肉和加工肉摄入量,理由是它们与不良健康结果的联系的证据不足。这引发了营养领域的争议。
肠道菌群为这场争论提供了另一个视角
肠道微生物对红肉和加工肉类的蛋白水解发酵会导致产生潜在的有害代谢物,例如氨、对甲酚和硫化氢。
▸ 红肉和加工肉→产硫化物菌发酵→可能致癌
硫化氢是由脱硫弧菌等细菌发酵含硫氨基酸产生,并作为粘液溶解剂,可以增加小鼠肠道通透性。
这使得同样存在于红肉和加工肉类中的血红素能够增加肠道中的过度增殖和增生,抑制肿瘤抑制基因,并激活致癌基因,所有这些都是致癌的潜在原因。
抗生素给药抑制了小鼠的这些影响,表明肠道微生物群的因果作用。在人类中,产生硫化物的细菌和途径与晚期结直肠癌密切相关。
▸ 红肉和加工肉→TMAO→心血管疾病
肠道微生物将肉制品中大量存在的左旋肉碱和磷脂酰胆碱转化为三甲胺,三甲胺被含肝黄素的单加氧酶 (FMO) 氧化为三甲胺-N-氧化物 (TMAO)。
TMAO 在血浆中循环并由肾脏有效排泄,并在动物模型中与心血管疾病有因果关系。观察性研究报告了 TMAO 水平与心血管疾病风险之间的强正相关关系。然而,动物实验并不一致,而人类中的 TMAO 水平经常被混淆并可能由肾功能下降引起。
此外,TMAO 范式与将富含 TMAO 及其前体的脂肪鱼与有益的心脏代谢结果联系起来的流行病学发现不一致。
肉类以外的食物(即十字花科蔬菜)可以抑制 FMO3 的活性,使研究结果更加复杂。
为了阐明源自肉类产品的 TMAO 的因果贡献,需要在人类中进行足够持续时间的控制喂养试验,以评估经过验证的心血管疾病的替代标志物。
▸ 加工肉类含有瘦红肉中不存在的其他化合物,这些化合物可能会放大微生物介导的有害影响
大多数加工肉类富含饱和脂肪,可刺激小肠中的肝胆汁酸分泌。
一些初级胆汁酸逃脱肠肝再循环并进入大肠,在那里它们被微生物转化为次级胆汁酸。其中,脱氧胆酸和石胆酸可引起氧化应激和 DNA 损伤,并与结肠癌发生有关。
一项荟萃分析发现,在结直肠癌患者中,肠道微生物组功能特征的特征是次级胆汁酸的产生增加。而一项系统评价表明饱和脂肪会降低微生物的丰富度和多样性。
此外,加工肉类中使用的固化剂硝酸盐和亚硝酸盐构成微生物生物转化为N-亚硝基化合物的底物,它们会导致 DNA 烷基化损伤,因此具有致癌性。
▸ “适度食用瘦肉红肉和避免加工肉” 的科学依据
鉴于上述几点,红肉和加工肉类产生的肠道微生物代谢物的毒性与解释它们对健康的影响有关。
尽管有证据表明红肉是结肠癌的危险因素,但蛋白质发酵产生的代谢物(如硫化氢和氨)毒性较低,目前还没有归类为人类致癌物。
相比之下,仅来自加工肉类的微生物代谢产物(N-亚硝基化合物和次生胆汁酸)具有更高的毒性和致癌性。
考虑到可能的剂量-反应关系,毒理学考虑证明了IARC/世界卫生组织专家小组对红肉(2A组,可能致癌物)和加工肉(1组,致癌物)进行风险分类的合理性,以及当前的饮食指南:适度食用瘦肉红肉和避免加工肉。
▸ 长期存在争议:乳制品应在多大程度上纳入健康饮食?
大多数饮食指南建议使用脱脂和低脂(0%-2%)乳制品,并避免使用高脂乳制品(>25%,如某些奶酪、奶油制品和黄油)。然而,对于全脂乳制品还没有达成共识(∼3.5%),其有害影响受到质疑,一些饮食指南(表1)不鼓励使用。
▸ 乳脂肪和肠道微生物群之间的相互作用
一项开创性的研究表明,乳源性饱和脂肪诱导牛磺酸结合胆汁酸,促进产生硫化氢的致病菌Bilophila wadsworthia的爆发,从而引发遗传易感小鼠的结肠炎。
另一项针对小鼠的研究证实了这些发现,其中主要来源于乳脂的高脂肪饮食增加了B. wadsworthia的丰度和盲肠胆汁酸水平,从而导致肠道屏障功能障碍和代谢综合征。
这些动物模型强调了乳源性饱和脂肪对微生物群动态平衡的潜在有害影响,支持了建议限制高脂肪乳制品的饮食指南。
据我们所知,目前缺乏评估全脂乳制品中饱和脂肪水平是否影响微生物群的良好控制的人类干预试验,此类研究有必要,能为未来的饮食指南提供信息。
“低脂”、“低碳”,这对减肥人士来说,是非常熟悉的。
目前的膳食指南没有涉及到限制脂肪或碳水化合物摄入是否会支持最佳健康。
▸ 这些饮食如何影响微生物群代谢以及对健康的长期影响?
低脂饮食通常富含蔬菜、水果、全谷物和植物蛋白质,因此提供有益的饮食成分,改变微生物代谢。
相反,低碳水化合物饮食通常脂肪和/或蛋白质含量较高,因此纤维含量较低,这导致产生对结肠健康有害的代谢物。
这在一项随机对照试验中得到证实,在该试验中,高蛋白低碳水化合物饮食增加了N-亚硝基化合物的浓度,降低了丁酸盐和抗炎酚类化合物的水平。
在另一项研究中,高脂肪、低碳水化合物饮食导致健康年轻人的肠道微生物群、粪便代谢组学特征和血浆促炎介质发生不利变化。
这些发现引起了人们对低碳水化合物饮食的长期健康结果的担忧,并与前瞻性队列研究的荟萃分析一致,该研究显示,食用动物性低碳水化合物饮食的参与者死亡率最高。
因此,有必要通过针对微生物组的方法改善低碳水化合物饮食。
当代国家饮食指南高度一致,与研究人员对饮食如何影响与健康相关的微生物-宿主相互作用的理解一致。
这种一致性是显著的,证实饮食指南的观察性和干预性研究没有考虑微生物组。这表明肠道微生物群是饮食生理效应的关键中介,鉴于哺乳动物解剖学、生理学、免疫和代谢的中心方面在整个进化过程中都是由饮食-微生物-宿主相互作用形成的,这一功能可能在进化上根深蒂固。
虽然营养学和微生物组学学科之间的一致性在很大程度上验证了当前的饮食指南,但研究人员认为,更系统地结合营养素影响宿主-微生物相互作用的分子基础知识,有可能加强和创新人类营养。
下面概述了微生物组学观点可以推进营养策略的机会,然后提出了一个整合肠道微生物组学的研究框架,以进行实验验证。
对人类及其肠道微生物群共同进化的假设最有说服力的支持来自对母乳低聚糖(HMO)功能特征的解释。母乳构成了饮食、微生物组和人类健康之间进化关系重要性的范例。
现代饮食可能在进化上与人类生理不匹配,这可能是慢性病流行的重要驱动因素。
目前建议女性和男性每天摄入 25 克和 38 克纤维。一系列系统评价和荟萃分析支持了更高摄入量的论点,表明每天摄入超过25–29克的纤维将带来额外的益处。参与者每天从蔬菜、水果和坚果饮食中摄入100克以上的纤维,可以显著降低血清胆固醇水平,增加粪便中的短链脂肪酸。
在一项人体试验中,非裔美国人和南非农村人(分别习惯食用低纤维和高纤维饮食)交换了他们的饮食,导致非裔美国人的黏膜增殖率和结肠炎症(结肠癌风险的生物标志物)下降,而南非农村人在这些试验中经历了不利的变化。
饮食交换的效果与次级胆汁酸丰度和短链脂肪酸生成的相反变化相关。对饮食微生物群相互作用如何影响人类生理学的进化考虑,可以为饮食建议、有针对性的营养策略以及对抗慢性病风险的食品开发提供信息。进化的考虑也为微生物组的恢复策略奠定了基础。
工业化造成了非传染性慢性病的增加和微生物组的枯竭,其特征是微生物多样性减少,利用碳水化合物的酶的能力降低,发酵减少,以及黏液降解生物的富集。
尽管将微生物群恢复到祖先的状态可能是不现实的,也可能是不可取的,但人们对开发微生物群恢复策略、重建与健康相关的功能特征的兴趣越来越大。
全植物食物
这种策略得到了一项人类干预研究结果的支持,该研究测试了富含全植物食物(每天提供45克纤维)的饮食,这会提高短链脂肪酸的产量,并增加聚糖降解碳水化合物活性酶的相对丰度。
仅关注膳食纤维的微生物群落恢复方法不太可能补充丢失的微生物物种。已经提出了重新引入因工业化而丢失的菌群的建议。虽然从长远来看这是一种很有希望的方法,但许多消失物种的致病性未知,这使得它们转化为营养策略具有挑战性。
发酵食品
另一种方法是发酵食品,定义为通过理想的微生物生长和膳食成分的酶转化生产的食品,其结果通常具有增强的营养特性。
发酵食品的例子有开菲尔、酸奶、康普茶、豆豉、泡菜等。发酵食品在当前的饮食趋势中排名很靠前,在全球范围内广受欢迎。如果生吃,发酵食品通常含有大量的活微生物,这些微生物具有长期的安全食用历史。
▸ 关于发酵食品健康益处的研究
发酵食品的益处已通过一项定性系统综述进行了总结,该综述对观察性和实验性研究进行了评估,报告称酸奶、开菲尔和其他发酵牛奶与胃肠道健康、2型糖尿病和癌症风险以及体重管理的良好结果相关。
此外,一项针对120000多名参与者的大型观察性研究发现,体重增加与酸奶摄入量之间存在显著的负相关关系。然而,来自随机对照试验的证据非常稀少,发酵食品才刚刚开始被推荐到饮食指南中。
一项随机对照试验对每天包括6份发酵食品的饮食进行了试验,发现增加了微生物组的多样性,并减少了几种促炎细胞因子和趋化因子。
需要额外的设计良好的随机对照试验,并验证替代终点,以证明将发酵食品纳入饮食建议的合理性。此类研究应考虑到一些发酵食品(如发酵香肠、一些奶酪和加糖酸奶)的有害营养方面,如大量的盐、饱和脂肪、糖和固化剂,可能会超过活微生物的潜在益处。
益生菌、合生元
理论上,也可以通过饮食益生菌和合生元(益生菌和益生元的组合)来实现微生物群落的恢复策略。
有大量研究在许多临床环境中探索这些策略,并提出了不同的机制,例如其免疫调节作用。如果使用人体胃肠道固有的细菌菌株,益生菌可以成功地长时间定植。
这种策略可以使微生物群多样化,但据了解,这一点尚未得到系统的测试。
也有人提议探索每日摄入活微生物的饮食建议,以促进健康。为了使这一概念可行,需要进行流行病学研究和随机对照试验,以测试益生菌在预防慢性病方面的价值。
为了提高全人口的饮食质量,建议重新配方而不是取消加工食品。
这样的尝试将需要食品工程的创新,这将受益于饮食-微生物-宿主相互作用的考虑。例如,可以用不可消化的可发酵淀粉和其他纤维部分替代食品中的白面粉,从而改变加工食品的固有特性(如纤维含量、血糖生成指数和营养物质消化率),以抵消对肠道菌群和宿主代谢的有害影响。
在一项统计模型研究中,这一方法已具有广泛的影响,该研究预测,如果英国50%的加工食品的市场份额中添加约3克纤维,2型糖尿病和心血管疾病的风险将降低70%以上。
类似的方法可以应用于重新引入其他生物活性化合物,如植物化学物质,可能与膳食纤维联动。
与其依靠个人改变他们的饮食习惯改善健康,不如用更多的重新配方加工食品来改善饮食质量,而不显著改变饮食习惯。
确定“健康微生物群”
虽然很难定义什么是“健康”微生物群,但肠道微生物群的特定分类群和功能特征,特别是受饮食影响的分类群和功能特征(例如,与健康相关的SCFA和次生胆汁酸)与健康结果有关。
一旦确定了促进健康的分类群和微生物群特征,就可以用营养策略来针对它们。
例如,代谢有害的低碳水化合物或高肉类饮食,可通过补充可发酵纤维,以将微生物代谢从蛋白质转化为碳水化合物发酵,改善肠道屏障完整性,并通过短链脂肪酸诱导全身代谢益处。鉴于膳食纤维和低碳水化合物饮食的独立代谢效应,它们的结合可能产生协同效应。
扩展阅读:健康的人类微生物组
使用膳食纤维增强假定的健康菌群
通过这种方式促进菌群及其代谢产物。这种方法基本上符合益生元的概念,益生元被定义为宿主微生物选择性利用的底物,具有健康益处。
不幸的是,这一定义并没有就什么构成“选择性”效应、这种效应如何与健康益处因果关联以及如何区分益生元和膳食纤维提供明确的指导。这些担忧导致欧洲食品安全局规定,益生元不能标记为益生元,但必须标记为膳食纤维。
饮食指南中也没有提到食物来源的益生元,这很不幸,因为目标微生物组调节的总体概念很有希望。
▸ 用膳食纤维获得可预测的微生物群组成变化
研究人员提出了一个概念框架,利用该框架,可以使用含有离散结构的膳食纤维(定义为“一种独特的化学结构……与细菌基因组中编码的基因簇相一致”),来获得可预测的和理想的微生物群组成变化。
在人体试验中对该框架进行了实验测试,在该试验中,IV型抗性淀粉的细微结构差异将短链脂肪酸输出导向丙酸盐或丁酸盐,丙酸盐或丁酸盐具有不同的代谢和生理功能。
有针对性的营养微生物组调节对于饮食指南和治疗性食品都有巨大的前景,但关于微生物组的哪些方面应该有针对性的问题仍然存在,需要进行随机对照试验来证明这些策略是否能转化为改善健康的结果。
即使控制良好的饮食干预措施也会对个体产生不同的影响。这对目前在饮食指南中应用的“一刀切”方法提出了质疑。
精确营养(也称为“个性化营养”)的新兴领域旨在利用人类的个性,首先确定哪些特定的特征可以预测对饮食干预的反应,然后相应地调整营养,以实现不同人群的相同反应。
考虑到肠道微生物群对饮食的高度个性化反应,微生物群检测是针对慢性病预防和治疗的精准营养策略的关键组成部分,以及其他个人特定因素(例如,遗传学、基线代谢和体力活动)。
▸ 应用:同样的减肥方式,哪类人群更容易达到效果?——机器学习帮你预测
机器学习方法可以应用于大型参与者队列,以确定哪些特征可以预测健康结果。例如,机器学习算法利用参与者关于血液参数、饮食习惯、微生物组组成和其他因素的数据,准确预测标准化膳食的餐后血糖反应。
这类预测可以受益于微生物组和宿主遗传数据的结合,如一项研究所示,基线Prevotella/拟杆菌比率高,可以预测唾液淀粉酶基因拷贝数较低的受试者,在食用富含膳食纤维、全谷物、水果和蔬菜的饮食后体重减轻更大。
▸ 应用:微生物组结合手机用于饮食监测——机器学习为你提供高维数据,最终实现个性化建议
国家饮食指南目前没有考虑精确或个性化的方法,其实施将在人口规模上具有挑战性。然而,这样做的技术已经存在,并且可以利用微生物组测序和智能手机应用程序用于饮食监测的组合,最终为机器学习算法提供高维数据,以便将个性化营养建议反馈给用户。
▸ 精准营养可持续的条件
预测模型的多中心验证必须在不同人群(包括非西方国家和发展中国家)中进行,以确定其广泛适用性并鼓励进一步完善。精确营养方法将取决于营养和微生物学科之间的持续合作,其在全人口范围内的实施将需要监管机构、专业协会和决策者的大量额外投入。
有关饮食微生物组与宿主相互作用的信息有可能进一步验证、完善和创新饮食建议。
将肠道微生物组纳入饮食指导,需要有证据证明微生物组在饮食生理效应中的机制和因果作用。确定肠道微生物群在人类疾病易感性中的作用的因果关系仍然是一个挑战,这在营养学研究中更加复杂,因为饮食、肠道微生物群和人类健康之间的相互作用是复杂和多方向的。
饮食、肠道微生物群和人类健康之间复杂的、多向的因果关系

doi.org/10.1016/j.chom.2022.04.016
评估微生物组在营养中作用的人类研究因微生物组的复杂生态特征(个体间、地理和时间变异性)和营养研究的局限性(甚至适用于随机对照试验)而变得更加复杂(例如,难以评估饮食摄入和遵守研究方案、饮食成分的共线性和混杂因素)。
在设计未来的营养研究时,必须考虑这些复杂性,以阐明哪些因素(包括微生物组)介导了饮食对健康的影响。
研究人员推荐概述饮食微生物组研究最佳实践指南的优秀评论,并通过使用三大支柱将肠道微生物组整合到营养研究的所有阶段的实验框架来扩展这些评论。
一、微生物群的发现为健康饮食提出假设
肠道微生物群可以在既定饮食策略验证之外为营养提供信息,并有助于确定微生物群特征作为未来的营养目标。
目前已经确定了肠道菌群与人类疾病状态之间的关联。多元组学技术(如宏基因组学、宏蛋白质组学、代谢组学)和先进分析方法的使用,已经建立了支撑生物途径的潜在机制和因果基础。高质量、大规模队列研究有助于为饮食指南提供证据基础。
最近的研究扩展了这一框架,并将微生物组学和营养流行病学结合起来,以阐明微生物组学在饮食诱导的生理效应中的作用。可以发现微生物组、健康和特定饮食或饮食成分之间的联系。
这些相互作用的潜在机制和生物学合理性及其作为营养靶点和诊断标记的价值可在实验系统中得到证实。
二、微生物组与人类干预试验的整合
▸随机对照试验:营养学金标准
▸交叉设计:允许消除个人特定因素的个体间差异
▸干预试验:确定因果关系,直接告知饮食指南
随机对照试验是建立人类因果关系的营养学金标准,如果它们表现良好,在证据层次结构上要高于观察性试验。这种层次结构也适用于微生物研究。营养随机对照试验可以使用微生物组流行病学中应用的相同多组学方法进行扩展,以整合肠道微生物组并有效测试特定饮食微生物组的相互作用。可以将有效预测疾病风险的替代标记物与微生物组终点(例如成分变化、功能和代谢物)和生物过程的分子标记物相结合,假设这些生物过程将肠道微生物组的代谢活动与宿主免疫代谢相联系(即肠道激素、细胞因子、TMAO和肠道屏障完整性标记物),以证实研究结果并提供假定的机制解释。
交叉设计对于以微生物组为终点的随机对照试验具有优势,因为参与者作为自己的对照,这允许消除个人特定因素的个体间差异(例如微生物组、遗传学、代谢物谱和基线临床测量)。研究应进一步控制其他混杂变量,如人口统计学(年龄和性别)和生活方式因素(习惯性饮食和药物使用)。在这种情况下,大便稠度和饮酒是意外的混杂因素。应使用分层随机化来平衡参与者根据年龄和性别等因素分配给治疗组的情况,并应收集有关混杂变量的详细信息,以便在统计分析中对其进行控制。通过对自由生活或定居的参与者进行充分的控制喂养研究,提供所有食物,包括足够的磨合期,可以消除习惯性饮食的实质性混杂因素。这样的研究进行起来困难且昂贵,但已经在微生物组领域成功应用。
干预试验可以确定饮食对健康影响的因果关系,从而直接告知饮食指南。如果微生物组被整合,随机对照试验也可以为微生物组在饮食健康影响中的作用提供假定的机制解释,并为精确营养策略提供基于诊断微生物组的生物标记。回归和相关分析可用于确定饮食诱导的微生物组分/功能变化与临床和机械终点之间的关联。此外,机器学习模型可以确定是否可以通过对微生物组或受微生物组影响的宿主生物过程的影响来预测饮食诱导的生理变化。然而,除非这些试验和分析采用特定的实验和统计方法进行扩展,否则它们无法确定肠道微生物群在饮食影响中的因果作用。
三、关于微生物组在饮食影响中作用的机制洞察和因果推断
▸收集纵向数据,使用数学方法,解开因果
▸通过动物模型扩展确定潜在机制
▸最常用和最复杂的建立菌群因果关系的模型
▸动物模型存在局限性,但对完善假设很宝贵
可以在随机对照试验中收集纵向数据,以便进行因果推断,因为必须使用中介分析等方法,在时间上先于效应。其他数学方法,如结构方程建模和贝叶斯网络,也可以解开饮食、微生物组和人类健康之间的因果关系。可以说,最有希望直接在人类身上进行因果推理的实验设计是“干预主义框架”,当针对假定原因的干预产生有利影响时,就可以推断因果关系。这种方法可适用于具有良好特征效果的饮食干预,以测试针对微生物组特征或给予微生物代谢物(假定原因)是否能产生预期效果。
人类研究可以通过动物模型扩展,以确定微生物组的因果作用,确定微生物组中的因果成分,并确定潜在机制。可以在无菌动物疾病模型中测试单独或作为群落的特定微生物(灵知动物)或与人类饮食干预生理效应相关的微生物代谢产物。灵长类动物允许去除或添加特定的微生物,以确定微生物群落中的致病成分,并且可以用模仿人类饮食的饲料进行挑战。
人类微生物相关(HMA)啮齿动物是最常用和最复杂的建立微生物组因果关系的模型,将人类粪便微生物群移植到啮齿类动物的疾病模型中。HMA动物可以非常有效地比较对饮食干预有或没有反应的人类微生物组,特别是如果假设差异是由特定微生物的存在或不存在引起的。然而,HMA动物在做出关于饮食诱导的人类微生物组组成变化的因果推断方面有很大的局限性。不提供活微生物的饮食不太可能从微生物群中添加或移除微生物物种,但只会改变群落中的相对比例。这种变化不太可能在受体动物身上复制,因为形成微生物群的生态和进化力量与供体中的不同。
尽管存在局限性,但动物模型,尤其是如果其微生物群得到良好控制并与多组学方法相结合,有能力补充人类研究,因为它们建立了饮食影响的机制基础。通过使用更好地模仿人类生理学的动物,如猪和灵长类动物,这些研究可以进一步改进。虽然不需要从机理和因果研究中获得见解,来确定和确认饮食成分的健康影响或基于微生物组的生物标记物的效用,但这对于完善假设非常宝贵,可以创新制定有针对性的营养策略,并为饮食建议提供额外的证据。
将肠道微生物组整合到营养学研究的所有阶段的实验框架,以促进对微生物组在健康饮食中的作用的理解:

doi.org/10.1016/j.chom.2022.04.016
饮食与疾病密切相关,而疾病又与微生物群相关。肠道微生物群可能是构成营养研究的“黑匣子”,饮食—微生物群的相互作用可能有助于建立饮食生理效应的机制基础。
这两个领域有很强的生物学和进化论理由来扩展已经活跃和正在进行的合作,以加深对如何通过饮食优化健康的理解。
应将以微生物组为中心的终点纳入营养科学的各个方面,以加强饮食指南的证据基础。营养微生物学研究有可能全面了解健康饮食的各个方面,从而有助于解决饮食相关疾病的预防和管理。
谷禾也将不断提供关于肠道微生物群如何影响和介导饮食化合物、特定食物和饮食模式的生理效应的机制的前沿研究进展,应用到肠道菌群健康检测,不断更新已有框架,为大众提供针对微生物群的营养策略。
主要参考文献:
Armet AM, Deehan EC, O’Sullivan AF, Mota JF, Field CJ, Prado CM, Lucey AJ, Walter J. Rethinking healthy eating in light of the gut microbiome. Cell Host Microbe. 2022 Jun 8;30(6):764-785. doi: 10.1016/j.chom.2022.04.016. PMID: 35679823.
Lancaster SM, Lee-McMullen B, Abbott CW, Quijada JV, Hornburg D, Park H, Perelman D, Peterson DJ, Tang M, Robinson A, Ahadi S, Contrepois K, Hung CJ, Ashland M, McLaughlin T, Boonyanit A, Horning A, Sonnenburg JL, Snyder MP. Global, distinctive, and personal changes in molecular and microbial profiles by specific fibers in humans. Cell Host Microbe. 2022 Jun 8;30(6):848-862.e7. doi: 10.1016/j.chom.2022.03.036. Epub 2022 Apr 27. PMID: 35483363; PMCID: PMC9187607.
Deehan EC, Walter J. The Fiber Gap and the Disappearing Gut Microbiome: Implications for Human Nutrition. Trends Endocrinol Metab. 2016 May;27(5):239-242. doi: 10.1016/j.tem.2016.03.001. Epub 2016 Apr 11. PMID: 27079516.
Guthrie L, Spencer SP, Perelman D, Van Treuren W, Han S, Yu FB, Sonnenburg ED, Fischbach MA, Meyer TW, Sonnenburg JL. Impact of a 7-day homogeneous diet on interpersonal variation in human gut microbiomes and metabolomes. Cell Host Microbe. 2022 Jun 8;30(6):863-874.e4. doi: 10.1016/j.chom.2022.05.003. Epub 2022 May 27. PMID: 35643079.