Tag Archive 二甲双胍

这些常见药物会影响肠道菌群并影响大脑

谷禾健康

随着生活方式的变化环境压力的增加慢性疾病的发病率正在全球范围内急剧上升。这些慢性疾病,包括心血管疾病、糖尿病、抑郁症和多种自身免疫性疾病,不仅对个人的健康和生活质量构成了严重威胁,也给全球卫生系统带来了前所未有的挑战。

我们知道抗生素对肠道菌群会产生很大影响,事实上,其他这些药物也被报告具有类似的改变肠道微生物群的效果。这引发了人们对药物通过影响肠道微生物群从而影响健康和疾病的关注。特别是,肠道微生物群与大脑之间的相互作用,也就是所谓的“肠-脑轴”,成为一个热点领域,这可能为一些神经系统疾病的新治疗方法提供线索

另一方面,神经系统疾病的治疗面临着许多难点,其中包括疾病机制的复杂性、治疗效果的个体差异长期药物治疗的副作用缺乏针对疾病根本原因的治疗方法。这些难点突显了寻找新的治疗目标和策略的重要性。

本文我们来了解一下药物引起的生态失调,以及日常处方药包括二甲双胍、他汀类药物、质子泵抑制剂和非甾体抗炎药为什么以及如何可能通过微生物群改变肠脑轴,以抑郁症、多发性硬化症、帕金森病和阿尔茨海默病等神经系统疾病为例来说明。

关于药物肠道菌群及其与神经系统疾病之间的关联研究,提供了一个全新的视角,对于开发新的神经系统疾病相关治疗方法具有重要意义。

01
微生物群-肠-脑轴


微生物群

不同的细菌种群在消化道的不同部位繁殖,这是由于不同的微环境所致。关于居住在胃和肠道中的肠道细菌组成的总结见下图:

doi.org/10.1016/j.brainresbull.2024.110883

上消化道下消化道,细菌种类从需氧菌过渡到厌氧菌

  • 消化道的第一部分,胃,主要含有来自五大门类的耐酸细菌种,包括厚壁菌门、拟杆菌门、放线菌门、梭菌门和变形菌门,以及链球菌属、普雷沃氏菌属、韦荣球菌属、Rothia和流感嗜血杆菌属。
  • 接下来,小肠由三个部分组成,即十二指肠、空肠和回肠。从十二指肠的厚壁菌门和放线菌门过渡到空肠的革兰氏阳性需氧菌和兼性厌氧菌。回肠由需氧菌和厌氧菌以及革兰氏阴性菌组成。
  • 大肠(盲肠和结肠)主要居住着厚壁菌门和拟杆菌门。


微生物群-肠-脑轴

肠脑轴定义了肠神经系统(ENS)和中枢神经系统(CNS)之间的连接。随着研究的深入,微生物群在这一轴线中扮演着至关重要的角色。现已将肠脑轴扩展到了微生物群-肠-脑轴(MGBA)。

微生物群-肠-脑轴是肠道菌群和CNS之间的双向通信路径,肠道菌群可能通过细菌产生的神经递质和代谢物(所谓的化学信号)、迷走神经、免疫系统或包括下丘脑-垂体-肾上腺轴(HPAA)在内的神经内分泌系统影响大脑。

微生物群-肠-脑轴通信图

doi.org/10.1016/j.brainresbull.2024.110883

神经、免疫和内分泌介质,如神经递质、细胞因子和肠激素,是微生物群-肠-脑轴双向路径中的通信者。释放的细胞因子在免疫细胞识别细菌后可直接影响大脑。细胞因子和迷走神经也可以影响下丘脑-垂体-肾上腺轴(HPA轴)。细菌还可以通过其脂多糖(LPS)直接与肠神经元通信,触发肠神经元上的TLR4。

间接路径包括由肠道细菌产生的代谢物,如神经递质和短链脂肪酸(SCFAs)。这些代谢物可以进入全身血液循环,从而影响大脑。此外,这些代谢物可以刺激肠道中的肠内分泌细胞(EECs),然后它们在血液中释放肠激素。细菌代谢物和肠激素也可以通过属于迷走神经的肠神经元发送传入信号

另一方面,大脑通过传出迷走神经纤维其他肠神经系统(ENS)细胞进行通信。它因此在诸如粘液分泌肠蠕动等重要方面影响肠生理。

关于微生物群-肠-脑轴在我们前面的文章已经详细阐述,详见:

深度解读 | 肠道菌群和中枢神经系统的关系

最新研究速递 | 柳叶刀:肠道微生物群在神经系统疾病中的作用

肠道微生物组在人类神经系统疾病中的作用

口-肠-脑轴与精神健康的关系

02
常见的五类药物与菌群的关联


二甲双胍

抗糖尿病药物二甲双胍是 2 型糖尿病的一线治疗药物,已用于2 型糖尿病患者 60 多年。

口服后,二甲双胍在小肠吸收后的生物利用度约为40-60%。它在人肠道中的浓度比血浆中高 30-300 倍

二甲双胍发挥什么作用?

二甲双胍通过改善胰岛素的作用、抑制肝脏糖异生、抑制肝脏中的胰高血糖素信号传导、增加骨骼肌中的葡萄糖摄取和降低体重来调节血糖水平,从而发挥其作用。新的研究表明,它通过抑制不同肿瘤类型的发作或进一步生长,具有抗癌作用。此外,二甲双胍已被证明通过与肠道菌群的相互作用降低葡萄糖水平

二甲双胍对肠道微生物的影响

二甲双胍的肠道改变作用可能是由于对肠道微生物组的直接作用和/或通过其他代谢物的间接作用高胰岛素血症也会改变肠道微生物群。因此,通过二甲双胍降低胰岛素会引起肠道微生物群的间接变化。

在接受二甲双胍治疗的患者中肠道菌群变化

doi.org/10.1016/j.brainresbull.2024.110883

由于二甲双胍诱导的肠道菌群改变,该药物也正在研究用于治疗IBD、自身免疫病等,和/或用于恢复其他肠道改变药物的作用。

研究人员讨论了二甲双胍改善抗精神病药物引起的代谢功能障碍的可能性,代谢功能障碍主要通过各种途径引起体重增加,如胰岛素抵抗和高血糖,并影响神经活性物质(如神经递质和神经肽)。


二甲双胍→肠道菌群→改善抗精神病药物副作用

抗精神病药物治疗的小鼠比微生物组耗尽的小鼠体重增加更大,这表明肠道菌群在体重管理中的作用。在抗精神病药物治疗的小鼠中,发现许多菌群减少,如乳酸杆菌阿克曼菌。另一方面,大肠杆菌和双歧杆菌增加。特别是二甲双胍可以减少体重增加A.muciniphila也显示了这一点。后者已被提议作为缓解全身炎症的益生菌治疗。因此,二甲双胍可以通过肠道微生物组改善抗精神病药物使用的副作用

人体研究是在较小的队列规模(5-25名受试者)中进行的,还没有足够的数量。然而,对小鼠模型的研究充分证实了二甲双胍和肠道菌群之间的相互作用


他汀类药物

他汀类药物是预防心脏病动脉粥样硬化最常用的心血管药物之一。超过2亿人单独或联合服用各种类型的他汀类药物。他汀类药物通过抑制HGM-CoA还原酶产生胆固醇的酶来降低低密度脂蛋白(LDL)。

在人类中进行的研究很少,以确定他汀类药物对肠道微生物群的影响,数据不一致。例如,瑞舒伐他汀在动力不足的人体试验中没有显示出显著变化。另一方面,它引起了肠道菌群功能潜力的显著改变,即细菌代谢物的水平

他汀类药物治疗促炎菌降低

一项荟萃分析研究表明,他汀类药物通过降低Bact2肠型(Bacteroides 2)的发生率,而具有抗炎作用。

注:有研究人员根据在肠道占有优势地位的细菌种类将人的肠道微生物组成划分为4种“肠型”:拟杆菌1型(Bact1)、拟杆菌2型(Bact2)、瘤胃球菌型(Rum)和普氏菌型(Prev),其中拟杆菌2型可以被归类为“不健康肠型”,它与肥胖系统性炎症水平高有关。

观察到接受他汀类药物治疗的患者Bact2较低拟杆菌水平降低。这一结果可以进一步解释,在他汀类药物治疗下,粪杆菌属(Faecalibacterium)也可能增加,或者拟杆菌与粪杆菌属的比例较低,导致Bact2发生率降低

他汀类药物治疗与产丁酸菌的增加有关

具体而言,与未治疗的高胆固醇血症患者相比,阿托伐他汀治疗的高胆固醇血症患者的下列菌群丰度增加

  • Ruminococcaceae
  • Verrucomicrobiaceae
  • A.muciniphila
  • Ruminococcus
  • Oscillospira
  • Faecalibacterium

促炎菌群减少,如:

  • 拟杆菌
  • Faecalibacterium prausnitzii

与未经治疗的高胆固醇血症患者相比,在减少的共生菌中也测量到了Oscillospira抗炎菌),Firmicutes,Proteobacteria,Desulfovibrio属和条件致病菌,包括克雷伯氏菌,链球菌和柯林斯菌属。

此外,在相同的比较中观察到Bilophila wadsworthia双歧双歧杆菌(胆汁酸相关物种)的相对减少。他汀类药物治疗后,也观察到不同种类的拟杆菌如B.doreiB.uniformis的丰度增加,同时B.vulgatusB.ovatus的生长降低。这些结果表明他汀类药物引起的肠道菌群变化,可能通过肠道菌群进一步影响GBA

doi.org/10.1016/j.brainresbull.2024.110883


质子泵抑制剂

质子泵抑制剂(PPIs)用于预防胃病。很多患者尤其是老年人,会同时服用质子泵抑制剂和其他药物,如止痛药或抗抑郁药,以抵消后者对胃的副作用。

PPI对人体健康的影响

虽然说PPI的作用主要针对胃,但许多研究表明肠道微生物群发生了改变。PPI对微生物组诱导的人体代谢的影响还包括口腔,胃小肠细菌过度生长(SIBO),肠道艰难梭菌的增加沙门氏菌感染,肝性脑病,自发性细菌性腹膜炎社区获得性肺炎,炎症性肠病的不良后果以及功能途径的变化。

PPI对肠道菌群的影响

许多这些疾病和改变是PPI使用后继发的生态失调的后果。一般来说,拟杆菌门丰度较低,厚壁菌门丰度较高。胃肠道中特定的菌群失调:

  • 下列菌群丰度显著增加:杆菌类,乳酸杆菌目,链球菌科,链球菌属和韦荣氏菌属,前庭链球菌(Streptococcus vestibularis),Veillonella dispar
  • 肠杆菌科与PPI使用呈负相关

Naito等人总结了下列菌群丰度的相对增加

  • 拟杆菌门,拟杆菌科,链球菌属,链球菌科,Odoribacteraceae,瘤胃球菌(毛螺菌科),巨球菌属(Megasphaera),放线菌(Actinomyces),Granulicatella

而下列菌群减少

  • 粪杆菌属(Faecalibacterium),SMB53,梭菌(Clostridium),Turicibacter,Slackia,Defluvitalea,Oribacterium,未分类的Dehalobacteriaceae

功能性消化不良患者使用PPI的菌群变化

另一项研究得出结论,功能性消化不良与对照组相比,与粘液相关的细菌,如奈瑟氏菌(Neisseria)、卟啉单胞菌(Porphyromonas)、硒单胞菌(Selenomonas)、梭杆菌、嗜血杆菌(Haemophilus)的丰度较低。

使用PPI后对照组和功能性消化不良的普雷沃氏菌减少停用PPI后,奈瑟氏菌仍然增加,表明药物使用后微生物变化持续存在。此外,其他细菌群如HoldemaniaBlautia,Granulicatella,RothiaDorea,以及梭状芽孢杆菌簇XIVa和XIVb在PPI使用者中也有所增加

在物种水平上:

  • Holdemania filiformis增加;
  • Clostridium glycyrrhizinilyticum,Rothia mucilaginosa显著增加;
  • Pseudoflavonifractor capillosus(Clostridiales family)减少;
  • 然而,Streptococcus parasanguinis和Streptococcus salivarius也有所增加,但没有达到显著水平
  • 此外,艰难梭菌感染与链球菌科和肠球菌科的变化有关。

反流性食管炎使用PPI治疗的菌群变化

由于PPI是给有胃病或反流问题的人服用的,因此一项研究仅检查了PPI治疗前后反流性食管炎患者的粪便微生物群组成。其中,在治疗的不同时间间隔中,乳杆菌(兼性厌氧菌)如加氏乳杆菌,罗伊氏乳杆菌和瘤胃乳杆菌,发酵乳杆菌,短乳杆菌的亚群在治疗后显著增加

同样,对于链球菌属、肠杆菌科下的兼性厌氧菌计数以及葡萄球菌(也是兼性厌氧菌)也是如此。

有关于口服空肠弯曲菌或罗伊氏乳杆菌等研究显示,迷走神经传入信号发生变化,并在切除迷走神经的小鼠中恢复正常

使用PPI后,细菌向下消化道区域的转移

口腔,喉咙和鼻腔中发现了许多上述菌群,这表明由于使用PPI导致胃酸降低,细菌向下消化道区域的转移。通过PPI使用粪便样品显示远端肠道部分与上部胃肠道部分的定植,增加下列菌群:

  • 芽孢杆菌(例如葡萄球菌科),乳杆菌(例如肠球菌科,乳杆菌科,链球菌科)和放线菌(例如放线菌科,微球菌科),巴氏杆菌科和肠杆菌科以及Veillonella属的多种分类群。

减少下列菌群:

  • 双歧杆菌科,Ruminococcaceae,Lachnospiraceae,Mollicutes。

在一项健康双胞胎的研究中也观察到了同样的情况,结论是生态失调主要是由于咽部和口腔微生物群定殖到下肠道引起的,导致与上述文献相同的细菌改变。

PPI使用与肠道菌群多样性及SIBO相关影响

PPI的使用会导致细菌种群的进一步变化。例如,在PPI治疗后,远端肠道由上肠道的微生物群定殖。总体而言,微生物多样性较低,细菌种类减少,上消化道中肠道共生菌的丰度较高

小肠细菌过度生长(SIBO)是后一种情况的一个例子,导致链球菌,埃希氏菌,克雷伯菌,拟杆菌,乳酸杆菌,肠球菌,韦荣氏菌的丰度增加;双歧杆菌和放线菌科的减少

与细菌转移相关联的是肠道的副交感神经刺激减少,如小肠细菌过度生长。下表总结了菌群的变化。

doi.org/10.1016/j.brainresbull.2024.110883

PPI使用增加链球菌,导致功能性消化不良等疾病患者消化不良症状持续

此外,在功能性消化不良,肝硬化,血液透析,类风湿性关节炎和癌症患者中观察到生态失调,这些患者表现出链球菌属的特异性增加。质子泵抑制剂用于缓解消化不良,尤其是幽门螺杆菌感染。然而,随着它增加链球菌的丰度,消化不良症状可能持续存在。来自胃窦胃炎患者的活检显示链球菌数量过多,证实了链球菌与消化不良的关系。

PPI引起肠道微生物失衡,增加肠道感染机会

总之,PPI用于预防其他药物(如NSAIDs)引起的消化不良,其作用是通过减少酸的产生。然而,它改变了肠道环境,使近端肠道细菌转移到肠道的远端。同时,它会导致一些菌群的丰度增加或减少。因此,这种生态失调导致更多的机会的肠道感染,涉及有害细菌,如艰难梭菌或沙门氏菌

PPI治疗消化不良,影响肠道菌群,改变细菌丰度和细菌移位。主要影响链球菌丰度艰难梭菌感染的高发病率


非甾体抗炎药

与上述其他药物组一样,非甾体抗炎药(NSAIDs)用于疼痛抗炎,或低剂量阿司匹林作为心血管健康的血小板聚集抑制剂。NSAIDs也可能导致菌群失调及后果,如小肠细菌过度生长。大量使用NSAID诱导肠道病变。这是由于肠细胞死亡和免疫系统破坏导致肠道屏障受损的结果,从而导致革兰氏阴性细菌的增殖和革兰氏阳性细菌的减少

PPIs和NSAIDs共同作用于肠道病变与微生物群失衡

PPIs和NSAIDs在由于生态失调引起的肠道肠病中发挥联合作用。NSAIDs可导致胃病PPIs可减少其发生。NSAIDs和PPIs的联合摄入导致肠病,因为PPIs将微生物群从上胃肠道转移到远端肠道。

例如,用阿司匹林治疗会导致肠道微生物群组成的变化,增加普雷沃氏菌,拟杆菌,RuminococcaceaeBarnesiella

塞来昔布和布洛芬增加了酸性氨基球菌科(Acidaminococcaceae)和肠杆菌科的丰度。

与非使用者或萘普生使用者相比,布洛芬会导致丙酸杆菌科(Propionibacteriaceae),假单胞菌科,PuniciecoccaceaeRikenellaceae富集

吲哚美辛诱导拟杆菌,普氏菌科的增加;变形菌门,α变形菌纲,根瘤目(Rhizobiales),假单胞菌科的减少

同一项研究显示了性别特异性效应,因为女性肠道中的厚壁菌门较低,而男性肠道中的厚壁菌门较高

一项比较研究表明,各种非甾体抗炎药诱导的生态失调增加了分类群,如肠杆菌科,酸性氨基球菌科,丙酸杆菌科,假单胞菌科,Punicecoccaceae,Rikenellaceae

总结上述结果,在导致生态失调和NSAID肠病的不同细菌类群和物种中发现了明显的变化。

doi.org/10.1016/j.brainresbull.2024.110883


抗 抑 郁 药

抗抑郁药(例如选择性5-羟色胺再摄取抑制剂SSRIs)是抑郁症的一线治疗方法。5-羟色胺选择性5-羟色胺再摄取抑制剂(SSRIs)的靶标增加了其在大脑中的可用性水平。

肠脑轴与抑郁症之间存在联系,但只有少数人体研究抗抑郁药对肠道菌群的影响。

抗抑郁药对肠道菌群的影响

艾司西酞普兰改变了肠道菌群,Christensenellaceae,Eubacterium ruminantium groupFusobacterium显著增加,同时乳酸杆菌丰度相应降低,拟杆菌发生了显著变化。

注:艾司西酞普兰是一种用于治疗抑郁症和广泛性焦虑症的药物,通过增加大脑中神经递质5-羟色胺的水平来改善情绪。

Le Bastard等人的文章研究了非典型抗精神病药物治疗双相情感障碍患者的影响,结果显示Lachnospiraceae的相对丰度增加(p=0.029),AkkermansiaSutterella的相对丰度降低(p=0.0006)。

在荷兰队列的另一项研究中,B.dorei(p=0.051)和Coprococcus eutactus(p=0.041)与抗抑郁药正相关,而Eubacterium hallii与抗抑郁药呈负相关(p=0.055)。

小鼠模型中存在许多关于SSRIs诱导的肠道改变的研究。常见的选择性5-羟色胺再摄取抑制剂(SSRI)舍曲林,氟西汀和帕罗西显示出对革兰氏阳性细菌如葡萄球菌和肠球菌的活性。

产毒肠杆菌随着SSRIs的使用而减少

其他潜在的产毒肠杆菌,如铜绿假单胞菌,肺炎克雷伯菌,柠檬酸杆菌属和摩根氏菌(M. morganii),产气荚膜梭菌和艰难梭菌也在一定程度上随着SSRIs的使用而减少。这些结果是在体外研究的基础上发现的。

服用某些抗抑郁药(如氟西汀)的抑郁成年人容易发生艰难梭菌感染(CDI)。据报道,在小鼠中,艾司西酞普兰和锂在相似程度上增加了血清素水平。然而,这项研究没有讨论生态失调是根本原因。虽然SSRI对抑郁症的作用机制与这些药物的任何抗菌作用无关,但仍然可以看到微生物群落的潜在变化,并可能影响与情绪相关的其他炎症或生理参数。

03
神经系统疾病:药物对菌群的影响


抑 郁 症

抑郁症或重度抑郁症是最常见的神经精神疾病。它是导致残疾、发病率和死亡率的主要原因之一,导致生活质量低下。大约每五个人一生中就被诊断出一次

抑郁症的基本症状

抑郁症是一种复杂的疾病,具有不同的症状和病理生理学。根据DSM-5,它被诊断出患有持续2周以上的一系列以下症状:持续抑郁情绪,快感缺失,孤独感,动机降低,食欲和睡眠障碍,精神运动激动,注意力不集中,疲劳,内疚感或无价值感以及自杀念头。

抑郁症的病因

病因或病理生理学通过许多机制来解释,但整体上仍不清楚,可能有以下情况:

1) 血清素去甲肾上腺素和多巴胺水平,谷氨酸水平高;

2) HPA轴的改变

3) 由于免疫介质的不平衡导致错误的免疫细胞通信,特别是微胶质细胞,引起系统性炎症

4) 最后但同样重要的是与肠道微生物组-脑-肠轴有关的微生物群。

抑郁症的肠道菌群变化

迄今为止,研究发现,在水平上,拟杆菌,变形杆菌,放线菌,放线菌增加,而抑郁症患者粪便中的厚壁菌减少

科的水平上,下列菌群有所增加

  • 肠杆菌科,Eggerthella,Holdemania,Gellia,Turicibacter,Pararevotella,Anaerofilum,瘤胃球菌科、链球菌科、乳杆菌科、梭菌目、双歧杆菌科。

下列菌群有所减少

  • 拟杆菌科,毛螺菌科,Prevotellaceae,Sutterellaceae,Veillonellaceae。

属的层面上,提到了下列菌属减少

  • 粪便杆菌,瘤胃球菌,Dialister,Oscillospiraceae,拟杆菌,Roseburia,Gemmiger,Parasutterella,Coprococcus,大肠杆菌/志贺氏菌

下列菌属增加

  • 脱硫弧菌,Flavonifractor,Alistipes,拟杆菌,Parabacteroides,Barnesiella,梭菌,普通拟杆菌(Bacteroides vulgatus),Atopobium,Weissella,Anaerostipes,Halomonas,Blautia klebsiella,链球菌属,Lachnospiraceae incertae sedis,Phascolarctobacterium

在少数细菌群体中,如Prevotellaceae,Prevotella,Bacteroides enterotype 2,双歧杆菌,Parasutterella,在不同的研究中发现了差异。

抑郁症患者菌群改变与二甲双胍,他汀类药物,

PPIs和NSAIDs使用者菌群改变有关

doi.org/10.1016/j.brainresbull.2024.110883

在比较抑郁症患者的肠道菌群与上述药物引起的生态失调时,可以观察到不同细菌分类群水平与一种或多种药物的相似性

拟杆菌的增加可能对抑郁症有潜在益处

拟杆菌在使用他汀类药物和非甾体抗炎药(NSAIDs)以及抑郁症患者的肠道中都有所增加。拟杆菌是一种产生γ-氨基丁酸(GABA)的革兰氏阴性菌,具有免疫触发LPS和抗炎SCFAs,从而引发免疫反应。

抑郁症血清素减少相关的系统性和神经炎症都有关联。然而,原本拟杆菌产生的短链脂肪酸和GABA在抑郁症患者体内的含量较低,那么拟杆菌的增加,也增加了GABA和短链脂肪酸,有助于缓解抑郁行为。

他汀类药物和PPIs → 瘤胃球菌↑

瘤胃球菌(Ruminococcus)是一种产短链脂肪酸菌,在他汀类药物和PPI的使用者中增加,再次抵消了短链脂肪酸的低含量。后者也可能是抑郁症患者在口服他汀类药物或PPIs后,粪杆菌属数量低下的原因,粪杆菌是已知的丁酸盐生产者,对肠道屏障稳态和抗炎作用很重要。

他汀类药物 → Bact2↓

特别是他汀类药物可以降低拟杆菌2型(Bact2),这反过来可能导致抑郁症状。

抑郁症可能与他汀类药物和PPI的使用呈负相关,因为抑郁症患者的瘤胃球菌较低,而他汀类药物和PPI使用者的瘤胃球菌较高

二甲双胍和PPI → 梭菌↓

二甲双胍和PPI中可以降低梭菌丰度,但在抑郁症中没有,因此,二甲双胍和PPI可能有助于减少梭菌

梭菌的过度生长可能带来的不利结果大于有利结果,例如,艰难梭菌具有毒性传染性,而梭菌簇XIVa产生短链脂肪酸带来益处。

二甲双胍 → 大肠杆菌↑

血清素可能通过迷走神经影响体液肠-脑通路。大肠杆菌链球菌与肠杆菌科物种参与血清素合成。在抑郁症患者中,大肠杆菌低丰度链球菌高丰度二甲双胍可以缓解低水平的大肠杆菌,因为在使用二甲双胍后大肠杆菌的丰度增加

他汀类药物抵消PPIs

NSAIDs和PPIs可能分别对肠杆菌科链球菌产生相同的作用,而他汀类药物可能抵消PPIs的作用,与链球菌数量减少呈正相关

药物影响与谷氨酸途径的菌群

拟杆菌,乳酸杆菌,双歧杆菌,链球菌也可能参与谷氨酸途径。因此,它们的药物诱导影响可能在单独或通过彼此的相互作用提高谷氨酸能神经传递中发挥作用。

关于谷氨酸详见:兴奋神经递质——谷氨酸与大脑健康

因此,二甲双胍,他汀类药物,PPIs和NSAIDs药物诱导的菌群失调可能各自影响抑郁症的发展和进展,并且它们的作用可能相互抵消或加剧

扩展阅读:

抑郁症与肠道微生物群有何关联


多发性硬化症

多发性硬化症是中枢神经系统中最丰富的自身免疫性疾病。全世界有250多万人受到影响,其中大多数是年轻人。它是一种慢性炎症性疾病,其特征是神经纤维脱髓鞘和轴突继发性破坏,表现为白质组织病变

多发性硬化的症状

症状因受影响的组织区域而异。第一个最常见的症状是视神经炎引起的视觉障碍以及感觉障碍和疲劳。间歇性症状是运动障碍,疼痛,认知,心理和植物障碍,使疾病具有进行性或复发性。

多发性硬化的病因

炎症过程通过自身反应性外周T淋巴细胞侵入中枢神经系统来解释。然而,这种自身免疫反应的出现尚不清楚。脂肪因子和细胞因子水平之间的遗传不平衡,爱泼斯坦-巴尔病毒(EB病毒)感染引起的自身反应性,维生素D缺乏,吸烟以及改变微生物-肠-脑轴的细菌和病毒肠道生态失调,都与多发性硬化的病理生理学有关。

多发性硬化患者与健康对照组微生物群不同

移植了多发性硬化患者粪便物质的GF小鼠复制了自身免疫性脑脊髓炎(一种在动物中发现的脱髓鞘疾病)的表型。这些结果与具有健康对照粪便物质的GF小鼠形成对比。甚至疾病的严重程度和/或活动性似乎也与不同的微生物组成有关。一般来说,抗炎菌群丰度较低

多发性硬化的微生物群特征

临床活跃的病例(即复发性发作)与临床非活跃的治疗前患者相比,具有更丰富的微生物组

在比较细菌种类时,临床上不活跃的多发性硬化患者的普拉梭菌(Faecalibacterium prausnitzii)Gordonibacter urolithinfaciens的丰度显著高于临床活跃的多发性硬化患者。

同一研究发现61种在微生物组成上有差异的物种。多发性硬化中富集的物种如下:

  • Ruminococcus torques
  • Dysosmobacter welbionis
  • Flavonifractor plautii
  • Lawsonibacter phoceensis
  • Hungatella effluvia
  • Bilophila wadsworthia
  • Gordonibacter urolithinfaciens
  • Anaerobutyricum hallii
  • Pseudoflavonifractor capillosus
  • Blautia wexlerae
  • Blautia massiliensis
  • Anaerotruncus colihominis
  • Erysipelatoclostridium ramosum
  • Ruminococcus gnavus
  • Sellimonas intestinalis
  • Coprobacillus cateniformis
  • Clostridium innocuum

减少的菌群包括:

  • Haemophilus parainfluenzae
  • Veillonella rogosae
  • Victivallis vadensis
  • Bifidobacterium angulatum
  • Streptococcus australis

总体而言,多发性硬化患者的微生物组成丰富度低于健康对照组。这也与多发性硬化相关细菌物种相关的特定炎症生物标志物的丰度更高有关。

其他研究产生了类似的结果,下列菌群增加

  • 放线菌属,阿克曼菌属,双歧杆菌属,Coprococcus,Dialister,Dorea,嗜血杆菌属,巨球菌属,Pararevotella,假单胞菌属,支原体属,Blautia,瘤胃球菌,链球菌

下列菌群减少

  • Butyricicoccus,Gemmiger,Parabacteroides,Collinsella,Phascoarctobacterium,Prevotella,Lactobacillus,Adlercreutzia,Anearostipes。

总体而言,拟杆菌门减少,相应的物种也有所减少,例如B.coprocola,B.coprophilus,B.stercoris

Faecalibacterium,Slackia,Clostridium,MethanobrevibacterButyricimonas中观察到不一致的结果。

在所有引用的有关多发性硬化的文献中,阿克曼菌的增加普雷沃氏菌的减少一直是菌群持续改变的原因之一。

doi.org/10.1016/j.brainresbull.2024.110883

他汀类药物,NSAID → 拟杆菌↑

与多发性硬化患者相比,他汀类药物非甾体抗炎药使用者拟杆菌(一种革兰氏阴性细菌属和SCFA和GABA生产者)增加

多发性硬化、二甲双胍→Bilophila wadsworthia

另一种革兰氏阴性物种Bilophila wadsworthia 在多发性硬化和二甲双胍中增加,但在他汀类药物中减少,这表明二甲双胍可能对多发性硬化患者不利,而他汀类药物对多发性硬化患者有利。革兰氏阴性细菌由于其细胞壁中存在LPS而诱导宿主免疫应答。

多发性硬化、PPI→链球菌↑ 他汀类→ 链球菌↓

链球菌属也是如此,在多发性硬化患者和PPI使用者中发现链球菌数量增加,而在他汀类药物使用者中发现链球菌数量减少。链球菌是一种条件致病菌,可产生神经毒素乙酸盐和5-羟色胺(5-HT)。

多发性硬化、二甲双胍、PPI → Blautia

另一方面,Blautia 在多发性硬化,二甲双胍和PPI中增加Blautia是丁酸盐生产者,这对于肠道屏障和血脑屏障等完整性以及小胶质细胞成熟和活化很重要

二甲双胍和PPIs → 梭菌↓

然而,在多发性硬化症患者中,二甲双胍和PPIs使用者的梭状芽孢杆菌数量减少。梭菌产生SCFA,这可能影响Treg细胞,影响多发性硬化患者的自身免疫。

产短链脂肪酸菌Ruminococcus在多发性硬化和他汀类药物和PPI使用后增加

Prevotella是LPS携带者和GABA生产者和丙酸生产者,NSAIDs增加,多发性硬化和PPIs减少。

双歧杆菌和乳酸杆菌,GABA和乙酸盐生产者在多发性硬化和摄入MET后分别增加和减少,表明这两个属可能影响多发性硬化疾病和进展。

从结果来看,多发性硬化与药物引起的生态失调之间可能存在许多关联。然而,需要更明确的研究结果来证明这些假设的关联。

扩展阅读:

肠道微生物群在多发性硬化中的作用


帕金森氏病

帕金森病(PD)主要症状是运动症状,伴有运动障碍,僵硬,静息性震颤和姿势不稳,由多巴胺缺乏引起,多发生在黑质。路易体聚集体由错误折叠的蛋白质聚集体组成,即淀粉样蛋白,主要是α-突触核蛋白淀粉样蛋白,是多巴胺能神经元破坏的主要原因。

帕金森病的非运动前驱症状及其对疾病进展的影响

帕金森患者在很大程度上受到非运动症状的影响,其中许多症状在运动功能缺失发生前数十年就已出现。胃肠功能障碍,抑郁情绪,睡眠障碍,肌肉和关节疼痛是这些前驱症状中的一些。前者最常见的是便秘胃排空延迟,流涎,吞咽困难,胃轻瘫和SIBO。患有这些前驱胃肠道疾病的患者帕金森进展更为严重。在ENS神经元中也观察到淀粉样蛋白的形成,特别是在小鼠和帕金森患者的早期。最近的研究表明,大脑中路易体的形成是由小鼠胃肠道中的淀粉样蛋白纤维诱导的,并且通过迷走神经干切断术大大降低了路易体形成的风险。

淀粉样蛋白的交叉形成与肠道微生物的潜在关联

淀粉样蛋白的形成不一定仅限于一种蛋白质。产生淀粉样蛋白的蛋白质可以相互交叉形成淀粉样蛋白。分子过程仍然未知,但可能发生在人类之间以及人类和非人类淀粉样蛋白之间。肠道微生物群中的多个物种能产生包含淀粉样蛋白的生物膜。有人提出,肠道淀粉样蛋白理论上可以通过迷走神经路径传输到大脑,并与α-突触核蛋白交叉促使形成淀粉样蛋白

大肠杆菌、假单胞菌、链球菌、葡萄球菌、沙门氏菌、分枝杆菌、克雷伯菌、柠檬酸杆菌和芽孢杆菌是肠道中产生这种胞外淀粉样蛋白的候选细菌。Nuzum等人还指出产短链脂肪酸菌的总体丰度较低。因此,肠道微生物群可能既能启动也能调节帕金森病的发起。

帕金森患者的肠道菌群特征

当比较帕金森患者与健康对照组的微生物组成时,在帕金森患者中主要是下列菌群增多

  • 瘤胃球菌科,Verrucomicrobiaceae,卟啉单胞菌(Porphyromonas),Akkermansia(包括A.muciniphila),巴斯德菌科(Pasteurellaceae),毛螺菌科,脱硫弧菌,乳酸杆菌,双歧杆菌(包括B.adolescentis),Ralstonia,肠杆菌科,Flavonifractor,Cornebacterium,Alistipes,大肠杆菌,巨球菌。

下列菌群减少

  • 拟杆菌属、普雷沃氏菌属、粪杆菌属(包括F.prausnitzii)、粪球菌属、Blautia、Roseburia(包括R.faecis)、真杆菌属、厌氧菌属、Veillonella parvula、肠球菌科、Dorea。

乳杆菌科不一致,显示出较高较低的丰度。

doi.org/10.1016/j.brainresbull.2024.110883

在比较帕金森的生态失调和药物引起的生态失调时,假设如下:PPI诱导小肠细菌过度生长,并增加沙门氏菌感染的风险。两者都可能影响帕金森,因为小肠细菌过度生长也在帕金森病患者中发现,沙门氏菌细胞外淀粉样蛋白的产生者。然而,在PPI和帕金森中没有观察到沙门氏菌作为一个共同因素。

与多发性硬化类似,瘤胃球菌科在帕金森,他汀类药物和NSAIDs中增加。然而,已知短链脂肪酸可以增强BBB的完整性,因此可以降低炎症因子通过大脑从而形成细胞外淀粉样蛋白的风险。

帕金森,他汀类药物,PPI → 粪杆菌↓

另一方面,粪杆菌Faecalibacterium)是一种已知的丁酸盐生产者,对肠道和BBB完整性以及抗炎菌群具有重要意义,在帕金森,他汀类药物和PPI中减少,这表明粪便杆菌可能是帕金森病患者屏障减弱炎症过程加剧的原因之一。

二甲双胍和PPIs可能有助于逆转粪杆菌的不利影响

因为二甲双胍和PPIs增加Blautia的存在,而帕金森患者则减少Blautia。同样,由于他汀类药物非甾体抗炎药瘤胃球菌科的丰度增加,也可以补偿粪杆菌和其他不利菌的影响。这也表明,没有一种药物会产生所有负面或正面影响,例如,PPI会增加Blautia(一种有利的短链脂肪酸生产菌)并同时增加小肠细菌过度生长,这是人体的负面过程。

菌群之间的相互作用力量不可忽视

总体而言,与本文提到的其他药物相比,二甲双胍对微生物组产生的影响与帕金森病中所见的影响最相似。在帕金森患者和二甲双胍使用者中均观察到Akk菌(短链脂肪酸生产者和LPS携带者),青春双歧杆菌(GABA生产者)和大肠埃希氏菌(LPS携带者,5-HT-metabolsier)的丰度增加,其中第一种和后一种细菌是革兰氏阴性,其细胞壁中存在LPS,但也分别产生短链脂肪酸和5-HT

同样,它们都传达了有利和不利的影响,这表明没有一种细菌是某种疾病发病机制的主要决定因素。菌群之间的相互作用和相对丰度似乎对疾病发作和进展的总体影响很重要


阿尔茨海默病

阿尔茨海默病(AD)是老年痴呆症最常见的形式,约占全球痴呆症病例的50-70%。由于其患病率随着年龄的增长而增加,并且世界人口正在老龄化,阿尔茨海默的发病率在未来几年将更高。在大多数情况下,它始于新形成的记忆的丧失,神经认知和执行功能(如语言和视觉空间取向)进一步下降

阿尔茨海默病的病理生理学

病理生理学是多方面的,导致不可逆的神经元细胞和突触丢失。除年龄外,阿尔茨海默的其他标志是不溶性淀粉样β斑块的积累,其次是Tau蛋白的神经原纤维缠结,神经递质的失衡和神经炎症。随着年龄的增长,肠道微生物组会发生实质性变化,因此,有人认为与年龄相关的肠道菌群失调也可能导致阿尔茨海默的发病。

扩展阅读:

肠道炎症与年龄和阿尔茨海默病病理学相关:一项人类队列研究

老年人肠道菌群失衡与阿尔茨海默病发病

在老年人中,随着促炎细菌与抗炎细菌比例的增加以及产短链脂肪酸菌的减少,导致肠漏,BBB紊乱和小胶质细胞活化。后者在清除Aβ斑块方面很重要,当其清除能力因Abeta的过度产生或由于炎症性结构变化导致的能力丧失而受阻时,淀粉样斑块可能会在阿尔茨海默病患者的大脑中积累

淀粉样蛋白的细菌来源与神经炎症加剧

据推测,淀粉样蛋白也被推测可能来自细菌源类似于帕金森,要么在大脑中与其他淀粉样结构交叉播种,要么由于肠漏引起的系统性炎症而加剧神经炎症。此外,据报道,通过显著阳性的SIBO呼吸试验(p=0.025)报告细菌移位。阿尔茨海默患者的细菌移位LPS水平升高都会加剧神经炎症

主要发现表明促炎细菌埃希氏菌/志贺氏菌水平升高抗炎直肠真杆菌水平降低。它们失衡可能是认知障碍淀粉样蛋白合成的主要原因之一,因为在促炎细胞因子和抗炎细胞因子之间发现了各自的相关性,而且大肠杆菌也属于产生淀粉样蛋白的细菌。

阿尔茨海默患者的肠道菌群特征

据报道,阿尔茨海默患者中下列菌群增加

  • 拟杆菌,瘤胃球菌科、普雷沃氏菌科,肠球菌科,乳杆菌科,Dorea,链球菌

下列菌群减少

  • 双歧杆菌,脆弱拟杆菌,真杆菌,普拉梭菌,梭杆菌属,脆弱拟杆菌,Negativicutes,韦荣球菌科

在厚壁菌门,乳酸杆菌,Lachnospiraceaea和拟杆菌科中发现了不一致的结果。

doi.org/10.1016/j.brainresbull.2024.110883

他汀类药物 → 普拉梭菌↑ → 抗炎

在上述药物和阿尔茨海默病患者中,他汀类药物的使用与改变的微生物群的关联最强。特别是,产丁酸菌普拉梭菌他汀类药物使用者中增加,这可能有助于维持血脑屏障,因为丁酸盐在抗炎过程和小胶质细胞活化和成熟中起主要作用。

他汀类药物联合PPI → 抵消链球菌富集

他汀类药物与PPI一起使用,可能有助于抵消由于PPI使用而导致的链球菌富集,因为链球菌被认为会产生细胞外淀粉样蛋白

瘤胃菌科是一种短链脂肪酸生产者,在他汀类药物以及NSAID使用者阿尔茨海默患者中升高,可能具有与帕金森病相同的补偿作用,因为在阿尔茨海默患者中观察到短链脂肪酸丰度较低

与帕金森一样,在阿尔茨海默患者中观察到阳性小肠细菌过度生长结果,PPI可能是其主要贡献者,无论是否口服NSAIDs。

扩展阅读:

阿尔茨海默病de饮食-微生物-脑轴

04
结 语

有力的证据表明药物使用与肠脑轴之间肠脑轴与神经系统疾病之间分别存在联系。由于药物和神经系统疾病,菌群失调环境中存在共同的细菌菌株。少数药物可以在特定疾病情况下缓解菌群失调,但也可能引起菌群失调。菌群彼此之间及其相互作用将影响肠脑轴,药物共病患者中通经常联合使用。因此,它们的效果可能相互抵消加剧细菌种群的相应变化,并与神经系统疾病中的菌群失调呈正面负面关联。

由于肠道微生物群会因食物环境生活方式等各种因素而发生变化,因此在这类研究中也应考虑伴有共病的老年人。当老年人同时服用多种药物且因食欲不振而饮食不佳时,可能会预期其肠道微生物群发生不同的变化。然而,药物引起菌群失调及其通过肠脑轴对神经系统疾病影响的相关性仍是一个新领域。

本文中有些数据也是有限的,没有考虑原发病情况、其他药物的合并使用、药物剂量、药物暴露和服药时间、年龄、性别、患者饮食、共病等混杂因素,缺乏大队列数据支持,目前还没有足够的数据来得出建议性的结论。因此,还需要更多的工作来克服现有的局限性并提供更加坚实的证据基础,包括设计大型的、多中心的、随机对照试验,收集高质量的数据来验证这些初步发现。

主要参考文献

Garg K, Mohajeri MH. Potential effects of the most prescribed drugs on the microbiota-gut-brain-axis: A review. Brain Res Bull. 2024 Jan 18;207:110883.

Garg K, Mohajeri MH. Potential effects of the most prescribed drugs on the microbiota-gut-brain-axis: A review. Brain Res Bull. 2024 Jan 18;207:110883.

Deng X, Zhang C, Wang P, et al., Cardiovascular Benefits of Empagliflozin Are Associated With Gut Microbiota and Plasma Metabolites in Type 2 Diabetes. J Clin Endocrinol Metab. 2022 Jun 16;107(7):1888-1896.

Epishina IV, Budanova EV. Rol’ mikrobioty cheloveka v razvitii neirodegenerativnykh zabolevanii [A role of human microbiota in the development of neurodegenerative diseases]. Zh Nevrol Psikhiatr Im S S Korsakova. 2022;122(10):57-65.

He D, Han H, Fu X, Liu A, Zhan Y, Qiu H, Ma L, Zhang X, Wang X. Metformin Reduces Blood Glucose in Treatment-Naive Type 2 Diabetes by Altering the Gut Microbiome. Can J Diabetes. 2022 Mar;46(2):150-156.

Knudsen JK, Bundgaard-Nielsen C, Hjerrild S, Nielsen RE, Leutscher P, Sørensen S. Gut microbiota variations in patients diagnosed with major depressive disorder-A systematic review. Brain Behav. 2021 Jul;11(7):e02177. 

为什么药物对人效果不一?探索药物-微生物群相互作用对效果的影响

谷禾健康

为什么一种药物对一位患者反应良好,但对另一位患者反应不佳,甚至在某些情况下会导致严重的药物不良反应?

研究表明,一些药物的反应率在50%-75%,也就是说很多人服用药物后其实没有得到实际的改善,这并不代表该药物没用,可能只是对一些人效果不大,这是什么原因导致的呢?

这其实与药物反应个体差异(简称IVDR)相关。这种差异归因于多种因素,包括遗传、年龄、性别、生活方式、疾病状态、周围环境肠道微生物群和药物相互作用等。

在精准医学正在加速来临的时代,根据个人的遗传、环境和生活方式因素制定量身定制的医疗干预措施成为可能,然而,药物反应的个体差异是实施精准医疗的主要障碍。因此,需要更好地了解药物反应的个体差异,以提高药物疗效或预防不良反应。

研究表明,在肠道中,药物和微生物群之间存在复杂的相互作用

▸ 一方面,药物可以导致肠道微生物群的组成和功能的改变,导致微生物代谢和免疫反应的变化

例如,二甲双胍可以减少肠道中的脆弱拟杆菌降低该菌的胆盐水解酶活性,使GUDCA水平升高,以不依赖于肠道AMPK的方式,抑制肠道FXR信号,发挥改善代谢的作用。

▸ 另一方面,肠道微生物群可能改变药物,包括产生催化或降解药物分子的改变药物在宿主体内的代谢水平以及与药物分子竞争代谢酶等方式,直接或间接改变药物的吸收、分布、代谢和排泄,从而影响药物疗效。

例如,同样使用华法林的心血管疾病患者,有些人对该药物反应较低,这部分患者的肠道中拟杆菌、志贺氏菌、克雷伯氏菌较多,华法林是一种抗凝血药物,通过抑制维生素K的活性来减少血液凝块的形成。志贺氏菌有助于产生维生素K。因此,如果肠道中的志贺氏菌数量较多,它们可能会提供足够的维生素K,从而减少华法林的抗凝血效果

本文我们来了解一下,常用药物和肠道微生物组之间复杂的双向相互作用,通过人体各个系统中的不同例子来阐述具体的机制。对这方面的逐步了解,有助于改善药物的效果,同时最大程度地减少不良反应,也有助于推动精准医疗的发展。

01
什么是药物反应的个体差异(IVDR)

药物反应的个体差异(IVDR)是指不同个体在使用相同药物时表现出的不同反应情况。这种差异可以涉及药物的吸收、分布、代谢、排泄等方面。

了解个体差异可以帮助医生更好地调整药物剂量和选择合适的药物,以最大程度地提高治疗效果并减少不良反应的发生。


为什么存在药物反应个体差异?

Zhao Q, et al., Signal Transduct Target Ther. 2023

IVDR是多种因素共同作用的结果,包括:

1)遗传学

编码药物代谢酶、转运蛋白和靶标的单个基因的变异会影响其代谢和对药物的反应,导致IVDR。

2)年龄

由于生理功能的差异,如肝肾功能、身体成分激素水平的变化,年轻和老年患者可能会经历不同的药物反应。例如,老年患者可能肾功能和肝代谢降低,导致PK改变。

3)性别

男性和女性之间的生物差异会影响药物反应。由于身体成分激素水平的差异,女性可能有更高的药物浓度,这将影响药物代谢和清除。

4)生活方式

饮食、运动、吸烟等因素,酒精摄入可以通过改变药物代谢和从体内清除的方式来影响药物反应。

5)疾病状态

患有某些疾病或病症的患者可能会因器官功能变化、药物代谢改变或药物受体表达改变而经历IVDR。例如,肝病患者的药物代谢可能会降低,肾病患者的药物清除率可能会降低。

6)药物-药物相互作用

同时使用多种药物可能会导致药物-药物的相互作用,从而改变药物的吸收、分布、代谢、排泄

7)环境因素

暴露于环境毒素和污染物会影响药物代谢和清除,可能导致IVDR.

8)肠道微生物群

肠道微生物群也可能影响药物药代动力学(PK)和药效学(PD),个体之间肠道微生物群组成的变化会导致IVDR。

肠道微生物群与药物治疗之间的关联

doi: 10.1038/s41575-021-00499-1

总体而言,了解这些因素对于优化药物治疗和将药物不良反应风险降至最低至关重要。


药物微生物组学

药物遗传学专注于识别影响药物代谢、转运、药效学 (PD) 等的遗传变异。

药物基因组学是一个更广泛的领域,考虑整个基因组及其对药物反应的影响。

尽管药物遗传学和药物基因组学取得了进展,人类基因组贡献的变异性可能在20%-95%,因此,仅遗传因素不足以解释药物反应的个体差异,其他因素,例如肠道微生物群也很重要

肠道微生物群可以通过直接转化药物调节宿主的代谢或免疫系统,来改变药物的药效学和药代动力学。

药物微生物组学一词,用来描述肠道微生物群药物反应之间的相互作用,这些相互作用可以改变药效学(即药物吸收、分布、代谢、排泄及其血浆药物浓度动态的变化)或药代动力学(即药物靶点或生物途径的变化,导致生物体对药物作用的不同易感性)。

接下来,我们就从人体八大系统的具体疾病中来一一了解,微生物群与药物之间的相互作用。了解这种相互作用有助于开发针对微生物群的方法,以提高药物疗效减少不良反应

02
药物与微生物组相互作用机制

现代医疗体系下的药物种类很多,我们按照以下几大类来介绍常见的药物:心血管系统、内分泌系统、消化系统、神经系统、运动系统、泌尿生殖系统、呼吸系统、癌症。

Zhao Q, et al., Signal Transduct Target Ther. 2023


心 血 管 系 统

华 法 林

华法林:防治血栓,但治疗窗口有限

华法林是一种维生素K拮抗剂,用于预防和治疗血栓形成和栓塞的疾病,然而,其治疗窗口有限,IVDR明显,促使许多研究确定影响治疗结果的遗传因素。

对华法林低反应者,志贺氏菌等菌群较多

已知肠道微生物群和维生素K代谢之间有联系。一项研究首次建立了肠道微生物群IVDR华法林之间的联系。针对200名对华法林有不同程度反应的患者的试验表明,拟杆菌志贺氏菌克雷伯氏菌低反应者中表现突出

华法林是通过抑制维生素K的作用,来防止血液凝结,维生素K参与合成凝血因子,在血液凝固过程中起着重要的角色,而志贺氏菌具有产生维生素K所必需的酶,可能出现一边抑制一边合成的情况,这可能是患者对华法林反应较弱的原因。相比之下,肠球菌与对华法林的反应增加有关。

还需要更多的研究来证实和完善结果。

他汀类药物

他汀类药物:降胆固醇、抗炎、抗血栓

他汀类药物通常用于降低“坏”胆固醇,治疗心血管疾病。通过抑制HMG-CoA,减少肝脏中胆固醇的从头合成。

注:“坏”胆固醇,是指低密度脂蛋白胆固醇,简称LDL-C。

HMG-CoA,3-羟基-3-甲基戊二酰辅酶A,是一种参与胆固醇和同化代谢的重要酶。

近几十年的研究表明,他汀类药物具有许多多效性作用,包括抗炎、抗血栓形成抗氧化,这可能与其心血管保护特性有关。他汀类药物可抑制Rho激酶Rac1蛋白的功能,这两种蛋白与动脉粥样硬化的进展有关,动脉粥样硬化是心血管疾病的主要危险因素。他汀类药物还激活PPAR-γ.

注:PPAR-γ,过氧化物酶体增殖物激活受体γ,这是一种有助于调节炎症、脂肪代谢和糖代谢的核受体。

他汀类药物可以改变肠道微生物群的结构

一项研究发现,他汀类药物治疗显著增加了某些抗炎相关菌(如拟杆菌、Butyricimonas、 Mucispirillum),这可能有助于改善高血糖

另一项研究表明,他汀类药可能通过PXR(孕酮X受体)介导的机制改变胆汁酸的复杂性,从而导致肠道失调,带来不良影响。

他汀类药物→改变胆汁酸→菌群失调

胆汁酸是在肝脏中从胆固醇合成的,对膳食脂肪的消化和吸收至关重要。他汀类药物通过直接抑制新生胆固醇的合成,可以抑制肝脏中的胆汁酸合成,从而改变人体肠道中的胆汁酸。肠道中胆汁酸的数量和结构的改变,可能通过改变肠道菌群直接或间接诱导出复杂而显著的生理反应

要更多的研究了解他汀类药物治疗对肠道微生物组的长期影响,以及这些变化是否始终对心血管疾病有益。此外,评估他汀类药物治疗和IVDR的可能风险和益处至关重要。

地高辛

地高辛:提高心脏泵送效率,但对10%患者无效

地高辛,是一种可以提高受损或虚弱心脏泵送效率的药物,从而提高临床稳定性和运动能力。然而,在低流量充血性心力衰竭中,由于特定菌株的失活,地高辛可能对10%的患者无效,这突出了IVDR对人类和微生物群的重要性。地高辛的失活是通过Eggerthella lenta将地高辛转化为失活状态二氢地高辛介导的。

E. lenta:可能成为地高辛失活的微生物标志物

在另一项开创性研究中,发现一个编码E. lenta细胞色素、心脏甙还原酶(cgr)的操纵子,被鉴定为地高辛转录激活,表明这可能是地高辛失活的可预测的微生物组生物标志物

精氨酸增加→调节E.lenta→抑制地高辛失活

研究人员还探索了内源性地高辛相关物质可能被选择失活的可能性,并确定了合理的饮食干预是否可以调节体内地高辛的灭活。如前所述,E.lenta的增殖精氨酸有关,精氨酸不仅能改善增殖,还能防止地高辛失活。因此,无论是饮食还是微生物群产生的精氨酸浓度的增加,都可能抑制这种不需要的微生物群功能。

饮食中增加蛋白质→提高地高辛水平

为了验证这一假设,研究人员使用两种不同饮食的小鼠进行了一项体内实验:一种不含任何蛋白质,另一种含有蛋白质总热量摄入的20%。结果表明,蛋白质摄入的增加显著提高了血液和尿液中的地高辛水平,但仅在携带地高辛减少菌株的小鼠中。

总之,这些发现对受益于地高辛治疗的心力衰竭患者,具有重要的临床应用价值。此外,鉴定药物失活的预测性微生物群标志物,可能有助于制定个体微生物群落为基础的个性化治疗指南

血管紧张素转换酶抑制剂(ACE-Is)

一代ACE-Is药:卡托普利,降压

卡托普利是第一代ACE-Is药物,通过抑制中枢和外周部位的肾素-血管紧张素系统(RAS)用于治疗高血压。除了其抗高血压作用外,卡托普利也会影响肠道微生物群的组成。研究表明,卡托普利在停药后保持其抗高血压活性。

一项用卡托普利治疗大鼠的实验中,下列菌群丰度增加

  • Parabacteroides(副拟杆菌)
  • Mucispirillum
  • Allobaculum

此外,卡托普利可减少自身区域的神经元炎症,并减少交感神经驱动,它平衡了肠道微生物群

最近的研究结果还表明,接受卡托普利治疗的母亲通过重建肠道微生物群、改善肠道病理和通透性以及恢复雄性后代失调的肠脑轴,具有持续的降压作用

卡托普利治疗的怀孕大鼠中,梭菌属和梭菌目的存在率较高

与没有治疗的怀孕大鼠相比,用卡托普利治疗的怀孕大鼠在肠道微生物群中下列梭菌目平均丰度更高,例如:

  • Dehalobacterium
  • Osmopolspira
  • Roseburia
  • Coprococcus

因此,卡托普利可能会影响人类肠道微生物群的生长和组成,从而改变药物的有效性

二代ACE-Is药:贝那普利和依那普利,治疗心血管疾病

贝那普利依那普利是第二代血管紧张素转换酶抑制剂,主要用于治疗心血管疾病,如动脉高血压、充血性心力衰竭。这些药物通过抑制ACE的活性发挥作用,导致血管紧张素II生成减少。

注:ACE,血管紧张素转化酶,参与调节血管张力、血压以及体液平衡等生理过程。

血管紧张素Ⅱ,是一种使血管变窄并升高压力的激素。

最近研究表明,贝那普利和依那普利都有能力对肠道微生物群产生积极影响

贝那普利治疗:促进肠道微生物群结构的恢复

贝那普利主要在肝脏中代谢,转化为二酸贝那普利的形式,这会影响肠道微生物群。

依那普利治疗:改变肠道菌群,降低TMAO

依那普利可以降低血液中TMAO的水平。高浓度的TMAO心血管疾病的高发病率有关。依那普利通过改变肠道微生物群的组成和控制尿液中甲胺的排泄,来影响血浆TMAO水平。

注:TMAO,三甲胺N-氧化物,一种由肠道微生物群代谢某些营养物质产生的化合物

心血管系统:药物-微生物相互作用

Zhao Q, et al., Signal Transduct Target Ther. 2023


这些发现表明,ACE-Is可能在改善肠道微生物群组成和心血管健康方面有效。通过促进肠道微生物群结构的恢复降低TMAO水平,贝那普利和依那普利可能有助于降低心血管疾病的风险。

其他降血压药物:药物-微生物相互作用

doi: 10.3389/fmed.2021.742394


内 分 泌 系 统

内分泌系统是一个复杂的腺体系统,产生激素,负责调节各种身体功能,目前的证据表明,微生物群在内分泌系统的调节中发挥着重要作用,并可影响内分泌疾病的IVDR。

下面列出抗糖尿病药物和肠道微生物群之间相互作用的几个案例。

二甲双胍

二甲双胍是一种常见的抗糖尿病药物,也可以减少肥胖降低心血管疾病癌症的发病率等。

研究逐步发现,肠道微生物群调节葡萄糖代谢和能量平衡的机制,特别是可能参与IVDR的机制。

肠道菌群如何影响二甲双胍的抗高血糖作用

将未经治疗的2型糖尿病患者的粪便,移植到无菌小鼠身上,与对照小鼠相比,葡萄糖耐量显著改善。确定A.muciniphila及其金属结合蛋白的表达,是二甲双胍-微生物群相互作用的关键因素。

另一项研究表明,二甲双胍的抗高血糖作用涉及一种新的机制——脆弱拟杆菌-GUDCA-FXR轴。该途径依赖于肠道微生物群,并涉及肠道FXR信号的激活,以改善代谢功能障碍。发现二甲双胍可减少脆弱拟杆菌防止GUDCA降解

注:GUDCA,甘氨熊脱氧胆酸,一种FXR的拮抗剂

二甲双胍→抗炎→对心血管疾病的保护作用

包括激活AMPK途径和抑制NF-κB途径。越来越多的证据表明,微生物群介导的途径可能与二甲双胍的治疗作用有关。例如,二甲双胍治疗引起的肠道微生物群结构变化可能导致葡萄糖、激素、胆汁酸、短链脂肪酸免疫的改变。

二甲双胍→调节肠道菌群→改善认知功能

二甲双胍不仅具有抗炎和抗氧化作用,还与神经保护有关,有研究表明二甲双胍的使用与2型糖尿病患者患痴呆症的风险降低有关,轻度认知障碍得到改善。这其中部分有益作用通过肠道微生物群的组成和功能来调节,从而增加短链脂肪酸胆汁酸的产生。

二甲双胍对肠道菌群的影响

doi.org/10.1210/endrev/bnad029

总的来说,新出现的证据表明,微生物群介导的肠道微生物群结构变化机制,可能是其多效性作用的原因。这对开发针对肠道微生物群及其与IVDR相互作用的新疗法具有重要意义。

α-葡萄糖苷酶抑制剂(AGI)

AGI是一类改变小肠中碳水化合物吸收和代谢的药物。这些药物会显著影响肠道微生物群的结构和变异性,这可能对管理代谢疾病(如2型糖尿病)有重要意义。阿卡波糖米格列醇是两种常用的AGI。

阿卡波糖:产短链脂肪酸菌,乳杆菌 ↑↑

拟杆菌科、肠杆菌科、部分梭菌属 ↓↓

在体外,实验表明,阿卡波糖通过抑制麦芽糖导入物选择性地抑制大肠杆菌的生长,而临床试验表明,阿卡波糖增强产短链脂肪酸菌的丰度,例如普雷沃氏菌属、乳杆菌属粪杆菌属Faecalibacterium)。短链脂肪酸对代谢健康有益,用乳杆菌治疗可以降低血糖

此外,一项研究表明,在肠道微生物群中发现的Dialister在阿卡波糖治疗后增强,并与HbA1c呈负相关,这表明它可能在控制葡萄糖代谢中发挥作用。阿卡波糖也被证明可以增加双歧杆菌和乳杆菌,并减少高脂血症或2型糖尿病患者粪便中有害的拟杆菌科肠杆菌科卵磷脂酶阳性梭菌

注:HbA1c在医学中指糖化血红蛋白,以反映最近两到三个月内的平均血糖水平

米格列醇:抗炎,逆转高能量饮食引起的菌群变化

米格列醇在小鼠中具有抗炎特性,可以抑制炎症反应的组织学和分子指标,并减少高脂肪高糖饮食产生的肠道转运时间。摄入高能量饮食会增加ErysipelotrichaceaeCoriobacteriaceae,但米格列醇可以逆转这种作用。据推测,肠道炎症的减少与肠道微生物群的这些变化有关

总的来说,AGI特别是阿卡波糖,可能有助于重建2型糖尿病患者的肠道微生物群平衡。通过增加产短链脂肪酸菌减少潜在的有害菌,这些药物可能会对代谢健康产生积极影响。需要更多的研究来充分阐明其影响。

胰高血糖素样肽-1受体激动剂

GLP-1(胰高血糖素样肽-1)是肠内分泌细胞通过饮食产生的一种肠内激素,GLP-1在增强葡萄糖诱导的胰岛素分泌、抑制胰高血糖素分泌、抑制食欲和胃排空方面的作用,使其成为治疗糖尿病和超重的有力靶点。

最近的研究强调了肠道微生物群通过诱导GLP-1分泌调节饱腹感葡萄糖稳态的功能,GLP-1受体激动剂(如利拉鲁肽)作为一类新兴的抗糖尿病药物,已被证明可以调节肠道微环境,并改变肠道微生物群组成

利拉鲁肽:改变厚壁菌门/拟杆菌门比例,有争议

通常,厚壁菌门与拟杆菌门的比例是肠道微生物群结构的重要指标。这在我们之前的一篇文章有讲述这方面内容,详见:

厚壁菌门/拟杆菌门——一个简单但粗糙的菌群评估指标

研究表明,利拉鲁肽可以使正常体重的糖尿病小鼠的肠道菌群比例向瘦体比例转变,从而使厚壁菌门与拟杆菌门的比例更高

有趣的是,另一项研究表明,利拉鲁肽降低了厚壁菌门与拟杆菌门的比例,以降低单纯超重和糖尿病超重个体的体重,而与血糖状况无关

这种差异可能归因于不同水平的高血糖和使用的不同模型系统。

GLP1受体激动剂已被证明可极大改变糖尿病雄性大鼠的肠道微生物群结构。这些变化包括选择性增强几种产短链脂肪酸菌,如拟杆菌、毛螺菌科和双歧杆菌。此外,GLP1受体激动剂可至少部分重建肠道微生物群的稳态。

二肽基肽酶-4抑制剂(DPP4Is)

DPP4Is(例如西格列汀维达格利汀)是用于2型糖尿病的一线抗2型糖尿病药物。DPP4Is主要通过抑制GLP-1降解来降低血糖。先前的研究表明,肠道微生物群与DPP-4相关功能可能是DPP4Is的目标,可能为DPP4Is调节肠道微生物群不一致性开辟新的治疗应用。

研究表明,DPP4Is可以通过增加拟杆菌门来改善血糖控制,从而大大恢复高脂饮食诱导的肠道微生物群改变。

西格列汀:产短链脂肪酸菌↑↑适度恢复菌群失调

西格列汀对肠道微生物群影响的研究表明,拟杆菌门减少厚壁菌门软壁菌门(Tenericutes)增加。然而,西格列汀适度恢复了2型糖尿病大鼠的微生物群失衡,并改变了产短链脂肪酸菌的丰度

维达利汀:乳杆菌↑↑ Oscillibacter↓↓

类似地,维达利汀给药与糖尿病大鼠的拟杆菌门增加厚壁菌门减少厚壁菌与拟杆菌门比例降低有关。此外,维达利汀通过调节肠道微生物群产生益处,导致乳杆菌增加Oscillibacter减少。为了阐明变异机制,研究人员通过实验证实,维达利汀抑制盲肠内容物中的TLR配体,并恢复抗菌肽水平和回肠隐窝深度。研究还表明,DPP4Is可能通过对肠道微生物群的影响,间接减少肝脏中促炎细胞因子的分泌。

总的来说,这些研究强调了DPP4Is对肠道微生物群的重要性,并揭示了改善葡萄糖稳态和IVDR的有希望的策略。

内分泌系统:药物-微生物相互作用

Zhao Q, et al., Signal Transduct Target Ther. 2023


消 化 系 统

消化系统是药物微生物组学最广泛的领域之一,药物代谢和疗效至关重要。肠道微生物群会影响用于治疗各种消化系统疾病的药物的结果,例如,炎症性肠病(IBD)和肠易激综合征(IBS)。IBD患者的肠道微生物群组成和功能发生了改变,这可能会影响IVDR。

柳氮磺吡啶(SAS)

SAS是一种最初开发的药物,旨在治疗细菌感染引起的炎症后来发现它在治疗溃疡性结肠炎方面有效。该药物由氨基水杨酸盐和磺胺吡啶组成,它们通过偶氮键连接在一起。SAS的一个独特特性是它不会在上游胃肠道中快速吸收。相反,它被结肠中的肠道微生物群分解为其各个组成部分。

随后,磺胺吡啶吸收到血液中,而美沙拉秦(5-氨基水杨酸,5-ASA)可以在结肠中失活

SAS+益生菌:5-ASA和磺胺嘧啶恢复

一项针对健康受试者的PK研究表明,肠道微生物群对激活SAS至关重要。这一发现或许可以解释为何该药物在治疗溃疡性结肠炎(UC)方面比克罗恩病(CD)更为有效。

通过给予益生菌菌株(例如嗜酸乳杆菌L10、乳酸双歧杆菌B94、唾液链球菌K12),可以增强肠道菌群SAS的功能。

在一项体外试验中,研究人员在厌氧条件下将大鼠结肠的内容物与SAS单独SAS与益生菌联合孵育。发现益生菌具有偶氮还原酶活性,使其能够代谢SAS。经与SAS和益生菌共同培养后,样本中的5-ASA磺胺嘧啶含量得到了更大程度的恢复

尽管SAS是一种有效且廉价的溃疡性结肠炎治疗方法,但一些患者在使用时报告了不良反应,如恶心、皮疹厌食症。这可能是由SAS通过肠道微生物群代谢引起的。因此,SAS不如其他溃疡性结肠炎治疗方法受欢迎。

质子泵抑制剂

PPIs是广泛用于治疗酸性疾病的药物,包括消化性溃疡、胃食管反流、消化不良胃十二指肠病出血

PPI 有效,但长期使用可能存在不良反应

基于其疗效安全性特点,质子泵抑制剂治疗在近几十年快速扩大。然而,与长期使用PPIs相关的安全性和可能的不良反应存在争议。据估计,高达70%的PPIs处方被认为是不必要的。一旦开始使用,很少重新评估PPIs的原始适应症,试图停药后不必要的长期使用也随之产生。

PPI:肠道菌群多样性↓↓ 部分口腔菌群增加↑↑

荷兰一项基于患者的大规模临床试验表明,PPI与肠道微生物群多样性减少和分类学变化之间存在很大相关性

分析来自不同队列的16S数据发现,PPI的使用导致部分肠道微生物群丰度下降,口腔微生物群增加

例如,肠杆菌科、肠球菌科乳杆菌科增加瘤胃球菌科双歧杆菌科减少。而典型口腔微生物群的改变表现为下列菌群增加

  • Rothia dentocariosa
  • Rothia mucilaginosa
  • Actinomyces
  • Micrococcaceae

此外,观察到的变化似乎是PPI的一类功效,剂量的增加与微生物群的更大变化有关。

PPI的使用与可预测的功能变化

最近的研究表明,PPI的使用与24个分类群和133个途径高度相关,具有可预测的功能变化,包括脂肪酸生物合成、脂质生物合成和L-精氨酸的生物合成增加,嘌呤脱氧核糖核酸的降解

PPI→胃酸↓↓→增加肠道感染的易感性

另一项受流行药物直接影响肠道微生物群的体外实验表明,生长速度发生了显著变化,这意味着PPIs与细菌H+/K+ATP酶的结合可能介导直接影响。 PPIs引起的胃酸减少,使口腔微生物群能够定植肠道微生物群,导致分类稳态改变,并可能增加对肠道感染的易感性,例如艰难梭菌、弯曲杆菌和沙门氏菌

儿童期使用PPI,可能与日后肥胖相关

此外,PPI的启动和停用可能导致肠道微生物群的改变,可能加剧肝硬化长期使用PPI,特别是在儿童时期,会导致肠道微生物群的永久性改变,可能导致日后的肥胖

虽然PPI被广泛认为是无害有效的,但临床上应该重新评估其广泛、长期的影响和OTC的可及性。PPI使用的快速而广泛的转变导致了肠道微生物群的变化,影响了多达五分之一的人群。仔细评估PPIs诱导的肠道微生物群改变带来的长期影响,特别是在早期发育过程中,以及对晚年健康和疾病的潜在影响,这一点很重要。

非甾体抗炎药

非甾体抗炎药通常用于缓解疼痛炎症,但它们的使用会导致不良反应,如胃溃疡和小肠粘膜损伤

这是由于细菌葡萄糖醛酸酶在肠道中代谢非甾体类抗炎药,类似于CPT-11的情况,它将药物转化为损害肠道粘膜的有毒代谢产物。肝脏中产生的非甾体抗炎药的葡萄糖醛酸苷通过胆汁到达肠道,在胆汁中细菌GUSs将其水解为苷元。这些苷元随后被细胞色素P450重吸收并转化为潜在的细胞毒性中间体,从而引起肠道毒性

注:CPT-11属于盐酸伊立替康注射液

与CPT-11一样,最近的一项研究表明,Inh1(抑制剂1)是一种新型的微生物特异性GUSs抑制剂,可以减少双氯芬酸的肠道药物不良反应。这表明抑制GUSs减少某些药物不良反应的一种很有前途的方法。

虽然肠道微生物群产生对生物体具有有益功能的GUS,但条件致病菌或肠道致病菌,如产气荚膜梭菌大肠杆菌,负责对药物进行去葡萄糖醛酸化反应,产生有害代谢产物。这是由于GUSs的细胞内变化,包括构象、疏水性和迁移率的变化。细菌GUSs诱导的ADR的增强潜力,尤其是肠道损伤,并非NSAIDs和CPT-11独有。

其他药物,包括抗肿瘤酪氨酸激酶抑制剂,瑞格菲尼和静脉补剂类黄酮,是GUSs 的底物。这些证据强调了了解细菌酶在IVDR中的重要性,以制定减少药物不良反应的策略的价值。

消化系统:药物-微生物相互作用

Zhao Q, et al., Signal Transduct Target Ther. 2023


神 经 系 统

初步研究表明,微生物群可能在调节神经系统IVDR中发挥关键作用。其中一个例子是使用益生菌来提高抗抑郁药物的有效性。多项研究表明,某些肠道微生物群菌株可以产生神经递质,如血清素和γ-氨基丁酸(GABA),可以调节情绪和焦虑

通过补充益生菌,研究人员希望增加这些神经递质的可用性,改善对抗抑郁药治疗的反应。另一个领域是微生物群对神经退行性疾病的影响,例如帕金森病,常用的治疗药物是左旋多巴

左旋多巴、卡比多巴和恩他卡朋

左旋多巴是一种治疗帕金森病的药物,帕金森病是一种神经系统疾病,表现为震颤、僵硬行动困难。左旋多巴口服,必须通过小肠重新吸收才能到达大脑,在那里它被酪氨酸脱羧酶(tyrDC)转化为多巴胺。该药物的有效性取决于大脑的生物利用度,该药物通常儿茶酚胺代谢抑制剂(如卡比多巴和戊卡彭)一起使用,以抑制脑外代谢

E.lenta 代谢左旋多巴,可能与高血压风险相关

新出现的证据表明,肠道微生物群可以代谢左旋多巴。某些物种,如粪肠球菌E.faecalis)和杆菌含有酪氨酸脱羧酶。然而,这种微生物群代谢减少了大脑中可获得的左旋多巴的量,导致药效降低。此外,左旋多巴的微生物群代谢也会导致药物不良反应,因为E.lenta和其他十个物种可以进一步将多巴胺转化为间酪胺,从而导致高血压危机。

残留左旋多巴也可以与微生物群相互作用

绝大多数左旋多巴通过肠道氨基酸转运载体输送到循环系统,还有10%左右残留,也可以与微生物群相互作用,通过其代谢产物影响肠道稳态。Clostridium sporogenes 能够将L-多巴胺脱氨化为3-(3,4-二羟基苯基)丙酸,后者可以体外抑制回肠运动。

粪肠球菌:98.9%效率代谢左旋多巴和恩他卡朋

肠道微生物群也可以直接代谢卡比多巴恩他卡朋。例如,粪肠球菌能以98.9%的效率代谢左旋多巴和恩他卡朋。反过来,恩他卡朋会减少一些物种,例如Ruminococcus torques,后者仍能以84%的效率代谢恩他卡朋。

这些发现说明了肠道微生物群和IVDR之间的复杂相互作用,这可能会影响药物的疗效和安全性。这些有利于拓宽我们对药物-微生物群相互作用的了解,并探索神经和精神疾病的新治疗策略。


运 动 系 统

运动系统的健康可能受到各种疾病的影响,例如骨关节炎、类风湿性关节炎和骨质疏松症,这些疾病会导致疼痛、僵硬和活动能力下降。近年来,人们越来越关注肠道微生物群在这些疾病的病理学和治疗中的影响,如甲氨蝶呤、非甾体抗炎药等。

甲氨蝶呤(MTX)

甲氨蝶呤是一种用于治疗自身免疫性疾病(如类风湿关节炎)的强效细胞毒性药物。其潜在作用基于抑制二氢叶酸还原酶和胸苷酸合成酶,从而防止嘧啶和嘌呤的从头合成。虽然甲氨蝶呤是有效的,但它也有很高的不良反应发生率,包括胃肠道、血液学、肾毒性和肝毒性。

甲氨蝶呤:E.faecium↓↓ Lachnospiraceae↑↑

可能影响对甲氨蝶呤反应的一个潜在因素是肠道微生物群。研究表明,甲氨蝶呤治疗可以改变肠道微生物群的组成,降低肠道细菌的丰度,尤其是粪肠球菌E.faecium)的丰度,并增加Lachnospiraceae的丰度。然而,部分有益菌(如瘤胃球菌科、拟杆菌科、脆弱拟杆菌)的减少可能会加剧胃肠道药物不良反应,特别是肠道粘膜炎。

甲氨蝶呤和肠道微生物群之间的联系是双向的

肠道微生物群的变异性可能会影响甲氨蝶呤的治疗反应。研究发现,肠道微生物群多样性较高的患者,具有丰富Prevotella maculosa,对甲氨蝶呤的反应更好。尽管看起来不错,但甲氨蝶呤的应答率极其不稳定,介于10%-80%之间,只有40%的患者能够达到治疗所需的药物浓度,并且不良反应显著

已经探索了遗传因素来预测甲氨蝶呤的IVDR,但尚未达到临床相关性。需要更多的研究来评估。肠道微生物群可能在甲氨蝶呤的PD中发挥重要作用,进一步的探索可能有助于患者个性化治疗。

神经、运动系统:药物-微生物相互作用

Zhao Q, et al., Signal Transduct Target Ther. 2023


泌 尿 生 殖 系 统

泌尿生殖系统的微生物群会影响几种药物的疗效和毒性,导致该系统出现了药物微生物组学领域。特别是,泌尿生殖微生物群会影响雄激素剥夺治疗(ADT)的有效性,这是癌症的常见治疗方法。ADT通常涉及使用雄激素合成抑制剂(如醋酸阿比特龙),或雄激素受体拮抗剂(如恩扎鲁胺、醋酸德格雷)。

醋酸阿比特龙、恩扎鲁胺、醋酸地加瑞克

最近的研究揭示了ADT对免疫系统和肠道微生物群的影响,以及这如何影响前列腺癌症的进展。

醋酸阿比特龙是ADT中广泛使用的药物,研究强调了胸腺依赖性T细胞在调节前列腺癌进展中的关键作用,由于CD4+和CD8+T细胞的消耗,导致IVDR控制的肿瘤发展的部分减少

醋酸阿比特龙→ A.muciniphila ↑↑ → 维生素K2 ↑↑

前列腺癌患者接受醋酸阿比特龙治疗后,重塑肠道微生物群并促进抗炎菌A.muciniphila的增殖,从而提高微生物群产生维生素K2

此外,研究表明,具有较高α-多样性的微生物群和特定的肠道微生物群,如A.muciniphila,与更好的疗效相关。

进一步研究发现,接受口服雄激素靶向治疗(ATT)的男性的泌尿生殖微生物群组成,与接受促性腺激素释放激素(GnRH)激动剂或拮抗剂单一治疗或不接受ADT的男性有所不同。例如,A. muciniphila瘤胃菌科等能够合成类固醇的菌,在接受口服ATT治疗的男性的微生物群中丰富,这可能会影响疾病进展和免疫疗法。

肠道菌群→调节循环性激素→促进ADT耐药性

另一项研究表明,肠道微生物群可以通过对人体细胞的影响,也可以通过直接的生物转化或合成来调节循环性激素的水平,从而促进ADT耐药性。前列腺癌患者表现出更高水平的菌株,如A. muciniphila瘤胃菌科,它们能够通过CYP17A1样细菌酶合成类固醇激素。使用CYP17A1抑制剂醋酸阿比特龙培养细菌可抑制雄激素生物合成。然而,微生物群对雄激素水平降低的反应导致能够合成雄激素的菌株的扩增,尚待阐明。

总之,微生物群调节循环性激素的能力和能够合成雄激素的细菌的扩张,可以驱动对ADT的耐药性。未来的研究有必要澄清肠道微生物群、前列腺癌和治疗之间的复杂相互作用。


呼 吸 系 统

药物可能会影响呼吸微生物群的组成和功能,相反,微生物群可能会影响药物代谢和反应。例如,抗生素可以减少微生物群的多样性,并促进可能导致慢性呼吸道疾病的机会性病原体的生长吸入皮质类固醇可以增加微生物群的多样性,降低致病菌的丰度,这可能有助于其治疗效果

此外,呼吸道微生物群会影响药物向肺部的输。最著名的例子之一是使用抗生素异烟肼(INH)、利福平(RIF)和吡嗪酰胺(PZA)进行抗结核治疗。

异烟肼、利福平、吡嗪酰胺

研究抗结核抗生素对结核分枝杆菌感染小鼠肠道微生物群结构的影响,发现在小鼠模型中,异烟肼、利福平、吡嗪酰胺治疗三个月会导致显著和持久的生态失调。肠道微生物群的组成发生了改变:

  • 梭状芽孢杆菌 ↓↓
  • 乳杆菌 ↓↓
  • 卟啉单胞菌科 ↑↑
  • 拟杆菌门 ↑↑
  • 变形菌门 ↑↑

研究进一步表明,单剂量利福平降低了微生物群的多样性,而与未用抗生物治疗的小鼠的肠道微生物群相比,单独使用异烟肼吡嗪酰胺会导致微生物群组成的改变。

具体而言,异烟肼富集Gordonibacter,而吡嗪酰胺富集Marvinbryanti。 结核病感染不会显著改变肠道微生物群组成,但它被发现可以调节粘膜免疫反应

在人类中,一线抗结核药物治疗似乎对肠道微生物群的影响很小。然而,一些菌株可以调节宿主的免疫反应,如:

  • 拟杆菌,它产生多糖,增加Treg细胞反应并介导粘膜耐受。
  • 普雷沃氏菌与Th17细胞介导的炎症增强有关。
  • 而乳杆菌促进先天和适应性免疫反应。

研究还发现,抗结核病药物可以减少肠道稳态所需的微生物群增加复发结核病的风险。与无结核病患者相比,先前治疗的患者的T细胞对2型表位的识别能力也较差。人类肠道中的2型表位与分枝杆菌mycobacteria)有关。

抗结核病治疗的多年试验有助于更深入地了解微生物群在结核病进展中的重要性。抗结核抗生素和宿主调节剂的组合,可以缩短结核病的治疗时间,减轻严重程度减少再次感染的风险。对宿主-病原体相关性、宿主免疫学和宿主靶向治疗的研究表明,这种方法可能对结核病的治疗有益。

呼吸系统:药物-微生物相互作用

Zhao Q, et al., Signal Transduct Target Ther. 2023

癌 症

在癌症方面,肠道微生物群对于几种癌症的发病机制、进展和 IVDR 至关重要。这里介绍几种代表性药物和肠道微生物群在癌症患者中相互作用的机制,见下表。

Zhao Q, et al., Signal Transduct Target Ther. 2023

关于癌症药物与微生物群之间的相互作用,在我们之前的文章也有介绍,详见:

肠道菌群:开启癌症治疗协同个性化调节策略新篇章

03
药物微生物组学的作用机制


微生物群对IVDR影响的机制

肠道微生物群通过酶修饰结构和生物活性或毒性的改变来影响药物的有效性可接受性。肠道微生物群可以通过多种方式影响IVDR,包括以下:

1) 药物代谢的改变

微生物群可以影响体内代谢药物的酶的活性,从而影响药物的疗效和副作用。

2) 产生耐药性

随着时间的推移,微生物群会对药物产生耐药性,使其在治疗感染方面的效力降低。这种耐药性可能是由于微生物群DNA突变或从他人那里获得耐药性基因所致。

3) 药物靶点的修饰

微生物群可以修饰体内的药物靶点,使其不易受药物影响。如微生物群可以修饰氟喹诺酮类抗生素的靶位点,从而降低其结合和抑制酶的能力。

4) 与药代动力学相互作用

微生物群影响药代动力学,影响药物的疗效和安全性。例如,肠道微生物群可以改变药物的吸收、分布、代谢、排泄,从而改变其治疗效果和毒性。

5) 宿主微生物群的破坏

使用抗生素会干扰宿主微生物群中的自然生态系统,导致致病菌(如艰难梭菌)过度生长。这会导致感染和其他不良反应,从而影响药物安全。

6) 宿主免疫反应的调节

肠道微生物群可以调节宿主的免疫功能,这可能会影响靶向免疫系统的药物的活性和毒性。例如,肠道微生物群可以通过调节宿主免疫反应来调节免疫疗法在肿瘤治疗中的有效性。

7) 肠道屏障功能的调节

肠道微生物群可能影响肠道屏障的完整性,从而影响药物吸收肠道-宿主相互作用。例如,肠道微生物群可以调节肠道中紧密连接蛋白的表达水平,从而影响药物的吸收。

肠道菌群编码的一些酶及其对药物的影响

Zhao Q, et al., Signal Transduct Target Ther. 2023


药物改变肠道微生物群的机制

在一项重要全面的研究中,作者评估了1000多种药物的抗微生物特性,其中835种是影响人体细胞的靶向药物。其中,24%表现出抗菌作用,影响了至少50%的受试菌株的增殖。

药物影响肠道微生物群的机制有几个:

1) 直接抗生素效应

抗生素可以杀死包括有害菌和有益菌,可能导致肠道微生物群失衡,对人类健康产生负面影响。

2) 肠道运动能力改变

食物通过肠道的速度,会影响肠道微生物群的增殖和功能。某些药物,如阿片类止痛药,会减缓肠道运动,从而导致有害细菌过度生长。这可能会导致便秘和腹胀等胃肠道症状,在某些情况下还会导致感染(如艰难梭菌)。

3) 免疫功能的调节

肠道微生物群在调节肠道免疫方面具有关键功能。几种药物,如免疫检查点抑制剂,会影响肠道免疫,进而影响肠道微生物群。

4) pH值的变化

肠道的pH值会影响不同类型细菌的生长和存活。一些药物,如用于治疗胃酸倒流的质子泵抑制剂,可以改变肠道的pH值,从而影响不同微生物群的增殖,从而影响肠道微生物群的整体组成。

5) 干扰微生物代谢

肠道微生物群在代谢肠道中的化合物方面具有重要功能。一些药物,如非甾体抗炎药,会干扰微生物代谢,这可能会对肠道微生物群产生影响。特别是,非甾体抗炎药会干扰胆汁酸的肠道微生物群代谢,导致肠道微生物群的变化。

6) 饮食变化

某些药物,如泻药抗腹泻药,会改变肠道的饮食环境。这可能会通过改变肠道微生物群生长和生存所需的营养素和其他化合物的可用性来影响肠道微生物群。


药物对肠道微生物群的影响可能是积极的,也可能是消极的。例如,某些益生菌或益生元能够调节肠道微生物群,这可能对个体的健康产生积极影响。然而,服用对肠道微生物群产生负面影响的抗生素或其他药物可能导致微生态失调,对人类健康产生负面影响。

因此,必须仔细评估药物对肠道微生物群的潜在影响,并开发考虑个体肠道微生物群组成和功能的个性化药物治疗方法

04
结 语

以上我们了解到微生物群和常见药物之间复杂的相互作用对药物效果的影响,肠道微生物群在药物治疗中的重要性意味着,肠道微生物群驱动的精准医疗,明确靶向肠道微生物群或将提高临床疗效

未来多元化应用

通过测定肠道微生物群的组成、数量及代谢产物相对丰度,可以预测药物在体内的疗效和毒性。肠道微生物特征可作为非侵入性辅助诊断方法或提供预后评估。因此,开发能够预测药物疗效和毒性的改进生物标志物,对于成功实施精准医疗至关重要。

设计小分子抑制体内药物生物转化为有毒代谢物相关的微生物代谢活性。

可以通过引入益生菌、益生元、粪菌移植等方式来调节微生物群的组成和比例,提高药物的生物利用度,减少不良反应。

药物微生物组学领域正在兴起

整合多个高通量多组学数据集,提供药物反应的个体差异的全面概况。这些将辅助全面揭示药物与微生物之间相互作用背后的决定因素,可以有效地满足对患者进行聚类和预测以及发现新生物标志物的需求。

多组学策略促进药物微生物组学走向人类精准医学

Zhao Q, et al., Signal Transduct Target Ther. 2023

高通量数据需要使用先进的计算技术通过人工智能算法进行建模。开发模拟药物与微生物相互作用的预测模型和软件对于减少研究时间和成本至关重要。

仍然存在一些挑战

——研究还需更加深入

对药物-微生物之间相互作用背后的机制仍然缺乏全面的了解。肠道菌群是一个复杂且不断变化的生态系统,受到饮食、年龄、性别、生活方式宿主遗传学等多种因素的影响。很难将这些因素的影响与药物引起的微生物群变化分开

——临床转化需要克服的障碍

例如,开发基于微生物群的药物反应生物标志物将需要大规模验证研究和监管部门的批准

许多药物微生物组学研究的样本量通常有限,可能限制其统计能力和概括研究结果的能力。需要更大规模的研究来确认和扩展初步结果。

应对这些挑战需要研究人员、临床医生行业合作伙伴之间的合作加深我们对药物-微生物相互作用机制的理解,并确保研究结果转化为安全有效的临床实践,为患者提供更好的治疗策略共同推动精准医学领域的进步。

主要参考文献

Zhao Q, Chen Y, Huang W, Zhou H, Zhang W. Drug-microbiota interactions: an emerging priority for precision medicine. Signal Transduct Target Ther. 2023 Oct 9;8(1):386.

Rosell-Díaz M, Fernández-Real JM. Metformin, cognitive function, and changes in the gut microbiome. Endocr Rev. 2023 Aug 21:bnad029.

Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020 Aug;69(8):1510-1519.

Schupack DA, Mars RAT, Voelker DH, Abeykoon JP, Kashyap PC. The promise of the gut microbiome as part of individualized treatment strategies. Nat Rev Gastroenterol Hepatol. 2022 Jan;19(1):7-25.

Chen HQ, Gong JY, Xing K, Liu MZ, Ren H, Luo JQ. Pharmacomicrobiomics: Exploiting the Drug-Microbiota Interactions in Antihypertensive Treatment. Front Med (Lausanne). 2022 Jan 19;8:742394.

Daisley BA, Chanyi RM, Abdur-Rashid K, Al KF, Gibbons S, Chmiel JA, Wilcox H, Reid G, Anderson A, Dewar M, Nair SM, Chin J, Burton JP. Abiraterone acetate preferentially enriches for the gut commensal Akkermansia muciniphila in castrate-resistant prostate cancer patients. Nat Commun. 2020 Sep 24;11(1):4822.

Jia L, Huang S, Sun B, Shang Y, Zhu C. Pharmacomicrobiomics and type 2 diabetes mellitus: A novel perspective towards possible treatment. Front Endocrinol (Lausanne). 2023 Mar 23;14:1149256.

Khan I. Drugs and gut microbiome interactions-an emerging field of tailored medicine. BMC Pharmacol Toxicol. 2023 Aug 30;24(1):43.

Pant A, Maiti TK, Mahajan D, Das B. Human Gut Microbiota and Drug Metabolism. Microb Ecol. 2023 Jul;86(1):97-111.

肠道微生物组的个体化诊·疗正在来临

谷禾健康

疾病表现、进展和治疗反应的可变性一直是医学的核心挑战。尽管宿主因素和遗传学的变异性很重要,但很明显,在迈向个性化治疗的过程中,必须考虑肠道微生物组具有巨大的遗传和代谢多样性

疾病表现、治疗反应和治疗不良反应个体差异是有效管理疾病和患者安全的主要挑战。这种认知是精准医学的基础,其最简单的形式可以这么说,用个性化方法为合适的患者确定合适的治疗方法,无需反复试验。

将肠道微生物组与人类遗传学区分开来的一个方面是它代表了我们健康的动态组成部分,通过复杂的网络不断与宿主和环境因素相互作用。虽然存在潜在挑战,肠道微生物组的可塑性也提供了一个独特的机会,使其成为精准医学的一个有吸引力的目标。

本文支持使用肠道微生物组作为精准医学工具的当前证据,并建议未来需要将微生物组作为个体化治疗或干预工具的工作。

该研究团队选择了六个广泛的疾病组,这些组具有相对较强的证据表明肠道微生物组的作用。 尽管每个疾病组都有不错的发展,但在考虑临床影响时,不同疾病组的前景和成熟度各不相同(下图)。

01 传染病(艰难梭菌感染)

抗生素诱导的肠道微生物组破坏会促进机会性和医院感染的机制。最常见的院内腹泻感染艰难梭菌为例,强调可能解释临床结果的个体差异的微生物组和病原体特异性特征。

复发性艰难梭菌感染 (CDI) 一直是微生物组研究的中心焦点。CDI 出现最常见的原因是使用抗生素,但矛盾的是,CDI 的一线治疗也包括抗生素。

抗生素对一般人相当有效,但为什么部分患者出现治疗失败,或是成功治疗后复发

这可能与宿主特征(例如高龄)或药物的使用(例如质子泵抑制剂)有关, 以及肠道微生物组中特定病原体的特征有关。

除了宿主因素外,肠道微生物群的破坏也是 CDI 的关键因素。

· 与健康对照个体相比,CDI患者的肠球菌、韦永氏菌、乳杆菌、γ-变形菌属的相对丰度较,而拟杆菌属、毛螺菌科、瘤胃球菌科的含量较

2型糖尿病如何做到可防可控?肠道菌群发挥重要作用

谷禾健康

2型糖尿病是一种血糖水平升高(高血糖)的慢性代谢疾病,主要由胰岛素抵抗和胰岛素分泌不足引起。2型糖尿病全球患病率在不断上升。

截止到2020年,根据美国糖尿病学会评估标准,糖尿病患病率已达到12.8%。其实在我国成年人中,已经有将近一半的人存在血糖异常,未来极有可能发展为2型糖尿病。如果不加干预治疗,会引发许多不良后果。

很多研究表明,肠道菌群在宿主的代谢和疾病状态中起着重要的作用。特别是2型糖尿病,其病因复杂,包括肥胖、慢性低度炎症,受肠道微生物群和微生物代谢产物的调节。

本文将从肠道菌群的角度了解其与2型糖尿病的关系;肠道菌群及其代谢物对葡萄糖代谢、免疫系统的影响;
从影响肠道菌群变化的因素来了解各种干预措施,包括药物,饮食,益生菌/益生元,粪菌移植,间接性禁食等方式。

01 2型糖尿病

葡萄糖主要通过食用的食物和饮料进入人体。胰腺会产生一种叫做胰岛素的激素,以帮助血液中的葡萄糖进入肌肉、脂肪和肝脏,用作能量。

  • 胰岛素如何将血液中糖分控制在正常水平?

胰岛素通过血液循环进入不同组织。组织大多数细胞表面有一种结构,叫胰岛素受体。当胰岛素流过时,会附着在胰岛素受体上,就像钥匙打开锁一样,糖可以进入细胞内,细胞获得能量维持正常运作,血液中糖分就会回落到正常水平。

  • 2型糖尿病如何形成?

2型糖尿病患者身上,细胞对胰岛素没有反应,这种情况就叫胰岛素抵抗。胰岛素没有了“钥匙”的作用,不能有效开启细胞上的“锁”,或者“锁”的数量也减少了,由此,糖分就不能进入细胞有效利用,被挡在了细胞外面,只好在血液中积累,血糖就升高了。

刚开始的时候,胰腺会觉得自己使不上力,于是不甘心开始拼命工作,产生更多的胰岛素来克服这种抵抗。

随着时间的推移,胰腺开始累了,力不从心,不能产生更多的胰岛素,这时候就是2型糖尿病开始了。

02 2型糖尿病患者的微生物群

肠道微生物群可以直接或间接地影响人类健康,肠道微生物群失调可能会增加促炎疾病的患病率,如肥胖、炎症性肠病、2 型糖尿病、关节炎和癌症。

2型糖尿病人群中个体微生物群的差异

Cunningham A L et al., Gut Pathog, 2021

在2型糖尿病患者普遍具有相对高丰度的特定属:Blautia、Coprococcus、Sporobacter、Abiotrophia、Peptostreptococcus、Parasutterella、Collinsella

2型糖尿病患者中,产生丁酸菌特别缺乏,特别是梭菌目,包括:

Ruminococcus、Subdoligranulum,Eubacterium rectale、Faecali prausnitzii、Roseburia intestinalis 、

Roseburia inulinivorans

2型糖尿病患者中,其他明显较少的菌属有:

拟杆菌属、普雷沃氏菌属双歧杆菌属

  • 双歧杆菌减少
1
客服