Tag Archive 志贺氏菌

认识”微小但强大”的病原菌,守护肠道健康

谷禾健康

在快节奏的现代生活中,我们面临着的食品安全挑战也在升级。全球化的食品供应链让美食跨越千山万水来到我们的餐桌,但也为病原菌的传播提供了更多机会。每一餐美食的背后,都可能潜藏着看不见的威胁。从夏日烧烤到家庭聚餐,食源性病原菌如同”隐形杀手”般悄然存在,威胁着我们的健康

据世界卫生组织统计,全球每年有超过6亿人因食用被污染的食物而患病。在中国,食源性疾病同样影响着数百万人的健康。

有时候我们认为腹泻、呕吐只是”吃坏肚子”的小毛病,忍忍就过去了。然而这可能掩盖了严重的健康风险。食源性病原菌感染不仅会引起急性胃肠炎症状还可能导致

脱水和电解质紊乱:特别是对老人和儿童;

肠道菌群失调:破坏肠道微生态平衡;

免疫系统受损:降低机体抵抗力;

慢性健康问题:如肠易激综合征、炎症性肠病等后遗症。

产气荚膜梭菌、蜡样芽孢杆菌、肉毒杆菌、副溶血性弧菌、志贺氏菌等是最常见且危险食源性病原菌。它们各具特色:有的耐高温,有的耐酸,有的产生致命毒素,有的传播力极强。

通过了解这些常见食源性病原菌的特性和传播规律,有助于我们识别和避免食用受污染的食物,掌握正确的储存、烹饪和食用方式,同时监测肠道健康状况及时发现菌群异常变化。因为每个人的肠道菌群构成都是独特的,就像指纹一样。这意味着不同的人对同一种病原菌的易感性和抵抗力也不相同。有些人可能对某种病原菌特别敏感,而另一些人则相对耐受。

▶▷▶▷▶▷

▮   产 气 荚 膜 梭 菌   

01
什么是产气荚膜梭菌?

产气荚膜梭菌(Clostridium perfringens)是一种革兰氏阳性杆状细菌,会引起食源性腹泻,是工业化国家常见的食源性致病菌之一,全年均有腹泻病例报道。它广泛存在于环境中,对人和动物均具致病性

作为一种能够形成芽孢的厌氧细菌,产气荚膜梭菌在芽孢形成过程中会产生肠毒素(CPE),其A型到E型菌株与不同疾病相关。其中人类坏死性肠炎是一种致命的危及生命的疾病,会导致小肠溃疡。

该菌能在短期内快速繁殖、在相对较高的温度范围内生长、芽孢能抵抗恶劣环境条件、以及尽管是厌氧菌却具有耐氧能力,这些特性使得产气荚膜梭菌具有很强的环境适应性致病潜力

• 梭菌属中具有重要临床意义的致病菌种还有:

破伤风梭菌(Clostridium tetani

肉毒梭菌(Clostridium botulinum

巴氏梭菌(Clostridium baratii

艰难梭菌(Clostridium difficile

Clostridium argentinese

02
产气荚膜梭菌污染源

产气荚膜梭菌的常见栖息地是土壤、水、污泥、污水、食物(主要是生肉和冷冻肉)、受污染的设备等。产气荚膜杆菌也存在于人和动物的肠道中,尤其是老年人的粪便中。

产气荚膜梭菌需要多种氨基酸维生素,最适生长温度为43–45°C。富含蛋白的肉类尤其适合其繁殖,特别是猪肉、牛肉和家禽产品;用酱料烹制的污染风险很高

在加热和冷却过程中,如果食物在室温下没有足够的冷却温度,它会增殖并产生毒素。通常,学校食堂,医院,餐馆,监狱和集会是梭菌爆发的高风险场所。

03
产气荚膜梭菌肠毒素

产气荚膜梭菌在应激条件下孢子形成时产生肠毒素,已知可产生14种毒素与5类肠毒素(A–E型)。其还分泌4类细胞外毒素:α、β、ε、iota。

产气荚膜梭菌毒素和降解酶的作用

doi: 10.1080/21505594.2021.1886777.

A型:在人类中引起气性坏疽和腹泻相关的感染性腹泻,在动物中引起肠毒血症、坏死性肠炎和急性胃扩张。

C型:在人类中导致坏死性肠炎(空肠炎),在小猪、羔羊、小牛和鸟类中导致肠毒血症和坏死性肠炎。

B、D、E型:尚未证实致人类疾病;在动物可致肠炎与肠毒血症

此外,该菌还能产生溶素O(θ毒素)与胶原酶(κ毒素),也需警惕。

04
产气荚膜梭菌食物中毒的流行病学

与暴发有关的因素是大量准备食物、烹饪温度不够(食物的核心区域没有适当烹饪)、准备好的食物和食用期间受到污染

集中爆发经常发生在提前准备大量食物的地方,如医院和学校食堂、监狱、聚会和研讨会

案例调查显示,一道在室温下放置20小时且未再加热的羊肉菜是感染来源。产气荚膜杆菌还从羔羊肉、感染者粪便及尸检样本中被分离出。某校食堂因饮用制备后置于室温的受污染奶昔,导致77例腹泻。

05
产气荚膜梭菌的致病性

产气荚膜梭菌只有在摄入含有约 10⁷-10⁹个营养细胞/克 的污染食物时才引起感染

⑴第一阶段:胃肠道定植

-营养细胞抵抗胃酸

-在小肠内生长、增殖和产孢

⑵第二阶段:肠毒素作用机制

靶点结合:大量肠毒素与肠上皮细胞紧密连接处的 claudin蛋白 结合。

复合物形成:结合宿主膜蛋白,经构象变化形成 CPE复合物。

细胞损伤:

-细胞崩解和分离

-肠绒毛尖端损伤

-上皮细胞脱落

-绒毛缩短

膜损伤效应:

-膜上形成孔道

-电解质大量泄漏

-导致细胞溶解

-肠道吸收能力下降

-细胞骨架崩塌

⑶第三阶段:严重并发症

高浓度CPE (>10μg/ml):引起坏死(oncosis)

β-毒素作用:

-引起细胞毒性坏死性肠炎

-影响自主神经系统

-导致肠黏膜出血性坏死

-在真核细胞膜形成孔道

这种多重毒素协同作用使得产气荚膜梭菌食物中毒具有较强的致病性和复杂的临床表现。

06
产气荚膜梭菌中毒的症状

主要症状多在食用重度污染食物后8–24小时出现。


常见症状包括腹部绞痛、水样腹泻、呕吐、恶心发烧,大多数情况下通常在12至24小时内消退。致死率低于0.05%;但婴幼儿、老年人慢性病患者风险较高;该菌可能侵入并导致严重溃疡,最终因急性脱水而死亡。


婴儿猝死综合征(SIDS)也是由产气荚膜梭菌与睡眠期间大脑的缺陷有关。

07
产气荚膜梭菌的检测和毒素判断

检测原理:产气荚膜梭菌食物中毒通过检测粪便样本中的肠毒素和营养细胞/芽孢数量来诊断。

⑴肠毒素检测

培养基法熟肉培养基 → 巯基乙酸盐流体培养基(10ml) → Duncan-Strong产孢培养基

分子检测方法:通过PCR、多重PCR以及高通量测序手段检测样本中产气荚膜梭菌。例如谷禾健康依托高通量测序的tNGS技术可以特异性的识别粪便样本中的产气荚膜梭菌。

(来源:谷禾健康16S Plus版报告)

生物学方法

小鼠致死试验:评估毒素致死活性

Vero细胞毒性试验:检测细胞毒性效应

⑵免疫学检测

凝胶扩散法

  • 单向扩散和双向扩散(Ouchterlony试验)
  • 基于CPE的免疫沉淀反应
  • 使用特异性抗体的琼脂糖凝胶检测抗原

对流免疫电泳

  • 利用电场加速抗原-抗体反应
  • 通过沉淀线观察CPE存在

ELISA法

酶联免疫吸附试验进行CPE定量

注意事项:样本蛋白酶活性可降低IgG敏感性,需用1%血清白蛋白保护

⑶分子生物学方法

PCR技术:常规PCR、实时PCR

LAMP:环介导等温扩增

08
产气荚膜梭菌的治疗和预防

⑴治疗策略

一般治疗

  • 自限性疾病:通常无需特殊治疗
  • 对症支持:主要针对脱水和电解质紊乱

抗生素使用原则

  • 推荐药物:甲硝唑(用于抗生素相关腹泻)
  • 禁用其他抗生素:会抑制正常菌群,增加CPE产生

重症治疗

坏死性肠炎需要:

  • 快速输血
  • 维生素补充
  • 抗生素治疗

补液治疗

  • 口服补液:轻度脱水
  • 静脉补液:重度脱水或无法口服

⑵预防控制措施

关键预防原则:烹调后立即食用

时间-温度控制

  • 烹调过程:确保充分加热
  • 冷却要求:90分钟内快速冷却
  • 储存管理:适当温度保存
  • 再加热:70-100°C杀死营养细胞

食品安全措施

  • 限量烹调:减少污染风险
  • 避免大批量:降低温度控制难度
  • 严格管理:从制备到消费的温度管理

▶▷▶▷▶▷

▮ 蜡 样 芽 孢 杆 菌 

01
什么是蜡样芽孢杆菌?

蜡样芽孢杆菌Bacillus cereus)是一种致病性食源性微生物,广泛分布于自然界,如植物、土壤和昆虫及哺乳动物的胃肠道


也常见于食品加工环境,其耐受性内生孢子可在恶劣条件下存活,污染原料与食品

该菌可致两型食物中毒:腹泻型(在小肠产多种肠毒素)与呕吐型(摄入含耐热毒素的食物)。亦可引发机会性感染,如菌血症、败血症、肺炎、脑膜炎、胃炎、肝衰竭、肝坏死与脑水肿。

• 其他食源致病性芽孢杆菌:

B. subtilis(枯草芽孢杆菌):可致腹泻、呕吐;

B. licheniformis(地衣芽孢杆菌):常见食物中毒病因;

B. pumilus(短小芽孢杆菌):污染食品致胃肠炎。

• 其他特殊芽孢杆菌:

B. weihenstephanensis:强低温生长能力;

B. anthracis(炭疽芽孢杆菌):炭疽病原,极危;

B. mycoides(蕈状芽孢杆菌):形态特殊;

B. pseudomycoides(假蕈状芽孢杆菌):与蕈状近缘;

B. thuringiensis(苏云金芽孢杆菌):生物杀虫剂,偶可致病。

这些芽孢杆菌都具有形成芽孢的能力,使其在环境中具有很强的抵抗力和传播能力

02
蜡样芽孢杆菌的生物学特性

⑴基本特征

革兰阳性菌

产孢菌

需氧至兼性厌氧

-有运动性

-杆状细菌

血培养的革兰氏染色蜡样芽孢杆菌

doi: 10.1128/CMR.00073-09.

⑵生长条件

生长温度范围:8-55°C

最适温度:25-37°C

pH范围:4.9-9.3

耐盐浓度达7.5%

内生孢子耐高温、辐射、干燥和消毒剂

⑶污染源

-从原料到包装储存的全程食品加工污染

-生物技术设备和机器污染

-土壤栖息,易传播至蔬菜和农作物

⑷常见污染食品

-大米、小麦、面食、面粉

-乳制品、肉制品、香料

-婴儿食品、鱼类、汤类

-蔬菜和水果

⑸流行病学特点

-全球性分布

-年度持续发生

-与饮食文化相关的地区差异

⑹易感人群

老年人、低胃酸患者

⑺防控挑战

其孢子高耐受性与污染源多样性要求从源头到终端的全程管控,尤其要严格温度控制预防交叉污染

03
蜡样芽孢杆菌食源性毒素

蜡样芽孢杆菌产生蛋白质毒素,即肉毒毒素催吐毒素

⑴肉毒毒素(腹泻毒素)

当摄入的营养细胞在小肠增殖时产生腹泻毒素。该毒素对蛋白酶敏感,如链霉蛋白酶、胃蛋白酶、胰蛋白酶和胰凝乳蛋白酶。

潜伏期通常为摄入后8–16小时,病程多持续24–48小时。症状以轻度水样腹泻腹部痉挛为主;少数儿童或免疫低下者可出现血性腹泻与坏死性肠炎,进而致肝功能衰竭脑水肿

与肠道疾病相关的三种染色体编码肠毒素包括:

Hbl(溶血素BL):蜡样芽孢杆菌食物中毒的主要毒力因子,在小肠通过渗透溶解形成跨膜孔。

Nhe(非溶血性肠毒素):与 Hbl 同源,亦为三组分成孔毒素。

CytK(细胞毒素K):原型样β-桶成孔毒素,可致出血性腹泻与坏死性肠炎。

⑵呕吐毒素

呕吐型起病更急且更重,由小分子环状耐热肽引起,潜伏期为摄入受污染食物后约2–5小时

其症状类似金黄色葡萄球菌食物中毒:恶心、呕吐、腹部痉挛,通常持续约24小时。催吐毒素作用机制尚不明,但高度耐热,可经受油炸、烘烤、煮沸和微波等烹调过程。

环境因素(温度、pH、大气成分、营养来源、食物稠度)亦影响毒素的产生。

04
蜡样芽孢杆菌的检测方法

⑴培养方法

实验室培养基如营养琼脂或血琼脂

⑵ELISA

ELISA技术在商业上被用于测定毒素,但它在评估蜡样芽孢杆菌的产毒活性方面不准确。它只检测一种毒素,溶血素BL或两种无毒蛋白质。

⑶反向被动乳胶凝集(RPLA)肠毒素试验

将样品煮沸以使其在生物学上稳定,从而产生阳性结果。该试验可识别溶血素B组分,但在存在高葡萄糖浓度的情况下,无法检测到毒素。

⑷PCR或高通量测序

通过检测蜡样芽孢杆菌DNA序列,来分析其丰度和毒力基因的存在。

05
蜡样芽孢杆菌食物中毒的救治

蜡样芽孢杆菌食物中毒多为自限性,通常24–48小时内自行缓解。建议卧床休息补充液体;重症时可在医生指导下使用抗生素,如克林霉素、万古霉素、庆大霉素氯霉素

06
蜡样芽孢杆菌食物中毒的预防与控制措施

蜡样芽孢杆菌耐热性强,常规烹调可杀灭营养细胞,但孢子仍可存活,故应在孢子萌发前切断污染

食品应在储存前迅速冷却、食用前充分加热;芽孢杆菌属难以在高酸性环境存活。保持良好食品处理习惯与卫生。

▶▷▶▷▶▷

▮   肉 毒 杆 菌   

01
什么是肉毒杆菌?

肉毒杆菌(Clostridium botulinum)是一种生长在缺氧环境下的细菌,在罐头食品及密封腌渍食物中具有极强的生存能力,是毒性最强的细菌之一。

肉毒杆菌中毒是由摄入肉毒毒素(BoNT)导致的致命性食源性麻痹性疾病,虽罕见但病死率高,微量毒素即可致命。

中毒来源包括食物中预先形成的BoNT或肠道内产生的BoNT。已知毒素分为A–G七型,可致人畜发病,其中A、B、E型人类食源性肉毒中毒最相关。

02
肉毒杆菌污染源

肉毒杆菌为厌氧、产芽孢的革兰阳性,孢子广泛存在于土壤、污水、泥浆及湖海沉积物中,也见于陆生和水生动物肠道

肉毒杆菌的孢子形成和发芽

doi: 10.1080/21505594.2023.2205251.

其孢子易污染食物并产生毒素蜂蜜和糖浆曾被报道受其孢子污染,是婴儿肉毒中毒的主要来源。加工不当的罐头亦为重要来源,因孢子可耐受高温。其他高风险食物包括湖鱼、海鱼,以及烟熏、盐腌和发酵肉制品

A型和B型毒素常见于土壤与生物肥料,故可能污染蔬果,尤其是加热不足的蔬菜制品。

03
肉毒杆菌中毒的临床表现

症状通常在摄入后18–38小时出现,先累及胃肠道,常见腹痛、恶心、呕吐、腹泻,偶见便秘。随后出现神经系统表现:弛缓性麻痹、对称性下行无力、构音不清、吞咽困难、眩晕、视物模糊、口干及眼外肌无力。

婴儿肉毒中毒多见于1岁以下,因肠道菌群未成熟,毒素可在肠内产生。表现为哭声微弱嘶哑、上睑下垂、吮吸差、抬头困难与肌无力

伤口型肉毒中毒为梭菌在伤口、脓肿等处定植,孢子发芽并产毒。其症状包括低血压、呼吸困难、眼肌麻痹、共济失调与瞳孔固定性散大,少见,通常在暴露后3–6天发病。

04
肉毒杆菌食物中毒的流行病学

肉毒杆菌毒素曾在第二次世界大战期间被美国,日本军队用作生化武器

1991年埃及因食用传统腌鱼 fesaikh 中的E型毒素发生大规模疫情,报告91例、死亡18例。

约90%的肉毒中毒病例见于美国,每年报告约9–10起暴发,常与家庭自制食品相关,尤以自制罐藏、瓶装及油浸食品为主。

05
肉毒毒素的致病作用

口服或肠道内生成的肉毒毒素需先抵御胃酸,经肠道到达十二指肠与空肠。随后经内吞入血,分布至周围神经系统

毒素进入神经元后作为锌依赖性蛋白酶,切割SNARE蛋白(可溶性N-乙基马来酰亚胺敏感因子附着受体)。其在神经肌肉接头终末结合并抑制乙酰胆碱释放阻断神经传递,导致弛缓性麻痹

肉毒毒素中毒的分子步骤

doi: 10.1038/srep23707.

06
肉毒杆菌的检测方法

⑴生物测定

小鼠生物测定是检测肉毒毒素最敏感、应用最广的方法:通过注射毒素评估其毒性,小鼠常在4小时内出现腹部颤动、蜂腰样腹部、四肢瘫

一个人表现出类似的肉毒中毒症状应立即置于重症监护与胃肠外营养供应。

如果怀疑有毒素,应在24小时内服用抗毒素,因为它能在到达神经肌肉接头之前中和血液中的所有游离毒素。

在伤口肉毒杆菌中毒的情况下,伤口应该用抗生素治疗,如青霉素

以上都需要咨询医生确定。

食品应充分加热(≥121°C)并冷藏(≤4°C);加入柠檬酸等酸化剂可降低罐装食品中孢子形成的风险。

避免食用可疑的生或未充分加热食物,并避免其接触伤口。

▶▷▶▷▶▷

▮  副 溶 血 性 弧 菌   

01
什么是副溶血性弧菌?

副溶血性弧菌(Vibrio parahaemolyticus)是导致人类急性肠胃炎的主要病原体之一,通常发生在食用生的、未煮熟的和交叉污染的海鲜产品时。

该菌常见于热带海洋与沿海环境,可在滤食性贝(牡蛎、蛤蜊、贻贝)肠道黏附并繁殖。除胃肠炎外,还可引起伤口与耳部感染,免疫低下者暴露海水时可发生败血症

与之相关的人类致病弧菌还包括霍乱弧菌Vibrio cholerae)与创伤弧菌Vibrio vulnificus)。在日本及多国亚洲地区,副溶血性弧菌每年占食物中毒病例的约20%–30%

其在全球范围内是胃肠炎的重要病因之一,亟需关注其流行情况、毒力因子及健康影响,并完善鉴定技术以降低风险。

02
副溶血性弧菌的基本特性

革兰氏阴性

-曲线杆状

-非孢子形成者的兼性厌氧菌

-轻度嗜盐,氧化酶阳性

-最佳温度30至35°C

-pH值范围为6.8至10.2。

03
副溶血性弧菌污染源

副溶血性弧菌是海洋嗜盐菌,依靠单极鞭毛在水中游动,并可附着于鱼、蟹、虾、龙虾、浮游动物等水生动物表面。


当食用被副溶血性弧菌污染的生的和未煮熟的海鲜时,它会引起人类急性胃肠炎。当开放性伤口或伤口暴露于受污染的海水时,也会引起感染。


其他来源是副溶血性弧菌强毒株从海产品或设备到其他产品的交叉污染。

04
副溶血性弧菌的毒力机制

副溶血性弧菌按抗原性分为体细胞(O)和荚膜(K)抗原。其主要毒力因子包括粘附素、耐热直接溶血素(TDH)、TDH相关溶血素(TRH)及III型分泌系统(T3SS-1、T3SS-2)。

副溶血性弧菌的结构和毒力因子

doi: 10.3389/fmicb.2015.00437.

此外,它具有两类鞭毛用于运动,并可形成有助于在恶劣环境中生存的荚膜。感染多经粪-口途径,通过细菌表面粘附因子黏附宿主细胞。

TDH通过与红细胞膜结合并在其表面打孔致溶血;同时通过形成通道使细胞外Ca²⁺内流、细胞内Cl⁻分泌增加,导致渗透压升高细胞形态与功能紊乱,最终细胞膨胀死亡

TRH与TDH共同介导细胞毒性并诱发肠道感染;不耐热溶血素(TLH)主要用于种属鉴定,对红细胞溶血作用较弱。早期研究还显示,尿素酶是trh⁺菌株的重要辅助毒力因子,有助于在胃肠道定植与致病

注:尿素酶指可以催化尿素,导致尿素分解成氨和二氧化碳的一种酶,在临床上明确幽门螺杆菌就是人体胃内能够产生大量尿素酶的细菌。

第三型分泌系统(T3SS 1)在组织细胞感染期间诱导自噬和细胞毒性。它连续引起自噬、细胞起泡、溶解最后导致死亡

05
副溶血性弧菌中毒的流行病学

在我国东部沿海省份的部分暴发病例中,副溶血性弧菌感染相对较高。并且在亚洲、欧洲、非洲和美洲国家,类似病例的爆发已被频繁报道。

1950年,日本首次爆发副溶血性弧菌病,报告了272例急性胃肠炎,其中20人死亡。

1997年至1998年,美国报告了700多起食用受污染的生牡蛎的病例。


副溶血性弧菌食物中毒多发于夏季(6—10月),因温暖水域有利于其繁殖

螃蟹、虾、龙虾、贝类、牡蛎、蛤蜊和金枪鱼是高风险的海产品,必须在食用前彻底煮熟

06
副溶血性弧菌中毒的病征

副溶血性弧菌中毒典型的症状是水样腹泻、恶心、呕吐、腹部痉挛、发烧和发冷。进食受病原体污染的食物后,潜伏期约为12至24小时,并于5至7天内消退。


免疫功能低下的个体可能需要约10至15天的长时间才能恢复,因为疾病是自限性的,不需要药物治疗。


有些严重的患者可能会出现粘液或便血,血压下降,失去知觉,皮肤苍白、发紫,甚至死亡。此时应立即就医

07
副溶血性弧菌的检测方法

⑴菌株培养鉴定

使用含十二烷基硫酸钠(SDS)、烷基苯磺酸盐和胆汁盐的选择性增菌培养基可用于副溶血性弧菌的培养与分离。以碱性蛋白胨水为代表的增菌液具最佳pH和较高NaCl浓度,有利于弧菌生长

⑵分子检测技术

副溶血性弧菌菌株的鉴定也可采用分子技术,如常规表型与生化试验、PCR及DNA检测高通量宏基因组测序或靶向tNGS可用于分型与菌株区分。

08
副溶血性弧菌的治疗与预防

该病多为自限性,但重症时需药物治疗。常用措施包括口服补液及应用四环素等抗生素;充足饮水以补充电解质、卧床休息亦有助于恢复。

副溶血性弧菌食物中毒的预防与控制:

避免食用生或未熟透的贝类、牡蛎等海产品。

-处理海产品时注重个人卫生,生熟分开,防止交叉污染。

-皮肤有割伤或创口者应避免接触海水或微咸水,并尽量使用防水敷料。

▶▷▶▷▶▷

▮  志 贺 氏 菌  

01
什么是志贺氏菌?

志贺氏菌属Shigella)是引起急性胃肠道感染的原因,这种感染会损害回肠和结肠上皮并引起细菌性痢疾。志贺氏菌感染多见于贫困、欠发达且缺乏卫生与医疗设施的国家和地区。

志贺氏菌病死亡率较高,尤以5岁以下营养不良儿童为甚。患者在腹泻期间因大量丢失电解质和血液而营养受损,可能致死。

• 志贺氏菌属分为四个血清群:

A群:痢疾志贺菌(S.dysenteriae

B群:福氏志贺菌(S.flexneri

C群:鲍氏志贺菌(S.boydii

D群:宋内志贺菌(S.sonnei

其中,S.dysenteriae 1型(志贺毒素产生菌)可引起严重的流行性痢疾,具有较高的致死率;而其他血清型通常引起相对较轻的痢疾症状。

02
志贺菌的生物学特性

革兰阴性杆菌;无芽孢、无鞭毛(不运动)、无荚膜;兼性厌氧

-最适生长温度为 37°C,生长范围约 10–40°C;可耐受一定盐度与酸性环境

-低感染剂量:约 10–100 个菌体。

-对巴氏灭菌温度敏感(≥60°C 易被杀灭)。

-对紫外线和化学消毒剂敏感。

-能在不利的物理和化学条件下存活。

03
志贺氏菌感染的来源和传播

⑴病原菌储存宿主

人类肠道是志贺菌的主要天然储存库;

-动物感染极为罕见,几乎不作为传染源。

⑵传播途径

粪—口传播为主要途径

人与人直接接触

被污染的水和食物

-受污染的灌溉水可污染蔬果

⑶易感人群

儿童和婴幼儿为高危人群

免疫力低下者

密切接触者(如家庭成员、托幼机构)

⑷流行特征

发展中国家发病率较高

-与卫生设施不完善个人卫生不良相关

-季节性:夏秋季高发

2003-2013年中国志贺氏菌的流行情况

doi: 10.3389/fcimb.2016.00045.

04
志贺氏菌感染的症状

症状通常在摄入细菌后1–3天出现,视剂量可在12小时至7天内发病。

典型症状包括发热、食欲减退、腹痛、血性或水样腹泻、结肠炎、乏力与不适。大量水样便可致脱水,但较少见。伴随的厌食与营养不良需积极处理,是5岁以下儿童死亡的主要原因。少数患者可出现神经症状,如嗜睡、不自主运动和头痛

这种疾病一般在5至7天内自行消退,但感染者可能会在很长一段时间内无症状地在粪便中排出细菌,并可能造成传播感染的威胁

05
志贺菌感染的过程

⑴侵入阶段

进入消化道

胃酸耐受:可抵抗低 pH

穿越小肠:因上皮更新快、液流迅速,难以定植

最终定植于大肠

⑵细胞侵袭机制

M细胞摄取:进入并被吞噬泡包裹

逃逸入胞:自吞噬泡逃出,进入细胞质

巨噬细胞:被吞噬后诱导其凋亡

⑶细胞内增殖与扩散

大肠上皮内快速繁殖

经质膜包裹进行细胞间直接传播

继而感染邻近上皮细胞

06
志贺菌的致病因子与机制

⑴志贺毒素(主要由S.dysenteriae产生)

作用机制:经胞吞进入宿主细胞

毒性效应:抑制蛋白合成,致细胞死亡

临床表现:出血性腹泻

⑵脂多糖(LPS)

释放时机:细菌死亡破裂时释放

损伤效应:破坏肠道上皮组织

炎症反应:激发强烈的炎症应答

⑶炎症因子

IL-12释放:S. flexneri特别容易诱导IL-12产生

线粒体损伤:导致细胞坏死

组织破坏:引起肠道组织广泛炎症和溃疡

⑷病理损伤特点

组织破坏:主要由宿主免疫反应引起,而非病原菌直接作用

粘膜溃疡:免疫系统过度反应导致的继发损伤

炎症反应:局部组织出现严重炎症和水肿

07
志贺氏菌的检测方法

⑴细菌培养方法

及时采样:出现痢疾症状后立即采集粪便标本

采集时机:感染初期阶段最佳,病原菌体外存活时间有限

样本处理:需要立即检测,避免病原菌死亡

⑵免疫学检测方法

酶免疫测定(EIA):成本低、操作简便

⑶分子诊断技术

PCR/测序:基因检测快速、可靠,可区分不同志贺菌种

⑷目标基因

ipaH基因:侵袭相关基因

virA基因:毒力基因

iral基因:调节基因

LPS基因:脂多糖合成基因

质粒DNA:毒力质粒

08
志贺氏菌的治疗和防护

⑴抗菌治疗

首选:氟喹诺酮类(如环丙沙星)、大环内酯类(如阿奇霉素)

原则:尽早治疗,依据病情调整;监测耐药性

注意:具体用药请遵医嘱

⑵支持治疗

口服补液盐:轻中度脱水

静脉输液:重度脱水或电解质紊乱

营养支持:维持免疫功能

⑶环境与个人卫生

-完善卫生设施与排污系统

-安全处置粪便,防止污染

-保护水源,避免饮用水污染

-手卫生:勤洗手,使用肥皂或消毒剂

⑷食品安全

-生熟分开

-充分加热

-适当冷藏

-果蔬反复清洗

⑸重点人群

儿童与婴幼儿:加强护理与监测

食品从业人员:定期健康检查

集体生活人群:(学校、托幼机构等)

结语

食源性病原菌虽“微小”,却以顽强的生存力、多样的毒力因子与隐匿的传播路径,对公众健康构成持续挑战。产气荚膜梭菌的耐受与产毒、蜡样芽孢杆菌的双型中毒与广泛污染、肉毒杆菌的致命神经毒素、以及志贺氏菌的低感染剂量与高传播力,共同勾勒出从农田到餐桌、从环境到个体的风险图谱。

守护肠道健康,关键在于两端同时用力:一端是系统性防控——完善卫生基础设施、保障饮水安全、规范食品加工与冷链管理、强化时间—温度控制与流程监测;另一端是个人与社区层面的良好习惯——勤洗手、生熟分开、充分加热、规范冷藏、创口防护与及时就医。面向重点人群(婴幼儿、老年人、免疫低下者及集体生活人群),还需更精准的健康教育与常态化监测。

科学认知让风险可见,规范行动让风险可控。以循证为底、以习惯为桥、以制度为盾,我们就能在快节奏与全球化的餐桌上,稳稳地守住每一个人的“肠道安全线”

主要参考文献

Popoff, M. R.(2014). CLOSTRIDIUM | Detection of Enterotoxin of Clostridium perfringens. Encyclopedia of Food Microbiology, 474–480.

McLauchlin, J., & Grant, K. A. (n.d.). Clostridium botulinum and Clostridium perfringens. Foodborne Diseases, 41–78.

Miyamoto, K., & Nagahama, M. (2016). Clostridium: Food Poisoning by Clostridium perfringens. Encyclopedia of Food and Health, 149–154.

Chukwu, E. E., Nwaokorie, F. O., Coker, A. O., Avila-Campos, M. J., Solis, R. L., Llanco, L. A., & Ogunsola, F. T. (2016). Detection of toxigenic Clostridium perfringens and Clostridium botulinum from food sold in Lagos, Nigeria. Anaerobe, 42, 176–181.

Granum, P. E., & Lund, T. (2006). Bacillus cereus and its food poisoning toxins. FEMS Microbiology Letters, 157(2), 223–228.

Tewari, A., & Abdullah, S. (2014). Bacillus cereus food poisoning: international and Indian perspective. Journal of Food Science and Technology, 52(5), 2500–2511.

Parihar, H. S. (2014). Bacillus cereus. Encyclopedia of Toxicology, 353–354.

Batt, C. A. (2014). BACILLUS | Bacillus cereus. Encyclopedia of Food Microbiology, 124–128.

Carlin, F. (2016). Bacillus cereus and Other Bacillus sp. Causing Foodborne Poisonings, Detection of. Encyclopedia of Food and Health, 301–306.

Drobniewski, F. A. (1993). Bacillus cereus and related species. Clinical Microbiology Reviews, 6(4), 324–338.

Tewari, A., & Abdullah, S. (2014). Bacillus cereus food poisoning: international and Indian perspective. Journal of Food Science and Technology, 52(5), 2500–2511.

Marrollo, R. (2016). Bacillus cereus Food-Borne Disease. The Diverse Faces of Bacillus Cereus, 61–72.

Pavlik, B., Hruska, E., Van Cott, K. et al. Retargeting the Clostridium botulinum C2 toxin to the neuronal cytosol. Sci Rep 6, 23707 (2016).

Notermans, S. H. W., Stam, C. N., & Behar, A. E. (2014). CLOSTRIDIUM | Detection of Neurotoxins of Clostridium botulinum. Encyclopedia of Food Microbiology, 481–484.

Aureli, P. (2017). Botulism. International Encyclopedia of Public Health, 254–262.

McLauchlin, J., & Grant, K. A. (n.d.). Clostridium botulinum and Clostridium perfringens. Foodborne Diseases, 41–78.

Austin, J. W. (2016). Clostridium: Occurrence and Detection of Clostridium botulinum and Botulinum Neurotoxin. Encyclopedia of Food and Health, 155–159.

Lebeda, F. J., Dembek, Z. F., & Adler, M. (2018). Foodborne Botulism From a Systems Biology Perspective. Foodborne Diseases, 275–308.

Horowitz, B. Z. (2005). Botulinum Toxin. Critical Care Clinics, 21(4), 825–839.

Letchumanan, V., Chan, K.-G., & Lee, L.-H. (2014). Vibrio parahaemolyticus: a review on the pathogenesis, prevalence, and advance molecular identification techniques. Frontiers in Microbiology, 5.

Wang R, Zhong Y, Gu X, Yuan J, Saeed AF, Wang S. The pathogenesis, detection, and prevention of Vibrio parahaemolyticus. Front Microbiol. 2015 Mar 5;6:144.

Risk assessment tools for Vibrio parahaemolyticus and Vibrio vulnificus associated with seafood, Food and Agriculture Organization of the Unites Nations, ISSN 1726-5274.

Baker-Austin, C., Jenkins, C., Dadzie, J., Mestanza, O., Delgado, E., Powell, A., … Martinez-Urtaza, J. (2020). Genomic epidemiology of domestic and travel-associated Vibrio parahaemolyticus infections in the UK, 2008–2018. Food Control, 115, 107244.

Yaashikaa, P. R., Saravanan, A., & Kumar, P. S. (2016). Isolation and identification of Vibrio cholerae and Vibrio parahaemolyticus from prawn (Penaeus monodon) seafood: Preservation strategies. Microbial Pathogenesis, 99, 5–13.

Bolen, J. L., Zamiska, S. A., & Greenough, W. B. (1974). Clinical features in enteritis due to vibrio parahemolyticus. The American Journal of Medicine, 57(4), 638–641.

Mumy, K. L. (2014). Shigella. Encyclopedia of Toxicology, 254–255.

Ashkenazi, S. (2018). Shigella Species. Principles and Practice of Pediatric Infectious Diseases, 842–846.e2.

https://www.researchgate.net/publication/324720426_Shigellosis_A_Conformity_Review_of_the_Microbiology_Pathogenesis_and_Epidemiology_with_Consequence_for_Prevention_and_Management_issues
https://www.ncbi.nlm.nih.gov/books/NBK7627/

认识变形菌门,变形菌门扩张的原因和健康风险

谷禾健康

​微生物群代表宿主肠道中存在的整个微生物群。肠道内细菌界的“贫富差距”非常大,和人类社会创造的大部分的财富都流向少部分人口的现实类似,只有少数几十种的细菌分布在近乎90%的人群中。换句话说,大部分细菌都只能在特定的环境中生存,只有少数细菌适应能力超强,这可能也是我们需要重点关注的对象

如果把不同细菌品种看作互相竞争的国家,那么细菌界的“超级大国”就属拟杆菌门和厚壁菌门了。当然它们都不是单独某一种细菌,而是一大类细菌的统称。

然而近年来随着患有肠内外疾病的人群越来庞大,变形菌门也逐渐被关注和研究,变形菌门是含有最丰富细菌的门,麾下包括多种“著名的”病原菌,如大肠杆菌、幽门螺杆菌、克雷伯氏菌、沙门氏菌、志贺氏菌、绿脓杆菌、霍乱弧菌、空肠弯曲菌、鼠疫杆菌、脑膜炎双球菌、淋球菌等,让其备受关注

事实上,越来越多的数据将变形菌确定为疾病的可能微生物特征。目前主要证据涉及代谢紊乱和炎症甚至癌症。然而,最近的研究表明,在哮喘和慢性阻塞性肺病等肺部疾病中也有作用,有些疾病中变形菌不受控制扩张导致疾病易感和发生。

01
什么是变形菌

变形菌proteobacteria是细菌中最大、种类最多的一个门,它们在系统发育、生态和致病方面具有广泛的重要性。所有变形菌都是革兰氏阴性菌,外膜主要由脂多糖组成。

图源:esacademic

变形菌门主要是由核糖体RNA序列定义的,名称取自希腊神话中能够变形的神普罗透斯(这同时也是变形菌门中变形杆菌属的名字),因为该门细菌具有极为多样的形状,代谢特征等。

△ 形状:杆状和球菌、弯曲的、螺旋状的、环状的、丝状的和带鞘的细菌都有。

△ 新陈代谢:新陈代谢类型也多种多样,一系列代谢特征包括化学自养(从无机化合物的氧化中获取能量)、化学有机营养(从有机化合物的氧化中获取能量)和光养(从光中获取能量)。

 氧气利用:从严格厌氧菌和严格需氧菌到兼性厌氧菌和微需氧菌株的都有,但是大多数变形菌门的成员是兼性厌氧菌。

△ 运动:许多使用鞭毛移动,但有些不能移动或依赖细菌滑动,而一些细菌是不运动的。

△ 生态分布:变形菌门的成员具有极大的可变形态和多才多艺的生理学,这使它们在各种生态位中生存具有竞争优势。已观察到变形菌在不同生境中无处不在

Shin NR, et al., Trends Biotechnol. 2015

植物 、海水、淡水 ,空气,以及人和动物的身体部位,包括肠道、口腔、皮肤、阴道。尽管存在研究间差异,但健康人口腔微生物群的变形菌相对丰度最高(17.2-36.8%),其次是皮肤(6.8-30.0%)、胃肠道(2.5-4.6%)和阴道(2.3%)。

02
变形菌分类

在系统发育学上,变形菌是根据小核糖体亚单位RNA基因(16S rRNA)的测序定义的。这是一个巨大的革兰氏阴性原核生物门,原线粒体起源于此。

图片来源:Maria Lane,eportfolio

该门主要分为以下几大类:

  • α变形菌(Alpha-proteobacteria)
  • β变杆菌(Beta-proteobacteria)
  • γ变形菌(Gamma-proteobacteri)
  • δ变形菌(Delta-proteobacteria)
  • ε变形菌(Epsilon-proteobacteria)

最初,变形菌包括 α、β、γ 和 δ 四个亚类。ε变形菌 和 δ变形菌 通常被认为是最古老的变形菌群,因为它们包括利用硫化合物进行能量代谢的专性厌氧菌。

α变形菌(Alpha-proteobacteria

第一类变形菌是α-变形菌。这一类的统一特征是它们是寡营养生物,能够生活在低营养环境中,如深海沉积物、冰川或深层地下土壤。同时α-变形菌是多样化的细菌分支之一,在生活方式、地理分布和基因组大小方面表现出极大的差异

在 α-变形菌 中有两个重要分类群,衣原体和立克次体,它们是专性细胞内病原体,这意味着它们的部分生命周期必须发生宿主细胞内。由于它们无法合成自己的三磷酸腺苷 (ATP),因此,量需求依赖宿主于细胞。

立克次体属是人类很多严重疾病的病原体。例如,布鲁氏菌属、埃立克体属和立克次氏体。立克次氏杆菌会导致落基山斑疹热,这是一种威胁生命的脑膜炎(包裹大脑的膜发炎)。R. rickettsii 感染蜱,并可以通过被感染的蜱叮咬传播给人类。此外,布鲁氏菌科(Brucellaceae)和巴尔通氏菌科(Bartonellaceae)的细菌是人类病原体。

α-变形菌 还包括固氮细菌,例如固氮螺菌属和根瘤菌属。这两种细菌都使用一种称为固氮酶途径的复杂酶途径将大气中的氮 (N2) 转化为氨 (NH3)。此外,α变形菌还包括硝化细菌。这种类型的细菌将氨和铵 (NH4+) 还原为硝酸盐 (NO3)。乙酸杆菌属和葡糖杆菌属的变形菌可用于生产乙酸。

β变形菌(Beta-proteobacteria

与依靠最少量营养物质生存的 Alpha-proteobacteria 不同,Beta-proteobacteria 类是富营养生物,这意味着它们需要大量的有机营养物质。

Beta-proteobacteria 通常在需氧和厌氧区域之间生长(例如,在哺乳动物的肠道中)。一些属包括作为人类病原体的物种,能够引起严重的,甚至可能危及生命的疾病。例如,奈瑟球菌属包括淋病奈瑟菌( STI淋病的病原体)和脑膜炎奈瑟菌(细菌性脑膜炎的病原体)

β变形菌中的亚硝化单胞菌可以将亚硝酸盐还原为亚硝酸盐 (NO2)。同时,硫杆菌属物种是将硫化氢 (H2S) 和元素硫氧化成硫酸盐 (SO42-) 的细菌,以及用于污水处理的菌胶团(Zoogloea)和Sphaerotilis 

γ变形菌(Gamma-proteobacteria

最多样化的革兰氏阴性细菌是γ-变形菌,它包括许多人类病原体。包括几个医学和科学上重要的细菌群,例如肠杆菌科、弧菌科和假单胞菌科

此外,许多重要的病原体属于这一类,例如:

  • 沙门氏菌属(肠炎和伤寒)
  • 鼠疫杆菌(鼠疫)
  • 霍乱弧菌(胃肠道疾病霍乱)
  • 铜绿假单胞菌(住院或囊性纤维化患者的肺部感染)
  • 大肠杆菌(食物中毒)

Richard B. Frankel

△ 铜绿假单胞菌

一个庞大而多样的科,假单胞菌科,包括假单胞菌属。铜绿假单胞菌在该属内,它是一种病原体,可以造成身体不同部位的各种感染。铜绿假单胞菌是一种严格需氧、不发酵、高度运动的细菌。

它通常可能造成伤口和烧伤感染,也可能是慢性尿路感染的原因,并且可能是囊性纤维化患者或机械呼吸机患者呼吸道感染的重要原因。

铜绿假单胞菌感染通常难以治疗,因为该细菌对许多抗生素具有抗性,并且具有形成生物膜的非凡能力

△ 肠杆菌科

肠杆菌科是属于γ-变形菌 的一大类肠道细菌。它们是兼性厌氧菌,能够发酵碳水化合物。在这个家族中,微生物学家认识到两个不同的类别。

第一类,大肠杆菌,以其原型细菌种类大肠杆菌命名。大肠菌能够完全发酵乳糖(即产生酸和气体)。

第二类,非大肠杆菌,要么不能发酵乳糖,要么不能完全发酵(产生酸或气体,但两者不能同时产生)。

非大肠杆菌包括一些值得注意的人类病原体,例如沙门氏菌属,志贺氏菌,鼠疫耶尔森氏菌

δ 变形菌(Delta-proteobacteria)

δ-变形菌(Delta-proteobacteria )包括基本好氧的形成子实体的粘细菌和严格厌氧的一些种类,如脱硫球菌属(Desulfococcus)、脱硫线菌属(Desulfonema)、硫酸盐还原菌(脱硫弧菌属(Desulfovibrio)、脱硫菌属(Desulfobacter)、和硫还原菌(如除硫单胞菌属Desulfuromonas),以及具有其它生理特征的厌氧细菌,如还原三价铁的Geobacter和互营菌属(Syntrophus)。

△ 蛭弧菌属:

δ-变形菌还包括蛭弧菌属,Bdellovibrio侵入宿主细菌的细胞,将自身定位在周质中,即质膜和细胞壁之间的空间,以宿主的蛋白质和多糖为食。这种感染对宿主细胞是致命的。

粘细菌:

粘细菌(“粘液细菌”)是一组主要生活在土壤中并以不溶性有机物质为食的细菌。与其他细菌相比,粘细菌具有非常大的基因组,例如 9-1000 万个核苷酸。

Sorangium cellulosum 拥有最大的已知(截至 2008 年)细菌基因组,有 1300 万个核苷酸。

粘细菌产生许多在生物医学和工业上有用的化学品,例如抗生素。他们将这些化学物质输出到细胞外。

ε变形菌(Epsilon-proteobacteria 

ε-变形菌(Epsilon-proteobacteria) 是革兰氏阴性微需氧细菌(意味着它们在其环境中只需要少量氧气)。多数是弯曲或螺旋形的细菌,如沃林氏菌属(Wolinella)、螺杆菌属(Helicobacter)和弯曲菌属(Campylobacter)。它们都生活在动物或人的消化道中,为共生菌(沃林氏菌在牛中)或致病菌(螺杆菌在胃中或弯曲菌在十二指肠中)。

△ 弯曲杆菌:

变形菌门Epsilon-proteobacteria 中的两个临床相关属是弯曲杆菌属和螺杆菌属,它们都包括人类病原体。

弯曲杆菌可引起食物中毒,表现为严重的肠炎(小肠发炎)。这种由空肠弯曲杆菌引起的疾病在发达国家相当普遍,通常是因为食用了受污染的家禽产品。鸡通常携带空肠弯曲杆菌在胃肠道和粪便中,它们的肉在加工过程中可能会受到污染。

△螺杆菌:

螺杆菌是ε-变形菌的一个属,具有特征性的螺旋形状。它们最初被认为是弯曲杆菌属的成员,但自 1989 年以来,它们独立为自己的属。

螺杆菌属属于ε-变形菌,弯曲杆菌目,螺杆菌科,已经有超过 35 种。已经发现一些菌生活在上胃肠道的内壁,以及哺乳动物和一些鸟类的肝脏中。

该属中最广为人知的物种是幽门螺杆菌,它感染多达 50% 的人口。这种细菌的某些菌株对人类具有致病性,因为它与消化性溃疡、慢性胃炎、十二指肠炎和胃癌密切相关。它也作为该属的模式种

幽门螺杆菌在胃的高酸性环境中存活的能力有些不同寻常。它产生脲酶和其他酶来改变其环境以降低其酸性。

幽门螺杆菌也有它存在的意义,可能抑制引起结核的细菌(结核分枝杆菌),预防哮喘,克罗恩病,食管反流,腹泻病以及食道癌。

03
变形菌解释了人类肠道微生物组的显著功能变异

 识别微生物编码的基因,与特征相关联

栖息在哺乳动物肠道中的微生物编码了大量的蛋白质,这些蛋白质有助于广泛的生物功能,从调节免疫系统到参与新陈代谢

我们从这些微生物中识别蛋白质编码基因并将基因水平与疾病、药物功效或副作用以及其他宿主特征相关联。

例如,与传统的高纤维农业饮食相关的人类肠道微生物群编码了参与纤维素和木聚糖水解的基因家族,而这些基因家族在吃典型西方饮食的人群(年龄匹配)中不存在。

一般编码适应肠道环境所必需的功能的微生物有很强的选择性,在不同宿主中具有大量冗余的基因库。然而,目前的研究和临床很容易忽略健康人类微生物组之间基因丰度的生理意义差异。

❥ 较少丰度的变形菌门,才是是跨宿主丰度变异性最大的基因的主要来源

人体肠道通常由拟杆菌门和厚壁菌门主宰,这些门内的进化枝(尤其是拟杆菌属、普氏菌属和瘤胃球菌科)是最常用于将个体聚集成“肠型”,因为它们解释了最多的分类变异Bacteroidetes  Firmicutes 的比率也被推定为疾病或健康的潜在生物标志物

有人提出,人类肠道微生物组中可能存在少量“肠型”,每一种都具有不同的分类组成。因此,虽然拟杆菌门和厚壁菌门可能对宿主之间的分类变异贡献最大,但变形菌门的丰度可能会捕获更多的功能变异

与先前确定的肠型标记分类群相比,变形菌门的水平和可能的 Euryarchaeota 更好地解释了肠道微生物基因功能的人与人之间的差异。

在肠型研究中遗漏了这些不太丰富的门,可能是因为肠型是通过倾向于对高丰度分类群进行更多加权的方法鉴定的,并且肠型是从分类学而非功能数据中鉴定的。这对解释人类肠道微生物群的分类数据具有重要意义。

例如,变形菌门的过度生长与代谢综合征和炎症性肠病有关。通过 TLR5 敲除小鼠测试的肠道炎症关联到变形菌门(超过拟杆菌门和厚壁菌门),并且一些变形杆菌可以在这种背景下诱发结肠炎,可能导致反馈循环。因此,可变基因家族对解释人类肠道微生物群的分类数据具有重要意义。

备注:肠道受体蛋白TLR5参与积极地塑造新生小鼠肠道微生物群落的长期组成,敲除的Toll样受体(TLR5),是免疫系统识别鞭毛细菌(比如变形菌和梭状芽孢杆菌)的关键受体,缺乏它则机体可能不会在感知到细菌鞭毛时对细菌产生免疫应答。

04
变形菌的扩增是肠道菌群失调的微生物特征

肠道相关微生物群落组成的变化与许多人类疾病有关,但驱动这种不平衡(生态失调)的机制尚不完全清楚。

在肠道菌群失调期间观察到的最一致和最强大的生态模式是属于变形菌门的兼性厌氧细菌的扩张。

变形菌的菌群失调是上皮功能障碍的微生物特征

在肠道稳态期间(左),微生物群衍生的丁酸盐的 β 氧化导致上皮缺氧,从而维持大肠腔内的厌氧状态。反过来,腔内厌氧症导致肠道微生物群内专性厌氧菌占主导地位。

备注:丁酸(Butyrate acid,BA),俗称酪酸,是构成脂肪的一种脂肪酸,含有4个碳原子又称短链脂肪酸。人体的丁酸部分来自于食物中丁酸的吸收,主要的来自结肠厌氧菌的发酵产生。人体结肠产生的短链脂肪酸丁酸占比大部分)。

在肠道菌群失调期间(右),表面结肠细胞通过无氧糖酵解获得能量,从而导致上皮氧合增加,这种上皮功能障碍破坏了管腔中的厌氧菌,从而通过有氧呼吸推动兼性厌氧变形菌的扩张。

肠内氧气是变形菌扩张的常见驱动因素

健康结肠的厌氧菌导致肠道微生物群的组成以专性厌氧菌为主,而菌群失调通常与兼性厌氧变形菌的丰度持续增加有关,这表明厌氧菌的破坏

结肠上皮缺氧的,但肠道炎症或抗生素治疗增加结肠中的上皮氧合,从而破坏厌氧作用,通过有氧呼吸驱动兼性厌氧变形菌的菌群失调。

肠沙门氏菌S. enterica)是一种食源性病原体,属于肠杆菌科,变形菌门,可引起小鼠结肠炎。在肠道沙门菌S. enterica诱导的结肠炎期间,肠腔内的氧气可用性增加,这表明结肠中病原体的氧气呼吸依赖性大量繁殖以及随之而来的专性厌氧梭状芽胞杆菌的丰度下降。

同样,结肠隐窝增生由鼠肠道病原体柠檬酸杆菌(肠杆菌科,变形菌门)引发,可提高肠腔内的氧气利用率,从而通过有氧呼吸推动变形菌病原体扩张。

这些观察结果表明,变形菌的菌群失调是上皮功能障碍的潜在诊断微生物特征,建议将变形菌负荷作为生态失调和疾病的潜在诊断标准,所以在谷禾即将更新的肠道菌群检测报告中,我们会加入变形菌门丰度和参考范围这一指标。

大肠中专性厌氧菌优势可能是宿主环境的氧气限制严重的结果,这反过来又对用于营养物质的分解代谢途径产生重要影响。

避免被上消化道中的宿主酶降解的复合碳水化合物,可以被大肠中的专性厌氧细菌水并发酵成更小的化合物。专性厌氧菌最终将许多发酵产物转化为短链脂肪酸,其中乙酸盐、丙酸盐和丁酸盐是最丰富的产物。宿主吸收了大约 95-99% 的微生物产生的短链脂肪酸,它到达血流以影响免疫发育。因此,大肠中专性厌氧菌的优势确保了维持肠道稳态的代谢物的产生。

药物,炎症是变形菌扩张的常见驱动因素

变形菌是平衡的肠道相关微生物群落中的一个次要成分。然而,由遗传易感性、化学物质或肠道病原体感染引起的肠道炎症会导致小鼠模型中变形杆菌的管腔扩张不受控制

同样,在患有严重肠道炎症的人类中,包括炎症性肠病、结直肠癌或坏死性小肠结肠炎的患者中观察到变形杆菌的丰度增加。此外,在包括肠易激综合征和代谢综合征在内的低水平肠道炎症条件下观察到大量变形菌

肠道炎症增加了替代电子受体的可用性,这些电子受体通过厌氧呼吸支持兼性厌氧细菌的生长。肠道炎症过程中产生的活性氧可以将内源性硫化合物氧化为连四硫酸盐,这是一种电子受体,通过连四硫酸盐呼吸作用在鼠结肠中驱动类似肠沙门氏菌和Yersinia enterocolitica(一种属于肠杆菌科,变形菌门的病原体)的管腔扩张 。

一氧化氮由宿主酶产生化学诱导的结肠炎或由遗传易感性引发的结肠炎期间的诱导型一氧化氮合酶(iNOS) 。一氧化氮在肠腔内分解成硝酸盐,从而通过硝酸盐呼吸支持生长,从而增加小鼠结肠中共生大肠杆菌的丰度。类似,宿主衍生的硝酸盐的呼吸有助于在 S. enterica 诱导的小鼠结肠炎期间腔内病原体扩张。

有趣的是,即使在没有明显肠道炎症的情况下,例如在抗生素治疗期间,呼吸电子受体也有助于细菌群落从专性厌氧菌转变为兼性厌氧菌。为了支持这一观点,用链霉素治疗小鼠可将盲肠中的氧化还原电位提高到接近需氧培养液的水平。链霉素治疗通过硝酸盐呼吸和氧气呼吸的结合增加结肠中共生大肠杆菌或致病性肠杆菌的生长

其他类似研究的结论也表明,氧气,单独或与其他呼吸电子受体结合,是广泛的胃肠道失衡中肠道菌群失调的常见驱动因素。因此,为了开发新的预防或治疗策略,必须了解在肠道菌群失调期间呼吸电子受体的可用性如何升高。

基于这些观察,有人提出变形菌的扩增是肠道菌群失调的微生物特征,而氧气、用药,遗传易感,肠炎驱动了变形菌的扩张,反过来加剧疾病的进展。

饮食,环境是变形菌扩张的常见驱动因素

宿主遗传因素和外在环境因素,如饮食和生活环境,不断影响肠道微生物群的分类和功能组成。鉴于具有高度稳定性的平衡肠道微生物群与宿主的免疫系统具有共生相互作用,能够抑制变形杆菌失控的扩张,肠道中变形杆菌的大量繁殖可以反映肠道微生物群落结构的不稳定;这种不稳定的结构可以在非疾病状态下观察到(例如,新生儿期 和胃绕道手术后和疾病状态例如,代谢紊乱和肠道炎症)。

Shin NR, et al., Trends Biotechnol. 2015

新生儿胃肠道的初始定植期间,兼性厌氧变形菌使肠道生态位有利于专性厌氧菌的定植;后者很快被专性厌氧的厚壁菌门和拟杆菌门所取代,它们在健康成年人的肠道微生物群中占主导地位。胃绕道手术导致的胃肠道重排可以改变 pH、胆汁流量和肠道激素,所有这些因素都会影响变形杆菌的丰度。

新生儿肠道中的变形菌

新生儿肠道中的微生物群备受关注,因为它不仅反映了细菌群落的脆弱结构,而且反映了哺乳动物肠道微生物群的真正起源。新生儿肠道中的细菌群落由于其快速的时间变化而不稳定。然而,这种脆弱性与更重要的肠道菌群定植有关,例如严格的厌氧菌。

具体来说,由于新生儿肠道中的氧气丰富,生命第一周的微生物群经常以兼性厌氧菌为主,主要是变形菌属(例如,埃希氏菌属、克雷伯氏菌属和肠杆菌属)。这些兼性厌氧菌通过消耗氧气、改变 pH 值、降低氧化还原电位并产生二氧化碳和营养物质,使栖息地适合严格的厌氧菌定殖

因此,可以推测变形杆菌在为新生儿肠道准备好接受严格厌氧菌的连续定植方面发挥了作用,这些厌氧菌在健康成人的肠道中含量丰富。

最近对母体胎盘微生物组的一项研究描述了共生细菌群落的存在,其中大肠杆菌的丰度最高。尽管关于胎盘微生物群的活力和起源存在争议,但在母体胎盘中发现的这些有趣的细菌群落与来自母体羊水和新生儿胎粪的细菌群落重叠

因此,新生儿肠道中的变形菌可能通过胎儿在子宫内吞咽羊水从母体胎盘传播。有趣的是,妊娠后期孕妇肠道中变形菌的比例增加。这意味着母亲微生物群中的这种特定细菌群转移到了新生儿身上

在新生儿肠胃道中观察到的变形杆菌定植生长的持续时间很可能在母体控制之下。事实上,新生儿微生物群会受到各种母体因素的影响,例如分娩方式、饮食和怀孕期间接触抗生素。

最重要的是,新生儿肠道中变形菌的丰度受喂养类型的影响,这些细菌在配方奶喂养的婴儿中的频率更高,但在母乳喂养的婴儿中很少见。

人乳寡糖 和分泌型 IgA 的产生参与在最初的肠道定植过程中选择性抑制变形菌。因此,越来越多的人认为,及时减少变形菌的丰度是初始微生物定植的正常部分,而这种定植模式的紊乱与新生儿疾病的风险增加有关。

05
变形菌与炎症和炎症性肠病

肠道中微生物群和宿主细胞之间的相互作用对于免疫系统的形成和调节至关重要,由于肠腔内有大量外源性抗原,免疫系统必须严格调节其反应以维持与共生菌的共生关系。共生体传递一种信号,诱导宿主免疫的耐受性反应。因此,宿主可以区分有益的本土微生物和有害病原体,并建立健康的微生物群

变形杆菌的主要分类及其与IBD的关系

Mukhopadhya I, et al., Nat Rev Gastroenterol Hepatol. 2012

为了防止对共生细菌的炎症反应,肠道内的免疫细胞,如单核吞噬细胞(巨噬细胞和树突状细胞)和 CD4 + T 细胞,对微生物刺激反应迟钝或表现出共生反应。

同时,黏膜免疫系统负责清除病原体,这一过程需要积极的促炎信号级联反应。因此,不适当的免疫反应会破坏肠道稳态,引发生态失调,并导致局部和全身炎症和代谢功能障碍。

这种慢性进行性肠道炎症的状态在临床上被诊断为炎症性肠病 (IBD),其中包括溃疡性结肠炎 (UC) 和克罗恩病 (CD)。IBD 的确切病因仍然无法获得,但新出现的证据表明,肠道微生物群成为了这种疾病的主要嫌疑。

许多研究报告了动物和人类各种炎症持续条件下微生物群组成的改变。在这种情况下,通常发现变形菌在疾病中增加,变形菌在肠道炎症中的作用已在各种结肠炎小鼠模型中得到解决,与疾病呈正相关

例如,使用易发炎症的小鼠模型,即鞭毛蛋白受体 TLR5 缺陷小鼠 (T5KO),发现,进展为结肠炎的小鼠表现出明确的微生物群特征,其特征是变形菌的水平增加,尤其是大肠杆菌属。并且一些作者已将其确定为微生物群不稳定性的潜在标志物,因此易诱发疾病发作

变形杆菌属大量繁殖的同时,结肠炎Tlr5-/- 小鼠表现出杂乱无章的结肠粘液层,与非结肠炎Tlr5-/- 同胞相比,感染性病原体的清除延迟

这些结果表明,短暂不稳定的肠道微生物群,尤其是以变形菌为主的群落,会使遗传易感的小鼠易患慢性结肠炎

先天免疫反应失调推动变形杆菌生长的假设这反过来又会促进肠道炎症,这一点得到了其他小鼠模型研究的支持,这些小鼠模型具有影响适应性免疫的突变,白细胞介素 (IL)-10 是对本地微生物群产生免疫耐受所需的主要免疫调节细胞因子。

IL-10 缺陷小鼠由于对肠道菌群不耐受而表现出自发性结肠炎。随着结肠炎症的发生和发展,在定植常规微生物群或缺乏特定病原体的微生物群的 IL-10-/- 小鼠中,变形杆菌和大肠杆菌比野生型小鼠多

在另一项对 IL-10 缺陷小鼠的研究中,富含饱和乳脂的饮食扰乱了肠道微生物群,导致亚硫酸盐还原Delta-proteobacteriumBilophila wadsworthia 大量繁殖。这种病原菌在 IL-10 -/-小鼠中诱导促炎性黏膜免疫反应并促进自发性结肠炎的发生率和严重程度;它还在喂食高乳脂饮食的野生型小鼠中促进葡聚糖硫酸钠 (DSS) 诱导的结肠炎。

除了对结肠炎的易感性与肠道变形菌的相对丰度之间存在正相关性之外,对先天性和适应性免疫系统均缺陷的小鼠的研究提供了支持变形菌在肠道炎症中的致病作用的证据。

来源:谷禾健康肠道菌群数据库

谷禾健康肠道菌群检测大数据也显示,在炎症性肠病,结直肠癌等患者的肠道菌群检测报告中,85%以上的患者显示变形菌门超标或多项变形菌门病原菌超标或占比丰度偏高

在最近的一项研究中重现了,结肠炎中变形杆菌显着扩增,该研究比较了患有活动性结肠炎的 TRUC 小鼠的肠道微生物组与因庆大霉素、甲硝唑或抗肿瘤坏死因子 (TNF)-α 治疗而缓解的小鼠的肠道微生物组。

值得注意的是,从 TRUC 小鼠的粪便中分离出的两种肠杆菌科细菌(肺炎克雷伯菌和奇异变形杆菌即使在没有任何遗传免疫缺陷的受体小鼠中也足以引发结肠炎

然而,这两种微生物的致结肠潜力并未在无菌 TRUC 小鼠中复制,这表明结肠炎的发病机制需要其他共生成员。口服伤寒杆菌,另一种富含 TRUC 小鼠的变形菌,也会在非结肠炎 TRUC 小鼠中引发结肠炎,这些小鼠具有大量的促炎细胞因子(例如,TNF-α)。

遗传易患结肠炎的小鼠的生态失调与人类 IBD 特别相关,因为与 IBD 相关的风险等位基因或多态性与先天性和适应性免疫成分有关。与小鼠研究相似,两项人类研究表明,与健康受试者相比,IBD 患者肠道微生物群落的特点是微生物多样性低、变形菌门(尤其是肠杆菌科)的产物以及厚壁菌门的减少

一项人类队列研究发现,核苷酸结合寡聚化结构域 (NOD)-2 风险等位基因剂量与 IBD 患者肠道标本中肠杆菌科的相对丰度呈正相关。

在 UC 患者中,与炎症的中度和轻度阶段相比,在严重阶段观察到的变形杆菌水平显着升高

在新发 CD 的初治儿科患者和非 IBD 对照受试者之间,回肠和直肠活检(但不在粪便样本中)的粘膜相关微生物组存在明显差异。变形菌的相对丰度增加,包括肠杆菌科、巴氏杆菌科和奈瑟菌科,将 CD 相关细菌群落与健康对照组区分开来。与慢性炎症一致,伴随变形杆菌属优势的肠道微生物群落改变不仅见于传染性病原菌或原生动物寄生虫引起的急性炎症,而且见于实验性和人类结肠炎相关的结肠直肠癌。

最有趣的生物体,通过一个孤立的病例报告与 IBD 有关,该病例报告一名感染这种细菌的小男孩在放射成像上出现回肠增厚,这是克罗恩病的典型表现

血清学研究表明,与健康对照相比,克罗恩病患者的大肠杆菌抗体数量增加。具体地说,已发现37-55 % 的克罗恩病患者、2-11% 的溃疡性结肠炎患者和 <5% 对照组患者的百分比。

此外,克罗恩病患者中这些抗体的存在与更严重的表型相关,其特征是小肠受累、疾病进展频繁、病程更长和对手术的需求更大,这表明它们可以用作克罗恩病的预后标志物

06
变形菌与代谢性疾病

饮食被认为是塑造肠道微生物结构的最关键的环境因素之一。

△ 肥胖:丰富的变形菌为特征

累积证据表明,人类和啮齿动物的健康和肥胖个体的肠道微生物群的分类和功能组成存在差异。

此外,肥胖表型通过粪便移植的传播能力表明肠道微生物群落的改变,作为主要触发因素,是因果关系而不是结果。

肠道微生物群的分类组成失衡,称为生态失调,在代谢紊乱中得到充分证明,并被视为厚壁菌门相对于拟杆菌门的相对丰度增加(F:B 比率)。尽管一致的研究结果普遍支持这一概念,但代谢紊乱期间的生态失调通常包括变形菌的患病率增加。

例如,一项对儿童肠道微生物群的研究发现,与低脂肪、高纤维饮食儿童相比,食用高热量、高脂肪、低纤维饮食的欧洲儿童中的变形杆菌数量更多

这种差异揭示了肠道微生物群落对非洲儿童饮食的适应性,这可以提高他们从难消化的多糖中获取能量的能力。此外,一些导致有害代谢影响的因素,例如食用无热量的人造甜味剂和乳化剂(通常用作加工食品中的添加剂),也会损害血糖控制并诱发变形杆菌繁殖。

特别是,人造甜味剂介导的肠杆菌科和Delta-proteobacteria类相对丰度的升高与 2 型糖尿病 (T2DM) 患者的结果一致,表明葡萄糖稳态和肠道变形菌之间存在联系。相比之下,证明变形菌的丰度与糖尿病表型呈负相关挑战代谢疾病患者中高丰度变形菌的概念。

为支持代谢紊乱与变形菌属的扩张之间的关系,变形杆菌属的致肥胖潜力已在无菌小鼠的单关联研究中被确定。

在对一名病态肥胖志愿者进行的减肥试验中,肠杆菌科的相对丰度逐渐减少,假设肠杆菌在代谢恶化中具有致病作用。用从肥胖的人类肠道中分离出来的阴沟肠杆菌B29对无菌小鼠进行单菌定植足以诱导肥胖和胰岛素抵抗。

这一发现支持了这样一个假设,即以丰富的变形菌为特征的不稳定的肠道微生物群落可能代表代谢紊乱的主动特征,而不是被动后果。

△ 营养不良儿童:变形菌成为优势菌

营养不良会导致其他健康问题,例如消瘦和夸希奥科病。在发展中国家,营养不良是威胁 5 岁以下儿童生命的疾病。

营养不良的主要病因是在孕期或产后头 3 年由于大量营养素缺乏和微量营养素缺乏导致的慢性能量负平衡。

然而,最近的研究表明,孟加拉国和马拉维营养不良儿童的肠道微生物群落结构和基因含量与营养良好的儿童不同。在这些研究中,在营养不良的儿童中普遍观察到变形菌的优势和肠道微生物群的低多样性,并被认为是肠道微生物群成熟的障碍

此外,最近的一项研究揭示了肠杆菌科细菌与营养不良下的肠道黏膜免疫球蛋白 A (IgA) 反应之间存在机制上的相互关系,这会引发肠病并中断黏膜免疫的发展和健康微生物群的组装。

鉴于生态失调驱动的选择压力似乎干扰了微生物群的稳定性,变形菌随后借此机会增加了它们的适应性。微生物群落在异常代谢条件下的不稳定性已被解释为对定植的抵抗力受损

当接种来自肥胖人类供体的培养细菌(“肥胖受体小鼠”)的无菌小鼠与携带来自瘦肉供体的细菌物种(低脂肪、高纤维饮食)的小鼠共同饲养时,它们被瘦肉有效定殖供体来源的细菌菌株及其肥胖表型得到改善。相比之下,瘦小鼠没有被来自肥胖小鼠的外源或外源细菌菌株定殖。

这一发现表明,生态失调的特点是传播能力减弱和对定植的抵抗力。鉴于 kwashiorkor 儿童的肠道微生物不成熟且富含肠道病原体营养不良被认为与对殖民化的抵抗力有缺陷有关。

总的来说,这一间接证据导致了这样一种观点,即肠道变形菌的扩张反映了宿主的能量不平衡和不稳定的微生物群。有趣的是,在非疾病状态下,如新生儿期和胃绕道手术后也观察到肠道微生物群落的不稳定结构和高丰度的变形菌。

07
宿主对变形菌的识别

与大多数细菌一样,在细胞外环境中对变形菌的初步识别是通过病原体识别受体 (PRRs) 发生的,PRRs 识别微生物相关分子模式 (MAMPs)——一个包括病原体相关分子模式 (PAMPs) 和危险相关分子模式的统称分子模式(DAMP)。

这些信号受体可分为三个家族:

  • Toll 样受体 (TLR)
  • 维甲酸诱导基因 I (RIG-I) 样受体 (RLR)
  • 核苷酸寡聚结构域 (NOD) 样受体 (NLR)

尽管至关重要的是,只有 TLR 家族参与识别肠细胞表面的细菌配体。

存在于变形菌细胞表面的主要 MAMP 是脂多糖 (LPS) 和鞭毛蛋白,它们分别被 TLR4  TLR5 识别。其他参与细菌识别的TLR包括检测细菌脂蛋白的TLR2和检测未甲基化 CpG DNA 的细胞内受体 TLR9。

LPS 的产生和鞭毛组装是在原核生物中观察到的两个最动态的过程,这些结构组成的巨大差异反映在不同变形菌家族成员中观察到的先天免疫反应的强度和方向上。例如,弯曲杆菌和螺杆菌属LPS 大肠杆菌LPS 的不同之处在于具有更长的酰基链和增加的链连接和脂质 A 磷酸基团的修饰。

在许多病原生物体(例如百日咳杆菌和幽门螺杆菌)中观察到脂质 A 锚中的一个或两个磷酸基团丢失,并且已被证明可提供对抗菌肽的抗性。

参与细菌识别的 TLR 的遗传变异与 IBD 相关。2010 年发表的一项荟萃分析表明,TLR4 Asp299Gly 和 Thr399Ile 变体都赋予白人患克罗恩病和溃疡性结肠炎的统计学显着风险。有趣的是,这两种变体都位于 LPS 结合域内 TLR4 的胞外域,并且被认为会影响蛋白质的二级结构。

这些功能变体的存在已被证明会影响 LPS 反应性,并使个体更容易受到革兰氏阴性菌的感染。证据还表明,这些遗传变异的存在可能会影响基础免疫状态

因此,有理由推测,在 TLR4 基因变异的携带者中,在营养不良事件之前或期间发生的免疫反应改变,可能足以驱动 IBD 发生不可挽回的免疫反应改变。TLR9 中的遗传变异也与 IBD 易感性增加有关。证据不如TLR4那样令人信服,尽管这一警告可能反映了 TLR9 处理来自所有细菌的配体而 TLR4 反映革兰氏阴性菌易感性的事实

总结

变形菌门是肠道菌群中四个主要门(厚壁菌门、拟杆菌门、变形菌门和放线菌门)中最不稳定变化最快的门。变形菌门作为一线反应者,对环境因素(如饮食)反应敏感。

总的来说,迄今为止的许多研究都支持这样一个概念,即肠道中大量变形菌反映了生态失调或不稳定的肠道微生物群落结构。除了外源性肠致病性变形杆菌外,健康的哺乳动物肠道还含有数种属于该门的共生细菌,作为其天然肠道菌群

这些细菌在比例较小时似乎是良性的,而在某些肠道环境下,它们会变成可发炎症反应甚至代谢障碍

然而,肠道中变形菌的长期富集可能代表不平衡的不稳定微生物群落结构或宿主的疾病状态。因此,时间顺序监测,而不是横断面研究,可能是根据肠道中变形菌的比例确定疾病风险的更好方法

在健康肠道中,免疫系统严格调节其反应以维持与共生菌的共生关系。这种可能性表明存在正反馈循环。环境或宿主因素(例如低纤维饮食和急性或慢性炎症)破坏体内平衡,具有选择性并导致肠道内大量变形菌的生态失调。由于宿主无法保持共生的变形菌而导致变形菌的不受控制的扩张,在一小部分和微生物群落对定植的抵抗力降低的情况下,可以进一步促进炎症或外源性病原体的入侵。

因此,切断反馈回路的策略可能包括优化肠道微生物群和宿主之间的伙伴关系。鉴于大多数研究已经在与宿主生理学相关的背景下描述了微生物群落状态,因此对于未来的炎症和代谢干预治疗,首先需要判别变形菌的丰度以及是其是否不受控制扩张,另外需要确定变形杆菌大量繁殖的原因以开发有效的治疗方法。

主要参考文献:

Rizzatti G, Lopetuso LR, Gibiino G, Binda C, Gasbarrini A. Proteobacteria: A Common Factor in Human Diseases. Biomed Res Int. 2017;2017:9351507. doi: 10.1155/2017/9351507. Epub 2017 Nov 2. PMID: 29230419; PMCID: PMC5688358.

Mukhopadhya I, Hansen R, El-Omar EM, Hold GL. IBD-what role do Proteobacteria play? Nat Rev Gastroenterol Hepatol. 2012 Feb 21;9(4):219-30. doi: 10.1038/nrgastro.2012.14. PMID: 22349170.

Litvak Y, Byndloss MX, Tsolis RM, Bäumler AJ. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr Opin Microbiol. 2017 Oct;39:1-6. doi: 10.1016/j.mib.2017.07.003. Epub 2017 Aug 4. PMID: 28783509.

Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015 Sep;33(9):496-503. doi: 10.1016/j.tibtech.2015.06.011. Epub 2015 Jul 22. PMID: 26210164.

Shin NR, Whon TW, Bae JW. Proteobacteria: microbial signature of dysbiosis in gut microbiota. Trends Biotechnol. 2015 Sep;33(9):496-503. doi: 10.1016/j.tibtech.2015.06.011. Epub 2015 Jul 22. PMID: 26210164.

Rigottier-Gois L. Dysbiosis in inflammatory bowel diseases: the oxygen hypothesis. ISME J. 2013 Jul;7(7):1256-61. doi: 10.1038/ismej.2013.80. Epub 2013 May 16. PMID: 23677008; PMCID: PMC3695303.

警惕食源性疾病——食源性病原菌介绍

谷禾健康

民以为天,食以为先。

随着夏季来临,我们最近检测的报告中发现以上食源性致病菌的检出率和超标率也在逐步上升。

尽管许多人可能没有意识到,近年来,食源性疾病的发病率逐年升高,食源性病原体正在引起大量疾病,对人类健康和经济产生重大影响,已成为全球范围内的重大公共卫生问题。

食源性疾病是一个全球性问题,影响所有年龄和背景的人,尤其是 5 岁以下的人和的65岁老人以及生活条件差的人。我国细菌性食源性疾病每年发病人数可达9411.7万人次,根据美国疾病控制与预防中心 (CDC) 的估计,美国每年也有4800 万例疾病、128000 例住院治疗和 3000 例死亡是由食源性细菌引起的。澳大利亚,每年约有五分之一的人患有这些疾病,住院人数超过 30,000 人。

致病菌广泛存在于各种食品中,食源性致病菌是食源性疾病的首要病因,由其引起的食源性疾病长期以来一直是食品安全的主要威胁,尤其在发展中国家,形势更严峻。它们会导致 200 多种疾病——从腹泻到癌症。在我国,每年因副溶血性弧菌导致急性腹泻665.5万人,导致急性胃肠炎病例估计为728.1万人。

最常见的致病细菌包括:蜡样芽胞杆菌,空肠弯曲杆菌,肉毒梭菌,产气荚膜梭菌,坂崎肠杆菌,埃希氏菌,李斯特菌,沙门氏菌属,志贺氏菌属,Staphylococccus黄色葡萄球菌,弧菌属等。

定 义

食物中毒:指食用了被有毒有害物质污染的食品或者食用了含有有毒有害物质的食品后出现的急性,亚急性以及其它食源性疾病。

目前一些-国家和国际组织以及很少使用食物中毒的概念,经常使用的是“食源性疾病”,食物中毒仅是食源性疾病的一部分,是一大类最常见最典型的食源性疾病

食源性疾病:世界卫生组织认为,凡是通过摄食进入人体的致病因素,是人体患感染性的或中毒性的疾病,都称之为食源性疾病。

我国《食品安全法》定义食源性疾病:指食品中致病因素进入人体引起的感染性,中毒性疾病以及其它疾病。

食物中毒的症状

细菌性

食物中毒的症状因人而异,有些人的病情会比其他人更严重。但是,一些常见的症状是:

  • 恶心
  • 呕吐
  • 腹部绞痛
  • 腹泻
  • 昏睡
  • 发热
  • 出汗

不太常见的症状也包括:

  • 模糊的视野
  • 头痛
  • 麻痹
  • 皮肤刺痛或麻木
  • 痉挛

保持水分和休息通常是治疗食物中毒的唯一方法,因为身体可以自然地清除污染物。但是,在某些情况下,需用抗生素来帮助身体抵抗感染,特别是在单核细胞增生李斯特菌中毒的情况下以及当易感受伤害的人受到影响时。

病毒性

与细菌不同,病毒不会在食物上生长和繁殖。相反,病毒细胞存在于食物中,当被食用时,它们开始接管人体细胞并感染它们。

常见的食源性疾病病毒类型是:

  • 甲型肝炎
  • 病毒性肠胃炎
  • 诺如病毒
  • 轮状病毒

诺如病毒是导致大多数与食品污染有关的疾病的罪魁祸首 。

掠食性细菌作为活的抗生素对抗感染

谷禾健康

后抗生素时代,当人类对某细菌无可奈何时,何不让细菌对抗细菌?

抗生素已经彻底改变了现代医学,但其有效性受到多重耐药细菌传播的威胁,而目前尚无有效的治疗方法。抗生素耐药性(AMR)通常由不必要的抗生素使用引起,是一种严重的全球健康和经济威胁。

特别值得关注的是,抗生素生产线不断减少,开发中的抗生素数量有限(数量和多样性都有限),以满足当前和预期的患者需求。此外,科学和经济挑战促使许多大型全球制药公司停止其抗生素开发计划,使得对新的感染控制方法的需求更加迫切。因此迫切需要用于治疗革兰氏阴性感染的新疗法。

最近一种潜在的方法是使用活的掠食性细菌。由于蛭弧菌Bdellovibrio bacteriovorus广泛存在于自然界中,而目前也尚没有与蛭弧菌相关的疾病报告,科学家认为有可能围绕它们建立一种安全无害的生物治疗手段,去抗击病原菌的感染。但毕竟蛭弧菌本身也是一种细菌,人和动物的免疫系统如果发现它们,会怎样对待这些“友军”?会增强对蛭弧菌的抵抗力吗?

本文讨论了支持掠食性细菌替代抗生素的可行性的基础科学。

· 掠食细菌—蛭弧菌B. bacteriovorus

蛭弧菌 Bdellovibrio bacteriovorus是寄生于其他细菌(也可无寄主而生存)并能导致其裂解的一类细菌。它虽然比通常的细菌小,能通过细菌滤器,有类似噬菌体的作用,但它不是病毒,确确实实是一类能”吃掉”细菌的细菌。

1962年首次发现于菜豆叶烧病假单胞菌体中,随后从土壤、污水中都分离到了这种细菌。根据其基本特性,命名为Bdellovibrio bacteriovorus

其中,” Bdello”一词来自希腊字,是”水蛭”的意思,”vibrio”意为”弧菌”,而种名”bacteriovorus”是 “食细菌”的意思。“捕食”的对象正落在多出产致病菌的细菌类群——革兰氏阴性菌(如大肠杆菌、志贺氏菌等)中。

蛭弧菌的掠食生活方式

B. bacteriovorus通常会持续3-4 h消耗其革兰氏阴性细菌的猎物。这种掠夺性生命周期是一个复杂的过程,在分子水平上已经开始被理解。最初,B. bacteriovorus识别,附着并进入猎物细胞,对其进入口进行加固,穿越和重新密封。侵袭伴随着猎物细胞的圆形化,稳定的胶质细胞的形成以及猎物细胞的死亡。

同时,通过依次释放一组酶,B. bacteriovorus消化了猎物,并利用所形成的养分库长出了长丝。 单个细丝的同步分裂会产生奇数或偶数个子代细胞,每个子代细胞会产生鞭毛或滑行引擎(取决于条件),然后从死亡的猎物细胞中爆发并开始寻找新的猎物。 根据猎物细胞的大小,以及猎物细菌内部可用的养分,每个细胞平均释放4–6个B. bacteriovorus后代。 尽管被认为是专性的捕食性细菌,但B. bacteriovorus仍可转变为不依赖宿主的生活方式,可以在全培养基上的无菌生长。

为什么蛭弧菌是掠食性细菌?

B. bacteriovorus生命周期和基因组的一些特征决定其成为一种潜在的抗革兰氏阴性细菌病原体的治疗剂。在捕食生命周期中,被捕食细胞在短时间内(<30分钟)被杀死,因此,被捕食者必须快速表达防御手段,以抵抗捕食,这是尚未见到的。

与某些抗生素不同,某些抗生素可引起一连串事件,导致细菌自溶和炎症分子释放,B. bacteriovorus细菌捕食不会导致猎物的最初溶解,因为在溶解之前,猎物的内容物是从稳定的蛭质体结构内消耗的。此外,没有单一的受体识别和附着猎物。在猎物入侵后,在数量和功能多样性方面,具有潜在遗传冗余的猎物破坏酶都出现了上调,这表明简单的猎物对B. bacteriovorus捕食的抵抗不太可能发生。

蛭弧菌对宿主会有哪些影响

为了实现B. bacteriovorus的治疗潜力,必须在生物学相关系统中充分表征其对革兰氏阴性病原体的捕食性。 这种表征还必须同时解决诸如宿主反应,毒性,炎症,组织损伤或伤口愈合抑制等问题。

其中一些问题已通过体外细胞培养和体内动物模型解决,评估了掠食性细菌对免疫系统各个组成部分以及整个宿主的影响。 许多人类细胞系,包括角膜-上皮细胞,血液单核细胞,巨噬细胞,肾上皮细胞,肝上皮细胞和脾单核细胞,已经暴露于不同的捕食性细菌中,测定了不同暴露的时间范围、持续时间(2至24小时),下促炎和抗炎细胞因子水平。

已知可响应细菌外膜脂多糖(LPS)而被刺激的细胞因子,是宿主抵抗病原体所必需的。 这些研究表明,尽管B. bacteriovorus在免疫反应方面并不沉默,但暴露后产生的炎性细胞因子水平可忽略不计或很低。 B. bacteriovorus不像同时检测到革兰氏阴性病原体那样具有免疫刺激性,这可能部分是由于其独特的脂质A结构以及它拥有带鞘的鞭毛

额外的细胞活力成像,细胞毒性测量以及暴露于掠食性细菌后对动物和人类培养细胞形态变化的评估初步表明,B. bacteriovorus对人细胞无毒,尽管还需要进行更多的研究。  Raghunathan及其同事使用人类巨噬细胞系(U937细胞)研大量掠食性细菌能够在细胞内存活长达24小时,从而确定了一段持久性和潜力捕食细胞内病原体的能力。

另外,通过在药理学抑制剂存在下进行吸收实验,证明了宿主肌动蛋白细胞骨架的作用及其在B. bacteriovorus吸收中的重排。B. bacteriovorus最终通过吞噬体途径被转运,这是由于它们靶向酸性液泡。 鼠巨噬细胞系中的类似观察结果支持了这一点,并且两者都是考虑给予B. bacteriovorus作为治疗剂的重要观察结果。 这些研究说明了B. bacteriovorus靶向细胞内病原体的潜力,而许多抗生素和其他生物控制剂(例如噬菌体)可能无法利用这些细菌。 尽管后一点正在积极研究中。 这些体外细胞实验以及下面描述的动物模型,是研究功效,缺乏毒性和潜在捕食者生物利用度的重要步骤。

早期体内宿主反应集中于B. bacteriovorus在吸热和放热脊椎动物肠道中的生存能力。研究了在鲶鱼(点状黄疸)、豹蛙(林蛙)、小鼠和兔子的肠道中实验投喂的B. bacteriovorus菌株MS7的生存能力和持久性,表明在接种后24-48小时内,B. bacteriovorus几乎没有恢复。通过饮用水给小鼠提供的3天B. bacteriovorus不能从肠道中完全恢复。同样,在注射后24小时左右,无论是使用无菌培养物,还是同时注射B. bacteriovorus,都没有或很少从兔回肠环中发现B. bacteriovorus。

B. bacteriovorus对动物没有致病性。这些研究已经扩展到包括评估宿主发病率、组织病理学、促炎和抗炎细胞因子水平、体内捕食性细菌传播以及长期评估大鼠、小鼠斑马鱼幼虫模型的一般健康状况。总的来说,在一系列动物模型中以及通过多种给药途径在体内给药已经证明,它们不会损害这些动物的健康

蛭弧菌捕食范围:体外和体内捕食

事实证明,B. bacteriovorus对多种猎物具有体外功效,包括与肠道,口腔,伤口和眼部感染有关的细菌和生物制药。B. bacteriovorus成功地减少了实验室缓冲液和人血清中的病原体数量和生物膜中的猎物,而生物膜通常是抗生素治疗的重大阻碍。 重要的是,已经显示出许多具有多重耐药性的人类临床分离株容易被B. bacteriovorus捕食。 该清单包括许多需要新治疗的E(S)KAPE病原体,包括表达mcr-1的革兰氏阴性大肠菌素抗性分离株。 体外研究还调查了成功捕食所需的B. bacteriovorus与猎物的比率; 如果抗生素不能治疗感染,则作为将来的体内实验和临床的重要考虑因素。

尽管实验性体外系统,尤其是实验室缓冲液或富含生长培养基的环境可能显示出掠食性功效,但它们不足以替代体内治疗的复杂性,而体内治疗必须考虑到宿主的免疫反应以及病原体的生存策略。 动物感染模型在评估B. bacteriovorus在体内捕食革兰氏阴性细菌的能力以及解决此类宿主对宿主的任何反应(以及由此产生的安全性)方面都发挥了作用,越来越多的证据表明,至少在动物中,以及将来将这种掠食性细菌用于治疗应用的可行性,将其扩展到人类。

一项对感染肠炎沙门氏菌p125109的鸡群实验表明。 在B. bacteriovorus处理后的三天内,与对照动物相比,经细菌性芽孢杆菌处理的禽类的盲肠中沙门氏菌数量显着降低。 此外,与对照动物的许多盲肠相比,经B. bacteriovorus处理的禽中盲肠的外观是正常的。

进一步的重要研究表明B. bacteriovorus能成功地在体内捕食病原体。 使用大鼠模型,Shatzkes及其同事证实B. bacteriovorus可以治疗肺炎克雷伯菌感染的大鼠,显示与对照组相比,细菌性芽孢杆菌治疗的动物的病原体负担明显减少。 另外一项通过向大鼠尾静脉注射引发疾病的败血病模型。 B. bacteriovorus不能显着减少感染。 这是首次将B. bacteriovorus直接施用到血流中,并且是评估掠食性细菌清除血流感染能力的重要一步。

斑马鱼幼虫的物理特征以及与人类的广泛基因组同源性包括良好的理解,充分发展的免疫系统和光学透明的性质,非常适合于创新的活荧光显微镜检查。

诺丁汉大学伊丽莎白·肖克特和伦敦帝国理工学院的塞尔吉·莫斯托维小组用模式生物斑马鱼做了研究。

接下来,研究者放心地开始了“以菌治菌”环节。他们用一种叫福氏志贺氏菌(Shigella flexneri)的病原菌来感染斑马鱼——所选取的菌株同时对链霉素与羧苄青霉素具有耐药性。他们向斑马鱼的后脑先接种了致死剂量的志贺氏菌,再注射蛭弧菌。由于这两种细菌被带上了不同颜色的荧光蛋白标记,研究者得以观察它们的数量和分布变化情况。他们发现,相比于对照组,注射了蛭弧菌的斑马鱼后脑内志贺氏菌大量减少,被感染的斑马鱼在72小时后的存活率也更高。在更高分辨率的显微观察中,研究人员也找到了蛭弧菌在斑马鱼体内和体外都能够侵染并杀死志贺氏菌的证据。

研究者认为,在抗击志贺氏菌感染这件事上,蛭弧菌和斑马鱼免疫系统其实某程度上达成了巧妙的“配合”:蛭弧菌对志贺氏菌的“捕食”开始得非常迅速,能够在感染初期控制住志贺氏菌繁殖的势头,帮免疫系统减轻应对的压力。而等到大批白细胞赶来时,蛭弧菌已经饱餐过一顿,收拾残余志贺氏菌的工作,免疫系统自己也能完成好。

1897年,日本细菌学家志贺洁发现了志贺氏菌(Shigella).

作为杆菌性痢疾的祸首,这类细菌每年导致约1.63亿严重痢疾病例,并夺走超过100万人的生命,可谓是最臭名昭著的病原菌之一。志贺氏菌是一类革兰氏阴性的杆状细菌,可以制造出能杀死细胞的志贺毒素。

在最近的一项研究中,Russo及其同事证明了B. bacteriovorus 可用于显着减少实验感染小鼠肺部的鼠疫杆菌(yersinia pestis)数量。 但是并非所有的体内B. bacteriovorus 施用都已成功地减少了病原体数量。 尽管在先前的研究中使用组织培养模型在体外取得了令人鼓舞的结果,但给予B. bacteriovorus 治疗经牛莫拉氏菌(Moraxella bovis )感染的牛犊是牛角膜结膜炎的病原体,未能导致角膜溃疡形成的显着改善。

从上面的大量研究可以看出,越来越多的证据表明Bdellovibrio sp持续非病原性且足够长以具有治疗活性,对免疫微生物群的不良影响极小,并且不成为正常宿主微生物群的一部分。 无论是成功的还是不成功的体内试验,如本文所述,对于评估哪些适应症,给药途径(局部给药还是静脉给药)和感染部位都至关重要,在的掠食性细菌给药将最有效地对其进行评估。

了解蛭弧菌捕食与宿主反应之间的关系

治疗后动物和人类感染的康复结果取决于多种因素的相互作用,例如患者的免疫系统和总体健康状况包括肠道菌群,病原体的性质以及治疗的类型和提供方式。 在将体外和体内细菌捕食视为宿主反应的独立实体时,未捕获革兰氏阴性病原体的细菌捕食与宿主反应之间的相互作用和协同作用。

该模型表明,B. bacteriovorus在非致病性条件下持续了足够长的时间,可以在实验性感染期间有效地捕食志贺氏菌。 在这项工作中,用显微镜观察了与宿主免疫系统细胞的相互作用。 此外,这项研究发现B. bacteriovorus的最大治疗益处来自细菌捕食和宿主免疫系统的协同作用。 给药后,掠食性细菌种群最终会通过与宿主免疫系统的相互作用而清除,实际上这种清除可能对(自我)限制治疗有益。

与其他微生物抗菌方法的比较

在考虑治疗掠食性细菌感染时,研究人员可以向噬菌体研究和临床界寻求动力,以应对从体外到临床环境的挑战。 尽管在一些国家已经使用了多年,但最近的一些引人注目的病例已证明在临床环境中成功施用了噬菌体鸡尾酒来治疗耐药性感染。

从表面上看,B. bacteriovorus和噬菌体具有许多潜在的生物防治剂特性。 它们都表现出掠食性或寄生性生命周期,它们是自我复制和自我限制的,仅在存在易感宿主或猎物时才持续存在,并且在裂解性噬菌体的情况下,两者都具有广泛相似的生命周期。 当将它们引入动物和人类体内时,它们似乎也几乎没有副作用。 但是,两者之间存在一些显着差异,这可能会限制和区别它们在某些适应症中的使用。

首先,与噬菌体相比,B. bacteriovorus无疑是“活的”并且具有代谢活性,噬菌体是惰性颗粒,直到它们通过特定受体与宿主建立接触。 这可能对B. bacteriovorus既有好处,也有缺点,因为它可能使用需要能量的过程,例如噬菌体无法获得的主动“定位”猎物。 但是,如果未发现猎物,则B. bacteriovorus不能进入休眠状态,并且会死亡。 相反,噬菌体可以在不消耗任何能量的情况下保持“生存”许多年,但无法主动寻找宿主。 他们必须依靠随机概率遇到宿主,并通过比B. bacteriovorus更快速地复制并且具有更大的爆发来补偿这种相对的低效率。

先前对伤寒沙门氏菌大肠杆菌的研究表明,噬菌体并不总是消除其宿主的全部种群。B. bacteriovorus和噬菌体的复制都可能受到最低宿主/猎物阈值的限制,在此阈值之下,它们无法无限期地维持其种群。 然而,这可能在治疗上是有益的,因为通常不需要消灭病原体即可显着减轻或完全缓解疾病症状。

单个噬菌体的宿主范围通常限于一个菌种或一个或两个密切相关的菌种内的许多菌株,这使得其种群的维持比B. bacteriovorus更具挑战性。需要考虑宿主特异性和细菌对噬菌体耐药性的快速获得;与之相比,广泛的细菌捕食范围和缺乏掠食性细菌的简单抗药性机制使其具有优势。 有趣的是,最近有科学金工作强调了将掠食性细菌与噬菌体一起使用的组合能力。 噬菌体敏感性和Bdellovibrio捕食的独立动力学使得在某些条件下更大程度地杀死了大肠杆菌

当被引入到吸热动物体内时,B. bacteriovorus和噬菌体都将面临挑战性条件。 与细菌噬菌杆菌相比,噬菌体在遇到苛刻的物理和化学条件(例如更高的温度和极端的pH值)时更有可能具有弹性。噬菌体可以穿过血脑屏障,但如果不进行故意修饰,可能无法在细胞内持续存在。 确实,以前的研究表明,当它们进入血液时,它们可以被网状内皮系统迅速隔离。 至少在某些情况下,可以通过在哺乳动物中连续传播噬菌体来重新分离能够在哺乳动物中长时间循环的噬菌体来应对这一问题。 众所周知,噬菌体能够通过普遍的和专门的转导在细菌之间转移DNA,这是一种不适用于B. bacteriovorus的风险。可以通过仔细筛选噬菌体基因组以除去具有整合能力的特定噬菌体和其他可能带有编码细菌毒素或其他毒力因子的基因的噬菌体,来减轻这种风险。

Bdellovibrio和噬菌体的治疗应用需要两者的工业生产。 每种噬菌体都面临着不同的挑战,因为噬菌体的产生数量更大且速度更快,但是它们的产生可能需要大量培养病原性宿主细菌。 相反,可以使用非病原性的Bdellovibrio宿主,例如大肠杆菌和恶臭假单胞菌,但是需要将它们与最终的治疗制剂有效地分开。 另外,维持Bdellovibrio制剂的生存力可能比噬菌体更具挑战性。 有趣的是,从生产这些生物防治剂的治疗制剂的技术挑战中可以学到什么教训,以及确定将它们一起用作治疗剂是否可以实现任何协同作用。

蛭弧菌对宿主反应的影响将基础科学转化为应用,以应对AMR的挑战

最近从事DARPA病原体捕食计划的一些研究人员,已经改变了研究领域,并证明了使用活的全食性B. bacteriovorus在体外和体内杀死广泛的抗药性(AMR)临床病原体的潜力。体内进一步支持其作为治疗手段的承诺。要被视为可靠的治疗选择,需要来自未来的人类试验的有力证据表明,这种治疗有效,至少在特定情况下,对患者没有(或最小)负面影响,并且与现有治疗相比具有一定优势

研究人员需要证明其临床价值并衡量治疗效果,以说明对患者的益处。但现在是否拥有所需的所有信息? 如果没有,还需要解决什么?

根据体内动物模型,研究人员需要在人类身上进行安全性和有效性试验。动物模型是至关重要的,但也有局限性,迄今为止的协议管理捕食性细菌之前,或不久之后,病原体的兴趣。需要对更确定的感染进行调查,并支持确定捕食性细菌的剂量范围(以及可能的病原体数量)、剂量数量和治疗感染所需的时间表。也许令人惊讶的是,在感染和康复期间,对人体不同部位病原体实际数量的了解仍然是一个非常发展的领域。大规模捕食者生长和纯化方法的发展目前受到限制,需要扩大更大规模的安全性和有效性试验。感染治疗是时间关键,因此评估稳定性,长期储存和提供一个活的,掠夺性的积极治疗需要进一步的工作。

结 语

总之,用另一种细菌来治疗细菌感染似乎是反直觉的,离使用它们作为药物改善患者的生存状况还有一段时间。虽然蛭弧菌对其他病原的杀伤能力还有待验证,而且考虑到人体内大量必要有益的共生菌群,如何避免大量蛭弧菌“伤及无辜”也是一个值得关注的问题。需要进一步的工作来评估捕食性细菌从给药部位的传播,并确定暴露对宿主或其驻留生态位微生物群的长期影响。

但是我们相信,未来以细菌对抗细菌治疗某些感染会是一条后抗生素时代新的机遇。

相关阅读:

细菌的天敌抗生素,如何利用这把救命的双刃剑?

细菌大盘点 | 大肠埃希氏菌、血链球菌、李斯特菌

细菌大盘点(二) | 葡萄球菌、沙门氏菌、弯曲杆菌

参考文献:

Laloux G. Shedding light on the cell biology of the predatory bacterium Bdellovibrio bacteriovorus . Front Microbiol 2020; 10:3136

Harding CJ, Huwiler SG, Somers H, Lambert C, Ray LJ et al. A lysozyme with altered substrate specificity facilitates prey cell exit by the periplasmic predator Bdellovibrio bacteriovorus. Nat Commun 2020; 11:4817

Ardal C, Balasegaram M, Laxminarayan R, McAdams D, Outterson K et al. Antibiotic development – economic, regulatory and societal challenges. Nat Rev Microbiol. 2019

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 2018; 18:318–327

Atterbury Robert J,Tyson Jess,Predatory bacteria as living antibiotics – where are we now?[J] .Microbiology (Reading), 2021, 167.

Laxminarayan R, Van Boeckel T, Frost I, Kariuki S, Khan EA et al. The Lancet infectious diseases Commission on antimicrobial resistance: 6 years later. Lancet Infect Dis 2020; 20:e51–e60

1
客服